ANOTHER GENERALISATION OF SMITH'S DETERMINANT

Scotit Beslin and Steve Ligh

Abstract

Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of distinct positive integers. The $n \times n$ matrix $[S]=$ ($s_{i j}$), where $s_{i j}=\left(x_{i}, x_{j}\right)$, the greatest common divisor of x_{i} and x_{j}, is called the greatest common divisor (GCD) matrix on S. H.J.S. Smith showed that the determinant of the matrix $[E(n)], E(n)=\{1,2, \ldots, n\}$, is $\phi(1) \phi(2) \ldots \phi(n)$, where $\phi(x)$ is Euler's totient function. We extend Smith's result by considering sets $S=\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$ with the property that for all i and $j,\left(x_{i}, x_{j}\right)$ is in S.

1. Introduction

Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of distinct positive integers. The $n \times n$ matrix $[S]=\left(s_{i j}\right)$, where $s_{i j}=\left(x_{i}, x_{j}\right)$, the greatest common divisor of x_{i} and x_{j}, is called the greatest common divisor (GCD) matrix on S (see [2]). In [6], Smith showed that if $E(n)=\{1,2, \ldots, n\}$, then the determinant of $[E(n)], \operatorname{det}[E(n)]$, is $\phi(1) \phi(2) \ldots \phi(n)$, where $\phi(x)$ is Euler's totient function. Many generalisations of Smith's result in various directions $[1,2,3,4,5]$ have been published. In fact, Smith commented that $E(n)$ can be replaced by a factor-closed set. A set S of positive integers is said to be factor-closed if whenever x_{i} is in S and d divides x_{i} then d is in S. In [2], we considered GCD matrices in the direction of their structure, determinant, and arithmetic in \mathbf{Z}_{n}, the ring of integers modulo n. The purpose of this paper is to give a generalisation of Smith's result in the direction of extending the sets $E(n)$ and factor-closed sets to a larger class of sets.

2. Main result

Definition 1. A set $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of distinct positive integers is said to be gcd-closed if for every $i, j=1,2, \ldots, n,\left(x_{i}, x_{j}\right)$ is in S.

Clearly every factor-closed set, and hence $E(n)$, is gcd-closed, but not conversely. We present in this section a structure theorem for GCD matrices defined on gcd-closed sets and compute their determinant, thus generalising Sinith's result.

It was remarked in [2] that the determinant of a GCD matrix defined on a. set S is independent of the order of the elements in S.

[^0]Proposition 1. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be ged-closed with $x_{1}<x_{2}<\ldots<x_{n}$. For every $i, j=1,2, \ldots, n$, let $C_{i j}$ be the sum

$$
\sum_{x_{k} \mid\left(x_{i}, x_{j}\right)}\left(\sum_{\substack{d, x_{k} \\ d x_{k} \\ t<k}} \phi(d)\right)
$$

Then $C_{i j}=\left(x_{i}, x_{j}\right)$.
Proof: It is true that

$$
\begin{equation*}
\left(x_{i}, x_{j}\right)=\sum_{d \mid\left(x_{i}, x_{j}\right)} \phi(d) \tag{1.1}
\end{equation*}
$$

It is obvious that the sums (1.1) and $C_{i j}$ are non-repetitive; that is, each d is counted only once. Now let x_{k} divide $\left(x_{i}, x_{j}\right)$ and d divide x_{k}. Then d divides (x_{i}, x_{j}). Thus every d occuring in $C_{i j}$ occurs in (1.1). Conversely, suppose d divides (x_{i}, x_{j}). Since S is gcd-closed, $\left(x_{i}, x_{j}\right)=x_{m}$ for some m less than or equal to the minimum of i and j. Hence d divides x_{m}. Let $k \leqslant m$ be the first integer such that d divides x_{k}. Then d does not divide x_{t} for $t<k$. Now $\left(x_{k}, x_{i}\right)=x_{r}$ for some $r \leqslant k$. Hence d divides x_{r}. By the minimality of k, it must be that $r=k$. Thus $x_{r}=x_{k}$ and x_{k} divides x_{i}. Similarly, x_{k} divides x_{j}. Therefore x_{k} divides $\left(x_{i}, x_{j}\right)$. This completes the proof.

Theorem 1. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be ged-closed with $x_{1}<x_{2}<\ldots<x_{n}$. Then [S] is the product of a lower triangular matrix A and an upper triangular matrix B. Moreover, $\operatorname{det}[S]=\operatorname{det}(A)=a_{11} a_{22} \ldots a_{n n}$, where $a_{i i}=\sum_{\substack{d \mid x_{i} \\ d+t_{i} \\ t<i}} \phi(d)$.

