Landau's and Rado's Theorems and Partial Tournaments

Richard A. Brualdi and Kathleen Kiernan
Department of Mathematics
University of Wisconsin
Madison, WI 53706
\{brualdi,kiernan\}@math.wisc.edu

Submitted: Sep 30, 2008; Accepted: Jan 18, 2009; Published: Jan 23, 2009
Mathematics Subject Classifications: 05C07,05C20,05C50.

Abstract

Using Rado's theorem for the existence of an independent transversal of family of subsets of a set on which a matroid is defined, we give a proof of Landau's theorem for the existence of a tournament with a prescribed degree sequence. A similar approach is used to determine when a partial tournament can be extended to a tournament with a prescribed degree sequence.

Mathematics Subject Classifications: 05C07,05C20,05C50.

1 Introduction

A tournament of order n is a digraph obtained from the complete graph K_{n} of order n by giving a direction to each of its edges. Thus, a tournament T of order n has $\binom{n}{2}$ (directed) edges. The sequence $\left(r_{1}, r_{2}, \cdots, r_{n}\right)$ of outdegrees of the vertices $\{1,2, \ldots, n\}$ of T, ordered so that $r_{1} \leq r_{2} \leq \cdots \leq r_{n}$, is called the score sequence of T. The sequence of indegrees of the vertices of T is given by ($s_{1}=n-1-r_{1}, s_{2}=n-1-r_{2}, \ldots, s_{n}=n-1-r_{n}$) and satisfies $s_{1} \geq s_{2} \geq \cdots \geq s_{n}$. In the tournament T^{\prime} obtained from T by reversing the direction of each edge, the indegree sequence and outdegree sequence are interchanged; the score vector of T^{\prime} equals $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ with the s_{i} in nonincreasing order.

2 Landau's theorem from Rado's theorem

Landau's theorem characterizes score vectors of tournaments.

Theorem 2.1 (Landau's theorem) The sequence $r_{1} \leq r_{2} \leq \cdots \leq r_{n}$ of integers is the score sequence of a tournament of order n if and only if

$$
\begin{equation*}
\sum_{i=1}^{k} r_{i} \geq\binom{ k}{2} \quad(k=1,2, \ldots, n) \tag{1}
\end{equation*}
$$

with equality for $k=n$.
Note that (1) is equivalent to

$$
\begin{equation*}
\sum_{i \in K} r_{i} \geq\binom{|K|}{2} \quad(K \subseteq\{1,2, \ldots, n\}) \tag{2}
\end{equation*}
$$

There are several known short proofs of Landau's theorem (see [2, 3, 4, 7, 8]). In this section we give a short proof of Landau's theorem using Rado's theorem (see [5, 6]) for the existence of an independent transversal of a finite family of subsets of a set X on which a matroid is defined.

Let \mathbf{M} be a matroid on X with rank function denoted by $\rho(\cdot)$. (We assume that the reader is familiar with the very basics of matroid theory, which can be found e.g. in [6].) Let $\mathcal{A}=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ be a family of n subsets of X. A transversal of \mathcal{A} is a set S of n elements of X which can be ordered as $x_{1}, x_{2}, \ldots, x_{n}$ so that $x_{i} \in A_{i}$ for $i=1,2, \ldots, n$. The transversal S is an independent transversal of \mathcal{A} provided that S is an independent set of the matroid M.

Theorem 2.2 (Rado's theorem) The family $\mathcal{A}=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ of subsets of the set X on which a matroid \mathbf{M} is defined has an independent transversal if and only if

$$
\rho\left(\cup_{i \in K} A_{i}\right) \geq|K| \quad(K \subseteq\{1,2, \ldots, n\}) .
$$

Proof of Landau's theorem using Rado's theorem. The necessity of (1) is obvious. Now assume that (1) holds. Let $X=\{(i, j) ; 1 \leq i, j \leq n, i \neq j\}$. Consider the matroid M on X whose circuits are the $\binom{n}{2}$ disjoint sets $\{(i, j),(j, i)\}$ of two pairs in X with $i \neq j$. Thus, a subset E of X is independent if and only if it does not contain a symmetric pair $(i, j),(j, i)$ with $i \neq j$. We have $\rho(X)=\binom{n}{2}$. Let $\mathcal{A}=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ be the family of subsets of X where

$$
\begin{equation*}
A_{i}=\{(i, j): 1 \leq j \leq n, j \neq i\} \quad(i=1,2, \ldots, n) \tag{3}
\end{equation*}
$$

