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Introduction 

Sequences of elements of given sets of symbols have a great 
importance in different branches of natural science. For exam­
ple, in biology the 4-letter set {A, C, G, T} containing the nu­
cleotids (adenine, cytosine, guanine and thymine) and the 20­
letter one {a, c, d, e.]; g, h, i, k,l, m, n,p, q, T, S, t, v, W, y,}, contain­
ing the amino-acids (alanine, cysteine, asparagine-acid, glutamine­
acid, phenyl, glycine, histidine, isoleucine, lysine, leucine, methio­
nine, asparagine, proline, glutamine, arginine, serine, threonine, 
valine, triptophan, tyrosine) play an important role. 

Complexity is an important characteristic of symbol sequences, 
since it affects the cost of storage and reproduction, and the quan­
tity of information stored in the symbol sequences. The usual 
complexity measures of symbol sequences are based on the time 
(or memory) needed for generating or recognizing them. 

In this paper a new complexity measure, d-complexity is stud­
ied. This measure is also intended to express the average quantity 
of information included in a sequence. The background of the new 

t complexity measure lies in biology. Some natural sequences, as 
~;, 
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amino-acid sequences in proteins or nucleotid sequences in DNS­
moleculas have a winding structure [1] and some bends can be 
cut forming new and, of course, shorter sequences. The parameter 
d is the bound for the length of bends, which can be cut, or, in 
other word, d is the maximum permissible distance between any 
two remaining consecutive elements of the sequence. 

This concept covers some known complexity measures studied 
earlier, such as subword complexity (case d = 1) and subsequence 
complexity (case d = 00). 

We use the basic concepts and notations of formal language 
theory [2] and graph theory [3]. 

1. Basic notations and definitions 

Let nand k be positive integers, X = {A I, ... , An} an al­
phabet, X k the set of words of length k over X, X+ the set of 
finite nonempty words over X. The length of a word p E X+ is 
denoted by L(p). 

DEFINITION 1 [4]. Let d, rand s be positive integers, 
p == Xl ••• X r E X" and q = YI ... Ys E X", p is a d-subword of 
q (p Cd q) iff there exists a sequence i l , ... , i r with 1 < iI, i; < 
s, 1 <ij +1-ij < d for j == 1, ... ,r-1 such, that Xj = Yij' j = 1, 
... ,s. If for given p, q and d there exist several such sequences, 
then the sequence belonging to P, q and d is the lexicographically 
minimal one of such sequences. 

PEFINITION 2 [4]. For P E X+ the d-complexity K d(p) of 
p is defined as 

L(p) 

Kd(p) == L f(p, i, d), 
i=l 

where f(p, i, d) =\ S(p, i, d) I, S(p, i, d) = S(p, d) nXi for i == 1, 
... ,L(p) and S(p, d) == {q Iq Cd pl. 
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EXAMPLE 1. Let X be the English alphabet, p == ELTE, 
then S(p, 1, 1) == S(p, 1,2) == S(p, 1,3) == {E, L, T}, S(p, 2, 1) == 
{EL, LT, T E}, S(p, 2, 2) == {EL, ET, LT, LE, T E}, S(p, 2, 3) == 
{EL, ET, EE, LT, LE, T E}, S(p, 3,1) == {ELT, LTE}, S(p, 3, 2) 
== S(p, 3, 3) == {ELT, ELE, ETE, LTE}, S(p, 4,1) == S(p, 4,2) == 
S (p, 4, 3) == {ELTE} and K 1 (p) == 3 + 3 + 2 + 1 == 9, K 2 (p) == 
3 + 5 + 4 + 1 == 13, K 3 (p) == 3 + 6 + 4 + 1 == 14. 

DEFINITION 3 [4]. The divided, modified and normalized 
d-complexities Dd(P), Md(P) and Nd(P) are defined by 

Kd(P) L(p) . Kd(P) 
Dd(P) == L(p) , Md(P) == max{Kd(q) IL(q) == L(p)}' 

Kd(P)
N d (p) - -----:-------:--:------:---~ 

- max{Kd(q) 1 L(q) == L(p)}' 

respectively. 

