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Degree sequences of bipartite graphs
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Let m and n positive integers (m ≥ n), R = (r1, . . . , rm) and S = (s1, . . . , sn) be two nonincreasing
sequences of nonnegative integers with

r1 + r2 + · · · rm = s1 + s2 + · · · sn. (1)

Among others the Gale-Ryser theorem [5, 9] answers the question when there exists a bipartite
graph Bm,n having degree sequences (R, S). Later Ford and Fulkerson [4], Brualdi [1, 2] Chen [3]
and Krause [8] also published a proof.

Recently we have found a quick method to test degreee sequences of simple graphs and using
the quick method we enumerated the degree sequences of simple graphs for new values of the
number of vertices [6, 7]. In the talk we report on the extension of the new algorithm and on its
application to enumerate the degree sequences of bipartite graphs Bm,n.
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