
Theoretical Computer Science 410 (2009) 2581–2591

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

A new heuristic algorithm for the machine scheduling problem with job
delivery coordination
Chi-Shiang Su a, Jason Chao-Hsien Pan b,∗, Tsung-Shin Hsu a
a Department of Industrial Management, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 106, Taiwan
b Department of Business Administration, Takming University of Science and Technology, 56 Huanshan Road, Section 1, Taipei 114, Taiwan

a r t i c l e i n f o

Article history:
Received 22 October 2008
Received in revised form 15 February 2009
Accepted 19 February 2009
Communicated by D.-Z. Du

Keywords:
Scheduling
Supply chain management
Complexity theory
Heuristic

a b s t r a c t

In a rapidly changing environment, competition among enterprises has a tendency towards
competing between supply chain systems instead of competing between individual
companies. Traditional scheduling models which only address the sequence of jobs to be
processed at the production stage under some criteria are no longer suitable and should
be extended to cope with the distribution stage after production. Emphasizing on the
coordination and integration among various members of a supply chain has become one
of the vital strategies for the modern manufacturers to gain competitive advantages. This
paper studies theNP-hard problemof the two-stage scheduling inwhich jobs are processed
by two parallel machines and delivered to a customer with the objective of minimizing the
makespan (P2→ D, k = 1|v = 1, c = z|Cmax). The proposed heuristic algorithm is shown
to have a worst-case ratio of 63/40, except for two particular cases.

© 2009 Published by Elsevier B.V.

1. Introduction

Traditional scheduling models only addressed the sequence of jobs to be processed at the production stage under some
criteria. Nevertheless, it is no longer suitable and the models should be extended with transportation considerations to
cope with the distribution stage after production. Lee and Chen [6] investigated machine scheduling models that impose
constraints on both transportation capacity and transportation times, and discussed the computational complexity of
various scheduling problems by either showing the NP-hardness or proposing polynomial algorithms for these problems.
Chang and Lee [1] further studied the problems in which each job requires different physical space for delivery, whereas
Li et al. [7] investigated a problem involving job deliveries to multiple customers at different locations. Lee and Chen [6],
and Soukhal et al. [12] analyzed the complexity issues of a class of flow shop problems. He et al. [3] studied a class of single
machine with two-stage scheduling problems proposed by Chang and Lee [1] and reduced the worst-case ratio from 5/3 to
53/35. Woeginger [13] studied parallel machine environment with equal job arrival times and proposed a heuristic method
with worst-case analysis. Other related researches can be found in [10,14,9,2].
This paper focuses mainly on a class of two parallel machines’ problem, in which jobs need to be delivered to a single

customer by a vehicle after their production stages. The problem was first proposed by Chang and Lee [1] and can be
described as follows: There is a set of n independent jobs, N = {J1, J2, . . . , Jn}, to be processed without preemption at a
manufacturing system consisting of two identical machines,M1 andM2. Each job Ji, i = 1, 2, . . . , n, must be first processed
in the manufacturing system by one of the two identical machines and has a processing time pi, and the finished jobs are
delivered in batches to the customer by a vehicle. Moreover, a job size sj, which represents the physical space Jj occupies
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Table 1
A list of notation.
Algorithm (procedure) H2 A B C D LPT Optimal schedule

Schedule σH2 σ̄ σ̃ σ̄ ′ σ σ L

The number of batches bH2 b̄ bH2 b̄ bH2 b∗

The makespan CH2 C̄ C̃ C̄ ′ C C∗

The time when machines finish processing the last job C(M) C(M) C̃(M) C(M)
′

C(M) C(M)L C(M)∗
The departure time of jobs in the first batch x x̄ x̄′ x u
The total processing time of jobs in the second batch y ȳ ȳ′ y v

The total processing time of jobs in the third batch w

when being loaded in the vehicle, is associatedwith each job. There is only one vehicle initially located at themanufacturing
system and availablewith a limited capacity c representing the total physical space that the vehicle provides for one delivery
at the manufacturing facility. Chang and Lee [1] also presented a polynomial time algorithm with a worst-case ratio of 2.
Zhong et al. [15] presented an improvement algorithm for the problem and reduced theworst-case ratio to 5/3. The purpose
of this paper is to propose a new algorithm which leads to a best possible solution with a worst-case ratio of 63/40, except
for the two particular cases below where CMH3/C∗ ≤ 8/5. Table 1 lists the notation defined by Zhong et al. [15] and used in
this paper.
(1) b∗ = 3 and b

′
= 4, with C̄ ′ = x̄′ + b̄′T or C̄ ′ = ȳ′ + (b̄′ − 1)T (if it exists).

(2) b∗ = 2 and b
′
= 3, with C̄ ′ = x̄′ + b̄′T or C̄ ′ = ȳ′ + (b̄′ − 1)T (if it exists).

