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Department of Computer Algebra
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Abstract: Let a, b (b ≥ a) and n (n ≥ 2) be nonnegative integers and let T (a, b, n)
be the set of such generalized tournaments, in which every pair of distinct players
is connected at most with b, and at least with a arcs. In [14] we gave a necessary
and sufficient condition to decide whether a given sequence of nonnegative integers
D = (d1, d2, . . . , dn) can be realized as the out-degree sequence of a T ∈ T (a, b, n).
In this talk we show that for any sequence of nonnegative integers D there exist f
and g such that some element T ∈ T (g, f, n) has D as its out-degree sequence, and
for any (a, b, n)-tournament T ′ with the same out-degree sequence D hold a ≤ g and
b ≥ f . We propose a Θ(n) algorithm to determine f and g and an O(dnn2) algorithm
to construct a corresponding tournament T .

We also study the existence, precise and approximate construction of generalized
tournaments with prescribed in-degree and out-degree sequences.
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1 Introduction

Let a, b (b ≥ a) and n (n ≥ 2) be nonnegative integers and let T (a, b, n) be the set of such gene-
ralized tournaments (tournament graphs), in which every pair of distinct players is connected at
most with b, and at least with a arcs. The elements of T (a, b, n) are called (a, b, n)-tournaments.
The vector D = (d1, d2, . . . , dn) of the out-degrees of T ∈ T (a, b, n) is called the score vector of
T . If the elements of D are in nondecreasing order, then D is called the score sequence of T .

An arbitrary vector D = (d1, d2, . . . , dn) of nonnegative integers is called graphical vector, iff
there exists a loopless multigraph whose degree vector is D, and D is called digraphical vector
(or score vector) iff there exists a loopless directed multigraph whose out-degree vector is D.

A nondecreasingly ordered graphical vector is called graphical sequence, and a nondecrea-
singly ordered digraphical vector is called digraphical sequence (or score sequence).

The number of arcs of T going from player Pi to player Pj is denoted by mij (1 ≤ i, j ≤ n),
and the matrix M = [1. .n, 1. .n] is called point matrix or tournament matrix of T .
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In the last sixty years many efforts were devoted to the study of both types of vectors, resp.
sequences. Even in the last three years many authors investigated the conditions, when D is
graphical (e.g. [22]) or digraphical (e.g. [2, 14, 15, 16, 20]).

In this paper we deal only with directed graphs and usually follow the terminology used by
K. B. Reid [24]. If in the given context a, b and n are fixed or non important, then we speak
simply on tournaments instead of generalized or (a, b, n)-tournaments.

We consider the loopless directed multigraphs as generalized tournaments, in which the
number of arcs from vertex/player Pi to vertex/player Pj is denoted by mij , where mij means
the number of points won by player Pi in the match with player Pj .

The first question: how one can characterise the set of the score sequences of the (a, b, n)-
tournaments. The answer is given in Section 2.

If T is an (a, b, n)-tournament with point matrix M = [1. .n, 1. .n], then let E(T ), F (T )
and G(T ) be defined as follows: E(T ) = max1≤i,j≤n mij , F (T ) = max1≤i<j≤n(mij + mji), and
G(T ) = min1≤i<j≤n(mij + mji). Let ∆(D) denote the set of all tournaments having D as out-
degree sequence, and let e(D), f(D) and g(D) be defined as follows: e(D) = {min E(T ) | T ∈
∆(D)}, f(D) = {min F (T ) | T ∈ ∆(D)}, and g(D) = {max G(T ) | T ∈ ∆(D)}. In the sequel
we use the short notations E, F, G, e, f, g, and ∆.

Hulett et al. [13] investigated the construction problem of a minimal size graph having a
prescribed degree set. In a similar way we follow a mini-max approach formulating the following
questions: given a sequence D of nonnegative integers,

• How to compute e and how to construct a tournament T ∈ ∆ characterised by e? In Section
3 a formula to compute e, and an algorithm to construct a corresponding tournament are
presented.

• How to compute f and g? In Section 4 an algorithm to compute f and g is described.

• How to construct a tournament T ∈ ∆ characterised by f and g? In Section 5 an algorithm
to construct a corresponding tournament is presented and analysed.

