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Abstract. Havel in 1955 [28], Erdős and Gallai in 1960 [21], Hakimi in
1962 [26], Ruskey, Cohen, Eades and Scott in 1994 [70], Barnes and Sa-
vage in 1997 [6], Kohnert in 2004 [50], Tripathi, Venugopalan and West
in 2010 [85] proposed a method to decide, whether a sequence of non-
negative integers can be the degree sequence of a simple graph (such
sequences are called graphical). The running time of their algorithms is
Ω(n2) in worst case. In this paper we propose a new algorithm called
EGL (Erdős-Gallai Linear algorithm), whose worst running time is Θ(n).
As an application of this quick algorithm we computed the number of the
different degree sequences of simple graphs for 24, . . . , 29 vertices (see
[76]).

1 Introduction

In the practice an often appearing problem is the ranking of different objects
as hardware or software products, cars, economical decisions, persons etc. A
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typical method of the ranking is the pairwise comparison of the objects, as-
signment of points to the objects and sorting the objects according to the sums
of the numbers of the received points.

For example Landau [52] references to biological, Hakimi [26] to chemical,
Kim et al. [46], Newman and Barabási [62] to net-centric, Bozóki, Fülöp, Poesz,
Kéri, Rónyai and Temesi to economical [1, 10, 11, 43, 82], Liljeros et al. [53]
to human applications, while Iványi, Khan, Lucz, Pirzada, Sótér and Zhou
[30, 31, 39, 66, 68] write on applications in sports.

From several popular possibilities we follow the terminology and notations
used by Pál Erdős and Tibor Gallai [21].

Depending from the rules of the allocation of the points there are many
problems. In this paper we deal only with the case when the comparisons have
two possible results: either both objects get one point, or both objects get zero
points. In this case the results of the comparisons can be represented using
simple graphs and the number of points gathered by the given objects are the
degrees of the corresponding vertices. The decreasing sequence of the degrees
is denoted by b = (b1, . . . , bn).

From the popular problems we investigate first of all the question, how
can we quickly decide, whether for given b does exist there a simple graph
G whose degree sequence is b. In connection with this problem we remark
that the main motivation for studying of this problem is the question: what is
the complexity of deciding whether a sequence is the score sequence of some
football tournament [24, 32, 36, 38, 44, 45, 55].

As a side effect we extended the popular data base On-line Encyclopedia of
Integer Sequences [74] with the continuation of contained sequences and with
the values of some new sequences.

In connection with the similar problems we remark, that in the last years
a lot of papers and chapters were published on the undirected graphs (for
example [8, 9, 12, 16, 19, 29, 37, 42, 56, 69, 83, 85, 86, 87]) and also on
directed graphs (for example [7, 11, 14, 23, 24, 30, 31, 33, 39, 46, 49, 51, 58,
59, 64, 66, 65, 67]).

The majority of the investigated algorithms is sequential, but there are
parallel results too [2, 18, 20, 61, 63, 79].

Let l, u and m integers (m ≥ 1 and u ≥ l). A sequence of integer numbers
b = (b1, . . . , bm) is called (l, u,m)-bounded, if l ≤ bi ≤ u for i = 1, . . . , m.

A (l, u, m)-bounded sequence b is called (l, u, m)-regular, if bn ≥ bn-1 ≥
· · · ≥ b1. An (l, u, m)-regular sequence is called (l, u, m)-even, if the sum of
its elements is even. A (0, n − 1, n)-regular sequence b is called n-graphical, if
there exists a simple graph G whose degree sequence is b. If l = 0, u = n − 1
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and m = n, then we use the terms n-bounded, n-regular, n-even, and n-
graphical (or simply bounded, regular, even, graphical).

In the following we deal first of all with regular sequences. In our definitions
the bounds appear to save the testing algorithms from the checking of such
sequences, which are obviously not graphical, therefore these bounds do not
mean the restriction of the generality.

The paper consists of nine parts. After the introductory Section 1 in Sec-
tion 2 we describe the classical algorithms of the testing and reconstruction of
degree sequences of simple graphs. Section 3 introduces several linear testing
algorithms, then Section 4 summarizes some properties of the approximate
algorithms. Section 5 contains the description of new precise algorithms and
in Section 6 the running times of the classical testing algorithms are presen-
ted. Section 7 contains enumerative results, in Section 8 we report on the
application of the new algorithms for the computation of the number of score
sequences of simple graphs. Finally Section 9 contains the summary of the
results.

Our paper [37] written in Hungarian contains further algorithms and si-
mulation results. [36] contains a short summary on the linear Erdős-Gallai
algorithm while in [38] the details of the parallel implementation of Erdős-
Gallai-Enumerating are presented.

2 Classical precise algorithms

For a given n-regular sequence b = (b1, . . . , bn) the first i elements of the
sequence we call the head of the sequence belonging to the index i, while the
last n − i elements of the sequence we call the tail of the sequence belonging
to the index i.

2.1 Havel-Hakimi algorithm

The first algorithm for the solution of the testing problem was proposed by
Vaclav Havel Czech mathematician [28, 54]. In 1962 Louis Hakimi [26] pub-
lished independently the same result, therefore the theorem is called today
usually as Havel-Hakimi theorem, and the method of reconstruction is called
Havel-Hakimi algorithm.

Theorem 1 (Hakimi [26], Havel [28]). If n ≥ 3, then the n-regular sequence
b = (b1, . . . , bn) is n-graphical if and only if the sequence b ′ = (b2 − 1, b3 −

1, . . . , bb1 − 1, bb1+1 − 1, bb1+2, . . . , bn) is (n − 1)-graphical.
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Proof. See [9, 26, 28, 37]. ¤
If we write a recursive program based on this theorem, then according to

the RAM model of computation its running time will in worst case Ω(n2),
since the algorithm decreases the degrees by one, and e.g. if b = ((n − 1)n),
then the sum of the elements of b equals to Θ(n2). It is worth to remark that
the proof of the theorem is constructive, and the algorithm based on the proof
not only tests the input in quadratic time, but also construct a corresponding
simple graph (of course, only if it there exists).

It is worth to remark that the algorithm was extended to directed graphs
in which any pair of the vertices is connected with at least a ≥ 0 and at most
b ≥ a edges [30, 31]. The special case a = b = 1 was reproved in [23].

In 1965 Hakimi [27] gave a necessary and sufficient condition for two se-
quences a = (a1, . . . , an) and b = (b1, . . . , bn) to be the in-degree sequences
and out-degree sequence of a directed multigraph without loops.

2.2 Erdős-Gallai algorithm

In chronological order the next result is the necessary and sufficient theorem
published by Pál Erdős and Tibor Gallai [21].

For an n-regular sequence b = (b1, . . . , bn) let Hi = b1+ · · ·+ bi. For given
i the elements b1, . . . , bi are called the head of b, belonging to i, while the
elements bi+1, . . . , bn are called the tail of b belonging to i.

When we investigate the realizability of a sequence, a natural observation is
that the degree requirement Hi of a head is covered partially with inner and
partially with outer degrees (with edges among the vertices of the head, resp.
with edges, connecting a vertex of the head and a vertex of the tail). This
observation is formalized by the following Erdős-Gallai theorem.

Theorem 2 (Erdős, Gallai [21]) Let n ≥ 3. The n-regular sequence b =

(b1, . . . , bn) is n-graphical if and only if

n∑

i=1

bi even (1)

and
j∑

i=1

bi ≤ j(j − 1) +

n∑

k=j+1

min(j, bk) (j = 1, . . . , n − 1). (2)

Proof. See [9, 15, 21, 71, 85]. ¤
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Although this theorem does not solve the problem of reconstruction of grap-
hical sequences, the systematic application of (2) requires in worst case (for
example when the input sequence is graphical) Θ(n2) time.

