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Imbalances of bipartite multitournaments

Shariefuddin Pirzada (Srinagar, India)
Antal Ivanyi (Budapest, Hungary)
Namir A. Shah (Srinagar, India)

Abstract. A bipartite (a,b,p, ¢)-tournament is a bipartite tourna-
ment in which the parts of the tournament contain p, resp. g vertices
and the vertices belonging to different parts of the tournament are
connected with at least a and at most b arcs. The imbalance of a ver-
tex is defined as the difference of its out-degree and in-degree. In this
paper existence criteria and construction algorithms are presented
for bipartite (a, b, p, ¢)-tournaments having prescribed imbalance se-
quences and prescribed imbalance sets.

1. Introduction

An actual research topic of graph theory is the characterization of dif-
ferent special graphs (as simple, oriented, bipartite, multipartite, signed
and semicomplete graphs, see e.g. [1, 11, 12, 14, 15, 16, 19, 30]), and
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different generalizations (as hypergraphs, hypertournaments, weighted
graphs, see e.g. [18, 27, 28]) having prescribed degree properties.

The classical results, as the theorem published by Landau in 1953
[13], and the theorem of Erdés and Gallai published in 1960 [4] contained
necessary and sufficient conditions of the existence of a tournament, re-
spectively of a simple graph with prescribed parameters. Later also con-
structive results appeared as the Havel-Hakimi theorem [7, 8] on simple
graphs and the construction algorithm for optimal (a, b, n)-tournaments
[10].

The structure of the paper is as follows. Section 2 contains some
preliminary results, while Section 3 deals with imbalances of (0, oo, p, q)-
tournaments. In Section 4 the reconstruction results of imbalance se-
quences are discussed, Section 5 is devoted to imbalance sets.

2. Preliminary notions and earlier results

Let a, b and n be nonnegative integers (b > a, b > 0, n > 1),
T (a,b.n) be the set of directed multigraphs T = (V, E), where |V| =
n, and elements of each pair of different vertices u, v € V are con-
nected with at least a and at most b arcs [9]. T € T (a,b,n) is called
(a,b,n)-tournament. (1,1,n)-tournaments are the usual tournaments,
and (0, 1,n)-tournaments are also called oriented graphs or simple di-
rected graphs [5]. The set T is defined by

T= J 700n).

b>1, n>1

According to this definition 7 is the set of the finite directed loopless
multigraphs.

For any vertex v € V let d(v)™ and d(v)~ denote the out-degree
and in-degree of z, respectively. Define f(v) = d(v)™ — d(v)~ as the
imbalance of the vertex v. The imbalance sequence of T' € T is formed
by listing the vertex imbalances of the vertices in nonincreasing or non-
decreasing order.
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The following result due to Avery [1] and Mubayi, Will and West
[16] provides a necessary and sufficient condition for a nonincreasing

sequence F' of integers to be the imbalance sequence of a tournament
T e7T(0,1,n).

Theorem 2.1. A nonincreasing sequence of integers F = [f1,..., ful
is an imbalance sequence of a tournament T € T(0,1,n) if and only if

k
> fi <k(n—k),
=1

for 1 < k < n with equality when k = n.

Proof. See [1, 16]. O

Arranging the sequence F' in nondecreasing order, we have the fol-
lowing equivalent assertion.

Corollary 2.1. A nondecreasing sequence of integers F' = [f1,..., fn]
is the imbalance sequence of a (0,1, n)-tournament if and only if

k
> fi > k(k—n)
=1

for 1 <k < n, with equality when k = n.

The following theorem gives a characterization of imbalance sequences
of (0, b, n)-tournaments [25].

Theorem 2.2. Ifb > 1, then a nonincreasing sequence F' = [fi, ..., fn]
of integers is the imbalance sequence of an (0,b,n)-tournament if and

only if
k
i=1

for 1 < k <n with equality when k = n. O

Proof. See [25]. O
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In [25] also a construction algorithm of a (0, b, n)-tournament can be
found. Some other results on imbalances of (0, b, n)-tournaments and
their special cases can be found in [17, 26, 30, 31].

Reid in 1978 [29] introduced the concept of the score set of (1,1,n)-
tournaments as the set of different scores (out-degrees) of the given
tournament. At the same time he formulated the conjecture that for
any set of nonnegative integers S there exists a tournament 7' having
S as its score set. In the same paper he proved the conjecture for sets
containing 1, 2, or 3 elements. Hager in 1986 [6] proved the conjecture
for |S| = 4 and |S| = 5 and Yao in 1989 [32] published a proof of the
whole conjecture.

There are some known results on the imbalance sets of (0,1,n)-
tournaments (see e.g. [20, 23, 25]).

