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ABSTRACT 

We give a brief review of papers relating to Smith's determinant and point out a 
common structure that can be found in many extensions and analogues of Smith's 
determinant. We present the common structure in the language of posets. We also 
make an investigation on a conjecture of Beslin and Ligh on greatest common divisor 
(GCD) matrices in the sense of meet matrices and give characterizations of the posets 
satisfying the conjecture. Further, we give a counterexample for the conjecture of 
Bourque and Ligh that the least common multiple matrix on any GCD-closed set is 
invertible. © Elsevier Science Inc., 1997 
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1. I N T R O D U C T I O N  

P. HAUKKANEN, J. WANG, AND J. SILLANPAA 

The classical Smith's [36] de terminant  evaluation is 

det [ ( i , j ) ] n x n  = q ~ ( 1 ) q ~ ( 2 )  "'" q ~ ( n ) ,  (1.1)  

where  (i, j)  is the greatest  common  divisor ( G C D )  of  i and j ,  and ~b is 
Euler 's  totient function. Smith also evaluated more  general determinants .  In 
fact, let m 1, m 2 . . . . .  m n be  distinct positive integers such that d I m~ implies 
d = mj for some j = 1,2 . . . . .  n. Then  

d e t [ f ( m , , m j ) ] . x ,  ' = g ( m l ) g ( m 2 ) " "  g ( m . ) ,  (1.2)  

where  

f ( m , , m j )  = E g(d) .  (1.3)  
dl(m i, m j) 

If, in particular, m i = i for all i = 1, 2 . . . . .  n, then 

det [ f ( i , j )] , ,×,  = g ( 1 ) g ( 2 ) . . ,  g(n).  (1.4) 

For  g = ~b, 

f ( i , j )  = E ok(d) = ( i , j )  
diG,j)  

by the well-known proper ty  [34, p. 83] 

Y'. 6 ( d )  = n,  
din 

and thus (1.4) reduces to (1.1). 
Since Smith's pape r  [36] of  1876 this field has been  studied extensively. It  

seems that some modern  authors are not thoroughly familiar with the results. 
In this pape r  we give an extensive list and a br ief  review of papers  relating to 
Smith's de terminant  (see Section 2), and point out a c o m m o n  structure that 
can be found in many  extensions and analogues of  Smith's de terminant  (see 
Section 3). The  c o m m o n  structure is p resen ted  in the language of posets. We 
also present  meet -matr ix  analogues of  certain results of  Beslin and Ligh [6, 7] 
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and Li [23] on GCD matrices and make an investigation of a conjecture of 
Beslin and Ligh [7] (see Section 4). In Section 5, we give characterizations of 
the so-called regular posets, which are the posets satisfying the conjecture. 
In Section 6, we generalize the concept of regular posets. This generalization 
makes it possible to give a characterization of those posets S of n elements 
for which every n x n submatrix of the incidence matrix E(S, S) is invertible 
[for definition of E(S, S), see Section 4]. Further, in Section 7 we give a 
counterexample for the conjecture of Bourque and Ligh [8] that the least 
common multiple LCM matrix on any GCD-closed set is invertible. 

For number-theoretic background and for previous general accounts of 
Smith's determinant, we refer to the books by McCarthy [28], Shapiro [33], 
and Sivaramakrishnan [34]. For the theory of posers, we refer to the books by 
Aigner [1] and Stanley [38]. 

2. ON PAPERS RELATING TO SMITH'S DETERMINANT 

In this section we briefly review papers relating to Smith's determinant. 
Dickson [15, pp. 122-129] reports on several papers devoted to proofs and 
extensions of Smith's determinant. We do not consider these papers here. 

A simple and elegant proof was suggested by P61ya and Szeg5 [31], who 
observed that [ f ( i , j ) ] , xn  in (1.4) can be written in the form 

[ f ( i , j ) l n x ,  , = BC r, (2.1) 

where B and C are lower triangular matrices given by bij = g( j )  if j I i, 
and = 0 otherwise; and ci) = 1 i f j  I i, and = 0 otherwise. Carlitz [11] gave 
some new insight into the structure of [f(i ,  J)]n x,  in (1.4). For example, he 
observed [11, (17)] that 

[ f ( i , j ) ] n X  n = Cd iag (g (1 ) ,  g(2) . . . . .  g ( n ) )  C T, (2.2) 

where C is the triangular matrix given in (2.1). Gyires [17] observed (1.4) in 
the case f ( i ,  j )  = (i, j)r, and Maurer and Ve~gh [27] proved this evaluation 
by induction on n. Castaldo [12] studied properties of the sequence 
~b(1), ~b(2)... ~b(n), n = 1, 2 . . . . .  

