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We prove that each set of four or five nonnegative integers is a score set of a tournament.

The score set S of a tournament 7, a complete oriented graph, is the set of
scores (outdegrees) of the vertices of T. In [2] Reid conjectured that each finite,
nonempty set S of nonnegative integers is the score set of some tournament and
proved it for the cases |S|=1,2,3, or if § is an arithmetic or geometric
progression. In this note we will verify Reid’s conjecture for the cases S| =4, 5.

It is well known, see, i.e., [1, p. 61] or [3, p. 176], that nonnegative integers
s;<:--=<g, are the scores of a tournament with n vertices iff

k k z n
>s,=(.), 1sksn-1, and D s5,=(_).
i=1 2 i=1 2
Let S={t,,...,t,} be a nonempty set of nonnegative integers with ¢, <- - - <¢,
then S is a score set iff there exist p positive integers m,, . . ., m, such that

glm,.t,.a(M;k)), 1<k<p-1, ;Zlm,.t,:(M;p)), )

where

k
Mk)=> m, l<ks<p,
i=1

because only the inequalities in the above mentioned formula for those values of
k, for which s, <s,., hold, need to be checked [2, p. 608].

In our proofs we often have to combine two regular tournaments, say X with
2x +1 and Y with 2y + 1 vertices, to a 2(x + y + 1)-tournament. This is possible if
we orient each arc between X and Y in the direction of Y.

Theorem 1. Let be a, b, ¢, d four nonnegative integers with bcd > 0. Then there
exists a tournament T with score set S={a,a+b,a+b+c,a+b+c+d}.

Proof. Let a + b =2a +1. Then we can construct the demanded tournament T
out of a regular tournament with 2a + 1 vertices and a tournament with score set
{(b—a—-1,c+b—a—-1,c+d+b—a—1} which exists by Theorem 6 in [2].
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Therefore we can assume
b=a. (1.1)

The cardinality of a tournament with a two element score set {a, b} is at most
2(a + b) following the construction in Theorem 1 in [2]. Therefore we can assume

c<a+b-1 (1.2)

The cardinality of a 3-tournament with score set {q, b, ¢} is at most max{2(a +
b) +1,2(b +c)} following the construction in Lemma 4 resp. Lemma 5 in [2].
Therefore a+b +c+d=max{2(a+b)+1,2(b +¢)} implies the existence of
our tournament 7. Hence it can be assumed for c >athata+d=<b +c —1 or for
¢ <a that c + d <a + b. Combining this with (1.1) and (1.2), we have

d<a+b-1. (1.3)
(I) In the first part of the proof we assume that
b+2c+2d=2(a+1). (1.4)

We choose a regular tournament with 2a + 1 vertices and a (b+c+d —a—1)-
regular tournament and combine both to a tournament with score set {a, a + b +
¢ +d} and score-sequence

(@...,a,a+b+c+d,...,a+b+c+d).
2a+1 2b+c+d—a)-1
This is possible because b + ¢ + d =a + 1 holds by (1.4).

Let m,b = m,d with m, =d, m, = b. Then we add b to each of m, scores a and
subtract 4 from each of m, scores a + b + ¢ + d to obtain the sequence

(a,...,a,a+b,...,a+b,a+b+c,...,a+b+c
\ I I J \ )

V

2a +Y]. - ml Tnl m2

a+b+c+d,...,a+b+c+ad).
2Ab+c+d-a)—1-m,

Since 2a=m,=d (see 1.3)) and 2b +2c +2d=2a + 1+ b (see (1.4)) it follows
that each score appears at least one time.
To check that our score-sequence is realizable we only have to prove:

2a+1—-m)a+my(a+b)+mya+b+c)=2a+1+m,)(a+3im,)
S mb+mb+mec=im,(2a+1+m,)
&S 2d+2b+2c=2a+1+b,

which is a consequence of our assumption (1.4).
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(I) Now we take a (a + b)-regular tournament with 2a +2b + 1 vertices and
examine the realizability of the score-sequence

