

Evolutionary Computing Solutions for the

de Bruijn Torus Problem

Master ’s Thesis

by

J. B. Kapinya

Supervisor : Prof. Dr. A. E. Eiben

Co-Supervisor : Prof. Dr. Antal Iványi

Second Reader :

VRI JE UNI VERSI TEI T

AM STERDAM

2004

2

Author

Judit Kapinya

Faculty of Sciences
Vrije Universiteit
De Boelelaan 1081a
1081 HV Amsterdam

juditk@elte.hu

Supervisor Co-Supervisor

Prof. Dr. A. E. Eiben

Faculty of Sciences
Vrije Universiteit
De Boelelaan 1081a
1081 HV Amsterdam

gusz@cs.vu.nl

Prof. Dr. Antal Iványi

Eötvös Loránd University, Budapest
Department of Computer Algebra
Pázmány Péter sétány 1/c
1117 Budapest

tony@inf.elte.hu

Second Reader

3

Content

1. Introduction..5
2. Theoretical Survey on the Mathematical Problem... 5

2.1. One-Dimensional Case..5
2.1.1. Perfect Sequences (de Bruijn Cycles) ..5
2.1.2. The Decoding Problem...6
2.1.3. Infinite Perfect Sequences..6

2.1.3.1. Superperfect Sequences...6
2.1.3.2. Growing Sequences...6
2.1.3.3. Alternating Sequences...7

2.1.4. Perfect Factors (Equivalence-Class de Bruijn Cycles)...7
2.1.5. Perfect Multi -Factors..8
2.1.6. Generalized Perfect Factors..9
2.1.7. De Bruijn Graphs ...9

2.2. Two-Dimensional Case... 10
2.2.1. Aperiodic Perfect Maps..10
2.2.2. Periodic Perfect Maps (or de Bruijn Tori)..11

2.2.2.1. The Necessary Conditions of the Existence..12
2.2.2.2. The Suff icient Conditions of the Existence...12
2.2.2.3. A Special Case: de Bruijn Square...13
2.2.2.4. Some Constructions for Sub-Cases... 13

2.2.3. Semi-Periodic Perfect Maps...13
2.2.4. The Decoding Problem...14
2.2.5. Infinite Perfect Maps..14

2.2.5.1. Increasing Perfect Maps..14
2.2.5.2. Expanding Perfect Maps...15

2.2.6. Perfect Factors..15
2.3. Higher dimensions...15

2.3.1. De Bruijn d-Tori ...15
2.3.1.1. A Special Case: de Bruijn d-Cubes... 16
2.3.1.2. Infinite de Bruijn d-Cubes...16

2.3.1.2.1. Growing de Bruijn d-Cubes...16
2.3.2. Infinite de Bruijn d-Tori ...17

2.3.2.1. Increasing de Bruijn d-Tori ...17
2.3.2.2. Expanding de Bruijn d-Tori ..17
2.3.2.3. Developing de Bruijn d-Tori ...17
2.3.2.4. Growing de Bruijn d-Tori ...17
2.3.2.5. Alternating de Bruijn d-Tori ...18

2.3.3. Perfect Factors (de Bruijn Families) ..18
3. Tools for Parallelizing the Algorithm ..18

3.1. The Available Evolutionary Computing Tools...18
3.1.1. Island Model ...18
3.1.2. Diffusion Model ...19

3.2. The Parallel Testing Environment...20
4. The Specification of the Evolutionary Algorithm..21

4.1. One-dimensional Case...21
4.1.1. Reference Algorithm..21

4.1.1.1. Functioning of the Algorithm..21

4

4.1.1.2. Specification of the Algorithm..21
4.1.1.2.1. Version 1. ... 21
4.1.1.2.2. Version 2. ... 22

4.1.1.3. Parallelizing the Algorithm...23
4.1.2. Genetic Algorithm..23

4.1.2.1. Representation... 23
4.1.2.2. Initialization and Termination Condition..24
4.1.2.3. Evaluation Function..24
4.1.2.4. Parent Selection Mechanism...25
4.1.2.5. Variation Operators...25

4.1.2.5.1. Recombination ...25
4.1.2.5.2. Mutation...25

4.1.2.6. Survivor Selection Mechanism ...25
4.1.2.7. Parallelizing the Algorithm...25

4.1.3. Results..27
4.1.3.1. The Number of Tokens in a Cycle..27
4.1.3.2. The Number of de Bruijn Cycles..28
4.1.3.3. Test Results...29

4.2. Two-dimensional Case..29
4.2.1. Reference Algorithm..29
4.2.2. Genetic Algorithm..29
4.2.3. Results..29

4.3. Three-dimensional Case..29
5. Final Remarks ..29
Appendix A ..29
Appendix B ..29
Bibliography...30

5

1. Introduction

Perfect Maps (or de Bruijn Tori), namely, two-dimensional arrays in which every possible
rectangular sub-array (of fixed size) occurs precisely once, have been studied for a long time
and a vast literature exists concerning them (see, for example, [1]). A number of construction
methods have been devised [2, 3, 4], but the existence question has not been completely
answered.

...

2. Theoretical Survey on the Mathematical Problem

2.1. One-Dimensional Case

2.1.1. Perfect Sequences (de Bruijn Cycles)

In one-dimension the aperiodic and periodic cases are not clearly distinguished in the
literature, because they are barely different from each other and the conversion is trivial
between them. The phrases de Bruijn Cycle and de Bruijn Sequence are equally in use to stand
for the periodic case, where the sequence is considered to be wrapped round on itself. This
corresponds to writing it on the outside of a cylinder.

DEFINITION 1 A k

n nk);(- de Bruijn Cycle is a cyclic k -ary sequence of length nk

with the property that every k-ary n-tuple appears exactly once contiguously on the cycle. The
parameter n is often called the span of the sequences.

]11101000[

Figure 1 A 2)3;8(- de Bruijn Cycle.

REMARK 2 In a cycle there are two directions and they need to be considered as
different in spite of the fact that they represent the same cycle. For example in Figure 2 we
have two cycles:]11101000[(found clockwise) and]10111000[
(found counter-clockwise).

Figure 2

THEOREM 3 A k

n nk);(- de Bruijn Cycle exists for every k and n (2≥k and 1≥n).

0

0
0

0

1

1
1

1

6

Such cycles were first discovered in 1894 by Flye-Sainte Marie [5], and rediscovered in 1946
by de Bruijn [6] and Good [7]. An excellent survey on the topic by Fredricksen can be found
in [8].

De Bruijn Cycles have applications in the study of position-detection [9, 10, 11, 12, 13, 14,
15, 16], pseudorandom numbers, cryptography, nonlinear shift registers and coding theory,
and a vast literature exists [17, 18, 19, 20, 21].

2.1.2. The Decoding Problem

The decoding problem is to discover the position any specified n-tuple within a particular
sequence. In spite of its importance [9, 33, 12] it has been much less well studied than the
construction problem.

A summary of the previous work and two new methods for construction of de Bruijn Cycles
(which have the advantage that they can be decoded very eff iciently) can be found in [22].

2.1.3. Infinite Perfect Sequences

2.1.3.1. Superperfect Sequences

DEFINITION 1 A k

n nk);(- Superperfect Sequence is a Perfect Sequence whose nk

length prefixes are k
n nk);(- de Bruijn Cycles for �,2,1=n .

In 1986, Cummings and Wiedemann [23] gave a sufficient condition for the existence of such
sequences.

2.1.3.2. Growing Sequences

DEFINITION 1 A k

n nk);(- Growing Sequence is a Perfect Sequence whose nk length

prefixes are k
n nk);(- de Bruijn Cycles for �,2,1=k .

