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The NP-Completeness Column
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Abstract. This is the 24th edition of a column that covers new developments in the theory of
NP-completeness. The presentation is modeled on that which M. R. Garey and I used in our book
“Computers and Intractability: A Guide to the Theory of NP-Completeness,” W. H. Freeman &
Co., New York, 1979, hereinafter referred to as “[G&J].” Previous columns, the first 23 of which
appeared in J. Algorithms, will be referred to by a combination of their sequence number and year
of appearance, e.g. “[Col 1, 1981].” This edition of the column describes the history and purpose
of the column and the status of the open problems from [G&J] and previous columns.

Categories and Subject Descriptors: F.1.3 [Computation by Abstract Devices]: Complexity
Classes—reducibility and completeness; relations among complexity classes; F.2.0 [Analysis of
Algorithms and Problem Complexity]: General

General Terms: Algorithms, Theory

Additional Key Words and Phrases: NP-completeness, open problems, primality testing, perfect
graphs, coding theory, lattice bases

1. A BELATED REVIVAL

With this article, I resume a long-dormant column on NP-completeness whose first
23 editions appeared in J. Algorithms from 1981 through 1992. When the column
first appeared, just two and a half years after the publication of [G&J], its main
purpose was to provide timely additions and updates to the list of NP-complete
and open problems at the end of that book. As the column evolved, however,
it tended to devote more of its effort to providing brief reports and tutorials on
new theoretical developments related to NP-completeness, covering such topics as
Levin’s concept of “random NP” [Col 11, 1984], the complexity of “uniqueness”
[Col 15, 1985], zero-knowledge proofs [Col 21, 1988], and the PCP theorem [Col 23,
1992]. The revived column will contain material of both types, and in addition will
provide pointers to other relevant sources of information as they appear, including
books, tutorial articles, and websites.
The revival of the column was inspired in part by the creation of the new ACM
Transactions on Algorithms as a successor to J. Algorithms. In addition, I hope
that the research I do in preparing the column will help me make progress on a
planned 2nd edition of [G&J]. Much has happened in the 13 years since the last
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Table I. The current status of the open problems from [G&J] and previous columns.

Problem Name Source Status Covered in

GRAPH ISOMORPHISM [G&J] Open –

SUBGRAPH HOMEOMORPHISM [G&J] P [Col 19, 1987]
(FOR A FIXED GRAPH H)

GRAPH GENUS [G&J] NPC [Col 21, 1988]

CHORDAL GRAPH COMPLETION [G&J] NPC [Col 1, 1981]

CHROMATIC INDEX [G&J] NPC [Col 1, 1981]

PARTIAL ORDER DIMENSION [G&J] NPC [Col 1, 1981]

PRECEDENCE CONSTRAINED [G&J] Open –
3-PROCESSOR SCHEDULING

LINEAR PROGRAMMING [G&J] P [Col 1, 1981]

TOTAL UNIMODULARITY [G&J] P [Col 1, 1981]

SPANNING TREE PARITY PROBLEM [G&J] P [Col 1, 1981]

COMPOSITE NUMBER [G&J] P This Column

MINIMUM LENGTH TRIANGULATION [G&J] Open –

IMPERFECT GRAPH [Col 1, 1981] P This Column

GRAPH THICKNESS [Col 2, 1982] NPC [Col 5, 1982]

EVEN COVER [Col 3, 1982] NPC This Column
(MINIMUM WEIGHT CODEWORD)

“UNRESTRICTED” TWO-LAYER [Col 5, 1982] Open –

CHANNEL ROUTING

GRACEFUL GRAPH [Col 6, 1983] Open –

ANDREEV’S PROBLEM [Col 17, 1986] Open –

SHORTEST VECTOR IN A LATTICE [Col 18, 1986] “NPC” This Column

column appeared (and the 26 years since the first edition of [G&J]). As with the
very first column [Col 1, 1981], this edition of the column surveys developments
with respect to the open problem list in [G&J], this time augmenting the coverage
to include the open problems highlighted in previous columns. Table I summarizes
the current status of all these problems. Eight of the twelve open problems from
[G&J] and one of the seven open problems from the columns had been resolved by
1992, and their resolutions were covered in previous columns. Since then one of the
four open problems from [G&J] and two of the open problems from the columns
have been resolved, and one of the column problems has been partially resolved
(in a sense to be explained later). Section 2 will cover the resolved and partially
resolved problems, while Section 3 will discuss the problems that remain open. The
next column will likely cover hardness-of-approximation results and the complexity
conjectures on which they rely. Suggestions of topics and results to be covered by
future columns are welcome.

While readers await the next column, they might wish to investigate some of the
many other sources that now provide information about developments in the field.
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SIGACT News has been running a Computational Complexity column moderated
by Lane Hemaspaandra since 1993, available in .pdf format from the ACM Digi-
tal Library (portal.acm.org/dl.cfm). Although the column covers a wide range
of topics, many are directly relevant to NP-completeness. In particular, the 46th
edition, which appears in the March 2005 issue and was written by guest columnist
Scott Aaronson, is a delightful survey of the wide variety of proposals for using
physical processes to obtain exponential speedups over classical Turing machines
and thus solve NP-complete problems efficiently. It covers a wide variety of sug-
gestions, from soap bubbles to various exploitations of quantum mechanics, and
explains why each is unlikely to work.