DEFINITION 4 [4]. A complexity measure G(p) is said to be 
monotonically increasing (decreasing) iff G(px) > G(p) (G(px) < 
G(p)) for any p E X+ and x E X. G(p) is said to be strictly 
monotonically increasing (decreasing), iff G(px) > G(p) (G(px) < 
G(p)) holds for any p E X+ and x E X. 

DEFINITION 5 [4]. A complexity measure G(p) is said to 
be subadditive (supadditive), iff G(pq) < G(p) + G(q) (G(pq) > 
G(p) + G(q)) for any pair of words p, q E X+, and is said to be 
additive, iff G(pq) == G(p) + G(q) for any p, q E X+. 

DEFINITION 6 [4]. For the complexity measure G(p) and 
words p, q E X+ the complexity ratio R(G, p, q) is defined by 

G(p, q) 
R(G,p,q) == G(p) + G(q)· 

DEFINITIO N 7. Let d be a positive integer, p E X+ and 
q Cd p. If q occurs in p several times, then we consider - according 
to Definition 1 - the first occurence of q. Let 

Qj,d{p) == {q Iq Cd P, q == XiI"· Xi with i r == i}r 
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and 
aj,d(p) =1 Qj,d(p) I for i = 1, ... ,L(p), 

aj,d(p) = 0 for i = -(d - 1), -(d - 2), ... , -1, o. 

DEFINITION 8. Let d > 2, Sd(Z) = zd - zd-l - ... - z - 1 
and Zi,d (i = 1, ... , d) denote the roots of the equation Sd(Z) = 
0, where I Zl,d I> ... >1 Zd,d I and I Zj,d 1=1 Zj+l,d I implies 
arg(Zj,d) <arg(Zj+l,d) (i = 1, ... , d - 1). 

2. Analysis of I-complexity 

Some basic features of K 1 (p) are analysed in [5], therefore 
here we only formulate its bounds, which are needed in the next 
part, and summarize the basic results without proofs. 

Lemma 1 [5]. For any k > 1 and p E x» hold 

k < K 1 (p) < 0, 5k(k + 1). 

The lower bound is tight. If n > k, then the upper bound is also 
tight. 

The following tables contain monotonicity and additivity fea­
tures (Table 1), complexity bounds for nonempty words (Table 2) 
and complexity bounds for the words of length k (Table 3). 

Table 1. Monotonicity and additivity of some complexity measures	 
:;1 

'I 
I 
i 

~.! 

Complexity 
measure G 

Strictly 
monotone 

Monotone Additive Sub-
additive 

L yes yes yes yes 
K 1 yes yes no yes 
D1 no yes no no 
M 1 no yes no no 
N1 no no no no 
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Table 2. Tight complexity bounds for nonempty words p, q E X+ 

Complexity 
measure G 

Lower Upper 
bound for G(p) 

Lower Upper 
bound for R(G,p,q) 

L 
K I 
DI 

M I 
NI 

1 
1 
1 
1 
a 

00 

00 

00 

00 

1 

1 
1 

O,S 
O,S 

° 

1 
00 

00 

00 

00 

Table 3. Tight complexity bounds for k-length words p, q E X k 

Complexity 
measure G 

Lower Upper 
bound for G(p) 

Lower Upper 
bound for R(G, p, q) 

L 
K I 

DI 

Afl 

NI 

k 
k 
1 
1 

11k 

k 
O,Sk(k+l) 
O,S(k+l) 

k 
1 

1 
1 

a,s 
a,s 
0,2S 

1 
0,S(k+2) 
O,2S(k+2) 
O,S(k+l) 
O,2S(k+1) 

3. Existence of supercomplex words 

Using n letters we' can assemble n i different words of length 
i, and L(p) - i + 1 words of length i can appear in a word of length 
L (p), therefore 

L(p) 

L (p) < K I (p) < L min (n'. L(p) - i + 1). 
i=l 

A. Benczur asked, whether there exists an infinite word 
P=XIX2'"	 with 

k 

K I ( X I ... X k) == L min(n i, k - i + 1) (k == 1, 2, ... ), 
i=l 
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that is a word, whose prefixes have maximum possible I-com­
plexity. Such words (infinite and finite ones too) are called super­
complex. 

