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Abstract Havel in 1955 [15], Erdős and Gallai in 1960 [10], Hakimi in 1962 [13],

Tripathi, Venugopalan and West in 2010 [36] proposed a method to decide, whether a

sequence of nonnegative integers can be the degree sequence of a simple graph. The

running time of their algorithms in worst case is Ω(n2). In [19] the authors proposed

a new algorithm called EGL (Erdős-Gallai Linear algorithm), whose worst running

time is Θ(n). As an application of this linear time algorithm we describe Erdős-Gallai-

Enumerative algorithm and using its parallel version enumerate the different degree

sequences of simple graphs for 24, . . . , 29 vertices (compare with [33]).
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algorithms
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1 Introduction

In the practice an often appearing problem is the ranking of different objects as eco-

nomical decisions, hardware or software products, cars, persons etc. A typical method

of the ranking is the pairwise comparison of the objects, assignment of points to the

objects and sorting the objects according to the sums of the numbers of the received

points.

For example Landau [25] references to biological, Hakimi [13] to chemical, Kim et

al. [23], Newman and Barabási [29] to net-centric, Anholzer, Bozóki, Fülöp, Koczkodaj,

Poesz, Rónyai and Temesi to economical [2,4–6,35], Liljeros et al. [26] to human appli-

cations, while Frank, Iványi, Lucz, Móri, Sótér and Pirzada [12,16–21] to applications

in sports.
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Let n ≥ 1. We will denote the degrees of a simple graph as d = (d1, . . . , dn). We

call a sequence b = (b1, . . . , bn) n-bounded, if 0 ≤ bi ≤ n − 1 for i = 1, . . . , n, and

n-regular, if the conditions n − 1 ≥ b1 ≥ · · · ≥ bn ≥ 0 hold, and n-even, if the sum of

the elements of b is even. If there exists a graph with n vertices which has the degree

sequence b, then we say that b is n-graphical.

The main aim of this paper is to report on the parallel realization of the linear

Erdős-Gallai algorithm. Although this problem is interesting in itself, for us the main

motivation was our wish to answer the question formulated in the recent monograph

[12, Research problem 2.3.1] András Frank: ”Decide if a sequence of n integers can be

the final score of a football tournament of n teams.” During testing and reconstructing

of potential football sequences important subproblem is the handling of sequences of

draws. And the problems ”Is this sequence graphical?” and ”Is this sequence a football

draw sequence?” are equivalent, therefore the quick answer is vital for us.

The structure of the paper is as follows. After the introductory Section 1 in Section

2 we describe two classical quadratic testing algorithms, then in Section 3 we explain

a new linear time algorithm. Section 4 contains the description of the enumerative

version of the new linear algorithm, while in Section 5 its parallel implementation is

explained. Finally in the last Section 6 we summarize the results.

2 Classical algorithms (Havel-Hakimi and Erdős-Gallai)

In this section we describe two classical testing algorithms due to Václav Havel and

Louis Hakimi, resp. Paul Erdős and Tibor Gallai.

2.1 Havel-Hakimi algorithm (HH)

This algorithm was published by Václav Havel Czech mathematician in 1955 [15]. Later

Louis Hakimi in 1962 [13] independently published the same result, therefore today the

theorem usually is called Havel-Hakimi theorem.

Theorem 1 (Hakimi [13], Havel [15]) If n ≥ 1, then the n-regular sequence b =

(b1, . . . , bn) is n-graphical if and only if the sequence

b
′ = (b2 − 1, b3 − 1, . . . , bb1 − 1, bb1+1 − 1, bb1+2, . . . , bn−1, bn) (1)

is (n− 1)-graphical.

Proof See [13,15].

Let c = (c1, . . . cn) and d = (d1, . . . , dn) be n-bounded sequences. In 1965 Hakimi

[14] presented a necessary and sufficient condition for c and d to be the in-degree,

resp. out-degree sequence of a loopless multigraph. In 2009 this theorem was extended

for directed (a, b)-graphs [16,17]. In 2010 the special case of directed (0, 1)-graphs was

considered in [11,24].

Since the direct implementation of the theorem sorts the investigated sequence in

each round, it is slow: the worst running time is quadratic even in that case when we

use a linear time sorting algorithm.
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2.2 Erdős-Gallai algorithm (EG)

In 1960 Paul Erdős and Tibor Gallai [10] Hungarian mathematicians proposed a nec-

essary and sufficient condition to decide, whether an n-regular sequence is n-graphical

or not.

