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Abstract

We show that the maximum number f(n, x) of closest results in a good x-
tournament is f(n, x) = c(x)n2+O(n) if x is rational and f(n, x) = n3/2/2+O(n)
if x is irrational. E.g. c(0) = 1/8 for chess and c(1) = 1, 5 − √2 ∼ 0.0858 for
modern football.

MSC. 05C20, 05A15

1 Introduction

Round-robin tournaments are popular in the world of sport (and informatics, socio-
metry, biology too).

The players often divide a fixed amount of points. E.g. 1 in individual tennis (where
the unique possible result is 1:0) and chess (possible results are 1:0 or 1/2:1/2), 2 in
traditional football (2:0 or 1:1), 4 in Chess Olympiad for man teams (4 : 0, 3 1/2 :
1/2, 3 : 1, 2 1/2 : 1 1/2, 2 : 2), 9 or 16 in table tennis team.

In other sports a variable amount of points is divided: e.g. 2 or 3 in modern football
(1:1 or 3:0 in Germany; 1:1, 2:0 or 3:0 in Japan) and individual table tennis (2:0, 2:1);
25, 26, 27, 28, 29 or 30 in Bridge Olympiad.

A round-robin tournament is a n×n real matrix Tn = [tij] (n ≥ 2). The elements
of the main diagonal tii equal to zero and the pairs of symmetric elemnts tij : tji give
the result of the match between Pi (the i-th player) and Pj (the j-th player). tij = tji
means a draw, while tij > tji means the win of Pi against Pj. The sum of the elements
of the i-th row

si =
n∑

k=1

tik

is called the score of the i-th player and the vector (s1, s2, . . . , sn) is called the score
vector of the tournament. The nondecreasingly ordered vector of the scores is denoted
by q = 〈q1, q2, . . . , qn〉 and is called the score sequence of the tournament.

∗Part of this paper was presented at the Third Joint Conference on Mathematics and Computer
Science organized by Eötvös Loránd University and Babeş-Bolyai University, Visegrád, Hungary, June
6-12, 1999.

†Department of General Computer Science, Eötvös Loránd University, Budapest, Hungary
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A tournament Tn = [tij] can be represented as a directed weigthed graph consisting
of n nodes P1,P2, . . . ,Pn such that each pair of distinct nodes Pi and Pj is joined by
two directed weighted arcs: the arc from Pi to Pj has the weight tij and the arc from
Pj to Pi has the weight tji.

A set Tn of tournaments Tn is complete or incomplete. A set Tn is called k-
complete if all matrices contain only nonnegative integer elements, the sum of the
symmetric elements is always k and the set contains all possible such matrix. The sets
of all tournaments with n players are 1-complete for individual tennis and 2-complete
for traditional football (chess also can be considered as 2-complete sport).

We denote by Fnx (where x is a nonnegative real number) the following incomplete
set of tournaments with n players: the permitted fij : fji pairs are (2 + x) : 0 and 1:1
and the set contains all possible such tournaments.

In this case Fn1 describes chess and Fn1 describes modern football (in the following
shortly: football) tournaments.

We say that a tournament is n-good (shortly: good), if its score sequence contains
n scores and they are different [5]. A tournament is called unique [9] if its score
sequence uniquely determines the matrix. A tournament is called uniform [5] if its
score sequence is equidistant.

We call the closest result of a sport the result where |tij − tji| is minimal. So for
tennis 1:0, for chess 1/2 : 1/2, for modern football 1:1 and for table tennis 2:1 is the
closest result.

A tournament is called n-maximal (shortly: maximal) if it is n-good and contains
the maximal number of closest results.

The aim of this paper is to determine these maximal numbers for different x-
tournaments.