2 Existence of a tournament with arbitrary degree sequence

Since the numbers of points mij are not limited, it is easy to construct a (0, dn, n)-tournament
for any D.

Lemma 1 If n ≥ 2, then for any vector of nonnegative integers D = (d1, d2, . . . , dn) there exists
a loopless directed multigraph T with out-degree vector D so, that E ≤ dn.

Proof: Let mn1 = dn and mi,i+1 = di for i = 1, 2, . . . , n− 1, and let the remaining mij values
be equal to zero.

Using weighted graphs it would be easy to extend the definition of the (a, b, n)-tournaments
to allow arbitrary real values of a, b, and D. Naive-Construct works without changes also
for input consisting of real numbers.

In the following the algorithms are defined using the pseudocode described in the textbook
due to Cormen, Leiserson, Rivest, and Stein [4].
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2.1 Definition of a naive reconstructing algorithm

Sorting of the elements of D is not necessary.
Input. n: the number of players (n ≥ 2);

D = (d1, d2, . . . , dn): arbitrary sequence of nonnegative integer numbers.
Output. M = [1. .n, 1. .n]: the point matrix of the reconstructed tournament.
The pseudocode of algorithm Naive-Construct can be found in [15]. Its running time is

Θ(n2) in worst case (in best case too). Since the point matrixM has n2 elements, this algorithm
is asymptotically optimal.

3 Computation of e

This is also an easy question. From here we suppose that D is a nondecreasing sequence of
nonnegative integers, that is 0 ≤ d1 ≤ d2 ≤ . . . ≤ dn. Let h = ddn/(n− 1)e.

Since ∆(D) is a finite set for any finite score vector D, e(D) = min{E(T )|T ∈ ∆(D)} exists.

Lemma 2 If n ≥ 2, then for any sequence D = (d1, d2, . . . , dn) there exists a (0, b, n)-tournament
T such that

E ≤ h and b ≤ 2h, (1)

and h is the smallest upper bound for e, and 2h is the smallest possible upper bound for b.

Proof: If all players gather their points in a uniform as possible manner, that is

max
1≤i,j≤n,i6=j

mij − min
1≤i,j≤n, i 6=j

mij ≤ 1 for i = 1, 2, . . . , n, (2)

then we get E ≤ h, that is the bound is valid. Since player Pn has to gather dn points,
the pigeonhole principle implies E ≥ h, that is the bound is not improvable. E ≤ h implies
max1≤i<j≤n mij + mji ≤ 2h. The score sequence D = (d1, d2, . . . , dn) = (2n(n − 1), 2n(n −
1), . . . , 2n(n− 1)) shows, that the upper bound b ≤ 2h is not improvable.

Corollary 3 If n ≥ 2, then for any sequence D = (d1, d2, . . . , dn) holds e(D) = ddn/(n− 1)e.

Proof: According to Lemma 2 h = ddn/(n− 1)e is the smallest upper bound for e.

3.1 Definition of a construction algorithm

The following algorithm constructs a (0, 2h, n)-tournament T having E ≤ h for any D.
Input. n: the number of players (n ≥ 2);

D = (d1, d2, . . . , dn): arbitrary sequence of nonnegative integer numbers.
Output. M = [1. .n, 1. .n]: the point matrix of the tournament.
The pseudocode of the algorithm Pigeonhole-Construct can be found in [15]. Its running

time is Θ(n2) in worst case (in best case too). Since the point matrix M has n2 elements, this
algorithm is asymptotically optimal.
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4 Computation of f and g

Let Si (i = 1, 2, . . . , n) be the sum of the first i elements of D, Bi (i = 1, 2, . . . , n) be the
binomial coefficient n(n−1)/2. Then the players together can have Sn points only if fBn ≥ Sn.
Since the score of player Pn is dn, the pigeonhole principle implies f ≥ ddn/(n− 1)e.

These observations result the following lower bound for f :

f ≥ max
(⌈

Sn

Bn

⌉
,

⌈
dn

n− 1

⌉)
. (3)

If every player gathers his points in a uniform as possible manner then

f ≤ 2
⌈

dn

n− 1

⌉
. (4)

These observations imply a useful characterisation of f .