A second relevant column has been appearing regularly in the Bulletin of the
EATCS since 1987. Originally entitled “The Structural Complexity Column” and
moderated by Juris Hartmanis, it morphed in 1997 into “The Complexity Column,”
moderated first by Eric Allender, then by Lance Fortnow, and currently by Jacobo
Torán. An index and downloadable .pdf versions of recent editions are available
from http://theorie.informatik.uni-ulm.de/Personen/toran/beatcs. The
October 2004 edition presents an interesting survey by Jörg Flum and Martin Grohe
on the relatively new concept of “fixed parameter tractability” and its associated
complexity classes (see also Downey and Fellows [1999]).

There are also several regularly updated websites/blogs that may be of interest.
Lance Fortnow has been writing a “Computational Complexity” weblog since Au-
gust 2002, with daily updates. This is where many of us first hear about major
results, and where we could even find technical reviews of the early episodes of the
CBS television series Numb3rs, in the second episode of which the question of P ver-
sus NP played a central role. A webpage maintained by Scott Aaronson, “The Com-
plexity Zoo” (http://www.complexityzoo.com) provides notation and definitions
for hundreds of complexity classes, both common and obscure, along with some of
the facts known about them. Pierluigi Crescenzi and Viggo Kann maintain an “NP
Optimization Problem” website (http://ww.nada.kth.se/∼viggo/problemlist
/compendium.html), which collects hardness-of-approximation results, updated at
least through March 2000. Gerhard Woeginger maintains “The P-versus-NP”
page (http://www.win.tue.nl/∼gwoegi/P-versus-NP.htm) with many interest-
ing links plus a list of supposed proofs that P = NP (and P 6= NP), all but one of
which appeared since the brief survey of such claims in [Col 20, 1987]. Indeed, 17 of
the 19 claims in the list have occurred since the year 2000, when the Clay Institute
announced prizes of $1,000,000 for resolving the P versus NP question and six other
famous problems in mathematics (see http://www.claymath.org/millennium).

Finally, readers who have not seen the earlier editions of this column (or have
forgotten them) can now obtain them online. I recently compiled .pdf versions
of all 23 columns from the original troff source files, and have posted them at
http//www.research.att.com/∼dsj/columns. These are inexact replicas, with
slightly different pagination and some subpar equation formatting due to changes
in the underlying typesetting software. In addition, the figures in Columns 5 and
16 had to be recreated because the software that originally generated them was no
longer functional. (Oh, the joys of software evolution!) Definitive electronic versions
of the columns can be found at Science Direct (http://www.sciencedirect.com),
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where the J. Algorithms webpage makes scanned .pdf copies of all the columns
available for a fee.

2. CLOSED AND ALMOST CLOSED PROBLEMS

In this section, I discuss the four open problems that have been resolved/partially
resolved since the last column appeared. Two turned out to be polynomial-time
solvable, and I’ll start with these. As we shall see, although the results represent
major theoretical breakthroughs, the running times for the discovered algorithms
represent yet another strong challenge to the notion that “polynomial-time solv-
able” is a synonym for “efficiently solvable in practice.”

COMPOSITE NUMBER [G&J]

instance: Positive integer N .

question: Are there positive integers p, q > 1 such that N = p · q?
Comment: The search for an efficient algorithm for this problem goes back at
least to 1801, when Gauss discussed it in his Disquisitiones Arithmeticae. When the
NP-Completeness Column went on hiatus in 1992, it was known that the problem
was unlikely to be NP-complete. The complementary problem PRIMES (is N a
prime?) was known also to be in NP [Pratt 1975], and no problem in NP ∩ co-NP
can be NP-complete unless the polynomial hierarchy PH collapses to NP. Also,
there was an algorithm of Adleman et al. [1983] that tests for primality in time
nO(log logn), where n = dlogNe is the length of the binary representation of N (the
input size). Such a running time would apply to all other NP-complete problems
if primality testing were NP-complete. (Given that COMPOSITE NUMBER is in
P if and only if PRIMES is in P, I shall for simplicity refer to the problem under
consideration as “primality testing” in what follows.)
Still more was known about primality testing in 1992. In particular, it had re-
cently been shown to be in ZPP, the set of all problems solvable in polynomial
time by Las Vegas algorithms: randomized algorithms that for each instance either
report the correct answer or say “I don’t know,” the latter occurring with proba-
bility less than 1/2. This followed from a result of Adleman and Huang [1992], who
adapted the elliptic curve approach of Goldwasser and Kilian [1986] to show that
primes could be recognized by a polynomial-time Monte Carlo algorithm: a ran-
domized algorithm that says “no” if the input is composite and says “yes” at least
half the time when the input is prime. The Las Vegas algorithm was obtained by
running this algorithm in parallel with one of the previously-discovered polynomial-
time Monte Carlo algorithms for recognizing composite numbers [Rabin 1976; 1980;
Solovay and Strassen 1978]. Unfortunately, although the Monte Carlo algorithms
for composite numbers run in time O(n2 logn log logn), the running time for the
Adleman-Huang algorithm is O(n30) or worse (M.-D. Huang, personal communi-
cation, 2005). This means that the Las Vegas algorithm was far from practical,
although its mere existence led many to conjecture that primality testing is in P.
Ten years later, in a preprint that was released on the Internet on August 6, 2002,
and covered in The New York Times just two days later, Manindra Agrawal, Neeraj
Kayal, and Nitin Saxena (AKS) verified this conjecture. The preprint [Agrawal
et al. 2002] showed that primality testing is indeed in P, essentially by proving
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that if a number is composite, one can find a certificate of this fact by examining
only a polynomial number of candidates. Moreover, the running time of their
algorithm was much faster than that of the randomized ZPP algorithm of Adleman
and Huang [1992]. It was “only” Õ(n12), where “Õ(f(n))” is a shorthand for
“O(f(n) logk(f(n))) for some constant k.” For a high-level introduction to their
algorithm and the primality problem in general, see Aaronson [2003].