(a,...,a,a+b,...,a+b,a+b+c,...,a+b+c,
T 2@ h T > ’
—my—my—ms
a+b+c+d,...,a+b+c+d),
N i J

with m,;b = m,c + m5(c + d). For this we choose m,=2c +d, m,=m;=0b, and
assume

2a +1=2(c + d), (1.5)

which implies 2a +2b =2c¢ + d + 2b.
We have to check the following inequalities (see (1)):
(a) ma=("3) & 2a +1=2c + d, which follows from (1.5).
(b) ma+QR2@+b)+1-m;—m,—my)a+b)=QR2c+d)a+2a+1-2c—
d)(a + b) = (2a + 1), which holds at once for 2a + 1 =2c + d.
(c) ma+Q2@a+b)+1-m,—m,—m3)a+b)+mya+b+c)
=2c+d)a+QRa+1-2c—d)a+b)+bla+b+c)
=(2a+b+1)(a+1ib)
© 2a+1+b—-2c—d)b+bc=3(2a+b+1)b
©22a+1+b—-2c-d)+2c=2a+b+1
& 2a +1+b=2c+ 2d, which follows from (1.5).
Hence the sequence is realizable.
Thus Theorem 1 is proved, because (1.4) or (1.5) holds for each set of
nonnegative integers {a, b, ¢, d}. O

The proof of the following theorem i§ more complicated and demands some
new ideas.

We have to check the realizability of several score-sequences. In particular we
have to insure a positive number of vertices with each score. Second, when
manipulating known score-sequences we have to insure balance, i.e., the amount
subtracted from some scores must equal the amount added to other scores, which
means that the equality in (1) holds. And we have to check the four inequalities
which have to be satisfied (see (1)). These conditions will be denoted by (pos),
(bal) and (ine).

Theorem 2. Let be a, b, c, d, e five nonnegative integers with bcde > 0. Then there
exists a tournament T with score set S={a,a+b,a+b+c,a+b+c+d,a+
b+c+d+e}.
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Proof. As we have mentioned in the proof of Theorem 1, the following
inequalities may be assumed to hold:

b=a, (2.1)

c<a+b-1, (2.2)

d<a+b-1, (2.3)
where

a+dsb+c—1, ifc>a, or (2.3.1)

c+d<a+b, ifc=a, hold. (2.3.2)

Using the proof of Theorem 1 we can assume

l4a+b+c+d+e<smax{2a+2b+1,2(b+c+d)},
which implies

l1+a+e<b+c+d, ifa<c+d, or (2.4.1)

ctd+e<a+b, ifa=c+d (2.4.2)
Thus we can assume

e<a+b+c-2. (2.4)

Now the proof follows a sequence of inequalities as we show in the decision
tree below

(2.5) b+c=2d+e,
(2.6)

2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.15)

If one of the inequalities holds, then Theorem 2 will be shown to follow. Thus
we assume the opposite inequality (i.e., a + 1=<ein (2.7)), going to the next case
until we have finished the proof.

(I) We choose a regular tournament with 2(a + b +c) + 1 vertices and inves-
tigate the realizability of the following score-sequence:

(@....,a,a+b,...,a+b, a+b+c,...,a+b+q
- J \ P — — J

—mz—m3—m4
a+b+c+d,...,a+b+c+da+tb+c+d+e,...,a+b+c+d+e).

Vv a g

m3 m4
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If this sequence is realizable, then the following must hold: m (b +c) + m,c =
msyd + my(d +e).