2. Problem: P2 → D, k = 1|v = 1, c = z|Cmax

This section considers the two-stage scheduling problem with a single machine and one customer area, or P2→ D, k =
1|v = 1, c = z|Cmax. Let P be the total processing time of all the jobs and t be the one-way transportation time between the
machine and the customer. Hence, each delivery has the same transportation time of T = 2t .
This problem was first solved by Chang and Lee [1]. They proposed an algorithm H2 with a worst-case ratio of 2. Zhong

et al. [15] stated that there are two points preventing the worst-case ratio of H2 from getting better. The first point is that
H2 ignores the processing times of jobs when assigning jobs to batches and the second is that H2 does not take the idleness
of the other machine into account when assigning jobs in one batch to a machine as a whole. Therefore, they proposed an
algorithmMH2 to improve on these two points, and the algorithm includes procedures A and B that are executed depending
on the values of bH2 and CH2. The worst-case ratio ofMH2 is 5/3.
Let the makespan of σ̃ be C̃ and the time the machines finish processing the last job be C(M̃). On the other hand, let the

resulting schedule be σH2 with makespan CH2 and the time the machines finish processing the last job be C(M).
Next, consider one point which prevents the worst-case ratio ofMH2 from being better. AlgorithmMH2 assigns batches

to machines according to the shortest processing time (SPT) rule; hence, the loads over the two machines may not be well
balanced and lead to a larger makespan. The longest processing time (LPT) rule is a method developed for Pm‖Cmax problem
[8] and has the effect of balancing the load among various machines. Furthermore, since the P2‖Cmax problem is a special
case of the Pm‖Cmax problem, we can apply the LPT rule to the problem and then reverse the sequence batches assigned on
each machine such that the batches are sorted in the increasing order of their processing times, and the loads over the two
machines may be better balanced.

3. A new algorithmMH3

This section describes a heuristic algorithmMH3 for solving the problem under study.

AlgorithmMH3

Step 1: If bH2 = 3 or bH2 = 4, run procedure C; otherwise, run procedure D.
Step 2: Output CMH3, stop.

Procedure C:

Step 1. Construct an instance of the knapsack problem as follows: for each job Jj, j = 1, 2, . . . , n, construct an item with
profit pj and size sj, and let the knapsack capacity be z. Run any FPTAS for the knapsack problemwith ε = 1/5, and
denote by N1 the set of items put into the knapsack.

Step 2. Assign all jobs in N1 to the same batch and assign other jobs to batches by algorithm FF (First Fit). Let the total
number of the resulting batches be b̄′.

Step 3. Define Pk as the total processing time of the jobs in the kth batch, k = 1, 2, . . . , b̄′, and denote the kth batch as Bk.
Step 4. Re-index these batches so that P1 ≥ P2 ≥ · · · ≥ Pb̄′ . Jobs in each batch can be sequenced in any arbitrary order

and let S = {B1, B2, . . . , Bb̄′}.
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Step 5. Let S1 and S2, be two sets of batches, which are both initially empty. Let Ps1 and Ps2 be the periods of time for
processing all the batches in S1 and S2, respectively.

Step 6. Set i = 1 and k = 0.
Step 7. Set i = i+ k. If i > b

′
, go to step 10.

Step 8. Put batch Bi into the set with smaller total processing time between S1 and S2. Move Bi to be the first batch of the
set and eliminate it from S.

Step 9. Set k = k+ 1 and go to step 7.
Step 10. Denote the sequences in set S1 and S2 as σ1′ and σ2′, respectively.
Step 11. Assign batches one by one to machine 1 and machine 2 according to σ1′ and σ2′, respectively, except for batch B1.
Step 12. Assign the jobs in batch B1 one by one to machines 1 and 2 according to the LPT rule.
Step 13. Dispatch each completed but undelivered batch (all jobs in the same batch are assigned to the same machine,

except batch B1) whenever the vehicle becomes available. If multiple batches have been completed when the
vehicle becomes available, dispatch the batch with the earliest completed.

Step 14. Let the obtained makespan be CMH3 and the time machines finish processing the last job be C(M)
′

.

Remark 3.1 ([15]). The jobs corresponding to the items in N1 are assigned to the same batch by algorithm FF in Step 2 of
procedure A.

Remark 3.2 ([15]). For the knapsack problem, among others, Lawler [5] proposed an FPTAS with a time complexity of
O(n log(1/ε) + 1/ε4), where (1 − ε) is the worst-case ratio. Kellerer and Pferschy [4] also proposed an FPTAS with a time
complexity of O(nmin{log n, log(1/ε)} + (1/ε2)min{n, (1/ε) log(1/ε)}).

Procedure D:

Step 1: Assign jobs into batches using FFD (First Fit Decreasing) rule. Set the total number of the resulting batches to be b.
Step 2: Define Pk as the total processing time of the jobs in the kth batch, k = 1, 2, . . . , b, and denote the kth batch as Bk.
Step 3: Re-index these batches such that Pb ≤ Pb−1 ≤ · · · ≤ P1. Jobs in each batch can be sequenced in any arbitrary

order, and let S = {B1, B2, . . . , Bb}.
Step 4: Let S1 and S2, be the sets of batches, which are both initially empty. Let Ps1 and Ps2 be the periods of time for

processing all the batches in S1 and S2, respectively.
Step 5: Set i = 1 and k = 0.
Step 6: Let i = i+ k. If i > b, go to step 9.
Step 7: Put batch Bi into the set with smaller total processing time between S1 and S2. Move Bi to be the first batch of the

set and eliminate it from S.
Step 8: Set k = k+ 1 and go to step 6.
Step 9: Denote the sequences in set S1 and S2 as σ1 and σ2, respectively.
Step10: Assign batches one by one to machines 1 and 2 according to σ1, σ2, respectively, except for batch B1.
Step 11: Assign the jobs in batch B1 one by one to machines 1 and 2 according to the LPT rule.
Step 12: Dispatch each completed but undelivered batch (all jobs in the same batch are assigned to the same machine,

except batch B1) whenever the vehicle becomes available. If multiple batches have been completed when the
vehicle becomes available, dispatch the batch with the earliest completed.

