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Abstract. A bipartite (a, b)-tournament is a bipartite tournament in
which the vertices belonging to different parts of the tournament are
connected with at least a and at most b arcs. The imbalance of a vertex
is defined as the difference of its outdegree and indegree. In this paper
existence criteria and construction algorithms are presented for bipartite
(a, b)-tournaments having prescribed imbalance sequences and prescribed
imbalance sets.

1 Introduction

An actual research topic of graph theory is the characterization of different
special cases (as oriented, simple, multipartite, bipartite, signed and semi-
complete graphs, see e.g. [1, 13, 14, 15, 27]), and different generalizations
(as hypergraphs, hypertournaments, weighted graphs, signed graphs, see e.g.
[17, 24, 25]) of multigraphs having prescribed degree properties.
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The classical results, as the paper published by Landau in 1953 [12], and the
paper due to Erdős and Gallai in 1960 [4] contained necessary and sufficient
conditions of the existence of a graph with the prescribed parameters. Later
also constructive results appeared as the Havel-Hakimi theorem [7, 8] and the
construction algorithm of optimal (a, b, n)-tournaments in 2010 [10].

2 Preliminary notions and earlier results

Let a, b and n be nonnegative integers (b ≥ a, n ≥ 1), T (a, b.n) be the set of
directed multigraphs T = (V, E), where |V | = n, and elements of each pair of
different vertices u, v ∈ V are connected with at least a and at most b arcs
[9]. T ∈ T (a, b, n) is called (a, b, n)-tournament. (1, 1, n)-tournaments are the
usual tournaments, and (0, 1, n)-tournaments are also called oriented graphs
or simple directed graphs [5]. The set T is defined by

T =
⋃

b≥a≥0, n≥1

T (a, b, n).

According to this definition T is the set of the finite directed loopless multi-
graphs.

For any vertex x ∈ V let d(x)+ and d(x)− denote the outdegree and indegree
of x, respectively. Define f(x) = d(x)+− d(x)− as the imbalance of the vertex
x. The imbalance sequence of T ∈ T is formed by listing the imbalances of the
vertices in nonincreasing or nondecreasing order.

The following result due to Avery [1] and Mubayi, Will and West [15] pro-
vides a necessary and sufficient condition for a nonincreasing sequence F of
integers to be the imbalance sequence of a tournament T ∈ T (0, 1, n).

Theorem 1 A nonincreasing sequence of integers F = [f1, f2, . . . , fn] is an

imbalance sequence of a tournament T ∈ T (0, 1, n) if and only if

k
∑

i=1

fi ≥ k(n− k),

for 1 ≤ k < n with equality when k = n.

Arranging the sequence F in nondecreasing order, we have the following
equivalent assertion.



Imbalances of bipartite multitournaments 3

Corollary 2 A nondecreasing sequence of integers F = [f1, f2, . . . , fn] is the

imbalance sequence of a (0, 1, n)-tournament if and only if

k
∑

i=1

fi ≤ k(k − n)

for 1 ≤ k < n, with equality when k = n.

The following theorem gives a characterization of imbalance sequences of
(0, b, n)-tournaments [22].

Theorem 3 A nonincreasing sequence F = [f1, f2, . . . , fn] of integers is the

imbalance sequence of a (0, b, n)-tournament if and only if

k
∑

i=1

fi ≥ bk(n− k),

for 1 ≤ k ≤ n with equality when k = n.

In [22] also a construction algorithm of a (0, b, n)-tournament can be found.
Some other results on imbalances of (0, b, n)-tournaments and their special
cases can be found in [16, 19, 23, 27, 28].

K. B. Reid in 1978 [26] introduced the concept of the score set of (1, 1, n)-
tournaments as the set of different scores (outdegrees) of the given tournament.
At the same time he formulated the conjecture that for any set of nonnegative
integers S there exists a tournament T having S as its score set, and proved
the conjecture for sets containing 1, 2, or 3 elements. Hager in 1986 [6] proved
the conjecture for |S| = 4 and |S| = 5 and Yao in 1989 [29] published an
existence proof of the whole conjecture. Constructive proof of the therem is
not known.

There are some known results on the imbalance sets of some (0, 1, n)-tourna-
ments (see e.g. [18, 20, 21, 22]).

3 Imbalances in (0,∞, p, q)-tournaments

Let a, b, p and q be nonnegative integers (b ≥ a, p ≥ 1, q ≥ 1), B(a, b, p, q)
be the set of directed bipartite multigraphs B = (U ∪ V, E), where |U | = p
and |V | = q, and the elements of each pair of vertices u ∈ U and v ∈ V are
connected with at least a and at most b arcs. Then B ∈ B(a, b, p, q) is called
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an (a, b, p, q)-tournament. B ∈ B(0, 1, p, q) is an oriented bipartite graph and
a (1, 1, p, q)-tournament is a bipartite tournament.

