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1. Introduction

Perfed Maps (or de Bruijn Tori), namely, two-dimensional arrays in which every possble
redangular sub-array (of fixed size) occurs predsely once, have been studied for along time
and avast literature exists concerning them (seg for example, [1]). A humber of construction
methods have been devised [2, 3, 4], but the existence question has not been completely
answered.

2. Theoretical Survey on the Mathematical Problem

2.1. One-Dimensional Case

2.1.1. Perfed Sequences (de Bruijn Cycles)

In one-dimension the aperiodic and periodic cases are not clealy distinguished in the
literature, because they are barely different from eat ather and the conwversion is trivid
between them. The phrases de Bruijn Cyde and de Bruijn Sequence are equally in useto stand
for the periodic case, where the sequence is considered to be wrapped round onitself. This
corresponds to writing it on the outside of a cylinder.

DEFINITION 1 A (k";n), - de Bruijn Cyde is a cydic k-ary sequence of length k"

with the property that every k-ary n-tuple appears exactly once contiguowsly on the cyde. The
parameter n is often called the span d the sequences.

[0 00101117
Figure 1 A (83),- deBruijn Cycle.

REMARK 2 In acyde there are two diredions and they need to be mnsidered as
different in spite of the fact that they represent the same cyde. For example in Figure 2 we

havetwocydes: [0 O 0 1 0 1 1 1] (foundclockwise)and[0 O 0 1 1 1 0 7]
(foundcounter-clockwise).

Figure 2

THEOREM 3 A (k";n), - deBruijn Cyde exists for evay kand n(k =2 and n>1).



Such cycles were first discovered in 1894by Flye-Sainte Marie [5], and rediscovered in 1946
by de Bruijn [6] and Good[7]. An excdlent survey on the topic by Fredricksen can be found
in[8].

De Bruijn Cycles have applicaions in the study of paosition-detedion [9, 10, 11, 12, 13, 14,

15, 16], pseudarandam numbers, cryptography, norinea shift registers and coding theory,
andavast literature exists[17, 18, 19, 20, 21].

2.1.2. The Deaoding Problem

The decoding problem is to dscover the paosition any spedfied n-tuple within a particular
sequence. In spite of its importance [9, 33, 12] it has been much lesswell studied than the
construction problem.

A summary of the previous work and two new methods for construction of de Bruijn Cycles
(which have the alvantage that they can be decoded very efficiently) can be foundin [22].

2.1.3. Infinite Perfect Sequences

2.1.3.1.Superperfed Sequences

DEFINITION 1 A (k";n), - Sumrperfed Sequence is a Perfed Sequence whose k"
length prefixesare (k";n), - de Bruijn Cydesfor n=12,....

In 1986,Cummings and Wiedemann [23] gave asufficient condtion for the existence of such
sequences.

2.1.3.2.Growing Sequences

DEFINITION 1 A (k";n), - Growing Sguenceis a Perfed Sequence whose k" length
prefixesare (k";n), - de Bruijn Cydesfor k =1.2,....

DEFINITION 2 Let k =(kk,...) bea strictly increasing sequence of positive integers.
An (E”;n)lz- Growing Squence is a Perfed Sequence whose k' length prefixes are
(k";n), - deBruijn Cydesfor i =12,....

REMARK 3 Thisis the one-dimensional equivalent of a more general definition that
can kefoundin Sdion2.3.1.2.1.

Hurlbert and Isag [47] in 1994constructed a Growing Sequence for the cae when k is the
sequenceof the even number. Then years later, Ivanyi and Horvéth [25] proved the foll owing

LEMMA 4 If n>1 and k 21 then ary (k";n), - de Bruijn Cyde can ke ontinued
in order to get a ((k +1)";n),,, - de Bruijn Cyde.

Thislemmayields [25] the following



THEOREM 5 If n>1 and k =(k)k,...) with k, =i, then exists a (k";n),_- Growing

Sequence.
The most genera result (seeSedion 2.3.1.2.J.can be foundin [24].

2.1.3.3 Alternating Sequences

Alternating Sequences are hybrids of the previously mentioned two kind d infinite sequences.
The proof of their existence can be foundin [25].

DEFINITION 1 An Alternating Squence is a Perfed Sequencewhose i' length prefixes
are (i';i), - de Bruijn Cyclesand (i +1)' length prefixes are ((i +1)';i),,,- de Bruijn Cycles
for i =12,....

2.1.4. Perfed Factors (Equivalence-Class de Bruijn Cycles)

Perfed Factors are related oljeds introduced by Etzion [4] and later by Hurlbert and Isagk
[42] as Equivalence-Class de Bruijn Cydes. Perfect Fadors have proved useful in
constructions for de Bruijn Tori and have been extensively studied in [26, 27, 28, 29].

DEFINITION 1 An (Rin;T), - Perfed Factor is a set of T=k"/R k-ary, period R

sequences in which evey kary n-tuple occurs exactly once as a subsequence The parameter
n is often called the span d the sequences.

0o 0 01 2 2 1 2 1,0
HL 11200 2 0 2.0
H2 2201101 of

Figure 1 A (9;33),- Perfed Factor.

REMARK 2 Perfect Factors are generalizations of the dassical de Bruijn Cydes: a
de Bruijn Cydeisa Perfed Factor with T =1, that is a (k";n;1), - Perfed Factor.

The following necessary condtions for the existence of a Perfed Factor were formulated in
[28].

LEMMA 3 Suppee Aisan (R;n;T), - Perfed Factor. Then
i) RJk", and
i) n<R<k"o (R=n=1l).

CONJECTURE 4 The ondtions of Lemma 3 ae sufficient for the exstence of an
(Ryn;T), - Perfed Factor.



Etzion [4] has shown that the mnjedure halds in the binary case. This was extended to cases
where k is a prime power by Paterson [29]. Mitchell and Paterson [30] have shown the
sufficiency for the casewhen n=R-1.