3. Imbalances in (0, oo, p, g)-tournaments

Let a, b, p and g be nonnegative integers (b > a, b > 0, p >
1, ¢ > 1), B(a,b,p,q) be the set of directed bipartite multigraphs B =
(UUV,E), where |U| = p and |V| = ¢, and the elements of each pair
of vertices u € U and v € V are connected with at least a and at
most b arcs. Then B € B(a,b,p, q) is called (a, b, p, q)-tournament. B €
B(0,1,p,q) is an oriented bipartite graph and a (1, 1, p, ¢)-tournament
is a bipartite tournament.

According to this definition B is the set of the finite directed bipartite
multigraphs.

For any vertex v € UUV of T € B(a, b, p, q) let d and d,, denote the
out-degree and in-degree of v, respectively. Define f(v) = d(v)* —d(v)~
and g(v) = d(v)t — d(v)~ as the imbalances of the vertex v for v €
U, resp. v € V. Then the nonincreasing or nondecreasing sequences
F=1fi,...,fp) and G = [g1, ..., gq] are the imbalance sequences of the
(a,b,p,q)-tournament T'= (U UV, E).
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3.1. Basic properties of imbalance sequences

If in an (a, b, p, q)-tournament B(U UV, E) there are x arcs directed
from vertex u € U to v € V and y arcs directed from v to u, with a <
x<ba<y<banda<x+y <b, then it is denoted by u(z — y)v. We
also call u(i — y)v as a double. A tetra in an (a, b, p, g)-tournament is an
induced (0, 1,2, 2)-tournament. Define tetras of the form wu;(1—0)vq(1—
0)uz(1—0)va(1—0)u; and ui(1—0)v1(1—0)uz(1—0)v2(0—0)u; to be of
a-type, and all other tetras to be of B-type. An (a,b, p, q)-tournament is
said to be of a-type or B-type according as all of its tetras are of a-type or
B-type respectively. We note that an a-type tetra uj (1—0)vy (1—0)ug(1—
0)v2(1—0)u; or u3(1—0)v;(1—0)uz(1—0)v2(0—0)u; can be respectively
transformed to the S-type tetra u; (0 —0)v1(0—0)u2(0—0)v2(0—0)u; or
u1(0—0)v1(0—0)uz(0—0)va(0 — 1)u; and vice-versa with imbalances of
the vertices ui,uz € U and v1,v9 € V remaining unchanged (see Figure
1). We note that a double of the form u(z — x)v can be transformed
to the double of the form u(0 — 0)v making number of arcs lesser by 2x
while imbalances remaining unchanged.

u u
1 2 Ul U2
o o
) [
v Y
v, 2 v, 2
Uy Yz u; u,
o
L
o
v vV
A 2 A 2

Figure 1. Transformation of an a-type tetra to a S-type tetra.

The above facts lead us to the following assertion.



6 S. Pirzada, A. Ivédnyi, N. A. Shah

Lemma 3.1. Among all (a,b,p,q)-tournaments with given imbal-
ance sequences, those with the fewest arcs are of B-type.

Proof. Let B = B(UUV,E) be an (a,b,p, q)-tournament with
imbalance sequences F' and G. If B is not of B-type, it contains an
oriented tetra of a-type. Thus for uj,us € U and vi,ve € V, we have
u1(1—0)v1(1—=0)uz(1—0)v2(1—0)uy, or u;(1—0)v1(1—0)uz(1—0)v2(0—
0)uq as an oriented tetra of a-type in B. Clearly u(1—0)vy(1—0)ug(1—
0)v2(1—0)u; can be changed to u1(0—0)v1(0—0)u2(0—0)v2(0—0)u; with
the same imbalance sequences and four arcs fewer, and u;(1 — 0)v1(1 —
0)ug(1—0)v2(0—0)u; can be changed to u; (0—0)v; (0—0)uz(0—0)v2(0—
1)u; with same imbalance sequences and two arcs fewer. Hence in both
cases we obtain a realization B/ (U UV, E) of F' and G with fewer arcs.
In case there is a double of the form u(x — x)v, it can be transformed to
the double of the form u(0 — 0)v making number of arcs lesser by 2z. [

A transmitter is a vertex whose in-degree is zero. We have the follow-
ing assertion about the transmitter in a S-type (0, b, p, ¢)-tournament.

Lemma 3.2. In a S-type (0,b, p, q)-tournament with nondecreasing
imbalance sequences F' = [f1,..., fp] and G = [g1, ..., 94|, either a vertex
with imbalance f,, or a vertex with imbalance g4, or both may act as
transmitters.