(A) At first we assume b + ¢ =2d +e. Then we choose m,(b+2c—d—e)=
msd, with m;=b +2c —d — e and m, = m, = m, = d, (bal).
(a) 2a + 1=m,=d holds at once using (2.3).
(b) ma+m(a+b)=d(2d — 1)1+ 2a+ b=2d, which follows from (2.2)
and our assumption.
(c) ma+ma+b)+Q2a+b+c)+1-3m—my)a+b+c)=R@a+b
+c)+1—m;—my)a+b+c—i(m;, +m,))
& I(my+my)a+b+c)+1—m;,—my)=m (b +2c)
S2a+b+c)+1=my+ms+2my(b+2)/(m+ms3)=b+2c—e
+ 2((m, + ms)d + mye)/(my + ms)
S 2a+b+14+e=2d+2del/(b+2c—e),
which holds if 2a + b +1=2d + ¢, a consequence of our assumption.
(d) ma+mya+b)+QRa+b+c)+1-3m;,—my)(a+b
+c)+myla+b+c+d)=2@@+b+c)+1—-my)(a+b+c—3im,)
& myd+im2a+b+c)+1—m)=m(b+2)
& 2a+b+c)+1=zmy+2(my(b +2c) ~myd)/m, =3d + 2e,
an immediate consequence of our assumption.
At last we have to prove:

2@+b+c)=b+2c—~d—e+3ds2a+b=2d—e,

which also follows from our assumption, (pos).
Thus we can assume in the following:

1+b+c<2d+e. (2.5)

(B) Now we choose m,c =m,;(2d +e—~b —c), with m;=my;=m,=c, m,=
(2d + e —b —c¢), (bal).
This is possible because 2d +e=b +c+1 holds (see (2.5)). Let us assume
a=d+e.
(a) 2a +1=m, =c holds at once ((2.2)).
(b) mia+mya+b)=(m;+m,—1)3(m, +m,))
& 2a+1+4+2bmy/(my+my)=2d +e — b,
which follows from our assumption.
(c) ma+mya+b)+QRa+db+c)+1-3m,—my)(a+b+c)=R2@a+b
+c)y+1-2m)(a+b+c—m,)
< 2{a+b+c)+1-3m,—m,=b
&S 2a+2b+1=2d+e,
which is an implication of a =d +e.
(d ma+mya+b)+R2@+b+c)+1-3m,—m,)(a+b+c)+my(a+b
+c+d)=Q@+b+c)+1—m)(a+b+c—im,)
S md+im2a+b+c)+1—m)=m(b+c)+my
© 2a+b+c)+1=c+2d+ 2e,
which also holds.
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At last 2a+2b+2c+1=3c+2d+e—b—c+12a+3b+1=2d+e+1
follows at once, (pos).
Hence we can assume in the following:

l+a<d+e. (2.6)

(II) From (2.6) we see that b+c+d+e=a+1, so that we can combine a
regular tournament with 2a + 1 vertices and a regular tournament with 2(b + ¢ +
d+e—a)—1 vertices (see Theorem 1) and investigate the realizability of
score-sequences like the following:

(@...,a,a+b,...,a+b,a+b+c,...,a+b+c,

2 1 om oy ’

—m;—m,

fz+b+c+d,...,a+b+c+d,g+b+c+d+e,...,a+b+c+d+e).
m, g 2b+c+d+e)—2a—1-m, ’

(A) Let us assume a =e. Then we choose m; =m, =e, m;=2b + ¢, such that
m,(2b + ¢) = mae, (bal).

(2.6) implies 2(d +€)=2a + 1 such that 2(b +c+d +e)=2a +2+2b + c holds
at once, (pos).

The first three inequalities we have to prove, (ine), hold at once, because there
exist regular tournaments with 22 +1 vertices. The same holds in the next
subcases of 1I.

(d) Ra+1-2m)a+m(a+b)+mia+b+c)+mya+b+c+d)

= (2a + 1+ m3)(a +3im;)
& 2m; +my)b + (m, + m3)c + myd =im;(2a +1+m;)
& 2Ab+c+d+e)=2a+1+2b+c (see above).
Thus we can assume

l+a=e. 2.7)

(B) Let us assume e=b +c+1. Thus we can choose m;=e—b—c, m,=
m; = b, such that m,b = m,(e — b —c) holds, (bal).

2a=e—b —c+ b 2a+c=e, which follows from (2.4), and
2(b+c+d+e)=2a+2+b, which follows from (2.7), (pos).