If we try to construct a supercomplex word over the alphabet 
X == {A, B}, then we get Figure 1. In this figure the symbol "\7 
means that the given prefix cannot be continued preserving the 
supercomplexity. The longest supercomplex binary word consists 
of 9 letters. 

ABAB \l 
BAA 

BAB~AB 
AA'l 

SA 
ASS 

BABA'l 

ABA\! 

Fig. 1 Supercomplex words for X == {A, B} 

If n > 3, then the answer is affirmative. To prove this fact 
we need some preparation. 

For given nand k the graph B(n, k) (the so called de Bruijn 
graph) is defined as follows. Its vertex set is x» and its edge set 

lis X k + in such a way that a word p == Xl .•. Xk+l determines an 
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edge going from the vertex Xl' •• Xk to the vertex X2 ... Xk+l. 

If m > k, then any word q == Yl ... Ym determines a directed 
path in B(n,k), which begins at the vertex Yl" .Yk, goes through 
the vertices Y2 ... Yk+ l, ... , Ym-k ... Ym- b and ends at the vertex 

Ym-k+l ... Ym' 

It is known that the graphs B (n, k) contain an Eulerian cir­
cuit and a Hamiltonian circuit too. If p determines a Hamiltonian 
circuit of B( n, k), then L(p) == k + n k . If k corresponds to an 
Eulerian circuit of B (n, k), then L(q) :::::: k + nk+ l. The following 
correspondence between these circuits also is known. 

Lemma 2 [6]. If k > 1, n > 2, m == k + n k , then p == 

Xi
1 

••• Xim. determines an Eulerian circuit of B(n, k) iff q == Xi 1 

Xim. Xi k + 1 determines a Hamiltonian circuit in B (n, k + 1). 
Another useful feature of B (n, k) is the following. 

Lemma 3 [7]. If n > 3, k > 1 and p determines a Hamil­
tonian circuit of B(n, k) , then p can be continued in order to get 
a word q, which determines an Eulerian circuit of B(n, k). 

It is worth to remark that this assertion can be formulated 
also as follows: if n > 3 and k > 1, then after removing the edges 
of a Hamiltonian circuit of B (n, k) the remaining partial graph is 
connected. 

In [7] a computer program running on TPA-1140 is de­
scribed. This program during 30 seconds produced the word p :::::: 

==012200211000101112022212102010011010210020000220112111 

102210120012122112222020212012010100000111001002101012 

100020110022110110200102020020220001202012110211101221 

001222001120002121120111112101122010220210212202212021 

121212002222211122122210222012201101110100101010200010 
'_ 

001100001021101011001111000210000200110210110120110220 

010012000000211111101120100022100012101002010112100102 

211100202010201110201200200210200220020122110012111021 
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200011212010212100211200101202100112210102221002202000
 

202101211210210220100222000012202011202001201210221211
 
/ 

002120202022102021102022202111200212210211220002221102
 

222002212200122120011121101212022012022112021212101222
 

112112211112012222101111220212220111222022022221201122
 

21221212201212111212222220101220
 

for the case X == {O, 1, 2} and L(p) == 734. This word determines 
an Eulerian circuit of B(3, 5) and is supercomplex. 

This example shows an interesting consequence of the def­
inition of supercomplexity: for any fixed r the prefix of length 

rr + n - 1 of a supercomplex word contains, as subword, all ele­
ments of X" precisely once. 

We remark that in [8] the maximum number of edge-disjoint 
Hamiltonian circuits of B(n, k) is studied: for some special cases 
we were able to show that if p determines a Hamiltonian circuit 
of B (n, k), then p can be continued in order to get a word q, 

determining (n -1) edge-disjoint Hamiltonian circuits of B(n, k). 
Bu.t for the general case n > 3 we can prove only the following 

.~. 

weaker assertion. 

Theorem 1. If n > 3, then there exists an infinite super­
complex word over X == {AI, . . . ,An}. 

Proof. We give a constructive proof. Let us consider a 
Hamiltonian circuit of B(n, 1), e.g. the circuit given by the word 
A IA2 ... AnAl. According to Lemma 3 we can continue p in order 
to get an Eulerian circuit of B(n, 1), e.g. q == Al ... AnAIAIAnAn 
An-IAn-I ... A2A2AI gives an Eulerian circuit in B(n,I). Ac­
cording to Lemma 2, q' == qA2 determines a Hamiltonian circuit 
of B(n, 2). 