Proof. Let U = {uj,ua,...,up} and V = {v1,v2,...,v4} be the
parts of a (0,b,p, g)-tournament B(U UV, E), so that g(u,) = f, and
g(vg) = gq. Assume that neither u, nor v, is a transmitter. Then
there exist some vertices u; € U and v; € V such that u;(1 — 0)v, and
vj(1 —0)uy. Since g(up) > g(u;) and g(vy) > bg(v;), there exist vertices
u, € U and vy € V such that u,(1 — 0)vs and vy(1 — 0)u, (see Figure
2(a)). We have the following possibilities.

Case (i). vs(1—0)u, and u,(0—0)v;. Here v;(1—0)uy(1—0)vs(1—
0)u, (0 — 0)v; is a tetra of a-type, a contradiction (see Figure 2(b)).

Case (ii). vs(1—0)u, and u,(1—0)v;. Here v;(1—0)u,(1—0)vgs(1—
0)u,(1 —0)v; is a tetra of a-type, a contradiction (see Figure 2(c)).

Case (iii). u,(1 —0)vs and v4(0 — 0)u;. In this case u;(1 —0)vy(1 —
0)u,(1—0)vs(0—0)u; is a tetra of a-type, again a contradiction (Figure

2(d)).
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U, u; Up u,
Vg Vi a Vg
Figure 2(a)
up Ui Up
) \%
Vs Vi a
Figure 2(d)
u, Ui Up
Vs Vi a
Figure 2(a)

r p
. \Y%
Vs VJ q
Figure 2(c)
U; u p
g Vq
Figure 2(e)
u, Ui Up
o
Vs Vi a
Figure 2(f)

Figure 2. Tllustration of the different cases in the proof of Lemma 3.2.

Case (iv). u,(1 — 0)vs and vs(1 — 0)u;. Clearly u;(1 — 0)vg(1 —
0)u,(1—0)vs(1—0)u; is a tetra of a-type, again a contradiction (Figure

2(e))-

Case (v). If u,(1-0)vs and u;(1—-0)vs, then b(u;) > b(u,), which is a
contradiction. Similarly if v4(1—0)u, and v;(1—0)u,, then b(v;) > b(vy),

again a contradiction.

Case (vi). Finally if u,(0 — 0)vs, u,(0 — 0)v; and u;(0 — 0)v,, then
there is a tetra v;(1 — 0)uy(1 — 0)vs(0 — 0)u,(0 — 0)v; and this can be
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transformed to the tetra v;(0 — 0)u,(0 — 0)vs(0 — 1)u, (0 — 1)v; and the
imbalances remain unchanged (see Figure 2(f)). This means there is an
a-type tetra u;(1 — 0)vg(1 — 0)u, (1 — 0)vs(0—)u;, a contradiction. [

4. Reconstruction of imbalance sequences

This section starts with a necessary and sufficient condition for two
sequences F' and G to be imbalance sequences of some (0, b, p, ¢)-tournament.
Then we deal with minimal reconstruction of imbalance sequences.

4.1. Existence of a realization of an imbalance sequence

The following result is a combinatorial criterion for determining
whether some prescribed sequences are realizable as imbalance sequences
of a (0,b,p, q)-tournament. This is analogous to a result on degree se-
quences of simple graphs by Erdés and Gallai [4] and a result on bipartite
tournaments due to Beineke and Moon [2].

Theorem 4.1. Let b, p and q be positive integers. Two nonincreas-
ing sequences F' = [f1,..., fp] and G = [g1,...,94] of integers are the
imbalance sequences of some (0,b, p, q)-tournament if and only if

k l
(4.1) S fi+d gy <bk(g—1)+bl(p—k)

i=1 j=1
for 1 <k <p, 1<I1<q, with equality when k =p and l = q.

Proof. The necessity follows from the fact that a directed bipartite
subgraph of a (0, b, p, ¢)-tournament induced by k vertices from the first
part and [ vertices from the second part has a sum of imbalances at most
bk(q —1) 4+ bl(p — k).

For sufficiency, assume that F' = [fi,..., fp] and G = [g1, ..., gq) are
the sequences of integers in nonincreasing order satisfying conditions 4.1
but are not the imbalance sequences of any (0, b, p, ¢)-tournament. Let
these sequences be chosen in such a way that p is the smallest possible
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and q is the smallest possible among the tournaments with the smallest
p, and fi is the least with that choice of p and q. We consider the
following two cases.

Case (i). Suppose equality in 4.1 holds for some k < p and [ < ¢,
so that

k l
S fi+ Y g =bk(g—1)+bl(p— k).
=1

j=1

By the minimality of p and ¢, F' = [f1,..., fx] and G = [g1, ..., g/] are
the imbalance sequences of some (0, b, p, ¢)-tournament B;(U; U V1, Ey).

