On the speed of computers with paged and interleaved memory by Iványi A. and Kátai I。 /Winter-school in Visegrád, January 1976/

Abstract: A performance measure (the speed) of computer mathematical models is defined. This measure is given as a function of hardware and program behaviour parameters for Bélády's computer model with paged memory and Vulihman's model with interleaved memory。

KEY WORDS AND PHRASES: computer system performance, demand paging, interleaved memory, program behaviour.

1. Introduction

Computer performance is investigated by empirical, simulation and analytical methods [1].

The analytical method is based on the analysis of mathematical models reflecting the essence of processes by "exact" methods /e.g. queueing or Markov-chain theory, combinatorics etc./.

Due to the inaccuracy of models the analytical method usually gives only a rough estimate, but the results are general. and convenient for computer planning or development.

In this lecture we recommend an analytical method, based on Bélády's [2], Coffman's [3] and Kogan's [4] methods and give some concrete formulas derived by this method.

2. Definition of the speed

The set $\mathbb{N}=\left\{\nu_{1}, \ldots, \nu_{n}\right\} \quad(1<n<\infty)$ is called a program, and the sequence $\omega_{T}=r_{1} \ldots r_{T}\left(l \leqslant T \leqslant \infty, r_{t} \in N, t=1, \ldots, T\right)$ consisting of elements of N /T-element permutations with repetition/ is called a program realization of length T. Denote $\boldsymbol{N}^{\boldsymbol{\top}}$ the set of all possible sequences $\boldsymbol{\omega}_{T}$. Denote $\tau\left[\omega_{T}\right]$ the processing time of a sequence $\boldsymbol{\omega}_{T}$ on given computer model. The distribution of the elements of N in the sequences $\boldsymbol{\omega}_{\mathrm{T}}$ is called program behaviour [5]. This behaviour is given by the set $D=\left\{D_{1}, \ldots, D_{T}\right\}$ of distributionfunctions D_{1}, \ldots, D_{T} where $D_{T}\left[\omega_{T}\right]$ gives the probability of $\boldsymbol{\omega}_{T}$ in the space of events N^{T}, that is
/2.1/
$\forall \omega_{\mathrm{T}}$
$0 \leqslant D_{\mathrm{T}} \quad\left[\omega_{\mathrm{T}}\right] \leqslant 1$
and

$$
12.21 \quad \sum_{\omega_{\mathrm{T}} \in \mathbb{N}^{T}} \quad \mathrm{D}_{\mathrm{T}}\left[\omega_{\mathrm{T}}\right]=1
$$

Further we suppose
$12.31 \sum_{i=1}^{n} D_{T+1}\left[\omega_{T} \nu_{i}\right]=D_{T}\left[\omega_{T}\right]$.
Instead of $D_{T}\left[\boldsymbol{\omega}_{T}\right]$ we use the marking $D\left[\boldsymbol{\omega}_{T}\right]$. Denote the set of D's satisfying the conditions /2.1/, /2.2/ and $/ 2.3 /$ by D.

In this lecture we use 6 simple bahaviour model: homogeneous [6], cyclical [6], random [2], random with step [3], random with repetition [7] and independent [5] ones. Let HON, CYCL, RAN, STEP_{p}, REP $_{p}$ and $\operatorname{IND}_{p_{1}}, \ldots, p_{n}$ denote them.

According to the homogeneous model the references are equivalent, that is
12.4. $P\left\{r_{1}=\nu_{i}\right\}=\frac{1}{n}$ and $r_{t}=r_{1} \quad(t=2,3, \ldots ; i=1, \ldots, n) \cdot$