By induction we get the existence of an infinite supercomplex 
word. D 
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4. Analysis of d-complexity 

At first we give lower and upper bounds for Kd(P). 

Lemma 4 [5]. If n > 2, k > 1, d > 1 and P E x», then 

k < K d (p) < 2 k - 1. 

The lower bound is tight. For d > k -1 and n > k the upper bound 
is also tight. 

Let us consider now an infinite alphabet X = {A 1,A2 , ••. }. 

The complexity Kd(P) of the word P = A 1A 2 . . . Ak (or any other 
k-length word consisting of different letters) is denoted by N(k, d) 
and is called maximal. 

According to Lemmas 1 and 4 we have N(k, 1) = 0, 5k(k + 1) 
and N(k, k -1) = 2k -1. In which manner does a quadratic poly­
nomial changes into an exponential function when d increases? 

In Definition 7 ,\ve have classified the d-subwords of a given 
word P according to the position of their last letter. Among the 
cardinalities of the sets Qj,d(p) L. Hunyadvari has found the fol­
lowing reccurent connection. 

Lemma 5 [9]. If k > 1, P E x» and K1(p) = N(k,1), then 

aj,d(p) = 1 + aj-l,d(p) + aj-2,d(P) + ... + aj-d,d(p)
(1) 

for J' = 1, . . . , k. 

Proof [9]. Among the elements of Qj,d(P) there exists an 
element with unit length. The remaining elements consist of two 
or more letters, and their last but one letters can be located in 
the (J' - 1)-th,... , (J' - d)-th positions. D 

The next assertion gives the explicit form of the cardinalities 
aj,d· 

Lemma 6. If k > 1, d > 2, P E x» and K(p) = N(k, d), 
then 

1 d , 

ai,d = 1 _ d + L ki,dZf,d (i = 1, ... , k) 
i=l 



78 I
, 

ANTAL IVANYI ·
 
,' ••...,.•. 

,'~:~,;and --.......
 

k d Z~ - 1 
jY(k, d) == d + "ki,dZi,d t,d ,

1- L Z"d- 1" 1 t, 
~= 

where the coefficients ke,« (i == 1, ... ,d) are constants. 

Proof. The general solution of an inhomogeneous recurrent 
rrelation equals to the sum of the general solution of the corre­ c 

sponding homogeneous equation and an arbitrary particular solu­
tion of the inhomogeneous one [10]. 

Let us suppose that aj,d == zj for a suitable z. Then from (1) 
we get Sd(Z) == 0, and so the general solution of the homogeneous 
equation has the form 

where the constants ki,d (-£ == 1, ... , d) are determined by the 
initial conditions. 

Supposing ejj = efor j =: -(d-l),~(d-2),... ,-1,0,1, ... , 
L(p) we get a particular solution of the inhomogeneous equation: 
if d > 2, then e == II (1 - d), which finishes the proof. D 

The following lemma formulates an important property of the 
roots of Sd(Z), 

Lemma 7. If d > 2, then the equation Sd(Z) == 0 has precisely 
one root zl,d > 1. For the remaining roots Zi,d (£ == 2, ... ,d) we 
have IZi,d 1< 1. 

The following proof is due to Imre Katai. 

Proof [11]. al Due to Sd(l) == -(d - 1) < 0 and Sd(2) == 
1 > 0 we get Zl,d > 1. 

bl It is known [12], that if m > 0 is an integer number and 
ro > rl > ... > r m > 0 are real numbers, then for any root y of 
the equation 

(2) 
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we have I y I> l. 
cl Since Sd(O) :f:. 0, substituting l/w for Z and multiplying 

by (-Wd) we change Sd(Z) into 

whose roots 
Td(W) by (w 

are the reciprocals of the roots of Sd(Z). 
- wI), we get 

Dividing 

Rd(W) == _T_d(:....-W~) == wd­ l + wd- 2(1 + wd+ 
w -Wl 

wd 
-

3 (1 + Wl + W~) + ... + (1 + Wl + ... + wt- l 
) . 

i 

t 
~ 

;: 

If Zl,d > 1, then Wl,d == 1/Zl,d E (0, 1), and the coefficients of 
Rd(W) satisfy the conditions of the assertion, mentioned in part 
b / of this proof. Therefore the roots of Rd(w) are outside the unit 
circle, and so the roots of Sd(Z) - in except of Zl,d - are inside the 
unit circle. 0 

Now we can formulate the main result of this paper. 