Step 13: Let the resulting makespan be CMH3 and the time machines finish processing the last job be C(M).

Both procedures C and D schedule batches by LPT rule. Therefore, it follows that C(M)L ≥ C(M) and C(M)L ≥ C(M)
′

since the sequences generated are merely different in the composition of batches.
Next, three examples are presented to illustrate the procedure of the proposed heuristic algorithm.

Example 3.1. Consider the instance given in [15]. Let T = δ, z = 2, s1 = s2 = s3 = s4 = 1, p1 = p2 = δ and p3 = p4 = 1.
First run H2. We get bH2 = 2, B1 = {J1, J2}, B2 = {J3, J4}, P1 = 2δ and P2 = 2. The jobs are processed and delivered as

shown in Fig. 1.
Next, run MH2. From algorithm H2, we obtain C(M) = 2 and CH2 = C(M) + T = 2 + δ. Since CH2 = C(M) + T , run

procedure B and we have Bs = {J4} and C̃ = 1+ 3δ. The jobs are processed and delivered as shown in Fig. 2.
Then, we run algorithmMH3 and get bH2 = 2, B1 = {J1, J2}, B2 = {J3, J4}, P1 = 2δ, P2 = 2 and CMH3 = 1+ 3δ. The jobs

are processed and delivered as illustrated in Fig. 2. According to Zhong et al. [15], it follows that C∗ = 1+ 2δ.
Consequently, we have CMH3/C∗ = (1+ 3δ)/(1+ 2δ) < 63/40, while CMH2/C∗ < 63/40 and CMH2/C∗ ≤ 2.

Example 3.2. Consider the instance given in [15]. Let T = 2, z = 7, s1 = s2 = 3, s3 = s4 = s5 = s6 = 2, p1 = p3 =
1, p2 = p4 = p5 = δ and p6 = 2.
First run H2. We get bH2 = 3, B1 = {J1, J2}, B2 = {J3, J4, J5}, B3 = {J6}, P1 = 1 + δ, P2 = 1 + 2δ, P3 = 2 and

CH2 = C(M)+ T = 7+ δ. The jobs are processed and delivered as shown in Fig. 3.
Next, runMH2. Since bH2 = 3 and CH2 6= C(M) + T ,MH2 goes to step 4 and executes procedure A. According to Zhong

et al. [15], b = 2 and B1 = {J2, J4, J5}, B2 = {J1, J3, J6}, P1 = 3δ, P2 = 4 and CMH2 = min{CH2, C} = {7+ δ, 6} = 6. The jobs
are processed and delivered as depicted in Fig. 4.
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Fig. 1. The results of Example 3.1 scheduled by algorithm H2.

Fig. 2. The results of Example 3.1 scheduled by algorithmMH2 orMH3.

Fig. 3. The results of Example 3.2 scheduled by algorithm H2.

Fig. 4. The results of Example 3.2 scheduled by algorithmMH2.

Then, run algorithm MH3. Since bH2 = 3, MH3 goes to step 1 and executes procedure C . It follows that b
′
= 2, B1

′
=

{J1, J2}, B2
′
= {J3, J4}, P1

′
= 2δ, P2

′
= 2 and CMH3 = 4 + 3δ. The jobs are processed and delivered as illustrated in Fig. 5.

According to Zhong et al. [15], C∗ = 4+ 2δ.
Consequently, we have CMH3/C∗ = (4+ 3δ)/(4+ 2δ) ≈ 1, while CMH2/C∗ ≤ 3/2 and CH2/C∗ ≤ 7/4.

Example 3.3. Consider the instance given in [15]. Let T = 6, z = 7, s1 = s2 = s3 = s4 = 3, s5 = s6 = s7 = s8 = 2, s9 =
1, p1 = p4 = p8 = 6, p2 = p3 = δ, p5 = p6 = p7 = 2 and p9 = 2δ.
First runH2.Wehave bH2 = 4, B1 = {J8}, B2 = {J5, J6, J7}, B3 = {J3, J4}, B4 = {J1, J2, J9}, P1 = 6, P2 = 6, P3 = 6+δ, P4 =

6+ 3δ and CH2 = x̄+ kT = 6+ 4× 24 = 30. The sequences of jobs processed and delivered are shown in Fig. 6.
Next, runMH2. Since bH2 6= 3 and CH2 6= C(M)+ T ,MH2 goes to step 2 and output CH2. Namely, CMH2 = CH2.