@d a+1-—m—my)a+my(a+b)+mya+b+c)+mya+b+c+d)
=(2a+1+my)(a+im,)
S mb+m,2(b+c)+d)=QRa+1+my)im,
& 2e—b—c+2(b+c)+d)=2a+1+b follows from (2.7).
Hence
es<b+c (2.8)

can be assumed.
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(C) Next let us assume that 2a =e +c. Pick m,=e —b, m; =m;=b + ¢c. Note
that bm, + (b + c)m, = em, (bal). Clearly, m; =m;>0, and by (2.1) and (2.7),
m,=1. By assumption, 2a +1—m; —m,>0. To complete the check of (pos),
use (2.6) and (2.7) to see that d+2e>2a+1 from which we see that
2b+c+d+e)—2a—-1-—m;>0.

(d Qa+1-mi—mya+m(a+b)+mya+b+c)+m(a+b+c+d)

=QRa+1+m)(a+3im)
S mR2b+c+d)+my(b+c)=QRa+1+m)im,
& 2(b+c+d+e)=2a+1+b+c.
The last inequality follows from (2.6) and (2.7) as in the above check of (pos).
Thus we can assume

2a+l<e+c. (2.9)

(III) With (2.9) we get c+d+e=a+b+1, such that we can combine a
regular tournament with 2(a + b) +1 vertices and a regular tournament with
2(c+d+e—a—b)—1 vertices and look at the following score-sequence:

(@...,a,a+b,...,a+ba+b+c,...,a+b+c,
T 2@+b)+1 m, ’
—m;—m,
g+b+c+d,...,a+b+c+d‘,a+b+c+d+e,...,a+b+c+d+e).
m, S 2c+d+e—a—b)—1—m, ’

Let us assume c =e +1. Pick m;=c—e, m,=m;=>b, so that bm, + em;=cm,
(bal).
2(a + b)=c + b — e follows from (2.2) and

Ac+d+e)=2a+3b+2 (%)

from (2.5), (2.9) and our assumption ¢ =e + 1, (pos).
(a) 2a +1=c — e holds at once.
(b) ma+Q2@a+b)+1-m,—m,)(a+b)=2(a+b)+1—m,)(a+b—3im,)
& m,2@+b)+1-my)=mb
& 2a+ b+ 1=2(c - e) follows from (2.7) and (2.2), because c —e
<g+b-a=h.
(c) ma+QRa@a+db)+1-m,—my)a+b)+mya+b+c)=(2(a+b)+1)(a+b)
& m,c =m;b holds at once.
(d ma+Qa+d)+1-m,—my)(a+b)+mya+b+c)+mya+b+c+d)
=2@+b)+1+my)(a+b+im,)
S my2c+d)=mb +im,(2(a+b)+1+m,)
& 2(c+d+e)=2a+3b+1 (see (*) above).
Therefore we can assume

e=c. (2.10)
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(IV) With (2.7) and (2.8) we get b+c=a+1 and from (2.10) a+d+e=
b + ¢ + 1. Hence we can construct a tournament with score-sequence:

(@ ...,a,a+b+c, ...,a+b+tca+b+c+d+e ...,a+b+c+d+e).
2a +1 2(b+c)—2a—1 Na+d+e—b—c)+1

Now we add b to each of m, =e scores a and subtract e from each of m,=b

scores a+b+c+d+e Note that m,b=m,e (bal). This yields the new
sequence:

(a,...,a, a+b,...,a+b,\a+b+c,...,a+b+c5

AT Im,  om . 2b+c)-2a-1
a+b+c+d,...,a+b+c+d,g+b+c+d+e,...,a+b+c+d+§).
\ m, ’ Na+d+e—b—c)+1-—m,

We assume that 2a=e. 2(a+d+e)=2(b +c)+ b + 1 follows from (2.5), (2.10)
and (2.1), (pos).
Again only the fourth inequality of (ine) needs to be verified here.
(d Ra+1-mp)a+mya+b)+2Mb+c—a)—1)a+b+c)+mya+b
+c+d)=QR2bB+c)+my,—1)(b+c+3im,)
& 2(b +c)+mya +m,d=(2a—m)b+2ac+3m,2(b+c)+my,—1)
& mya+mb +myd=im,2(b+c)+m,—1)
& 2(a+d+e)=2(b+c)+b—1 (see above).
Thus we can assume in the following

e=2a+1. (2.12)
With (2.11) and (2.8) we get b + ¢ =2a + 1, which implies, using (2.1),
c=za+ 1. (2.12)

(2.12) implies 1 +a +d <b +c, see (2.3.1), and therefore
1+d=<c, using (2.1). (2.13)
Also (2.12) implies 1 +a + e<b + ¢ +d (see (2.4.1)), such that

l+e<sc+d (2.14)

can be deduced using (2.1).
Now we handle the final subcase.