In the view of the first conditionin Lemma 3 we can assume that the prime factorizations of k
andR are:

k=[p" and R=[] p," where 0<r, <kn foreadi.

It was also proved in [29] that the condtions of Lemma 3 are sufficient when p,® >n for
every index i. In [26] this result has been improved to establish the sufficiency of the
condtions of Lemma 3 whenever p.° >n for at least oneindex i.

Mitchell has shown that the mnjecture haldsif n<5 [27] andthat Perfect Fadors exist for all
triples (R6,k°/R), satisfying the cmndtions of Lemma 3 with some possble exceptions
[26]. He obtained Perfed Fadors for some of those exceptionsin [28].

This result was extended to n<7 in [30]. Regarding the cases n=7 and 8, umesolved
parameter sets and remarks can be foundin [30].

Mitchell [27] has shown that the following Perfea Fadors exists:

) (636°d®%),, - Perfect Factor (d >1),
i)  (10310°d®),,, - Perfect Factor (d =1) and
i)  (30330°d®),,, - Perfect Factor (d >1).

2.1.5. Perfed Multi-Factors

Mitchell i ntroduced two auxili ary classes of combinatorial objeds. Perfea Multi-Factors [26]
and Generalized Perfect Factors [27] (seeSedion 2.1.6), which can be combined in various
ways to yield Perfect Fadors.

DEFINITION 1 Suppee R, m, n and k are positiveintegers satisfying R| k" and k > 2.
An (R;n;T;m), - Perfed Multi-Factor isa set of T =k" /R k-ary, period Rm sequences with
the property that for every k-ary n-tuple 7, andfor evey integer jintherange 0< j<m, 1
occurs at a pasition p = j (mod m) in ore of these sequences.

00 0 0 0111 1,0
1000011 1H
01011010,
HO 01 0110 1F

Figure 1 A (4,4,4,2), - Perfed Multi-Fador.



REMARK 2 An (RnT;1), - Perfect Multi-Factor is predsely equivaent to an
(R mT), - Perfect Factor.

The following necessary condtions for the existence of a Perfect Multi-Fador were
formulated in [26].

LEMMA 3 Suppee Aisan (R;n;T;m), - Perfed Multi-Factor. Then
i)  RJ]k", and
i) n<Rmor (n=mandR=1).

It has been shown [26] that the dowve necessary conditions are sufficient if m=n.

2.1.6. Generalized Perfed Factors

DEFINITION 1 Suppee R, m, n and k are positiveintegers satisfying R| k" and k = 2.
An (Rn;T;m), - Generalized Perfed Factor is a set of T=k"/R k-ary, period Rm

sequences with the property that for every k-ary n-tuple 1, there exists an integer j in the
range 0< j <R such that for everyi (0<i<m) 1 ocaurs at position j +iR in ore of these
sequences.

REMARK 2
1)  An (Rn;T;1), - Generalized Perfea Factor is precisely equivalent to an (Ryn;T), -
Perfed Factor, and
i)  An (Ln;T;m), - Generalized Perfed Factor is precisely equivalent to an (Ln;T; m), -
Perfea Multi-Factor.

The following necessary condtions for the eistence of a Generalized Perfect Factor were
formulated in [27].

LEMMA 3 Suppee Aisan (R;n;T; m), - Generalized Perfed Factor. Then
i)  RJ]k", and
i) n<Rmor (n=mandR=1).

These necessary condtions for the eistence ae not sufficient [27], but there ae some
(constructive) existenceresults for Generali zed Perfed Factorsin [27, 30].

2.1.7. De Bruijn Graphs

DEFINITION 1 Let K ={04,...,k-1} be and dphatet and let K" dencte the set of n-
tuples. A (k,n) - de Bruijn Graphis a graphwith vertex set K" andedge set K™ so that if
e=<XX,...X.,, >0K"™ then e determines a direded edge going from the vetex
<X X,...X, > tothe vatex < X,X;... X, >.



Figure 1 A (2,2) - de Bruijn Graph

Since a (k,n) - de Bruijn Graph is conneded and each vertex has k ingoing and k outgoing
edges, it has an Euler path [31]. Note that an Euler path in a (k,n)- de Bruijn Graph is

equivalent toa (k"*,n+1), - de Bruijn Cycle.

The number of distinct Euler paths in a de Bruijn Graph is equal to A((k —1)!)", where A
denates the number of spanning trees of the graph [31]. Considering that the in-degree matrix
contains a most k"(k +1) nonzero elements, this number can be determined in O(k™"!)

time. Even the best non-approximating algorithm (Gaussan eimination) needs O(k*") time,
whichis gill exporential.

An easlly applicable equivalent formula with the speaalty that it does not require ay

knowledge a&ou graph theory and can be gplied in ©(n+k) time, is given in Sedion
4.1.3.2.

2.2. Two-Dimensional Case

2.2.1. Aperiodic Perfed Maps

In the geriodic case the aray is deaned to be written orto a planar surface and the sub-arrays
are dways completely within the borders of the aray.

DEFINITION 1 An (R,S;m,n), - Aperiodic Perfed Map is a k-ary (RxS) toroidal
array with the property that evey k-ary (mxn) array occurs exactly once in the set of
(mxn) aperiodic sub-arrays. The pair (m, n) is often called the window of the map.

M 0001011 0f
01011110
H 1000010 1f

Figure 1 A (39,2,2),- Aperiodic Perfed Map.
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LEMMA 2 If Aisak-ary (R,S;m,n), - Aperiodic Perfed Map then
i) R=mz=]

i) S=n=1 and

i) (R-m+2)(S-n+1)=k™

In[43], C. J. Mitchell proved the binary case of the foll owing

CONJECTURE 3 The necessary condtions of Lemna 2 onR, S,m, n are sufficient for the
exstenceof ak-ary (R,S;m,n), - Aperiodic Perfed Map.

2.2.2. Periodic Perfed Maps (or deBruijn Tori)

In the periodic case the array is considered to be wrapped round onitself. This corresponds to
writing the aray onto atorus. Sub-arrays then exist starting at any point in the aray, which no
longer has any “edges’.

