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Abstract

An (n, a, b)-perfect double cube is a b×b×b sized n-ary periodic array containing all possible a×a×a sized n-ary array exactly
once as subarray. A growing cube is an array whose cj × cj × cj sized prefix is an (nj , a, cj )-perfect double cube for j = 1, 2, . . . ,

where cj = n
v/3
j

, v= a3 and n1 < n2 < · · ·. We construct the smallest possible perfect double cube (a 256× 256× 256 sized 8-ary
array) and growing cubes for any a.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Cyclic sequences in which every possible sequence of a fixed length occurs exactly once have been studied for more
than a hundred years [6]. The same problem, which can be applied to position localization, was extended to arrays [5].

Let Z be the set of integers. For u, v ∈ Z we denote the set {j ∈ Z | u�j �v} by [u..v] and the set {j ∈ Z | j �u}
by [u..∞]. Let d ∈ [1..∞] and k, n ∈ [2..∞], bi, ci, ji ∈ [1..∞] (i ∈ [1..d]) and ai, ki ∈ [2..∞] (i ∈ [1..d]).
Let a = 〈a1, a2, . . . , ad〉, b = 〈b1, b2, . . . , bd〉, c = 〈c1, c2, . . . , cd〉, j = 〈j1, j2, . . . , jd〉 and k = 〈k1, k2, . . . , kd〉 be
vectors of length d, n = 〈n1, n2, . . .〉 an infinite vector with 2�n1 < n2 < · · ·.

Definition 1. A d dimensional n-ary array A is a mapping A : [1..∞]d → [0, n− 1]. If there exist a vector b and an
array M such that

∀j ∈ [1..∞]d : A[j] =M[(j1 mod b1)+ 1, (j2 mod b2)+ 1, . . . , (jd mod bd)+ 1],
then A is a b-periodic array and M is a period of A. The a-sized subarrays of A are the a-periodic n-ary arrays.

Although our arrays are infinite we say that a b-periodic array is b-sized.
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Definition 2. Indexset Aindex of a b-periodic array A is the Cartesian product

Aindex =×d
i=1[1..bi].

Definition 3. A d dimensional b-periodic n-ary array A is called (n, d, a, b)-perfect, if all possible n-ary arrays of size
a appear in A exactly once as a subarray.

Here n is the alphabet size, d gives the number of dimensions of the “window” and the perfect array M, the vector a
characterizes the size of the window, and the vector b is the size of the perfect array M .

Definition 4. An (n, d, a, b)-perfect array A is called c-cellular, if ci divides bi for i ∈ [1..d]. A cellular array consists
of b1/c1 × b2/c2 × · · · × bd/cd disjoint subarrays of size c, called cells. In each cell the element with smallest indices
is called the head of the cell. The contents of the cell is called pattern.

Definition 5. The product of the elements of a vector a is called the volume of the vector and is denoted by |a|. The
number of elements of perfect array M is called the volume of M and is denoted by |M|.

Definition 6. If b1 = b2 = · · · = bd , then the (n, d, a, b)-perfect array A is called symmetric. If A is symmetric and
a1 = a2 = · · · = ad , then A is called doubly symmetric. If A is doubly symmetric and

(1) d = 1, then A is called a double sequence;
(2) d = 2, then A is called a double square;
(3) d = 3, then A is called a double cube.

According to this definition, all perfect sequences are doubly symmetric. In the case of symmetric arrays we use the
notion (n, d, a, b) and in the case of doubly symmetric arrays we use (n, d, a, b) instead of (n, d, a, b).

The first known result originates from Flye-Sainte [6] who proved the existence of (2, 1, a, 2a)-perfect sequences
for all possible values of a in 1894.

One dimensional perfect arrays are often called de Bruijn [4] or Good [7] sequences. Two dimensional perfect arrays
are called also perfect maps [16] or de Bruijn tori [8–10].

De Bruijn sequences of even length—introduced in [11]—are useful in construction of perfect arrays when the size
of the alphabet is an even number and the window size is 2× 2. Their definition is as follows.