Theorem 2 (Erdős, Gallai [10]) If n ≥ 1, then the n-regular sequence b = (b1, . . . , bn)

is n-graphical if and only if
n
∑

i=1

bi is even (2)

and
j
∑

i=1

bi − j(j − 1) ≤

n
∑

k=j+1

min(j, bk) (j = 1, . . . , n− 1). (3)

Proof See [7,10].

In 2010 Tripathi, Venugopalanb and West [36] published a constructive proof, which

not only tests the input sequence, but for graphical inputs also constructs a corre-

sponding simple graph. The worst running time of the algorithm based on their proof

is Θ(n3).

Chungphaisan in 1974 [8], Özkan in 2011 [30] extended Erdős-Gallai theorem for

(0, r)-graphs.

The following algorithm is based on Theorem 2. In this paper we use the pseudocode

prescribed in [9].

Input. n: the length of the input sequence;

b = (b1, . . . , bn) : n-regular input sequence.

Output. L : logical variable (L = False shows, that b is not graphical, while if b is

graphical, then the returned value is L = True).

Working variable. t: the estimated capacity of the actual tail.

Erdős-Gallai(n, b, L)
01 H1 = b1 // lines 01–03: computation of the values of the vector H

02 for i = 2 to n

03 Hi = Hi−1 + bi
04 if Hn is odd // lines 04–06: checking of the parity

05 L = False // lines 05–06: refuse of the nongraphical sequences

06 return L

07 for i = 1 to n− 1 // lines 07–15: checking of the input

08 t = 0 // line 08: initialization of t

09 for k = i+ 1 to n // lines 09–10: computation of the tail capacity

10 t = t+min(i, bk)

11 if Hi − i(i− 1) > t // line 11: check the necessary condition

12 L = False // lines 12–13: the input is nongraphical

13 return L

14 L = True // lines 14–15: the input is graphical

15 return L

The memory requirement of the algorithm EG is Θ(n), he running time varies

between the best Θ(n) and the worst Θ(n2).
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3 Linear Erdős-Gallai algorithm (EGL)

In 2011 we proposed a new algorithm Erdős-Gallai-Linear (EGL) based on the

next theorem that even in worst case needs only Θ(n) time to decide whether the

input sequence is graphical.

Theorem 3 (Iványi, Lucz [18], Iványi, Lucz, Móri, Sótér [19]) If n ≥ 1, then the

n-regular sequence (b1, . . . , bn) is n-graphical if and only if

Hn is even (4)

Hi ≤ i(Yi − 1) +Hn −HYi
, (5)

where

Yi(b) = Yi =

{

Wi, if i ≤ Wi,

i, if i > Wi.
(6)

Proof See in [18,19].

The following program is based on Theorem 3. It decides on arbitrary n-regular

sequence whether it is n-graphical or not.

Input. n: number of vertices (n ≥ 1);

b = (b1, . . . , bn): n-regular sequence.

Output. L: logical variable, whose value is True, if the input is graphical, and it is

False, if the input is not graphical.

Work variables. i and j: cycle variables;

H = (H1, . . . , Hn): Hi is the cumulated degree of the first i elements of the tested b;

w: the weight point of the actual bi, that is the maximum of the indices of such elements

of b, which are not smaller than i;

y: the cutting point of the actual bi that is the maximum of i and w.

Erdős-Gallai-Linear(n, b, L)
01 H1 = b1 // line 01: initialization

02 for i = 2 to n // line 02–03: computation of the elements of H

03 Hi = Hi−1 + bi // line 04–06: test of the parity

04 if Hn is odd

05 L = False

06 return

07 w = n // line 07: initialization of the weight point

08 for i = 1 to n // lines 08–14: test of the elements of b

09 while w > 0 and bw < i

10 w = w − 1

11 y = max(i, w)

12 if Hi > i(y − i) +Hn −Hy

13 L = False // lines 13–14: rejection of b

14 return L

15 L = True // lines 15–16: b is graphical

16 return L

The memory requirement of this algorithm is Θ(n), the time requirement changes

between the best Θ(n) and the worst Θ(n2).

It is worth to remark that using a linear sorting algorithm and Erdős-Gallai-

Linear we can test even unsorted sequences in linear time.
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4 Enumerating Erdős-Gallai algorithm (EGE)

A classical problem of the graph theory the enumeration of the degree sequences of

different graphs– among others simple graphs. For example The On-Line Encyclopedia

of Integer Sequences [33] contains only for n = 1, . . . , 23 vertices the number of degree

sequences of simple graphs (the last values for n = 20, 21, 22 were set in July of 2011).

Therefore we apply the new quick EGL to get these numbers for larger number of

vertices.