Theorem 2. If d > 2, then 

kl dZl d N(k, d) == ' 'z~ d + 
Zl d ­ l' ., 

k 
1 ­ d 

+ 
dL k' dZ' d 

t, t, 

1 ­ Z' d i=l t, 

d 
k: dZ ' d+" J, J, z~ d 

L., Z' d ­ 1 J,J'=2 J, 

and so 

lim 
k-+oo 

(k1'dZl'd zf d + 
Zl d - l' , 

k 
1 ­ d 

+ ~ ki,dZi,d 
LJ 1 ­ z· di= 1 t, 

- N(k, dl) = O. 

Proof. We get the assertion from the expression of N (k, d) in 
Lemma 6 using our knowledge about the roots of Sd(Z) formulated 

.--:; in Lemma 7. 0 
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EXAMPLE 2. If d == 2, then 8 2 (z) == Z2 - Z - 1 == 0 has 
the roots Zl,2 == ~(1 + vs) ~ 1,618034 and Z2,2 == ~(1 - vs) ~."". 
-0,618034, therefore 

. . 

1+V5 1-YS (j == 1,2).aj,2 == k l ,2 ( 2 )1+ k2 ,2 
( 

2 
)1

- 1 

Taking into account that al ,2 = 1 and a2 ,2 = 2, for the constants 
kl ,2 and k2 ,2 , we have the system of linear equations 

2 == k 1,2 (0, 5 + VI, 25) + k 2,2 (0, 5 - VI, 25) , 

3==k l ,2 (1,5+V1,25) +k2,2 ( 1, 5 - V 1, 25) , 

from where kl ,2 == 0,5 + 0, 3V5 ~ 1,170820 and k2,2 = 0,5 ­
0, 3VS ~ -0, 170820. Substituting the constants and the roots 
into the formula of Lemma 6 we get 

N(k,2) = (1,5 + 0, 7V5)(0, 5 + 0, 5V5)k+ 

+(1,5 - 0, 7V5)(0,5 - 0,5V5)k - k - 3 ~ 3, 065247.1, 618034k­

-0,065247 (-0,618034) k - k - 3, 

and so 

k~~ [N(k, 2) - ((1,5 + 0, 7V5) (0,5 + 0, 5V5)k - k - 3)] = O. 

If d == 3, then the roots are 
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Z2.3 = ~ (2 - V19 + 3V33 - V19 - 3V33) +
 

+iv: (V19 + 3V33 - \/19 + 3V33) ::,; -0,419643+0, 60629li, 

Z3,3 = ~ (2 - \/19 + 3V33 - \/19 - 3V33) ­

-iv: (\/19 + 3V33 - V19 + 3V33) ::,; -0,419643 -0,606291i,
 

k1,3 ~ 0,736840, k2 ,3 ~ -0,118420 - 0, 037401i,
 

k 3 ,3 ~ -0,118420 + 0,037401i,
 

and 

k k 3
N(k 3) ~ 1 614776·1 839287 - - - -+ , , , 2 2 

+0,737353 k 
• [0, 061034 cos (2, 176234(k + 1))­

-0,052411sin (2, 176234(k + 1))]. 

5. Estimation of the most significant root 

If d > 2, then multiplying Sd(X) by (x - 1) we get 

By analysing of Wd(X) using its derivates Wd(x) and Wd'(x) 
we obtain Figure 2 (for even d) and Figure 3 (for odd d). 
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y
 

o 2 x 

.~ . " 

Figure 2. The plot of y == x d+1 - 2xd + 1 for even d 

According to Lemma 7 the equation Sd(X) == 0 has only one 
root Zl,d outside the unit circle. Because of Sd(l) == -(d -1) and 
Sd(2) == 1 we have Zl,d E (1,2). 