DEFINITION 2 Let �21kkk = be a strictly increasing sequence of positive integers.

An
k

n nk);(- Growing Sequence is a Perfect Sequence whose n
ik length prefixes are

ik
n
i nk);(- de Bruijn Cycles for �,2,1=i .

REMARK 3 This is the one-dimensional equivalent of a more general definition that
can be found in Section 2.3.1.2.1.

Hurlbert and Isaak [47] in 1994 constructed a Growing Sequence for the case when k is the
sequence of the even number. Then years later, Iványi and Horváth [25] proved the following

LEMM A 4 If 1≥n and 1≥k then any k

n nk);(- de Bruijn Cycle can be continued

in order to get a 1);)1((++ k
n nk - de Bruijn Cycle.

This lemma yields [25] the following

7

THEOREM 5 If 1≥n and �21kkk = with iki = , then exists a

k

n nk);(- Growing

Sequence.

The most general result (see Section 2.3.1.2.1.) can be found in [24].

2.1.3.3. Alternating Sequences

Alternating Sequences are hybrids of the previously mentioned two kind of infinite sequences.
The proof of their existence can be found in [25].

DEFINITION 1 An Alternating Sequence is a Perfect Sequence whose ii length prefixes
are i

i ii);(- de Bruijn Cycles and ii)1(+ length prefixes are 1);)1((++ i
i ii - de Bruijn Cycles

for �,2,1=i .

2.1.4. Perfect Factors (Equivalence-Class de Bruijn Cycles)

Perfect Factors are related objects introduced by Etzion [4] and later by Hurlbert and Isaak
[42] as Equivalence-Class de Bruijn Cycles. Perfect Factors have proved useful in
constructions for de Bruijn Tori and have been extensively studied in [26, 27, 28, 29].

DEFINITION 1 An kTnR);;(- Perfect Factor is a set of RkT n /= k-ary, period R

sequences in which every k-ary n-tuple occurs exactly once as a subsequence. The parameter
n is often called the span of the sequences.













]010110222[

],202002111[

],121221000[

Figure 1 A 3)3;3;9(- Perfect Factor.

REMARK 2 Perfect Factors are generalizations of the classical de Bruijn Cycles: a
de Bruijn Cycle is a Perfect Factor with 1=T , that is a k

n nk)1;;(- Perfect Factor.

The following necessary conditions for the existence of a Perfect Factor were formulated in
[28].

LEMM A 3 Suppose A is an kTnR);;(- Perfect Factor. Then

i) ,| nkR and

ii) nkRn ≤< or)1(== nR .

CONJECTURE 4 The conditions of Lemma 3 are sufficient for the existence of an

kTnR);;(- Perfect Factor.

8

Etzion [4] has shown that the conjecture holds in the binary case. This was extended to cases
where k is a prime power by Paterson [29]. Mitchell and Paterson [30] have shown the
suff iciency for the case when 1−= Rn .

In the view of the first condition in Lemma 3 we can assume that the prime factorizations of k
and R are:

∏
=

=
n

i

k
i

ipk
1

 and ∏
=

=
n

i

r
i

ipR
1

 where nkr ii ≤≤0 for each i.

It was also proved in [29] that the conditions of Lemma 3 are sufficient when np is
i > for

every index i. In [26] this result has been improved to establish the suff iciency of the

conditions of Lemma 3 whenever np is
i > for at least one index i.

Mitchell has shown that the conjecture holds if 5<n [27] and that Perfect Factors exist for all
triples kRkR)/,6,(6 satisfying the conditions of Lemma 3 with some possible exceptions

[26]. He obtained Perfect Factors for some of those exceptions in [28].

This result was extended to 7<n in [30]. Regarding the cases 7=n and 8, unresolved
parameter sets and remarks can be found in [30].

Mitchell [27] has shown that the following Perfect Factors exists:

i) dd 6
32)6,3,6(- Perfect Factor),1(≥d

ii) dd 10
32)10,3,10(- Perfect Factor)1(≥d and

iii) dd 30
32)30,3,30(- Perfect Factor).1(≥d

2.1.5. Perfect Multi-Factors

Mitchell i ntroduced two auxili ary classes of combinatorial objects: Perfect Multi -Factors [26]
and Generalized Perfect Factors [27] (see Section 2.1.6.), which can be combined in various
ways to yield Perfect Factors.

DEFINITION 1 Suppose R, m, n and k are positive integers satisfying nkR | and 2≥k .

An kmTnR);;;(- Perfect Multi -Factor is a set of RkT n /= k-ary, period Rm sequences with

the property that for every k-ary n-tuple τ, and for every integer j in the range mj <≤0 , τ
occurs at a position jp ≡ (mod m) in one of these sequences.



















]10110100[

],01011010[

],11100001[

],11110000[

Figure 1 A 2)2;4;4;4(- Perfect Multi -Factor.

9

REMARK 2 An kTnR)1;;;(- Perfect Multi -Factor is precisely equivalent to an

kTnR);;(- Perfect Factor.

The following necessary conditions for the existence of a Perfect Multi -Factor were
formulated in [26].

LEMM A 3 Suppose A is an kmTnR);;;(- Perfect Multi -Factor. Then

i) ,| nkR and
ii) Rmn < or (mn = and 1=R).

It has been shown [26] that the above necessary conditions are suff icient if nm ≥ .

2.1.6. Generalized Perfect Factors

DEFINITION 1 Suppose R, m, n and k are positive integers satisfying nkR | and 2≥k .

An kmTnR);;;(- Generalized Perfect Factor is a set of RkT n /= k-ary, period Rm

sequences with the property that for every k-ary n-tuple τ, there exists an integer j in the
range Rj <≤0 such that for every i)0(mi <≤ τ occurs at position iRj + in one of these
sequences.

REMARK 2

i) An kTnR)1;;;(- Generalized Perfect Factor is precisely equivalent to an kTnR);;(-

Perfect Factor, and
ii) An kmTn);;;1(- Generalized Perfect Factor is precisely equivalent to an kmTn);;;1(-

Perfect Multi -Factor.

The following necessary conditions for the existence of a Generalized Perfect Factor were
formulated in [27].

LEMM A 3 Suppose A is an kmTnR);;;(- Generalized Perfect Factor. Then

i) ,| nkR and
ii) Rmn < or (mn = and 1=R).

These necessary conditions for the existence are not suff icient [27], but there are some
(constructive) existence results for Generalized Perfect Factors in [27, 30].

2.1.7. De Bruijn Graphs

DEFINITION 1 Let { }1,,1,0 −= kK � be and alphabet and let nK denote the set of n-

tuples. A),(nk - de Bruijn Graph is a graph with vertex set nK and edge set 1+nK so that if

>=< +121 nxxxe �

1+∈ nK then e determines a directed edge going from the vertex

>< nxxx �21 to the vertex >< +132 nxxx � .

10

Figure 1 A)2,2(- de Bruijn Graph

Since a),(nk - de Bruijn Graph is connected and each vertex has k ingoing and k outgoing
edges, it has an Euler path [31]. Note that an Euler path in a),(nk - de Bruijn Graph is

equivalent to a k
n nk)1,(1 ++ - de Bruijn Cycle.

The number of distinct Euler paths in a de Bruijn Graph is equal to
nkk))!1((−∆ , where ∆

denotes the number of spanning trees of the graph [31]. Considering that the in-degree matrix
contains at most)1(+kk n non-zero elements, this number can be determined in)!(1+Ο nk

time. Even the best non-approximating algorithm (Gaussian elimination) needs)(3nkΟ time,
which is still exponential.