This formula is equivalent to the following definition:
$12.5 / \operatorname{HOM}\left[\omega_{k}\right]=\left\{\begin{array}{l}\frac{1}{n}, \quad \text { if in } \omega_{k} r_{1}=r_{2}=\ldots=r_{k} \\ 0, \text { otherwise. }\end{array} \quad(k=1,2, \ldots)\right.$.
According to the cyclical model the step $\boldsymbol{\nu}_{i}, \boldsymbol{\nu}_{i+l}$ $\left(\nu_{n+1} \equiv \nu_{1}\right)$ has a probability 1 , that is
12.6/ $P\left\{r_{1}=\nu_{i}\right\}=\frac{1}{n} \quad$ and $\quad P\left\{r_{t+1}=\nu_{i+1}\right\}=\left\{\begin{array}{lll}1, & \text { if } & r_{t}=\nu_{i \prime} \\ 0, & \text { if } & r_{t} \neq \nu_{i}\end{array}\right.$

$$
(t=1,2, \ldots ; \quad i=1, \ldots, n)
$$

This formula is equivalent to the following definition: $12.7 / \operatorname{CYCL}\left[\omega_{k}\right]=\left\{\begin{array}{lr}\frac{1}{n}, & \text { if in } \omega_{k} \text { from } r_{t}=\nu_{i}, r_{t+1}=\nu_{j} \\ 0, \text { follerwise. } & \end{array}\right.$ $(t=1,2, \ldots 0)$.
According to the random model ; the references occur randomly, that is
/2.8/P $\left\{r_{t}=\nu_{i}\right\}=\frac{1}{n}$

$$
(t=1,2, \ldots ; \quad i=1, \ldots, n)
$$

This formula is equivalent to the following definition: 12.9/ RAN $\left[\omega_{k}\right]=\frac{1}{n^{k}} \quad\left(k=1,2, \ldots, \omega_{k} \in \mathbb{N}^{k}\right)$.

According to the random model with repetition the repetition has a probability p, and other references have a probability $\frac{1-p}{n-1}$:
12.10/ $P\left\{r_{1}=\nu_{i}\right\}=\frac{1}{n} ; \quad{ }^{P}\left\{r_{t}=\nu_{i}\right\}=\left\{\begin{array}{ll}p, & \text { if } \\ r_{t}=\nu_{i}, \\ \frac{1-p}{n-1} & \text { if }\end{array} r_{t} \neq \nu_{i}\right.$,

$$
(t=2,3, \ldots ; i=1, \ldots, n) \text {. }
$$

This formula is equivalent to the following definition:
/2.11/ $\quad R E P p_{p}\left[\omega_{k}\right]=\frac{1}{n} \cdot p^{f}\left(\frac{1-p}{n-1}\right)^{k-f-1} \quad(k=1,2, \ldots)$,
where f is the number of the repetitions in $\boldsymbol{\omega}_{k}$ 。 According to the random model with step [3] the step $\nu_{i}, \nu_{i+1}\left(\nu_{n+1} \equiv \nu_{1}\right.$ in ω_{k} has a probability p, and other references have a probability $\frac{1-p}{n-1}$:
/2.12/ $P\left\{r_{1}=\nu_{i}\right\}=\frac{1}{n} ; \quad P\left\{r_{t}={ }_{i+1}\right\} \begin{cases}p, & \text { if } \\ r_{t-1}=\nu_{i}, \\ \frac{1-p}{n-1}, & \text { if } \quad r_{t-1}=\nu_{i},\end{cases}$
This formula is equivalent to the following definition:
12.13/ $\operatorname{STEP}_{p}\left[\omega_{1}\right]=\frac{1}{n} ; \quad \operatorname{STEP}\left[\omega_{k}\right]=\frac{1}{n} \circ p^{f}\left(\frac{1-p}{n-1}\right)^{k-f-1}(k=1,2, \ldots)$, where f is the number of the steps in $\boldsymbol{\omega}_{k}$ 。

According to the independent model [5] the reference to the page ν_{i} has a probability p_{i}, that is 12.14/

$$
P\left\{r_{t}=\nu_{i}\right\}=p_{i}
$$

$$
(t=1,2, \ldots)
$$

This formula is equivalent to the following definition:
12.15/

$$
\operatorname{IND}_{p_{1}}, \ldots, p_{n}\left[\omega_{k}\right]=\overbrace{i=1}^{n}\left[\left(p_{i}\right)^{f_{i}}\right.
$$

where f_{i} is the number of the references to the page ν_{i}.