Definition 7. If n is an even integer then an (n, 1, 2, n2)-perfect sequence M = (m1, m2, . . . , mn2) is called even, if
mi = x, mi+1 = y, x 	= y, mj = y and mj+1 = x imply j − i is even.

Iványi and Tóth [11] and later Hurlbert and Isaak [9] provided a constructive proof of the existence of even sequences.

Definition 8. Lexicographic indexing of an array M = [mj1j2...jd
] = [mj](1�ji �bi) for i ∈ [1..d] means that the

index I (mj) is defined as

I (mj)= j1 − 1+
d∑

i=2

(
(ji − 1)

i−1∏
m=1

bm

)
.

The concept of perfectness can be extended to infinite arrays in various ways. In growing arrays [9] the window size
is fixed, the alphabet size is increasing and the prefixes grow in all d directions.

Definition 9. Let a and d be positive integers with a�2 and n = 〈n1, n2, . . .〉 be a strictly increasing sequence of
positive integers. An array M = [mi1i2...id ] is called (n, d, a)-growing, if the following conditions hold:

(1) M = [mi1i2...id ] (1� ij <∞) for j ∈ [1..d];
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(2) mi1i2...id ∈ [0..n− 1];
(3) the prefix Mk = [mi1i2...id ] (1� ij �n

ad/d
k for j ∈ [1..d]) of M is (nk, d, a, n

ad/d
k )-perfect array for k ∈ [0..∞].

For the growing arrays we use the terms growing sequence, growing square and growing cube.

Definition 10. For a, n ∈ [2..∞] the new alphabet size N(n, a) is

N(n, a)=
{

n if any prime divisor of a divides n,

nq otherwise,
(1)

where q is the product of the prime divisors of a not dividing n.

Note, that alphabet size n and new alphabet size N have the property that n | N , furthermore, n = N holds in the
most interesting case d = 3 and n= a1 = a2 = a3 = 2.

The aim of this paper is to prove the existence of a double cube. As a side-effect we show that there exist (n, d, a)-
growing matrices for any n, d and a.

2. Necessary condition and earlier results

Since in the period M of a perfect array A each element is the head of a pattern, the volume of M equals the number
of the possible patterns. Since each pattern—among others the pattern containing only zeros—can appear only once,
any size of M is greater than the corresponding size of the window. So we have the following necessary condition [2,9]:
If M is an (n, d, a, b)-perfect array, then

|b| = n|a| (2)

and

bi > ai for i ∈ [1..d]. (3)

Different construction algorithms and other results concerning one and two dimensional perfect arrays can be found
in the fourth volume of The Art of Computer Programming written by Knuth [12]. For example, a (2,1,5,32)-perfect
array [12, p. 22], a 36-length even sequence whose 4-length and 16-length prefixes are also even sequences [12, p. 62],
a (2,2,2,4)-perfect array [12, p. 38] and a (4,2,2,16)-perfect array [12, p. 63].

It is known [4,12] that in the one-dimensional case the necessary condition (2) is sufficient too. There are many
construction algorithms, like the ones of Cock [2], Fan et al. [5], Martin [14] or any algorithm for constructing of
directed Euler cycles [13].

Chung et al. [1] posed the problem to give a necessary and sufficient condition of the existence of (n, 2, a, b)-perfect
arrays.

The conditions (2) and (3) are sufficient for the existence of (2, 2, a, b)-perfect arrays [5] and (n, 2, a, b)-perfect
arrays [15]. Paterson in [16] supplied further sufficient conditions.

Hurlbert and Isaak [9] gave a construction for one and two dimensional growing arrays.

3. Algorithms for constructing growing de Bruijn arrays

In the construction of perfect de Bruijn arrays we use the following algorithms.
Algorithm MARTIN [14] generates de Bruijn sequences. Its inputs are the alphabet size n and the window size a. Its

output is an n-ary perfect sequence of length na . The output begins with a zeros and always continues with the maximal
permitted element of the alphabet.