An easily applicable equivalent formula with the specialty that it does not require any
knowledge about graph theory and can be applied in)(kn +Θ time, is given in Section
4.1.3.2.

2.2. Two-Dimensional Case

2.2.1. Aperiodic Perfect Maps

In the aperiodic case the array is deemed to be written onto a planar surface and the sub-arrays
are always completely within the borders of the array.

DEFINITION 1 An knmSR),;,(- Aperiodic Perfect Map is a k-ary)(SR× toroidal

array with the property that every k-ary)(nm× array occurs exactly once in the set of
)(nm× aperiodic sub-arrays. The pair (m, n) is often called the window of the map.

















101000011

011110100

011010000

Figure 1 A 2)2,2;9,3(- Aperiodic Perfect Map.

00 01

11 10

001

011 100

110

000

111

010

101

11

LEMM A 2 If A is a k-ary knmSR),;,(- Aperiodic Perfect Map then

i) ,1≥≥ mR
ii) ,1≥≥ nS and

iii) mnknSmR =+−+−)1)(1(

In [43], C. J. Mitchell proved the binary case of the following

CONJECTURE 3 The necessary conditions of Lemma 2 on R, S, m, n are sufficient for the
existence of a k-ary knmSR),;,(- Aperiodic Perfect Map.

 2.2.2. Per iodic Perfect Maps (or de Bruijn Tor i)

In the periodic case the array is considered to be wrapped round on itself. This corresponds to
writing the array onto a torus. Sub-arrays then exist starting at any point in the array, which no
longer has any “edges” .

These periodic structures can be transformed very simply into corresponding Aperiodic (see
Section 2.2.1.) and Semi-Periodic (see Section 2.2.3.) Perfect Maps. However, Aperiodic and
Semi-Periodic Perfect Maps can exist for parameter sets for which the corresponding Periodic
Perfect Maps cannot [43].

DEFINITION 1 An knmSR),;,(- de Bruijn Torus (or Periodic Perfect Map) is a k-ary

)(SR× toroidal array with the property that every k-ary)(nm× array occurs exactly once

as a periodic sub-array of the array. The pair ()nm, is often called the window,),(SR the
period and),(nm the order of the torus.



















1110

1101

0100

1000

Figure 1 A 2)2,2;4,4(- de Bruijn Torus.

REMARK 2 The kmR)1,;1,(- de Bruijn Tori are de Bruijn Cycles.

De Bruijn Tori have interesting applications in robot self-location [32, 33], pseudorandom
arrays [4, 34, 35, 36], and the design of mask configurations for spectrometers [37]. (For an
interesting variation on this theme see [38]). Even cloth patterns have used these designs, long
before their mathematical properties were discovered [39].

In 1984, Ma [2] proved the binary case of the following 1988 theorem of Cock [40] (see also
[41]).

THEOREM 3 For all m, n and k (except 2=n if k even) there is a k

sr nmkk),;,(- de

Bruijn Torus with mr = and)1(−= nms .

12

2.2.2.1. The Necessary Conditions of the Existence

The necessary conditions of the following Lemma were mentioned by Hurlbert and Isaak in
[42] and by Mitchell i n [43].

LEMM A 4 If A is a k-ary knmSR),;,(- de Bruijn Torus then

i) 1≥> mR or 1== mR ,
ii) 1≥> nS or 1== nS , and

iii) mnkRS=

2.2.2.2. The Sufficient Conditions of the Existence

Paterson [44] showed that in the binary case the necessary conditions of the Lemma 4 are in
fact sufficient for the existence of de Bruijn Tori. In [45] he extended his work to alphabets of
prime-power size.

CONJECTURE 5 If nmSR ,,, and k satisfy

i) ,mR >
ii) ,nS > and

iii) mnkRS=
then there is an knmSR),;,(- de Bruijn Torus.

Hurlbert and Isaak [46] produced tori for which the period is not a power of k:

THEOREM 6 Let k have prime factorization ∏ i

ip α and let  ∏= m
i

ippkq log . Then

for all m, n there is a k
mn nmqkq),;/,(- de Bruijn Torus.

In [47] they proved a sub-case (see Theorem 1 in Section 2.2.2.4.) with the hope that it will
help extend this result.

The most progress toward the previous conjecture by Paterson [48] is the following

THEOREM 7 Suppose k, R and S have prime factorizations as follows:

,
1

∏
=

=
n

i

k
i

ipk ∏
=

=
n

i

r
i

ipR
1

 and ∏
=

=
n

i

s
i

ipS
1

 for some mnkr ii ≤≤0 where ,iii rmnks −=

mR > and nS > . And that for some i we have mp ir
i > and np is

i > . Then there exists an

knmSR),;,(- de Bruijn Torus.

This prompted Hurlbert, Mitchell and Paterson [49] to examine the parameter sets where

mp ir
i ≤ for some indices and np is

i ≤ for other indices in the case where 2== nm . They

developed new construction methods for some sub-cases (see Theorem 2 and Theorem 3 in
Section 2.2.2.4.), and with the combination of those cases obtained the following

THEOREM 8 The necessary conditions of Lemma 4 are sufficient for the existence of
an kSR)2,2;,(- de Bruijn Torus.

13

2.2.2.3. A Special Case: de Bruijn Square

In 1992 Chung, Diaconis and Graham [50] asked whether it is possible that “square” tori exist
for even n. That is, can it be that SR = and nm = ? This question was resolved for the binary
case by Fan, Fan, Ma and Siu [3], who proved

THEOREM 1 There exist a 2),;2,2(nnrr - de Bruijn torus if and only if n is even (of

course, 2/2nr =).

Hurlbert and Isaak [42] settled the question for general k with the following

THEOREM 2 Except in the case that k is an even square and ,3=n ,5 7 or 9, there

is an knnRR),;,(- de Bruijn Torus if and only if n is even or k is a perfect square.

In [48] Paterson made up for the mission cases (,3=n ,5 7 and 9), so previous theorem reads
as follows.

THEOREM 3 There is an knnRR),;,(- de Bruijn Torus if and only if n is even or k is

a perfect square.

2.2.2.4. Some Constructions for Sub-Cases

THEOREM 1 For all s and t there is a sttsst 2

232)2,2;4,4(- de Bruijn Torus.

THEOREM 2 Suppose 2≥> nm . Then there exists an mnnm)2,2;,(44 - de Bruijn

Torus.

THEOREM 3 Suppose 2>n is odd. Then for every 1≥k , there exists a

n

k
kn

2

144)2,2;2,2(− - de Bruijn Torus.

2.2.3. Semi-Periodic Perfect Maps

In the semi-periodic case the array is considered as periodic in one dimension and aperiodic in
the other. This corresponds to writing the array onto the outside of a cylinder.

DEFINITION 1 An knmSR),;,(- Semi-Periodic Perfect Map is a k-ary)(SR×

toroidal array with the property that every k-ary)(nm× array occurs exactly once in the set

of)(nm× semi-periodic sub-arrays. The pair ()nm, is often called the window of the map.

















00111100

01001011

00001111

Figure 1 A 2)2,2;8,3(- Semi-Periodic Perfect Map.

14

LEMM A 2 If A is a k-ary knmSR),;,(- Semi-Periodic Perfect Map then

i) ,1≥≥ mR
ii) 1≥> nS or 1== nS , and

iii) mnkSmR =+−)1(

In [43], C. J. Mitchell proved the binary case of the following

CONJECTURE 3 The necessary conditions of Lemma 2 on R, S, m, n are sufficient for the
existence of a k-ary knmSR),;,(- Semi-Periodic Perfect Map.