There was one drawback to the initial AKS result, however. The algorithm they
described worked for all sufficiently large N , but they couldn’t say precisely how
large large was. Thus for some B the general approach that uses the algorithm
of Adleman et al. [1983] for N < B and the algorithm of Agrawal et al. [2002] for
N ≥ B would correctly test for primality and run in time Õ(n12), but they couldn’t
say what value of B would suffice. Their proof relied on a number-theoretic result
of Fouvry [1980], whose proof was in a sense nonconstructive. In particular, the
computation of B appears to depend on the Extended Riemann Hypothesis (ERH).
If the ERH is true (as most number theorists believe), then a value for B can
effectively be computed (although if the ERH is true, there are better primality
testing algorithms, such as the algorithm of Miller [1976], which runs in time Õ(n4)
if implemented with the same fast subroutines as AKS (C. Pomerance, personal
communication, 2005)). On the other hand, if the ERH is false, the value of B
seems to depend on the size of the smallest counterexample to the ERH, which
can’t be known unless the ERH has actually been disproved.

Fortunately, a way around this nonconstructivity was found by the time AKS
wrote the journal version of their paper [Agrawal et al. 2004]. In this version, the
authors constructively design an Õ(n10.5) algorithm using a suggestion from Hen-
drik Lenstra and reduce the time for the nonconstructive Fouvry-based algorithm
to Õ(n7.5). I don’t have the space to go into the technical details, but the Õ(n10.5)
now relies only on elementary number theory and is easy to follow. For alternative
coverages of the details of the algorithms with a bit more background, see Granville
[2004] or the forthcoming 2nd Edition of Crandall and Pomerance [2001].

The progress did not stop here, however. Two further developments are also cov-
ered in the last two references. First, Lenstra and Pomerance [2005] produced an
Õ(n6) constructive primality tester, which appears to be within polylog factors of
the best possible for the type of approach introduced by AKS. Second, building on
work of Berrizbeitia [2002], Bernstein [2004] and Mihăilescu and Avanzi [2003] inde-
pendently developed randomized Las Vegas algorithms that run in O(n4+o(1)) time.
The time is a bit worse than Õ(n4), possibly something like O(n4(log n)log log logn)
for the Bernstein algorithm (C. Pomerance, personal communication, 2005), but
represents a major improvement over the Adleman-Huang approach mentioned at
the beginning of this discussion, and might even be practical [Granville 2004]. An
excellent website covering questions related to primality, including the state of
the art for practical primality testing, is http://primes.utm.edu. Currently the
best general-purpose algorithms are not AKS-based or known to obey polynomial
worst-case time bounds, but instead build upon the older elliptic curve approach
of Goldwasser and Kilian [1986].

Note, however, that even if practical, these primality testing algorithms do not
address what is currently the most important problem about composite numbers:
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how to factor them. When one of the above algorithms asserts that a number is
composite rather than prime, it produces a certificate of compositeness, but not the
actual factors. This is fortunate, since today much of electronic commerce uses the
RSA encryption scheme [Rivest et al. 1978], and the security of that scheme depends
on the assumption that factoring is hard. At present, it does appear to be. The
running time bound for the current best general algorithm for factoring integers is
still exponential, although the exponential is better than many we see. By a widely-

believed heuristic argument the time bound is O(2cn
1/3(logn)2/3) [Pomerance 1996],

where c ∼ 1.902 [Coppersmith 1993].
The above statement applies only to algorithms for classical computers. Shor
[1997] showed that a quantum computer, if it could be built, would be able to
factor integers in polynomial expected time. This at least suggests that factoring is
not NP-hard, since to date no one has seen how to use quantum computers to solve
NP-hard problems. Another reason why factoring is not likely to be NP-hard is
that it can be solved in polynomial time with an oracle to a problem in NP ∩ co-NP,
in particular the problem, given N and m, of whether N has a nontrivial factor
smaller than m. Here the unique prime factorization of N provides a polynomial-
time checkable certificate for both yes and no answers. The complexity of factoring
thus remains a major open problem and a suitable replacement for COMPOSITE
NUMBER in any future list.

IMPERFECT GRAPH [Col 1, 1981]

instance: Graph G = (V,E).

question: Is G not a perfect graph, that is, is there a subset V ′ ⊆ V such that
the subgraph of G induced by V ′ has a chromatic number which is larger than its
maximum clique size?