Our starting point was to test all regular sequences and so enumerate the graphical

ones. It is easy to see that there are

R(n) =

(

2n− 1

n

)

. (7)

In 1987 Ascher derived the following explicit formula for the number of n-even

sequences E(n).

Lemma 1 (Ascher [1], Sloane, Pfoffe [34]) If n ≥ 1, then the number of n-even se-

quences E(n) is

E(n) =
1

2

((

2n− 1

n

)

+

(

n− 1

bnc

))

. (8)

Due to the following lemma and its consequence it is enough to test only the zerofree

even sequences.

Lemma 2 (Iványi, Lucz, Móri, Sótér [19]) If n ≥ 2, then the number of n-graphical

sequences G(n) can be computed from the number of (n−1)-graphical sequences G(n−1)

and the number of n-graphical zero-free sequences Gz(n):

G(n) = G(n− 1) +Gz(n). (9)

This assertion has the following consequence.

Corollary 1 If n ≥ 1 then

G(n) = 1 +

n
∑

i=2

Gz(n). (10)

Using the parallel version of EGE we computed Gn till n = 29. These numbers can

be found in Table 1.

Due to Corollary 1 it is enough to check all of the n-regular zero-free sequences

to compute the number of all n-graphical ones. This is a very important idea because

only one fourth of the n-regular even sequences are zero-free [19], so we can safe one

fourth of the work.

Lemma 3 If b = (b1, . . . , bn) is a nongraphical sequence and bn ≥ 3, then the sequence

b′ = (b1, . . . , bn−1, c) is also nongraphical for every c with 0 ≤ c ≤ bn−1.
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n R(n) E(n) G(n)
1 1 1 1
2 3 2 2
3 10 6 4
4 35 19 11
5 126 66 31
6 462 236 102
7 1 716 868 342
8 6 435 3 235 1 213
9 24 310 12 190 4 361

10 92 378 46 252 16 016
11 352 716 176 484 59 348
12 1 352 078 676 270 222 117
13 5 200 300 2 600 612 836 315
14 20 058 300 10 030 008 3 166 852
15 77 558 760 38 781 096 12 042 620
16 300 540 195 150 273 315 45 967 479
17 1 166 803 110 583 407 990 176 005 709
18 4 537 567 650 2 268 795 980 675 759 564
19 17 672 631 900 8 836 340 260 2 600 672 458
20 68 923 264 410 34 461 678 394 10 029 832 754
21 269 128 937 220 134 564 560 988 38 753 710 486
22 1 052 049 481 860 526 024 917 288 149 990 133 774
23 4 116 715 363 800 2 058 358 034 616 581 393 603 996
24 16 123 801 841 550 8 061 901 596 814 2 256 710 139 346

25 63 205 303 218 876 31 602 652 961 516 8 770 547 818 956

26 247 959 266 474 052 123 979 635 837 176 34 125 389 919 850

27 973 469 712 824 056 486 734 861 612 328 132 919 443 189 544

28 3 824 345 300 380 220 1 912 172 660 219 260 518 232 001 761 434

29 15 033 633 249 770 520 7 516 816 644 943 559 2 022 337 118 015 338

Table 1 Number of regular, even and graphical sequences.

Taking into account these results we have to test only one tenth of the regular

sequences.

Two results due to Tripathi and Vijay [37, Lemma 6, Theorem 7,Corollary 17] allow

to reduce the testing time with more than 50 percent.

The following algorithm Erdős-Gallai-Enumerating (EGE) is an enumerative

version of EGL. In this algorithm we use some techniques to speed up the computing

process. From one side we we check only zero-free, even sequences. And we used lexico-

graphical order, so most of the operations could be saved by updating the old values.

We were updating the following values.

– Hi values: most of the time the only thing that is changing is the last element of the

sequence b, so it is enough to update the last H values, according to the changes

of the values of b.

– Ci checkpoints: if we modify the ith element of the sequences then the values before

that point remain the same so all of the checkpoint before that will be the same,

so we update only the first one before the ith index and all of them after it.

– Wi weight points: every time the checking algorithm got a sequence to check we

update the weight points we use, but we never start from 1 or n. We use the last

value we used when we checked a sequence in that index. We have a distinct weight

point for every i index and we just shift the value to left or right.
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– Yi cutting points:

We suppose that n, b, H, c, C, W and Y are global variables, therefore their

return does not require additional time.

Important property of EGE is that it solves in Θ(1) average time

– the generation of one zerofree even sequence;

– the updating of the sequence of the cumulated degrees H;

– the updating of the sequence of the checking points C;

– the updating of the sequence of the weight points W .