2 Preliminary analysis of x-tournaments

A nondecreasing sequence q = 〈q1, . . . , qn〉 is called realisable if there exists a tourna-
ment Tn whose score sequence equals to q. There are different algorithms for complete
tournament sets [2,4,5,6,8] checking in O(n) steps if a given sequence is realisable. In
[5] a linear algorithm, in [7] parallel algorithms were presented for similar test of score
vectors.

If the answer is affirmative then there are algorithms reconstructing a corresponding
tournament in O(n2) steps [1, 3, 8].

It is easy to get good tournaments: e.g. if the players win against players with smal-
ler index (transitive tournaments). In the case of tennis only the transitive tournaments
are maximal.

Let wi(Tnx) denote the number of wins of the i-th player of Tnx. Then the sum
S(Tnx) of the scores of Tnx equals

S(Tnx) =
n∑

i=1

qi(Tnx) = n(n− 1) + x
n∑

i=1

wi(Tnx) = n(n− 1) + xW (Tnx), (1)

where Wnx denotes the total number of wins in Tnx.
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The minimal number of wins in n-good x-tournaments is denoted by f(n, x). For

x-tournaments the maximal number of closest results equals to n(n−1)
2

− f(n, x).
If x = 0, then S(Tnx) = n(n− 1), and if x > 0, then

W (Tnx) = (S(Tnx)− n(n− 1))/x. (2)

The next lemma gives a linear lower bound for f(n, x).

Lemma 2.1 If n ≥ 2, then

f(n, x) ≥ bn/2c. (3)

Proof. If every result is a draw, then all scores are equal to n − 1. A nondraw result
makes at most 2 scores different from n−1 so a good score sequence requires the change
of at least n − 1 scores what imply f(n, x) ≥ d(n − 1)/2e, where the right side equals
to bn/2c.

For 2 players according to Lemma 2.1 we have f(2, x) ≥ 1. If P1 → P2 (that is P1

wins against P2), then the score sequence is q = 〈0, 2 + x〉, what is maximal.
Bound (3) is precise for 3 players too: now f(3, x) ≥ 1 and if P1 → P3, then q =

〈1, 2, 3 + x〉 is maximal and so f(3, x) = 1.
According to Lemma 2.1. f(4, x) ≥ 2. If 4 different players play in 2 decided

matchs, then the scores of winners are equal. But if P1 → P2 and P2 → P4, then q =
〈2, 3, 3+x, 4+x〉: if x is positive, then this q is maximal. If x = 0, then 2 wins are not
sufficient: we need 3 wins to get a maximal sequence q = 〈1, 2, 4, 5〉.

If n ≥ 5, then the bound of Lemma 2.1. is not precise even for positive x.
The following construction uses about the quater of the matches to get good se-

quences.

Lemma 2.2 If n ≥ 2 and x > 0, then

f(n, x) ≤ bn/2c(bn/2c+ 1)

2
.

Proof. If n = 2m, then we divide the players into two subsets: winners (W1,W2, . . . ,Wm)
and losers (L1,L2, . . . ,Lm). Wi wins against L1,L2, . . . ,Li, and all the remaining mat-

ches end with draw. Then m(m+1)
2

matches ended with a win and the score sequence
is

q = 〈n− 1−m,n− 1−m + 1, . . . , n− 1− 1, n− 1 + x, n− 1 + 2x, . . . , n− 1 + mx〉.
So if m ≥ 1, then

f(2m,x) ≤ m(m + 1)

2
.

If n = 2m+1, then we can add a new player to the previous tournament who makes
only draws. Then we get the same upper bound as for n = 2m.
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3 The basic case x = 1

In this section we suppose x = 1. Our analysis becomes simpler if we reduce the
points: drawers get zero, winners 1 + x and losers -1 point. If a reduced score se-
quence r contains k (0 ≤ k ≤ n) negative scores, then is can be considered as
r = 〈−nk,−nk−1, . . . ,−n1, p0, p1, . . . , pj〉, where p0 is nonnegative, p1, . . . , pj, n1, . . . , nj

are positive integers.
The scores pj, pj−1, . . . , p1, p0 form the nonnegative, while the scores −n1, −n2,

. . . ,−nk the negative side of the sequence. The number of odd scores in the nonne-
gative side is called the odd part of the sequence and is denoted by ω(s). Then

ω(r) =
j∑

i=0

(pi − 2bpi/2c).