Recently Tripathi and Vijay [85] published a constructive proof of Erdős-
Gallai theorem and proved that their construction requires O(n3) time.

Figure 1 shows the number of n-regular (R(n) and n-even (E(n) sequences
and their ratio (E(n)/R(n) for n = 1, . . . , 38. According to (36) the sequence
of these ratios tends to 1

2
as n tends to ∞. According to Figure 1 the conver-

gence is quick: e.g. E(20)/R(20) = 0.5000006701511.
The pseudocode of Erdős-Gallai see in [37].

3 Testing algorithms

We are interested in the investigation of football sequences, where often appe-
ars the necessity of the testing of degree sequences of simple graphs.

A possible way to decrease the expected testing time is to use quick (linear)
filtering algorithms which can state with a high probability, that the given
input is not graphical, and so we need the slow precise algorithms only in the
remaining cases.

Now we describe a parity checking, then a binomial, and finally a headsplit-
ting filtering algorithm.

3.1 Parity test

Our first test is based on the first necessary condition of Erdős-Gallai theorem.
This test is very effective, since according to Figure 1 and Corollary 13 about
the half of the regular sequences is odd, and our test establishes in linear time,
that these sequences are not graphical.

The following simple algorithm is based on (1).
Input. n: number of the vertices (n ≥ 1);

b = (b1, . . . , bn): an n-regular sequence.
Output. L: logical variable (L = False shows, that b is not graphical, while

the meaning of the value L = True is, that the test could not decide, whether
b is graphical or not).

Working variable. i: cycle variable;
H = (H1, . . . , Hn): Hi is the sum of the first i elements of b.

Parity-Test(n, b, L)

01 H1 = b1
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n R(n) E(n) E(n)=R(n)

1 1 1 1:0000000000000

2 3 2 0:6666666666667

3 10 6 0:6000000000000

4 35 19 0:5428571428571

5 126 66 0:5238095238095

6 462 236 0:5108225108225

7 1716 868 0:5058275058275

8 6435 3235 0:5027195027195

9 24310 12190 0:5014397367339

10 92378 46252 0:5006819805581

11 352716 176484 0:5003572279114

12 1352078 676270 0:5001708481315

13 5200300 2600612 0:5000888410284

14 20058300 10030008 0:5000427753100

15 77558760 38781096 0:5000221251603

16 300540195 150273315 0:5000107057227

17 1166803110 583407990 0:5000055150693

18 4537567650 2268795980 0:5000026787479

19 17672631900 8836340260 0:5000013755733

20 68923264410 34461678394 0:5000006701511

21 269128937220 134564560988 0:5000003432481

22 1052049481860 526024917288 0:5000001676328

23 4116715363800 2058358034616 0:5000000856790

24 16123801841550 8061901596814 0:5000000419280

25 63205303218876 31602652961516 0:5000000213918

26 247959266474052 123979635837176 0:5000000104862

27 973469712824056 486734861612328 0:5000000053420

28 3824345300380220 1912172660219260 0:5000000026224

29 15033633249770520 7516816644943560 0:5000000013342

30 59132290782430712 29566145429994736 0:5000000006558

31 232714176627630544 116357088391374032 0:5000000003333

32 916312070471295267 458156035385917731 0:5000000001640

33 3609714217008132870 1804857108804606630 0:5000000000833

34 14226520737620288370 7113260369393545740 0:5000000000410

35 56093138908331422716 28046569455332514468 0:5000000000208

36 221256270138418389602 110628135071477978626 0:5000000000103

37 873065282167813104916 436532641088444120108 0:5000000000052

38 3446310324346630677300 1723155162182151654600 0:5000000000026

Figure 1: Number of regular and even sequences, and the ratio of these numbers

02 for i = 2 to n

03 Hi = Hi-1 + bi
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04 if Hn odd
05 L = False
06 return L

07 L = True
08 return L

The running time of this algorithm is Θ(n) in all cases. Figure 1 characterizes
the efficiency of Parity-test.

(1) is only a necessary condition, therefore Parity-Test is only an appro-
ximate (filtering) algorithm.

3.2 Binomial test

Our second test is based on the second necessary condition of Erdős-Gallai
theorem. It received the given name since we estimate the number of the inner
edges of the head of b using a binomial coefficient. Let Ti = bi+1+ · · ·+bn (i =

1, . . . , n).

Lemma 3 If n ≥ 1 and b is an n-graphical sequence, then

Hi ≤ i(i − 1) + Ti (i = 1, . . . , n − 1). (3)

Proof. The left side of (3) represents the degree requirement of the head of b.
On the right side of (3) i(i−1) is an upper bound of the inner degree capacity
of the head, while Ti is an upper bound of the degree capacity of the tail,
belonging to the index i. ¤

The following program is based on Lemma 3.
Input. n: number of the vertices (n ≥ 1);

b = (b1, . . . , bn): an n-regular even sequence;
H = (H1, . . . , Hn): Hi the sum of the first i elements of b;
H0: auxiliary variable, helping to compute the elements of H.

Output. L: logical variable (L = False signals, that b is surely not graphical,
while L = True shows, that the test could not decide, whether b is graphical).

Working variables. i: cycle variable;
T = (T1, . . . , Tn): Ti the sum of the last n − i elements of b;
T0: auxiliary variable, helping to compute the elements of T .

Binomial-Test(n, b, H, L)

01 T0 = 0

02 for i = 1 to n − 1
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03 Ti = Hn − Hi
04 if Hj > i(i − 1) + Ti
05 L = False
06 return L

07 L = True
08 return L

The running time of this algorithm is Θ(n) in worst case, while in best case
is only Θ(1).

According to our simulation experiments Binomial-Test is an effective
filtering test (see 2) and 8).

3.3 Splitting of the head

We can get a better estimation of the inner capacity of the head, than the
binomial coefficient gives in (3), if we split the head into two parts. Let bi/2c =

hi, p the number of positive elements of b. Then the sequence (b1, . . . , bhi)

is called the beginning of the head belonging to index i and the sequence
(bhi+1, . . . , bi) the end of the head belonging to index i.

Lemma 4 If n ≥ 1 and b is an n-graphical sequence, then

Hi ≤ min(min(Hhi , Tn − Ti, hi(n − i))

+ min(Hi − Hhi , Tn − Ti, (i − hi)(n − i)), Ti)

+ min(hi(i − hi) +

(
hi

2

)
+

(
i − hi

2

)
(i = 1, . . . , n), (4)

further

min(Hhi , Tn− Ti, hi(n− i))+min(Hi−Hhi , Tn− Ti, (i−hi)(n− i)) ≤ Ti. (5)

Proof. Let G be a simple graph whose degree sequence is b. Then we divide
the set of the edges of the head belonging to index i into five subsets: (Si;1)

contains the edges between the beginning of the head and the tail, (Si;2) the
edges between the end of the head and the tail, Si;3 the edges between the parts
of the head, Si;4 the edges in the beginning of the head and Si;5 the edges in
the end of the head. Let us denote the number of edges in these subsets by
Xi;1, . . . , Xi;5.