Algorithm EVEN [9] produces even de Bruijn sequences.
Algorithm MESH [9,11] produces doubly symmetric cellular perfect arrays when n is even, d=2, a1=2 and a2=2.

The input of algorithm MESH is an even alphabet size n and an even de Bruijn sequence e1, e2, . . . , en2 , the output is
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an (n, 2, n2, n2)-perfect array P, whose elements are calculated by the meshing function [11]:

Pij =
{

ej if i + j is even,

ei if i + j is odd,
(4)

Algorithm SHIFT [2] is a widely usable algorithm to construct perfect arrays. We use it to transform cellular (N, d, a, b)-
perfect arrays into (N, d + 1, a, c)-perfect arrays.

We introduce three new algorithms.
CELLULAR results cellular perfect arrays. Its input data are n, d and a, its output is an (N, d, a, b)-perfect array,

where b1 =Na1 and bi =Na1a2...ai−a1a2...ai−1 for i = 2, 3, . . . , d. CELLULAR consists of five parts:

(1) Calculation (line 1 in the pseudocode) determining the new alphabet size N using formula (1);
(2) Walking (lines 2–3) if d=1, then construction of a perfect symmetric sequence S1 using algorithm MARTIN (walking

in a de Bruijn graph);
(3) Meshing (lines 4–6) if d = 2, N is even and a = 2, then first construct an N-ary even perfect sequence e =
〈e1, e2, . . . , eN2〉 using EVEN, then construct an N2 ×N2 sized N-ary square S1 using meshing function (4);

(4) Shifting (lines 7–12) if d > 1 and (N is odd or a > 2), then use MARTIN once, then use SHIFT d−1 times, receiving
a perfect array P ;

(5) Combination (lines 13–16) if d > 2, N is even and a = 2, then construct an even sequence with EVEN, construct
a perfect square by MESH and finally use of SHIFT d − 2 times, results a perfect array P .

COLOUR transforms cellular perfect arrays into larger cellular perfect arrays. Its input data are

• d �1—the number of dimensions;
• N �2—the size of the alphabet;
• a—the window size;
• b—the size of the cellular perfect array A;
• A—a cellular (N, d, a, b)-perfect array.
• k�2—the multiplication coefficient of the alphabet;
• 〈k1, k2, . . . , kd〉—the extension vector having the property k|a| = k1 × k2 × · · · × kd .

The output of COLOUR is

• a (kN)-ary cellular perfect array P of size b= 〈k1a1, k2a2, . . . , kdad〉.
COLOUR consists of three steps:

(1) Blocking: (line 1) arranging k|a| copies (blocks) of a cellular perfect array A into a rectangular array R of size
k = k1 × k2 × · · · × kd and indexing the blocks lexicographically (by 0, 1, . . . , k|a| − 1);

(2) Indexing: (line 2) the construction of a lexicographic indexing scheme I containing the elements 0, 1, . . . , k|a| − 1
and having the same structure as the array R, then construction of a colouring matrix C, transforming the elements
of I into k-ary numbers consisting of |a| digits;

(3) Colouring: (lines 3 & 4) colouring R into a symmetric perfect array P using the colouring array C that is adding
the N-fold of the jth element of C to each cell of the jth block in R (considering the elements of the cell as
lexicographically ordered digits of a number).

The output P consists of blocks, blocks consist of cells and cells consist of elements. If e=P [j] is an element of P ,
then the lexicographic index of the block containing e is called the blockindex of e, the lexicographic index of the cell
containing e is called the cellindex and the lexicographic index of e in the cell is called elementindex. For example, the
element S2[7, 6] = 2 in Table 3 has blockindex 5, cellindex 2 and elementindex 1.

Finally, algorithm GROWING generates a prefix Sr of a growing array G. Its input data are r , the number of required
doubly perfect prefixes of the growing array G, then n, d and a. It consists of the following steps:

(1) Initialization: construction of a cellular perfect array P using CELLULAR;
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(2) Resizing: if the result of the initialization is not doubly symmetric, then construction of a symmetric perfect array
S1 using COLOUR, otherwise we take P as S1;

(3) Iteration: construction of the further r − 1 prefixes of the growing array G repeatedly, using COLOUR.