C.-S. Su et al. / Theoretical Computer Science 410 (2009) 2581–2591 2585

Fig. 5. The results of Example 3.2 scheduled by algorithmMH3.

Fig. 6. The results of Example 3.3 scheduled by algorithm H2 orMH2.

Then, we run algorithm MH3. Since bH2 = 4, MH3 goes to step 1 and runs procedure C . It follows that b
′
= 4, B1

′
=

{J8, J1, J5}, B2
′
= {J4, J6, J7}, B3

′
= {J9, J2, J3}, P1

′
= 14, P2

′
= 10, P3

′
= 4δ and CMH3 = 22+ 4δ. The jobs are processed and

delivered as shown in Fig. 7.
According to Zhong et al. [15], we have C∗ = 18+ 2δ.
Consequently, it follows that CMH3/C∗ = (22+ 4δ)/(18+ 2δ) ≤ 63/40, while CMH2/C∗ ≤ 5/3 and CH2/C∗ ≤ 5/3.

Next, we will prove that except for certain cases, the worst-case performance of algorithmMH3 is 63/40.

Theorem 1. For MH3, we have C(M)/C(M)∗ ≤ 107/80, and C(M)
′

/C(M)∗ ≤ 107/80.

Proof. Consider the batches scheduled by LPT rule, and regard a batch as a job for simplicity. Hence, the problem can be
treated as a P2‖Cmax [8] and proved by discussing the following conditions:

(1) P1 ≤
∑bH2
i=2 Pi and the shortest batch is the last one to finish its processing.

By contradiction, assume that there exists one or more counterexamples where the ratios are strictly larger than
107/80. If more than one such counterexample exists, there must be a problem which has the smallest number of jobs,
say n jobs. Since C(M)∗ ≥ (

∑n
i=1 Pi)/2, we have

C(M)L ≤

n−1∑
i=1

Pi

2
+ Pn =

1
2
Pn +

n∑
i=1

Pi

2
≤
1
2
Pn + C(M)∗.

The following series of inequalities holds for the counterexample:

107
80

<
C(M)L

C(M)∗
≤

1
2Pn + C(M)

∗

C(M)∗
≤ 1+

Pn
2C(M)∗

27
80
<

Pn
2C(M)∗

H⇒
27
40
C(M)∗ < Pn H⇒

27
80
(P1 + P2 + · · · + Pn) < Pn.

According to Algorithm MH3, we have P1 ≥ P2 ≥ · · · ≥ Pn. Therefore, for the smallest counterexample, it implies that
the scheduling can result in at most two jobs, namely, P1 and Pn, i.e., P1 ≥ Pn > 27/80P and P1 < 53/80P .
Thus, we have C(M)/C(M)∗ ≤ C(M)L/C(M)∗ ≤ P1/((1/2P)) = (53/80)P/((1/2)P) < 107/80.

(2) P1 ≤
∑bH2
i=2 Pi and the shortest batch is not the last one to finish its processing.

Delete the shortest batches until a shortest batch is the last one to finish its processing. Consequently, C(M)L remains
the same while C(M)∗ may remain the same or decrease. From part (1), we have C(M)/C(M)∗ ≤ C(M)L/C(M)∗ ≤
P1/((1/2P)) = (53/80)P/((1/2)P) < 107/80.
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Fig. 7. The results of Example 3.3 scheduled by algorithmMH3.

(3) P1 >
∑bH2
i=2 Pi.

There are two cases to be considered and they are as follows:
Case 1. If batch 1 has only one job, then it is obvious that the schedule is optimal.
Case 2. If batch 1 has more than one job, then from parts (1) and step 11 of procedure D, we have C(M) ≤ (

∑n
i=2 Pi +∑n1

j=2 p1j)/2 + p11 where p11 = min{p12, p13, . . . , p1n1}. It follows that C(M)/C(M)
∗
≤ ((

∑n
i=2 Pi +

∑n1
j=2 p1j)/2 +

p11)/((
∑n
i=2 Pi +

∑n1
j=2 p1j)/2+ p11/2) ≤ 4/3 < 107/80.

Therefore, we obtain C(M)/C(M)∗ ≤ 107/80. In a similar way, we can obtain C(M)
′

/C(M)∗ ≤ 107/80. �

Lemma 3.1 ([15]). For an instance I of the bin-packing problem, let OPT(I), FF (I), FFD(I) be the number of used bins in an optimal
solution, the solutions yielded by FF and FFD, respectively. We have

(1) ([11]). FF(I)≤ (7/4)OPT (I).
(2) ([14]). FFD(I)≤ (11/9)OPT (I)+ 1.

Lemma 3.2. Denote d as the time period while there is only one machine processing jobs. Thus d = C(M)− (P − C(M)), and let
the batch completed last be Bt . For any batch k, if PBt ≤ Pk, then d ≤ Pk, k = 1, 2, . . ..

