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Abstract Havel in 1956 [7], Erdős and Gallai in 1960 [4], Hakimi in 1962 [6],
Ruskey, Cohen, Eades and Scott in 1994 [20], Barnes and Savage in 1997 [1],
Tripathi, Venugopalan and West in 2010 [23] proposed a method to decide,
whether a sequence of nonnegative integers can be the degree sequence of
a simple graph (such sequences are called graphical). The running time of
their algorithms in worst case is Ω(n2). In [10] the authors proposed a new
algorithm called EGL (Erdös-Gallai Linear algorithm), whose worst running
time is O(n). As an application of this linear time algorithm we describe a quick
parallel algorithm EGQ (Erdős-Gallai Parallel algorithm) and enumerate the
different degree sequences of simple graphs for 24, . . . , 29 vertices [21].
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1 Introduction

In the practice an often appearing problem is the ranking of different objects
as hardware or software products, cars, economical decisions, persons etc. A
typical method of the ranking is the pairwise comparison of the objects, as-
signment of points to the objests and sorting the objects according to the sums
of the numbers of the received points.
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For example Landau [15] references to biological, Hakimi [6] to chemical,
Kim et al. [14], Newman and Barabási [18] to net-centric, Bozóki, Fülöp, Po-
esz, Rónyai and Temesi to economical [2,3,22], Liljeros et al. [16] to human
applications, while Iványi, Lucz, Sótér and Pirzada [8,9,12,10] to applications
in sports.

From several popular possibilities we follow the terminology and notations
used by Pál Erdős and Tibor Gallai [4].

2 Linear Erdős-Gallai algorithm

Text with citations [2] and [4] and [10] and [11] and [22] and [13].

Erdős-Gallai-Linear(n, b, L)

01 H0 = 0 B Line 01: initialization
02 for i = 1 to n B Lines 02–03: computation of the elemnts of H
03 Hi = Hi−1 + bi

04 if Hn odd B Lines 04–06: test of the parity
05 L = False
06 return L
07 b0 = n− 1 B Line 07: initialization of a working variable
08 for i = 1 to n B Lines 08–12: computation of the indices
09 if bi < bi−1

10 for j = bi−1 downto bi + 1
11 mj = i− 1
12 mbi = i
13 for j = bn downto 1 B Lines 13–14: large indices
14 mj = n
15 for i = 1 to n B Lines 15–23: test of the elements of b
16 if i ≤ mi B Lines 16–19: test of indices for large mi’s
17 if Hi > i(i− 1) + i(mi − i) + Hn −Hmi

18 L = False
19 return L
20 if i > mi B Lines 20–23: test of indices for small mi’s
21 if Hi > i(i− 1) + Hn −Hi

22 L = False
23 return L
24 L = True B Lines 24–25: the program ends with the value True
25 return L

3 Quick Erdős-Gallai algorithm

[10,24]
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Table 1 Please write your table caption here

first second third

number number number
number number number

4 Parallel Erdős-Gallai algorithm

5 Application: the number of score sequences

[17,19]

5.1 Subsection title

Paragraph headings Use paragraph headings as needed.

a2 + b2 = c2 (1)
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