4. Examples of constructing growing arrays using colouring

In this section particular constructions are presented.

4.1. Construction of growing sequences

As the first example let n = 2, a = 2 and r = 3. CELLULAR calculates N = 2 and MARTIN produces the cellular
(2,1,2,4)-perfect sequence P = 00|11.

Since P is symmetric, S1 = P . Now GROWING chooses multiplication coefficient k = n2/n1 = 2, extension vector
k = 〈4〉 and uses COLOUR to construct a 4-ary perfect sequence.

COLOUR arranges k1 = 4 copies into a four blocks sized array receiving

R = 00|11 || 00|11 || 00|11 || 00|11. (5)

COLOURING receives the indexing scheme I = 0 1 2 3, and the colouring matrix C transforming the elements of I into
a digit length k-ary numbers: C = 00 || 01 || 10 || 11.

Finally we colour the matrix R using C—that is multiply the elements of C by n1 and adding the jth (j = 0, 1, 2, 3)

block of C1 = n1C to both cells of the jth copy in R:

S2 = 00|11 || 02|13 || 20|31 || 22|33. (6)

Since r = 3, we use COLOUR again with k = n3/n2 = 2 and get the (8,1,2,64)-perfect sequence S3 repeating S2 four
times, using the same indexing array I and colouring array C′ = 2C.

Another example is a = 2, n = 3 and r = 2. To guarantee the cellular property now we need a new alphabet size
N = 6. Martin produces a (6,1,2,36)-perfect sequence S1, then COLOUR results a (12,1,2,144)-perfect sequence S2.

4.2. Construction of growing squares

Let n= a = 2 and r = 3. Then N(2, 2)= 2. We construct the even sequence W4 = e1e2e3e4 = 0 0 1 1 using EVEN

and the symmetric perfect array A in Table 1a using the meshing function (4). Since A is symmetric, it can be used as
S1. Now the greatest common divisor of a and ad is 2, therefore indeed n1 =N2/2 = 2.

GROWING chooses k = n1/N = 2 and COLOUR returns the array R repeating the array A k2 × k2 = 4× 4 times.

Table 1

Column/row 1 2 3 4

(a) A (2, 2, 4, 4)-square
1 0 0 0 1
2 0 0 1 0
3 1 0 1 1
4 0 1 1 1

(b) Indexing scheme I of size 4× 4
1 0 1 2 3
2 4 5 6 7
3 8 9 10 11
4 12 13 14 15



Author's personal copy

M. Horváth, A. Iványi / Discrete Mathematics 308 (2008) 4378 –4388 4383

Table 2
Binary colouring matrix C of size 8× 8

Column/row 1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0
2 0 0 0 1 1 0 1 1

3 0 1 0 1 0 1 0 1
4 0 0 0 1 1 0 1 1

5 1 0 1 0 1 0 1 0
6 0 0 0 1 1 0 1 1

7 1 1 1 1 1 1 1 1
8 0 0 0 1 1 0 1 1

Table 3
A (4,2,2,16)-square generated by colouring

Column/row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
2 0 0 1 0 0 2 1 2 2 0 3 0 2 2 3 2

3 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1
4 0 1 1 1 0 3 1 3 2 1 3 1 2 3 3 3

5 0 2 0 3 0 2 0 3 0 2 0 3 0 2 0 3
6 0 0 1 0 0 2 1 2 2 0 3 0 2 2 3 2

7 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3
8 0 1 1 1 0 3 1 3 2 1 3 1 2 3 3 3

9 2 0 2 1 2 0 2 1 2 0 2 1 2 0 2 1
10 0 0 1 0 0 2 1 2 2 0 3 0 2 2 3 2

11 3 0 3 1 3 0 3 1 3 0 3 1 3 0 3 1
12 0 1 1 1 0 3 1 3 2 1 3 1 2 3 3 3

13 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3
14 0 0 1 0 0 2 1 2 2 0 3 0 2 2 3 2

15 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3
16 0 1 1 1 0 3 1 3 2 1 3 1 2 3 3 3

COLOUR uses the indexing scheme I containing k4 indices in the same 4 × 4 arrangement as it was used in R.
Table 1b shows I .