The set B is defined by

B =
⋃

b≥a≥0, p≥1, q≥1

T (a, b, p, q).

According to this definition B is the set of the finite directed bipartite multi-
graphs.

For any vertex x ∈ U ∪ V of T ∈ T (a, b, p, q) let d+
x and d−

x denote the
outdegree and indegree of x, respectively. Define f(x) = d(x)+ − d(x)− and
g(x) = d(x)+−d(x)− as the imbalances of the vertex x. Then the nonincreasing
or nondecreasing equences F = [f1, f2, . . . , fp] and G = [g1, g2, . . . , gq] are the
imbalance sequences of the (a, b, p, q)-tournament T = (U ∪ V, E).

3.1 Basic properties of imbalance sequences

If in an (a, b, p, q)-tournament B(U∪V, E) there are x arcs directed from vertex
u ∈ U to v ∈ V and y arcs directed from v to u, with a ≤ x ≤ b, a ≤ y ≤ b
and a ≤ x + y ≤ b, then it is denoted by u(x − y)v. We also call u(x − y)v
as a double. A tetra in an (a, b, p, q)-tournament is an induced (0, 1, 2, 2)-
tournament. Define tetras of the form u1(1− 0)v1(1− 0)u2(1− 0)v2(1− 0)u1

and u1(1−0)v1(1−0)u2(1−0)v2(0−0)u1 to be of α-type, and all other tetras
to be of β-type. An (a, b, p, q)-tournament is said to be of α-type or β-type
according as all of its tetras are of α-type or β-type respectively. We note
that an α-type tetra u1(1− 0)v1(1− 0)u2(1− 0)v2(1− 0)u1 or u1(1− 0)v1(1−
0)u2(1 − 0)v2(0 − 0)u1 can be respectively transformed to the β-type tetra
u1(0−0)v1(0−0)u2(0−0)v2(0−0)u1 or u1(0−0)v1(0−0)u2(0−0)v2(0−1)u1

and vice-versa with imbalances of the vertices u1, u2 ∈ U and v1, v2 ∈ V
remaining unchanged (see Figure 1). Further we note that a double of the
form u(x−x)v can be transformed to the double of the form u(0−0)v making
number of arcs less by 2x while imbalances remain unchanged.

The above facts lead us to the following assertion.

Lemma 4 Among all (a, b, p, q)-tournaments with given imbalance sequences,

those with the fewest arcs are of β-type.

Proof. Let B = B(U ∪ V, E) be an (a, b, p, q)-tournament with imbalance
sequences F and G. If B is not of β-type, it contains an oriented tetra of
α-type. Thus for u1, u2 ∈ U and v1, v2 ∈ V , we have u1(1− 0)v1(1− 0)u2(1−
0)v2(1− 0)u1, or u1(1− 0)v1(1− 0)u2(1− 0)v2(0− 0)u1 as an oriented tetra of
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u1 u1 u2
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v 2
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v 2
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Figure 1: Transformation of an α-type tetra to a β-type tetra

α-type in B. Clearly u1(1− 0)v1(1− 0)u2(1− 0)v2(1− 0)u1 can be changed to
u1(0− 0)v1(0− 0)u2(0− 0)v2(0− 0)u1 with the same imbalance sequences and
four arcs fewer, and u1(1− 0)v1(1− 0)u2(1− 0)v2(0− 0)u1 can be changed to
u1(0−0)v1(0−0)u2(0−0)v2(0−1)u1 with same imbalance sequences and two
arcs fewer. Hence in both cases we obtain a realization B′(U ∪ V, E) of F and
G with fewer arcs. In case there is a double of the form u(x − x)v, it can be
transformed to the double of the form u(0− 0)v making number of arcs lesser
by 2x. �

A transmitter is a vertex whose indegree is zero. We have the following
assertion about the transmitters in a β-type (0, b, p, q)-tournament.

Lemma 5 In a β-type (0, b, p, q)-tournament with ???creasing imbalance se-

quences F = [f1, f2, . . . , fp] and G = [g1, g2, . . . , gq], either a vertex with im-

balance ap, or a vertex with imbalance bq, or both may act as transmitters.

