Imbalance sequences of football tournaments (February 6, 2012)

Antal IVÁNYI
Department of Computer Algebra, Eötvös Loránd University, Hungary email: tony@inf.elte.hu

Loránd LUCZ
Department of Computer Algebra, Eötvös Loránd University, Hungary
email: lorand-lucz@caesar.elte.hu

Abstract

An open problem is the complexity to decide whether a sequence of nonnegative integer numbers is the final score sequence of a football tournament [9, 18, ?, ?]. In this paper we propose a polynomial algorithm to decide whether a sequence of nonnegative integers is the imbalance sequence of a football tournament.

1 Introduction

Let a, b and n be nonnegative integers $(b \geq a \geq 0, n \geq 1), \mathcal{T}(a, b . n)$ be the set of directed multigraphs $\mathrm{T}=(\mathrm{V}, \mathrm{E})$, where $|\mathrm{V}|=\mathrm{n}$, and elements of each pair of different vertices $u, v \in V$ are connected with at least a and at most b arcs [15]. $T \in \mathcal{T}(a, b, n)$ is called (a, b, n)-tournament. ($1,1, n$)-tournaments are the usual tournaments, and $(0,1, n)$-tournaments are also called oriented graphs or simple directed graphs [10]. The set \mathcal{T} is defined by

$$
\mathcal{T}=\bigcup_{b \geq 1, n \geq 1} \mathcal{T}(0, b, n)
$$

An (a, b, n)-tournament is called complete, if the set of permitted results is $\{0: c, 1: c-1, \ldots, c: 0\}$ for all possible $c(a \leq c \leq b)$. Is some of these results are prohibited, then the tournament is called incomplete.

[^0]The first result on the out-degree sequences of complete ($1,1, n$)-tournaments belongs to Landau, who in 1953 published the following necessary and sufficient condition.

Theorem 1 If $n \geq 1$ then a sequence $\left(s_{1}, \ldots, s_{n}\right)$ of integers satisfying $0 \leq$ $s_{1} \leq \ldots \leq s_{n}$ is the score sequence of some ($1,1, n$)-tournament T if and only if

$$
\begin{equation*}
\sum_{i=1}^{k} s_{i} \geq B_{k}, \quad 1 \leq k \leq n \tag{1}
\end{equation*}
$$

with equality when $k=n$.
Further results connected with complete tournaments can be found e.g. in [15, 16, 19, ?].

For example football is an incomplete ($2,3, n$)-tournament since the permitted results are $0: 3$ and $1: 1$ while $0: 2$ and $1: 2$ are not permitted.
According to this definition \mathcal{T} is the set of the finite directed loopless multigraphs.

For any vertex $v \in \mathrm{~V}$ let $\mathrm{d}(v)^{+}$and $\mathrm{d}(v)^{-}$denote the out-degree and indegree of x, respectively. Define $f(v)=d(v)^{+}-d(v)^{-}$as the imbalance of the vertex ν. The imbalance sequence of $\mathrm{T} \in \mathcal{T}$ is formed by listing the vertex imbalances of the vertices in nonincreasing or nondecreasing order.

The following result due to Avery [2] and Mubayi, Will and West [?] provides a necessary and sufficient condition for a nonincreasing sequence F of integers to be the imbalance sequence of a tournament $\mathrm{T} \in \mathcal{T}(0,1, n)$.

Theorem 2 (Avery [2], Mubayi, Will, West [25]) A nonincreasing sequence of integers $F=\left(f_{1}, \ldots, f_{n}\right)$ is an imbalance sequence of a $(0,1, n)$ tournament if and only if

$$
\sum_{i=1}^{k} f_{i} \geq k(n-k)
$$

for $1 \leq \mathrm{k}<\mathrm{n}$ with equality when $\mathrm{k}=\mathrm{n}$.
Proof. See [2, 25].

2 Imbalance sequences of complete tournaments

In 1991 Avery [2]
In 2001 Mubay, Will and West [25]

3 Incomplete tournaments

The first results on incomplete tournaments were published by Reid and Zhang in 1998.

Theorem 3 (Reid, Zhang [28]) If $n \geq 1$ then the nondecreasing sequence of nonnegative integer numbers $s=\left(s_{1}, \ldots, s_{n}\right)$ is the outdegree sequence of a semicompleted tournamant T if and only if

$$
\begin{equation*}
\sum_{i=1}^{k} s_{i} \geq\binom{ k}{2} \quad \text { and } \quad s_{k} \leq n-1 \tag{2}
\end{equation*}
$$