Lemma 8. If d > 2 then 

1 d 1 
Zchord,d == 2 -- (0,5+ 2d) < Zl,d < 2 - 2 d == Ztan,d' 0 

Proof. The function Wd(x) has a local minimum at Xo 

2 - 2/(d + 1). Since Wd(x) is convex in the interval (xo,2), we 
can give an upper bound on Zl,d using the tangent to the curve at 
x == 2 and a lower bound using the chord belonging to the points 
of the curve at Xo and x == 2 [13]. 

Since Wd (2) == 2d , the equation of the tangent is y == 2d (x ­
i2) + 1, from where we get the value Ztan,d == 2 - 1/2

d. 
I 

I 
;,' 
·1 

, ,;
 



83 ON THE d-COMPLEXITY OF WORDS 

Figure 3. The plot of Y = X d+ I - 2xd + 1 for odd d 

Using 

o 

y 

x 

and the formula 

Y2 - YI ( )Y - YI = X - Xl 
X2 - Xl 

we obtain the equation of the chord and the value 

1 
Zh -2- 0 

C ord,d - 2d(2d + 1) . 

The following estimations are due to Keresztely Corradi. 
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Lemma 9 [14]. If d > 2 then 

1 1 
LCK d == 2 - d 1 < Zl d < 2 - -d == UCK d == Ztan d· , 2- , 2 ' , 

Proof [14]. a). At first we show that Wd(LcK,d) < O. Using 
the well-known inequality 

between the geometric and arithmetic means of nonnegative num­
d

bers for aj == 1 - 1/2 (j == 1, ... , 2d ) and aj == 1 (j == 2d + 
1, ... , 2d+1) we get 

(3)
 

d 
i.e,	 (1 - 1/2d)2 is an increasing function of d. 

If d > 2 then 2d > 2d therefore 

1 2d 1 2
d 

(4)	 (1 - -) > (1 - -) .
2d - 2d 

From (4), taking into account (3) 

1 2d 1 2
d 1 4 

(1 -	 -) > (1 - -) > (1 - -)
2d - 2d - 22 ' 

and so extracting quadratic root we have 

1 d 9 1
(5)	 (1 - -) > - > -.

2d	 - 16 2 
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Since Wd(X) = xd(x - 2) + 1 and 

1 d 1 
Wd(LcK,d) == (2 - 2d- 1 ) (- 2d - 1 ) + 1, 

rd(LcK,d) <. 0 is equivalent to (5).
 

b) For UCK,d we have
 

1 d 1) 1 d
Wd(UCK,d) = (2 - 2d) (- 2d + 1 == 1 - (1 - 2d+1 ) > O. 0 

We remark, that using a similar argumentation we can show 

4 1 
Zl,d > 2 - 5 -2d~--1 

[or d > 2 and 
2 1 

Zl,d > 2 - 3 -2-=--- -1 d

for d > 3. 

Combining the ideas of the last two lemmas we get the fol­
lowing estimations. 

Lemma 10. If d > 2, then 

1 1 - (1 - 2d~ 1 ) d 
2 - - - = Ld < Zl d < 

2d 2d 2(1- fa)d - (1- 2d~1)d , 

1 1 - (1 - 2d~ 1 ) d 
< 2 - - - == Ud' 

2d (2 - fa )d-l (2 _ l~d) 

Proof. Using the values Wd(UCK,d) and W~(UCK,d) we get 
the equation of the tangent to the curve at x == UCK,d 

1 d d 1 d-l 1 + d 1 
y - 1 + (2 - -) - = (2 - -) (2 - )(x - 2 + -)

2d 2d 2d 2d 2d ' 
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from where the expression for Ud follows. 

Using the values UCK,d, LCK,d, Wd(UCK,d), Wd(LcK,d) we 
get the equation of the chord belonging to the points at a: == L c K,d 

and x == UC K ,d : 

1 d dId 1 1 
y - 1 + (1 -- ) == -2 (1 - ) - 2(1 - -) d x - 2 + ­

2d+1 2d+1 2d 2d ' 

from where the expression for L d follows. 0 

The following table shows some numerical values. The roots 
Zl,d are computed using Newton's method [13]. As initial value we 
used UC K,d. The accuracy was € == 10-8 in all cases.The number 
of necessary iteration steps is denoted by Md' Table 4 contains 
the values Zchord,d, LCK,d, L d, Zl,d, Ud, UCK,d == Ztan,d and Md 

for d == 2, ... 10. 