Transformation of the elements of I into 4-digit k-ary form results the colouring matrix C represented in
Table 2.

Colouring of array R using the colouring array 2C results the (4,2,2,16)-square S2 represented in
Table 3.

In the next iteration COLOUR constructs an 8-ary square repeating S2 4× 4 times, using the same indexing scheme
I and colouring by 4C. The result is S3, a (8, 2, 2, 64)-perfect square.

4.3. Construction of growing cubes

If d = 3, then the necessary condition (2) is b3 = (n)a
3

for double cubes, implying n is a cube number or a is a
multiple of 3. Therefore, either n�8 and then b�256, or a�3 and so b�512, that is, the smallest possible perfect
double cube is the (8, 3, 2, 256)-cube.
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Table 4
Eight layers of a (2,3,2,16)-perfect array

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7

0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1
0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1
0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1

As an example, let n = 2, a = 2 and r = 2. CELLULAR computes N = 2, MESH constructs the (2, 2, 2, 4)-
perfect square in Table 1a, then SHIFT uses MARTIN with N = 16 and a = 1 to get the shift sizes for the lay-
ers of the (2, 3, 2, b)-perfect output P of CELLULAR, where b = 〈4, 4, 16〉. SHIFT uses P as zeroth layer and the
jth (j ∈ [1 : 15]) layer is generated by cyclic shifting of the previous layer downwards by wi (div 4) and right
by wi (mod 4), where w = 〈0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1〉. Eight layers of P are shown in
Table 4.

Let A3 be a 4 × 4 × 16 sized perfect, rectangular matrix, whose zeroth layer is the matrix represented in Table 1,
and the (2, 3, a, b)-perfect array P in Table 4, where a = (2, 2, 2) and b= (4, 4, 8).

GROWING uses COLOUR to retrieve a doubly symmetric cube. n1 = 8, thus b = 256, k = n1/N = 4 and k =
〈256/4, 256/4, 256/64〉, that is we construct the matrix R repeating P 64× 64× 16 times.

I has the size 64× 64× 16 and I [i1, i2, i3]= 642(i1− 1)+ 64(i2− 1)+ i3− 1. COLOUR gets the colouring matrix C
by transforming the elements of I into 8-digit 4-ary numbers—and arrange the elements into 2× 2× 2 sized cubes in
lexicographic order—that is in order (0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1). Finally colouring
results a double cube S1.

S1 contains 224 elements therefore it is presented only in electronic form (on the homepage of the corresponding
author).

If we repeat the colouring again with k = 2, then we get a 64-ary 65 536 × 64 536 × 64 536 sized double
cube S2.

5. Proof of the main result

The main result of this paper can be formulated as follows.

Theorem 11. If n�2, d �1, a�2, nj = Ndj/ gcd(d,ad ) with N = N(n, a) given by (1) for j ∈ [0..∞], then there
exists an (n, d, a)-growing array.

The proof is based on the following lemmas.

Lemma 12 (Cellular lemma). If n�2, d �1 and a�2, then algorithm CELLULAR produces a cellular (N, d, a, b)-
perfect array A, where N is determined by formula (1), b1 =Na and bi =Nai−ai−1

(i ∈ [2..d]).

Proof. It is known that algorithms EVEN +MESH and MARTIN + SHIFT result perfect outputs.
Since MESH is used only for even alphabet size and for 2 × 2 sized window, the sizes of the constructed array are

even numbers and so the output array is cellular.
In the case of SHIFT we exploit that all prime divisors of a divide the new alphabet size N , and bi =N(a−1)(ai−1) and

(a − 1)(ai−1)�1. �

Lemma 13 (Indexing lemma). If n�2, d �2, k�2, C is a d dimensional a-cellular array with |b| = k|a| cells and
each cell of C contains the corresponding cellindex as an |a| digit k-ary number, then any two elements of C having
the same elementindex and different cellindex are heads of different patterns.
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Proof. Let P1 and P2 be two such patterns and let us suppose they are identical. Let the head of P1 in the cell have
cellindex g and head of P2 in the cell have cellindex h (both cells are in array C). Let g − h= u.