Jager [20, Theorem 5] introduced a unitary analogue of Smith's determi- 
nant. In fact, a divisor d of n with (d, n / d )  = 1 is said to be a unitary divisor 
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of n and is denoted by d II n. Let (i, j )* denote the greatest common unitary 
divisor of i and j .  Jager observed that if 

f ( i , j )  = E g(d),  (2.3) 
dll(i, j)* 

then 

det [ f ( i , j ) l ,× ,  = g ( 1 ) g ( 2 )  ... g ( n ) .  (2.4) 

Jager's proof is based on the observation that [f(i, j ) ]nx,  can be written as a 
product of two triangular matrices. Let ~b*(n) be the number of positive 
integers less than or equal to n that are not divisible by any of its unitary 
divisors (>  1). By the formula 

E 4,*(d) = n, 
dlln 

Jager obtained the evaluation 

det [(i,j)*]n×, = ~b*(1)~b*(2) ... ~b*(n). (2.5) 

Nageswara Rao [30] gave an A-analogue of Smith's determinant, where A 
denotes Narkiewicz's regular convolution [28, Chapter 4]. Smith's determi- 
nant and its unitary analogue are special cases of Nageswara Rao's determi- 
nant. Generalizations in this direction have also been developed by Davison 
[14, pp. 43-44] and Wall [40]. 

Apostol [2, Theorem 9] observed that Smith's determinant also has 
connections with Ramanujan's sum and its generalizations. In fact, if g and h 
are arithmetical functions and 

f ( i , j )  = E g (d )h ( j / d ) ,  (2.6) 
dl(i , j )  

then 

det [ f ( i , j ) l , xn  = g ( 1 ) g ( 2 )  ,.. g(n)h(1)". (2.7) 

Apostol also used the idea that [f(i ,  j ) ] , × ,  can be written as a product of two 
triangular matrices. In particular, taking g ( n ) =  n for all n and h =/x ,  
where /,t is the M/Sbius function, Apostol obtained the evaluation 

det [c(i,j)],×,, = nT, (2.8) 
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where c(i, j) is Ramanujan's sum. P. Kesava Menon [21, (5.7)] evaluated the 
determinant relating to Ramanujan's sum on the set of the divisors of a 
positive integer. 

McCarthy [29] extended Apostol's evaluation for the so-called even arith- 
metical functions. Ramanujan's sum and its generalization given in (2.6) are 
even functions. 

Daniloft~s [13] analogue of Smith's determinant can be presented as 
follows. Let Ok(n) = m if n = m k for some positive integer m, and = 0 
otherwise. Let 

Then 

f ( i , j )  = ~ f~k(i/d)llk(j/d)g(d). 
dl(i,j) 

det [f(i , j) lnx,  = g (1 )g (2 )  ... g(n). (2.9) 

Poset-theoretic generalizations of Smith's determinant have been devel- 
oped by Lindstr/Sm [26], Rajarama Bhat [32], D. A. Smith [35], and Wilf [41]. 
In this paper we also consider matrices on posets as mentioned in the 
introduction. 

Multidimensional Smith's determinants have been considered by Gegen- 
bauer [16], Haukkanen [18, 19], Lehmer [22], Vaidyanathaswamy [39], and 
Sokolov [37]. We do not consider these papers here. For multidimensional 
determinants reference is made to the recent paper by Haukkanen [19]. 

Motivation for the above brief survey of old papers arises from the 
observation that some authors have recently begun to study this field inten- 
sively. This new inspiration may be considered to start from the papers by 
Beslin and Ligh [5, 6]. For other recent contributions, we refer to the papers 
by Ligh [25], Beslin and el-Kassar [4], Li [23, 24], Beslin [3], Beslin and Ligh 
[7], and Bourque and Ligh [8-10]. These papers contain, among other things, 
several structure theorems and determinant evaluations of GCD matrices. 
Many of these papers also contain conjectures and unsolved problems. In 
Sections 4, 5, and 6 of this paper we consider a conjecture of Beslin and 
Ligh [7]. 