Let F2 = [fe41,- -+, fp] and G2 = [gi41, - - -, ggl-
Now,

k+f l+g

f g k !
Zak+i+zbl+jzzai+zbj— Zai—l-ij
i=1 j=1 i=1 j=1 i=1 j=1

>r[2(k+ f)(l+g) — (k+ f)g— (I + g)p] — r(2kl + kq + Ip)
=r(2kl +2kg+2fl+2fg—kq— fq—Ip—gp— 2kl + kq+ lp)
(2fg — fa—gp+2kg+ 2f1)

>r(2fg— fqa— gp),

for 1 < f<p—kand 1l < g < q-—1I, with equality when f = p —k
and g = ¢ — [. So, by the minimality for p and ¢, the sequences F5 and
Go form the imbalance sequences of the (0,b,p — k,q — [)-tournament
By (Us U Vs, E3). Now construct a (0, b, p, g)-tournament B(U UV, E) as
follows.

Let U =U1UUs, V =V, UV, with Uy NUy :(D, ViNVy = 0 and the
arc set containing those arcs which are between U; and V; and between
U and V5. Then we obtain a (0, b, p, ¢)-tournament B(U UV, E) with
the imbalance sequences F' and GG, which is a contradiction.

=r

Case (ii). Suppose that the strict inequality holds in 4.1 for all
k # p and [ # q. That is,

k l
S fit Y g >bk(g—1)+bl(p— k)

i=1 j=1

for1<k<p 1<l<q.
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Let F1 = [fl -1, fo,.. .,fp_l, fp + 1] and G; = [gl, ce. ,gq], so that
F1 and (G satisfy the conditions 4.1. Thus, by the minimality of f;, the
sequences F| and G; are the imbalances sequences of some (0,b,p, q)-
tournament By (U1 UV;). Let fu, = fi—1and f,, = f,+1. Since f,, >
fur +1, therefore there exists a vertex vy € V; such that u,(0—0)vq (1 —
0)uq, or uy(1 —0)v1(0—0)uq, or uy(l—0)vi (1 —0)uy, or u,(0—0)v(0—
0)uy, in D1 (U UVL, Eq) and if these are changed to u,(0—1)v1(0—0)uq,
or u,(0 — 0)v1(0 — 1)ug, or uy(0 — 0)v1(0 — 0)uy, or uy(0 — 1)v1(0 —
1)uy respectively, the result is a (0, b, p, ¢)-tournament with imbalances
sequences F' and G, which is a contradiction proving the result. ]

Since (0, 1, p, g)-tournaments (oriented graphs) are special (a, b, p, q)-
tournaments, the following corollary of Theorem 4.1 gives a necessary
and sufficient condition for nonincreasing sequences of integers to be
imbalance sequences of some (0, 1, p, ¢)-tournament.

Corollary 4.1. Two nonincreasing sequences F' = [f1,..., fp] and
G =91, .,9q] of integers are the imbalance sequences of some (0,1,p,q)-
tournament if and only if

k l
(4.2) S H+D g <klg-1)+1p—k),

i=1 j=1

for1 <k <p, 1 <1< q with equality when k =p and l = q.

Proof. Let us substitute b = 1 into (4.1). O
Another simple consequence of Theorem 4.1 is the following asser-
tion: if F' = [f1,..., fp] and G = [g1, ..., g4] are imbalance sequences of

a (0,b,p, q)-tournament, then

(4.3) Zfi+zgj =0.

From the other side, for arbitrary sequences of integer numbers F'
and G satisfying (4.3) one can find such a b, that F' and G are imbalance
sequences of some (0, b, p, ¢)-tournament.

Let Frae, Gmaz, and z be defined as follows:

Fmax = 1H§1?§}§,|fl|’
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Gmax = 121;‘2(;7 ’gj‘a

and
z = max(Fraz, Gmag)-
The following assertion gives lower and upper bound for b,,;,.
Lemma 4.1. If p > 1 and q¢ > 1, then
F G
(4.4) max <[ml , {W—D < bpin < max(Fiax, Gmax)-
q p

Proof. From one side it is easy to write a program which constructs
a (0, z,p, ¢)-tournament, and even the uniform allocation of the degrees
requires

w0 o] [5)
O

We are interested in the least possible b allowing the realization of
F and G.

4.2. Computation of b,,;,

We are interested in the computation of the minimal value of b,
satisfying (4.1) Using Theorem 4.1 we can compute by

Let i l
alk,) = fi+ g
i=1 j=1
and
B(k,1) = bk(q — 1) +bl(p — k)

forl<i<pand1l<j<q.

The following theorem allows quickly to compute byy,.

Theorem 4.2. Two nonincreasing sequences F' = [fi,..., fp] and
G =[g1,...,94) of integers are the imbalance sequences of some (0, b, p, q)-
tournament B if and only if b > byin, where
(4.6) bnin = min  {b| a(k,l) < B(k,1)}.