for all $1 \leq \mathrm{k} \leq \mathrm{n}$.
Theorem 4 (Reid, Zhang [28]) If $n \geq 1$ and $s=\left(s_{1}, \ldots, s_{n}\right)$ is a nondecreasing sequence of nonnegatíve integers, then there exists a tournament T with out-degree sequence $\mathrm{t}=\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}$ such, that $\mathrm{t}_{\mathrm{i}} \leq \mathrm{s}_{\mathrm{i}}$ for $1 \leq \mathfrak{i} \leq \mathrm{n}$.the outdegree sequence of a semicompleted tournamant T if and only if

$$
\begin{equation*}
\sum_{i=1}^{k} s_{i} \geq\binom{ k}{2} \quad \text { and } \quad s_{k} \leq n-1 \tag{3}
\end{equation*}
$$

for all $1 \leq \mathrm{k} \leq \mathrm{n}$.
Theorem 5 (Reid, Zhang [28]) Theorem 2, Theorem 3 and Theorem 4 are equivalent.

In 2002 Iványi [14] solved the following problem posed by Antal Bege [3]: How many wins are necessary and sufficient in a ($1,1, \mathfrak{n}$) tournament to guarantee that the teams have different number of points.

Let $x \geq 0$ be a real number and define the real football tournament with the permitted results $0: 0$ and $0: 0$ and $-1: 1+x$. Let $f(x, n)$ denote the above described number of wins in a real football tournament of n teams.

Theorem 6 If $n \geq 1$ then

$$
\begin{equation*}
f(n, 1)=(3 / 2-\sqrt{2}) n^{2}+O(n) \tag{4}
\end{equation*}
$$

if x is zero or an integer greater or equal 2, then

$$
\begin{equation*}
f(n, x)=\frac{\lfloor n / 2\rfloor(\lfloor n / 2\rfloor+1)}{2}=\frac{n^{2}}{8}+\rho(n) \tag{5}
\end{equation*}
$$

where $\rho(\mathrm{n})=0$, if n is even and $\rho(\mathrm{n})=1 / 8$, if $\mathrm{n} \geq 3$ is odd, and if x is irrational, then

$$
\begin{equation*}
\mathrm{f}(\mathrm{n}, \mathrm{x})=\mathrm{O}\left(\mathrm{n}^{3 / 2}\right) \tag{6}
\end{equation*}
$$

Proof. See [14].

4 Imbalance sequences of football tournaments

Let the permitted results of the simplified football tournament $\mathrm{T}_{\mathrm{n}} 0: 0$ and 0:1.

The following assertion gives a necessary and sufficient condition for a nonincreasing sequence $s=\left(s_{1}, \ldots, s_{n}\right)$ to be the imbalance sequence of a football tournament.

Theorem 7 A nonincreasing sequence of integers $S=\left(s_{1}, \ldots, s_{n}\right)$ is an imbalance sequence of a football tournament if and only if $s_{i}(i=1, \ldots, n)$ is a multiple of 3 and $s^{\prime}=\left(s_{1} / 3, \ldots, s_{n} / 3\right)$ is the imbalance sequence of a complete ($0,1, n)$-tournament.

Proof. The result 1:1 between players P_{i} and P_{j} do not change the imbalance of P_{i} and P_{j}. The other possible result $3: 0$ adds 3 to the imbalance of P_{i} and subtracts 3 from the imbalance of P_{j}. Therefore if s is an imbalance sequence of a football tournament, then all elements of s are the multiple of 3 .
s is the imbalance sequence of a football tournament if and only if s^{\prime} is the imbalance sequence of a simplified football tournament. s^{\prime} is the imbalance sequence of a simplified football tournament if and only if it is the imbalance sequence of a complete ($0,1, n$)-tournament.

5 Optimization

6 Summary

The referenced papers can be found at the homepage of the author at http://compalg.inf.elte.hu/~tony/Kutatas/EGHH/.

Acknowledgements. The European Union and the European Social Fund have provided financial support to the project under the grant agreement no. TÁMOP 4.2.1/B-09/1/KMR-2010-0003.

