Degree sequences of bipartite graphs

Péter Sótér, Antal Iványi, Loránd Lucz

Department of Computer Algebra, Eötvös Loránd University
mapoleon@freemail.hu tony@compalg.inf.elte.hu lorand.lucz@gmail.com

Let m and n positive integers $(m \geq n), R=\left(r_{1}, \ldots, r_{m}\right)$ and $S=\left(s_{1}, \ldots, s_{n}\right)$ be two nonincreasing sequences of nonnegative integers with

$$
\begin{equation*}
r_{1}+r_{2}+\cdots r_{m}=s_{1}+s_{2}+\cdots s_{n} \tag{1}
\end{equation*}
$$

Among others the Gale-Ryser theorem [5, 9] answers the question when there exists a bipartite graph $B_{m, n}$ having degree sequences (R, S). Later Ford and Fulkerson [4], Brualdi [1, 2] Chen [3] and Krause [8] also published a proof.

Recently we have found a quick method to test degreee sequences of simple graphs and using the quick method we enumerated the degree sequences of simple graphs for new values of the number of vertices $[6,7]$. In the talk we report on the extension of the new algorithm and on its application to enumerate the degree sequences of bipartite graphs $B_{m, n}$.

References

[1] Brualdi, R. A., Matrices of zeros and ones with fixed row and column sum vectors, Linear Algebra Appl., 33 (1980), 159-231.
[2] Brualdi, R. A., Short proofs of the Gale \& Ryser and Ford \& Fulkerson characterizations of the row and column sum vectors of (0,1)-matrices, Math. Inequal. Appl., 4 (1) (2001), 157-159.
[3] Chen, W. Y. C., Integral matrices with given row and column sums, J. Combin. Theory Ser. A, 61 (2) (1992), 153-172.
[4] Ford, L. R. and D. R. Fulkerson, Flows and Networks, Princeton, 1962.
[5] Gale, D., A theorem of flows in networks, Pacific J. Math., 7 (1957), 1073-1082.
[6] Iványi, A., L. Lucz and P. Sótér, Quick Erdős-Gallai and Havel-Hakimi algorithms, Acta Univ. Sapientiae, Inform., 3 (2011) (to appear).
[7] Iványi, A., L. Lucz and P. Sótér, Quick Erdős-Gallai tests (in Hungarian), Alk. Mat. Lapok (submitted).
[8] Krause, M., A simple proof of the Gale-Ryser theorem, Amer. Math. Monthly, 103 (4) (1996), 335-337.
[9] Ryser, H. J., Combinatorial properties of matrices of zeros and ones, Canadian J. Math., 9 (1957), 371-377.