These periodic structures can be transformed very simply into correspording Aperiodic (see
Sedion 2.2.1) and Semi-Periodic (see Sedion 22.3) Perfect Maps. However, Aperiodic and
Semi-Periodic Perfed Maps can exist for parameter sets for which the correspondng Periodic
Perfed Maps canna [43].

DEFINITION 1 An (R,S;m,n), - de Bruijn Torus (or Periodic Perfed Map) is a k-ary
(RxS) toroidal array with the property that evey kary (mxn) array occurs exactly once
as a periodic sub-array of the array. The pair (m, n) is often called the window, (R,S) the
period and(m,n) the order of the torus.

P O O O

N =)
o
S

SRS

Figure 1 A (4,4,2,2), - de Bruijn Torus.
REMARK 2 The (R1 mQ), - deBruijn Tori arede Bruijn Cydes.

De Bruijn Tori have interesting applicaions in roba self-locaion [32, 33|, pseudaandam
arrays [4, 34, 35, 36], and the design o mask configurations for spedrometers [37]. (For an
interesting variation onthis theme see[38]). Even cloth patterns have used these designs, long
before their mathematicd properties were discovered [39].

In 1984,Ma [2] proved the binary case of the following 1988theorem of Cock [40] (see &so
[41]).

THEOREM 3 For all m, nandk (except n=2 if k even) thereisa (k',k*;m,n), - de
Bruijn Toruswith r =m ands=m(n-1).

11



2.2.2.1.The Necessary Conditions of the Existence

The necessary condtions of the following Lemma were mentioned by Hurlbert and Isaak in
[42] and by Mitchell in[43].

LEMMA 4 If Aisak-ary (R,S;m,n), - deBruijn Torus then
1) R>m=1 oo R=m=1,

i) S>n=1 o S=n=1, and

i)  RS=k™

2.2.2.2.The Sufficient Conditions of the Existence

Paterson [44] showed that in the binary case the necessary condtions of the Lemma 4 arein
fad sufficient for the existence of de Bruijn Tori. In [45] he extended his work to al phabets of
prime-power size.

CONJECTURE 5 If R,S,m,nand k satisfy
) R>m,
i) S>n, and
i) RS=k™

then thereisan (R, S;m,n), - deBruijn Torus.
Hurlbert and Isa&k [46] produced tori for which the periodis not a power of k:

THEOREM 6 Let k have prime factorization |_| p,“ andlet q= k|_| p, ™ Then
for all m, nthereisa (g,k™/qg;m,n), - de Bruijn Torus.

In [47] they proved a sub-case (see Theorem 1 in Sedion 2.2.2.4). with the hope that it will
help extend this result.

The most progresstoward the previous conjecture by Paterson [48] is the following

THEOREM 7 Suppee k Rand S hse prime factorizations as foll ows:

k = I_l p, R= |‘J p" and S= I_l p,* for some O<r, <kmn where s =kmn-r,,
R>m and S>n. And that for somei we have p," >m and p,* >n. Then there exsts an

(R,S;m,n), - de Bruijn Torus.

This prompted Hurlbert, Mitchell and Paterson [49] to examine the parameter sets where

p," <m for someindicesand p,* < n for other indices in the case where m=n=2. They

developed new construction methods for some sub-cases (see Theorem 2 and Theorem 3 in
Sedion 2.2.2.4), and with the combination d those cases obtained the foll owing

THEOREM 8 The necessary condtions of Lemna 4 ae sufficient for the exstence of
an (R, S;2,2), - de Bruijn Torus.

12



2.2.2.3.A Spedal Case: deBruijn Square

In 1992Chung, Diaconis and Graham [50] asked whether it is possble that “square” tori exist
for evenn. That is, canit bethat R=S and m=n? This question was resolved for the binary
case by Fan, Fan, Ma and Siu [ 3], who proved

THEOREM 1 There exst a (2',2";n,n),- de Bruijn torus if and ody if nis even (of
course,r =n*/2).

Hurlbert and Isa&k [42] settled the question for general k with the foll owing

THEOREM 2 Except in the case that kisan even squaeand n=3,5,7 or 9, there
isan (R,R;n,n), - de Bruijn Torusif and orly if niseven or kisa perfed square.

In [48] Paterson made up for the missoncases(n=3, 5, 7 and 9), so previous theorem reals
asfollows.

THEOREM 3 Thereisan (R,R;n,n), - de Bruijn Torus if and oy if niseven or kis
a perfed square.

2.2.2.4 Some Constructionsfor Sub-Cases

THEOREM 1 For all sandt thereisa (4st®,4s’t*;2,2),., - de Bruijn Torus.
THEOREM 2 Suppee m>nzx2. Then there exists an (m*,n*;2,2) - de Bruijn
Torus.

THEOREM 3 Suppse n>2 is odd Then for evey k=1, there exsts a

(2n*,2%7;2,2) - deBruijn Torus.
2.2.3. Semi-Periodic Perfea Maps

In the semi-periodic case the array is considered as periodic in one dimension and aperiodic in
the other. This corresponds to writing the aray onto the outside of a cylinder.

DEFINITION 1 An (RS mn), - Semi-Periodic Perfed Map is a k-ary (RxYS)
toroidal array with the property that evey kary (mxn) array occurs exactly once in the set
of (mxn) semi-periodic sub-arrays. The pair (m,n) is often call ed the window of the map.

7111000 Of
10100 10
B o11110 of

Figure 1 A (38;2,2),- Semi-Periodic Perfect Map.

13



LEMMA 2 If Aisak-ary (R, S;m,n), - Semi-Periodic Perfed Map then
i) R=mzx=]
i) S>n=1 o S=n=1, and
i) (R-m+1)S=k™

In[43], C. J. Mitchell proved the binary case of the following

CONJECTURE 3 The necessary condtions of Lemnma 2 onR, S,m, n are sufficient for the
exstenceof ak-ary (R,S;m,n), - Semi-Periodic Perfect Map.