The difference of the sum of scores in the nonnegative side and the odd part is
denoted by ε(s) and is called the even part of the sequence. Then

ε(r) =




j∑

i=0

pi


− ω(r).

The 1-uniform sequences of form r = 〈−k,−(k − 1), . . . ,−1, 0, 1, . . . , j〉 are called
ideal. An ideal sequence is not always realisable and if it is realisable then not always
maximal. E.g. the sequence 〈−1, 0, 1〉 is not realisable. According to (2) the sequence
〈−1, 0, 1, 2, 3〉 needs 5 wins while the sequence 〈−2,−1, 0, 2, 4〉 can be realised with 3
wins (now both sequences are realisable).

3.1 Quadratic lower bound for f(n, 1)

Analysing the reduced score sequence we get a lower bound of f(n, 1).

Lemma 3.1 If n ≥ 2 and r = (pj, . . . p0,−n1, . . . ,−nk) is the reduced score sequence
of a given matrix T , then

W (r(T )) ≥ k(k + 1)

2
.

Proof. If the score of a player is −ni, then this player has at least ni losses since
negative number of points can be gathered only by a loss (1 point per match). If the
score pj of a player is an odd number then this player has at least one loss. So we have
for any score vector r(T )

W (r(T )) ≥
k∑

i=1

ni + ω(r(T )).

The sum on the right side is minimal , if r does not contain odd positive number and the
absolute value of the negative scores is small as possible, that is ni = i (i = 1, 2, . . . , k).
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Lemma 3.2 If n ≥ 2 and r = (pj, . . . p0,−n1, . . . ,−nk) is a reduced score sequence of
a given matrix T , then

W (r(T )) ≥ j(j + 1)

4
+

⌊
j + 1

2

⌋
/2.

Proof. If the score of Pi in Tnx is pi, then Pi has at least b(pi+1)/2c wins since positive
number of points can be gathered only by a win (two points per match) and if the score
is odd then at least one loss has to be compensated. So for any score vector s holds

W (s(T )) ≥ ε(s)/2 + ω(s).

The sum on the right side is minimal (for a given j), if the positive scores are small as
possible, that is pj = j (if j odd, then j + 1, j − 1, j − 2, . . . , 1, 0 results a minimum).
Then the majority of wins required by the positive scores are contained by the first
term of the formula in the lemma; for the odd positive scores a half win is contained in
the second term.

From here we get the following lower bound for f(n, 1).

Lemma 3.3 If n ≥ 2, then

f(n, 1) ≥ min
0≤j≤n−1

max

(
j(j + 1)

4
+

⌊
j + 1

2

⌋
/2,

(n− j − 1)(n− j)

2

)
. (4)

Proof. The previous two lemmas imply this assertation: for a given n we choose the
worst (resulting the lowest lower bound) j, and both lower bound has to hold for this
j.

Evaluating this minimax problem we get a quadratic lower bound of f(n, 1).

Theorem 3.4 If n ≥ 3, then there are 3 cases: a) if
√

2n2 + 2n is an a integer number,
then

f(n, 1) ≥ a(a + 1)

4
+

⌈
a + 1

2

⌉
/2; (5)

b) if
√

2n2 + 2n + 1 is an a integer number, then

f(n, 1) ≥ a(a + 1)

2
+

⌈
a + 1

2

⌉
/2; (6)

c) if neither
√

2n2 + 2n nor
√

2n2 + 2n + 1 is an integer number, then

f(n, 1) ≥ min

(
a(a + 1)

4
+

⌈
a + 1

2

⌉
/2,

b(b + 1)