Computer performance is characterized by the number of operations in a time unit: $V . V$ is called the speed of the computer model and is determined by the formula

$$
\text { /2.16/ } \quad \mathrm{def} \lim \inf _{k \rightarrow \infty} \frac{1}{\sum_{\omega_{k} \in N^{k}}} \frac{1}{\left[\omega_{k}\right] \frac{\tau\left[\omega_{k}\right]}{k}} .
$$

If in /2.16/ we have existance of the lim in addition to the lim inf, then this limit is denoted by V, •

Our aim is to determine the speed for various computer and program behaviour models。
3. The mathematical model of computers with paged memory

For the investigation of computers with paged memory we use the well-known model proposed by Bélády [2] in 1966.

Fig l. The scheme of a computer with 2 level paged memory.
The computer consists of a central processor unit /CPU/, an m-paged main memory /MEM/ and an n-paged backing store /BS/. The CPU has direct access to MEM-access time $\boldsymbol{\Delta}_{1}$ while an indirect access to BS-access time $\Delta_{1}+\Delta_{2}$. The paging is controlled by a demand paging algorithm. The set of demand paging algorithms is denoted by \notin.

For this model the speed V_{p} is $[8]$
13.1/ $\quad V_{p}=\frac{1}{\Delta_{1}+\Delta_{2} \cdot c}$,
where C is the average cost of a reference, that is the page fault probability [5]. By definition
$13.21 \quad C=C(m, n, A, D)=\underset{k \rightarrow \infty}{\lim \sup _{\infty}} \sum_{\omega_{k} \in \mathbb{N}^{k}}\left(D\left[\omega_{\mathrm{k}}\right]\right.$

where $A \in t, D \in \mathcal{P}$,
$13.31 \delta_{i}=\delta\left(i, m, n, \omega_{T}, A\right)=\left\{\begin{array}{lll}0, & \text { if } & r_{i} \in S_{t}, \\ 1, & \text { if } & r_{i} \notin S_{t},\end{array}\right.$
and S_{t} is the set of pages in MEM at time t. S_{t} is called the memory state. If in $13.2 /$ there exist a limit, then it is denoted by C' .
4. General assertions on the speed of computers with paged memory

Lemma 1. $([7])$.If $\Delta_{1}>0$, and $1 \leqslant m<n<\infty$, then $14.1 / 0=C(m, n, A$, HOO $) \leqslant C(m, n, A, D) \leqslant C(m, n$, LEU, CYCL $)=1$,
that is for the speed

$$
\begin{aligned}
14.21 \frac{1}{\Delta_{1}+\Delta_{2}} & =V_{v_{p}\left(\Delta_{1}, \Delta_{2}, m, n, A, D\right) \leqslant V_{p}\left(\Delta_{1}, \Delta_{2}, m, n, A,\right. \text { HON }}^{V_{p}\left(\Delta_{1}, \Delta_{2}, m, n, \text { LRU,CYCL }\right) \leqslant} \\
& =\frac{1}{\Delta_{1}}
\end{aligned}
$$

holds.
Definition 1. $\{[9])$ The demand paging algorithms, for which
/4.31 $\forall \mathrm{T}_{1},{\forall \mathrm{~T}_{2}}^{\sum_{i=1}^{T_{1}}} \delta\left(i, m, n, \omega_{T_{1}}, A\right)=\sum_{i=1}^{T_{1}} \delta\left(i, m, n, \omega_{T_{1}} \omega_{T_{2}}, A\right)$
are called sequential [6]. The set of the sequential algorithms is denoted by β.
Lemma 2. If $1 \leqslant m^{\circ}<n<\infty$, then for every $B \in \mathcal{B}$ and for every $D \in P$ /4.4/ $C_{\text {inf }}=\liminf \sum_{\omega \longrightarrow \infty}{ }_{\omega}$

$$
D\left[\boldsymbol{\omega}_{\mathrm{k}}\right\rfloor \delta_{\mathrm{k}} \leqslant C(\mathrm{~m}, \mathrm{n}, \mathrm{~B}, \mathrm{D}) \leqslant
$$

$$
\leqslant \lim _{k \rightarrow \infty} \sup _{k} \sum_{\omega_{k} \in \mathbb{N}} \quad D\left[\omega_{k}\right] \delta_{k} .
$$