2.2.4. The Deaoding Problem

As arealy mentioned with reference to the one-dimensional case in Section 2.1.2.,Perfed
Maps play a significant role in many applicaions, espedaly in pgasition locaion [33, 51].
Demding means a method for computing the position d a given sub-array within a Perfed
Map. In [51] we can found methods for constructing Perfect Maps which can be decoded
efficiently. Some remark onthe dficiency of other methods can be foundin [43].

2.2.5. Infinite Perfect Maps

The definitions of the two-dimensional Growing Perfed Maps and Alternating Perfed Maps
can be easily generdlized from their one-dimensional equivalent (see Section 2.1.3). For the
most general definition seeSedion 2.3.2.

The following Infinite Perfect Maps can be @mnsidered as two-dimensional interpretations of
the Superperfed Sequences.

2.2.5.1.Increasing Perfed Maps

DEFINITION 1 An (R, S(x); m,n(x)), - Increasing Perfed Map is a Perfed Map with
the property that every prefix of the map is a (R, S(x); m,n(x)),- de Bruijn Torus, where
n(x) =x and S(x) =k™/R for x=1.2,....

Sx)
_N—

- n(x)

———————

R
—

R

1 S N EPRPPRRE '

Figure 1 Sketch of an Increasing Perfect Map
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2.2.5.2 Expanding Perfed M aps

DEFINITION 1 An (R(c,x), S(c, x); m(x),n(c, X)), - Expandng Perfed Map is a Perfed
Map with the property that evey prefix of the map is a (R(c, X), S(c, x); m(x),n(c, X)), - de
Bruijn Torus (c=0), where m(x) = X, n(c,X) =c+Xx, S(c,x) = k™" /R(¢c,x-1) and
R(c,x) = k™"eX) 1 5(¢, x) for x=1,2,....

REMARK 2 Expandng consists of two consecutive steps: first increasing the Perfed
Mapin orediredion,thenincreasingit in the other diredion.

y)
A

. — .
m(x) {

R(X) <

Figure 1 Sketch of an Expanding Perfect Map

2.2.6. Perfed Factors

DEFINITION 1 An (R, Su,v;T), - Perfed Factor isa set of T Rx S periodic arrays,

with symbals drawn from a set of size k having the property that every possble uxv array
occurs exactly once as a periodic sub-array in precisely one of the arrays.

REMARK 2 An (R S;u,v;1), - Perfect Factor is smply an (R,S;u,v), - de Bruijn
Torus.

Hurlbert, Mitchell and Paterson [49] obtained a wmplete answer for the necessary and
sufficient condtions of the existencein the cae where k is a prime-power:

THEOREM 3 Let p be a prime and k, r, s and t be integers. The ndtions that
p',p°>2 and r+s+t=4k are necessary and sufficient for the exstence of a

(p", p%22 pt)pk - Perfed Factor.

2.3. Higher dimensions

2.3.1. DeBruijn d-Tori
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DEFINITION 1 Let ﬁ:(rl,...,rd) and n=(n,...,ny) with r, >n, and |_|ri =kl
We call a d-dimensiond toroidal k-ary block an (R;)¢ - de Bruijn Torusif it has dimensions

r,x---xry and evey k-ary n x..-xn, block appears exactly once contiguotsly in the d-
dimensiond torus.

DEFINITION 2 A fundamental block of an (R;m){- de Bruijn Torus is an aray
consisting d r, conseautive rows in the i"™ dimension for i =1, 2, ... , d. Repeating such a
block produces the torus.

REMARK 3 A matrix appears uniquely in an infinite periodic array if it appears
uniquely in afundamental block.

One then has the foll owing theorem, mentioned in [40] and proved in [46].

THEOREM 4 For all m, d andk thereisan R sothat thereisan (R;n)¢ - de Bruijn
Torus (except that n. =2 for at most one index i when k is even) with the following
properties:

j-1
! (ni—l)l_l n
n-1 _
r, =k™ andrj:(l_|ri)l =k =
1=1

REMARK 5 So Cock's technique [40] easily generalizes to higher dimensions, bu
unfortunaely, each new dimension ha sze eyponential in the previous.

CONJECTURE 6 If k, R and i satisfy
i) k" >n foral 1<i<d and
d ﬁni

i) Uri =k

then thereisan (R;n) - de Bruijn Torus.

2.3.1.1.A Spedal Case: deBruijn d-Cubes

Hurlbert and Isaak [42] asuumed that Conjecture 6 is true for n, =---=n, =n and

r=--=ry = k™'4 that is de Bruijn d-Cubes. In [24] Ivanyi and Horvéh constructed the
small est possble (a 256x% 256x% 256 sized 8-ary) 3-Cube.

2.3.1.2Infinitede Bruijn d-Cubes

2.3.1.2.1. Growing de Bruijn d-Cubes

In [24] Ivanyi and Horvéth propased the foll owing definitions and proved Theorem 3.
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DEFINITION 1 Let k =(kk,...) bea strictly increasing sequence of positive integers.
A (K™ n)?- Growing ce Bruijn Cubeis a de Bruijn d-Cube whose prefixes are (k™'¢; n)y, -
de Bruijn Cubes for i =1,2,....
DEFINITION 2 For n,k = 2 the new alphabet size K(k,n) is

0k, if any prime divides k,

K(k,n) =
(k) a, otherwise,

where q isthe product of prime divisors of n na dividing k.
di

THEOREM 3 If d>1, n=2, k=2 and k, = N%®@™ for {=12,... then exsts a
(k™'®;n)2- Growing ce Bruijn Cube.

2.3.2. Infinitede Bruijn d-Tori

2.3.2.1Increasingde Bruijn d-Tori

DEFINITION 1 An (R(X);N(x))2- Increasing ce Bruijn Torus is a de Bruijn d-Torus
with the property that every R(x) sized prefix of the torus is an (R(X);n(x))¢ - de Bruijn
Torus, where A(x) =(n;,n,,...,n,,x) and ﬁ(x)=<r1,r2,...,rd_l,nfle“'fd-lx/rlrz...rd_l> for
Xx=12,....