Proof. Let U = {u1, u2, . . . , up} and V = {v1, v2, . . . , vq} be the parts of a
(0, b, p, q)-tournament B(U ∪V, E), so that g(up) = fp and g(vq) = gq. Assume
that neither up nor vq is a transmitter. Then there exist some vertices ui ∈ U
and vj ∈ V such that ui(1 − 0)vq and vj(1 − 0)up. Since g(up) ≥ g(ui) and
g(vq) ≥ g(vj), there exist vertices ur ∈ U and vs ∈ V such that up(1 − 0)vs

and vq(1− 0)ur (see Figure 2(a)). We have the following possibilities.
Case (i). vs(1−0)ur and ur(0−0)vj . Here vj(1−0)up(1−0)vs(1−0)ur(0−

0)vj is a tetra of α-type, a contradiction (see Figure 2(b)).
Case (ii). vs(1−0)ur and ur(1−0)vj . Here vj(1−0)up(1−0)vs(1−0)ur(1−

0)vj is a tetra of α-type, a contradiction (see Figure 2(c)).
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Figure 2(a)

u r
u i up

v s
v j

v q

Figure 2(b)
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Figure 2(c)
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Figure 2(d)
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Figure 2(a)

u r
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v s
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Figure 2(e)

u r
u i up

v s
v j

v q

Figure 2(f)

Figure 2: Illustration of the different cases in the proof of Lemma 5

Case (iii). ur(1−0)vs and vs(0−0)ui. In this case ui(1−0)vq(1−0)ur(1−
0)vs(0− 0)ui is a tetra of α-type, again a contradiction (Figure 2(d)).

Case (iv). ur(1 − 0)vs and vs(1 − 0)ui. Clearly ui(1 − 0)vq(1 − 0)ur(1 −
0)vs(1− 0)ui is a tetra of α-type, again a contradiction (Figure 2(e)).

Case (v). If ur(1 − 0)vs and ui(1 − 0)vs, then b(ui) > b(up), which is a
contradiction. Similarly if vs(1 − 0)ur and vj(1 − 0)ur, then b(vj) > b(vq),
again a contradiction.

Case (vi). Finally if ur(0 − 0)vs, ur(0 − 0)vj and ui(0 − 0)vs, then there
is a tetra vj(1− 0)up(1− 0)vs(0− 0)ur(0− 0)vj and this can be transformed
to the tetra vj(0− 0)up(0− 0)vs(0− 1)ur(0− 1)vj and the imbalances remain
unchanged (see Figure 2(f)). This means there is an α-type tetra ui(1−0)vq(1−
0)ur(1− 0)vs(0−)ui, a contradiction. �
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4 Extremal reconstruction of imbalance sequences

Since each arc of a tournament adds +1 and −1 to the sum of the imbalances
of the vertices, therefore if F = [f1, f2, . . . , fp] and G = [g1, g2, . . . , gq] are
imbalance sequences of a (0,∞, p, q)-tournament, then the total sum of the
imbalances equals to zero.

Therefore a natural necessary condition of the realizability of sequences
of integer numbers F = [f1, f2, . . . , fp] and G = [g1, g2, . . . , gq] as imbalance
sequences of B ∈ B is

p
∑

i=1

fi +
q

∑

j=1

gj = 0. (1)

for all elements of B ∈ B.
Let Fmax and Gmax be defined as follows:

Fmax = max
1≤i≤p

|fi|

and
Gmax = max

1≤j≤p
|gj |

Easy to design an algorithm which constructs an (a, z, p, q)-tournament hav-
ing F and G as its imbalance sequences, where

z = max
(

Fmax

q
,
Gmax

p

)

.

The following program constructes a tournament with prescribed imbal-
ances. This and the following programs are given using the pseudocode in [3].

Inputs. p and q: the numbers of the elements in the prescribed imbalance
sequences;

F = [f1, f2, . . . , fp] and G = [g1, g2, . . . , gq]: given nonincreasing sequences
of integers.

Output. M(p+q)×(p+q): arc matrix of a tournament B ∈ T (0,∞, p, q).
Working variables. i and j: cycle variables;
S: actual sum of the imbalances;
L and R: the actual value of the left and right side of (5).
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Easy-Bipartite(b, p, q, F, G)

01
02
03
04
05
06
07
08
09
10

But we are interested not only in the construction of some tournament
having the

prescribed imbalances, but of tournament having the least possible b allow-
ing the realization of F and G.

4.1 Lower bound for b

The following result is an existence criterion for determining whether some
prescribed sequences are realizable as imbalance sequences of a tournament
T ∈ T . This is analogous to a result on degree sequences by Erdős and Gallai
[4] and a result on bipartite tournaments due to Beineke and Moon [2].