2.2.4. The Decoding Problem

As already mentioned with reference to the one-dimensional case in Section 2.1.2., Perfect
Maps play a significant role in many applications, especially in position location [33, 51].
Decoding means a method for computing the position of a given sub-array within a Perfect
Map. In [51] we can found methods for constructing Perfect Maps which can be decoded
eff iciently. Some remark on the eff iciency of other methods can be found in [43].

2.2.5. Infinite Perfect Maps

The definitions of the two-dimensional Growing Perfect Maps and Alternating Perfect Maps
can be easily generalized from their one-dimensional equivalent (see Section 2.1.3.). For the
most general definition see Section 2.3.2.

The following Infinite Perfect Maps can be considered as two-dimensional interpretations of
the Superperfect Sequences.

2.2.5.1. Increasing Perfect Maps

DEFINITION 1 An kxnmxSR))(,);(,(- Increasing Perfect Map is a Perfect Map with

the property that every prefix of the map is a kxnmxSR))(,);(,(- de Bruijn Torus, where

xxn =)(and RkxS mx /)(= for �,2,1=x .

Figure 1 Sketch of an Increasing Perfect Map

R

m

n(x)

S(x)

15

2.2.5.2. Expanding Perfect Maps

DEFINITION 1 An kxcnxmxcSxcR)),(),();,(),,((- Expanding Perfect Map is a Perfect

Map with the property that every prefix of the map is a kxcnxmxcSxcR)),(),();,(),,((- de

Bruijn Torus (0≥c), where xxm =)(, xcxcn +=),(,)1,(/),(),()1(−= − xcRkxcS xcnxm and

),(/),(),()(xcSkxcR xcnxm= for �,2,1=x .

REMARK 2 Expanding consists of two consecutive steps: first increasing the Perfect
Map in one direction, then increasing it in the other direction.

Figure 1 Sketch of an Expanding Perfect Map

2.2.6. Perfect Factors

DEFINITION 1 An kTvuSR);,;,(- Perfect Factor is a set of T SR× periodic arrays,

with symbols drawn from a set of size k, having the property that every possible vu× array
occurs exactly once as a periodic sub-array in precisely one of the arrays.

REMARK 2 An kvuSR)1;,;,(- Perfect Factor is simply an kvuSR),;,(- de Bruijn

Torus.

Hurlbert, Mitchell and Paterson [49] obtained a complete answer for the necessary and
suff icient conditions of the existence in the case where k is a prime-power:

THEOREM 3 Let p be a prime and k, r, s and t be integers. The conditions that

2, >sr pp and ktsr 4=++ are necessary and sufficient for the existence of a

kp

tsr ppp);2,2;,(- Perfect Factor.

2.3. Higher dimensions

2.3.1. De Bruijn d-Tor i

R(x)

m(x)

n(y)

S(y)

16

DEFINITION 1 Let),...,(1 drrR = and),...,(1 dnnn = with ii nr > and .∏ ∏= in

i kr

We call a d-dimensional toroidal k-ary block an d
knR);(- de Bruijn Torus if it has dimensions

drr ××�1 and every k-ary dnn ××�1 block appears exactly once contiguously in the d-

dimensional torus.

DEFINITION 2 A fundamental block of an d

knR);(- de Bruijn Torus is an array

consisting of ir consecutive rows in the i th dimension for ,1=i 2, … , d. Repeating such a

block produces the torus.

REMARK 3 A matrix appears uniquely in an infinite periodic array if i t appears
uniquely in a fundamental block.

One then has the following theorem, mentioned in [40] and proved in [46].

THEOREM 4 For all ,n d and k there is an R so that there is an d

knR);(- de Bruijn

Torus (except that 2=in for at most one index i when k is even) with the following

properties:

1
1

nkr = and
∏

==

−

=

−
−

−

=
∏

1

1

)1(
1

1

1

)(

j

i
ij

j

nn
n

j

i
ij krr

REMARK 5 So Cock’s technique [40] easily generalizes to higher dimensions, but
unfortunately, each new dimension has size exponential in the previous.

CONJECTURE 6 If k, R and n satisfy

i) i
r nk i > for all di ≤≤1 and

ii)
∏

= =∏
=

d

i
ind

i
i kr 1

1

then there is an d
knR);(- de Bruijn Torus.

2.3.1.1. A Special Case: de Bruijn d-Cubes

Hurlbert and Isaak [42] assumed that Conjecture 6 is true for nnn d ===�1 and

dn
d

d

krr /
1 ===� , that is de Bruijn d-Cubes. In [24] Iványi and Horváth constructed the

smallest possible (a 256256256 ×× sized 8-ary) 3-Cube.

2.3.1.2. Infinite de Bruijn d-Cubes

2.3.1.2.1. Growing de Bruijn d-Cubes

In [24] Iványi and Horváth proposed the following definitions and proved Theorem 3.

17

DEFINITION 1 Let �21kkk = be a strictly increasing sequence of positive integers.

A d

k

dn nk
d

);(/ - Growing de Bruijn Cube is a de Bruijn d-Cube whose prefixes are d
k

dn
i i

d

nk);(/ -

de Bruijn Cubes for �,2,1=i .

DEFINITION 2 For 2, ≥kn the new alphabet size),(nkK is

where q is the product of prime divisors of n not dividing k.

THEOREM 3 If 1≥d , 2≥n , 2≥k and),gcd(dnd

di

i Nk = for �,2,1=i then exists a
d

k

dn nk
d

);(/ - Growing de Bruijn Cube.

2.3.2. Infinite de Bruijn d-Tor i

2.3.2.1. Increasing de Bruijn d-Tor i

DEFINITION 1 An d

kxnxR))();((- Increasing de Bruijn Torus is a de Bruijn d-Torus

with the property that every)(xR sized prefix of the torus is an d
kxnxR))();((- de Bruijn

Torus, where xnnnxn d ,,,,)(121 −= � and 121121 /,,,,)(121
−−

−= d
xfff

d rrrnrrrxR d
��

� for

�,2,1=x .

2.3.2.2. Expanding de Bruijn d-Tor i

DEFINITION 1 An d

kxnxR))();((- Expanding de Bruijn Torus is a de Bruijn d-Torus

with the property that every prefix of the torus is an d
kxnxR))();((- de Bruijn Torus, where

xcxn ii +=)((01 =c , 0≥ic for �,3,2=i) and

∏∏
+==

−

−
∏ ∏

= = +=
d

ij
j

i

j
j

xnxn

i xrxrkxr

i

j

d

ij
jj

11

)1()(

)1()(/)(1 1 for �,2,1=x .

2.3.2.3. Developing de Bruijn d-Tor i

DEFINITION 1 Let �21nnn = be a sequence of positive integers. An d

knR);(-

Developing de Bruijn Torus is a de Bruijn d-Torus with the property that every i-dimensional

prefix of the torus is an i
knR);(- de Bruijn Torus, where ∏

≠

∏=
jl

l

n

j rkr l / for ij ,,2,1 �= .

2.3.2.4. Growing de Bruijn d-Tor i

DEFINITION 1 Let �21kkk = be a strictly increasing sequence of positive integers.

An d

k
nkR));((- Growing de Bruijn Torus is a de Bruijn d-Torus with the property that every

if any prime divides k,

otherwise, 



=
,

,
),(

kq

k
nkK

18

prefix of the torus is an d
ki i

nkR));((- de Bruijn Torus, where ∏
≠

∏=
jk

k
n

iij rkkr k /)(

),,1(dj �= for �,2,1=i .