2.3.2.2 Expanding de Bruijn d-Tori

DEFINITION 1 An (R(X);N(x))¢- Expandng de Bruijn Torus is a de Bruijn d-Torus
with the property that evey prefix of the torus is an (R(x);N(x))¢ - de Bruijn Torus, where
n(x)=c +x(c,=0,c =20fori=23...) and

i d
n; (x) n; (x-1) i

I'! d
r(x)=k= = ITlr.)]|r. (x=1) for x=12,....
2.3.2.3 Developing de Bruijn d-Tori
DEFINITION 1 Let A =(nn,.... be a sequence of positive integers. An (R;M); -
Devdoping ¢k Bruijn Torusis a de Bruijn d-Torus with the property that evey i-dimensiond
prefix of the torusisan (R; M), - de Bruijn Torus, where r; = U /"l o for j=12,...,i.
#]

2.3.2.4.Growing deBruijn d-Tori

DEFINITION 1 Let k =(kk,...) bea strictly increasing sequence of positive integers.
An (ﬁ(l?);ﬁ)‘kj - Growing ¢k Bruijn Torusis a de Bruijn d-Torus with the property that evey
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prefix of the torus is an (R(k);R) - de Bruijn Torus, where r, (ki)=ki|_|”kll<_|rk
%]

(j=1...,d) fori=22,....

2.3.2.5Alternating de Bruijn d-Tori

DEFINITION 1 An (R;M)2 - Alternating de Bruijn Torusis a de Bruijn d-Torus with the
property that evey i' sized prefix of thetorusisan (R;n)? - de Bruijn Torus with |_| n, =i,

d

and evey (i+1)' sized prefix is an (R;n)%,- de Bruijn Torus with |_|nj =i+1, for
i=12,....

2.3.3. Perfed Factors (de Bruijn Families)

DEFINITION 1 A d-dimensiond k-ary, order n Perfed Factor (or de Bruijn Family) of
sizet and period R isafamily {B,,...,B;} of d-dimensiond k-ary toroidal arrays, of period

R each, with the property that for evey d-dimensiond k-ary matrix M of size i thereis a
uniquej and a umque i so that M appearsin B; at position i . (We will say that a paticular

matrix M of size N appears in B at a pasition i_:<il,...,id> if M appears in the pasitions
i throughi +n.) We call such a Perfed Factor an (R;m;t)¢ - Perfed Factor.
REMARK 2 In the ase that d =t =1, Perfed Factors have been called de Bruijn

Cydes. Perfect Factors with t =1 and d >1 have been called de Bruijn Tori (or Perfed
Maps).

Hurlbert and Isa&k [52] obtained the foll owing

THEOREM 3 Let k = lj p,“ for primes p, andfor j < d suppcethat r, = |j piﬁ”
with each p, P> 2. Further asaume that for each i<s there is a permutation
0, =(0,,,+,0,4) of {1...,d} sothat for each | <d we have JIZ'Bi'Ui‘j <a,2 . Then thereis
an (R;m;t)¢ - Perfed Factor, where each n, = 2.

3. Todsfor Parallelizing the Algorithm

3.1. The Available Evolutionary Computing Toals

The foll owing two models were spedfied by Eiben and Smith [53].
3.1.1. Isand Model
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The principle of the ISand Model is that we have multiple popuations in paraléel. They exist
and evolve independently from one ancther; each ore is a separate “idland’. Sometimes
individuals are moving from a popuation to another neighbouing one, this processis cdled
migration. Its medhanism is ill ustrated in Figure 1, where we have three popuations with
threeindividuals migrating, ore from island 2to1 and two from island 3to 2.

1 2

e
&

3
Figure 1 Sketch of the ISland Model

Migration takes place after an epoch, namely a number of generations. Whil e the popuations
are evolving independently from the others, they are exploring a certain part of the search
gpace that is they are exploiting that area If a new individual gets into the popuation, it can
dired the seach into ather (maybe fitting) directions and by this means expand the space
seached so far, hence facilit ating exploration.

Basic parameters and some recommendation to consider:

1)  How long shoud be an epoch? Its length is usually fixed, bu we have wurtless
posshiliti es to pant it into the evolutionary mechanism and make it depend on some
other parameter or feature of the popuations.

i)  How many individuals to exchange? If we exchange alarge number of individuas, the
popuations may converge to the same solution too rapidly, and we will have alot of
popuations producing the same results, consuming time and cgpacity unnecessarily.

iii)  Whichindividuals to exchange? The seledion may carry out on the basis of fitness or
it can be simply a random choice In the latter case it is lesslikely that a popuation
will be took ower by a new high-fithessmigrant.

iv)  How to initialize the different popuations? It is not guaranteed that the different
popdations are exploring different regions of the search space, that’s why we have to
be very cautious and apply some refined heuristics during the initi ali zation process

It is possble to maintain different popuations with dfferent parameters, like the cntinents
have different feauresinred life.

3.1.2. Diffusion M od€

The principle of the Diffusion Model is that we have multiple overlapping subpopuations in
parallel. The members of the popuations can be considered being scattered over on a toroida
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grid, and communicaing only with individuals in their neighbouhood. Communicaion
means the gplicability of the recombination and seledion operators in this context. This
medhanism is ill ustrated in Figure 1, where the blad individua in the middle ommunicaes
exclusively with the grey onesin itsimmediate vicinity.

Figure 1 Sketch of the Diffusion Model

Basic parameter s and some recommendation to consider:

)

How large shoud be a neighbouhood? The size of the neighbouhoodis usualy the
same for all nodes, bu we can make it depend onsome fedure of the individual, by so
doing the popuations turn into some kind o redistic community, where the
individuals are making friends with each ather: there are timid ores with smaller
vicinity and socia ones with larger vicinity.