Proof: Define $A=\left(a_{i j}\right)$ via

$$
a_{i j}=\left\{\begin{array}{lr}
\sum_{d \mid x_{j}} \phi(d) & \quad \text { if } x_{j} \mid x_{i} \\
d+x_{j} \\
t<j & \\
0 & \text { otherwise }
\end{array}\right.
$$

Define B to be the incidence matrix corresponding to A^{T}, the transpose of A : if the (i, j)-entry of A^{T} is 0 , then the (i, j)-entry of B is 0 ; otherwise the (i, j)-entry of B is 1 . Thus, if $B=\left(b_{i j}\right)$, then the (i, j)-entry of $A B$ is equal to $\sum_{k=1}^{n} a_{i k} b_{k j}=\sum_{\substack{x_{k}\left|x_{i} \\ x_{k}\right| x_{j}}} a_{i k}$. But this is precisely the sum $C_{i j}$ as in Proposition 1. Therefore, the (i, j)-entry of $A B$ is $\left(x_{i}, x_{j}\right)$. It is obvious that A is lower triangular and B is upper triangular and that $\operatorname{det}(B)=1$. Hence $\operatorname{det}[S]=\operatorname{det}(A)=a_{11} a_{22} \ldots a_{n n}$, and the proof is complete.

Corollary 1. (Smith) Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a factor-closed set. Then $\operatorname{det}[S]=\phi\left(x_{1}\right) \phi\left(x_{2}\right) \ldots \phi\left(x_{n}\right)$.

It was conjectured in [2] that the converse of the above corollary is true. The following is a partial answer to the conjecture.

Corollary 2. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be gcd-closed. Then $\operatorname{det}[S]=\phi\left(x_{1}\right) \phi\left(x_{2}\right) \ldots \phi\left(x_{n}\right)$ if and only if S is factor-closed.

Proof: Sufficiency is Corollary 1. Now suppose S is not factor-closed. We note that in Theorem $1, a_{i i} \geqslant \phi\left(x_{i}\right)$. Since S is not factor-closed, there exist i and d such that $d \neq x_{i}, d$ divides x_{i}, and d does not divide x_{t} for $t<i$. Hence $a_{i i} \geqslant$ $\phi\left(x_{i}\right)+\phi(d)>\phi\left(x_{i}\right)$. Thus $a_{11} a_{22} \ldots a_{n n}>\phi\left(x_{1}\right) \phi\left(x_{2}\right) \ldots \phi\left(x_{n}\right)$.

3. Remarks

In [2] we considered GCD matrices defined on arbritary sets S of positive integers. It was shown that $[S]$ is positive definite and hence det $[S]>0$. In a different direction, we considered in [3] another generalisation of the set $E(n)$. Let $D(s, d, n)$ be the arithmetic progression defined as follows:

$$
D(s, d, n)=\{s, s+d, s+2 d, \ldots, s+(n-1) d\}, \text { where }(s, d)=1
$$

Observe that $D(1,1, n)=E(n)$. The following open problem is mentioned in [3].
Problent. What is the value of the determinant of the GCD matrix defined on $D(s, d, n)$?

References

[1] T.M. Apostol, 'Arithmetical properties of generalized Ramanujan sums', Pacific J. Math. 41 (1972), 281-293.
[2] S. Beslin and S. Ligh, 'Greatest common divisor matrices', Linear Algebra App. 118 (1989), 69-76.
[3] S. Ligh, 'Generalized Smith's determinant', Linear and Multilinear Algebra 22 (1988), $305-306$.
[4] P.J. McCarthy, 'A generalization of Sinith's determinant', Canad. Math. Bull. 2θ (1988), $109-113$.
[5] I. Niven and H.S. Zuckerman, An Introduction to the Theory of Numbers, Fourth Edition (John Wiley and Sons, New York, 1980).
[6] H.J.S. Sinith, 'On the value of a certain arithmetical determinant', Proc. London Math. Soc. T (1875-76), 208-212.

Department of Mathematics
Nicholls State University
PO Box 2026
Thibudaux LA70310
United States of America

Department of Mathematics

University of Southwestern Louisiana
Lafayette LA 70504
United States of America

[^0]: Received 9 December, 1988
 Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/89 \$A2.00+0.00.