Comment: Perfect graphs are of wide interest in graph theory and combina-
torial optimization. Entire books have been written about them (e.g., Golumbic
[1980]), and many NP-hard problems can be solved in polynomial time when re-
stricted to them. For example, the weighted versions of CHROMATIC NUMBER
and CLIQUE are solvable in polynomial time for perfect graphs using the ellipsoid
method [Grötschel et al. 1981a]. The algorithms for these problems are applicable
to all graphs and either report that the graph is not perfect or return the correct
answer (in which case the graph may or may not be perfect). Nevertheless, it would
be useful to tell in advance whether a graph is perfect and hence such algorithms
are guaranteed to work.
That the problem of recognizing graphs that are not perfect is in NP was first
proved by Grötschel et al. [1981b]. A simpler proof is now possible, since member-
ship in NP follows immediately from the famous “strong perfect graph conjecture,”
which recently became a theorem thanks to Maria Chudnowsky, Neil Robertson,
Paul Seymour, and Robin Thomas [Chudnovsky et al. 2005c]. This theorem says
that a graph is perfect if and only if neither it nor its complement contains an “odd
hole,” that is, an induced subgraph that is an odd cycle of length 5 or more.
Hsu [1987] showed that perfect planar graphs could be recognized in polynomial
time. We now know that the general problem is also in P. The proof exploits the
strong perfect graph theorem, which reduces the problem to that of testing for
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the existence of an odd hole. It also requires major new ideas and a somewhat
different set of authors: Chudnovsky, Gérard Cornuéjols, Xinming Liu, Seymour,
and Kristina Vušković [Chudnovsky et al. 2005a].
This result is a major breakthrough, but the algorithm itself has drawbacks.
First, it runs in time O(|V |9). Second, it isn’t guaranteed to find an odd hole in
G when one exists. When odd holes exist in both G and its complement, there is
no guarantee as to which type of hole the algorithm will find. Thus the problem of
determining whether a given graph G contains an odd hole remains open.
In contrast, the problem of telling whether G contains an even hole can be solved
in polynomial time. This was first shown by Conforti et al. [2002], whose “cleaning”
technique was exploited in the perfect graph recognition algorithm of Chudnovsky
et al. [2005a]. The running time for the original even hole detection algorithm (not
quantified by Conforti et al. [2002]) was estimated to be O(|V |40) by Chudnovsky
et al. [2005b], who found a somewhat simpler algorithm and reduced the time bound
to O(|V |31). As to further improvements, Chudnovsky et al. [2005b] sketch ideas
that get the time down to O(|V |15), but that is the best known so far. In addition,
the complexity of the problem of finding the smallest even hole when one exists
remains open, and telling whether an even hole containing a specified vertex exists
is NP-complete, as is the analogous problem for odd holes [Bienstock 1991]. It is
thus perhaps fortunate that there currently appear to be no practical applications
for finding even (or odd) holes. The next resolved problem also has to do with
parity issues and does have practical import.

EVEN COVER/MINIMUM WEIGHT CODEWORD [Col 3, 1982]

instance: Collection C of subsets of a given finite set X , positive integer K.

question: Is there a nonempty subcollection C ′ ⊂ C with |C ′| ≤ K, such that
each element of X is in an even number (possibly zero) of sets from C ′?

Comment: This problem is solvable in polynomial time if no c ∈ C has size
greater than 2 [JáJá and Venkatesan 1981] or if K ≥ |C|, in which case it reduces
to solving a system of linear equations over GF(2). It is a combinatorial restatement
of the classic coding theory problem that asks whether the minimum weight of a
non-zero codeword in a binary linear code is K or less. Such a code is defined
by a binary m × n “parity check” matrix H . The codewords are all those binary
vectors x such that Hxt = 0 (the all-zero vector), and the weight of a codeword is
its “Hamming weight,” the number of nonzeros that it contains. (The rows of H
correspond to the elements in X and the columns correspond to the sets in C.)
The minimum weight codeword problem is closely related to the nearest codeword
problem, called DECODING OF LINEAR CODES in [G&J] and proved NP-complete
by Berlekamp et al. [1978]. In this latter problem, the instance is augmented by an
m-bit binary vector s, and we ask if there is a binary vector x with Hamming weight
K or less such that Hxt = s. If we want to obtain the maximum likelihood decoding
of a received codeword y, we must solve the minimization version of this problem
for s = Hyt. (In practice, we often settle for the easier task of bounded-error
decoding.) Guruswami and Vardy [2005] recently showed that the arbitrary-finite-
field version of the maximum likelihood decoding problem remains NP-complete
even when restricted to the important special case of Reed-Solomon codes. Such
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codes have many real-world applications, including the encoding scheme used on
compact discs. The NP-completeness proof unfortunately requires that the field
size q be exponential in n, whereas in applications we typically have q = n+ 1.

Returning to the original domain of binary codes, Berlekamp et al. [1978] also
showed that it is NP-complete to tell if there is a codeword with Hamming weight
exactly w, a much closer variant on the minimum weight codeword problem. The
original problem, however, remained open until 1997, when Alexander Vardy proved
that it too is NP-complete [Vardy 1997]. The proof is decidedly nontrivial. Starting
from the DECODING OF LINEAR CODES problem, Vardy first presents a transfor-
mation to FINITE-FIELD SUBSET SUM: Given an integer m > 0, distinct elements
α1, α2, . . . , αn, β ∈ GF(2m), and a positive integer K, is there a subset of K or
fewer elements of {αi : 1 ≤ i ≤ n} which sums to β in GF(2m)? This problem is
then transformed to a version of MINIMUM WEIGHT CODEWORD for codes over
GF(2m), and this is reduced to the original problem by a complicated argument.
See [Vardy 1997] for the full details and additional background on the problem.