Proof. Consider the following two conditions:

(1) The shortest batch is the last one to finish its processing.
Recall that P1 ≥ P2 ≥ · · · ≥ Pn. Since the shortest batch is the last one to finish, it follows that d ≤ Pn ≤ Pk, k =

1, 2, . . ..
(2) The shortest batch is not the last one to finish its processing. From part (1), we have d ≤ PBt . Moreover, since PBt ≤ Pk,
hence, d ≤ Pk, k = 1, 2, . . .. �

Lemma 3.3. Let σ r1 and σ
r
2 denote the inverse sequences of σ1 and σ2 on machines 1 and 2, respectively. For any two batches h

and k processed on different machines, let µrh and µ
r
k denote the times machines start processing batch h and k under σ

r
1 and σ

r
2 ,

respectively. If ρk + d ≤ ρh, then Pk ≤ Ph.

Proof. By contradiction, assume that there exist one or more counterexamples where Pk is larger than Ph and ρk + d ≤ ρh,
as shown in Fig. 8. There are two cases to be considered and they are as follows:

(1) Batch Bk is processed on the machine which completes all its processing first. In this case, we haveµrk = C(M)− ρk− d

and µrh = C(M)− ρh. Since ρk + d ≤ ρh, we have µ
r
k ≥ µ

r
h.

(2) Batch Bk is not processed on the machine which completes all its processing first.
In this case, we have µrk = C(M)− ρk and µ

r
h = C(M)− ρh − d. Since ρk + d ≤ ρh, we have µ

r
k ≥ µ

r
h.

According to algorithm MH3, both σ r1 and σ
r
2 are scheduled by LPT; therefore, Pk should be less than or equal to Ph, and

batch h starts processing earlier than batch k. This contradiction completes the proof of the lemma. �

Lemma 3.4. If there exists a batch Bk such that δk = ρk and k ≥ 3 under algorithm MH3, then at least one of the equations
δk−i = ρk−i, δk−i−1 = ρk−i−1, or δk−i−2 = ρk−i−2 holds, for i = 1, 2, . . . , k− 2.

Proof. Note that ρk+1 ≤ ρk ≤ ρk−1. The lemma can be proved by considering the various conditions of batches Bk−1, Bk and
Bk+1 processed on the machines:

(1) Batches Bk−1, Bk and Bk+1 are all processed on the same machine, while another batch, say Bu, is processed on the other
machine.
Since δk = ρk, it follows that δk+1 > ρk+1, δk+2 > ρk+2, . . . , δb = ρb. Consequently, we have ρk − ρk−1 > T , Pk−1 >

T , and hence δk−1 = ρk−1.
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Fig. 8. (a) The schedule by algorithmMH3. (b) The schedule by algorithm LPT.

Fig. 9. Bk3 and Bk are not processed on the same machine.

(2) Both the batches Bk and Bk−1 are processed on the same machine, while Bk+1 is processed on the other one.
Since δk = ρk and Bk+1 is processed on the other machine, from Chang and Lee [1], it follows that Pk > 2T . Therefore,

we have δk−1 = ρk−1.

When batches Bk and Bk−1 are not processed on the same machine, it is necessary to consider the various conditions of
batches Bk−2 and Bk−3 being processed as follows:

(3) Batches Bk−1 and Bk−2 are processed on the same machine, while Bk and Bk+1 are processed on the other one.
If ρk−1 − ρk ≥ T , then δk−1 = ρk−1.
If ρk−1 − ρk < T , then from part (2), we know that Pk−1 > 2T and thus Pk−2 > 2T . Therefore, it follows that

δk−2 > ρk−2.
(4) Batches Bk+1, Bk and Bk−2 are processed on the same machine, while Bk−1 is processed on the other one.

If ρk−1 − ρk ≥ T , then δk−1 = ρk−1.
If ρk−2 − ρk ≥ 2T , then δk−2 = ρk−2.
If ρk−1 − ρk < T , or ρk−2 − ρk < 2T , then there two cases to be considered:
Case 1: Bk−3 and Bk are not processed on the same machine as shown in Fig. 9.
Since ρk+1 < ρk < ρk−1, then we have Pk−3 ≥ Pk−1 > 3T from part (2). Therefore, it follows that δk−3 = ρk−3.
Case 2: Bk−3 and Bk are processed on the same machine as shown in Fig. 10.
Since ρk = δk, we have Pk ≥ Pk+1 > T , Pk−1 ≥ 3T , and Pk ≥ d. Meanwhile, from Lemmas 3.2 and 3.3, since batches

Bk−1 and Bk−3 are processed on different machines and Pk−3 ≥ Pk−2 ≥ Pk, we can obtain ρk−1+d ≤ ρk−1+ Pk−3 ≤ ρk−3
and it follows that 3T < Pk−1 < Pk−3. Thus we have δk−3 = ρk−3.

(5) Bk and Bk−2 are processed on the same machine and Bk−1, Bk+1 are processed on the other one.
If ρk−1 − ρk ≥ T , then δk−1 = ρk−1.
If ρk−1 − ρk < T , then according to part (2), we know that Pk > 2T . Thus Pk−2 > 2T and it follows that δk−2 = ρk−2.
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Fig. 10. Bk3 and Bk are processed on the same machine.