The average running time of this algorithm for a sequence is Θ(1), so the total

running time of the whole program is Θ(E(n)).

Erdős-Gallai-Enumerating(n,Gz)

01 for i = 1 to n // lines 01–09: initialization

02 bi = n− 1

03 Hi = i(n− 1)

04 Wi = n

05 yi = n− 1

06 Ci = 0

07 Gz = 1

08 c = 0

09 bn+1 = −1

10 while b2 ≥ 2 or b1 ≥ 3 // line 10: last sequence was?

11 if bn ≥ 3 New3(n, b,H, c, C,W ) // lines 11–13: generate the next sequence

12 if bn = 2 New2(n, b,H, c, C,W )

13 if bn = 1 New1(n, b,H, c, C,W )

14 Check(n, b,H, c,W ) // line 12: checks and updates the parameters

15 Gz = Gz + L // line 13: increasing of Gz

16 print Gz // line 14: final result

This algorithm uses two procedures. New generates a new sequences and update

the key parameters, while Check decides whether the actually investigated sequence

is graphical or not.

In Check we use condition (2) of Erdős-Gallai theorem.

Check(n, b,H, c, C,W )

01 for i = 1 to c // lines 01–07: checking in checkpoints

02 y = maxw, i // line 02: computation of the actual cutting point

03 if Hi > i(y − 1) +Hn −Hy // line 03–05: EG checking

04 L = 0

05 return L

06 L = 1 // line 06–07: b is graphical

07 return L

New1(n, b,H, c, C)
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01 if bn ≥ 3 // line 01–06: generation if bn = 3

02 bn = bn − 2

03 Hn = Hn − 2

04 if bn == bn−1 − 3

05 c = c+ 1

06 Cc = n− 1

07 W =?08 return H,C,W

New2(n, b,H, c, C)

01 if bn == 2 // line 08–16: generation if bn = 2

02 if bn = bn−1 − 1

03 Hn = Hn − 1

04 c = c− 1

05 if bn−1 is odd

06 if bn−2 = bn−1 + 1

07 c = c− 1

08 W =???

09 return H,C,W

New3 is similar to New2 although more complicated.

5 Parallel Erdős-Gallai algorithm (EGP)

To use our new linear time algorithm on a bunch of series we need an algorithm that

can work on a part of all series we want to check. From now we will use the notation

G(n) for the number of n-graphical series and Gz(n) for the number of n-graphical

zero-free series. The reason to use zn values is the following lemma.

Using our Parallel algorithm we computed this number till n = 29. These number

can be found in Table 1.

Originally we used a server-client application consisting of two parts: server and

client. The server had all the information to distribute jobs between client machines

and collect results from them and the client had the IP address and the PORT of the

server to ask for a job. To compute Gz(n) value on multiple computers first we need

to decompose the whole problem to smaller parts so called jobs, that we could pass to

them. This is one of the most critical part of the parallel algorithm: divide the problem

into almost same sized jobs. The next equation helps us to count approximately how

many sequences starts with a fixed head. By knowing these numbers we can generate

jobs with limited size, so every job is smaller than that maximum.

Generate-Matrix(n,MaxSize)

01 for i = n downto 2 B Lines 01–05: filling up the matrix

02 for j = 1 to n− 1

03 Mi,j =
(

i+j−2

i−1

)

04 end

05 end

06 for j = n− 1 downto 1 B Lines 06–08: fill up the first line in matrix

07 M1,j = 1

08 end
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09 Generate-Sequences(M,n, n, 1, n− 1,MaxSize, 0)

B Line 09: job generation

This algorithm give us a matrix filled up with values computed with the equation.

Now, we can generate the sequences by read out the last row from the matrix from left

to right. If a value is too big and not fit into a job, then we can move one line above

that value and read that line from the first column until the one that was too big and

we can continue this technique until we got size of parts we need. The next (recursive)

algorithms reads out the last row with this method.

In the On-Line Encyclopedia of Integer Sequences [33] you can find numbers of

degree-vectors for simple graphs, that consist of n vertices, where n is from 1 to 23.

Originally we used a server-client application consisting of two parts: server and client.

The server had all the information to distribute jobs between client machines and

collect results from them and the client had the IP address and the PORT of the

server to ask for a job.

During the calculations we used more than two hundred computers and our theo-

retical maximal performance was over 6 TFLOPS based on the processors information

we found on the manufacturers home pages.

6 Summary
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Sándor and his colleagues (Eötvös Loránd University, Faculty of Informatics), Ádám Mányoki
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contacts. Nature 411(6840):907–908
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