Which element to replace? Owning to the overlapping feaure of the subpopuations
we have to be very careful when applying the replacement operator. If both
subpopuiations want to replacethe same individual, race cndtions may occur. This
situationisill ustrated in Figure 1, where two subpopuations indicated by blad frames
want to replace the same individual in their intersedion. One possble solution is to
replace the central node of a subpopuation.

3.2. The Parallel Testing Environment

The system where | run my paralel applicaions is cdled DAS2 (Distributed ASCI
Supercomputer 2). It was designed by the Advanced Schod for Computing andimaging, a
cooperation between a number of Dutch Universities. The machine is built of clusters of
workstations, which are interconnected by SufNet, the Dutch unversity Internet badbone for
wide-area @mmunicaion. The nodes within aloca cluster are conneded by a Myrinet-2000
network, a popudar high-speed LAN. The system was built by IBM and runs the Red Hat
Linux operating system. The dusters are located at five Dutch Universities, there are 200
nodes atogether. | use only one duster of 72 nales, locaed at the Vrije Univeristeit.

Each nock ontains;

* Two 1GHz Pentium Ills
* Atleat 1GB RAM (2 GB for two "large" nockes)
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* A 20GBytelocd IDE disk
* A Myrinet interface cad
* A Fast Ethernet interface card

Eadh cluster consists of afile/compil e server (cdled fsO that of VU) and a number of compute
nodes. Running of jobs must be dore on the worker nodes via the duster scheduling system
OpenPBS. This system reserves the requested number of nodes for a specific duration (the
default is 15 minutes). The user interfaceof this job manager is cdled prun which provides a
convenient way to start jobs.

For more information about the DAS-2, seehttp://www.cs.vu.nl/das2.
4. The Specification of the Evolutionary Algorithm

4.1. One-dimensional Case

4.1.1. Reference Algorithm

A badktradk seach is implemented in DbcBackTrack vl.java and DbcBackTrack v2java.
Their functioning is the same, bu the implementation dffers. The number of basic steps and
the badctradks needed is quite lessin case of the first algorithm (version 1), bu it is much
rather memory consuming and slower than the second ore (version 2.

4.1.1.1 Functioning o the Algorithm

The program reads the parameters (the dphabet size and the span size) from the standard
inpu and seaches the spaceof the dl possble andidates for de Bruijn Cycles.

The longest possble cycle that the program can produce, has the length of 127" (the reason
for thisis the byte representation d the dphabet size and the span size, which has a maximum

value of 2% —1). While realing the parameters from the standard inpu, the program gives a
warning and the set of possble values if the length of the cycle would exceeal the @owve
threshold. When having the parameters, it gives the length and the number of such cycles (see
Sedion 4.1.3.2), and asks whether to find all the possble ones.

Its output (the cycles, the number of basic steps, badctracks and CPU time needed) is written
to afile named dbc_alphabet_span_l.txt where the strings “aphabet” and “ span” dencotes the
adual size of the parameters.

4.1.1.2.Spedfication of the Algorithm

In what follows k and n dencte the size of the dphabet and the span, respectively. The seach

space is the space of al possble candidate cycles, its szeis k" (note that k" is the length of
the cycle).

4.1.1.2.1. Version 1.

Basicstep:  Inserting a suitable tuple into the cycle.
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Ead candidate is boundto contain the dl zeros tuple, so we insert this tuple into the fore-part
of the candidate. This part of the candidate is fixed, there is no bactrack from this level
(levels of the search tree @rrespondto the positionsin the candidate where we ae trying to fit
atuple). In ather words this means that the search dces not neel to be exeauted beginning
with the other possble tuples. The explanation for this heuristic is the periodic feature of the
cycles, namely no matter from which pasition the cycle is inspeded. Hence we can be sure
that al the possble candidates will be found onthe branch beginning with the dl zeros gan.

Theprinciple of the functioning

At ead pasition d the candidate we try to fit a suitable tuple. Suitable means that we have
amost the whole tuple alrealy, only its last element is ladking. The reason for thisis that we
have inserted the dl zerostuple of size n at thefirst position.

To provide for finding a suitable tuple we have threearrays.

i) tuples The possble tuples are stored in a two-dimensional array where the index of
the first dimension stands for the dedmal value of the k-ary tuples.

i) triedAlready On ead level we kegp areoord of the tuples which we have drealy
inspeded a branch beginning with. These tuples are stored encoded to deamal in a
two-dimensional array where the index of the first dimension stands for the level.

iii) tuplesinCandidate The tuples used upto crede a cadidate ae stored encoded to
deamal in aone-dimensiona array.

The reason for encoding is to make the search in triedAlready and tuplesinCanddate faster,
and to econamize on the memory of course.

Once atupleis picked from tuples and if its dedmal value is nat in tuplesinCanddate and in
the gpropriate aray of triedAlready then it can be inserted into the candidate. If tuples does
not contain any suitable tuple, then we make a badtradk and modify the content of
triedAlready and tupleslnCanddate acaordingly.

Candidates on the lowest level (when the level is equal to the length of the cycle) are boundto
be de Bruijn Cyclesand to dffer from the previously found ores.

4.1.1.2.2. Version 2.

Basic step:  Inserting an element of the dphabet into the cycle.

This version is much simpler than the pervious one. The principle of the functioning is
similar: inserting something new into the cycle. But in this case that “new” will be an element
of the dphabet, na a whale tuple. This lution hes a drawbad that the cycle shoud be
inspeded in every step whether the “perfedion” is corrupted by inserting a new element.

To provide the proper functioning of the dgorithm we need ony one two-dimensional array
(triedAlready) to store the dementstried already in alevel of the search tree.
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4.1.1.3.Parallelizing the Algorithm

The pardlel version d the dgorithm is implemented by means of Java RMI (Remote Method
Invocaion) and Java threads. It is adjusted to the parall @ testing environment, the DAS-2 (see
Sedion 3.2). The program consists of two componrents which are outlined below.

i)  The remote objed is implemented in DbcBacKkTrackRemoteObjed.java. Its task is to
perform a seach beginning with a particular node on a certain branch of the seach
treg to that end it provides an interfacewith a publi c function cdled doBackTrack().

i)  Themain program is implemented in DbcBackTrackRemote.java. It divides the seach
tree anong a given number of threals, namely every threal is provided with a nock,
which the search has to be performed beginning with.