There have also been a variety of results about the hardness of approximating
the minimum weight codeword. Dumer et al. [2003] proved that the minimum
weight codeword is hard to approximate within any constant factor, assuming NP�
RP, a slightly stronger hypothesis than NP

�
P, but one that is still widely

believed. They proved still stronger non-approximability bounds under the stronger
but still plausible hypothesis that NP

�
RQP, where RQP stands for “random quasi-

polynomial time,” the set of all languages recognizable by Monte Carlo algorithms in

time O(2log
k n) for some k. Under this assumption, the minimum weight codeword

is hard to approximate to within 2log
1−ε n for any ε > 0. Both results hold for linear

codes over any finite field GF (q), q ≥ 2, and for randomized algorithms that are
only guaranteed to meet the bound with probability exceeding 1/2.

Somewhat stronger results hold for the nearest codeword problem, where the
above inapproximability bounds hold under the weaker assumptions that NP

�

P and NP
�
QP, respectively [Arora et al. 1997]. We shouldn’t expect weaker

results for this problem than for MINIMUM WEIGHT CODEWORD, since there is
an approximation-preserving polynomial-time Turing reduction from that problem
to this one [Goldreich et al. 1999]. The current best attainable polynomial-time
guarantees for both problems are εn for any fixed ε and εn/ logn if randomization
is allowed [Berman and Karpinski 2002].

The above results imply only that no universal polynomial-time algorithms can
work for all codes. They thus leave open the possibility that efficient decoding
algorithms might still exist for each individual code. One way of interpreting such
a claim would be to say that there is a fixed polynomial p such that each code
H has a Boolean decoding circuit CH with size bounded by p(n) where n is the
codeword length. Note that we do not say anything about how easy it might be
to construct CH given H , just that the circuit exists. Hence this can be called
“decoding with (unlimited) preprocessing.” Unfortunately, it does not appear to
be a likely possibility. As shown by Bruck and Naor [1990], the existence of such
a set of size-bounded circuits for optimal decoding would imply that PH collapses
to Σp2. The same consequence follows even if all we want the circuits to do is
approximate the distance to the nearest codeword to within a factor less than 5/3
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[Feige and Micciancio 2004]. This holds for linear codes over arbitrary finite fields;
the inapproximability bound increases to 3 for binary codes [Regev 2004a].

The next problem is a close cousin to MINIMUM WEIGHT CODEWORD.

SHORTEST VECTOR IN A LATTICE [Col 18, 1986]

instance: Collection of vectors v1, . . . , vn, each a member ofQ
n, integer B > 0.

question: Is there a nonzero vector a = (a1, . . . , an) ∈ Zn such that if x =
∑n
i=1 aivi, then the Euclidean length ||x|| =

(
∑n
i=1 x

2
i

)1/2
is B or less?

Comment: In what follows, we shall use the standard abbreviation “SVP” for
this problem. The “lattice” to which the problem name refers is the set of all
integer combinations of the vectors vi. The approximation algorithm story for this
problem, although similar to that for MINIMUM WEIGHT CODEWORD, differs
in significant ways. For the earlier problem, even the most trivial approximation
algorithm will provide a factor-of-n guarantee, and although that seems bad, here
things can be much worse. Fortunately, even what seem like horrible approximation
algorithms have proved useful. The now-classical LLL basis reduction algorithm
of Lenstra et al. [1982] could only guarantee a factor of 2(n−1)/2 and yet it and
its variants have been key ingredients in polynomial-time algorithms for factoring
polynomials [Kannan et al. 1988; Schönhage 1984], breaking of certain public-key
cryptosystems [Brickell 1985], solving integer programs in fixed dimensions [Lenstra
1983] and solving the “simultaneous Diophantine approximation” problem [Lagarias
1985].

As of 1992, however, we didn’t even know if one needed to settle for approximation
algorithms. We did know the following: The problem is solvable in polynomial
time if B = 0, as it then becomes just the problem of solving homogeneous linear
equations over Z. It becomes NP-hard if one replaces the Euclidean norm by the
`∞ norm, i.e., max{|xi| : 1 ≤ i ≤ n} [van Emde Boas 1981]. Also NP-complete is
the related closest vector problem (CVP), in which one is in addition given a target
vector y, and asked if an a exists such that ||∑ni=1 aivi − y|| ≤ B, where the norm
|| · || is any `p metric for p ≥ 1 [van Emde Boas 1981].
In 1998, Miklós Ajtai showed that SVP is NP-hard under randomized reduc-
tions [Ajtai 1998]. This is not quite as strong as NP-hardness. Once again the
intractability of the problem depends on the hypothesis that NP

�
RP rather than

NP
�
P. As we have seen, this is widely viewed as strong evidence, but the stronger

evidence provided by a standard NP-completeness proof would be even better, and
determining whether such a proof exists remains a significant open problem. For
tutorials covering the technical details of Ajtai’s proof and subsequent results, see
Cai [1999] and Kumar and Sivakumar [2001].

SVP also appears to be hard to approximate, again based on hypotheses that
are plausible but a bit weaker than NP

�
P. See Table II, which summarizes the

currently best results about the approximability of this problem, results which I’ll
discuss (and clarify) in the following paragraphs.