Definition 2. Let $D \in S$) and $1_{+}^{k}\left(k=1,2, \ldots ; \mathbb{N}_{+}^{\mathrm{k}} \subseteq \mathbb{N}^{\mathrm{k}}\right)$ be given. Denote a_{k} the $\operatorname{sum} \sum_{\omega_{k} \mathbb{N}_{+}^{k}} D\left[\omega_{k}\right]$. If
/4.5/ $\lim _{k \rightarrow \infty} a_{k}=0$,
then we shall say, that the sequence \mathbb{N}_{+}^{K} has zero limitdensity in N^{k}.
Lemma $3 \cdot([7])$. If for a given D there exist an m-tuple of pages μ_{1}, \ldots, μ_{m} and $\varepsilon>0$, for which
/4.6/ $\forall \omega_{k} \quad D\left[\omega_{k} \nu_{i}\right] \geqslant \varepsilon \cdot D\left[\omega_{k}\right]$ holds, then the sequence $\mathbb{N}_{+}^{\mathrm{K}}$ has zero limit-density in \mathbb{N}^{k}, where $\mathrm{N}_{+}^{\mathrm{k}}$ is the set of $\boldsymbol{\omega}_{\mathrm{k}} \in \mathbb{N}^{k}$, for which $\left|S_{t}\right|=\left|S_{t}\left(m, \omega_{k}, B\right)\right|<m$.

Definition 3_{0} Let $\boldsymbol{\omega}_{T}$ be given. The sequences of length $/ \mathbb{T}+\mathrm{f} / \mathrm{I}=0,1, \ldots /$ identical to $\boldsymbol{\omega}_{T}$ up to the T-th olement, are called the bundle $\boldsymbol{\Omega}_{\mathrm{f}}\left[\omega_{\mathrm{T}}\right]$ with root ω_{T} and length f.

Definition 4. The average cost of a references ${ }_{c}{ }^{\pi}$ in a given bundle $\pi_{f}\left[\omega_{T}\right]$ is by definition

$$
\text { 14.7 / } \quad \mathrm{C}=\mathrm{C} \pi / \mathrm{m}, \mathrm{n}, \mathrm{~A}, \mathrm{D}, \omega_{\mathbb{T}} /=\lim _{\mathrm{k} \rightarrow \infty} \sum_{\omega_{\mathrm{k}} \in \pi_{\mathrm{k}-\mathrm{T}}\left[\omega_{\mathbb{T}}\right]}\left[\omega_{\mathrm{k}}\right] \delta_{\mathrm{k}} \text {, }
$$

where $D^{\pi}\left[\omega_{K}\right]$ is the probability of sequence ω_{k} $\left(\omega_{k} \in \pi_{\mathrm{k}-\mathrm{T}}\left[\omega \omega_{T}\right]\right)$ within the bundle, that is
$14.8 /$

Lemma 4. $([7])$. Let N_{+}^{k} denote the set of $\omega_{k}^{\prime}-8$ not belonging to any bundle, which has a cost C^{π}. If the sequence N_{+}^{k} $/ k=1,2, \ldots /$ has a zero limit density in \mathbb{N}^{k}, then $C(m, n, B, D)$ exists and is ${ }_{C} \pi$.
5. Theorems on the speed of computers with paged memory