Theorem 6 Two nonincreasing sequences F = [f1, f2, . . . , fp] and G = [g1, g2,
. . . , gq] of integers are the imbalance sequences of some (0, b, p, q)-tournament

if and only if
k

∑

i=1

fi +
l

∑

j=1

gj ≥ b [k(q − l) + l(p− k)] , (2)

for 1 ≤ k ≤ p, 1 ≤ l ≤ q, with equality when k = p and l = q.

Proof. The necessity follows from the fact that a directed bipartite subgraph
of a (0, b, p, q)-tournament induced by k vertices from the first part and l
vertices from the second part has a sum of imbalances at most bk(q − l) +
bl(p− k).

For sufficiency, assume that F = [f1, f2, . . . , fp] and G = [g1, g2, . . . , gq]
are the sequences of integers in nonincreasing order satisfying conditions (1)
but are not the imbalance sequences of any (0, b, p, q)-tournament. Let these
sequences be chosen in such a way that p is the smallest possible and q is the
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smallest possible among the tournaments with the smallest p, and a1 is the
least with that choice of p and q. We consider the following two cases.

Case (i). ????????
Case (ii). Suppose equality in (1) holds for some k ≤ p and l < q, so that

k
∑

i=1

fi +
l

∑

j=1

gj = b [k(q − l) + l(p− k)] .

By the minimality of p and q, F = [f1, f2, . . . , fk] and G = [g1, g2, . . . , gl]
are the imbalance sequences of some (0, b, p, q)-tournament B1(U1 ∪ V1, E1).
Let F2 = [fk+1, fk+2, . . . , fp] and G2 = [gl+1, gl+2, . . . , gq].

Now,

r
∑

i=1

fk+i +
l

∑

j=1

gl+j =
k+r
∑

i=1

fi +
l+s
∑

j=1

bj −





k
∑

i=1

fi +
l

∑

j=1

gj





≥ b[2(k + r)(l + s)− (k + r)q − (l + s)p]− b(2kl + kq + lp)

= b(2kl + 2ks + 2lr + 2rs− kq − qr − lp− ps− 2kl + kq + lp)

= b(2rs− qr − ps + 2ks + 2lr)

≥ b(2rs− qr − ps),

for 1 ≤ r ≤ p − k and 1 ≤ s ≤ q − l, with equality when r = p − k and
s = q − l. So, by the minimality for p and q, the sequences F2 and G2 form
the imbalance sequences of the (0, b, p− k, q− l)-tournament B2(U2 ∪ V2, E2).
Now construct a (0, b, p, q)-tournament B(U ∪ V, E) as follows.

Let U = U1 ∪ U2, V = V1 ∪ V2 with U1 ∩ U2 = ∅, V1 ∩ V2 = ∅ and the arc
set containing those arcs which are between U1 and V1 and between U2 and
V2. Then we obtain a (0, b, p, q)-tournament B(U ∪ V, E) with the imbalance
sequences F and G, which is a contradiction.

Case (iii). Suppose that the strict inequality holds in (1) for all k 6= p and
l 6= q. That is,

k
∑

i=1

fi +
l

∑

j=1

gj > b [k(q − l) + l(p− k)]

for 1 ≤ k < p, 1 ≤ l < q.
Let F1 = [f1−1, f2, . . . , fp−1, fp +1] and G1 = [g1, g2, . . . , gq], so that F1 and

G1 satisfy the conditions (1). Thus, by the minimality of f1, the sequences F1

and G1 are the imbalances sequences of some (0, b, p, q)-tournament B1(U1 ∪
V1, E1). Let fu1 = f1− 1 and fup

= fp + 1. Since fup
> fu1 + 1, therefore there



10 S. Pirzada, A. M. Al-Assaf, K. K. Kayibi, A. Iványi

exists a vertex v1 ∈ V1 such that up(0−0)v1(1−0)u1, or up(1−0)v1(0−0)u1, or
up(1−0)v1(1−0)u1, or up(0−0)v1(0−0)u1, in D1(U1∪V1, E1) and if these are
changed to up(0−1)v1(0−0)u1, or up(0−0)v1(0−1)u1, or up(0−0)v1(0−0)u1,
or up(0− 1)v1(0− 1)u1 respectively, the result is a (0, b, p, q)-tournament with
imbalances sequences F and G, which is a contradiction proving the result. �

Since (0, 1, p, q)-tournaments are special (0, b, p, q)-tournaments, the follow-
ing corollary of Theorem 6 gives a necessary and sufficient condition for non-
increasing sequences of integers to be imbalance sequences of some (0, 1, p, q)-
tournaments.