References

[1] M. Anholcer, V. Babiy, S. Bozóki, W. W. Koczkodaj, A simplified implementation of the least squares solution for pairwise comparisons matrices. CEJOR Cent. Eur. J. Oper. Res. 19, (4) (2011) 439-444. \Rightarrow
[2] P. Avery, Score sequences of oriented graphs, J. Graph Theory 15, (3) (1991) 251-257. $\Rightarrow 2$
[3] A. Bege, Personal communication, Visegrád, 19998. $\Rightarrow 3$
[4] S. Bozóki S., J. Fülöp, A. Poesz: On pairwise comparison matrices that can be made consistent by the modification of a few elements. CEJOR Cent. Eur. J. Oper. Res. 19 (2011) 157-175. \Rightarrow
[5] S. Bozóki: J. Fülöp, L. Rónyai: On optimal completion of incomplete pairwise comparison matrices, Math. Comput. Modelling 52 (2010) 318$333 . \Rightarrow$
[6] A. R. Brualdi, K. Kiernan: Landau's and Rado's theorems and partial tournaments, Electron. J. Combin. 16, (\#N2) (2009) 6 pages. \Rightarrow
[7] T. H. Cormen, Ch. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms Third edition, The MIT Press/McGraw Hill, Cambridge/New York, 2009. \Rightarrow
[8] P. Erdős, T. Gallai, Graphs with vertices having prescribed degrees (Hungarian), Mat. Lapok 11 (1960) 264-274. \Rightarrow
[9] A. Frank, Connections in Combinatorial Optimization, Oxford University Press, Oxford, 2011. $\Rightarrow 1$
[10] J. L. Gross, J. Yellen, Handbook of Graph Theory, CRC Press, Boca Raton, 2004. $\Rightarrow 1$
[11] S. L. Hakimi, On the realizability of a set of integers as degrees of the vertices of a simple graph. J. SIAM Appl. Math. 10 (1962) 496-506. \Rightarrow
[12] S. L. Hakimi, On the degrees of the vertices of a graph, F. Franklin Institute, 279, (4) (1965) 290-308. \Rightarrow
[13] V. Havel, A remark on the existence of finite graphs (Czech), Casopis Pĕst. Mat. 80 (1955), 477-480. \Rightarrow
[14] A. Iványi, Maximal tournaments. Pure Math. Appl. 13, (1-2) (2002) 171183 . $\Rightarrow 3,4$
[15] A. Iványi, Reconstruction of complete interval tournaments, Acta Univ. Sapientiae, Inform., 1(1), (2009) 71-88. $\Rightarrow 1,2$
[16] A. Iványi, Reconstruction of complete interval tournaments. II, Acta Univ. Sapientiae, Math., 2, (1) (2010) 47-71. $\Rightarrow 2$
[17] A. Iványi, Deciding the validity of the score sequence of a soccer tournament, in: Open problems of the (ed. by A. Frank), Egerváry Research Group, Budapest, 2011. \Rightarrow
[18] A. Iványi, Degree sequences of multigraphs. Annales Univ. Sci. Budapest., Sect. Computatorica (submitted). $\Rightarrow 1$
[19] A. Iványi, L. Lucz, F. T. Móri, P. Sótér, On the Erdős-Gallai and HavelHakimi algorithms. Acta Univ. Sapientiae, Inform. 3, (2) (2011) 230-268. $\Rightarrow 2$
[20] A. Iványi, S. Pirzada, Comparison based ranking, in: ed. A. Iványi, Algorithms of Informatics, Vol. 3, AnTonCom, Budapest 2011, 12091258. \Rightarrow
[21] G. Kéri, On qualitatively consistent, transitive and contradictory judgment matrices emerging from multiattribute decision procedures, CEJOR Cent. Eur. J. Oper. Res. 19, (2) (2011) 215-224. \Rightarrow
[22] K. Kern, D. Paulusma, The new FIFA rules are hard: complexity aspects of sport competitions, Discrete Appl. Math. 108, (3) (2001) 317-323. \Rightarrow
[23] K. Kern, D. Paulusma, The computational complexity of the elimination problem in generalized sports competitions, Discrete Optimization 1 (2004) 205-214. \Rightarrow
[24] H. G. Landau, On dominance relations and the structure of animal societies. III. The condition for a score sequence, Bull. Math. Biophys. 15, (1953) 143-148. \Rightarrow
[25] Mubayi, D., T. G. Will and D. B. West, Realizing degree imbalances in directed graphs, Discrete Math. 239, (1-3) (2001) 147-153. $\Rightarrow 2$
[26] T. V. Narayana, D. H. Bent, Computation of the number of score sequences in round-robin tournaments, Canad. Math. Bull. 7, (1) (1964) 133-136. \Rightarrow
[27] G. Pécsy, L. Szűcs, Parallel verification and enumeration of tournaments, Stud. Univ. Babes-Bolyai, Inform. 45, (2) (2000) 11-26. \Rightarrow
[28] K. B. Reid, C. Q. Zhang, Score sequences of semicomplete digraphs, Bull. Inst. Combin. Appl. 24 (1998) 27-32. $\Rightarrow 3$
[29] D. Soroker, Optimal parallel construction of prescribed tournaments, Discrete Appl. Math. 29, (1) (1990) 113-125. \Rightarrow
[30] J. Temesi, Pairwise comparison matrices and the error-free property of the decision maker, CEJOR Cent. Eur. J. Oper. Res. 19, (2) (2011) 239-249. \Rightarrow

[^0]: Computing Classification System 1998: G.2.2. [Graph Theory]: Subtopic - Network problems.
 Mathematics Subject Classification 2010: 05C85, 68R10
 Key words and phrases: tournament, imbalance sequence, polynomial algorithm, complexity