It is less known that H. J. s. Smith [36, Section 3] also evaluated the 
determinant det [[i,j]],,×n, where [i,j] is the least common multiple of i 
and j .  In Example 5 of this paper we evaluate det [[i,j]],x, in a manner 
which shows that GCD and LCM matrices are, in a sense, similar in 
structure. The recent papers [3] and [8] also study LCM matrices. Further, 
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d e t [ [ i , j ] ] , x ,  has been  presented in Problem 10232 of  Amer. Math. 
Monthly 99(6) (1992) as a subject for evaluation, in Section 7 of  this paper  
we consider a conjecture of  Bourque and Ligh [8] on LCM matrices. 

3. AN E L E M E N T A R Y  S T R U C T U R E  T H E O R E M  

Let (P, <<.) be a poset. We call P a meet  semilattice [38, p. 103] if for any 
x, y ~ P there exists a unique z ~ P such that 

(1) z ~<x and z ~<y, and 
(2) i f w  ~<x a n d w  ~<y for s o m e w  ~ P ,  t h e n w  ~<z. 

In such a case z is called the meet  of  x and y and is denoted by x A y. 
Let  S be a subset of  P. We call S lower-closed if for every x, y ~ P with 

x ~ S, y ~< x, we have y ~ S. We call S meet-closed if for every x, y ~ S, 
we have x A y ~ S. In this case S itself is a meet  semilattice. 

It is clear that a lower-closed subset of  a meet  semilattice is always 
meet-closed, but not conversely. The concepts of  "lower-closed" and "meet-  
closed" are generalizations of  "factor-closed" and "GCD-closed"  [5, 6], 
respectively. 

A function F on P × P with values in a commutative ring with unit is 
said to be an incidence function of  P if F(x, y) = 0 unless x ~< y (see [1, 
Chapter  IV; 38, Section 3.6]). 

THEOREM 1. Let P be a meet semilattice in which every principal order 
ideal is finite, and let {x 1, x 2 . . . . .  x n} be a lower-closed subset of P. Let F 
and G be incidence functions of P, and let A be the n x n matrix defined by 

Then 

% = E 
X<~XiAX j 

det A = f i F ( x  k,xk)G(xk,xk). (3.1) 
k = l  

Proof. In evaluating det A we may assume that the elements 
xl, x2 . . . . .  xn are arranged so that x, < xj implies i < j .  Sinee 
{x 1, x 2 . . . . .  x,} is lower-closed, 

k = l  
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Let B and C be n × n matrices such that 

bij = F( xi, xj) and cij 

Then 

= C ( x , ,  xj) .  

A = BTc,  

257 

EXAMPLE 1. Let ~'D denote the zeta function of the poset (N, I), where 
N is the set of positive integers. Then ~D(d,m i ) =  1 if d l m i ,  and = 0  
otherwise. Let F and G be incidence functions of (N, l) defined by F(d, m) 
= ~D(d, m) and G(d, m) = (D(d, m)g(d). Then (1.3) can be written as 

f ( m  i, mj) = E F(d,  m~)G(d, mj) = ~ F(m k, m, )G(m k, mj). 
d l ( m  i, m j )  k=  1 

Application of Theorem 1 thus gives the evaluation (1.2). 

EXAMPLE 2. Let ~'u denote the zeta function of the poset (N, II). Then 
~u(d, i )= 1 if d l r i ,  and = 0  otherwise, l_~t F and G be incidence 
functions of(N, II) defined by F( d, i) = ~u( d, i) and G( d, j ) = ~u( d, j ) g( d). 
Then (2.3) can be written as 

f ( i , j )  = ~., F(d, i )G(d, j )  = ~ F(k, i)G(k, j) .  
d II ( i ,  j ) *  k = 1 

Application of Theorem 1 thus gives the evaluation (2.4). 