Table 4. Approximate values of Zl,d 

d Zchord,d LCK,d Ld Zl d, Ud UCKd, Md 

2 1,43750 1,50000 1,5869565 1,6180340 1,6428571 1,75000 17 
3 1,70370 1,75000 1,8323474 1,8392868 1,8416204 1,87500 9 
4 1,84741 1,87500 1,9262779 1,9275620 1,9277830 1,93750 4 
5 1,92224 1,93750 1,9657246 1,9659482 1,9659691 1,96875 3 
6 1,96060 1,96875 1,9835452 1,9835828 1,9835848 1,98438 2 
7 1,98011 1,98438 1,9919581 1,9919642 1,9919644 1,99219 1 
8 1,98998 1,99219 1,9960302 1,9960312 1,9960312 1,99609 1 
9 1,99496 1,99609 1,9980293 1,9980295 1,9980295 1,99805 1 
10 1,99747 1,99805 1,9990186 1,9990186 1,9990186 1,99902 1 

6. Computing d-complexity 

Using Lemma 5 N(k, d) is computable in O(k) time. Using 
Theorem 2 we can get different approximations of N(k, d). 
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Let 

(k d) = k1,d Zk+lf 1 , 1 l,d ,Zl,d ­

Table 5. 2-complexity and its approximations
 

k fl(k,2) f3(k,2) N(k,2) 
1 4,9597 0,9597 1 
2 8,0249 3,0249 3 
3 12,9846 6,9846 7 
4 21,0095 14,0095 14 
5 33,9941 25,9941 26 
6 55,0036 46,0036 46 
7 88,9977 78,9977 79 
8 144,0014 133,0014 133 
9 232,9991 220,9991 221 

10 377,0005 364,0005 364 
11 609,9997 595,9997 596 
12 987,0002 972,0002 972 
13 1596,9999 1580,9999 1581 
14 2584,0001 2567,0001 2567 
15 4180,99999 4162,99999 4163 

Then 

N (k, d) - f 1 ( k, d) = 0 (k), N (k, d) - f 2 (k, d) == 0 (1), 
N (k, d) - f 3 (k, d) = 0 (1) , 
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and 
N (k, d) =: 14 (k, d) , 

so we can estimate N(k,d) with accuracy O(k) or 0(1) in 0(1) 
time, with accuracy o(1) in 0 (d) time and can get the precise 
value of N (k, d) also in 0 (d) time units (of course, only if we 
know the values of the roots and coefficients). 

Table 6. 3-complexity and its approximations 

k 11 (k, 3) 13(k,3) N(k,3) 
1 2,9700 0,9700 1 
2 5,4627 2,9627 3 
3 10,0476 7,0476 7 
4 18,4803 14,9803 15 
5 33,9906 29,9906 30 
6 62,5185 58,0185 58 
7 114,9895 109,9895 110 
8 211,4987 205,9987 201 
9 389,0068 383,0068 383 
10 715,4950 708,9950 709 
11 1316,0005 1309,0005 1309 
12 2420,5023 2413,0023 2413 
13 4451,9978 4443,9978 4444 
14 8188,5006 8180,0006 8180 
15 15061,0007 15052,0007 15052 

The results of the computations for d =: 2 and d = 3, k = 

1, ... , 15 are summarized in Table 5 and Table 6, where 

11(k,2) = 3,065247 . 1, 618034k, 13(k,2) = 11(k,2) - k - 3, 

N(k,2) = 13(k,2) - 0,065247· (-0,618034)k, 
. k 3 

11(k,3) = 1,614776 . 1, 839287k, 13(k,3) = 11(k,3) - 2 - 2' 
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f(k,3)+2·0, 737353k+1[O,061034cos(2, 176234(k+1))­N(k,3) = 

-0,052411 sin(2, 176234(k + 1))]. 

We are indebted to the colleagues mentioned in the text for 
proving Lemmas 5, 7 and 9 and also to Andras Benczur and Peter 
Simon for their useful crit ical remarks. 
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