We show that u= 0 (mod k|b|). For example in Table 2 let the head of P1 be (2, 2) and the head of P2 be (2, 6). Then
these heads are in cells with cellindex 0 and 2 so here u= 2.

In both cells, let us consider the position containing the values having local value 1 of some number (in our ex-
ample they are the elements (3,2) and (3,6) of C.) Since these elements are identical, then k|u. Then let us con-
sider the positions with local values k (in our example they are (3,1) and (3,5).) Since these elements are also
identical so k2|u. We continue this way up to the elements having local value k|b| and get k|b||u, implying
u= 0.

This contradicts to the conditon that the patterns are in different cells. �

Lemma 14 (Colouring lemma). If k�2, ki ∈ [2..∞] (i ∈ [1..d]), A is a cellular (n, d, a, b)-perfect array, then
algorithm COLOUR(N, d, a, k, k, A, S) produces a cellular (kN, d, a, c)-perfect array P , where c= 〈k1a1, k2a2, . . . ,

kdad〉.

Proof. The input array A is N-ary, therefore R is also N-ary. The colouring array C contains the elements of [0..N(k−1)],
so elements of P are in [0..kN − 1].

The number of dimensions of S equals to the number of dimensions of P that is, d.
Since A is cellular and ci is a multiple of bi (i ∈ [1..d]), P is cellular.
All that has to be shown is that the patterns in P are different.
Let us consider two elements of P as heads of two windows and their contents—patterns p and q. If these heads

have different cellindex, then the considered patterns are different due to the periodicity of R. For example, in Table 3
P [11, 9] has cellindex 8, the pattern headed by P [9, 11] has cellindex 2, therefore they are different (see parity of the
elements).

If two heads have identical cellindex but different blockindex, then the indexing lemma can be applied. �

Proof of the main Theorem. Lemma 18 implies that the first call of COLOUR in line 10 of GROWING results a doubly
symmetric perfect output S1. In every iteration step (in lines 14–16 of GROWING) the zeroth block of Si is the same as
Si−1, since the zeroth cell of the colouring array is filled up with zeros.

Thus S1 is transformed into a doubly symmetric perfect output Sr having the required prefixes S1, S2, . . . ,

Sr−1. �

6. Final remarks

The proposed definitions and algorithms can be extended for arbitrary a.
Among others, the following problems are open: existence of (6, 2, 5, b)-perfect array with b= 〈2× 38, 28 × 3〉 or

with b = 〈2 × 324, 224 × 3〉 and the existence of a (2,3,3,512)-perfect array (it would be the second smallest double
cube).

7. Pseudocodes of the algorithms used

The algorithms are written using the pseudocode of [3]. The running time of these algorithms is determined by the
number of the elements of the generated perfect array—e.g. GROWING needs �((nr)

a3
) time.

Since we deal only with the construction of symmetric perfect arrays, the window is always symmetric.

7.1. Pseudocode of the algorithm GROWING

Input parameters of GROWING are n, d, a and r , the output is a doubly symmetric perfect array Sr , which is the rth
prefix of an (n, d, a)-growing array.
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GROWING(n, d, a, r, Sr)

1 CELLULAR(n, d, a, N, P )

2 calculation of N using formula (1)

3 if P is symmetric then S1 ← P

4 if P is not symmetric then

5 n1 ← Nd/ gcd(d,ad )

6 k← n1/N

7 k1 ← (n1)
ad/3/Na

8 for i ← 2 to d

9 ki ← (n1)
ad/d/Nai−ai−1

10 COLOUR(n1, d, a, k, k, P , S1)

11 k← Nd/ gcd(d, ad)

12 for i ← 1 to d

13 ki ← (n2)
ad/d/Nai−ai−1

14 for i ← 2 to r

15 ni ← Ndi/ gcd(d,ad )