EXAMPLE 3. Denoting F(d, i ) =  ~D(d, i )g(d) and G(d, j )  = 
~D(d, j )h( j /d ) ,  we can write (2.6) as 

f ( i , j )  = ~_~ F(d, i )G(d, j )  = ~ F(k, i)G(k, j) ,  
d l ( i , j )  k = l  

where F and G are incidence functions of (N, I). Application of Theorem 1 
thus gives the evaluation (2.7). 

and B and C are upper triangular matrices. We thus easily arrive at (3.1). • 
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EXAMPLE 4. Let c*(i,j) denote the unitary analogue of Ramanujan's 
sum [34, Section IX.4]. It is known [34, Section IX.4] that 

c*( i , j )  = ~. .dtz*(j /d) ,  (3.2) 
dl i  
dlbj 

where/z* is the multiplicative function defined by p~*(1) = 1 and /z*(pr) = 

- 1  for all prime powers p~ (>  1). Denoting F(d , i )=  ~o(d,i)d and 
G(d, j )  = ~u(d, j)tx*(j/d),  we can write (3.2) as 

c*(i , j )  = Y'. F ( d , i ) G ( d , j )  = ~ F(k , i )G(k , j ) ,  
d l ( i ,  j )  k = 1 

where F and G are incidence functions of (N, I). Application of Theorem 1 
thus gives 

det [c*(i,j)], ,×. = n!. (3 .3)  

Note that 

det [c(i , j)], ,×. = det [c*(i, j)].×n. 

EXAMPLE 5. Let g be the arithmetical function defined by 

~(n/d) 
g(n)= E n=1,2  

d din  

where /z is the MSbius function. By the Miibius inversion formula [28, 
Theorem 1.3] it follows that 

1 
E g ( a )  = - .  
d in  n 

Thus 

ij E g(a) 
d l ( i , j )  

ij 
[ i , j] ,  

(i , j)  
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where [i,j] is the least common multiple of i and j .  Denoting F(d, i) = 
~o(d, i)i and G(d , j )  = ~o(d, j )g(d) j ,  we have 

[ i , j ]  = E F ( d , i ) G ( d , j )  = ~ F ( k , i ) G ( k , j ) .  
d l ( i , j )  k = i 

Here F and G are incidence functions of (N, I), and hence, by Theorem 1, 

n 

det [[i,j]]n×n = l--[ k2g(k )  • (3.4) 
k = l  

It can be verified that 

k 2 g ( k )  = 

where 7r is the multiplicative function defined by 7r(1) = 1 and 7r(pr) = _ p  
for all prime powers p r (>  1), and & is Euler's totient function. Thus 

de t [ [ i , j ] ] n×n  = f i r c ( k ) c ~ ( k ) -  (3.5) 
k = l  

Note that 

det [ [ i , j l ] , x ,  = det [ ( i , j ) ] , x ,  f i  ~ ' (k) .  
k = l  

Let ~'N be the zeta function of(N, ~<), that is, (N(k, i) = 1 EXAMPLE 6. 
if k <~ i, and = 0 otherwise. Then 

min{i, j} = E 
k ~< min{i, j} 

Thus, by Theorem 1, 

~ N ( k , i ) ~ x ( k , j )  = 
k = l  

det [rain{i, j}]. X n = 1 .  ( 3 . 6 )  

REMARK. It should be emphasized that, in all the above examples, 
matrices can be presented as the product of a lower and an upper triangular 
matrix. It is clear that these lower and upper triangular matrices are not 
unique. 
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4. A C O N J E C T U R E  OF B E S L I N  A N D  L I G H  

Let  P always denote  a finite mee t  semilattice, S a poset  that  can be 
e m b e d d e d  in a mee t  semilattice, and S the unique (up to isomorphism) 
minimal mee t  semilattiee containing S. 

Let  S = {x 1, x 2 . . . . .  x n} be a subset  of  P, and let f be  a function on P 
with real values. Then  the n × n matrix (S) f  = ( s i ) ,  where  

sij = f ( x ,  A x j ) ,  

is called the mee t  matrix on S with respect  to f .  
The  following Theorems  2 and 3 are generalizations of  Beslin and Ligh's 

results [6, Theo rem 1; 7, Theo rem 1] about  G C D  matrices on GCD-c losed  
and arbitrary sets of  positive integers. 

THEOREM 2 [32]. Let S = {x 1, x 2 . . . . .  x,} be a meet-closed subset o f  P, 
and f a function on P. Then 

det  ( S ) f  = g ( x l ) g ( x 2 ) " "  g ( x , , ) ,  

where g( x i) is defined by 

g ( x , )  = f ( x , )  - g(x). 
xjES, Xj<X i 

(He re  xj < x~ means that xj ~ x i and xj -4: x~.) 