1<k<p,1<I<q
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Proof. If k = p and | = ¢, then both sides of (4.1) equal to zero,
otherwise the right side is positive and a multiple of b, therefore (4.6)
holds, if b is sufficiently large.

The following program MINIMAL is based on Theorem 4.2. The
pseudocode uses the conventions described in [?].

Inputs. p and g: the numbers of the elements in the prescribed
imbalance sequences;
b: maximum number of permitted arcs between two vertices v € U and
veV;
F=1fi,....fp) and G = [g1,...,9q]: given nonincreasing sequences of
integers.

Output. bpn: the minimal number of allowed arcs between two
vertices belonging to different parts of B.

Working variables. i, j: cycle variables;
S': actual sum of the imbalances;
L = a(k,l): the actual value of the left side of (4.2);
R = a(k,1): the actual value of the right side of (4.2).

MINIMAL(ba b,q, F7 G7 bmm)

01 S«0

02 Fmax < max(| fi|,[fp])

03 Gmax < max(|g1l, |g4])

04 byyip + max ([ F10ax ] [Cmaxy)
05 fori«+ 1top

06 S+ S+ f;

07 L+ S

08 for j < 1togqg

09 L <+ S+yg;

10 R < byn[i(q — 7) + j(p — )]
11 if L>R

12 bmin — bmm +1

13 if byin == max(Fmax, Gmax)
14 return b,,;,

13 return b,

MINIMAL computes by, in all cases in ©(pq) time.
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4.3. Reconstruction of imbalance sequences

The next result provides a useful recursive test whether given se-
quences of integers in nondecreasing order are the imbalance sequences
of some (0, b, p, g)-tournament.

Theorem 4.3. Let F' = [f1,...,fp] and G = [g1,...,94] be non-
decreasing sequences of integers satisfying (4.1), further either f, > 0
Ip < bg, gg <bp or g, >0, gg < bp, f <bg Let F' be obtained from F
by deleting f,, and G’ be obtained as follows. Choose h, 1 < h <b, such
that (h —1)q < fp < hq and increase f, — (h — 1)q smallest elements of
G by h each, and q — (f, — (h — 1)q) = hq — fp remaining elements by
(h—1) each. Then F and G are imbalance sequences of some (0,b,p, q)-
tournament if and only if F' and G’ are imbalance sequences of some
(0,b,p, q)-tournament.

Proof. Due to the symmetry it is sufficient to prove the theorem
for the case when f, > 0.

Let F’ and G’ be the imbalance sequences of some (0, b, p, ¢)-tournament
D’ with parts U’ and V'. Then a (0,b, p, ¢)-tournament D with imbal-
ance sequences F' and G can be obtained by adding a transmitter w, to
U’ such that u,(h — 0)v; for those vertices v; in V/ whose imbalances
were increased by h and u,((h — 1) — 0)v; for those vertices v; in V'
whose imbalances were increased by h — 1 in going from F and G to F’
and G’.

Conversely, suppose F and G are the imbalance sequences of a (0, b, p, q)-
tournament D with parts U and V. By Lemma 3.1, assume D to be of
B-type. Then there is a vertex u, in U with imbalance f, (or a vertex v,
in V with imbalance g4, or both u, and v,) which is a transmitter. Let
the vertex u, in U with imbalance f, be a transmitter. Clearly, f, >0
sod!f >0andd, =0.

P P

Let V1 be the set of f, — (h — 1)g vertices of smallest imbalances
in V, and let Vo = V — V;.. Construct D such that u,(h — 0)v; for all
v; € V1 and uy((h — 1) — 0)v; for all vertices v; € Va. This construction
is possible since if there there are less than h arcs say h —t arcs from wu,,
to any vertex in Vi, then these ¢ arcs from w, will be directed towards
vertices in Vo, and by transformations will be made directed to v; in V.
Clearly D — {u,} realizes F’ and G'. O
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As a consequence of Theorem 4.3, we have the following recursive
and constructive criteria for (0, 1, p, ¢)-tournaments.

Corollary 4.2. Let F' = [f1,---, fp] and G = [g1,--- , 4] be non-
decreasing sequences of integers f, > 0, f, < q and g4 < p. Let F' be
obtained from F by deleting one element f,, and G’ be obtained from G
by increasing g, smallest elements of G by 1 each. Then F and G are
the imbalance sequences of some (0,1, p, q)-tournament if and only if F’
and G’ are imbalance sequences.

4.4. Examples

Example 1. The first example illustrates the application of The-
orem 4.3. Let p =4, F} = [-2,-2,3,4], ¢ = 3, and G; = [-5,—1,3].
Then according to Lemma we have

Theorem 4.2 results b, = 2.