2

)
, (7)

where

a = 2n− b
√

2n2 + 2nc (8)

and

b = b
√

2n2 + 2nc − n− 1. (9)
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Proof. In Lemma 3.3. the first term is increasing, the second term is decreasing while
j (as a real variable) increases from 1 to n. So we get the minimum when the values of
the terms are equal. Therefore we get the following quadratic equation:

y(y + 1)

4
+ by + 1

2
c/2 =

(n− y − 1)(n− y)

2

If j is even, then this equation implies

y2 − 4ny + 2n2 − 2n = 0.

The suitable root of this equation is y = 2n−√2n2 + 2n. E.g. for n = 8 and n = 49 the
roots are integer, but usually we get noninteger root: then we have to choose either the
lower or the upper integer part of the root. Is is possible that identical values belong
to these neighbouring j’s.

If j is odd, then we get the equation

y2 − 4ny + 2n2 − 2n− 1 = 0.

Then the corresponding solution y = 2n−√2n2 + 2n + 1. E.g. if n = 3 or n = 20, then
the root is integer , but in the majority of the cases this root also is a noninteger number
and have to choose from the integer neighbours. Taking into account the behaviour of
the terms we get the minimum occuring in the c) part of the theorem.

3.2 Upper bound for f(n, 1)

Let denote the minimum in Lemma 3.3. by g(n), and the corresponding j by m (if
there are two values, then we choose the smaller of them).

Lemma 3.5 If n ≥ 2, then

f(n, 1) ≤ g(n) + n. (10)

Proof. If we cover the even part of the score vector s = (m, . . . , 1, 0,−1, . . . ,−nn−m−1)

by negative scores (if (n−m−1)(n−m)
2

is not sufficient, then we decrease the negative scores
in a uniform way), and cover the odd part by increasing of the largest score, then the
scores will be different.

3.3 Maximal 1-tournaments

Now we show that the lower bounds (5), (6), (7) of f(n, 1) in Theorem 3.4. give the
correct order (in some cases even the precise value) and also present a construction
method of maximal tournaments.

Theorem 3.6.

f(n, 1) = (3/2−
√

2)n2 + O(n). (11)

Proof. Let j that root in the proof of Theorem 3.4. which determines the minimum:
this root is a in cases a) and b) and 2n − b√2n2 + 2nc or 2n − d√2n2 + 2ne (maybe,
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both) in case c). Let r = (j, j− 1, ..., . . . , 1, 0,−1, . . . ,−k) (where k = n− j− 1) be the
ideal score sequence belonging to j).

We distinguish the following 3 cases: a) there are many victories in the sequence
r, if

k(k + 1)

2
≤ j(j + 1)

4
−

⌈
j + 1

2

⌉
(12)

— these are the V (victory) type score sequences;
b) there are many losses in the vector s, if

k(k + 1)

2
≥ j(j + 1)

2
(13)

— these are the L (loss) type score sequences;
c) the vector s is balanced, if neither condition holds — these are the B (balanced)

type score sequences.
In case a) the losses of the losers cover at most the even part of the scores of the

winners. Then the bound in the theorem is sharp:

f(n, 1) =
a(a + 1)

4
+

⌈
a + 1

2

⌉
/2 (14)

implying (11).
Adding the additonal victories of the winners to the losses of the losers we get a

maximal score sequence: the difference of the right and left side of (12) determines the
number of these losses. If this difference equals to zero then we get an ideal maximal
solution — otherwise we decrease the negative scores.

In case b) using the losses of the losers we can guarantee j, j − 1, . . . , 1, 0 wins for
winners. The bound of the theorem is sharp in this case too. Since k > j can not occur,
now the ideal solution score sequence is 2j, 2j − 2, . . . , 2, 0,−1, . . . ,−k.

In case c) we can decrease the number of necessary odd positive scores using the
additional losses of the losers but this decreasing usually do not result a maximal
solution. We handle case c) solving the following optimization problem.