2.3.2.5. Alternating de Bruijn d-Tor i

DEFINITION 1 An d

k
nR);(- Alternating de Bruijn Torus is a de Bruijn d-Torus with the

property that every ii sized prefix of the torus is an d
inR);(- de Bruijn Torus with ∏ = in j ,

and every ii)1(+ sized prefix is an d
inR 1);(+ - de Bruijn Torus with 1+=∏ in j , for

�,2,1=i .

2.3.3. Perfect Factors (de Bruijn Families)

DEFINITION 1 A d-dimensional k-ary, order n Perfect Factor (or de Bruijn Family) of
size t and period R is a family },,{ 1 tBB � of d-dimensional k-ary toroidal arrays, of period

R each, with the property that for every d-dimensional k-ary matrix M of size n there is a
unique j and a unique i so that M appears in jB at position i . (We will say that a particular

matrix M of size n appears in B at a position diii ,,1 �= if M appears in the positions

i through ni + .) We call such a Perfect Factor an d
ktnR);;(- Perfect Factor.

REMARK 2 In the case that 1== td , Perfect Factors have been called de Bruijn
Cycles. Perfect Factors with 1=t and 1>d have been called de Bruijn Tori (or Perfect
Maps).

Hurlbert and Isaak [52] obtained the following

THEOREM 3 Let ∏
=

=
s

i
i

ipk
1

α for primes ip and for dj ≤ suppose that ∏
=

=
s

i
ij

jipr
1

,β

with each 2, >ji

ip β . Further assume that for each si ≤ there is a permutation

),,(,1, diii σσσ �= of },,1{ d� so that for each dl ≤ we have ∑
=

≤
l

j

l
ii ji

1
, 2

,
αβ σ . Then there is

an d
ktnR);;(- Perfect Factor, where each 2=in .

3. Tools for Parallelizing the Algor ithm

3.1. The Available Evolutionary Computing Tools

The following two models were specified by Eiben and Smith [53].

3.1.1. Island Model

19

The principle of the Island Model is that we have multiple populations in parallel. They exist
and evolve independently from one another; each one is a separate “island” . Sometimes
individuals are moving from a population to another neighbouring one, this process is called
migration. Its mechanism is ill ustrated in Figure 1, where we have three populations with
three individuals migrating, one from island 2 to1 and two from island 3 to 2.

Figure 1 Sketch of the Island Model

Migration takes place after an epoch, namely a number of generations. While the populations
are evolving independently from the others, they are exploring a certain part of the search
space, that is they are exploiting that area. If a new individual gets into the population, it can
direct the search into other (maybe fitting) directions and by this means expand the space
searched so far, hence facilit ating exploration.

Basic parameters and some recommendation to consider:

i) How long should be an epoch? Its length is usually fixed, but we have countless
possibiliti es to plant it into the evolutionary mechanism and make it depend on some
other parameter or feature of the populations.

ii) How many individuals to exchange? If we exchange a large number of individuals, the

populations may converge to the same solution too rapidly, and we will have a lot of
populations producing the same results, consuming time and capacity unnecessarily.

iii) Which individuals to exchange? The selection may carry out on the basis of f itness, or

it can be simply a random choice. In the latter case it is less likely that a population
will be took over by a new high-fitness migrant.

iv) How to initialize the different populations? It is not guaranteed that the different

populations are exploring different regions of the search space, that’s why we have to
be very cautious and apply some refined heuristics during the initialization process.

It is possible to maintain different populations with different parameters, like the continents
have different features in real li fe.

3.1.2. Diffusion Model

The principle of the Diffusion Model is that we have multiple overlapping subpopulations in
parallel. The members of the populations can be considered being scattered over on a toroidal

1 2

3

20

grid, and communicating only with individuals in their neighbourhood. Communication
means the applicabili ty of the recombination and selection operators in this context. This
mechanism is ill ustrated in Figure 1, where the black individual in the middle communicates
exclusively with the grey ones in its immediate vicinity.

Figure 1 Sketch of the Diffusion Model

Basic parameters and some recommendation to consider:

i) How large should be a neighbourhood? The size of the neighbourhood is usually the
same for all nodes, but we can make it depend on some feature of the individual, by so
doing the populations turn into some kind of realistic community, where the
individuals are making friends with each other: there are timid ones with smaller
vicinity and social ones with larger vicinity.

ii) Which element to replace? Owning to the overlapping feature of the subpopulations

we have to be very careful when applying the replacement operator. If both
subpopulations want to replace the same individual, race conditions may occur. This
situation is ill ustrated in Figure 1, where two subpopulations indicated by black frames
want to replace the same individual in their intersection. One possible solution is to
replace the central node of a subpopulation.

3.2. The Parallel Testing Environment

The system where I run my parallel applications is called DAS-2 (Distributed ASCI
Supercomputer 2). It was designed by the Advanced School for Computing and Imaging, a
cooperation between a number of Dutch Universities. The machine is built of clusters of
workstations, which are interconnected by SurfNet, the Dutch university Internet backbone for
wide-area communication. The nodes within a local cluster are connected by a Myrinet-2000
network, a popular high-speed LAN. The system was built by IBM and runs the Red Hat
Linux operating system. The clusters are located at five Dutch Universities, there are 200
nodes altogether. I use only one cluster of 72 nodes, located at the Vrije Univeristeit.

Each node contains:

• Two 1 GHz Pentium IIIs
• At least 1 GB RAM (2 GB for two "large" nodes)

21

• A 20 GByte local IDE disk
• A Myrinet interface card
• A Fast Ethernet interface card

Each cluster consists of a file/compile server (called fs0 that of VU) and a number of compute
nodes. Running of jobs must be done on the worker nodes via the cluster scheduling system
OpenPBS. This system reserves the requested number of nodes for a specific duration (the
default is 15 minutes). The user interface of this job manager is called prun which provides a
convenient way to start jobs.

For more information about the DAS-2, see http://www.cs.vu.nl/das2.

4. The Specification of the Evolutionary Algor ithm

4.1. One-dimensional Case

4.1.1. Reference Algor ithm

A backtrack search is implemented in DbcBackTrack_v1.java and DbcBackTrack_v2.java.
Their functioning is the same, but the implementation differs. The number of basic steps and
the backtracks needed is quite less in case of the first algorithm (version 1), but it is much
rather memory consuming and slower than the second one (version 2).

4.1.1.1. Functioning of the Algor ithm

The program reads the parameters (the alphabet size and the span size) from the standard
input and searches the space of the all possible candidates for de Bruijn Cycles.

The longest possible cycle that the program can produce, has the length of 127127 (the reason
for this is the byte representation of the alphabet size and the span size, which has a maximum
value of 128 −). While reading the parameters from the standard input, the program gives a
warning and the set of possible values if the length of the cycle would exceed the above
threshold. When having the parameters, it gives the length and the number of such cycles (see
Section 4.1.3.2.), and asks whether to find all the possible ones.

Its output (the cycles, the number of basic steps, backtracks and CPU time needed) is written
to a file named dbc_alphabet_span_bt.txt where the strings “alphabet” and “span” denotes the
actual size of the parameters.

4.1.1.2. Specification of the Algor ithm

In what follows k and n denote the size of the alphabet and the span, respectively. The search

space is the space of all possible candidate cycles, its size is
nkk (note that nk is the length of

the cycle).

4.1.1.2.1. Version 1.

Basic step: Inserting a suitable tuple into the cycle.