Xi;1 is at most the sum Hhi of the elements of the head, at most the sum
Tn − Ti of the elements of the tail, and at most the product hi(n − i) of the
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elements of the pairs formed from the tail and from the beginning of the head,
that is

Xi;1 ≤ min(Hhi , Tn − Ti, hi(n − i)). (6)

A similar train of thought results

Xi;2 ≤ min(Hi − Hhi , Tn − Ti, (i − hi)(n − i)). (7)

Xi;3 is at most hi(i − hi) and at most Hi, implying

Xi;3 ≤ min(hi(i − hi), Hi). (8)

Xi;4 is at most
(
hi
2

)
and at most Hhi , implying

Xi;4 ≤ min(

(
hi

2

)
, Hhi), (9)

while Xi;5 is at most
(
i-hi
2

)
and at most Hi − Hhi , implying

Xi;5 ≤
(

i − hi

2

)
. (10)

A requirement is also, that the tail can overrun its capacity, that is

Xi;1 + Xi;2 ≤ Ti. (11)

Summing of (6), (7), (8), (9), and (10) results

Hi ≤ Xi;1 + Xi;2 + Xi;3 + 2Xi;4 + 2Xi;5. (12)

Substituting of (6), (7), (8), (9), and (10) into (12) results (4), while (11) is
equivalent with (5). ¤

The following algorithm executes the test based on Lemma 4.
Input. n: the number of vertices (n ≥ 1);

b = (b1, . . . , bn): an n-even sequence, accepted by Binomial-Test;
H = (H1, . . . , Hn): Hi the sum of the first i elements of b;
T = (T1, . . . , Tn): Ti the sum of the last n − i elements of b.

Output. L: logical variable (L = False signals,that b is not graphical, while
L = True shows, that the test could nor decide, whether b is graphical).

Working variables. i: cycle variable;
h: the actual value of hi X = (X1, X2, X3, X4, X5): Xj is the value of the actual
Xi;j of the end of the head.
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Headsplitter-Test(n, b, H, T, L)

01 for i = 2 to n − 1

02 h = bi/2c
03 X1 = min(Hh, Tn − Ti, h(n − i))

04 X2 = min(Hi − Hh, Tn − Ti, (i − h)(n − i))

05 X3 = min(h(i − h)

06 X4 =
(
h
2

)

07 X5 =
(
i-h
2

)
06 if Hi > X1 + X2 + X3 + 2X4 + 2X5 or X1 + X2 > Ti
07 L = False
08 return L

09 L = True
10 return L

The running time of the algorithm is Θ(1) in best case and Θ(n) in worst
case.

It is a substantial circumstance that the use of Lemma 3 and Lemma 4
requires only linear time (while the earlier two theorems require quadratic
time). But these improvements of Erdős-Gallai theorem decrease only the co-
efficient of the quadratic member in the formula of the running time, the order
of growth remains unchanged.

Figure 2 contains the results of the running of Binomial-Test and Head-
splitter-Test, further the values G(n) and G(n)

G(n+1)
(the computation of the

values of the function G(n) will be explained in Section 8).
Figure 8 shows the relative frequency of the zerofree regular, binomial, he-

adsplitted and graphical sequences compared with the number of regular se-
quences.

3.4 Composite test

Composite-Test uses approximate algorithms in the following order: Parity-
Test, Binomial-Test, Positive-Test, Headsplitter-Test.

Composite-test(n, b, L)

01 Parity-Test(n, b, L)

02 if L = False
03 return L

04 Binomial-Test(n, b, H, L)

05 if L = False
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n Bz(n) Fz(n) G(n) G(n + 1)/G(n)

1 1 0 1 2.000000

2 2 2 2 2.000000

3 4 4 4 2.750000

4 11 11 11 2.818182

5 31 31 31 3.290323

6 103 102 102 3.352941

7 349 344 342 3.546784

8 1256 1230 1213 3.595218

9 4577 4468 4361 3.672552

10 17040 16582 16016 3.705544

11 63944 62070 59348 3.742620

12 242218 234596 222117 3.765200

13 922369 891852 836315 3.786674

14 3530534 3409109 3166852 3.802710

15 13563764 13082900 12042620 3.817067

16 52283429 50380684 45967479 3.828918

17 202075949 194550002 176005709 3.839418

18 782879161 753107537 675759564 3.848517

19 3039168331 2921395019 2600672458 3.856630

20 11819351967 11353359464 10029832754 3.863844

21 38753710486 3.870343

22 149990133774 3.876212

23 581393603996 3.881553

24 2256710139346 3.886431

25 8770547818956 3.890907

26 34125389919850 3.895031

27 132919443189544 3.897978

28 518232001761434 3.898843

29 2022337118015338

Figure 2: Number of zerofree binomial, zerofree headsplitted and graphical
sequences, further the ratio of the numbers of graphical sequences for neigh-
bouring values of n

06 return L

07 Headsplitter-Test(n, b, H, T, L)

08 if L = False
09 return L

10 L = True
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n Ez(n) Ez(n)/R(n) Bz(n)/R(n) Fz(n)/R(n) G(n)/R(n)

1 0 0.000000 1.000000 1.000000 1.000000

2 1 0.333333 0.666667 0.666667 0.666667

3 2 0.300000 0.400000 0.400000 0.400000

4 9 0.257143 0.314286 0.314286 0.314286

5 28 0.230159 0.246032 0.246031 0.246032

6 110 0.238095 0.222943 0.220779 0.220779

7 396 0.231352 0.203380 0.200466 0.199301

8 1519 0.236053 0.195183 0.191142 0.188500

9 5720 0.235335 0.188276 0.183793 0.179391

10 21942 0.237524 0.184460 0.179502 0.173375

11 83980 0.238098 0.181290 0.175977 0.168260

12 323554 0.239301 0.179145 0.173508 0.164278

13 1248072 0.240000 0.177368 0.171500 0.160821

14 4829708 0.240784 0.176014 0.169960 0.157882

15 18721080 0.241379 0.174884 0.168684 0.155271

16 72714555 0.241946 0.173965 0.167634 0.152950

17 282861360 0.242424 0.173188 0.166738 0.150844

18 1101992870 0.242860 0.172533 0.165972 0.148926

19 4298748300 0.243243 0.171970 0.165306 0.147158

20 16789046494 0.243590 0.171486 0.164725 0.145521

21 0.143997

22 0.142569

23 0.141228

24 0.139961

25 0.138762

26 0.137625

27 0.136542

28 0.135509

29 0.134521

Figure 3: The number of zerofree even sequences, further the ratio of the num-
bers binomial/regular, headsplitted/regular and graphical/regular sequences.

11 return

The running time of this composite algorithm is in all cases Θ(n).
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4 Properties of the approximate testing algorithms

We investigate the efficiency of the approximate algorithms testing the regular
algorithms. Figure 1 contains the number R(n) of regular, the number E(n) of
even, and the number G(n) of graphical sequences for n = 1, . . . , 38.

The relative efficiency of algorithm A for sequences of given length n we
define with the ratio of the number of accepted by A sequences of length n

and the number of graphical sequences G(n). This ratio as a function of n will
be noted by XA(n) and called the error function of A [34].

We investigate the following approximate algorithms, which are the compo-
nents of Composite-Test:

1) Parity-Test;
2) Binomial-Test;
3) Headsplitter-Test.
According to (25)) there are R(2) = 3 2-regular sequences: (1, 1), (1, 0)

and (0, 0). According to (27) among these sequences there are E(2) = 2 even
sequences. Binomial-Test accepts both even ones, therefore B(2) = 2. Both
sequences are 2-graphical, therefore G(2) = 2 and so the efficiency of Parity-
Test (PT) and Binomial-Test (BT) is XPT(2) = XBT(2) = 2/2 = 1, in this
case both algorithms are optimal

The number of 3-regular sequences is R(3) = 10. From these sequences
(2, 2, 2), (2, 2, 0), (2, 1, 1), (2, 0, 0) (1, 1, 0) and (0, 0, 0) are even, so E(3) =

6. Binomial-Test excludes the sequences (2, 2, 0) and (2, 0, 0), so remains
B(3) = 4. Since these sequences are 3-graphical, G(3) = 4 implies XPT(3) = 3

2

and XBT(3) = 1.