(6) Bk+1, Bk−1 and Bk−2 are processed on the same machine, and Bk is processed on the other one.
If ρk−1 − ρk ≥ T , then δk−1 = ρk−1.
If ρk−1 − ρk < T , then from Lemmas 3.2 and 3.3, since batches Bk and Bk−2 are processed on different machines, we

have ρk + d ≤ ρk + Pk−2 ≤ ρk−2. It follows that Pk ≤ Pk−2. Meanwhile, from part (2), we also know that 2T < Pk, thus
we have δk−2 = ρk−2.

Therefore, we see that if δk = ρk, then δk−i = ρk−i, or δk−i−1 = ρk−i−1, or δk−i−2 = ρk−i−2 holds, for i = 1, 2, . . . , k− 2. �

Lemma 3.5. If bH2 ≥ 3, then C ≤ max{x+ bH2T , y+ (bH2 − 1)T , C(M)+ 2T }.

Proof. If there does not exists a batch Bk onM1 orM2 such that δk = ρk, k ≥ 3, from Chang et al. [1] and AlgorithmMH3, we
can derive that C = max{x+bH2T , y+ (bH2−1)T }. If there exists a batch Bk such that δk = ρk, k ≥ 3, then from Lemma 3.4,
we know that C ≤ C(M)+ 2T . �

Lemma 3.6 ([1]). C∗ ≥ max{C(M)∗ + T , u+ b∗T }.

Lemma 3.7. For bH2 6= 3 and 4, if C = x+ bH2T or C = y+ (bH2 − 1)T , then CMH3/C∗ ≤ 3/2.

Proof. Recall that bH2 ≤ (11/9)b∗L + 1 ≤ (11/9)b
∗
+ 1, and Zhong et al. [15] showed that:

(1)

x+ bH2T
C∗

<
2
bH2
+
11
9

bH2 − 2
bH2

bH2 − 1
or <

2
bH2
+
bH2 − 2

bH2

b∗
(1)

(2)

y+ bH2T
C∗

<
2

bH2 − 1
+
11
9

bH2 − 1− 2
bH2−1

bH2 − 1
or <

2
bH2 − 1

+
bH2 − 1− 2

bH2−1

b∗
(2)

(3) If bH2 = 1, 2, 5, or 6, then CH2/C∗ < 63/40.
Zhong et al. [15] rewrote Eqs. (1) and (2) as

f (x) =
2
x
+
11
9
x− 2

x

x− 1
(3)

g(x) =
2
x
+
11
9
x− 2

x

x
. (4)

From Eqs. (3) and (4), we can verify that f (9) < 63/40, f ′(x) < 0 for x ≥ 9 and g(8) < 63/40, g ′(x) < 0 for x ≥ 8.
Therefore, we only need to show that CH2/C∗ < 63/40 for bH2 = 7 or 8.
If bH2 = 7 and b∗ ≥ 6, then it follows from Eq. (1) that (x+ bH2T )/C∗ < 2/7+ (7− 2/7)/6 < 3/2, and from Eq. (2) that

(y+ (bH2 − 1)T )/C∗ < 2/6+ (6− 2/6)/6 < 3/2.
On the other hand, if bH2 = 8 and b∗ ≥ 7, it follows from Eq. (1) that (x + bH2T )/C∗ < 2/8 + (8 − 2/8)/7 < 3/2, and

from Eq. (2) that (y+ (bH2 − 1)T )/C∗ < 2/7+ (7− 2/7)/7 < 3/2.
Hence, we have (x+ bH2T )/C∗ < 8/5 and (y+ (bH2 − 1)T )/C∗ < 8/5 for bH2 6= 3, 4. �

Lemma 3.8. If b∗ = 2 and b′ = 3 (if it exists), then x̄′ ≤ (1/5)C(M)∗ + (4/5)u.

Proof. We have P̄3 ≥ (4/5)P∗ ≥ (4/5)v from [15]. We know that P ≤ 2u+ v, thus P̄3 ≥ (4/5)(P − 2u). Note that x̄′ ≤ P̄ ,
then it follows that

x̄′ ≤
P − P̄3
2
≤
P − 4

5 (P − 2u)
2

=
1
10
P +

4
5
u ≤

1
5
C(M)∗ +

4
5
u. �
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Lemma 3.9. If b∗ = 3 and b′ = 4 (if it exists), then x̄′ ≤ (2/15)C(M)∗ + (8/15)u+ (4/15)v.
Proof. It follows from [15] that P̄4 ≥ (4/5)P∗ ≥ (4/5)w. In addition, we have P ≤ 2u+v+w, thus P̄4 ≥ (4/5)(P−2u−v).
Note that x̄′ ≤ P̄ , hence

x̄′ ≤
P − P̄4
3
≤
P − 4

5 (P − 2u− v)
3

=
1
15
P +

8
15
u+

4
15
v ≤

2
15
C(M)∗ +

8
15
u+

4
15
v. �

Lemma 3.10. If b∗ = 2, b′ ≤ 3, C(M)
′

6= x̄′ + b̄′T and C(M)
′

6= ȳ′ + (b̄′ − 1)T (if it exists), then CMH3/C∗ ≤ 63/40.