We seek the positive part of the score sequence in the form 0, 1, 2, . . . , 2m− 2, 2m−
1, 2m, 2m + 2, 2m + 4, . . . , 2m + 2(j − 2m). We determine the minimal m-et for which
the losses of the negative part and the losses necessary for the even positive scores
1, 3, . . . , 2m− 1 cover the wins needed by the positive side. So we determine

min
{
m : 0 ≤ m ≤ bj/2c,

(
k
2

)
+ m ≥ (j − 2m)m +

(
j−2m

2

)
+ m(m + 1)

}
. (15)

The solution is

m =

⌈
j + 1−√2k2 + 2k − j2 + 1

2

⌉
.

In this case

f(n, 1) =
k(k + 1)

2
+ m =

k(k + 1)

2
+

⌈
j + 1−√2k2 + 2k − j2 + 1

2

⌉
.
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If 2m + 1 = j, then (2m + 2, 2m, 2m − 1, . . . , 1, 0,−1, . . . ,−k) maximal and f(n, 1) =
g(n). If 2m + 1 6= j and the solution of (6) is integer number, that is if

⌈
j + 1−√2k2 + 2k − j2 + 1

2

⌉
=

j + 1−√2k2 + 2k − j2 + 1

2
,

then f(n, 1) = k(k+1)
2

+ m and the maximal score sequence is ((2m + 2(j − 2m), (2m +
2(j − 2m)− 2, . . . , 2m, 2m− 1, . . . , 1, 0,−1, . . . ,−(n−m− 1)).

If j 6= 2m + 1 and (15) does not hold, then f(n, 1) > g(n) and

r(n) =
k(k + 1)

2
+ m−

(
m(j − 2m) +

(j − 2m)(j − 2m + 1)

2
+ m(m + 1)

)

wins are missing from the supposed form, therefore the maximal sequence is (2m +
2(j − 2m) + 2r(n), (2m + 2(j − 2m)− 2, . . . , 2m, 2m− 1, . . . , 1, 0,−1, . . . ,−(n−m− 1)

és f(n) = k(k+1)
2

+ m + r(n).
In this case we also get the required order of f(n, 1).
Table 1.1 contains quantities connected with Theorem 3.6. The meaning of u and l

is as follows: if
√

2n2 + 2n is an integer a, then u = 2n− a (and in the column of l —
occurs); if

√
2n2 + 2n + 1 is an integer a, then l = 2n − a (and in the column of u —

occurs); if neither root is integer, then l = 2n−d√2n2 + 2ne and u = 2n−b√2n2 + 2nc.
The definition of the functions p and q is as follows:

p(m) =
m(m + 1)

4
+

⌊
m + 1

2

⌋
/2

és

q(m) =
(n−m− 1)(n−m)

2
.

The j values resulting the minimum occuring in the theorem and the numbers from
p(l), q(l), p(u), q(u) giving g(n) are written using bold digits. In the case of balanced
sequences m and r(n) are also given.
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n l u p(l) q(l) p(u) q(u) g(n) type of s m r(n)
3 1 — 1 1 — — 1 L – –
4 1 2 1 1 2 1 2 V – –
5 2 3 2 3 4 1 3 L – –
6 2 3 2 6 4 3 4 B 1 (2m + 1 = u) –
7 3 4 4 6 6 3 6 V,L – –
8 — 4 — — 6 6 6 B 1 (2m + 1 6= l) —
9 4 5 7 10 9 6 9 L – –
10 5 6 9 10 12 6 10 B 1 –
11 5 6 9 15 12 10 12 B 2 1
12 6 7 12 15 14 10 15 B 1 –
13 6 7 12 21 16 15 16 B 3 2
14 7 8 16 21 20 15 20 V – –
15 8 9 20 21 25 15 21 B 2 3
16 8 9 20 28 25 21 25 B 4 (2m + 1 = u) –
17 9 10 25 28 30 21 28 B 3 4
18 9 10 25 36 30 28 30 B 4 1
19 10 11 30 36 36 28 36 V,B 3 3
20 11 — 36 36 — — 36 B 4 2
21 11 — 36 36 — — 36 B 4 2
25 13 14 49 66 56 55 56 B 5 –
26 14 15 56 66 64 55 64 V – –
30 16 17 72 91 81 78 81 B 7 2
35 19 20 100 120 110 105 110 B 9 3
40 22 23 132 149 144 132 144 B 10 —
45 25 26 169 190 142 171 182 B 12 –
49 — 28 — — 210 210 182 B 12 6
50 28 29 210 231 225 210 225 V – –
55 31 32 256 276 272 253 272 V – –
60 34 35 306 325 324 300 324 V – –
80 46 47 552 561 576 528 576 B – –
100 57 58 841 903 870 861 870 B 25 –
120 11 — 36 36 — — 36 B 4 2