The number of 4-regular sequences equals to R(4) = 35. From these se-
quences 16 is even, and the following 11 is 4-graphical: (3, 3, 3, 3), (3, 3, 2, 2),
(3, 2, 2, 1), (3, 1, 1, 1, ), (2, 2, 2, 2), (2, 2, 2, 0), (2, 2, 1, 1), (2, 1, 1, 0), (1, 1, 1, 1),
(1, 1, 0, 0) and (0, 0, 0, 0). From the 16 even sequences Binomial-Test also
excludes the 5 sequences, so B(4) = G(4) = 11 and XBT(4) = 1.

According to these data in the case of n ≤ 4 Binomial-Test recognizes all
nongraphical sequences. Figure 2 shows, that for n ≤ 5 esetén B(n) = G(n),
that is Binomial-Test accepts the same number of sequences as the precise
algorithms. If n > 5, then the error function of Binomial-Test is increasing:
while XBT(6) = 103

102
(BT accepts one nongraphical sequence), XBT(7) = 349

342

(BT accepts 7 nongraphical sequences) etc.
Figure 4 presents the average running time of the testing algorithms BT

and HT in secundum and in number of operations. The data contain the time
and operations necessary for the generation of the sequences too.
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n BT, s BT, operation HT, s HT, operation

1 0 14 0 15
2 0 41 0 43
3 0 180 0 200
4 0 716 0 815
5 0 2 918 0 3 321
6 0 11 918 0 13 675
7 0 48 952 0 56 299
8 0 201 734 0 233 182
9 0 831 374 0 964 121

10 0 3 426 742 0 3 988 542
11 0 14 107 824 0 16 469 036
12 0 58 028 152 0 67 929 342
13 0 238 379 872 0 279 722 127
14 0 978 194 400 1 1 150 355 240
15 2 4 009 507 932 3 4 724 364 716
16 6 16 417 793 698 13 19 379 236 737
17 26 67 160 771 570 51 79 402 358 497
18 106 274 490 902 862 196 324 997 910 595
19 423 1 120 923 466 932 798 1 328 948 863 507
20 1 627 4 573 895 421 484 3 201 5 429 385 115 097

Figure 4: Running time of Binomial-Test (BT) and Headsplitter-Test
(HT) in secundum and as the number of operations for n = 1, . . . , 20.

5 New precise algorithms

In this section the zerofree algorithms, the shifting Havel-Hakimi, the parity
checking Havel-Hakimi, the shortened Erdős-Gallai, the jumping Erdős-Gallai,
the linear Erdős-Gallai and the quick Erdős-Gallai algorithms are presented.

5.1 Zerofree algorithms

Since the zeros at the and of the input sequences correspond to isolated verti-
ces, so they have no influence on the quality of the sequence. This observation
is exploited in the following assertion, in which p means the number of the
positive elements of the input sequence.

Corollary 5 If n ≥ 1, the (b1, . . . , bn) n-regular sequence is n-graphical if
and only if (b1, . . . , bp) is p-graphical.

Proof. If all elements of b are positive (that is p = n), then the assertion
is equivalent with Erdős-Gallai theorem. If b contains zero element (that is
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p < n), then the assertion is the consequence of Havel-Hakimi and Erdős-
Gallai algorithms, since the zero elements do not help in the pairing of the
positive elements, but from the other side they have no own requirement. ¤

The algorithms based on this corollary are called Havel-Hakimi-Zerofree
(HHZ), resp. Erdős-Gallai-Zerofree (EGZ).

5.2 Shifting Havel-Hakimi algorithm

The natural algorithmic equivalent of the original Havel-Hakimi theorem is
called Havel-Hakimi Sorting (HHSo), since it requires the sorting of the
reduced input sequence in every round.

But it is possible to design such implementation, in which the reduction of
the degrees is executed saving the monotonity of the sequence. Then we get
Havel-Hakimi-Shifting (HHSh) algorithm.

For he pseudocode of this algorithms see in [37].

5.3 Parity checking Havel-Hakimi algorithm

It is an interesting idea the join the application of the conditions of Erdős-
Gallai and Havel-Hakimi theorems in such a manner, that we start with the
parity checking of the input sequence, and only then use the recursive Havel-
Hakimi method.

For the pseudocode of the algorithm Havel-Hakimi-Parity (HHP) see in
[37].

5.4 Shortened Erdős-Gallai algorithm (EGSh)

In the case of a regular sequence the maximal value of Hi is n(n−1), therefore
the inequality (2) certainly holds for i = n, therefore it is unnecessary to check.

Even more useful observation is contained in the following assertion due to
Tripathi and Vijai.

Lemma 6 (Tripathi, Vijay [84]) If n ≥ 1, then an n-regular sequence b =

(b1 . . . , bn) is n-graphical if and only if

Hn even (13)

and

Hi ≤ min(Hi, i(i − 1))

n∑

k=l+1

min(i, bk) (i = 1, 2, . . . , r), (14)
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where
r = max

1≤k≤n
(k | k(k − 1) < Hk) (15)

Proof. If i(i − 1) ≥ Hi, then the left side of (2) is nonpositive, therefore the
inequality holds, so the checking of the inequality is nonnecessary. ¤

The algorithm based on this assertion is called Erdős-Gallai-Shortened.
For example if the input sequence is b = (5100), then Erdős-Gallai computes
the right side of (2) 99 times, while Erdős-Gallai-Shortened only 6 times.

5.5 Jumping Erdős-Gallai algorithm

Contracting the repeated elements a regular sequence (b1, . . . , bn) can be writ-
ten in the form (be1i1 , . . . , b

eq
iq

), where bi1 < · · · < biq , e1, . . . , eq ≥ 1 and
e1 + · · ·+ eq = n. Let gj = e1 + · · ·+ ej (j = 1, . . . , q).

The element bi is called the checking points of the sequence b, if i = n or
1 ≤ i ≤ n − 1 és bi > bi+1. Then the checking points are bg1 , . . . , bgq .

Theorem 7 (Tripathi, Vijay [84]) An n-regular sequence b = (b1, . . . , bn) is
n-graphical if and only if

Hn even (16)

and

Hgi − gi(gi − 1) ≤
n∑

k=gi+1

min(i, bk) (i = 1, . . . , q). (17)

Proof. See [84]. ¤
Later in algorithm Erdős-Gallai-Enumerating we will exploit, that in

the inequality (17) gq is always n, therefore it is enough to check the inequality
only up to i = q − 1.

The next program implements a quick version of Erdős-Gallai algorithm,
exploiting Corollary 5, Lemma 6 and Lemma 7. In this paper we use the
pseudocode style proposed in [17].

Input. n: number of vertices (n ≥ 1);
b = (b1, . . . , bn): an n-even sequence.

Output. L: logical variable (L = False signalizes, that, b is not graphical,
while L = True shows, that b is graphical).

Working variables. i and j: cycle variables;
H = (H0, H1, . . . , Hn): Hi is the sum of the first i elements of b;
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D: the degree capacity of the actual tail;
bn+1: auxiliary variable helping to decide, whether bn is a jumping element.

Erdős-Gallai-Jumping(n, b, H, L)

01 H1 = b1 // lines 01–06: test of parity
02 for i = 2 to n

03 Hi = Hi-1 + bi
04 if Hn odd
05 L = False
06 return L

07 bn+1 = −1 // lines 07–20: test of the request of the head
08 i = 1

09 while i ≤ n and i(i − 1) < Hi
10 while bi == bi+1
11 i = i + 1

12 D = 0

13 for j = i + 1 to n

14 D = D + min(j, bj)

15 if Hi > i(i − 1) + D

16 L = False
17 return L

18 i = i + 1

19 L = True
20 return L

The running time of EGJ varies between the best Θ(1) and the worst Θ(n2).