Corollary 7 Two nonincreasing sequences F = [f1, f2, . . . , fp] and G = [g1,
g2, . . . , gq] of integers are the imbalance sequences of some (0, 1, p, q)-tourna-

ment if and only if

k
∑

i=1

fi +
l

∑

j=1

gj ≥ k(q − l) + l(p− k), (3)

for 1 ≤ k ≤ p, 1 ≤ l ≤ q with equality when k = p and l = q.

From the other side, for arbitrary sequences of integer numbers F and G one
can find such a b, that F and G are imbalance sequences of some (0, b, p, q)-
tournament.

4.2 Computation of bmin using Theorem 6

Using Theorem 6 we can compute the minimal such value of b which allows that
prescribed sequences are the imbalance sequences of a (0, b, p, q)-tournament.

Let

α(k, l) =
k

∑

i=1

fi +
l

∑

j=1

gj = 0

and
β(k, l) = b [k(q − l) + l(p− k)]

for 1 ≤ i ≤ p and 1 ≤ j ≤ q.
The following theorem allows quickly to compute bmin.

Theorem 8 Two nonincreasing sequences F = [f1, f2, . . . , fp] and G = [g1,
g2, . . . , gq] of integers are the imbalance sequences of some (0, b, p, q)-tournament

B if and only if b ≥ bmin, where

bmin = min
1≤k≤m,1≤l≤n

{b | α(k, l) ≤ β(k, l)}. (4)
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Inputs. p and q: the numbers of the elements in the prescribed imbalance
sequences;

b: maximum number of permitted arcs between two vertices u ∈ U and
v ∈ V ;

F = [f1, f2, . . . , fp] and G = [g1, g2, . . . , gq]: given nonincreasing sequences
of integers.

Output. bmin: the minimal number of allowed arcs between two vertices
belonging to different parts of B.

Working variables. i and j: cycle variables;
S: actual sum of the imbalances;
L = α(k, l): the actual value of the left side of (5)
R = α(k, l): the actual value of the right side of (5).

Minimal-b(b, p, q, F, G)

01 S ← 0
02 bmin ← 1
03 for i← 1 to p
04 S ← S + fi

05 L← S
06 for j ← 1 to q
07 L← S + gj

08 R← bmin[k(q − l) + l(p− k)]
08 if L < R and dL/Re
09 then bmin ← dL/Re
10 return bmin

This simple algorithm computes bmin in Θ(pq) time.

4.3 Lower bound for b in a generalized problem

let the positive integers p and q, the nonincreasing sequences of integers F =
[f1, f2, . . . , fp] and G = [g1, g2, . . . , gq], further the (p+q)×(p+q) sized matrix
M = [mij ] be given.

At first we investigate the condition of the existence of a (0, b, p, q)-tournament
a (p+q)×(p+q) sized arc matrix N = nij with nij ≥ mij for 1 ≤ i, j ≤ (p+q)
resulting the prescribed imbalance sequences.

The first observation is natural: the elements of M have to satisfy the fol-
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lowing inequaqualities:

mij















= 0, if 1 ≤ i, j ≤ p,

= 0, if p + 1 ≤ i, j ≤ q,

≥ 0, otherwise.

(5)

We can interpret this problem so, that some results of the tornament are
prescribed, e.g. in the form of a set S, where

S = {(u1v1)e11 , (u1v2)e12 , . . . , (upvq)epq},

and if all exponents eij are equal to zero, then we have the original problem.
Another natural necessary condition is 1.
The following program demonstrates that (1) and (5) together form a suf-

ficient condition for the existence of a correspondig tournament.
Inputs. p and q: the numbers of the elements in the prescribed imbalance

sequences;
b: maximum number of permitted arcs between two vertices u ∈ U and

v ∈ V ;
F = [f1, f2, . . . , fp] and G = [g1, g2, . . . , gq]: given nonincreasing sequences

of integers.
Output. bmin: the minimal number of allowed arcs between two vertices

belonging to different parts of B.
Working variables. i and j: cycle variables;
S: actual sum of the imbalances;
L = α(k, l): the actual value of the left side of (5)
R = α(k, l): the actual value of the right side of (5).

Easy-Modified-Bipartite-(b, p, q, F, G,M)

01 for i← 1 to p
02 for j ← 1 to q
03 mij ← mij + mji

04 ???
05 ???
06 ???
07 ???
08 ???
09 ???
10 ???
11 ???
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12 ???
13 ???
14 ???
15 return M′

This algorithm computes runs in worst case in Θ(??) time.
The problem becomes harder if we try to get a (0, b, p, q)-tournament with

minimal b. Here we meet a natural bound

bmin ≥ max
1≤i,j≤p+q

(mij + mji).