Let $r_{1}, r_{2}, \ldots, r_{n}$ be a sequence of nonnegative integers with $r_{1}+r_{2}+\cdots+r_{n}=\binom{n}{2}$. There exists a tournament with score sequence $r_{1}, r_{2}, \ldots, r_{n}$ if and only if there exists $P_{1}, P_{2}, \ldots, P_{n}$, with $P_{i} \subseteq A_{i}$ and $\left|P_{i}\right|=r_{i}(1 \leq i \leq n)$, such that $P=P_{1} \cup P_{2} \cup \cdots \cup P_{n}$ is an independent set of \mathbf{M}, equivalently, if and only if the family

has an independent transversal: The desired tournament has vertices $1,2, \ldots, n$ and an edge from i to j if and only (i, j) is in P_{i}. The independence of P then implies that there is no edge from j to i.

It follows from Rado's theorem that \mathcal{A}^{\prime} has an independent transversal provided that

$$
\begin{equation*}
\rho\left(\cup_{i \in K} A_{i}\right) \geq \sum_{i \in K} r_{i} \quad(K \subseteq\{1,2, \ldots, n\}) \tag{4}
\end{equation*}
$$

From the definition of \mathbf{M} we see that

$$
\begin{equation*}
\rho\left(\cup_{i \in K} A_{i}\right)=\binom{k}{2}+k(n-k) \tag{5}
\end{equation*}
$$

where $k=|K|$. By (5), the rank of $\cup_{i \in K} A_{i}$ depends only on $k=|K|$. By the monotonicity assumption on the $r_{i}, \sum_{i \in K} r_{i}$ is largest when $K=\{n-k+1, \ldots, n\}$. Thus, (4) is equivalent to

$$
\begin{equation*}
\binom{k}{2}+k(n-k) \geq \sum_{i=n-k+1}^{n} r_{i} \tag{6}
\end{equation*}
$$

Since $\sum_{i=1}^{n} r_{i}=\binom{n}{2}$, (6) becomes

$$
\begin{equation*}
\sum_{i=1}^{n-k} r_{i} \geq\binom{ n}{2}-\binom{k}{2}-k(n-k) \tag{7}
\end{equation*}
$$

It follows that (4) is equivalent to

$$
\begin{equation*}
\sum_{i=1}^{p} r_{i} \geq\binom{ n}{2}-\binom{n-p}{2}-p(n-p) \quad(p=1,2, \ldots, n) \tag{8}
\end{equation*}
$$

A simple calculation shows that

$$
\binom{n}{2}-\binom{n-p}{2}-p(n-p)=\binom{p}{2}
$$

and Landau's theorem follows from (8).

3 Completions of partial tournaments

Let $G \subseteq K_{n}$ be a graph on n vertices. A digraph obtained from G by giving a direction to each of its edges is called an oriented graph or a partial tournament of order n. Given a partial tournament T^{\prime} and a sequence of nonnegative integers $r_{1}, r_{2}, \ldots, r_{n}$, it is possible to use Rado's theorem to establish necessary and sufficient conditions for T^{\prime} to be extendable to a tournament T with score sequence $r_{1}, r_{2}, \ldots, r_{n}$. Thus we seek to complete the partial tournament T^{\prime} to a tournament T with a prescribed score sequence. Rado's theorem can also be used to characterize when such a completion is possible.

Let T^{\prime} be a partial tournament of order n with outdegree sequence $s_{1}, s_{2}, \ldots, s_{n}$. Let $r_{1}, r_{2}, \ldots, r_{n}$ be a sequence of nonnegative integers with $\sum_{i=1}^{n} r_{i}=\binom{n}{2}$. (Now we make no monotone assumption on the r_{i} or the s_{i}.) An obvious necessary condtion for T^{\prime} to be completed to a tournament with score sequence $r_{1}, r_{2}, \ldots, r_{n}$ is that $s_{i} \leq r_{i}$ for $i=1,2, \ldots, n$, and we assume these inequalities hold. There are two ways to determine when a completion of T^{\prime} to a tournament with score sequence $r_{1}, r_{2}, \ldots, r_{n}$ is possible.