5.6 Linear Erdős-Gallai algorithm

Recently we could improve Erdős-Gallai algorithm [36, 37]. The new al-
gorithm Erdős-Gallai-Linear exploits, that q is monotone. It determines
the capacities Ci in constant time. The base of the quick computation is the
sequence w(b) containing the weight points wi of the elements of the input
sequence b.

For given sequence b let w(b) = (w1, . . . , wn-1), where wi gives the index
of bk having the maximal index among such elements of b which are greater
or equal to i.

Theorem 8 (Iványi, Lucz [36], Iványi, Lucz, Móri, Sótér [37]) If n ≥ 1, then
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the n-regular sequence (b1, . . . , bn) is n-graphical if and only if

Hn is even (18)

and if i > wi, then
Hi ≤ i(i − 1) + Hn − Hi, (19)

further if i ≤ wi, then

Hi ≤ i(i − 1) + i(wi − i) + Hn − Hwi . (20)

Proof. (18) is the same as (1).
During the testing of the elements of b by Erdős-Gallai-Linear there

are two cases:

• if i > wi, then the contribution of the tail of b equals to Hn − Hi, since
the contribution Ck of the element bk is only bk.

• if i ≤ w1, then the contribution of the tail of b consists of contributions
of two types: Ci+1, . . . , Cmi are equal to i, while Cj = bj for j = mi +

1, . . . , n.

Therefore in the case n − 1 ≥ i > wi we have

Ci = i(i − 1) + Hn − Hi, (21)

and in the case 1 ≤ i ≤ wi

Ci = i(i − 1) + i(wi − i) + Hn − Hwi . (22)

¤
The following program is based on Theorem 8. It decides on arbitrary n-

regular sequence whether it is n-graphical or not.
Input. n: number of vertices (n ≥ 1);

b = (b1, . . . , bn): n-regular sequence.
Output. L: logical variable, whose value is True, if the input is graphical,

and it is False, if the input is not graphical.
Work variables. i and j: cycle variables;

H = (H1, . . . , Hn): Hi is the sum of the first i elements of the tested b;
b0: auxiliary element of the vector b

w = (w1, . . . , wn-1): wi is the weight point of bi, that is the maximum of the
indices of such elements of b, which are not smaller than i;
H0 = 0: help variable to compute the other elements of the sequence H;
b0 = n − 1: help variable to compute the elements of the sequence w.
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Erdős-Gallai-Linear(n, b, L)

01 H0 = 0 // line 01: initialization
02 for i = 1 to n // lines 02–03: computation of the elements of H

03 Hi = Hi-1 + bi
04 if Hn odd // lines 04–06: test of the parity
05 L = False
06 return L

07 b0 = n − 1 // line 07: initialization of a working variable
08 for i = 1 to n // lines 08–12: computation of the weights
09 if bi < bi-1
10 for j = bi-1 downto bi + 1

11 wj = i − 1

12 wbi = i

13 for j = bn downto 1 // lines 13–14: large weights
14 wj = n

15 for i = 1 to n // lines 15–23: test of the elements of b

16 if i ≤ wi // lines 16–19: test of indices for large wi’s
17 if Hi > i(i − 1) + i(wi − i) + Hn − Hwi
18 L = False
19 return L

20 if i > wi // lines 20–23: test of indices for small wi’s
21 if Hi > i(i − 1) + Hn − Hi
22 L = False
23 return L

24 L = True // lines 24–25: the program ends with the value True
25 return L

Theorem 9 (Iványi, Lucz [36], Iványi, Lucz, Móri, Sótér [37]) Algorithm
Erdős-Gallai-Linear decides in Θ(n) time, whether an n-regular sequence
b = (b1, . . . , bn) is graphical or not.

Proof. Line 1 requires O(1) time, lines 2–3 Θ(n) time, lines 4–6 O(1) time,
line 07 O(1) time, lines 08–12 O(1) time, lines 13–14 O(n) time, lines 15–23
O(n) time and lines 24–25 O(1) time, therefore the total time requirement of
the algorithm is Θ(n). ¤

Since in the case of a graphical sequence all elements of the investigated
sequence are to be tested, in the case of RAM model of computations [17]
Erdős-Gallai-Linear is asymptotically optimal.
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6 Running time of the precise testing algorithms

We tested the precise algorithms determining their the total running time for
all the even sequences. The set of the even sequences is the smallest such set
of sequences, whose the cardinality we know exact and explicite formula. The
number of n-bounded sequences K(n) is also known, but this function grows
too quickly when n grows.

If we would know the average running time of the bounded sequences we
would take into account that is is sufficient to weight the running times of the
regular sequences with the corresponding frequencies. For example a homoge-
neous sequence consisting of identical elements would get a unit weight since
it corresponds to only one bounded sequence, while a rainbow sequence con-
sisting is n different elements as e.g. the sequence n,n − 1, . . . , 1 corresponds
to n! different bounded sequences and therefore would get a corresponding
weight equal to n!.

We follow two ways of the decreasing of the running time of the precise
algorithms. The first way is the decreasing of the number of the executable
operations. The second way is, that we try to use quick (linear time) prepro-
cessing algorithms for the filtering of the sequences in order to decrease of the
part of sequences requiring the relative slow precise algorithms.

For the first type of decrease of the expected running time is the shorte-
ning of the sequences and the application of the checking points, while for
the the second type are examples the completion of HH algorithm with the
parity checking or the completion of the EG algorithm with the binomial and
headsplitted algorithms.

In this section we investigate the following precise algorithms:
1) Havel-Hakimi-Shorting (HHSo).
2) Havel-Hakimi-Shifting (HHSh).
3) Erdős-Gallai algorithm (EG).
4) Erdős-Gallai-Jumping algorithm (EGJ).
5) Erdős-Gallai-Linear algorithm (EGL).
Figure 5 contains the total number of operations of the algorithms HHSo,

HHSh, EG, and EGL required for the testing of all even sequences of length
n = 1, . . . , 15. The operations necessary to generate the sequences are inclu-
ded.

Comparison of the first two columns shows that algorithm HHSh is much
quicker than HHSo, especially if n increases. Comparison of the third and
fourth columns shows that we get substantial decrease of the running time
if we have to test the input sequence only in the check points. Finally the
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n HHSo HHSh EG EGJ EGL

1 10 15 87 - -
2 40 61 119 12 37
3 231 236 267 116 148
4 1 170 1 052 946 551 585
5 5 969 4 477 4 000 2 677 2 339
6 31 121 20 153 18 206 12 068 9 539
7 157 345 88 548 82 154 54 184 38 984
8 784 341 393 361 372 363 238 813 160 126
9 3 628 914 1 726 484 1 666 167 1 666 167 656 575

10 17 345 700 7 564 112 7 418 447 4 552 276 2 692 240
11 80 815 538 32 895 244 32 737 155 19 680 986 11 018 710
12 385 546 527 142 460 352 143 621 072 84 608 529 45 049 862
13 1 740 003 588 613 739 913 626 050 861 362 141 061 183 917 288
14 8 066 861 973 2 633 446 908 2 715 026 827 1 543 745 902 750 029 671
15 36 630 285 216 11 254 655 388 11 717 017 238 6 557 902 712 3 055 289 271

Figure 5: Total number of operations as the function of n for precise algorithms
HHSo, HHSh, EG, EGJ, and EGL.

comparison of the third and fifth columns demonstrates the advantages of a
linear algorithm over a quadratic one.

Figure 6 shows the running time of Erdős-Gallai-Linear in secundum
and operation, and also the amortized number of operation/even sequence.