Theorem A /Bélády, 1966/ [2]. If L is a nonlookahead demand paging algorithm, then
15.11

$$
C(m, m, L, \text { RA lV })=\frac{n-m}{n} .
$$

Theorem B /Aho, Denning, Uilman, 1971/([5]). If $\quad 1 \leqslant m<n<\infty$, then

$$
5.2 / c^{\prime}(m, n, O P T, \text { IND })=\sum_{i=m}^{n} p_{i}-\frac{\sum_{i=m}^{n} p_{i}^{2}}{\sum_{i=m}^{n} p_{i}} \text {, }
$$

where OPT is the optimal paging algorithm, always replacing the page of S_{t} with minimal $p_{i}[5]$. Theorem C. /stoyan , 1975 $/([8])$. If $1 \leqslant m<n<\infty$, then /5.3/ $C^{\prime}(m, n, R E F ~ a, R A N)=\frac{n-m}{n+a} \quad / a=0,1, \ldots, m-1 /$, where REF ${ }_{a}$ is a lookahead algorithm, which knows a references
ahead, and holds required ages in the memory if possible, and chooses randomly among the others.

Theorem $1([7])$. If $1 \leq m<n<\infty$ and $0 \leqslant 8 \leqslant m$, then

$$
C, / m, n, \operatorname{REF}_{a}, \operatorname{REP}_{p} /=
$$

15.4.

$$
/ n-m / / 1-p /
$$

$$
n-1+[\min / a, m-1 /] / 1-p /+[\max / 0, a-m+1 /]\left(1-m!\frac{1-p / m-1}{/ n-1 / m-1}\right) / 1-p / 1
$$

Theorems A and C follow from theorem 1 /in cases $a=0, \quad p=\frac{1}{n}$ and $0 \leqslant a \leqslant m-1, \quad p=\frac{1}{n} /$.

Theorem 2. $([7])$.If $\quad 1 \leqslant m<n<\infty$, then
$15.5 / \quad C^{\prime}\left(m, n, P_{b}, \operatorname{RAN}\right)=\frac{n-m}{n}\left(\frac{n-1}{n}\right)^{b} \quad / b=0,1, /$,
where $P P_{b}$ is a lookahead algorithm, which knows at time t the next b references, differing from r_{t} and each other, and hold these pages if possible, in the memory, and chooses randomly among the others.

In case $b=1, m=2, n=3$, it follows from theorem 2 the partial resolution of the problem, investigated by Bélády in 1966 , namely $C^{\prime}(2,3$, MINI, NAT $)=\frac{2}{9}$. Theorem $3([7])$ If $\quad 1 \leqslant m<n<\infty$ and $a \geqslant 0$, then $15.6 /$

$$
\mathrm{C}, / 2,3, \operatorname{REF} \mathrm{a}, \text { REP }_{\mathrm{p}} /=
$$

$$
=\frac{1-p}{2+[\min / a, 1 /] / 1-p /+\operatorname{sign}[\max / 0, a-1 /] p / 1-p^{a-1} /} .
$$

From this theorem it follows /in the case $a \rightarrow \infty$, when

REF $_{\mathrm{a}} \rightarrow$ MTN/, that

$$
/ 5.7 / \mathrm{C} \cdot / 2,3, \mathrm{MIN}, \mathrm{PEP}_{\mathrm{p}} /=\frac{1-\mathrm{p}}{3}
$$

6. Mathematical model of computers with interleaved memory

We investigate the following model of computers with interleaved memory due to V.E.Vulihman [10]:

Fig.2. Scheme of computers with interleaved memory

The computer consists of a central processor unit /CPU/ and modules of memory $\boldsymbol{\beta}_{1}, \ldots, \boldsymbol{\beta}_{r}$. The set of modules is denoted by B. The elements of $\boldsymbol{\omega}_{\mathrm{T}}$ are generated by the CPU requireing $t_{a} \geqslant 0$ time per element. A request to a module reserve that module for a time $\mathrm{T}_{\mathrm{b}}>\mathrm{t}_{\mathrm{a}}$ during this time other request can't be served by this module. If the module being requested is occupied, then the generation of ω_{T} will be suspended until the module is free.