Lemma 4 If n ≥ 2, then for arbitrary sequence D = (d1, d2, . . . , dn) there exists a (g, f, n)-
tournament having D as its out-degree sequence and the following bounds for f and g:

max
(⌈

S

Bn

⌉
,

⌈
dn

n− 1

⌉)
≤ f ≤ 2

⌈
dn

n− 1

⌉
, (5)

0 ≤ g ≤ f. (6)

Proof: (5) follows from (3) and (4), (6) follows from the definition of f .

It is worth to remark, that if dn/(n−1) is integer and the scores are identical, then the lower
and upper bounds in (5) coincide and so Lemma 4 gives the exact value of F .

In connection with this lemma we consider three examples. If di = dn = 2c(n − 1) (c >
0, i = 1, 2, . . . , n−1), then dn/(n−1) = 2c and Sn/Bn = c, that is Sn/Bn is twice larger than
dn/(n−1). In the other extremal case, when di = 0 (i = 1, 2, . . . , n−1) and dn = cn(n−1) > 0,
then dn/(n− 1) = cn, Sn/Bn = 2c, so dn/(n− 1) is n/2 times larger, than Sn/Bn.

If D = (0, 0, 0, 40, 40, 40), then Lemma 4 gives the bounds 8 ≤ f ≤ 16. Elementary calcula-
tions show that Figure 1 contains the solution with minimal f , where f = 10.

Player/Player P1 P2 P3 P4 P5 P5 Score
P1 — 0 0 0 0 0 0
P2 0 — 0 0 0 0 0
P3 0 0 — 0 0 0 0
P4 10 10 10 — 5 5 40
P5 10 10 10 5 — 5 40
P6 10 10 10 5 5 — 40

Figure 1: Point matrix of a (0, 10, 6)-tournament with f = 10 for D = (0, 0, 0, 40, 40, 40).

In [14] we proved the following assertion.
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Theorem 5 For n ≥ 2 a nondecreasing sequence D = (d1, d2, . . . , dn) of nonnegative integers
is the score sequence of some (a, b, n)-tournament if and only if

aBk ≤
k∑

i=1

di ≤ bBn − Lk − (n− k)dk (1 ≤ k ≤ n), (7)

where

L0 = 0, and Lk = max

(
Lk−1, bBk −

k∑

i=1

di

)
(1 ≤ k ≤ n). (8)

The theorem proved by Moon [23], and later by Kemnitz and Dolff [18] for (a, a, n)-tournaments
is the special case a = b of Theorem 5. The theorems of Landau [21] and Avery [1] are the special
cases a = b = 1 of Theorem 5.

4.1 Definition of a testing algorithm

The following algorithm Interval-Test decides whether a given D is a score sequence of an
(a, b, n)-tournament or not. This algorithm is based on Theorem 5 and returns W = True if D
is a score sequence, and returns W = False otherwise.

Input. a: minimal number of points divided after each match;
b: maximal number of points divided after each match.

Output. W : logical variable (W = True shows that D is an (a, b, n)-tournament).
Local working variables. i: cycle variable;

L = (L0, L1, . . . , Ln): the sequence of the values of the loss function.
Global working variables. n: the number of players (n ≥ 2);

D = (d1, d2, . . . , dn): a nondecreasing sequence of nonnegative integers;
B = (B0, B1, . . . , Bn): the sequence of the binomial coefficients;
S = (S0, S1, . . . , Sn): the sequence of the sums of the i smallest scores.

The pseudocode of the algorithm Interval-Test can be found in [15].
In worst case Interval-Test runs in Θ(n) time even in the general case 0 < a < b (n the

best case the running time of Interval-Test is Θ(n)). It is worth to mention, that the often
referenced Havel-Hakimi algorithm [10, 11, 12] even in the special case a = b = 1 decides in
Θ(n2) time whether a sequence D is digraphical or not.

4.2 Definition of an algorithm computing f and g

The following algorithm is based on the bounds of f and g given by Lemma 4 and the logarithmic
search algorithm.

Input. No special input (global working variables serve as input).
Output. b: f (the minimal F );

a: g (the maximal G).
The pseudocode of algorithm MinF-MaxG can be found in [15].