The steps of the reconstruction using Theorem 4.3 are as follows. In
fp > 0 and h = 2, implying F5 = [-2,—2,3] and G2 = [-3,0,4], and
the constructed arcs are u4(2 — —0)vy, us(l — —0)va, and ug(1l — —0)vs.
Now f3 > 0 and g3 > 0, therefore we can choose. Let us choose g3, then
h = 2, implying G3 = [—3,0] and after sorting F3 = [—1,0,4] and the
constructed arcs are v3(2 — —0)uy, v3(1 — —0)ug and v3(1 — —0)us. Now
f3 > 0 and h = 2, implying Fy = [—1,0] and after sorting G4 = [—1, 2]
and the constructed arcs are ug(2——0)v; and u3z(2——0)vy. Now go > 0
and h = 1 implying G5 = [—1] and F5 = [0, 1] and the constructed arcs
are vo(l — —0)uy and va(1l — —0)ug. Now fi > 0, so h = 1, implying
Fs = [0] and Gg = [0]. The constructed arcs are u;(1 — —0)v;.

The constructed (0,2,4,3)-undigraph having imbalance sequences
F =(-2,-2,3,4) and (—5,—1,3) is shown in Figure 3.

Example 2. The second example illustrates the application of Theo-
rem4.2. Letp=4andq =5, F; = [-3,1,2,2] and G; = [-3,-1,0,1,1].
In this case Lemma 4.4 results
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Figure 3. Result of the reconstruction of the imbalance sequences in
Example 1.

Theorem 4.2 gives the precise value b,,;,, = 1.

The steps of the recursive reconstruction using Theorem 4.2 are as
follows.

We choose f4 > 0, implying F» = [-3,1,2], G5 = [-2,0,0,1,1] and

ug(l — —0)vy, ug(1 — —0)ve. Now f3 > 0, implying F3 = [—3,1], after
sorting Gz = [-1,0,1,1,1] and u — 3(1 — —0)vy, uz(l — —0)va. Now
fo > 0, implying Fy = [-3], G4 = [0,0,1,1,1] and uz(1 — —0)v;. Now
g4 > 1, implying G5 = [0,0,1,1], F5 = [-2] and v5(1 — —0)u;. Now

g4 > 0, implying Gg = [0,0, 1], Fs = [—1] and v4(1 — —0)u;. Now gg = 1,
implying G7 = [0,0], Fr = [0], and v2(1 — —0)u;.

The constructed (0,1,4,5)-undigraph having imbalance sequences
F=(-3,1,2,2) and G = [-3,—1,0,1,1) is shown in Figure 4.

5. Imbalance sets in bipartite multidigraphs

K. B. Reid in 1978 [29] introduced the concept of the score set of
tournaments as the set of different scores (out-degrees) of a tournament.
At the same time he formulated the conjecture that for any set of non-
negative integers S there exists a tournament 7T having S as its score
set. At the same time he proved the conjecture for sets containing 1, 2,
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u, u, Us Uy

v
v v 5
v, v, 3 4

Figure 4. Result of the reconstruction of the imbalance sequences in
Example 2.

or 3 elements. Hager in 1986 [6] proved the conjecture for |S| = 4 and
|S| =5 and Yao [32] published a proof of the conjecture

In an analogous manner we define the imbalance set of a bipartite
multigraph B = (UUV, E) as the union of the sets of different imbalances
of the vertices in U and V.

5.1. Existence of a (0, 1, p, q)-tournament with prescribed im-
balance sets

First we show the existence of a (0,1, p, ¢)-tournament with given
set of integers as imbalance sets.

Theorem 5.1. Let F' = [fi,..., fp] and G = [—g1,...,—gp|, where
fi,o s fpy 91, .-, gp are positive integers with fi < --- < fp and g1 <
-++ < gp. Then there exists a connected (0,1, p, p)-tournament with im-
balance set F'UG.

Proof. Construct a (0,1, p, ¢)-tournament B(U UV, E) as follows.
Let U=U1U---UU,, V=ViU---UV, with U;nU; =0 (i # j),
VinV; =0 (i #j), |Us| =b; for all 4, 1 < i < p and |Vj| = a; for all j,
1 < j < p. Let there be an arc from every vertex of U; to each vertex
of V; for all i, 1 < i < p, so that we obtain the (0, 1, p, ¢)-tournament
B(U UV, E) with the given imbalance sets of vertices as follows.

For 1 < i,j < p, fu, = |[Vi| =0 = f;, for all u; € U; and g,;, =
0 — |Uj| = —g;, for all v; € V;.
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Therefore, the imbalance set of B(U UV, E) is FUG.

The oriented bipartite graph constructed above is not connected. In
order to see the existence of oriented bipartite graph, whose underlying
graph is connected, we proceed as follows.

