Bull. Austral. Math. Soc. Vol. 40 (1989) [413-415]

ANOTHER GENERALISATION OF SMITH'S DETERMINANT

SCOTT BESLIN AND STEVE LIGH

Let $S = \{x_1, x_2, \ldots, x_n\}$ be a set of distinct positive integers. The $n \times n$ matrix $[S] = (s_{ij})$, where $s_{ij} = (x_i, x_j)$, the greatest common divisor of x_i and x_j , is called the greatest common divisor (GCD) matrix on S. H.J.S. Smith showed that the determinant of the matrix [E(n)], $E(n) = \{1, 2, \ldots, n\}$, is $\phi(1)\phi(2)\ldots\phi(n)$, where $\phi(x)$ is Euler's totient function. We extend Smith's result by considering sets $S = \{x_1, x_2, \ldots, x_n\}$ with the property that for all i and j, (x_i, x_j) is in S.

1. INTRODUCTION

Let $S = \{x_1, x_2, \ldots, x_n\}$ be a set of distinct positive integers. The $n \times n$ matrix $[S] = (s_{ij})$, where $s_{ij} = (x_i, x_j)$, the greatest common divisor of x_i and x_j , is called the greatest common divisor (GCD) matrix on S (see [2]). In [6], Smith showed that if $E(n) = \{1, 2, \ldots, n\}$, then the determinant of [E(n)], det [E(n)], is $\phi(1)\phi(2)\ldots\phi(n)$, where $\phi(x)$ is Euler's totient function. Many generalisations of Smith's result in various directions [1, 2, 3, 4, 5] have been published. In fact, Smith commented that E(n) can be replaced by a factor-closed set. A set S of positive integers is said to be factor-closed if whenever x_i is in S and d divides x_i then d is in S. In [2], we considered GCD matrices in the direction of their structure, determinant, and arithmetic in \mathbb{Z}_n , the ring of integers modulo n. The purpose of this paper is to give a generalisation of Smith's result in the direction of extending the sets E(n) and factor-closed sets to a larger class of sets.

2. MAIN RESULT

Definition 1. A set $S = \{x_1, x_2, ..., x_n\}$ of distinct positive integers is said to be gcd-closed if for every $i, j = 1, 2, ..., n, (x_i, x_j)$ is in S.

Clearly every factor-closed set, and hence E(n), is gcd-closed, but not conversely. We present in this section a structure theorem for GCD matrices defined on gcd-closed sets and compute their determinant, thus generalising Smith's result.

It was remarked in [2] that the determinant of a GCD matrix defined on a set S is independent of the order of the elements in S.

Received 9 December, 1988

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/89 \$A2.00+0.00.

PROPOSITION 1. Let $S = \{x_1, x_2, ..., x_n\}$ be gcd-closed with $x_1 < x_2 < ... < x_n$. For every i, j = 1, 2, ..., n, let C_{ij} be the sum

$$\sum_{\substack{x_k \mid (x_i, x_j) \\ d \nmid x_t \\ t < k}} \left(\sum_{\substack{d \mid x_k \\ d \nmid x_t \\ t < k}} \phi(d) \right).$$

Then $C_{ij} = (x_i, x_j)$.

PROOF: It is true that

(1.1)
$$(x_i, x_j) = \sum_{d \mid (x_i, x_j)} \phi(d)$$

It is obvious that the sums (1.1) and C_{ij} are non-repetitive; that is, each d is counted only once. Now let x_k divide (x_i, x_j) and d divide x_k . Then d divides (x_i, x_j) . Thus every d occuring in C_{ij} occurs in (1.1). Conversely, suppose d divides (x_i, x_j) . Since S is gcd-closed, $(x_i, x_j) = x_m$ for some m less than or equal to the minimum of i and j. Hence d divides x_m . Let $k \leq m$ be the first integer such that d divides x_k . Then d does not divide x_i for t < k. Now $(x_k, x_i) = x_r$ for some $r \leq k$. Hence d divides x_r . By the minimality of k, it must be that r = k. Thus $x_r = x_k$ and x_k divides x_i . Similarly, x_k divides x_j . Therefore x_k divides (x_i, x_j) . This completes the proof.