Lemma 6 Algorithm MinG-MaxG computes the values f and g for arbitrary sequence D =
(d1, d2, . . . , dn) in O(n log(dn/(n)) time.
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Proof: According to Lemma 4 F is an element of the interval [ddn/(n−1)e, d2dn/(n−1)e] and
g is an element of the interval [0, f ]. Taking into account the running time of the logarithmic
search we get that O(log(dn/n)) calls of Interval-Test is sufficient, so the O(n) run time of
Interval-Test implies the required running time of MinF-MaxG.

4.3 Computing of f and g in linear time

Analysing Theorem 5 and the work of algorithm MinF-MaxG one can observe that the maximal
value of G and the minimal value of F can be computed independently by Linear-MinF-MaxG.

Input. No special input (global working variables serve as input).
Output. b: f (the minimal F ).

a: g (the maximal G).
The pseudocode of algorithm Linear-MinF-MaxG can be found in [15].

Lemma 7 Algorithm Linear-MinG-MaxG computes the values f and g for arbitrary sequence
D = (d1, d2, . . . , dn) in Θ(n) time.

Proof: Lines 01–03, 07, and 18 require only constant time, lines 04–06, 09–12, and 13–17
require Θ(n) time, so the total running time is Θ(n).

5 Tournament with f and g

The reconstruction algorithm Score-Slicing2 is based on balancing between additional points
(they are similar to ,,excess”, introduced by Brauer et al. [3]) and missing points introduced in
[14]. The greediness of the algorithm Havel–Hakimi [10, 12] also characterises this algorithm.

This algorithm is an extended version of the algorithm Score-Slicing proposed in [14].

5.1 Definition of the minimax reconstruction algorithm

The work of the slicing program is managed by the following program Mini-Max.
Input. No special input (global working variables serve as input).
Output. M = [1 . . n, 1 . . n]: the point matrix of the reconstructed tournament.
The pseudocode of algorithm Mini-Max can be found in [15].

5.2 Definition of the score slicing algorithm

The key part of the reconstruction is the algorithm Score-Slicing2 [14].
During the reconstruction process we have to take into account the following bounds:

a ≤ mi,j + mj,i ≤ b (1 ≤ i < j ≤ n); (9)

modified scores have to satisfy (7); (10)

mi,j ≤ pi (1 ≤ i, j ≤ n, i 6= j); (11)

the monotonicity p1 ≤ p2 ≤ . . . ≤ pk has to be saved (1 ≤ k ≤ n) (12)
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mii = 0 (1 ≤ i ≤ n). (13)

Input. k: the number of the actually investigated players (k > 2);
pk = (p0, p1, p2, . . . , pk) (k = 3, 4, · · · , n): prefix of the provisional score sequence p;
M[1 . . n, 1 . . n]: matrix of provisional points.

Output. M[1 . . n, 1 . . n]: matrix of provisional points;
pk = (p0, p1, p2, . . . , pk) (k = 2, 3, 4, · · · , n− 1): prefix of the provisional score sequence p.

This algorithm is a corrected version of algorithm ScoreSlicing whose pseudocode can be
found in [15].

Let’s consider an example. Figure 2 shows the point table of a (2, 10, 6)-tournament T .

Player/Player P1 P2 P3 P4 P5 P6 Score
P1 — 1 5 1 1 1 9
P2 1 — 4 2 0 2 9
P3 3 3 — 5 4 4 19
P4 8 2 5 — 2 3 20
P5 9 9 5 7 — 2 32
P6 8 7 5 6 8 — 34

Figure 2: The point table of a (2, 10, 6)-tournament T .

The score sequence of T is D = (9,9,19,20,32,34). In [14] the algorithm Score-Slicing2
resulted the point table represented in Figure 3.

Player/Player P1 P2 P3 P4 P5 P6 Score
P1 — 1 1 6 1 0 9
P2 1 — 1 6 1 0 9
P3 1 1 — 6 8 3 19
P4 3 3 3 — 8 3 20
P5 9 9 2 2 — 10 32
P6 10 10 7 7 0 — 34

Figure 3: The point table of T reconstructed by Score-Slicing2.

The algorithm Mini-Max returns the point matrix represented in Figure 4.
The comparison of Figures 3 and 4 shows a large difference between the simple reconstruction

of Score-Slicing2 and the minimax reconstruction of Mini-Max.
Comparing the construction algorithm Mini-Max with the algorithms of S. V. Gervacio

[8, 9] or with the algorithm A. Kemnitz and S. Dolff [18] we can say that our algorithm not only
construct a corresponding tournament but constructs in the given sense optimal tournament.