The number of threads equals to the number of loaded remote objeds, so there is a one-to-one
correspordence between them. The task of the threads is to conred to the remote objeds,
invoke their doBacKTrack() function, and return with the solution. The references to the
remote objeds can be retrieved by creding afile (id), which contains the names of the hosts
they are running on. This can be done in the foll owing way. When starting the remote objects,
the output of the prun command hes to be direded into thefile:

>prun —-v -1 ./run_java numproc D bcBackTrack Remot eObjec t 2> id

The-v flag isesentid, it reports the host all ocaion. The -1 flag indicaes that we want to run
one processper noce. The exeautable run_java is a speda script, which sets the gopropriate
system properties to make running Java gplicaions possble. The agument numproc stands
for the number of processors.

The main program will read the information about the hosts from the id file, and will start a
proper number of threads.

4.1.2. Genetic Algorithm

The first stage to buld a genetic dgorithm is to dedde on a representation d a candidate
solution to the problem. A straightforward ideais letting the phenotype and the genotype of
an individual be the same, namely fixed-length combinations of the dements of the dphabet.

| made severa experiments applying different operators and seledion mechanisms, and the
conclusionis that the dgorithm based ona “tricky” representation works more dficient. This
IS a permutation representation based ontokens (see Sedion 4.1.3.1), and the componrents of
this algorithm are outlined below.

The dgorithm is implemented in DbcGA.java, and the different componrents are implemented
in dfferent classes (Initializationjava, Mutation.java, Recombinationjava, Evaluationjava
and SuvivorSeledionjava). These comporents provide an interface with some functions that
redizes various operators and mechanisms.

4.1.2.1.Representation
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The phenotype space and the genotype space ae different. Phenotypes are the paossble
solutions within the original problem context. Genotypes are permutations of references to
different tokens. Given the dphabet and the span size, the number of tokens is particular, and
eah chromosome has to contain al the possble tokens. The diromosomes consist of unique
elements, because even if two tokens are ejual, the references to them are different. The
mapping between the genotype and the phenatypeisill ustrated in the figure bel ow.

references to tokens
|
genotype: 1|4‘3|2 110100
211111
—
3]0
phenatype: |0 o0|0f1|0|1]1]1] 4]1
tokens

Figure 1 Representation d an individual

Applying this representation the search spac will be dl the possble permutations of the
tokens. The size of this space— considering each one of the tokens as unique — is N(k,n)!,
where N(k,n) denotes the number of tokens given the dphabet size (k) and the span size (n).

4.1.2.2 Initialization and Termination Condition

The popuation has afixed size, and first it is fill ed with randam permutations of the possble
elements (the references to tokens).

4.1.2.3.Evaluation Function

The evaluation function assgns a quality measure to genotypes. The am is to minimize this
function, it minimum value is zero. An individual with minimum fitnessvalue is boundto be
ade Bruijn Cycle. Thisfunction has two comporents:

i) Inthe phenotype space

At each pasition we insped the diromosome whether the tuple beginning at that position is
unique, so every paosition has an own part-fitness value. When considering a tuple, al the
pasitions neel to be examined before its beginning position. If it is unique then the part-
fitnesswill be zero, aherwiseit will standfor the rank o the tuple, namely how many timesiit
occurred before (see the figure below). The acdual fitnesscan be gained by summing up these
part-fithess values. The zero value of this fitness indicaes that al the tuples are unique,
namely we have foundwhat we were searching for.
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phenatype: 0/{0|0|0|1|1]|1
ranks; 0(1(0|/0|0|12]|0]0
T It is 1, because the dl zeros

tuple occurred orce before.

Figure 1 Ranks of the positions
i)  Inthegenotype space

If two tokens get next to ead aher, it will be alega arrangement only if thelr elements are
different. The reason for thisis that the longest token is pan-sized long, and if it gets next to
any of the tokens having the same dements, then the span-sized tuple will be occur twice,
hence @rrupting perfection.

In a diromosome there are N(k, n) fitting points, where tokens can get next to eat ather. We
observe the number of legal conrections by means of a variable: if two adjacent tokens are
different, then it is increased by one. If the value of this variable equals to N(k,n), then the
chromosome has a legal permutation d the dements. This measure is redized by adding the
difference of the number of tokens and N(k,n) to the fitnessvalue.

4.1.2.4 Parent Selection Mechanism
4.1.2.5Variation Operators

4.1.2.5.1. Recombination

4.1.2.5.2. Mutation

4.1.2.6.Survivor Seedion Mechanism

4.1.2.7 Parallelizing the Algorithm

The Isand Model (see Sedion 3.1.1) serves as the basis of the paralel version d the
algorithm. It is implemented by means of Java RMI (Remote Method Invocaion) and Java
threads. It is adjusted to the parall € testing environment, the DAS-2 (see Sedion 3.2). The
program consists of threecomporents, which are outlined below.

1)  The Remote Object
The remote objed is implemented in DbcGARemoteObject.java. Its task is to evolve a

popdation, a separate “island’, and it aso supports the migration d the individuals. To that
endit provides an interfacewith six pulic functions described below.
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The function startGA(byte alphaket, byte tupleSze, int popuationSze, int epoch, int
number OfMigrants) creates and evolves a population with the given parameters. The
parameter epoch stands for the number of generations after individuals are exchanged. The
migration neeads to be synchronized, namely the exchange of individuals have to be an atomic
operation.