The first nonapproximability result was somewhat weak. Ajtai [1998] showed
that assuming NP

�
RP there is a constant k such that no randomized polynomial-

time algorithm could be guaranteed to get within a factor of 1 + 1/2n
k

, a factor
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Table II. Complexity results about approximation guarantees for SVP

Guarantee Result Reference

O(1) Ptime only if NP ⊆ RP [Khot 2004]

2(log n)
1/2−ε

Ptime only if NP ⊆ RQP [Khot 2004]

O
(

√

n/ log n
)

Not NP-hard unless PH = Σ2p [Goldreich and Goldwasser 2000]

O
(√
n
)

Not NP-hard unless NP = co-NP [Aharonov and Regev 2004]

O
(

n
√
log n

)

Worst case hardness [Micciancio and Regev 2004]
implies average case hardness

2
O
(

n log logn
logn

)

BPP [Ajtai et al. 2001]

2
O

(

n(log logn)2

logn

)

P [Schnorr 1987]

that unfortunately approaches 1 as n, the dimension of the lattice, approaches
∞. Significant improvements quickly followed, however. Micciancio [2001] showed
that, assuming NP

�
RP, no constant ratio less than

√
2 can be guaranteed by a

randomized polynomial-time algorithm, and more recently Khot [2004] has shown
that no constant ratio guarantee is possible under this assumption. Under the
stronger assumption that NP

�
RQP, no randomized polynomial-time algorithm

can guarantee a ratio of 2log
1/2−ε n for any constant ε > 0 [Khot 2004]. Note,

however, that this is not quite as strong as the analogous result we saw above for
MINIMUM WEIGHT CODEWORD, where the exponent is log1−ε n.
Moreover, the gap between what has been proved difficult and what is achiev-
able remains exponential. The O(2(n−1)/2) performance guarantee of the original
LLL algorithm has been bettered, but to date the best polynomial-time guar-
antee is for an algorithm of Schnorr [1987] whose guarantee is exponential in
O(n(log logn)2/ logn) [Ajtai 2003]. The bound improves when randomization is
allowed, but only to exponential in O(n log logn/ logn) [Ajtai et al. 2001].
What is the likelihood that we can close the gap? It appears that our only
hope may be to find better algorithms, since there are serious technical limitations
on our ability to prove stronger hardness-of-approximation results. Aharonov and
Regev [2004], improving on results of Lagarias et al. [1990], Banaszczyk [1993],
and Goldreich and Goldwasser [2000], have shown the following: If there were
deterministic or randomized polynomial transformations that proved SVP is NP-
hard to approximate to within a factor of c

√
n for sufficiently small c > 0, then NP

= co-NP.
More specifically, here is what they proved. The standard technique for proving
that a given minimization problem A is hard to approximate within a factor of r is
to transform instances x of some NP-hard problem B to ordered pairs (y, t) where
y is an instance of A and t is a potential solution value, such that OPT (y) ≤ t if
the answer for x in B is yes, and OPT (y) > rt if the answer for x in B is no. Thus
a polynomial-time approximation algorithm with a worst-case ratio guarantee of r
or less for A could be used to solve B in polynomial time. Similarly, if there is a
polynomial-time nondeterministic Turing machine (NDTM) that on any pair (y, t)
where y is an instance of A always accepts when OPT (y) > rt and never accepts
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when OPT (y) ≤ t (no matter what it did when t < OPT (y) ≤ rt), then B is in
co-NP. In essence, Aharonov and Regev [2004] simply show that there is a c such
that such an NDTM exists for SVP when r = c

√
n.

In addition, the problem of approximating SVP to within the even smaller factor
of r = c

√

n/ logn cannot be NP-hard under polynomial transformations unless NP
⊆ co-AM [Goldreich and Goldwasser 2000]. This has almost as dire consequences
since, by Boppana et al. [1987], it would imply that the polynomial hierarchy would
collapse to Σ2p. To prove it, Goldwasser and Goldreich exhibit a bounded-round
interactive proof system that will always convince the (polynomial-time) verifier
when OPT (y) > rt and convinces with probability less than 1/2 when OPT (y) ≤ t.
By a result of Cai and Nerurkar [2000], both this and the previous result extend
to rule out proofs of NP-hardness that use polynomial-time Turing reductions,
assuming they show how to solve B using a subroutine for A that always gives the
right answer when OPT (y) ≤ t or OPT (y) > rt.
It would be nice if these results did not hold, since there would be some wonder-
ful consequences if we could prove that SVP were hard to approximate to within
slightly larger factors. In particular, as first shown by Ajtai [1996], a variant on the
MINIMUM WEIGHT CODEWORD problem would be hard on average, not just in
the worst case. Here are some of the details. To make statements about “hardness
on average” we must not only define the problem, but also specify the probability
distribution over instances. For Ajtai’s result (and subsequent improvements on
it), the problem is one of finding a “small” solution to a set of modular equations.
An instance consists of an n×m matrix A over Zq for some n, m, and q, together
with a rational number b, and the goal is to find a nonzero m-dimensional vector x
over Zq such that Ax

t = 0 and the Euclidean length of x is no more than b. Note
that if we measured x by the number of nonzeros it contains, then we would have
the MINIMUM WEIGHT CODEWORD problem over GF (q). As to distributions,
for each set of values n, m, q we take the uniform distribution over the set Xn,m,q
of all matrices A with those parameters, and fix b =

√
mqn/m. By Minkowski’s

theorem, the desired vector will always exist, but the proof is nonconstructive and
so finding one can still be hard.

What Ajtai proved was that there exist constants α, β, k ≥ 1 such that the
following holds: If there were a randomized polynomial-time algorithm A that for
each distribution Xn,dαn logne,nβ , n ≥ 1, finds the desired vector with probability
1/2 (over both the instance distribution and its own random bits), then there would
be a second randomized polynomial-time algorithm B that for any instance of SVP
finds an estimate z for the length of the shortest vector v such that ||v|| ≤ z ≤
nk||v||. Conversely, if one cannot approximate SVP to within a factor of nk for all
instances in polynomial time, then one cannot obtain the abovementioned average-
case behavior for the modular equation problem in polynomial time either.