16 COLOUR(ni, d, a, k, k, Si−1, Si)

17 return Sr

7.2. Pseudocode of the algorithm CELLULAR

This is an extension and combination of the known algorithms SHIFT, MARTIN, EVEN and MESH.
CELLULAR(n, d, a, N, A)

1 N ← N(n, a)

2 if d = 1 then MARTIN(N, d, a, A)

3 return A

4 if d = 2 and a = 2 and N is even then
5 MESH(N, a, A)

6 return A

7 if N is odd or a 	= 2 then

8 MARTIN(N, a, P1)

9 for i ← 1 to d − 1

10 SHIFT(N, i, Pi, Pi+1)

11 A← P1

12 return A

13MESH(N, a, P1)

14 for i ← 2 to d − 1

15 SHIFT(N, i, Pi, Pi+1)

16A← Pd

17return Pd

7.3. Pseudocode of the algorithm MARTIN

The following effective implementation of MARTIN is taken from [11].
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MARTIN(n, a, w)

1 for i ← 0 to na−1 − 1
2 C[i] ← n− 1
3 for i ← 1 to a
4 w[i] ← 0
5 for i ← a + 1 to na

6 k← w[i − a + 1]
7 for j ← 1 to a − 1
8 k← kn+ w[i − a + j ]
9 w[i] ← C[k]
10 C[k] ← C[k] − 1
11return P

7.4. Pseudocode of the algorithm SHIFT

SHIFT(N, d, a, Pd, Pd+1)

1 MARTIN(Nad
, a − 1, w)

2 for j ← 0 to Nad−ad−1 − 1
3 transform wi to an ad digit N-ary number
4 produce the (j + 1)-st layer of the output Pd+1 by multiple shifting the jth layer of Pd by the transformed

number (the first a digits give the shift size for the first direction, then the next a2 − a digits in the second
direction etc.)

5 return Pd+1

7.5. Pseudocode of the algorithm EVEN

If N is even, then this algorithm generates the N2-length prefix of an even growing sequence [9].
EVEN(N, w)

1 if N = 2 then
2 w[1] ← 0
3 w[2] ← 0
4 w[3] ← 1
5 w[4] ← 1
6 return w
7 for i = 1 to N/2− 1
8 for j = 0 to 2i − 1
9 w[4i2 + 2j + 1] ← j

10 for j = 0 to i − 1
11 w[4i2 + 2+ 4j ] ← 2i

12 for j = 0 to i − 1
13 w[4i2 + 4+ 4j ] ← 2i + 1
14 for j = 0 to 4i − 1
15 w[4i2 + 4i + 1+ j ] ← w[4i2 + 4i − j ]
16 w[4i2 + 8i + 1] ← 2i + 1
17 w[4i2 + 8i + 2] ← 2i

18 w[4i2 + 8i + 3] ← 2i

19 w[4i2 + 8i + 4] ← 2i + 1
20 return w
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7.6. Pseudocode of the algorithm MESH

The following implementation of MESH is taken from [11].
MESH(N, w, S)

1 for i ← 1 to N2

2 for j ← 1 to N2

3 if i + j is even then S[i, j ] ← w[i]
4 else S[i, j ] ← w[j ]
5 return S

7.7. Pseudocode of the algorithm COLOUR

Input parameters are N, d, a, k, k, a cellular (N, d, a, b)-perfect array A, the output is a (kN, d, a, c)-perfect
array P , where c = 〈a1k1, a2k2, . . . , adkd〉.

COLOUR(N, d, a, k, k, A, P )

1 arrange the copies of P into an array R of size k1 × k2 × · · · × kd blocks

2 construct a lexicographic indexing scheme I containing the elements of [0..kad − 1] and having the same structure
as R

3 construct an array C transforming the elements of I into k-ary numbers of v digits and multiplying them by N

4 produce the output S adding the jth (j ∈ [0..kad − 1]) element of C to each cell of the jth block in R for each block
of R

5 return S
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