THEOREM 1. Let $S = \{x_1, x_2, ..., x_n\}$ be gcd-closed with $x_1 < x_2 < ... < x_n$. Then [S] is the product of a lower triangular matrix A and an upper triangular matrix B. Moreover, det $[S] = \det(A) = a_{11}a_{22}...a_{nn}$, where $a_{ii} = \sum_{\substack{d \mid x_i \\ d \mid x_i$

PROOF: Define $A = (a_{ij})$ via

$$a_{ij} = \begin{cases} \sum_{\substack{d \mid x_j \\ d \nmid x_t \\ t < j \\ 0 & \text{otherwise.}} \end{cases} \phi(d) & \text{if } x_j \mid x_i,$$

Define B to be the incidence matrix corresponding to A^T , the transpose of A: if the (i,j)-entry of A^T is 0, then the (i,j)-entry of B is 0; otherwise the (i,j)-entry of B is 1. Thus, if $B = (b_{ij})$, then the (i,j)-entry of AB is equal to $\sum_{k=1}^{n} a_{ik}b_{kj} = \sum_{\substack{x_k \mid x_i \\ x_k \mid x_j \\ x_k \mid x_k \mid x_k \\ x_k \mid x_k \mid x_k \\ x_k \mid x_k \mid x_k \mid x_k \mid x_k \\ x_k \mid x_k \mid$

But this is precisely the sum C_{ij} as in Proposition 1. Therefore, the (i, j)-entry of AB is (x_i, x_j) . It is obvious that A is lower triangular and B is upper triangular and that det (B) = 1. Hence det $[S] = \det(A) = a_{11}a_{22}\ldots a_{nn}$, and the proof is complete.

[2]

COROLLARY 1. (Smith) Let $S = \{x_1, x_2, ..., x_n\}$ be a factor-closed set. Then det $[S] = \phi(x_1)\phi(x_2)\ldots\phi(x_n)$.

It was conjectured in [2] that the converse of the above corollary is true. The following is a partial answer to the conjecture.

COROLLARY 2. Let $S = \{x_1, x_2, ..., x_n\}$ be gcd-closed. Then det $[S] = \phi(x_1)\phi(x_2)\ldots\phi(x_n)$ if and only if S is factor-closed.

PROOF: Sufficiency is Corollary 1. Now suppose S is not factor-closed. We note that in Theorem 1, $a_{ii} \ge \phi(x_i)$. Since S is not factor-closed, there exist i and d such that $d \ne x_i$, d divides x_i , and d does not divide x_t for t < i. Hence $a_{ii} \ge \phi(x_i) + \phi(d) > \phi(x_i)$. Thus $a_{11}a_{22}...a_{nn} > \phi(x_1)\phi(x_2)...\phi(x_n)$.

3. REMARKS

In [2] we considered GCD matrices defined on arbitrary sets S of positive integers. It was shown that [S] is positive definite and hence det [S] > 0. In a different direction, we considered in [3] another generalisation of the set E(n). Let D(s, d, n) be the arithmetic progression defined as follows:

$$D(s, d, n) = \{s, s + d, s + 2d, \dots, s + (n-1)d\}, \text{ where } (s, d) = 1.$$

Observe that D(1,1,n) = E(n). The following open problem is mentioned in [3].

Problem. What is the value of the determinant of the GCD matrix defined on D(s, d, n)?

References

- T.M. Apostol, 'Arithmetical properties of generalized Ramanujan sums', Pacific J. Math. 41 (1972), 281-293.
- [2] S. Beslin and S. Ligh, 'Greatest common divisor matrices', Linear Algebra App. 118 (1989), 69-76.
- [3] S. Ligh, 'Generalized Smith's determinant', Linear and Multilinear Algebra 22 (1988), 305-306.
- [4] P.J. McCarthy, 'A generalization of Smith's determinant', Canad. Math. Bull. 29 (1988), 109-113.
- [5] I. Niven and H.S. Zuckerman, An Introduction to the Theory of Numbers, Fourth Edition (John Wiley and Sons, New York, 1980).
- [6] H.J.S. Smith, 'On the value of a certain arithmetical determinant', Proc. London Math. Soc. 7 (1875-76), 208-212.

Department of Mathematics Nicholls State University PO Box 2026 Thibudaux LA70310 United States of America Department of Mathematics University of Southwestern Louisiana Lafayette LA 70504 United States of America