Ajtai did not derive an explicit value for k in his paper, but it has been estimated
to be about 10. A subsequent sequence of papers progressively improved the ex-
ponent, both by tightening some of the mathematical arguments and by deriving
improved schemes for generating the collection of random calls to Algorithm A used
by algorithm B [Cai and Nerurkar 1997; Micciancio 2004; Micciancio and Regev
2004]. Now all we need in order to get the desired average-case hardness is that for
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some sufficiently large C there is no polynomial-time algorithm with a Cn
√
logn

worst-case guarantee. Note that by the abovementioned results of Goldreich and
Goldwasser [2000] and Aharonov and Regev [2004] this is still more than a factor
of
√
n worse than the largest guarantee that is likely to be NP-hard to obtain. It is

however much closer than it was originally, and perhaps further improvements in
the average-to-worst-case connection will yield something we can prove NP-hard.

One might also wonder whether the average-case hardness of this particular prob-
lem would be all that useful. As Ajtai [1996] shows, however, it would imply the
existence of a one-way function that is hard to invert on average (a randomized mod-
ular variant on SUBSET SUM). This is a key cryptographic primitive, and at least
in principle can be used to construct digital signatures. (For recent developments
along this line, see Micciancio and Vadhan [2003].) And although this particular
function is not a trapdoor one-way function and hence not usable for public-key
encryption, Ajtai and Dwork [1997] showed that such a trapdoor function (and
resulting public-key cryptosystem) could be derived, again with average-case hard-
ness guaranteed, if a variant on SVP is hard in the worst-case. This variant is
unfortunately a bit more restricted than the ones we have been considering. It is
the unique shortest vector problem u(nk)-SVP, in which we are given a lattice and
asked to find the shortest vector v, but we only need to provide the correct answer
in situations where any other vector u with ||u|| ≤ nk||v|| is a constant multiple of
v. Ajtai and Dwork [1997] show that if this problem is hard for k = 8 then their
cryptosystem is secure. Modified cryptosystems with the exponent k as small as 1.5
have since been found [Regev 2004b], but note that if u(nk)-SVP is hard, then so
must be the more general problem of approximating the shortest vector to within
a factor of nk, which we have already seen is unlikely to be proved NP-hard for
k ≥ 1/2. Indeed Cai [1998] has shown that u(nk)-SVP cannot be proved NP-hard
by standard means even for k = 1/4 unless the polynomial hierarchy collapses.
Thus it remains to be seen how or whether the worst-case/average-case connection
might be exploited to prove security for such cryptosystems assuming P 6= NP.
(This is probably just an academic question anyway, given that the system encodes
each bit of the message separately using many arithmetic operations and random
bits and hence is not likely to be practical.)

Results similar to those listed in Table II have been proved for several variants
of SVP in addition to u(nk)-SVP. Consider the previously mentioned closest vector
problem (CVP). This problem is provably at least as hard to approximate as SVP
[Goldreich et al. 1999]. Indeed, stronger nonapproximability results have been
proved for it. Dinur et al. [2003] have shown that, assuming NP

�
P, CVP cannot

be approximated to within a factor of nc/ log logn for some constant c > 0, a stronger
conclusion under a weaker hypothesis than that shown in Table II for SVP. (This
bound was claimed by Dumer et al. [2003] to carry over to the nearest codeword
problem, where it would have been much closer to the best upper bounds known,
but the claim was based on incomplete information and has since been retracted
(D. Micciancio, personal communication, 2005).) Achievable guarantees are similar
to those for SVP (e.g., see Babai [1986]), and similar results have been obtained
about non-NP-hardness [Aharonov and Regev 2004] and the value of preprocessing
[Regev 2004a].
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Two other variants for which similar results have been proved, together with
sample references, are the “shortest n independent vectors” problem (Given a lattice
basis A and a real number b, are there n linearly independent vectors in the lattice
all of which have Euclidean length b or less?) [Ajtai 1996; Micciancio and Regev
2004] and the “covering radius” problem (Given a lattice with a rational basis in
Rn, what is the smallest r such that every point in Rn is within distance r of some
lattice point?) [Micciancio 2004; Guruswami et al. 2005]. The latter reference also
covers the analogous problem for codes.

3. STILL OPEN AFTER ALL THESE YEARS

As shown in Table I, three of the “Open Problems of the Month” from past columns
remain open. As far as I can tell there has been no progress on any of them. In two
cases this is perhaps no great loss. ANDREEV’S PROBLEM is a highly technical
problem historically related to monotone circuit complexity and “UNRESTRICTED”
TWO-LAYER CHANNEL ROUTING concerns a hypothetical VLSI design technol-
ogy that time has long since passed by. The third open problem left from past
columns, GRACEFUL GRAPH, does retain a certain cachet in the graph theory
community and so might be worth revisiting. Readers interested in learning about
this problem, or foolhardy enough to want to find out about the other two, are
referred to the relevant columns listed in the table. I conclude this edition of the
column by highlighting the three remaining open problems from [G&J].