COROLlaRY [26, 41]. Let S = {x l, x 2 . . . . .  x n} be a lower-closed subset 
o f  P, and f a function on P. Then 

where 

det ( S ) f  = g ( x l ) g ( x 2 ) ' "  g (Xn)  , 

g(x,) = I2 f ( x ) . ( x j ,  
Xj~Xi 

or equivalently 

f ( x i )  = ~ g(xj ) ,  
xj <~ xi 

tz being the MSbius funct ion of  P (see [38, p. 116]). 
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REMARK. The  above corollary is a poset-theoretic generalization of  
Smith's result (1.2). 

Let  S = {xl, x z . . . . .  x n} and T = {Yl, Y,2 . . . . .  Ym} be any subsets of  P. 
Define the incidence matrix E(S, T)  of  S and T as an n × m matrix whose 
i,j, entry is 1 if yj <~ Xi, and 0 otherwise. 

THEOREM 3 [32]. Let S = {x 1, x 2 . . . . .  x,} be a subset of P with 

= { X 1 ,  X 2 . . . . .  X n, Xn+l . . . . .  Xn+r}. 

Let g be a function on S defined as in Theorem 2. Then 

( S ) f  = Echag( g( x l ) ,  g( x2) . . . . .  g( x,,+r) ) E T, 

where E = E(S, S) and E T is the transpose of E. 

REMARK. Theorem 3 is a generalization of  (2.2). 

By using a proof  similar to that occurring in Li's paper  for G C D  matrices 
[23, Theorems 2 and 3] we have the following: 

THEOREM 4. Let S, if, f ,  and g be as in Theorem 3. Then 

det ( S ) f  = ~] det (E~k~,k2 ..... k,,)) 2 g(xk t )g(xk2  ) "" g(xk,,) 
l ~ < k l < k 2 <  .- .  <kn<~n+r 

where E~k.,kz ..... k.) is the submatrix of E = E(S ,S )  consisting of the 
kith, kzth . . . . .  k , th  columns of E. Furthermore, if  g is a function with 
positive values, then 

det ( S ) f  ~> g ( x l ) g ( x e ) . . ,  g ( x , , ) ,  

and the equality holds i f  and only i f  S is meet-closed. 

In the case in which S is a set of  positive integers, Beslin and Ligh [7] 
proved that if S is GCD-closed or S is a k-set for some positive integer k, 
where a k-set is defined as a set of  positive integers whose every pair of  
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distinct e lements  have the greatest  common  divisor k, then det (ECk k k ~) 
= _ 1  for every choice of  kl,  k 2 . . . . .  k,,. They also conjecture~' t ~ a t ' t h e  
converse is true for n > 3. Li [24] shows that the converse does not hold for 
any n >~ 3. 

For  example,  let n = 4 and S = {2, 3, 5, 6}. Then  S = {2, 3, 5, 6, 1} and 

1 0 0 0 1 

E I  S ~ ~ ~') = 0 1 0 0 1 
0 0 1 0 1 
1 1 0 1 1 

It  is easy to verify that this is a counterexample  of  the conjecture.  
In the next section we will give characterizations of  the posets having a 

proper ty  similar to the example• 

5. R E G U L A R  POSETS 

Beslin and Ligh's [7] conjecture and the example in the previous section 
raise the following question. What  kind of posets S satisfy the property:  I f  S 
has n elements,  then the de terminant  of  every n x n submatrix of  E(S, S) is 
equal to + 1? 

It  is trivial that if S is a mee t  semilattice, then S satisfies this property.  
Otherwise we call S a regular poset.  

THEOREM 5. Let S = {x l, x 2 . . . . .  x,} be a poset with 

= { X 1 ,  X 2 . . . . .  Xn ,  X n +  1 . . . . .  X n + r }  , r > O. 

Then S is regular i f  and only i f  r = 1, xn + 1 is the minimum element of S, and 
the system of linear equations 

s) 

2; 1 

Z2 

Z n 

(5.1)  

has only the solution of the form ( + 1, + 1 . . . . .  +__ 1). 
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Proof. Let  E = E(S ,  S) = (eij)nX(n+r). Then E(S,  S) is the n X n sub- 
matrix of  E. For  any i, 1 <~ i <~ r, consider the system of  linear equations 