Taking U; = {u1,...,up, } and Vj = {v1,...,v,, }, and let there be an
arc from each vertex of U; to every vertex of V; except the arcs between
ug, and vy, that is up, (0 — 0)ge,;, 1 < i < pand 1 < j < p. We take
tg, (0= 0)gf,, ug, (0 — 0)vg,, and so on ug, _, (0 = 0)vy,, ug, (0 —0)vy,.
The underlying graph of this (0, 1, p, p)-tournament is connected.

5.2. Existence of a (0, b, p, q)-tournament with prescribed im-
balances

Finally, we prove the existence of a (0, b, p, ¢)-tournament with pre-
scribed sets of positive integers as its imbalance set.

Let (fi,-..,fp,91,--.,9q) denote the greatest common divisor of
flv"'7fp7gl7~-'agq'

Theorem 5.2. Let b > 1 a positive integer, F' = [fi,..., fp] and
Q=1[—91,...,—9q], where f1,..., fp,g1,...,0q are positive integers with

fl << fp7 g < - <gq and(fl?"'afp7glu”'7gq) :tSbmm Then
there exists a connected (0, b, p, q)-tournament with imbalance set PUQ.

Proof. Since (fi1,..., fp.01,--.,9¢) = t, where 1 < t < b, there
exist positive integers x1,...,2p,y1,...,yq With 21 < -+ < zp, y1 <
-+ < yq such that f; =tx; for 1 <i<pandg; =ty; for 1 <j <q.

Construct a (0, b, p, g)-tournament B(U UV, E) as follows. Let U =
u---uU,uU'yU---ulUP, V=Vu---UuV,uViu...uUVP with
UinU; =0,0,N07 =0, U0'NnU =0, V;nV; =0), V,nVI =0,
VinVIi=0,i+# j, |U] = x; for all i, 1 < i < p and |U’| = g; for
all i, 1 < i <p, |Vj| =a; foralli, 1 <i < pand Vi = g for all 4,
1 <4 < q. Let there be t arcs directed from every vertex of U; to each
vertex of V; for all 4, 1 < ¢ < p and let there be t arcs directed from every
vertex of U’ to each vertex of V* for all i, 1 < i < ¢, so that we obtain
the (0,b, p, q)-tournament B(U UV, E) with the imbalances of vertices
as follows.
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For 1 <i<p,
fu; =t|Vi| — 0 =ta; = f;, for all u; € U,

o, =0 — t‘UZ| = —ty; = —¢, for all v; € V},

for 1 <i<g,
fui =tV —0=1tf = g1, for all u’ € U",
Gui = 0 — t|UY| = —ty; = —g;, for all v € V.

Therefore the imbalance set of B(U UV, E) is PUQ.

The (0, b, p, g)-tournament constructed above is not connected. In
order to see the existence of a (0, b, p, ¢)-tournament, whose underlying
graph is connected, we proceed as follows.

Let U; = {u1,...,ug} and Vj = {v1,..., vy}, and let there be an
arc from each vertex of U; to every vertex of V; except the arcs between
ug, and vy, that is ug, (0 — O)vfj, 1<i<gand1l < j < gq. We take
Ug, (0 = 0)vy,, up, (0 — 0)vay, and so on up,_, (0 — 0)va,,, up, (0 — 0)vg, .
The underlying graph of this (0, b, p, ¢)-tournament is connected.

An overview of the results on score sets can be found in [21].

References

[1] Avery P., Score sequences of oriented graphs, J. Graph Theory
15(3) (1991), 251-257.

[2] Beineke, L. W. and J. W. Moon, On bipartite tournaments and
scores, in The Theory of Applications of Graphs, John Wiley and
Sons, Inc., New York, 1981, pp. 55-71.

[3] Cormen, T. H., C. E. Leiserson, R. L. Rivest and C. Stein,
Introduction to Algorithms, Third edition, MIT Press/McGraw Hill,
Cambridge/New York, 2009.



Imbalances of bipartite multitournaments 19

[4] Erdés, P. and T. Gallai, Graphs with prescribed degrees of ver-
tices, (Hungarian). Mat. Lapok 11 (1960), 264-274.

[5] Gross, J. L. and J. Yellen, Handbook of Graph Theory, CRC
Press, Boca Raton, 2004.

[6) Hager, M., On score sets for tournaments, Discrete Math. 58(1)
(1986), 25-34.

[7] Hakimi, S. L. On realizability of a set of integers as degrees of the
vertices of a simple graph, J. STAM Appl. Math. 10 (1962), 496-506.

[8] Havel, V. A remark on the existence of finite graphs, (Czech)
Casopis Pést. Mat. 80 (1955), 477-480.