22

Each candidate is bound to contain the all zeros tuple, so we insert this tuple into the fore-part
of the candidate. This part of the candidate is fixed, there is no backtrack from this level
(levels of the search tree correspond to the positions in the candidate where we are trying to fit
a tuple). In other words this means that the search does not need to be executed beginning
with the other possible tuples. The explanation for this heuristic is the periodic feature of the
cycles, namely no matter from which position the cycle is inspected. Hence we can be sure
that all the possible candidates will be found on the branch beginning with the all zeros span.

The pr inciple of the functioning

At each position of the candidate we try to fit a suitable tuple. Suitable means that we have
almost the whole tuple already, only its last element is lacking. The reason for this is that we
have inserted the all zeros tuple of size n at the first position.

To provide for finding a suitable tuple we have three arrays:

i) tuples The possible tuples are stored in a two-dimensional array where the index of
the first dimension stands for the decimal value of the k-ary tuples.

ii) tr iedAlready On each level we keep a record of the tuples which we have already

inspected a branch beginning with. These tuples are stored encoded to decimal in a
two-dimensional array where the index of the first dimension stands for the level.

iii) tuplesInCandidate The tuples used up to create a candidate are stored encoded to

decimal in a one-dimensional array.

The reason for encoding is to make the search in triedAlready and tuplesInCandidate faster,
and to economize on the memory of course.

Once a tuple is picked from tuples and if its decimal value is not in tuplesInCandidate and in
the appropriate array of triedAlready then it can be inserted into the candidate. If tuples does
not contain any suitable tuple, then we make a backtrack and modify the content of
triedAlready and tuplesInCandidate accordingly.

Candidates on the lowest level (when the level is equal to the length of the cycle) are bound to
be de Bruijn Cycles and to differ from the previously found ones.

4.1.1.2.2. Version 2.

Basic step: Inserting an element of the alphabet into the cycle.

This version is much simpler than the pervious one. The principle of the functioning is
similar: inserting something new into the cycle. But in this case that “new” will be an element
of the alphabet, not a whole tuple. This solution has a drawback that the cycle should be
inspected in every step whether the “perfection” is corrupted by inserting a new element.

To provide the proper functioning of the algorithm we need only one two-dimensional array
(triedAlready) to store the elements tried already in a level of the search tree.

23

4.1.1.3. Parallelizing the Algor ithm

The parallel version of the algorithm is implemented by means of Java RMI (Remote Method
Invocation) and Java threads. It is adjusted to the parallel testing environment, the DAS-2 (see
Section 3.2.). The program consists of two components which are outlined below.

i) The remote object is implemented in DbcBackTrackRemoteObject.java. Its task is to
perform a search beginning with a particular node on a certain branch of the search
tree, to that end it provides an interface with a public function called doBackTrack().

ii) The main program is implemented in DbcBackTrackRemote.java. It divides the search

tree among a given number of threads, namely every thread is provided with a node,
which the search has to be performed beginning with.

The number of threads equals to the number of loaded remote objects, so there is a one-to-one
correspondence between them. The task of the threads is to connect to the remote objects,
invoke their doBackTrack() function, and return with the solution. The references to the
remote objects can be retrieved by creating a file (id), which contains the names of the hosts
they are running on. This can be done in the following way. When starting the remote objects,
the output of the prun command has to be directed into the file:

>pr u n – v – 1 . / r u n _ja v a n ump ro c D b c Bac k Tr a ck Remo t e Ob jec t 2 > id

The –v flag is essential, it reports the host allocation. The –1 flag indicates that we want to run
one process per node. The executable run_java is a special script, which sets the appropriate
system properties to make running Java applications possible. The argument numproc stands
for the number of processors.

The main program will read the information about the hosts from the id file, and will start a
proper number of threads.

4.1.2. Genetic Algor ithm

The first stage to build a genetic algorithm is to decide on a representation of a candidate
solution to the problem. A straightforward idea is letting the phenotype and the genotype of
an individual be the same, namely fixed-length combinations of the elements of the alphabet.

I made several experiments applying different operators and selection mechanisms, and the
conclusion is that the algorithm based on a “tricky” representation works more eff icient. This
is a permutation representation based on tokens (see Section 4.1.3.1.), and the components of
this algorithm are outlined below.

The algorithm is implemented in DbcGA.java, and the different components are implemented
in different classes (Initialization.java, Mutation.java, Recombination.java, Evaluation.java
and SurvivorSelection.java). These components provide an interface with some functions that
realizes various operators and mechanisms.

4.1.2.1. Representation

24

The phenotype space and the genotype space are different. Phenotypes are the possible
solutions within the original problem context. Genotypes are permutations of references to
different tokens. Given the alphabet and the span size, the number of tokens is particular, and
each chromosome has to contain all the possible tokens. The chromosomes consist of unique
elements, because even if two tokens are equal, the references to them are different. The
mapping between the genotype and the phenotype is ill ustrated in the figure below.

Figure 1 Representation of an individual

Applying this representation the search space will be all the possible permutations of the
tokens. The size of this space – considering each one of the tokens as unique – is N(k,n)! ,
where N(k,n) denotes the number of tokens given the alphabet size (k) and the span size (n).

4.1.2.2. Initialization and Termination Condition

The population has a fixed size, and first it is fill ed with random permutations of the possible
elements (the references to tokens).

4.1.2.3. Evaluation Function

The evaluation function assigns a quali ty measure to genotypes. The aim is to minimize this
function, it minimum value is zero. An individual with minimum fitness value is bound to be
a de Bruijn Cycle. This function has two components:

i) In the phenotype space:

At each position we inspect the chromosome whether the tuple beginning at that position is
unique, so every position has an own part-fitness value. When considering a tuple, all the
positions need to be examined before its beginning position. If it is unique then the part-
fitness will be zero, otherwise it will stand for the rank of the tuple, namely how many times it
occurred before (see the figure below). The actual fitness can be gained by summing up these
part-fitness values. The zero value of this fitness indicates that all the tuples are unique,
namely we have found what we were searching for.

1 0 0 0
2 1 1 1
3 0
4 1

1 4 3 2

0 0 0 1 0 1 1 1

genotype:

phenotype:

tokens

references to tokens

25

Figure 1 Ranks of the positions

ii) In the genotype space:

If two tokens get next to each other, it will be a legal arrangement only if their elements are
different. The reason for this is that the longest token is span-sized long, and if it gets next to
any of the tokens having the same elements, then the span-sized tuple will be occur twice,
hence corrupting perfection.

In a chromosome there are N(k,n) fitting points, where tokens can get next to each other. We
observe the number of legal connections by means of a variable: if two adjacent tokens are
different, then it is increased by one. If the value of this variable equals to N(k,n), then the
chromosome has a legal permutation of the elements. This measure is realized by adding the
difference of the number of tokens and N(k,n) to the fitness value.

4.1.2.4. Parent Selection Mechanism

4.1.2.5. Var iation Operators

4.1.2.5.1. Recombination

4.1.2.5.2. Mutation

4.1.2.6. Survivor Selection Mechanism

4.1.2.7. Parallelizing the Algor ithm

The Island Model (see Section 3.1.1.) serves as the basis of the parallel version of the
algorithm. It is implemented by means of Java RMI (Remote Method Invocation) and Java
threads. It is adjusted to the parallel testing environment, the DAS-2 (see Section 3.2.). The
program consists of three components, which are outlined below.

i) The Remote Object

The remote object is implemented in DbcGARemoteObject.java. Its task is to evolve a
population, a separate “island” , and it also supports the migration of the individuals. To that
end it provides an interface with six public functions described below.