/ill e(  s, s) 2 (5.2) -~ E ( n + i ) ,  

~ z , j  

where E(n+i ) is the (n + i)th column of  E. Let ~ be a permutation of  
{1, 2 . . . . .  n} such that x~(1) is a minimal element  of  S and x~(k) a minimal 
element of  S \ {x~(1), x,(2) . . . . .  x~(k_l)} for k = 2 ,3  . . . . .  n. Then E(S,  S) 
is similar to E(S ' ,  S'),  where S' = {x~(1), x~(z) . . . . .  x ~ ( J .  It is easy to see 
that E(S ' ,  S ' )  is a lower triangular matrix and det E(S ' ,  S ) = 1, which 
implies that det  E(S,  S) = 1. By Cramer 's  rule we have 

zj = det E(1,2 . . . . .  j - l , n + i , j + l  . . . . . . .  ) ,  j = 1 ,2  . . . . .  n.  (5.3) 

From this it follows that if the conditions of  the theorem hold, then S is 
regular. 

Now, we suppose that S is regular. Then zj = 1 or - 1  as in (5.3). In 
order  to co_mplete the proof  it suffices to show that Xn+ i is the minimum 

T element o f  S, or E(,,+i) = (1, 1 . . . . .  1). Let xj be any minimal element  of  S. 
Then the j t h  equation in (5.2) is zj = ej, n+i" Thus ej, ,+ i = 1, from which it 
follows that xn+ ~ ~< xj. The arbitrariness of  xj implies that Xn+ ~ <<, X k for 
k = 1,2 . . . . .  n, i.e., xn+ i is the minimum element of  S. Therefore r = 1 and 
E(7~, + 1~ = (1, 1 . . . . .  1). This completes the proof. • 

COltOLI~RY 1. Let  S = { x 1 ,  x 2 . . . . .  Xn} be a poset. Define a real func-  
tion u s as follows: 

11 i f  x is a minimal element,  

u s ( x )  = - ~ y <x Us ( Y )  otherwise.  

Then S is regular i f  and only i f  S = S U {Xn+l} and Us(X) = + 1  f o r  every 
x ~ S .  

Proof. It  is not difficult to verify that (Us(Xa), Vs(X z) . . . . .  Us(X,)) r is the 
solution o f  (5.1). Hence  the conclusion follows from Theorem 5 at once. • 
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COROLLARY 2. Let S be a regular poser, x a maximal element of S. Then 
S \ {x} is also a regular poser. 

Proof. Write S \ {x} = T. By the definition of the function u, we see 
that Ur(y) = us(y) for every y ~ T. The conclusion follows from Cor- 
ollary 1. • 

The following theorem gives an inductive method to construct regular 
posets. 

THEOREM 6. 

(i) An incomparable set is regular. 

(ii) Suppose that T is a regular poset, and S = T U { x} is the union of 
disjoint sets T and { x} such that 

(1) x ~ y for every y ~ T, 
(2) x covers the elements of an incomparable subset ofT,  say {Yl, Y2 . . . . .  Yt}, 
satisfying 1 - E ,  uv( y) = ,+_ 1, where the sum is taken over all the elements 
y ~ T with y <~ lone of Yl Yz . . . . .  yt ), and 
(3) the poset S with the order defined as above can be embedded in a meet 
semilattice. 

Then S is regular. 

It can be seen from Corollary 2 that, using the method in the above 
theorem, we can obtain all regular posets. However, it would be interesting to 
find a more effective algorithm. 

Beslin and Ligh's conjecture is equivalent to saying that the incomparable 
sets are the only regular posets. In Figure 1 we list the Hasse diagrams of all 
regular posets with seven elements, except for the incomparable set. 

FIG. 1. 
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6. A-REGULAR POSETS 

The concept of regular posets can be generalized as follows. 
Let A be an arbitrary but fixed subset of Z such that (1) 0 ~ A, (2) 

1 ~ A, and (3) a ~ A implies - a  ~ A, We define a poset S of n elements to 
be A-regular if S is not a meet  semilattice and the determinant value of 
every n × n submatrix of E(S, S) belongs to A. Thus the regular posets are 
the A-regular posets with A = { - 1, 1}. 

It is easy to see that the proofs of our results for regular posets go through 
for A-regular posets. We thus obtain the following generalizations. 

THEOREM 7. Let S = {x 1, x 2 . . . . .  x,} be a poset with 

~--- { X 1 ,  X 2 . . . . .  Xn,  Xn+ 1 . . . . .  Xn+r}  , r > O. 

Then S is A-regular if  and only i f  r = 1, xn + ~ is the minimum element of  S, 
and the only solution of  the system of linear equations 

E (S ,  S) z2. = 

gn 

is of  the form (z 1, z z . . . . .  z~), where Z l ,  2~ 2 . . . . .  Z n ~ A .  