The speed of this model is denoted by V_{i} 。
7. General assertions on the spead of computers with interleaved memory
Hellerman in his book [6], Bokova and Tzaturyan in their
paper [1] proved the following assertions.
$\frac{\text { Lemma }}{r \geqslant 1}([6])$. If $T_{b}>t_{a} \geqslant 0$, then for every $D \in P$ and for every $/ 7.1 / \frac{1}{T_{b}}=V_{i}^{\prime} / t_{a}, T_{b}, r, H O M / \leqslant V_{i} / t_{a}, T_{b}, r, D / \leqslant V_{i}^{\prime} / t_{a}, T_{b}, r, C Y C L /=$

$$
=\frac{1}{T_{b}} \min / r, \frac{T_{b}}{t_{a}} /
$$

where HOM and CYCL are the homogeneous and cyclical behaviour model.

Definition 50 Let $\boldsymbol{\varphi}_{\mathrm{i}} / \boldsymbol{\varphi}_{\mathrm{o}}=0 /$ denote the processing time of $\boldsymbol{\omega}_{\mathbb{T}}$ up to i-th element. Then the increment due to the i-th element is $\delta_{i}=\varphi_{i}-\varphi_{i-1} \quad$.
Example. For every $\omega_{2} \in N^{2}$
$17.2 / \quad \delta_{1}=T_{b}+t_{\mathbf{a}} \delta_{2}=\left\{\begin{array}{lll}T_{b}, & \text { if } & r_{2}=r_{1} \\ t_{\mathbf{a}}, & \text { if } & r_{2} \neq r_{1}\end{array}\right.$.
Lemma. $\left.\sigma_{0}([1]]\right)$. If $T_{b}>t_{a} \geqslant 0$, then
17.3/ $\liminf _{\mathrm{k} \rightarrow \infty}$

$\leqslant \lim _{k \rightarrow \infty} \frac{1}{\sum_{\boldsymbol{\omega}_{k} \boldsymbol{\epsilon} N^{k}} D\left[\boldsymbol{\omega}_{k}\right] \delta_{k}}$
Lemma 7. $([1]])$. If $\mathrm{T}_{\mathrm{b}}>\mathrm{t}_{\mathrm{a}}>\mathrm{t}_{\mathrm{a}}, \mathrm{\prime} \geqslant 0$, then
$17.4 / V_{i}\left(t_{a}, T_{b}, r, D\right) \leqslant V_{i}\left(t_{a}^{\prime}, T_{b}, r, D\right)$.
Lemma. 80 $([11])$. If $T_{b}>t_{a} \geqslant 0$, and $r^{\prime}>r^{\prime}$, , then
/7.5 / $\mathrm{V}_{\mathrm{i}} / \mathrm{t}_{\mathrm{a}}, \mathrm{T}_{\mathrm{b}}, \mathrm{r}^{\prime}, \mathrm{D} / \geqslant \mathrm{V}_{\mathrm{i}} / \mathrm{t}_{\mathrm{a}}, \mathrm{T}_{\mathrm{b}}, \mathrm{r}, \mathrm{B}, \mathrm{D} /$.
8. Theorems on the speed of computers with interleaved memory

Theorem $40([7])$. If $T_{b}>t_{a} \geqslant 0$, then for $r \geqslant 1$ $\mathrm{V}_{\mathrm{i}}^{\prime} / \mathrm{t}_{\mathrm{a}}, \mathrm{T}_{\mathrm{b}}, \mathrm{r}$, RAIN $/ \leqslant$

and the equality holds
a/ if $t_{\mathrm{T}}^{\mathrm{a}}=0$, then for $\mathrm{r} \geqslant 1$;
b/ if $\frac{\mathrm{T}_{b}}{2} \leqslant t_{a} \leqslant T_{b}$, then for $r \geqslant l$;
c/ if $0<t_{a}<\frac{T_{b}}{2}$, then for $r=1,2$.
In the formula /7.6/
$/ 7.7 / \quad p_{i}=\frac{r / r-1 / \ldots / r-i+1 /}{r^{i+1}} i / 1 \leqslant i \leqslant r /$,
and
$/ 7.8 / \quad p_{i, j}=\frac{p_{i}}{\sum_{i=1}^{r} i \cdot p_{i}} \quad / l \leqslant i \leqslant r, \quad 1 \leqslant j \leqslant i /$.
The following corollaries follow from theorem 4 as special cases.
Corollary $1 /$ Hellerman, 1967/([6]). If $t_{a}=0$ and $r \geqslant 1$, then
17.9 /

$$
v_{i} / 0, T_{b}, r, \text { RAN/ }=\frac{1}{T_{b}} \sum_{i=1}^{r} i \cdot p_{i}
$$