Table 1.1. Data connected with Theorem 1.6. for n = 1, 2, . . . , 21 and 25, 26, 30,
35, 40, 45, 49, 50, 55, 60, 80, 100, 120 players

If (12) is an equality, then the maximal sequence is ideal. An example is when

n = 4: according to the theorem j = 2 and k = 1. The winners need k(k+1)
2

wins for
the even part of their scores — adding 1 win necessary for the even part we get 2 by
the theorem. Similar case is n = 50. Now the theorem results j = 29, k = 20, so the
loserss have 210 losses. The even part of the scores of winners requires exactly 210
wins. Adding 15 wins necessary for the 15 odd scores we get 225 corresponding to the
theorem.
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If (12) is an inequality, then we divide the additional losses needed by the even part
at the end of the sequence (giving 1 loss each loser).

Case b) occurs rarely: an example is n = 3, n = 5 and n = 7 (if j = 3).
The smallest example for case c) is n = 6: now j = 3, k = 2, f(6, 1) ≥ g(6) = 4.

Substituting the values of j and k we get m = 1: then j = 2m + 1. Now the sequence
s = (4, 2, 1, 0, -1, -2, -3) is maximal and f(6, 1) = g(6) = 4.

The next example for case c) is c) n = 8: according to Theorem 1.6. j = 4, k =
3, f(8, 1) ≥ g(8) = 6. Then m = 1 and 2m + 1 < j. Now the maximal score sequence
is (6, 4, 2, 1, 0, -1, -2, -3), f(8, 1) = 7 and f(8, 1) = g(8) + 1.

4 x = 0 or x ≥ 2 (x integer)

If x = 0, then the construction of Lemma 1.2. results a maximal score sequence.
Therefore

f(n, 0) =
bn/2c(bn/2c+ 1)

2
= n2/8− ρ(n),

where ρ(2m) = 0 and ρ(2m + 1) = 1/8.
In case x = 1 the additional point guarantees, that the value of one win plus one

loss is greater then the value of two draws. If x = 2, then one win plus two losses are
better, then three draws. Therefore the positive scores can be different so, that three
players have 1, 2, . . . wins, resp. but one of them always have also one, and one of them
always has two losses too. E.g. for 10 players the score sequence (-3, -2, -1, 0, 1, 2, 3,
5, 6, 9) can be constructed using only 10 wins so f(10, 2) ≤ 10 < f(10, 1) = 11.

Here the inequality of Lemma 1.5. is modified so, that we divide the firts term by
6, and the second term is about j (since every 3 players have 0 + 1 + 2 losses).

5 x is irrational

For the simplicity let us suppose that n = b2 for some integer b. Then the players can
form a b× b array and we can suppose that Pij wins i times and loses j times. In this
cases the scores are different and the total number of wins equals b2(b−1)/2 = O(n3/2).