[9] Ivanyi, A., Reconstruction of complete interval tournaments, Acta
Univ. Sapientiae, Inform. 1(1) (2009), 71-88.

[10] Ivanyi, A., Reconstruction of complete interval tournaments II,
Acta Univ. Sapientiae, Math. 2(1) (2010), 47-71.

[11] Ivanyi, A., L. Lucz, F. T. Méri and P. Sétér, On Erdés-Gallai
and Havel-Hakimi algorithms, Acta Univ. Sapientiae, Inform. 3(2)
(2011), 230-269.

[12] Ivanyi, A., S. Pirzada, Comparison based ranking, in (ed. A.
Ivanyi) Algorithms of Informatics, Vol. 3, AnTonCom, Budapest,
2011, pp. 1262-1311,

[13] Landau, H. G. On dominance relations and the structure of an-
imal societies. III. The condition for a score structure, Bull. Math.
Biophys. 15 (1953), 143-148.

[14] Moon, J. W. On the score sequence of an n-partite tournament,
Can. Math. Bull. 5 (1962), 51-58.

[15] Moon, J. W. An extension of Landau’s theorem, Pacific J. Math.
13 (1963), 1343-1345.

[16] Mubayi, D., T. G. Will and D. B. West, Realizing degree im-
balances in directed graphs, Discrete Math. 239(1-3) (2001), 147—
153.



20 S. Pirzada, A. Ivanyi, N. A. Shah

[17] Pirzada S., On imbalances in digraphs, Kragujevac J. Math. 31
(2008), 143-146.

[18] Pirzada, S., Degree sequences of k-multi-hypertournaments. Appl.
Math. J. Chinese Univ. Ser. B., 24(3) (2009), 350-354.

[19] Pirzada, S., Graph Theory, Orient BlackSwan, Hyderabad, 2012.

[20] Pirzada, S., A. M. Al-Assaf and K. K. Kayibi, On imbalances
in oriented multipartite graphs, Acta Univ. Sapientiae, Math. 3(1)
(2011), 34-42.

[21] Pirzada, S., A. Ivanyi and M. A. Khan, Score sets and kings,
in (ed. A. Ivanyi) Algorithms of Informatics, Vol. 3, AnTonCom,
Budapest, 2011, pp. 1451-1490.

[22] Pirzada, S., Merajuddin and Y. Jainhua, On the scores of
oriented bipartite graphs, J. Math. Study 33(4) (2000), 354-359.

[23] Pirzada, S. and T. A. Naikoo, Score sets in oriented graphs.
Appl. Anal. Discrete Math. 2(1) (2008), 107-113.

[24] Pirzada, S., T. A. Naikoo and T. A. Chishti, Score sets in
oriented bipartite graphs, Novi Sad J. Math. 36(1) (2006), 35-45.

[25] Pirzada, S., T. A. Naikoo, U. Samee and A. Ivanyi, Imbal-
ances in directed multigraphs, Acta Univ. Sapientiae, Inform. 2(2)
(2010), 137-145.

[26] Pirzada, S., T. A. Naikoo and N. A. Shah, Imbalances in
oriented tripartite graphs, Acta Math. Sinica 27(5) (2011), 927-932.

[27] Pirzada, S. and G. Zhou, On k-hypertournament losing scores,
Acta Univ. Sapientiae, Inform. 2(1) (2010), 5-9.

[28] Pirzada, S., G. Zhou and A. Ivéanyi, Score lists of multipartite
hypertournaments, Acta Univ. Sapientiae, Inform. 2(2) (2010), 184—
193.

[29] Reid, K. B., Score sets for tournaments. Proc. Ninth Southeastern
Conf. Comb., Graph Theory, Computing (Florida Atlantic Univ.,
Boca Raton, FL, 1978), pp. 607618, Congress. Numer., XXI, 1978.



Imbalances of bipartite multitournaments 21

[30] Reid, K. B. and C. Q. Zhang, Score sequences of semicomplete
digraphs, Bull. Inst. Combin. Appl. 24 (1998), 27-32.

[31] Samee, W. and T. A. Chishti, Imbalances in oriented bipartite
graphs, Eurasian Math. Journal 1(2) (2010), 136-141.

[32] Yao, T. X., On Reid conjecture of score sets for tournaments.
Chinese Sci. Bull. 34 (10) (1989), 804-808.

Shariefuddin Pirzada

University of Kashmir, Department of Mathematics
Srinagar

India

sdpirzada@yahoo.co.in

Antal Ivanyi

Eo6tvos Lorand University, Department of Computer Algebra
Budapest

Hungary

tony@compalg.inf.elte.hu

Namir A. Shah

University of Kashmir, Department of Mathematics
Srinagar

India

wmshah@rediffmail.com.in