6 Main result

Theorem 8 If n ≥ 2 is a positive integer and D = (d1, d2, . . . , dn) is a nondecreasing sequence
of nonnegative integers, then there exist positive integers f and g, and a (g, f, n)-tournament T
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Player/Player P1 P2 P3 P4 P5 P6 Score
P1 — 4 4 1 0 0 9
P2 4 — 4 1 0 0 9
P3 4 4 — 7 4 0 19
P4 7 7 1 — 5 0 20
P5 8 8 4 3 — 9 32
P6 9 9 8 8 0 — 34

Figure 4: The point table of T reconstructed by Mini-Max.

with point matrix M such, that

f = min(mij + mji) ≤ b, (14)

g = max(mij + mji) ≥ a (15)

for any (a, b, n)-tournament, and algorithm Linear-MinF-MaxG computes f and g in Θ(n)
time, and algorithm Mini-Max generates a suitable T in O(dnn2) time.

Proof: The correctness of the algorithms Score-Slicing2, MinF -MaxG implies the correct-
ness of Mini-Max.

Lines 1–46 of Mini-Max require O(log(dn/n)) uses of MinG-MaxF, and one search needs
O(n) steps for the testing, so the computation of f and g can be executed in O(n log(dn/n))
times.

The reconstruction part (lines 47–55) uses algorithm Score-Slicing2, which runs in O(bn3)
time [14]. Mini-Max calls Score-Slicing2 n − 2 times with f ≤ 2ddn/ne, so n3dn/n = dnn2

finishes the proof.

The property of the tournament reconstruction problem that the extremal values of f and
g can be determined independently and so there exists a tournament T having both extremal
features is called linking property. This concept was introduced by Ford and Fulkerson in 1962
[6] and later extended by A. Frank in [7].

7 Further problems

The vector vector L = (l1, l2, . . . , ln) of the in-degrees of T ∈ T (a, b, n) is called the losing vector
of T .

Hakimi proved the following theorem in 1965 [11], whose special case a = b = 1 was later
reproved by H. Kim, Z. Toroczkai, I. Miklós, P. L. Erdős and L. A. Székely [19].

Theorem 9 Let n ≥ 2 be a positive integer, D = (d1, d2, . . . , dn) and L = (l1, l2, . . . , ln) two
vectors of nonnegative integers, which are ordered are so that di + li ≤ di+1 + li+1 for i =
1, 2, . . . , n− 1, and d1 + l1 > 0. There exists a tournament T ∈ T (a,∞, n) with score vector D
and losing vector L if and only if

n∑

i=1

di =
n∑

i=1

li (16)
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and
n∑

i=1

(di + li) ≥ dn + ln. (17)

Using this theorem one can decide in linear time whether a given pair (D,L) is the score
vector-losing vector pair of some T ∈ T (a,∞, n) or not. In the talk we investigate the following
two problems too.

a) If D is the score vector and L and is the losing vector of some tournament T ∈ T (a,∞, n)
such, that they satisfy all conditions of Theorem 9, how we can construct a balanced as possible
tournament T ′ ∈ T (a,∞, n), having the same score and losing vector.

b) If D is the score vector and L and is the losing vector of some tournament T ∈ T (a,∞, n)
such, that they are ordered according to 9, but they do not satisfy (16) and (17), then how we
can define and construct an approximate solution.

8 Summary

A nondecreasing sequence of nonnegative integers D = (d1, d2, . . . , dn) is a score sequence of
a (1, 1, 1)-tournament, iff the sum of the elements of D equals to Bn and the sum of the first
i (i = 1, 2, . . . , n− 1) elements of D is at least Bi [21].

D is a score sequence of an (a, b, n)-tournament, iff (7) holds [14]. The decision whether D
is digraphical requires only linear time. In this talk we prove that for any D there exists an
optimal minimax realization T , that is a tournament having D as its out-degree sequence, and
maximal G, and minimal F in the set of all realizations of D.

Acknowledgement. The author thanks András Frank (Eötvös Loránd University) and
Péter L. Erdős (Alfréd Rényi Institute of Mathematics of HAS) for the useful consultation.
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