6 Numerical results

In column s of Table 1.2. * denotes the missing elements, in column f(n, 1) − g(n) !
denotes the ideal solution and = such balanced case where 2m + 1 = j.
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n f(n, 1) f(n, 1)− g(n) s
2 1 – (2, *, -1)
3 1 0 (2, *, 0, -1)
4 2 0 ! (2, 1, 0, -1)
5 3 0 (4, *, 2, *, 0, -1, -2)
6 4 0 = (4, *, 2, 1, 0, -1, -2)
7 6 0 (6, *, 4, *, 2, *, 0, -1, -2, -3), (4, 3, 2, 1, 0, -1, *, -3)
8 7 1 (6, *, 4, *, 2, 1, 0, -1, -2, -3)
9 9 0 ! (5, 4, 3, 2, 1, 0, -1, -2, -3)
10 11 1 (8, *, 6, *, 4, *, 2, 1, 0, -1, -2, -3, -4)
11 13 1 (8, *, 5, 4, . . . , -4)
12 16 2 (10, *, 8, *, 6, *, 4, *, 2, 1, 0, -1, -2, -3, -4, -5)
13 18 2 (12, *, 8, 5, 6, *, 4, 3, . . . , -5)
14 20 0 (10, *, 8, 7, . . . , -4, *, -6)
15 24 3 (16, *, 8, *, 6, 5, . . . , -6)
16 25 0 = (10, *, 8, 7, . . . , -6)
17 31 3 (20, *, 10, *, 8, *, 6, 5, . . . , -7)
18 32 2 (14, *, 10, *, 8, 7, . . . , -7)
19 36 0 (12,11,. . . ,-4,*,-6,-7,-8),(20,*,12,*,10,*,8,6,5,. . . ,-8)
20 40 4 (18, *, 12, *, 10, *, 8, 7, . . . , -8)
21 40 ! (12, . . . , -8)
25 60 4 (18, *, 16, *, 14, *, 12, *, 10, 9, . . . , -10)
26 64 0 (15, . . . , -9, *, -11)
30 85 4 (24, *, 18, *, 16, *, 14, 13, . . . , -12)
35 114 4 (28, *, 20, *, 18, 17, . . . , -14)
40 144 0 (44, *, 21, 20, . . . , -16)
45 183 12 (28, *, 26, 24, 23, . . . , -16)
49 222 12 (44, *, 30, *, 28, *,26, *,24, 23, . . . , -20)
50 225 0 ! (29, 28, . . . , -20)
55 272 0 (38, *, 31, 30, . . . , -22)
60 324 0 (35, 34, . . . , -24)
80 579 18 (60,*,54,*,52,*,. . . ,*,36, 35, . . . , -33)
100 886 16 (66, *, 64,*, . . . , *,50, 49, . . . , -41)
120 40 ! (70, . . . , -49)

Table 1.2. Maximal score sequences for n = 1, 2, . . . , 21 and 25, 26, 30, 40, 49, 50,
55, 60, 100, 120 players

7 Asymptotic behaviour

In table 1.3. the connection between f(n, 1) and its approximations is characterized.
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n f(n, 1) f(n, 1)− (1, 5−√2)n2 100f(n, 1)/
(

n
2

)

2 1 0,6568 100
3 1 0,2278 33,33
4 2 0,6272 33,33
5 3 0,6 30
10 11 2,42 24,5
100 886 28 17,08

Table 1.3. The connection among f(n, 1) and its approximations

The last column of the table shows how tends the ratio of the number of the necessary
wins and the number of the matches to 100(3− 2

√
2) ∼ 17, 16 per cents as n tends to

infinity.
If x tends to infinity, then the first member in the inequality of Lemma 1.5. lemma

increases and the root tends to n . Therefore the coefficient of the quadratic member
of f(n, x) tends to zero.

Acknowledgement. The author thanks Antal Bege (Babeş-Bolyai University) for
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