0 1 2 3 4 5 6 7

0 0 0 0 1 1 1 1

0 1 0 0 0 1 0 0

ranks:

phenotype:

It is 1, because the all zeros
tuple occurred once before.

26

The function startGA(byte alphabet, byte tupleSize, int populationSize, int epoch, int
numberOfMigrants) creates and evolves a population with the given parameters. The
parameter epoch stands for the number of generations after individuals are exchanged. The
migration needs to be synchronized, namely the exchange of individuals have to be an atomic
operation.

This atomicity is realized as follows. When the migration is in due time - that is the required
number of generations has evolved -, the evolution of the population is suspended until all the
migration mechanisms (sending and receiving individuals) accomplishes. From the aspect of
the remote object the migration consists of four consecutive steps:

i) First it indicates that it is ready to accept requests for the selection and sending of
migrants. It is realized by setting the value of the private variable
waitingForSendMigrantsThread to true. The interface provides read access to this
variable through the public function isWaitingForSendMigrantsThread().

ii) It prepares the migrants by marshalli ng the selected individuals and their fitness values

into a “package”, which is implemented as a vector of length two, first element
reserved for the individuals, second for their fitness values. The number of the
individuals is determined by the parameter numberOfMigrants, and the selection
mechanism is based on fitness, namely the ones with best fitness are selected for
migration. It is important to remark that the individuals are not effectively moved to
the other population, they are merely copied. If the marshalli ng is ready, the object
notifies the thread SendMigrantsThread already waiting for the migrants.

iii) Then it indicates that it is ready to accept requests for the reception of migrants. It is

realized by setting the value of the private variable waitingForReceiveMigrantsThread
to true. The interface provides read access to this variable through the public function
isWaitingForReceiveMigrantsThread().

iv) The replacement of the individuals is settled by the thread ReceiveMigrantsThread,

and the object is waiting while it is in progress. In the course of replacement first the
individuals with worst fitness are wiped out from the population, then the migrants are
unmarshalled and inserted into the population. It is important to remark that the
references of the migrants need to be readjusted to the local ones. If the replacement is
ready, the thread notifies the object that the evolution of the population may continue.

ii) The Migration Manager

The migration of the individuals is implemented in MigrationManager.java. It creates the
conditions of migration by providing every population with two kinds of threads, a
SendMigrantsThread, and a ReceiveMigrantsThread. The contact point between these threads
and the populations is realized by the sendMigrants(int numberOfMigrants) and the
receiveMigrants(Vector migrants) function of the remote object, respectively. These functions
perform the actual exchange of individuals and can be invoked by the threads.

It is important to note that the populations form a cycle, so an unambiguous neighbourhood
relationship can be defined between two populations as ill ustrated in the figure below.

27

Figure 1 The migration between populations

As already mentioned with reference to the remote object, the migration needs to be
synchronized. This synchronization was made clear on the level of individual population in
the previous section. Now we inspect a higher level, where we take all the population into
consideration.

The main concern is that the reception of migrants from a neighbouring population requires
these migrants to be already prepared. Hence we have to apply some kind of scheduling, and
it works as follows. First we demand every population to prepare their emigrants.
Transitionally, until all the populations are ready, they are stored in an array called
elli sIsland1. Then, the elements of this array are delivered to the proper population. This
scheduling – keeping the populations wait for each other – does not have a detrimental impact
on the performance, because the populations are evolving with the same parameters, hence the
time needed to produce a new generation is the same for every island.

iii) The Main Program

The main program is implemented in DbcGARemote.java. Its task is to start the threads,
which evolve the separate populations on different remote objects, and the migration
manager, respectively.

The references of the remote objects can be retrieved in the same way as in the case of the
backtrack search algorithm (see Section 4.1.1.3.).

4.1.3. Results

4.1.3.1. The Number of Tokens in a Cycle

While inspecting the generated tuples, I noticed that every de Bruijn Cycle consists of a
definite number of tokens. Let’s consider the case when 2=k and 4=n . Figure 1 shows a
possible 2)4;16(- de Bruijn Cycle.

]1111010110010000[

Figure 1 A 2)4;16(- de Bruijn Cycle

A token is an uninterrupted sequence of identical numbers. The de Bruijn Cycle in Figure 1
has the following tokens:

1 Inspired by New York immigrants’ quarantine in Elli s Island in the early 20th century.

28

{ >< 0000 , >< 1111 , >< 00 , >< 11 , >< 0 , >< 0 , >< 1 , >< 1 }

The relation between k, n and the number of tokens is as follows.

Length of the token Number of the token

n k

1−n kk)2(−

2−n kk 2)1(−
3−n 22)1(kk −

... ...

in − 12)1(−− ikk

4.1.3.2. The Number of de Bruijn Cycles

The number of spanning trees of a),(nk - de Bruijn Graph (see Section 2.1.7.) is as follows:

∏
−

=

− ⋅⋅
2

1

2)(
n

i

ik xfxk , where kk xkxf)()(1−= and
∑

=

−

=

+
1

2

21
k

j

j

kx .

I obtained the above formula by observing the results of a number of experiments. I used a
program (DBGraph.java) to create de Bruijn Graphs and my final goal was to determine the
number of their spanning trees. These graphs needed to be converted to an equivalent form
without self-loops before creating their in-degree matrix. When having these matrices I used
Maple to get the determinant of their minors. I verified the formula for the cases when

6,2,1 �=k and 4,3,2,1=n .

Note that because the number of spanning trees of a),(nk - de Bruijn Graph will be always
the power of k, it is suff icient to compute the logarithm of the above formula, namely

∏
−

=

++−
2

1

)()2(
n

i

i yfyk , where ykkyf ⋅+−=)1()(and ∑+=
−

=

1

2
21

k

j
jy .

Applying this formula the number of spanning trees of a),(nk - de Bruijn Graph can be
determined in)(kn +Θ time, which is much faster than any other algorithm known so far (see
Section 2.1.7.).

Considering the facts about Euler paths (see Section 2.1.7.) the number of k

n nk);(- de Bruijn

Cycles can be given by the following formula:

() 1

)!1()()2(
3

1

−

−⋅



 ++− ∏

−

=

nk
n

i

i kyfyk , where ykkyf ⋅+−=)1()(and ∑+=
−

=

1

2
21

k

j
jy .

29

4.1.3.3. Test Results

4.2. Two-dimensional Case

4.2.1. Reference Algor ithm

4.2.2. Genetic Algor ithm

4.2.3. Results

4.3. Three-dimensional Case

5. Final Remarks

Appendix A

Here comes the documentation of the PMG software. This will consist of two parts: a user
documentation and a development documentation.

Appendix B

Here comes the list of the referenced programs.

30

Bibliography

[1] I. S. Reed and R. Stewart: Note on the Existence of Perfect Maps. IRE Transactions on
Information Theory 8 (1962), 10-12.

[2] S. L. Ma: A Note on Binary Arrays with a Certain Window Property. IEEE Transactions
on Information Theory 30 (1984), 774-775.

[3] C. T. Fan, S. M. Fan, S. L. Ma and M. K. Siu: On de Bruijn Arrays. Ars Combinatoria
19A (1985), 205-213.

[4] T. Etzion: Constructions for Perfect Maps and Pseudorandom Arrays. IEEE Transactions
on Information Theory 34 (1988), 1308-1316.

[5] C. Flye-Sainte Marie: Solution to problem number 58. l’ Intermediaire des Mathematiciens
1 (1894), 107-110.

[6] N. G. de Bruijn: A Combinatorial Problem. Nederlandse Koninklij ke Academie van
Wetenschappen 49 (1946), 758-764.