Burnett, Coffman [3] and Stone [12] proved a more general assertion 。

Theorem D /Burnett, Coffman, Stone, 1974/ [3,12].

$$
\begin{aligned}
& \text { If } t_{a}=0 \text { and } r \geqslant 1 \text {, then } \\
& v_{i}^{\prime} / 0, T_{b}, r, \operatorname{STEPP}_{p} /=
\end{aligned}
$$

17.10 /

$$
=\frac{1}{T_{b}} \sum_{k=1}^{r} \sum_{j=0}^{k-1}\binom{k-1}{j} p^{j}\left(\frac{1-}{n-1}\right)^{k-j-1} \cdot c_{n-j, k-j}
$$

where
17.11/ $c_{n, k}=\sum_{j=0}^{k-1}\left[(-1)^{j}\binom{k-1}{j} / n-j-1 / / n-j-2 / \ldots / / n-k+1 /\right]$.

Corollary 2. If $\frac{T_{b}}{2} \leqslant t_{a} \leqslant T_{b}$ and $r \geqslant 1$, then
17.12, $\quad \mathrm{V}_{\mathrm{i}} / \mathrm{t}_{\mathrm{a}}, \mathrm{T}_{\mathrm{b}}, \mathrm{r}$, RAN $/=\frac{1}{\frac{1}{\mathrm{~T}} \mathrm{~T}_{\mathrm{b}}+\left(1-\frac{1}{\mathrm{r}}\right) \mathrm{t}_{\mathrm{a}}}$

Corollary 3. If $\mathrm{T}_{\mathrm{b}}>\mathrm{t}_{\mathrm{a}} \geqslant 0$, then
$17.131 \mathrm{~V}_{\mathrm{b}} / \mathrm{t}_{\mathrm{a}}, \mathrm{T}_{\mathrm{b}}, 2$, RAN $/=\frac{1}{\frac{1}{3} \mathrm{t}_{\mathrm{a}}+\frac{1}{2} \mathrm{~T}_{\mathrm{b}}+\frac{1}{6} \max / \mathrm{t}_{\mathrm{a}}, \mathrm{T}_{\mathrm{b}}-\mathrm{t}_{\mathrm{a}} /}$
Corollary 4. If $T_{b}>t_{a} \geqslant 0$ and $r \geqslant 1$, then $17.14 / V_{i}^{\prime} / t_{a}, T_{b}, r, \operatorname{RAN} / \leqslant \frac{1}{\frac{1}{r} T_{b}+\left(1-\frac{1}{r}\right) t_{a}}$

On the base of the formula $/ 7.9$ / it is not easy to estimate the order of $\mathrm{V}_{\mathrm{i}} / 0, \mathrm{~T}_{\mathrm{b}}, \mathrm{r}, \mathrm{RAN} /$, therefore the following
theorems are interesting。
Theorem E．／Hellerman， $1967 /([6])$ ．If $1 \leqslant r \leqslant 45$ ，then $17.1510,96 \cdot \mathrm{r}^{0,56} \leq \mathrm{V}_{\mathrm{i}} / 0, \mathrm{~T}_{\mathrm{b}}, \mathrm{r}$, RAIN $/ \leq 1,04 \cdot r^{0,56} \cdot$ Theorem $\mathrm{F}_{0} /$ Vulihman， $1972 /([10])$ 。 If $r \geqslant 1$ ，then 17．16／ $V_{i}^{\prime} / 0, T_{b}, r$, RAN $/ \leqslant(\sqrt{2 \pi r}) \frac{1}{T_{b}}$.
We proved the following more general theorem 。