Using the method described in [9, 10, 11] we get the following extension of
Theorem 6.

Theorem 9 Let p and q be positive integers, F = [f1, f2, . . . , fp] and G = [g1,
g2, . . . , gq] nonincreasing sequences of integers, then F and G are the imbalance

sequences of some (0, b, p, q)-tournament B if and only if b ≥ bmin, where

bmin = min
1≤k≤m,1≤l≤n

{b | α(k, l) ≤ β(k, l)}. (6)

Proof. Let �

4.4 Computation of bmin using Theorem ??

4.5 Construction of a (0, bmin, p, q)-tournament with prescribed

imbalances

The next result provides a useful recursive test to decide whether given se-
quences of integers are the imbalance sequences of some (0, b, p, q)-tournament.

Theorem 10 Let p and q be positive integers, F = [f1, f2, . . . , fp] and G =
[g1,
g2, . . . , gq] nonincreasing sequences of integers ????

Proof. Let �

4.6 Algorithm and program for constructing a (0, bmin, p, q)-
tournament with prescribed imbalance sequences

The successive application of Theorem 9 provides an algorithm for determining
whether the two sequences of integers in nonincreasing order are the imbalance
sequences, and for constructing a corresponding tournament.
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The following program realizes the construction described in Theorem 9.
Input. p and q: the numbers of the elements in the prescribed imbalance

sequences;
bmin: the minimal number of allowed arcs between the vertices, determined

by algorithm Minimal-b.
(f1, f2, . . . , fp) and (g1, g2, . . . , gq): given nonincreasing sequences of positive

integers;
Output. M(p+q)×(p+q)): the arc matrix of the reconstructed tournament.
Working variables. i, j: cycle variables.

Bipartite-Sequences-with-Results(b, p, q, F, G)
01
02
03
04
05
06
07
08
09
10
11
12
13
14

The running time of this algorithm is Θ(pq) in worst case (in best case too).
Since the point matrix M has mn elements, this algorithm is asymptotically
optimal.

4.7 Examples

The first three examples show the result of the computation of bmin in the
following cases:

a) p = 4, q = 5, F = [−3, 1, 2, 2], and G = [−3,−1, 0, 1, 1].
b) p = 4, q = 3, F = [−2,−2, 3, 4], and G = [−5,−1, 3].
c) p = 6, q = 3, F = [(−12)2, (4)4)], and G = [92,−10].
The next three examples show the constructed (0, bmin, p, q)-tournaments.
d) A2 = [−3, 1, 2] , B2 = [−2, 0, 0, 1, 1] , u4(1− 0)v1, u4(1− 0)v2,

A3 = [−3, 1] , B3 = [−1, 1, 0, 1, 1], u3(1− 0)v1, u3(1− 0)v2,
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u4u3u2u1

v 1
v 2

v 3 v 4
v 5

Figure 3: Result of the construction of the imbalance sequences F and G

or A3 = [−3, 1], B3 = [−1, 0, 1, 1, 1],
A4 = [−3] , B4 = [0, 0, 1, 1, 1], u2(1− 0)v1,
A5 = [−2] , B5 = [0, 0, 1, 1], v5(1− 0)u1,
A6 = [−1] , B6 = [0, 0, 1] , v4(1− 0)u1,
A7 = [0] , B7 = [0, 0], v2(1− 0)u1.

Obviously, an oriented bipartite graph D with parts U = {u1, u2, u3, u4} and
V = {v1, v2, v3, v4, v5} in which u4(1− 0)v1, u4(1− 0)v2, u3(1− 0)v1, u3(1−
0)v2, u2(1−0)v1, v5(1−0)u1, v4(1−0)u1, v2(1−0)u1 are arcs has imbalance
sequences [−3, 1, 2, 2] and [−3,−1, 0, 1, 1] (see Figure 4).

u4u3u2u1

v 1
v 2

v 3 v 4
v 5

Figure 4: Result of the construction of the imbalance sequences F and G

e) F2 = [−2,−2, 3], G2 = [−3, 0, 4], u4(2−0)v1, u4(1−0)v2, u4(1−0)v3,
A3 = [0,−1, 4], B3 = [−3, 0], v3(2− 0)u1, v3(1− 0)u2, v3(1− 0)u3,
A4 = [0,−1], B4 = [−1, 2] , u3(2− 0)v1, u3(2− 0)v2,
A5 = [1, 0], B5 = [−1] , v2(1− 0)u1, v2(1− 0)u2,
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or A5 = [0, 1], B5 = [−1] ,
A6 = [0], B6 = [0] , u1(1− 0)v1.