The first way is to take $X=\{(i, j): 1 \leq i, j \leq n, i \neq j\}$ as before, and to consider the matroid \mathbf{M}^{\prime} whose circuits are the singleton pairs $\{(i, j)\}$ and $\{(j, i)\}$ if there is an edge from i to j in T^{\prime} (thus an edge in T determines two loops of \mathbf{M}^{\prime}), and the pairs $\{(i, j),(j, i)\}$ for all distinct i and j such that there is no edge in T^{\prime} between i and j (in either of the two possible directions). We note that in this matroid \mathbf{M}^{\prime},

$$
\rho^{\prime}(X)=\binom{n}{2}-\sum_{i=1}^{n} s_{i} .
$$

Define the family $\mathcal{A}=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ as in (3) and the family

$$
\mathcal{A}^{\prime \prime}=(\underbrace{A_{1}, \ldots, A_{1}}_{r_{1}-s_{1}}, \underbrace{A_{2}, \ldots, A_{2}}_{r_{2}-s_{2}}, \ldots, \underbrace{A_{n}, \ldots, A_{n}}_{r_{n}-s_{n}}) .
$$

We have

$$
\sum_{i=1}^{n}\left(r_{i}-s_{i}\right)=\binom{n}{2}-\sum_{i=1}^{n} s_{i} .
$$

The partial tournament T^{\prime} can be completed to a tournament with score sequence $r_{1}, r_{2}, \ldots, r_{n}$ if and only if the family $\mathcal{A}^{\prime \prime}$ has an independent transversal. It follows from Rado's theorem that $\mathcal{A}^{\prime \prime}$ has an independent transversal if and only if

$$
\begin{equation*}
\rho^{\prime}\left(\cup_{i \in K} A_{i}\right) \geq \sum_{i \in K}\left(r_{i}-s_{i}\right) \quad(K \subseteq\{1,2, \ldots, n\}) . \tag{9}
\end{equation*}
$$

For $K \subseteq\{1,2, \ldots, n\}$, let $\gamma(K)$ equal the number of edges of T^{\prime} at least one of whose vertices belongs to K. We easily calculate that

$$
\rho^{\prime}\left(\cup_{i \in K} A_{i}\right)=\binom{|K|}{2}+|K|(n-|K|)-\gamma(K)
$$

We thus obtain the following generalization of Landau's theorem. ${ }^{1}$
Theorem 3.1 Let T^{\prime} be a partial tournament with outdegree sequence $s_{1}, s_{2}, \ldots, s_{n}$. Let $r_{1}, r_{2}, \ldots, r_{n}$ be a sequence of nonnegative integers with $s_{i} \leq r_{i}$ for $i=1,2, \ldots, n$. Then T^{\prime} can be completed to a tournament with score sequence $r_{1}, r_{2}, \ldots, r_{n}$ if and only if

$$
\begin{equation*}
\binom{|K|}{2}+|K|(n-|K|)-\gamma(K) \geq \sum_{i \in K}\left(r_{i}-s_{i}\right) \quad(K \subseteq\{1,2, \ldots, n\} \tag{10}
\end{equation*}
$$

[^0]As a referee observed, because of the presence of the quantity $\gamma(K)$, whether or not the inequalities (10) in Theorem 3.1 are satisfied depends on the initial labeling of the vertices of T^{\prime}. These conditions may not be satisfied according to one labeling but satisfied according to another.

A second, but basically equivalent, way to approach the proof of Theorem 3.1 is to start with the set

$$
Y=X \backslash\left\{(i, j):(i, j) \text { or }(j, i) \text { is an edge of } T^{\prime}\right\}
$$

and the matroid $\left.\mathbf{M}\right|_{Y}$ on Y obtained by restricting \mathbf{M} to Y. If we define the family $\mathcal{B}=\left(B_{1}, B_{2}, \ldots, B_{n}\right)$ of subsets of Y by $B_{i}=A_{i} \cap Y$ for $i=1,2, \ldots, n$, and then apply Rado's theorem to

$$
\mathcal{B}^{\prime}=(\underbrace{B_{1}, \ldots, B_{1}}_{r_{1}-s_{1}}, \underbrace{B_{2}, \ldots, B_{2}}_{r_{2}-s_{2}}, \ldots, \underbrace{B_{n}, \ldots, B_{n}}_{r_{n}-s_{n}}),
$$

we again obtain a proof of Theorem 3.1.
As a corollary of Theorem 3.1 we obtain the main results in [1]. If n is an odd integer, a regular tournament of order n is a tournament with score sequence

$$
\underbrace{\frac{n-1}{2}, \frac{n-1}{2}, \ldots, \frac{n-1}{2}}_{n} .
$$

If n is an even integer, a nearly regular tournament of order n is a tournament with score sequence

$$
\underbrace{\frac{n}{2}, \ldots, \frac{n}{2}}_{\frac{n}{2}}, \underbrace{\frac{n}{2}-1, \ldots, \frac{n}{2}-1}_{\frac{n}{2}}
$$