Proof. From Theorem 1, we have C(M)
′

/C(M)∗ ≤ 107/80.
If b∗ = 2 and b

′
= 2, or b∗ = 2 together with b

′
= 3 and C

′
= C(M)

′

+ T , then we have

C
′

C∗
≤
C(M)

′

+ T
C(M)∗ + T

≤

107
80 C(M)

∗
+ T

C(M)∗ + T
≤
107
80
−

27
80T

C(M)∗ + T
<
63
40
.

If b∗ = 2, b
′
= 3 and C

′
= P − C(M)

′

+ 2T , then we have T < P − C(M)
′

≤ P/2, and the two cases that need to be
considered are as follows:

(1) C∗ = C(M)∗ + T ≥ u+ 2T

C
′

C∗
≤
P − C(M)

′

+ 2T
C(M)∗ + T

<

P
2 + 2T
P
2 + T

≤ 1+
T

P
2 + T

<
63
40
.

(2) C∗ = u+ 2T ≥ C(M)∗ + T ,

C
′

C∗
≤
P − C(M)

′

+ 2T
u+ 2T

<

P
2 + 2T
u+ 2T

≤
C(M)∗ + 2T
u+ 2T

≤
u+ 3T
u+ 2T

<
63
40
. �

Lemma 3.11. If b∗ = 2 and b′ ≤ 3 with C̄ ′ = x̄′ + b̄′T or C̄ ′ = ȳ′ + (b̄′ − 1)T (if it exists), then CH2/C∗ ≤ 8/5.

Proof. If b′ = 2 and b∗ = 2, then from Lemma 3.7, we obtain C ′/C∗ < 63/40.
If b
′
= 3, since (C̄ ′ = x̄′ + b̄′T or C̄ ′ = ȳ′ + (b̄′ − 1)T ), then from Lemma 3.8, we have x̄′ ≤ (1/5)C(M)∗ + (4/5)u.

If u+ 2T ≥ C(M)∗ + T , then u+ T ≥ C(M)∗ and x̄′ ≤ (1/5)C(M)∗ + (4/5)u ≤ (1/5)(u+ T )+ (4/5)u = u+ (1/5)T .
Hence,

C
′

C∗
≤
x̄′ + 3T
u+ 2T

<
u+ 1

5T + 3T
u+ 2T

= 1+
6
5T

u+ 2T
≤
8
5
.

If u + 2T < C(M)∗ + T , then u + T < C(M)∗ and x̄′ ≤ (1/5)C(M)∗ + (4/5)u < (1/5)C(M)∗ + (4/5)(C(M)∗ − T ) =
C(M)∗ − (4/5)T . Hence,

C
′

C∗
≤

x̄+ 3T
C(M)∗ + T

<
C(M) ∗ − 45T + 3T
C(M)∗ + T

= 1+
6
5T

C(M)∗ + T
≤
8
5
. �

Lemma 3.12. If bH2 ≥ 4, C 6= x+ bH2T and C 6= y+ (bH2 − 1)T , then CMH3/C∗ ≤ 63/40.

Proof. From Theorem 1, we have C(M)/C(M)∗ ≤ 107/80. Recall that FFD(I) ≤ (11/9)OPT (I) + 1 [14], so it follows that
b∗ ≥ 3.
If u+ b∗T ≤ C(M)∗ + T and b∗ ≥ 3, then C(M)∗ ≥ (b∗ − 1)T , so

C
C∗
≤
C(M)+ 2T
C(M)∗ + T

≤

107
80 C(M)

∗
+ 2T

C(M)∗ + T
≤
107
80
+

53
80T

C(M)∗ + T
≤
107
80
+

53
80T
2T + T

<
63
40
.

If u+ b∗T ≥ C(M)∗ + T and b∗ ≥ 3, then C(M)∗ ≤ u+ (b∗ − 1)T , so

C
C∗
≤
C(M)+ 2T
u+ b∗T

≤

107
80 C(M)

∗
+ 2T

u+ b∗T
≤
107(u+ b∗T )+ 53T
80(u+ b∗T )

≤
107
80
+

53T
80(u+ b∗T )

<
63
40
. �

Lemma 3.13. According to steps 1 and 2 of procedure C, If b∗ = 3, then b̄′ ≤ 4.
Proof. Recall that FF(I) ≤ (7/4)OPT (I), thus if b∗ = 3, then b̄′ ≤ 5. Therefore, we only need to show that if b∗ = 3, then
b̄′ 6= 5.
For simplicity, assume that the bin (batch) capacity, and the size of each job are scaled such that the capacity is 1, and

the size of each job is between 0 and 1.
By contradiction, assume that there exists one or more counterexamples where b̄′ = 5, then we consider the various

cases on the size of the first job assigned to batch 5, si, as follows:
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(1) si ≥ 1/2. According to FF, we can conclude that each of the batches B2, B3 and B4 must contain one job whose size is
greater than 1/2. Thus, we have b∗ ≥ 4.

(2) 1/2 > si ≥ 1/3. It follows that batches B1, B2, B3 and B4 are all at least (1− si) full. On the other hand, according to step
2 of procedure C , we know that the sizes of all jobs which have been assigned to batches are greater than or equal to si.
Hence, it follows that b∗ ≥ 4.