In our paper［7］we used a simple direct proof．Using a result due to G．Szegő［14］we can proof a formula with a smaller additive constant，which is exact．
Theorem G．／Szegő，1928／（［14］）．If q is a nonnegative inter－ ger number，then

17．18／$\quad \frac{1}{2} e^{q}=1+\frac{q}{1!}+\frac{q^{2}}{2!}+\cdots+\frac{q^{q}}{q!} \theta_{q}$, where $\theta_{0}=\frac{1}{2}$ and θ_{q} tends monotonically to $\frac{1}{3}$ as $q \rightarrow \infty$ ． Theorem 6．If $t_{a}=0$ and $r \geqslant 1$ ，then 17．19／$\quad V_{i} / 0, T_{b}, r$, RAN／$=\frac{1}{T_{b}}\left(\sqrt{\frac{\pi r}{2}}-\frac{1}{3}+\rho_{r}\right)$ ，
where $\boldsymbol{\rho}_{r}$ tends monotonically to zero as $r \rightarrow 00$ and
$17.20 / \rho_{1}=\frac{4}{3}-\sqrt{\frac{\pi}{2}} \approx 0,08$ and $\rho_{2}=\frac{11}{6}-\sqrt{\pi} \approx 0,06$ ．
It seems a hard but resolvable problem to estimate the or－ der of expression in Coffman＇s theorem，as a function of p 。

References

1 Grenander U_{0} ，Tsao R_{0} ． F_{0} ，Quantitative methods for evalu－ ating computer system performance：review and proposal ／in Freiberger Wo，Statistical computer performance evalu－ ation，Academic Press，New York，1972，3－24／。

2 Bélády L．A．，A study of replacement algorithms for a vir－ tual storage computer，IBM Systems Journal，2，No．2．／1966／， 282－288．

3 Burnett $G_{0} J_{0}$ ，Coffman $\mathbb{S}_{\circ} G_{0}$ Jro，A combinatorial problem related to interleaved memory systems，J．of ACM，20，No。 1．／1973／，39－45．

4 Коган Я．А．，Марковские модели управления обменом в двух－ уровневой памяти ЦВМ，Автоматика и телемеханика，28，Но． 4. ／1973／，146－154．

5 Aho A．V．，Denning P。Jo，Ullman J．Do，Principles of opti－ mal page replacement，Jo of ACll，18，No．1．／1971／，80－93．

6 Hellerman H．，Digital computer principles，licGraw Hill， New York，1967．
r．Ивани А．，Исследование скорости ЭВМ со страничной и блочной организацией памяти，Кандидатская диссертация，Московский Государственный Университет，1975．

8 Coffman E。G。Jr．，Denning P。Jo，Operating Systems Theory， Englewood Cliffs，Prentice Hall， 1973.

Стоян 10．A．，Оценка эффективности алгоритмов замещения， Программирование，1，Но．1。／1975／，22－25．

10 Вулихман В．Е．，Исследование методов лрганизации оперативной памяти，Кандидатскал диссертация，Москва， 1972.

11 Бокова ․ E．，Цатурян Г．K．，Сопоставление известньх опре－ делений скорости ЭЫА с блочной памятью，Конкурсная работа， Московский Государственный Университет，1975，1－14．
12 Stone H．S．，A notie on a combinatorial problem of Burnett and Coffman，Commo of ACM，17，No。 3．／1974／，165－166．

13 Iványi A_{0}, Kátai I_{0}, Lower and upper estimates for speed of computers with blocked memory，Preprint of Eötvös L。 University，Budapest，1975，1－14．

14 Szegő G_{0} ，Über einige von S．Ramanujan gestellte Aufgaben， J．of the London Mathematical Society，2，Part 3．／1928／， 225－232。

Készült az ELTE Sokszorositoüzemében 200 példányban
Felelős kiadó：Dr．Kátai Imre Felelős vezető：Arató Tamás
Copyright：Iványi Antal，Kátai Imre， 1976
ELTE 76145