Corollary 3.2 Let T^{\prime} be a partial tournament with outdegree sequence $s_{1}, s_{2}, \ldots, s_{n}$ where $s_{1} \geq s_{2} \geq \cdots \geq s_{n}$. If n is odd, then T^{\prime} can be completed to a regular tournament provided that

$$
\begin{equation*}
s_{i} \leq \frac{n+1}{2}-i, \quad\left(i=1,2, \ldots, \frac{n+1}{2}\right) . \tag{11}
\end{equation*}
$$

If n is even, then T^{\prime} can be completed to a nearly regular tournament of order n provided that

$$
\begin{equation*}
s_{i} \leq \frac{n}{2}-i+1, \quad\left(i=1,2, \ldots, \frac{n}{2}\right) \tag{12}
\end{equation*}
$$

Proof. First suppose that n is odd and that (11) holds. Then $s_{i}=0$ for $i=(n+$ 1) $/ 2,(n+3) / 2, \ldots, n$. Hence, there are no edges in T^{\prime} from a vertex in $\{(n+1) / 2,(n+$ $3) / 2, \ldots, n\}$ to $\{1,2, \ldots,(n-1) / 2\}$. It follows from Theorem 3.1 that T^{\prime} can be completed to a regular tournament provided that

$$
\binom{|K|}{2}+|K|(n-|K|)-\gamma(K) \geq|K|\left(\frac{n-1}{2}\right)-\sum_{i \in K} s_{i} \quad(K \subseteq\{1,2, \ldots, n\}
$$

that is, provided that

$$
\begin{equation*}
\binom{|K|}{2}+|K|(n-|K|)-\left(\gamma(K)-\sum_{i \in K} s_{i}\right) \geq|K|\left(\frac{n-1}{2}\right) \quad(K \subseteq\{1,2, \ldots, n\}) \tag{13}
\end{equation*}
$$

The quantity $\gamma^{*}(K):=\gamma(K)-\sum_{i \in K} s_{i}$ equals the number of edges of T^{\prime} with initial vertex in the complement \bar{K} of K and terminal vertex in K. Simplifying (13), we get

$$
\begin{equation*}
\frac{|K||\bar{K}|}{2} \geq \gamma^{*}(K) . \tag{14}
\end{equation*}
$$

Since the lefthand side of (14) is symmetric in K and \bar{K}, we need only verify it for $|K| \leq(n+1) / 2$. It follows from (11) that for $|K| \leq(n+1) / 2$,

$$
\gamma^{*}(K) \leq \sum_{i=1}^{|K|}\left(\frac{n+1}{2}-i\right)=\frac{|K|(n-|K|)}{2}
$$

Hence, T^{\prime} can be completed to a regular tournament.
A similar proof works when n is even.

References

[1] L. Beasley, D. Brown, and K. B. Reid, Extending partial tournaments, Mathematical and Computer Modelling, to appear.
[2] R. A. Brualdi, Combinatorial Matrix Classes, Cambridge U. Press, Cambridge, 2006, 34-35.
[3] J.R. Griggs and K.B. Reid, Landau's theorem revisited, Australasian J. Combinatorics, 20 (1999), 19-24.
[4] E. S. Mahmoodian, A critical case method of proof in combinatorial mathematics, Bull. Iranian Math Soc., No. 8 (1978),1L-26L.
[5] L. Mirsky, Transversal Theory, Oxford University Press, Oxford, 1971, 93-95.
[6] J. Oxley, Matroid Theory, The Clarendon Press, Oxford University Press, New York, 1992.
[7] K.B. Reid, Tournaments: scores, kings, generalizations and special topics, Congressus Numerantium, 115 (1996), 171-211.
[8] C. Thomassen, Landau's characterization of tournament score sequences, The Theory and Application of Graphs (Kalamazoo, Michigan 1980), Wiley, New York, 1963, 589-591.

[^0]: ${ }^{1}$ Landau's theorem is the special case where T^{\prime} has no edges.