GRAPH ISOMORPHISM [G&J]

instance: Two graphs G1 = (V1, E1) and G2 = (V2, E2).

question: Are G1 and G2 isomorphic, i.e., is there a one-to-one onto function
f : V1 → V2 such that {u, v} ∈ E1 if and only if {f(u), f(v)} ∈ E2?
Comment: This problem remains open, but there is much evidence suggesting
that it is not NP-complete. Although the best general algorithm currently known
for it has running time 2O(

√
n logn) [Babai and Luks 1983], we do not even know

whether GRAPH ISOMORPHISM is logspace-hard for P. The strongest current hard-
ness results are those of Toran [2004], which shows that GRAPH ISOMORPHISM
is hard (under AC0 transformations) for Nondeterministic Logspace (NL) and sev-
eral other classes inside P. Furthermore, the problem of counting the number of
isomorphisms between two graphs is polynomial-time equivalent to the problem of
telling whether even one exists [Mathon 1979], whereas the counting versions of
most NP-hard problems are #P-hard. Perhaps most significantly, if GRAPH ISO-
MORPHISM were NP-complete, then the polynomial hierarchy PH would collapse
to Σp2, an unlikely hypothesis that we have seen several times in this column. The
collapse would occur because there is a bounded-round interactive proof for GRAPH
NON-ISOMORPHISM [Goldreich et al. 1991], which places GRAPH ISOMORPHISM
in the class co-AM. Thus if it were NP-complete we would have NP ⊆ co-AM, and
the already-mentioned result of Boppana et al. [1987] would apply.
Thus GRAPH ISOMORPHISM is often mentioned as a candidate for a problem
whose complexity lies between that of P and the NP-complete problems. As such, it
has engendered a new complexity class of its own: “GI” or the class of all problems
that are polynomial-time equivalent to GRAPH ISOMORPHISM. Members include
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the problem of determining whether two polytopes, given by their vertex-facet inci-
dence matrices, are combinatorially isomorphic [Kaibel and Schwartz 2003] and the
question of whether there is a homeomorphism between two 2-complexes [Shawe-
Taylor and Pisanski 1994]. Much of the research on GRAPH ISOMORPHISM since
[G&J] has concentrated on populating this class and on classifying special cases of
GRAPH ISOMORPHISM as polynomial-time solvable or themselves “GI-complete.”
There is not space here to cover all such results, but an extensive early summary
can be found in [Col 1, 1981].

PRECEDENCE CONSTRAINED 3-PROCESSOR SCHEDULING [G&J]

instance: Set T of unit length tasks, partial order ≺ on T , and a deadline
D ∈ Z+.
question: Can T be scheduled on 3 processors so as to satisfy the precedence
constraints and meet the overall deadline D, i.e., is there a schedule σ : T →
{0, 1, . . . , D−1} such that t ≺ t′ implies σ(t) < σ(t′) and such that for each integer
i, 0 ≤ i ≤ D − 1, there are at most 3 tasks t ∈ T for which σ(t) = i?
Comment: This problem remains open, even when “3” is replaced by any fixed
K > 3. It remains a fundamental problem in scheduling theory, but there appears
to have been no progress whatsoever on it since 1981. Thus readers interested in
polynomial-time solvable subcases and related NP-hardness results can still get the
up-to-date story in [Col 1, 1981].

MINIMUM LENGTH TRIANGULATION [G&J]

instance: Collection C = {(ai, bi) : 1 ≤ i ≤ n} of pairs of integers giving the
coordinates of n points in the plane, and a positive integer B.

question: Is there a triangulation of the set of points represented by C that
has total “discrete-Euclidean” length B or less? Here a triangulation is a collection
L of line segments, each joining two points in C and no two intersecting except
possibly at their endpoints, such that L partitions the interior of the convex hull
into triangular regions. The discrete-Euclidean length of a line segment joining

(ai, bi) and (aj , bj) is given by
⌈

(

(ai − aj)2 + (bi − bj)2
)1/2
⌉

, and the total length

of a triangulation is the sum of the lengths of its constituent line segments.

Comment: The discrete Euclidean metric is used in the problem statement to
insure that the problem is in fact in NP. This problem remains open whether one
uses the true or discrete Euclidean metric, and even if one considers the variant
in which one allows the collection C to be augmented by a user-supplied set of
“Steiner” points before the triangulation is constructed.
There is some question, however, as to how fundamental the problem really is.
For applications involving triangulations, such as mesh generation, it is not the
length of the triangulation that is important, but how well-behaved the triangles
themselves are. The original, non-Steiner problem is polynomial-time solvable for
several objective functions related to this goal. If you want to maximize the mini-
mum internal angle over all triangles, the easy-to-construct Delaunay triangulation
suffices, and in fact can be shown to provide a triangulation that is locally optimal
with respect to “equiangularity” [Sibson 1978]. If you want to minimize the max-
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imum angle, there is a polynomial-time algorithm for this as well [Edelsbrunner
et al. 1992]. You can also in polynomial time find triangulations that minimize the
maximum edge length, that maximize the minimum triangle height, minimize the
maximum aspect ratio, and optimize a variety of other objective functions [Edels-
brunner and Tan 1993; Bern et al. 1993; D’Azevedo and Simpson 1989].
This said, there still does remain significant interest in the original problem, if
only because of its status as an anointed open problem. On the assumption that
it is NP-hard, a variety of researchers have worked on polynomial-time approxima-
tion algorithms for it, and we now have algorithms with bounded-ratio guarantees
for both the Steiner and non-Steiner versions of the problem [Eppstein 1994; Lev-
copoulos and Krznaric 1998]. See [Bern and Eppstein 1997] for a survey.
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