COROLLARY 1. Let S = {x 1, x 2 . . . . .  xn} be a poset. Define a real func- 
tion v s as follows: 

1 i fx  is a minimal element, 

v s ( x )  = 1 -  ~ y < x V s ( y )  otherwise. 

Then S is A-regular i f  and only i f  S = S u {x,,+ 1} and Vs(X) ~ A for  every 
x ~ S .  

COROLLARY 2. Let S be an A-regular poset, x a maximal element of  S. 
Then S \ {x} is also an A-regular poset. 
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The following theorem gives an inductive method to construct A-regular 
posets. 

THEOREM 8. 

(i) An incomparable set is A-regular. 

(ii) Suppose that T is an A-regular poser, and S = T tO { x} is the union of 
disjoint sets T and {x} such that 

(1) x ¢~ y for every y ~ T, 
(2) x covers the elements' of an incomparable subset ofT,  say { Yl, Y2 . . . . .  Yt}, 
satisfying 1 - ~. ur( y) ~ A, where the sum is taken over all the elements 
y ~ T with y <~ (one of Yl, Y2 . . . . .  Yt), and 
(3) the poser S with the order defined as above can be embedded in a meet 
semilattice. 

Then S is A-regular. 

It can be seen from Corollary 2 that, using the method in the above 
theorem, we can obtain all A-regular posets. 

REMARK. If A = Z \ {0}, then A-regular posets and meet semilattices 
give all the posets of n elements for which every n × n submatrix of E(S, S) 
is invertible. For example, there are three A-regular posets of this type with 
four elements. These are the incomparable one and the following two posets 
shown in Figure 2. Note that the left poset corresponds to the example at the 
end of Section 4. 

7. A COUNTEREXAMPLE FOR A CONJECTURE 
OF BOURQUE AND LIGH 

Let S = { X I ,  :PC 2 . . . .  , x,,} be a set of distinct positive integers. The matrix 
(S) having the greatest common divisor (xi, x,) as its i , j  entry is called the 
GCD matrix on S. The matrix [S] having the teast common multiple [xi, xj] 
as its i , j  entry is called the LCM matrix on S. For further terminology and 
notation, see [8]. 

FIG. 2. 
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It is known that the GCD matrix on any set S is invertible [23, Theorem 
3] and that there exist sets S such that the LCM matrix on S is not invertible 
[3, Remark 5]. It is also known that the LCM matrix on any factor-closed set 
is invertible [36, Section 3]. Further, it has been conjectured that the LCM 
matrix on any GCD-closed set is invertible; see Bourque and Ligh [8, p. 73]. 
We here show that this conjecture does not hold. 

Let S = {x l, x z . . . . .  x,} be a GCD-closed set. Let g be the arithmetical 
function defined by 

1 ~ r ( m ) d p ( m )  
g ( m )  = - -  E d l ~ ( d )  = m2 , 

m dlm 

where/x  is the Mgbius function, ~b is the Euler totient function and ~r is the 
multiplicative function such that 7r(p r) = --p for all prime powers pr. 
Bourque and Ligh [8, Theorem 5] show that 

n 

d e t [ S ] =  I - I x~a , ,  where ol ,= • g ( d ) .  (7.1) 
i = 1  dlx~ 

d+x~ 
Xt<~Xi 

Our calculations with the aid of the Mathematica system show that if 
x~ < 180 for all i = 1, 2 . . . . .  n, then det[S] g= 0. However, if the greatest 
number in S is 180, then there exist GCD-closed sets S such that det[S] = 0. 
For example, let 

S = { 1 , 2 , 3 , 4 , 5 , 6 ,  10,45,180}. (7.2) 

Then S is GCD-closed but not factor-closed. Let x,  = x 9 = 180. Then 

a . = g ( 1 8 0 )  + g ( 9 0 )  + g ( 6 0 )  + g ( 3 6 )  + g ( 3 0 )  + g ( 2 0 )  + g ( 1 8 )  + g ( 1 2 )  

2 4 
45 45 

2 1 4 1 1 l 
i~ + i-5 + g + ~ + g = 0 ,  

where a ,  is as given in (7.1). This shows that det[S] = 0 and thus (7.2) is a 
counterexample for the conjecture. 
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