(V) We take a regular tournament with 2(a+b +c+d)+1 vertices and
investigate the score-sequence:

(@ ...,a,a+b,...,a+ba+b+c,...,a+b+g

\ 7\, J O\

—
WV

N

N
m, m, ms;

a+b+c+d, ..., a+b+c+d,a+b+c+d+e, ...,atb+tctd+e).

hd

2(a+b-i-c'+d)+1—m1 my
_mz_m3—'m4
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The equality m(b + ¢ + d) + m,(c + d) + m;d = m,e must hold to insure balance.

(A) We choose my=e—d, my=d, my=b, m,=b +c +d, (bal).

e=d + 1 is an implication of (2.10) and (2.13).

2(a+b+c+d)=2b+c+d+e follows from (2.14), (pos).

(a) 2a +1=e —d follows from (2.14) and (2.2).

(b) mya +my(a+b)=(m,+m,—1)(3(m, +m,))

S 1+2a+ (2d/e)b =e.
If we assume 2d = e, then this inequality is a consequence of (2.8) and (2.2).

(¢) ma+myla+b)+my(a+b+c)=(m,+m,+m,—1)&(m,+m,+ ms))

< 1+2a+2b(b+d)/(e+b)+2bc/(e +b)
=1+2a+2b(b+c+d)/(e+d)=e+b,
which follows from (2.8) and (2.2).

(d) ma+mya+b)+myla+tb+c)+Qa+b+c+d)+1-—m,—m,
—ms—my)(a+b+c+d)
=Q2@+b+ctd)y+1-m)a+b+c+d—im,)

& my2a+b+c+d)+1-my)=mb+ (m,+my)c+ (my+my,+my)d=mge
& 2a+b +c+d+1=2e which follows from (2.14), (2.8) and (2.2).
Hence we can assume

e=2d +1. (2.15)

(B) Now we choose m;=d, m,=e —2d, my=c+d—b, m,=c+d. This is
possible, because (2.15) and (2.12) hold and the score-sequence is balanced.
2a+b+c+d)=e+2c+d—bs2a+3b+d=e follows from (2.8), (pos).

(a) 2a + 1=d holds at once, see (2.3).

(b) mja +my(a +b)=((m, +my))(m,+m,—1)

& 1+ 2a+2b(e —2d)/(e — d) = e — d, which follows from (2.14) and (2.2).

(c) ma+my(a+b)+msa+b+c)=(m,+m,+m;—1)E(m, +m,+m,))

© 1+2a+2b(e+c—d—-b)/(e+c—b)+2c(c+d—b)/(e+c—b)
=1+4+2a+2b(e—(b+d))/(e+c—d)+2c(c+d)/(e+c—d)y=e+c—b.

e =b + d follows from (2.11) and (2.15).

2(c +d)=e + c — b is an implication of (2.14).

Thus we get 1 +2a+c+b=e+c (see (2.8) and (2.2)).

(d) ma+myla+b)+myla+b+c)+QRa+b+c+d)y+1-—m;,—m,
—m;—my)(a+b+c+d)
=R@+b+c+d)+1-my)(a+b+c+d—-im,)

o im2a@a+b+c+d)+1-m)=mb+ (m;+m,)c
+(m,+my,+my)d =myue
& 2a+b+c+d)y+1=2e+c+d
& 2a +2b + ¢ +d + 1=2e, which follows from (2.8), (2.14) and (2.2).
Hence Theorem 2 is proved. O
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