(3) 1/3 > si > 0. It implies that
∑bH2
i=1 si > 3, thus b

∗
≥ 4.

This contradiction completes the proof of the lemma. �

Lemma 3.14. If b∗ = 3 and b′ ≤ 4, with C̄ ′ = x̄′ + b̄′T or C̄ ′ = ȳ′ + (b̄′ − 1)T (if it exists), then CMH3/C∗ ≤ 8/5.

Proof. If b∗ = 3 and b′ = 4, with (C̄ ′ = x̄′+ b̄′T or C̄ ′ = ȳ′+ (b̄′−1)T ), then from Lemma 3.9, we have x̄′ ≤ (2/15)C(M)∗+
(8/15)u+(4/15)v. Furthermore, we have C∗ = max{C(M)∗+T , u+3T } from Lemma 3.6. Therefore, if u+3T ≥ C(M)∗+T ,
then x̄′ ≤ (2/15)C(M)∗ + (8/15)u + (4/15)v ≤ (2/15)(u + 2T ) + (8/15)u + (4/15)v = (2/3)u + (4/15)T + (4/15)v.
Hence,

C
′

C∗
≤
x̄′ + 4T
u+ 3T

<

2
3u+

64
15T +

4
15v

u+ 3T
=
2
3
+

34
15T +

4
15v

u+ 3T
.

Denote a as the time period of only one machine which is processing the first batch u, then, a = |d1u − d
2
u|, where d

i
u denotes

completed time of the first batch u on machine i. Therefore, we have a ≤ u. Since u + 3T ≥ C(M)∗ + T , ρ∗2 < δ∗2 , thus
u+ (v − a)/2 ≤ ρ∗2 < δ∗2 = u+ T , and consequently, v < 2T + a. Hence, it follows that

C
′

C∗
≤
2
3
+

34
15T +

4
15v

u+ 3T
≤
2
3
+

34
15T +

8T+4a
15

u+ 3T
≤
14
15
+

30T
15u+ 45T

≤
8
5
.

If u+ 3T < C(M)∗ + T , then 2T < C(M)∗ ≤ C(M)
′

and

C
′

C∗
≤

x̄′ + 4T
C(M)∗ + T

≤

1
2C(M)

′

+ 4T
27
20C(M)

′

+ T
=
10
27
+

1960T

729C(M)
′

+ 540T
<
63
40
.

In a similar way, if b∗ = 3 and b
′
= 3, then we have C

′
/C∗ ≤ 63/40. �

Lemma 3.15. If b∗ = 3, b′ ≤ 4, C 6= x+ bH2T and C 6= y+ (bH2 − 1)T (if it exists), then CMH3/C∗ ≤ 63/40.

Proof. It is similar to Lemma 3.12 that if (b∗ = 3 and b′ = 3) or (b∗ = 3 and b′ = 4), then CMH3/C∗ ≤ 63/40. �

Theorem 2. CMH3/C∗ ≤ 63/40, except for the two particular cases below where CMH3/C∗ ≤ 8/5.
(1) b∗ = 3 and b

′
= 4, with C̄ ′ = x̄′ + b̄′T or C̄ ′ = ȳ′ + (b̄′ − 1)T (if it exists).

(2) b∗ = 2 and b
′
= 3, with C̄ ′ = x̄′ + b̄′T or C̄ ′ = ȳ′ + (b̄′ − 1)T (if it exists).

Proof. This is a direct conclusion from Lemmas 3.7, 3.10–3.12, 3.14 and 3.15. �

4. Conclusions and suggestions for future research

This paper studies a two-stage scheduling problem with two parallel machines and one customer to minimize the
makespan of jobs (P2 → D, k = 1|v = 1, c = z|Cmax). Since the problem is NP-hard, several heuristic methods have
been developed and the best worst-case ratio was 5/3. This paper presents a new algorithm based on the LPT rule and shows
that the proposed method can achieve a worst-case ratio close to 63/40, except for the two particular cases below where
the associated ratio is 8/5:
(1) b∗ = 3 and b

′
= 4, with C̄ ′ = x̄′ + b̄′T or C̄ ′ = ȳ′ + (b̄′ − 1)T (if it exists).

(2) b∗ = 2 and b
′
= 3, with C̄ ′ = x̄′ + b̄′T or C̄ ′ = ȳ′ + (b̄′ − 1)T (if it exists).

Many topics remain for future exploration. First of all, it is worthwhile investigating the complexity of the more general
problem P2 → D, k = 1|v = 1, c = z|ΣCj. Secondly, for the intractable P2 → D, k = 1|v = k, c = z|ΣCj problem, it
is justified through developing possibly efficient heuristic algorithms for obtaining approximate solutions. Thirdly, more
realistic scheduling models that impose constraints on limited buffer capacities between manufacturing machines, or
models involvingmultiple customer areaswith vehicle routing decisions need to be studied. Furthermore, it is interesting to
investigate the problems under other performance measures, such as due date related criteria, or under more complicated
manufacturing configurations, such as job shop or open shop.
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