The most interesting data of Figure 6 are in the last column: they show
that the number of operations/investigated sequence/length of the investigated
sequence is monotone decreasing (see [70]).

Figure 7 shows the distribution of the E(n) − G(n) even nongraphical se-
quences according to the number of tests made by Erdős-Gallai-Jumping
to exclude the given sequence for n = 3, . . . , 15 vertices. fi(n) = fi gives the
frequency of even nongraphical sequences of length n, which requeired exactly
i round of the test.

These data show, that the maximal number of tests is about n
2

in all lines.
Figure 8 shows the average number of required rounds for the nongraphical,

graphical and all even sequences. The data of the column belonging to G(n) are
computed using Lemma . It is remarkable that the sequences of the coefficients
are monotone decreasing in the last three columns.

Figure 9 presents the distribution of the graphical sequences according to
their first element. These data help at the design of the algorithm Erdős-
Gallai-Enumerating which computes the new values of G(n) (in the slicing
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n E(n) T(n), s Op(n) T(n)=E(n)=n; s Op(n)=E(n)=n

2 2 0 37 0 9.25000000000
3 6 0 148 0 8.22222222222
4 19 0 585 0 7.69736842105
5 66 0 2 339 0 7.08787878788
6 236 0 9 539 0 6.73658192090
7 868 0 38 984 0 6.41606319947
8 3 235 0 160 126 0 6.18724884080
9 12 190 0 656 575 0 5.98464132714

10 46 252 0 2 692 240 0 5.82080774885
11 176 484 0 11 018 710 0 5.67587378511
12 676 270 0 45 049 862 0 5.55126675243
13 2 600 612 0 183 917 288 0 5.44005937537
14 10 030 008 1 750 029 671 0.000000007121487 5.34132654018
15 38 781 096 5 3 055 289 271 0.000000008595253 5.25219687963
16 150 273 315 23 12 434 367 770 0.000000009565903 5.17156346504
17 583 407 990 79 50 561 399 261 0.000000007965367 5.09797604337
18 2 268 795 980 297 205 439 740 365 0.00000000727258 5.03056202928

Figure 6: Total and amortized running time of Erdős-Gallai-Linear in
secundum, resp. in the number of executed operations.

E(n) -G(n) n=i f1 f2 f3 f4 f5 f6 f7

2 3 2 0 0 0 0 0 0

8 4 6 2 0 0 0 0 0

35 5 33 2 0 0 0 0 0

134 6 122 12 0 0 0 0 0
526 7 459 65 2 2 0 0 0
2022 8 1709 289 24 0 0 0 0
7829 9 6421 1228 176 4 0 0 0
30236 10 24205 4951 1013 67 0 0 0
115136 11 91786 19603 5126 610 11 0 0
454153 12 349502 76414 23755 4274 208 0 0
1764297 13 1336491 296036 104171 25293 2277 29 0

6863156 14 5128246 1142470 439155 133946 18673 666 0

26738476 15 19739076 4404813 1803496 655291 127116 8603 81

Figure 7: Distribution of the even nongraphical sequences according to the
number of tests made by Erdős-Gallai-Jumping to exclude the given se-
quence for n = 3, . . . , 15.

of the computations belonging to a given value of n).
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n E(n) G(n) E(n) − G(n) average of average of average of
E(n) − G(n) G(n) E(n)

3 6 4 2 0.3333n 0.8000n 0.6444n

4 19 11 8 0.3125n 0.5714n 0.4661n

5 66 31 35 0.2114n 0.5555n 0.3730n

6 236 102 134 0.1967n 0.5455n 0.3730n

7 868 342 526 0.1649n 0.5385n 0.3475n

8 3233 1213 2020 0.1458n 0.5333n 0.2911n

9 12190 4363 7829 0.1337n 0.5294n 0.2753n

10 46232 16016 30216 0.1249n 0.5263n 0.2700n

11 174484 59348 115136 0.1175n 0.5238n 0.2557n

12 676270 222117 454153 0.1085n 0.5217n 0.2444n

13 2603612 836313 1767299 0.1035n 0.5200n 0.2373n

14 10030008 3166852 6863156 0.0960n 0.5185n 0.2294n

15 38761096 12042620 26718476 0.0934n 0.5172n 0.2251n

Figure 8: Weighted average number of tests made by Erdős-Gallai-Jumping
while investigating the even sequences for n = 3, . . . , 15.

n=b1 0 1 2 3 4 5 6 7 8 9 10 11

1 1
2 1 1
3 1 1 2
4 1 1 4 4
5 1 2 7 10 11
6 1 3 10 22 35 31
7 1 3 14 34 78 110 102
8 1 4 18 54 138 267 389 342
9 1 4 23 74 223 503 968 1352 1213
10 1 5 28 104 333 866 1927 3496 4895 4361
11 1 5 34 134 479 1356 3471 7221 12892 17793 16016
12 1 6 40 176 661 2049 5591 13270 27449 47757 65769 59348

Figure 9: The distribution of the graphical sequences according to b1 for n =

1, . . . , 12.

We see in Figure 9 that from n = 6 the multiplicities increase up to n − 2,

and the last positive value is smaller then the last but one element.
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7 Enumerative results

Until now for example Avis and Fukuda [4], Barnes and Savage [5, 6], Burns
[13], Erdős and Moser [60], Erdös and Richmond [22], Frank, Savage and Se-
lers [25], Kleitman and Winston [48], Kleitman and Wang [47], Metropolis and
Stein [57], Rødseth et al. [69], Ruskey et al. [70], Stanley [80], Simion [72] and
Winston and Kleitman [88] published results connected with the enumeration
of degree sequences. Results connected with the number of sequences investi-
gated by us can be found in the books of Sloane és Ploffe [78], further Stanley
[81] and in the free online database On-line Encyclopedia of Integer Sequences
[75, 76, 77]

It is easy to show, that if l, u and m are integers, further u ≥ l, m ≥ 1, and
l ≤ bi ≤ u for i = 1, . . . , m, then the number of (l, u, m)-bounded sequences
a = (a1, . . . , am) of integer numbers K(l, u, m) is

K(l, u, m) = (u − l + 1)m. (23)

It is known (e.g. see [40, page 65]), that if l, u and m are integers, further
u ≥ l and m ≥ 1, and u ≥ b1 ≥ · · · ≥ bn ≥ l, then the number of (l, u, m)-
regular sequences of integer numbers R(l, u, m) is

R(l, u, m) =

(
u − l + m

m

)
. (24)

The following two special cases of (24) are useful in the design of the algo-
rithm Erdős-Gallai-Enumerating.

If n ≥ 1 is an integer, then the number of R(0, n−1, n)-regular sequences is

R(0, n − 1, n) = R(n) =

(
2n − 1

n

)
. (25)

If n ≥ 1 is an integer, then the number of R(1, n−1, n)-regular sequences is

R(1, n − 1, n) = Rz(n) =

(
2n − 2

n

)
. (26)

In 1987 Ascher derived the following explicit formula for the number of
n-even sequences E(n).

Lemma 10 (Ascher [3], Sloane, Pfoffe [78]) If n ≥ 1, then the number of
n-even sequences E(n) is

E(n) =
1

2

((
2n − 1

n

)
+

(
n − 1

bnc
))

. (27)



On Erdős-Gallai and Havel-Hakimi algorithms 25

Proof. See [3, 78]. ¤
At the designing and analysis of the results of the simulation experiments

is useful, if we know some features of the functions R(n) and E(n).