A (0, b, p, q)-tournament B with parts U = {u1, u2, u3, u4} and V = {v1, v2, v3}
in which u4(2−0)v1, u4(1−0)v2, u4(1−0)v3, v3(2−0)u1, v3(1−0)u2, v3(1−
0)u3, u3(2−0)v1, u3(2−0)v2, v2(1−0)u1, v2(1−0)u2 are arcs, has imbalance
sequences [−2,−2, 3, 4] and [−5,−1, 3] (see Figure 5).

u4u3u2u1

v 1
v 2

v 3

Figure 5: Illustration of the reduction for bmin = 2

f) F2 =, G2 =

5 Imbalance sets in (0, b, n)-tournaments

K. B. Reid in 1978 [26] introduced the concept of the score set of tournaments
as the set of different scores (outdegrees) of a tournament. At the same time
he formulated the conjecture that for any set of nonnegative integers S there
exists a tournament T having S as its score set. At the same time he proved
the conjecture for sets containing 1, 2, or 3 elements. Hager in 1986 [6] proved
the conjecture for |S| = 4 and |S| = 5 and Yao [29] published a proof of the
conjecture.

Let define the imbalance sets of a (0, b, p, q)-tournament B = (U ∪ V, E)
having imbalance sequences J = [j1, j2, · · · , jp] and K = [k1, k2, · · · , kq] as the
union of the sets of different imbalances of the values in J and K.

First we show the existence of a (0, 1, p, q)-tournament, then the existence
of a special (0, 1, p, q)-tournament, having prescribed imbalance sets.
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5.1 Existence of a (0, 1, p, q)-tournament with prescribed im-

balances

The following assertion shows the existence of a (0, 1, p, q)-tournament having
prescribed imbalance sets in the case when the first set contains nonnegative,
and the second set contains only nonpositive elements.

Theorem 11 Let p and q be positive integers, J = [j1, j2, . . . , jp] and K =
[−k1,−k2, . . . ,−kq], where j1, j2, . . . , jp, k1, k2, . . . , kq are nonnegative integers

with j1 < j2 < · · · < jp and k1 < k2 < · · · < kq. Then there exists a connected

(0, 1, p, q)-tournament with imbalance set J ′ ∪K ′.

Proof.
Case 1. j1 ·k1 > 0.Construct a (0, 1, p, q)-tournament B(U∪V, E) as follows.

Let U = U1 ∪ U2 ∪ · · · ∪ Up, V = V1 ∪ V2 ∪ · · · ∪ Vp with Ui ∩ Uj = ∅ (i 6= j),
Vi ∩ Vj = ∅ (i 6= j), |Ui| = bi for all i, 1 ≤ i ≤ p and |Vj | = aj for all j,
1 ≤ j ≤ p. Let there be an arc from every vertex of Ui to each vertex of Vi for
all i, 1 ≤ i ≤ p, so that we obtain the (0, 1, p, q)-tournament B(U ∪V, E) with
the given imbalance sets of vertices as follows.

For 1 ≤ i, j ≤ p, fui
= |Vi|−0 = fi, for all ui ∈ Ui and gvj

= 0−|Uj | = −gj ,
for all vi ∈ Vi.

Therefore, the imbalance set of B(U ∪ V, E) is F ∪G.
The oriented bipartite graph constructed above is not connected. In order

to see the existence of oriented bipartite graph, whose underlying graph is
connected, we proceed as follows.

Taking Ui = {u1, u2, . . . , ubi
} and Vj = {v1, v2, . . . , vaj

}, and let there be an
arc from each vertex of Ui to every vertex of Vj except the arcs between ugi

and vfj
, that is ubi

(0− 0)gaj
, 1 ≤ i ≤ p and 1 ≤ j ≤ p. We take ug1(0− 0)gf2 ,

ug2(0−0)vf3 , and so on ug(n−1)
(0−0)vfn

, ugn
(0−0)vf1 . The underlying graph

of this (0, 1, p, p)-tournament is connected.
Case 2. j1 · k1 = 0. If j1 = 0, then we use the construction proposed in

the first case not taking into account the vertex u1 and its imbalance j1 = 0.
At the end the construction process we add two arcs u1(1 − 1)v1 resulting a
tournament in which the imbalance of u1 is the prescribed 0 and the imbalance
of v1 is the prescribed k1. �
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5.2 Existence of a (0, b, p, q)-tournament with prescribed imbal-

ance sets

Finally, we prove the existence of a (0, b, p, q)-tournament with prescribed sets
of positive integers as its imbalance set.