[7] I. J. Good: Normally Recurr ing Decimals. Journal of the London Mathematical Society 21
(1946), 167-169.

[8] H. Fredricksen: A Survey of Full Length Nonlinear Shift Register Cycle Algorithms. SIAM
Review 24 (1982), 195-2.

[9] J. Bondy and U. Murty: Graph Theory with Applications. Amsterdam, Elsevier, 1976.

[10] E. Petriu: Absolute-type Pseudorandom Shift Encoder with Any Desired Resolution. IEE
Electronics Letters 21 (1985), 215-216.

[11] E. Petriu: Absolute-type Position Transducers Using a Pseudorandom Encoding. IEEE
Transactions on Instrumentation and Measurement 36 (1987), 950-955.

[12] E. Petriu: New Pseudorandom/Natural Code Conversion Method. IEE Electronics Letters
24 (1988), 1358-1359.

[13] E. Petriu: Scanning Method for Absolute Pseudorandom Position Encoders. IEE
Electronics Letters 24 (1988), 1236-1237.

[14] E. Petriu and J. Basran: On the Position Measurement of Automated Guided Vehicles
Using Pseudorandom Encoding. IEEE Transactions on Instrumentation and Measurement 38
(1989), 799-803.

[15] E. Petriu, J. Basran and F. Groen: Automated Guided Vehicle Position Recovery. IEEE
Transactions on Instrumentation and Measurement 39 (1990), 254-258.

31

[16] B. Arazi: Position Recovery Using Binary Sequences. IEE Electronics Letters 20 (1984),
61-62.

[17] H. M. Fredricksen: Generation of the Ford Sequence of Length 2n, n Large. Journal of
Combinatorial Theory (A) 12 (1972), 153-154.

[18] H. M. Fredricksen: A Class of Nonlinear de Bruijn Cycles. Journal of Combinatorial
Theory (A) 19 (1975), 192-199.

[19] H. M. Fredricksen and I. J. Kessler: Lexicographic Compositions and de Bruijn
Sequences. Journal of Combinatorial Theory (A) 22 (1977), 17-30.

[20] H. M. Fredricksen: The Lexicographically Least de Bruijn Cycle. Journal of
Combinatorial Theory 9 (1970), 1-5.

[21] G. Hurlbert: Universal Cycles-On Beyond de Bruijn. Ph.D. Thesis, 1990.

[22] C. J. Mitchell , T. Etzion and K. G. Paterson: A method for constructing decodable de
Bruijn Sequences. IEEE Transactions on Information Theory 42 (1996), 1472-1478.

[23] L. J. Cummings and D. Wiedemann: Embedded de Bruijn Sequences. Congressus
Numeratium 53 (1986), 155-160.

[24] A. Iványi and M. Horváth: Growing Perfect Cubes. Submitted.

[25] A. Iványi and M. Horváth: Perfect Sequences. International Conference of Applied
Informatics, Eger, 2004, submitted.

[26] C. J. Mitchell: Constructing c-ary Perfect Factors. Designs, Codes and Cryptography 4
(1994), 341-368.

[27] C. J. Mitchell: New c-ary Perfect Factors in the de Bruijn Graph. In P. G. Farrell , ed.,
“Codes and Cyphers – Cryptography and Coding IV” , IMA Press, Southend-On-Sea, Essex,
1995.

[28] C. J. Mitchell: De Bruijn Sequences and Perfect Factors. SIAM Journal on Discrete
Mathematics 10 (1997), 270-281.

[29] K. G. Paterson: Perfect Factors in the de Bruijn Graph. Designs, Codes and
Cryptography 5 (1995), 115-138.

[30] C. J. Mitchell , K. G. Paterson: Perfect Factors from Cyclic Codes and Interleaving.
SIAM Journal on Discrete Mathematics 11 (1998), 241-264.

[31] C. W. Marshall: Applied Graph Theory. ISBN 0-471-57300-0. Wiley-Interscience, New
York, 1971.

[32] F. W. Sinden: Sliding Window Codes. AT&T Bell Labs. Tech. Memo, 1985.

32

[33] J. Burns and C. Mitchell: Coding Schemes for Two-dimensional Position Sensing.
Cryptography and Coding II I, M. Ganley, Ed. London, UK: Oxford Univ. Press, 1993, 31-66.

[34] F. J. MacWilli ams and N. J. A. Sloane: Pseudorandom Sequences and Arrays.
Proceedings of the IEEE 64 (1976), 1715-1729.

[35] T. Nomura, H. Miyakawa, H. Imai and A. Fukunda: A Theory of Two-dimensional
Linear Recurr ing Arrays. IEEE Transactions on Information Theory 18 (1972), 775-785.

[36] J. Dénes and A. Keedwell: A New Construction of Two-dimensional Arrays with the
Window Property. IEEE Transactions on Information Theory 36 (1990), 873-876.

[37] M. Harwit: Spectrometer Imager. Applied Optics 10 (1971), 1415-1421.

[38] J. H. van Lint, E. J. MacWilli ams and N. J. A. Sloane: On Pseudorandom Arrays. SIAM
Journal of Applied Mathematics 36 (1979), 62-72.

[39] B. Grünbaum and G. C. Shephard: Satins and Twill s: An Introduction to the Geometry of
Fabrics. Mathematics Magazine 53 (1980), 139-161.

[40] J. C. Cock: Toroidal Tilings from de Bruijn-Good Cyclic Sequences. Discrete
Mathematics 70 (1988), 209-210.

[41] K. Dehnhart and H. Harborth: Universal Tili ngs of the Plane by 0-1 Matrices. Discrete
Mathematics 73 (1988/89), 65-70.

[42] G. Hurlbert and G. Isaak: On the de Bruijn Torus Problem. Journal of Combinatorial
Theory (A) 64 (1993), 50-62.

[43] C. J. Mitchell: Aperiodic and Semi-Periodic Perfect Maps. IEEE Transactions on
Information Theory 41 (1995), 88-95.

[44] K. Paterson: Perfect Maps. IEEE Transactions on Information Theory 40 (1994), 743-
753.

[45] K. G. Paterson: New Classes of Perfect Maps I. Journal of Combinatorial Theory (A) 73
(1996), 302-334.

[46] G. Hurlbert and G. Isaak: New constructions for de Bruijn Tori. Designs, Codes and
Cryptography 6 (1995), 47-56.

[47] G. Hurlbert and G. Isaak: A Meshing Technique for de Bruijn Tori. Contemporary
Mathematics 178 (1994), 153-160.

[48] K. G. Paterson: New Classes of Perfect Maps II . Journal of Combinatorial Theory (A) 73
(1996), 335-345.

[49] G. Hurlbert, C. J. Mitchell and K. G. Paterson: On the Existence of de Bruijn Tori with
Two by Two Windows. Journal of Combinatorial Theory (A) 76 (1996), 213-230.

33

[50] F. R. K. Chung, P. Diaconis and R. L. Graham: Universal Cycles for Combinatorial
Structures. Discrete Mathematics 110 (1992), 43-59.

[51] C. J. Mitchell and K. G. Paterson: Decoding Perfect Maps. Design, Codes and
Cryptography 4 (1994), 11-30.

[52] G. Hurlbert and G. Isaak: On Higher Dimensional Perfect Factors. Ars Combinatoria 45
(1997), 229-239.

[53] A. E. Eiben, J.E. Smith: Introduction to Evolutionary Computing. ISBN 3-540-40184-9.
Springer-Verlag Berlin Heidelberg, 2003.