Lemma 11 If n ≥ 1, then

R(n + 2)

R(n + 1)
>

R(n + 1)

R(n)
, (28)

lim
n!1

R(n + 1)

R(n)
= 4, (29)

further
4n√
4πn

(
1 −

1

2n

)
< R(n) <

4n√
4πn

(
1 −

1

8n + 8

)
. (30)

Proof. On the base of (25) we have

R(n + 2)

R(n + 1)
=

(2n + 3)!(n + 1)n!

(n + 2)!(n + 1)!(2n + 1)!
=

4n + 6

n + 2
= 4 −

2

n + 2
, (31)

from where we get directly (28) and (29). ¤
Using Lemma 12 we can give the precise asymptotic order of growth of E(n).

Lemma 12 If n ≥ 1, then

E(n + 2)

E(n + 1)
>

E(n + 1)

E(n)
, (32)

lim
n!1

E(n + 1)

E(n)
= 4, (33)

further
4n√
πn

(1 − D3(n)) < E(n) <
4n√
πn

(1 − D4(n)), (34)

where D3(n) and D4(n) are monotone decreasing functions tending to zero.

Proof. The proof is similar to the proof of Lemma 11. ¤
Comparison of (25) and Lemma 12 shows, that the order of growth of num-

bers of even and odd sequences is the same, but there are more even sequen-
ces than odd. Figure 1 contains the values of R(n), E(n) and E(n)/R(n) for
n = 1, . . . , 37.

As the next assertion and Figure 1 show, the sequence of the ratios E(n)/R(n)

is monotone decreasing and tends to 1
2
.
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Corollary 13 If n ≥ 1, then

E(n + 1)

R(n + 1)
<

E(n)

R(n)
(35)

and

lim
n!1

E(n)

R(n)
=

1

2
. (36)

Proof. This assertion is a direct consequence of (25) and (27).
¤

The expected value of the number of jumping elements has a substantial
influence on the running time of algorithms using the jumping elements. The-
refore the following two assertions are useful.

The number of different elements in an n-bounded sequence b is called the
rainbow number of the sequence, and it will be denoted by rn(b).

Lemma 14 Let b be a random n-bounded sequence. Then the expectation and
variance of its rainbow number are as follows.

E[rn(b)] = n

[
1 −

(
1 −

1

n

)n]
= n

(
1 −

1

e

)
+ O(1), (37)

Var[rn(b)] = n

(
1 −

1

n

)n [
1 −

(
1 −

1

n

)n]

+ n(n − 1)

[(
1 −

2

n

)n
−

(
1 −

1

n

)2n]

=
n

e

(
1 −

2

e

)
+ O(1). (38)

Proof. Let ξi denote the indicator of the event that number i is not contained
in a random n-bounded sequence. Then the rainbow number of a random
sequence is n−

∑n-1
i=0 ξi, hence its expectation equals n−

∑n-1
i=0 E[ξi]. Clearly,

E[ξi] =

(
1 −

1

n

)n
(39)

holds independently of i, thus

E[rn(b)] = n

[
1 −

(
1 −

1

n

)n]
. (40)



On Erdős-Gallai and Havel-Hakimi algorithms 27

On the other hand,

Var[rn(b)] = Var

[
n-1∑

i=0

ξi

]
=

n-1∑

i=0

Var[ξi] + 2
∑

0≤i<j≤n-1

cov[ξi, ξj]. (41)

Here

Var[ξi] =

(
1 −

1

n

)n [
1 −

(
1 −

1

n

)n]
, (42)

and

cov[ξi, ξj] = E[ξiξj] − E[ξi]E[ξj] =

(
1 −

2

n

)n
−

(
1 −

1

n

)2n
, (43)

implying (38). ¤
We remark that this lemma answers a question of Imre Kátai [41] posed in

connection with the speed of computers having interleaved memory and with
checking algorithms of some puzzles (e.g sudoku).

Lemma 15 The number of (0, n − 1,m)-regular sequences composed from k

distinct numbers is (
n

k

)(
m − 1

k

)
, k = 1, . . . , n. (44)

In other words, the distribution of the rainbow number rn(b) of a random
(0, n − 1,m)-regular sequence b is hypergeometric with parameters n + m − 1,
n, and m.

Proof. The k-set of distinct elements of the sequence can be selected from
{0, 1, . . . , n − 1} in

(
n
k

)
ways. Having this values selected we can tell their

multiplicities in
(
m-1
k-1

)
ways. Let us consider the k blocks of identical elements.

The first one starts with b1, and the starting position of the other k−1 blocks
can be selected in

(
m-1
k-1

)
ways. ¤

From this the expectation and the variance of a random n-regular sequence
follow immediately.

Corollary 16 Let b be a random n-regular sequence. Then the expectation
and the variance of its rainbow number rn(b) are as follows:

E[rn(b)] =
n2

2n − 1
=

n

2
+

n

4n − 2
=

n

2
+ O(1), (45)

Var[rn(b)] =
n2(n − 1)

2(2n − 1)2
=

n

8
+

n

128n2 − 128n + 32
=

n

8
+ O(1). (46)
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Lemma 17 Let b be a random n-regular sequence. Let us write it in the form
b = (be11 , . . . , berr ). Then the expected value of the exponents ej is

E[ej | r(b) ≥ j] = 4 + o(1). (47)

Proof. Let c(n, j) denote the number of n-regular sequences with rainbow
number not less than j. By Lemma 15,

c(n, j) =

n∑

k=j

(
n

k

)(
n − 1

k − 1

)
. (48)

Let us turn to the number of n-regular sequences with rainbow number not
less than j and ej = `. This is equal to the number of (0, n−1, n−`+1)-regular
sequences containing at least j different numbers, that is,

n∑

k=j

(
n

k

)(
n − `

k − 1

)
. (49)

From this the sum of ej over all n-regular sequences with ej > 0 is equal to

n-j+1∑

‘=1

`

n∑

k=j

(
n

k

)(
n − `

k − 1

)
=

∑

k=j

n

(
n

k

) n-j+1∑

‘=1

(
`

1

)(
n − `

k − 1

)

=

n∑

k=j

(
n

k

)(
n + 1

k + 1

)
= c(n + 1, j + 1). (50)

This can also be seen in a more direct way. Consider an arbitrary n-regular
sequence with at least j + 1 blocks, then substitute the elements of the j + 1st
block with the number in the jth block (that is, concatenate this two adjacent
blocks) and delete one element from the united block; finally, decrease by 1

all elements in the subsequent blocks. In this way one obtains an n-regular
sequence with at least j blocks, and it easy to see that every such sequence is
obtained exactly ej times.

Thus the expectation to be computed is just

c(n + 1, j + 1)

c(n, j)
. (51)

Clearly, c(n, 1) = R(0, n − 1, n) =

(
2n − 1

n

)
, hence

c(n, j) =

(
2n − 1

n

)
−

j-1∑

k=1

(
n

k

)(
n − 1

k − 1

)
=

(
2n − 1

n

)
+ O

(
n2j-3

)
, (52)
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as n → ∞. This is asymptotically equal to
(

2n + 1

n + 1

)

(
2n − 1

n

) =
4n + 2

n + 1
= 4 −

2

n + 1
= 4 + o(1). (53)

¤
It is interesting to observe that by (45) the average block length in a random

n-regular sequence is
1

r

r∑

j=1

ej =
n

r(b)
≈ 2 (54)

approximately, as n → ∞. This fact could be interpreted as if blocks in the
beginning of the sequence were significantly longer. However, fixing rn(b) = r

we find that the lengths of the r blocks are exchangeable random variables with
equal expectation n/r. At first sight this two facts seem to be in contradiction.
The explanation is that exchangability only holds conditionally. Blocks in the
beginning do exist even for smaller rainbow numbers, when the average block
length is big, while blocks with large index can only appear when there are
many short blocks in the sequence.