This atomicity is realized as foll ows. When the migrationisin due time - that is the required
number of generations has evolved -, the evolution d the popdationis suspended urtil all the
migration mechanisms (sending and receiving individuals) accomplishes. From the aspect of
the remote objed the migration consists of four conseautive steps:

1) First it indicaes that it is ready to accept requests for the seledion and sending of
migrants. It is redized by setting the vaue of the private variable
waiti ngFor SendMigrantsThread to true. The interface provides read access to this
variable through the pulic function isWaiti ngFor SendMigrantsThread().

i) It prepares the migrants by marshalli ng the seleded individuals and their fitnessvalues
into a “package”, which is implemented as a vedor of length two, first element
reserved for the individuas, second for their fitness values. The number of the
individuals is determined by the parameter numberOfMigrants, and the seledion
medhanism is based on fitness namely the ones with best fitness are seleded for
migration. It is important to remark that the individuals are nat effedively moved to
the other popdation, they are merely copied. If the marshalling is realy, the objed
natifies the thread SendMigrantsThread already waiti ng for the migrants.

iii) Thenit indicaes that it is realy to accept requests for the reception d migrants. It is
redized by setting the value of the private variable waiti ngFor RecaveMigrantsThread
to true. The interfaceprovides read accessto this variable through the pulic function
isWaiti ngFor ReceiveMigrantsThread().

Iv)  The replacement of the individuals is sttled by the thread ReceiveMigrantsThread,
and the objed is waiting while it isin progress In the @urse of replacement first the
individuals with worst fitnessare wiped ou from the popuation, then the migrants are
unmarshalled and inserted into the popuation. It is important to remark that the
references of the migrants need to be readjusted to the locd ones. If the replacament is
realy, the thread ndifies the objed that the evolution d the popuation may continue.

i)  TheMigration Manager

The migration d the individuals is implemented in MigrationManager.java. It credes the
condtions of migration by providing every popuation with two kinds of threals, a
SendMigrantsThread, and a RecaveMigrantsThread. The mntad point between these threads
and the popuations is redized by the sendMigrants(int numberOfMigrants) and the
recaveMigrants(Vector migrants) function d the remote objed, respedively. These functions
perform the acual exchange of individuals and can be invoked by the threads.

It is important to nae that the popuations form a cycle, so an urembiguous neighbouhoad
relationship can be defined between two popuations as ill ustrated in the figure below.
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Figure 1 The migration between popuations

As dready mentioned with reference to the remote objed, the migration reeds to be
synchronized. This synchronization was made dea on the level of individual popuation in
the previous ction. Now we inspect a higher level, where we take dl the popuation into
consideration.

The main concern is that the recgption d migrants from a neighbouing popudation requires
these migrants to be dready prepared. Hence we have to apply some kind of scheduling, and
it works as follows. First we demand every popuation to prepare their emigrants.
Transitionally, urtil al the popuations are realy, they are stored in an array cdled
dllisisand'. Then, the elements of this array are delivered to the proper popuation. This
scheduling — keeping the popuations wait for each ather — does not have a detrimental impad
on the performance, because the popuations are evolving with the same parameters, hence the
time nealed to produce a new generationis the same for every island.

i)  TheMain Program

The main program is implemented in DbcGARemote.java. Its task is to start the threads,
which evolve the separate popuations on dfferent remote objeds, and the migration
manager, respectively.

The references of the remote objeds can be retrieved in the same way as in the cae of the
badktrack search algorithm (seeSedion 4.1.1.3.

4.1.3. Results

4.1.3.1. The Number of Tokensin a Cycle

While inspeding the generated tuples, | noticed that every de Bruijn Cycle consists of a
definite number of tokens. Let’'s consider the case when k=2 and n=4. Figure 1 shows a
possble (16,4),- de Bruijn Cycle.
[0 0001001101 01111
Figure 1 A (164),- deBruijn Cycle

A token is an unnterrupted sequence of identicd numbers. The de Bruijn Cycle in Figure 1
has the foll owing tokens:

! Inspired by New York immigrants quarantinein Elli s Island in the ealy 20" century.
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{<0 0 0 0>,<1 11 1>,<0 0>,<1 1>,<0>,<0>,<1>,<1>}

Therelation between k, n and the number of tokensis as foll ows.

Length of the token Number of the token
n k

n-1 (k -2k

n-2 (k-1)%k

n-3 (k-1)2k?

n—i (k_l)zki—l

4.1.3.2.The Number of de Bruijn Cycles

The number of spanning trees of a (k, n) - de Bruijn Graph (seeSedion 2.1.7) isasfollows:

K=

n-2 ) 1+ 12j
k<2 D(Erl f1(x), where f(x) =k**(x)* and x =k 2 .

| obtained the @owve formula by observing the results of a number of experiments. | used a
program (DBGraphjava) to creae de Bruijn Graphs and my final goal was to determine the
number of their spanning trees. These graphs needed to be mrnverted to an equivalent form
withou self-loops before creding their in-degree matrix. When having these matrices | used
Maple to get the determinant of their minors. | verified the formula for the cases when
k=12,..6 and n=1234.

Note that because the number of spanning trees of a (k,n) - de Bruijn Graph will be dways
the power of k, it is sufficient to compute the logarithm of the @owve formula, namely

(k—2)+y+n|;1|2 f(y), where f(y)=(k-D+kLy and y =1+ 2].

Applying this formula the number of spanning trees of a (k,n)- de Bruijn Graph can be
determined in ©(n+Kk) time, which is much faster than any other algorithm known so far (see
Sedion 2.1.7).

Considering the fads about Euler paths (see Sedion 2.1.7) the number of (k";n), - de Bruijn
Cycles can be given by the foll owing formula:

%k—2)+y+ |‘j fi(y)Ej(k—l)!)k“,where f(y)=(k-D+ky and y=1+'5 2].
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4.1.3.3.Test Results

4.2. Two-dimensional Case
4.2.1. Reference Algorithm
4.2.2. Genetic Algorithm

4.2.3. Results

4.3. Three-dimensional Case
5. Final Remarks
Appendix A

Here comes the documentation d the PMG software. This will consist of two parts. a user
documentation and a development documentation.

Appendix B

Here comes thelist of the referenced programs.
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