Let (f1, f2, . . . , fp, g1, g2, . . . , gq) denote the greatest common divisor of
f1, f2, . . . , fp, g1, g2, . . . , gq.

Theorem 12 Let b ≥ 1 a positive integer, F = {f1, f2, . . . , fp} and Q =
{−g1,−g2, . . . ,−gq}, where f1, f2, . . . , fp, g1, g2, . . . , gq are positive integers with

f1 < f2 < · · · < fp, g1 < g2 < · · · < gq and (f1, f2, . . . , fp, g1, g2, . . . , gq) = t ≤
bmin. Then there exists a connected (0, b, p, q)-tournament with imbalance set

P ∪Q.

Proof. Since (f1, f2, . . . , fp, g1, g2, . . . , gq) = t, where 1 ≤ t ≤ b, there exist
positive integers x1, x2, . . . , xp, y1, y2, . . . , yq with x1 < x2 < · · · < xp, y1 <
y2 < · · · < yq such that fi = txi for 1 ≤ i ≤ p and gj = tyj for 1 ≤ j ≤ q.

Construct a (0, b, p, q)-tournament B(U∪V, E) as follows. Let U = U1∪U2∪
· · · ∪Up ∪U1 ∪U2 ∪ · · · ∪Up, V = V1 ∪ V2 ∪ · · · ∪ Vp ∪ V 1 ∪ V 2 ∪ · · · ∪ V p with
Ui ∩Uj = ∅, Ui ∩U j = ∅, U i ∩U j = ∅, Vi ∩ Vj = ∅), Vi ∩ V j = ∅, V i ∩ V j = ∅,
i 6= j, |Ui| = xi for all i, 1 ≤ i ≤ p and |U i| = gi for all i, 1 ≤ i ≤ p, |Vi| = xi

for all i, 1 ≤ i ≤ p and |V i| = gi for all i, 1 ≤ i ≤ q. Let there be t arcs
directed from every vertex of Ui to each vertex of Vi for all i, 1 ≤ i ≤ p and
let there be t arcs directed from every vertex of U i to each vertex of V i for
all i, 1 ≤ i ≤ q, so that we obtain the (0, b, p, q)-tournament B(U ∪ V, E) with
the imbalances of vertices as follows.

For 1 ≤ i ≤ p,

fui
= t|Vi| − 0 = txi = fi, for all ui ∈ Ui,

gvi
= 0− t|Ui| = −ty1 = −g1, for all vi ∈ Vi,

for 1 ≤ i ≤ q,

fui = t|V i| − 0 = tf1 = g1, for all ui ∈ U i,

gvi = 0− t|U i| = −tyi = −gi, for all vi ∈ V i.

Therefore the imbalance set of B(U ∪ V, E) is P ∪Q.
The (0, b, p, q)-tournament constructed above is not connected. In order to

see the existence of a (0, b, p, q)-tournament, whose underlying graph is con-
nected, we proceed as follows.
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Let Ui = {u1, u2, . . . , ugi
} and Vj = {v1, v2, . . . , vfj

}, and let there be an arc
from each vertex of Ui to every vertex of Vj except the arcs between ugi

and
vfj

, that is ugi
(0 − 0)vfj

, 1 ≤ i ≤ q and 1 ≤ j ≤ q. We take ug1(0 − 0)vf2 ,
ub2(0−0)va3 , and so on ub(n−1)

(0−0)van
, ubn

(0−0)va1 . The underlying graph
of this (0, b, p, q)-tournament is connected. �

5.3 Program for constructing a connected (0, b, p, q)-tournament

with prescribed imbalance sets

The following program realizes the construction described in Theorem 12.
Input. p and q: the numbers of the elements in the prescribed imbalance

sequences;
b: maximum number of permitted arcs between two vertices u ∈ U and

v ∈ V ;
F = (f1, f2, . . . , fp) and G = (g1, g2, . . . , gq): given sequences of nonpositive

integers with 0 ≤ f1 < f2 < · · · < fp and 0 ≤ g1 < g2 < · · · < gq;
t = (f1, f2, . . . , fp, g1, g2, . . . , gq).
Output.M(p+q)×(p+q): the arc matrix of the reconstructed tournament (mij

gives the number of arcs directed from the vertex ui to the vertex vj).
Working variables. i, j: cycle variables;

Bipartite-Sets(b, p, q, F, G)

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
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18

The running time of this algorithm in worst case is Θ(???).

6 Open problems

We list several unsolved problems connected with the topic investigated in the
given paper.

???????????????????????
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