The following assertion gives the number of zerofree sequences and the ratio
of the numbers of zerofree and regular sequences.

Corollary 18 The number of the zerofree n-regular sequences Rz(n) is

Rz(n) =

(
2n − 2

n − 1

)
(55)

and
lim
n!1

Rz(n)

R(n)
=

1

2
. (56)

Proof. (55) identical with (24), (56) is a direct consequence of (24) and (25).
¤

As the experimental data in Figure 8 show, Ez(n)
R(n)

≈ 1
4
.

The following lemma allows that the algorithm Erdős-Gallai-Enumera-
ing tests only the zerofree even sequences instead of the even sequences.

Lemma 19 If n ≥ 2, then the number of the n-graphical sequences G(n) is

G(n) = G(n − 1) + Gz(n). (57)
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Proof. If an n-graphical sequence b contains at least one zero, that is bn = 0,

then b ′ = (b1, . . . , bn-1) is (n − 1)-graphical or not. If a = (a1, . . . , an-1) is
an (n − 1)-graphical sequence, then a ′ = (a1, . . . , an-1, 0) is n-graphical.

The set of the n-graphical sequences S consists of two subsets: set of zerofree
sequences S1 and the set of sequences S2 containing at least one zero. There
is a bijection between the set of the (n − 1)-graphical sequences and such n-
graphical sequences, which contain at least one zero. Therefore |S| = |S1| +

|S2| = Gz(n) + G(n − 1). ¤

Corollary 20 If n ≥ 1, then

G(n) = 1 +

n∑

i=2

Gz(n). (58)

Proof. Concrete calculation gives G(1) = 1. Then using (57) and induction
we get (58). ¤

A promising direction of researches connected with the characterization of
the function G(n) is the decomposition of the even integers into members
and the investigation, which decompositions represent a graphical sequence
[5, 6, 13]. Using this approach Burns proved the following asymptotic bounds
in 2007.

Theorem 21 (Burns [13]) There exist such positive constants c and C, that
the following bounds of the function G(n) is true:

4n

cn
< G(n) <

4n

(log n)C
√

n
. (59)

Proof. See [13]. ¤
This result implies that the asymptotic density of the graphical sequences

is zero among the even sequences.

Corollary 22 If n ≥ 1, then there exists a positive constant C such that

G(n)

E(n)
<

1

(log2 n)C
(60)

and
lim
n!1

G(n)

E(n)
= 0. (61)
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Proof. (60) is a direct consequence of (27) and (60), and (60) implies (61).
¤

As Figure 1 and Figure 8 show, the convergence of the ratio G(n)/E(n) is
relative slow.

8 Number of graphical sequences

Erdős-Gallai-Enumerating algorithm (EGE) [37] generates and tests for
given n every zerofree even sequence. Its input is n and output is the number
of corresponding zerofree graphical sequences Gz(n).

The algorithm is based on Erdős-Gallai-Linear algorithm. It generates
and tests only the zerofree even sequences, that is according to Corollary 5
and Figure 8 about the 25 percent of the n-regular sequences.

EGE tests the input sequences only in the checking points. Corollary shows
that about the half of the elements of the input sequences are check points.

Figure contains data showing that EGE investigates even less than the half
of the elements of the input sequences.

Important property of EGE is that it solves in O(1) expected time

1. the generation of one input sequence;

2. the updating of the vector H;

3. the updating of the vector of checking points C;

4. the updating of the vector of the weight points W.

We implemented the parallel version of EGE (EGEP). It was run on about
200 PC’s containing about 700 cores. The total running time of EGEP is
contained in Figure 10

The pseudocode of the algorithm see in [37]. The amortized running time of
this algorithm for a sequence is Θ(1), so the total running time of the whole
program is O(E(n)).

9 Summary

In Figure 1 the values of R(n) up to n = 24 are the elements of the sequence
A001700 of OEIS [75], the values of E(n) up to n = 23 are the elements of the
sequence A005654 [77] of the OEIS, and in Figure 2 the values G(n) are up to
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n running time (in days) number of slices
24 7 415

25 26 415

26 70 435

27 316 435

28 1130 2001

29 6733 15119

Figure 10: The runnng time of EGEP for n = 24, . . . , 29.

n = 23 are the elements of sequence A0004251-es [76] of OEIS. The remaining
values are new [37, 38].

Figure 2 contains the number of graphical sequences G(n) for n = 1, . . . , 29,

and also G(n + 1)/G(n) for n = 1, . . . , 29.

The referenced manuscripts, programs and further simulation results can be
found at the homepage of the authors, among others at
http://compalg.inf.elte.hu/∼tony/Kutatas/EGHH/.
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versity, Faculty of Science, Dept. of Operation Research) for his advice con-
cerning the weight points, Antal Sándor and his colleagues (Eötvös Loránd
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[40] A. Járai, Introduction to Mathematics (Hungarian). ELTE Eötvös Kiadó,
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On Erdős-Gallai and Havel-Hakimi algorithms 39

[80] R. P. Stanley, A zonotope associated with graphical degree sequence,
in: Applied geometry and discrete mathematics, Festschr. 65th Birthday
Victor Klee. DIMACS Series in Discrete Mathematics and Theoretical
Computer Science. 4 (1991) 555-570. ⇒24

[81] R. P. Stanley, Enumerative Combinatorics, Cambridge University Press,
Cambridge, 1997. ⇒24

[82] J. Temesi, Pairwise comparison matrices and the error-free property of the
decision maker, CEJOR Cent. Eur. J. Oper. Res. 19, (2) (2011) 239–249.
⇒2

[83] A. Tripathi, H. Tyagi, A simple criterion on degree sequences of graphs,
Discrete Appl. Math. 156, (18) (2008) 3513–3517. ⇒2

[84] A. Tripathi, S. Vijay, A note on a theorem of Erd os & Gallai, Discrete
Math. 265, (1–3) (2003) 417–420. ⇒15, 16

[85] A. Tripathi, S. Venugopalanb, D. B. West, A short constructive proof of
the Erdős-Gallai characterization of graphic lists, Discrete Math. 310, (4)
(2010) 833–834. ⇒1, 2, 4, 5

[86] E. W. Weisstein, Degree Sequence, From MathWorld—Wolfram Web Re-
source, 2011. ⇒2

[87] E. W. Weisstein, Graphic Sequence, From MathWorld—Wolfram Web
Resource, 2011. ⇒2

[88] K. J. Winston, D. J. Kleitman, On the asymptotic number of tournament
score sequences, J. Combin. Theory Ser. A. 35 (1983) 208–230. ⇒24

http://www-math.mit.edu/~rstan/�
http://www-math.mit.edu/~rstan/�
http://www.cambridge.org/home/home/item5655304/?site_locale=hu_HU�
http://www.springerlink.com/content/1435-246x/19/2/�
http://maths.iitd.ac.in/people/faculty/amitabh_tripathi.php�
http://www.sciencedirect.com/science/journal/0166218X �
http://maths.iitd.ac.in/people/faculty/amitabh_tripathi.php�
http://www.math.illinois.edu/~sujith/�
http://www.sciencedirect.com/science/journal/0012365X�
http://maths.iitd.ac.in/people/faculty/amitabh_tripathi.php�
http://www.math.uiuc.edu/~west/�
http://www.sciencedirect.com/science/journal/0012365X�
http://mathworld.wolfram.com/about/author.html�
http://mathworld.wolfram.com/DegreeSequence.html�
http://mathworld.wolfram.com/about/author.html�
http://mathworld.wolfram.com/GraphicSequence.html�
http://www-math.mit.edu/~djk/�
http://www.sciencedirect.com/science/journal/00973165�

