
The NP-Completeness Column: An Ongoing Guide

DAVID S. JOHNSON

Bell Laboratories, Murray Hill, New Jersey 07974

This is the fourth edition of a quarterly column the purpose of which is to provide con-
tinuing coverage of new developments in the theory of NP-completeness. The presenta-
tion is modeled on that used by by M. R. Garey and myself in our book ‘‘Computers and
Intractability: A Guide to the Theory of NP-Completeness,’’ W. H. Freeman & Co., San
Francisco, 1979 (hereinafter referred to as ‘‘[G&J]’’; previous columns will be referred to
by their dates). A background equivalent to that provided by [G&J] is assumed, and,
when appropriate, cross-references will be given to that book and the list of problems
(NP-complete and harder) presented there. Readers who have results they would like
mentioned (NP-hardness, PSPACE-hardness, polynomial-time-solvability, etc.), or open
problems they would like publicized, should send them to David S. Johnson, Room 2C-
355, Bell Laboratories, Murray Hill, NJ 07974, including details, or at least sketches, of
any new proofs (full papers are preferred). In the case of unpublished results, please state
explicitly that you would like the results to be mentioned in the column. Comments
and corrections are also welcome. For more details on the nature of the column and the
form of desired submissions, see the December 1981 issue of this Journal.

1. INTRODUCTION

According to the prospectus presented in this column’s first [Dec. 1981] edi-
tion, one of its functions is to provide ‘‘occasional reports on new theoretical de-
velopments concerning NP-completeness and related issues.’’ This month
seems like an appropriate time to initiate this feature, as exciting developments
have occurred recently in two separate areas. I shall devote the first half of the
column to covering them.

The column is organized as follows. Section 2 discusses an extension of the
work on relativized complexity covered in Chapter 7 of [G&J], which suggests a
new approach to proving P ≠ NP (but doesn’t, according to the latest word, sug-
gest it very loudly). Section 3 surveys some surprising new approximation algo-

- 2 -

rithms for the ‘‘bin packing’’ problem (a problem discussed in detail in Chapter
6 of [G&J]) and uses these results to motivate this column’s ‘‘open problem of
the month.’’ We return to our list-making in Section 4, which surveys new re-
sults related to problems of permutations and orderings. Section 5 concludes
with some brief ‘‘updates.’’

The promised discussion of routing problems will have to wait one more is-
sue, by which time I hope to be able to capture the pictorial nature of these prob-
lems by using Chris Van Wyk’s IDEAL program for typesetting figures [41].

2. P ≠ NP (ALMOST ALWAYS)

In Chapter 7 of [G&J] the concept of a Turing machine (TM) with an ‘‘ora-
cle’’ is discussed. An oracle for a language A is a ‘‘black box’’ that, given a
string x as input, will tell in one step whether or not x ∈ A. If we augment ordi-
nary TM’s with oracles for language A, we can ask all the standard questions of
complexity theory, but now they are ‘‘relativized to A’’ and the answers may
well depend on A. In particular, in [6] it was shown that there are languages B

and C such that PB = NPB and PC ≠ NPC. Since all of the known techniques for
distinguishing classes of languages yield the same results whether the TM’s
have oracles or not, this was taken as evidence that the standard techniques
would be of little help in resolving the P versus NP question.

However, in a recent paper [7], Bennett and Gill suggest that there might be
hope after all. They show that languages like language B above are exceedingly
rare, in a rigorous, measure-theoretic sense. Note that there is a one-to-one cor-
respondence between infinite sets of strings in {0,1}* and points in the unit in-
terval [0,1): Lexicographically order the strings in {0,1}* as x 1 ,x 2 ,..., and let
each p ∈ [0,1) correspond to the set that contains all x i such that the i + 1st bit in
the binary representation of p is 1. Thus we can ask what is the measure of the
set of languages A for which PA = NPA, or equivalently, given a ‘‘random’’ ora-
cle A, what is the probability that PA = NPA? Bennett and Gill prove that this
probability is 0, in other words, PA ≠ NPA, almost always.

Bennett and Gill then argue that this result provides strong evidence that P ≠
NP, since ‘‘random oracles by their very structurelessness appear more benign
and less likely to distort the relations among complexity classes than (ones) de-
signed expressly to help or frustrate some class of computations.’’ In particular,
they propose the following random oracle hypothesis:

Let S A be an acceptably relativized statement (a rather complicated defini-
tion of ‘‘acceptably relativized’’ is used, one that is designed to avoid certain
obvious pitfalls while still allowing all of our standard conjectures to be consid-
ered). Then the unrelativized statement S is true if and only if the relativized
statement S A is ‘‘almost always’’ true.

Given the results in [7], this hypothesis would imply not only P ≠ NP, but also

- 3 -

that LOGSPACE ≠ P, that NP ≠ co-NP ≠ PSPACE ≠ EXPTIME, and that P is
identical to the random polynomial time class R of [1] and a number of its vari-
ants.

Thus we have a new way to resolve P versus NP and our other open problems
concerning complexity classes: prove the random oracle hypothesis. Initially,
this seemed promising, as it opened up the P versus NP question to attack by a
whole new range of techniques. Unfortunately, it now appears that proving the
hypothesis may well be significantly more difficult than proving P ≠ NP: the
random oracle hypothesis, at least as formalized by Bennett and Gill, is false.

Kurtz [25] has provided two counterexamples, one of which we shall describe
briefly. Let P3SAT be the set of languages that can be recognized in polynomial
time with the aid of an oracle for 3SAT. It is easy to see that NP ⊆ P3SAT. How-
ever, if we relativize this statement to a random oracle A (the second class thus
has two oracles), it becomes false with probability 1, even though it qualifies as
‘‘acceptably relativized.’’ Although there is some hope (not shared by Kurtz)
that the hypothesis may yet be resurrected by an appropriate redefinition of ‘‘ac-
ceptable relativization,’’ none has yet been proposed. For now, at least, it ap-
pears that ‘‘almost always’’ is not nearly often enough.

3. BIN PACKING AND THE ELLIPSOID ALGORITHM

Recall that in the bin packing problem we are given a set U = {u 1 ,u 2 ,... ,u n } of
items, each with a rational size s(u i) ∈ [0,1], and are asked to partition U into dis-
joint sets U 1 ,U 2 ,... ,U k, called bins, such that the sum of the item sizes in each U i

is no more than 1, and such that k is as small as possible. This problem is, of
course, NP-hard (transformation from 3-PARTITION), and so efforts have con-
centrated on ‘‘approximation’’ algorithms. Such an algorithm A, given an in-
stance I, constructs a packing (partition) with a number A(I) of bins close to, but
not necessarily equal to, the optimum number OPT(I).

Since in most applications of interest the number of bins is large, the criterion
for comparison between algorithms has been, from the first, the asymptotic
worst case ratio RA

∞, defined as follows.

RA
∞ = inf

�� �
r ≥ 1: instances I satisfying OPT(I) ≥ N

for some N , A(I)/OPT(I) ≤ r for all� ��
A brief summary of the highlights of the past decade of bin packing goes as fol-
lows. A first, easy, observation was that the straightforward, linear time algo-
rithm NEXT FIT (NF) satisfied RNF

∞ = 2 [21]. Garey, Graham, and Ullman [13]
showed that the slightly more sophisticated O(nlogn) time FIRST FIT (FF) algo-
rithm yielded RFF

∞ = 1.7, and proved that the next step in sophistication, FIRST
FIT DECREASING, obeyed RFFD

∞ ≤ 1.25. Johnson (yours truly) then observed

- 4 -

that FFD was also O(nlogn) and spent 100 pages of his thesis [20] (see also [22])
proving the exact result RFFD

∞ = 11/9 = 1.222... Progress then stalled from 1973
until 1978, when A. Yao finally succeeded in breaking the 11/9 barrier, devising
an O(n 10 logn) algorithm A with RA

∞ ≤ (11/9) − (1/10,000,000) [44]. Thus inspired,
other bin packers returned to the fray, with Friesen and Langston [11] develop-
ing an O(nlogn) hybrid algorithm having RA

∞ ≤ 6/5 = 1.20 and Garey and Johnson
[14] devising an O(nlogn) modified FFD having RA

∞ = 71/60 = 1.18333...
This process of incremental improvement in RA

∞ has now come to a surpris-
ingly abrupt conclusion. Two researchers, Lueker and Fernandez de la Vega,
have independently discovered that for every ε there is a linear time algorithm
A[ε] with RA[ε]

∞ ≤ 1 + ε. Algorithms with this sort of behavior had long been
known for problems such as the knapsack problem, where performance is mea-
sured by absolute (rather than asymptotic) worst case ratios, with the term ap-
proximation scheme being used to describe the overall collection of algorithms
{A[ε]: ε > 0}. Lueker and Fernandez de la Vega discovered that, counter to ex-
pectations, techniques from the knapsack approximation scheme could be adapt-
ed to bin packing, so long as one was prepared to solve a very large, but (for
each ε) fixed-size, linear program. The details of this ‘‘asymptotic approxima-
tion scheme’’ are discussed in a joint paper [10].

A few of these details may limit the applicability of the algorithms: the pre-
cise performance guarantee provided is

A[ε](I) ≤ (1 + ε) .OPT(I) + (1/ε)2,

and the running time, although linear in n, is exponential in (1/ε)2. For ε = 1/10,
the additive constant in the guarantee would be about 100 bins, and the algo-
rithm would take on the order of 1020 steps. One can, by a standard trick, move
the 1020 term out of the running time and into the additive constant, but that
would not be much of an improvement.

What one would really like is an asymptotic approximation scheme that si-
multaneously provides a guarantee of the form (1 + ε) .OPT(I) + p 1 (1/ε) and a
running time of p 2 (n ,1/ε), where p 1 and p 2 are both polynomials. One’s first
thought is to try to speed up the algorithms of Lueker and Fernandez de la Vega
by using the now-famous ‘‘ellipsoid algorithm’’ for linear programming. There
is a bottleneck, however. The linear program P ε that has to be solved in the al-
gorithm A[ε] has a number of variables that is exponential in 1/ε. Even the el-
lipsoid algorithm will have trouble with that. Karp and Karmarkar [23], how-
ever, do not. Using an imposing arsenal of techniques from mathematical pro-
gramming and complexity theory, they have very recently succeeded in con-
structing the desired ‘‘fully polynomial’’ asymptotic approximation scheme.

Their first step is to note that the dual of P ε has only a polynomial number of
variables (although an exponential number of constraints). They therefore can
make use of the fact that, in the ellipsoid algorithm, one doesn’t need to know

- 5 -

all the constraints, but only to be able to find a violated constraint when there is
one [17].

This approach is applicable here because, using an old idea due to Gilmore
and Gomory [15], a violated constraint can be generated by solving a knapsack
problem. The knapsack problem is, of course, NP-complete. However, it can
be solved approximately using the above-mentioned knapsack approximation
scheme, which turns out to be good enough if one only wants an approximate
solution to the dual. An approximate solution to the dual is good enough, if one
only wants a lower bound on the optimal solution of P ε. This is good enough,
because with it we can obtain, in polynomial time, an approximate lower bound
on OPT(I). This lower-bounding procedure can then be used as a subroutine in
an iterative process for building up a near-optimal packing, much as one can use
a procedure for computing the exact value of OPT(I) as a subroutine in building
up an optimal packing.

There are, of course, many more details than this brief summary can convey,
and the algorithm is quite a tour-de-force. However, although these approxima-
tion scheme results are generating much excitement among the packers of theo-
retical bins, one should stress that, as of yet, none of the schemes has much pre-
tension toward practicality. Nevertheless, as long as we are following the path
of better and better guarantees for less and less practical algorithms, there is one
more step to be taken. So far we have found that, for every ε > 0, there is a
polynomial time algorithm with RA

∞ ≤ 1 + ε. What about ε = 0, i.e., is there a
polynomial time algorithm A with RA

∞ = 1?
The answer is yes. Indeed, such algorithms are easily derived from either of

the above schemes, merely by making an appropriate choice of ε as a function
of the instance at hand (actually, as a function of Σ i = 1

n s(u i), a sum that is al-
ways within a factor of 2 of OPT(I)). The difference between the two schemes
shows up in the additive terms of the guarantees provided. These unfortunately
are no longer constants, although they do remain o(OPT(I)). For Lueker and Fer-
nandez de la Vega we have

A(I) ≤ OPT(I) + O

��
� log[OPT(I)]

OPT(I) loglog[OPT(I)]	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	 � �
whereas for Karp and Karmarkar we have

A(I) ≤ OPT(I) + O(OPT(I)1 − δ)

for some δ > 0. With both algorithms there is a trade-off between running time
and the asymptotic growth rate of the additive term, but no way of balancing the
two to yield an algorithm that would be useful for instances of less than astro-
nomical size. A much more attractive additive term would be something like
log[OPT(I)], or better yet, a constant, independent of OPT(I). However, Karp and

- 6 -

Karmarkar seem to have pushed the state of the art about as far as it will go.
Thus here is perhaps where one should begin to investigate the possibility of
‘‘impossibility’’ results, e.g., the possibility of proving that unless P = NP no
polynomial time approximation algorithm A can guarantee that A(I) − OPT(I) is
less than some given bound.

To date there has been little success in this direction. Still open is the weakest
possible such result, which can hence serve as our ‘‘open problem of the
month.’’ Prove or disprove: Assuming that P ≠ NP, there can be no polynomial
time approximation algorithm A that guarantees A(I) ≤ OPT(I) + 1.

4. PROBLEMS OF ORDERINGS AND PERMUTATIONS

The most famous problems involving permutations are probably the TRAV-
ELING SALESMAN problem [ND22] and its special case, the HAMILTO-
NIAN CIRCUIT problem [GT37]. A number of new developments concerning
the latter problem have come to my attention since I discussed it in the [Mar.
1982] column (where it revealed its multifaceted nature by masquerading as an
embedding problem).

Akiyama, Nishizeki, and Saito [4] have continued the process of finding
ever-more restricted classes of graphs for which HAMILTONIAN CIRCUIT is
NP-complete, showing that NP-completeness continues to hold both for 2-
connected cubic bipartite planar graphs and for 3-connected cubic bipartite (not
necessarily planar) graphs. Wigderson [43] has shown that NP-completeness
also holds for maximal planar graphs, a result that implies NP-completeness for
the following interesting variant: ‘‘Given a planar graph G, can we add new
edges (but not new vertices) so as to render the resulting graph Hamiltonian,
while still keeping the graph planar?’’ There is a more positive development for
the directed HAMILTONIAN CIRCUIT problem: Ramanath [38] has shown
that this problem (as well as the directed HAMILTONIAN PATH problem) can
be solved in polynomial time when restricted to ‘‘reducible flowgraphs’’ (as de-
fined, for instance, in [2], pp. 938-941).

There have also been a number of interesting developments related to opti-
mization version of TRAVELING SALESMAN, which we shall refer to as the
‘‘TSP’’ in what follows. Consider the version of the TSP in which the cities
correspond to points in the plane. In applying the standard approximation algo-
rithms (see [G&J], Chapter 6), one can obtain tours in which the path intersects
itself, and hence can clearly be shortened by an appropriate interchange. Van
Leeuwen and Schoone have recently shown that all such crossings can be re-
moved in polynomial time [40], a result that is not entirely obvious since remov-
ing one crossing may create new ones. A second way of improving the tours
found by the heuristics is by optimizing the choice of ‘‘shortcuts’’ taken when
an Euler tour is reduced to a Hamiltonian one. Here we are not so fortunate.
Papadimitriou and Vazirani [33] have shown that, even for the Euler tours gen-

- 7 -

erated by Christofides’ algorithm, this optimization problem is NP-hard.
On a more theoretical plane, Papadimitriou [32] has shown that the problem

‘‘Given an instance of the TSP, does it have more than one optimal solution?’’
is complete for the class P3SAT mentioned in Section 2 (i.e., the class ∆2

p in the
polynomial hierarchy). A future column will report on work of Papadimitriou
and Yannakakis [34] extending earlier results on the complexity of the ‘‘TSP
polytope.’’

Another famous problem that can be viewed as a permutation problem is
GRAPH ISOMORPHISM: is there a permutation of the vertices of G that makes
it identical to H? This problem remains open, but some interesting variants have
been shown to be NP-complete.

[1] GRAPH ISOMORPHISM WITH RESTRICTIONS

INSTANCE: Two graphs G = (V ,E) and H = (U,F), and a set R ⊆ V × U.

QUESTION: Is there an isomorphism f of G to H that, when viewed as a set of
ordered pairs, contains no pair from R?

Reference. Lubiw [29]. Transformation from 3SAT.

Comment. Remains NP-complete when H = G (AUTOMORPHISM WITH
RESTRICTIONS). In the latter case, remains NP-complete even if R =
{(v,v) : v∈V} (FIXED-POINT-FREE AUTOMORPHISM), and this problem re-
mains NP-complete even if we ask for an order 2 fixed-point-free automor-
phism. Note, however, that the order 2 fixed-point-free automorphism problem
is solvable in polynomial time for groups. AUTOMORPHISM WITH RE-
STRICTIONS remains NP-complete so long as | R| ≥ εn 1/k for fixed ε and k.
However, if | R| = 1, this problem becomes Turing-equivalent to the still open
GRAPH ISOMORPHISM problem. It is not known whether the ordinary
GRAPH AUTOMORPHISM problem (| R| = 0) is as hard as GRAPH ISOMOR-
PHISM, although the problem of counting automorphisms is equivalent to that
of counting isomorphisms (and both are equivalent to GRAPH ISOMORPHISM
itself) [30].

[2] PARTITIONED GRAPH ISOMORPHISM

INSTANCE: Two graphs G = (V ,E) and H = (U,F), and a positive integer K.

QUESTION: Are there partitions E = E 1 ∪ . . . ∪ E K and F = F 1 ∪ . . . ∪ F K of E

and F into disjoint (and possibly empty) sets such that G i = (V ,E i) is isomorphic
to H i = (U,F i), 1 ≤ i ≤ K?

Reference. F. Yao [45]. Transformation from EXACT COVER BY 3-SETS

- 8 -

(X3C).

Comment. Remains NP-complete for K = 2; equivalent to GRAPH ISOMOR-
PHISM for K = 1. The variant in which we are just given G, and are asked
whether there is a partition E = E 1 ∪ E 2 such that the two graphs G 1 = (V ,E 1) and
G 2 = (V ,E 2) are isomorphic, is NP-complete even for trees [16], although for
trees it can be solved in polynomial time if E 1 and E 2 are required to be con-
nected [18].

To conclude our discussion of vertex permutation problems, let us consider
two related problems that were mentioned in the [Mar. 1982] column: BAND-
WIDTH [GT40] and MINIMUM CUT LINEAR ARRANGEMENT [GT44].
New special-case algorithms have been found for both of these problems. Ass-
man, Peck, Syslo, and Zak [5] have shown that BANDWIDTH can be solved in
time O(nlogn) for ‘‘caterpillars with hairs of length 1 and 2.’’ Chung, Makedon,
Sudborough, and Turner [8] have shown that MINIMUM CUT LINEAR AR-
RANGEMENT can be solved in time O(n(logn) d − 1) for trees with maximum ver-
tex degree d. This yields polynomial time algorithms for any fixed value of d, in
contrast to the case for BANDWIDTH, which is known to be NP-complete even
for trees of maximum degree 3 [12]. Some new complexity results for variants
on BANDWIDTH are collected together in the following entry.

[3] CYCLIC BANDWIDTH

INSTANCE: Graph G = (V ,E), positive integer K ≤ | V |.

QUESTION: Is there a cyclic ordering of V with bandwidth K or less, i.e., is
there a one-to-one function f : V → {1,2,... ,| V | } such that, for all {u ,v} ∈ E, either
| f (u) − f (v)| ≤ K or (| V | − | f (u) − f (v)|) ≤ K?

Reference. Leung, Vornberger, and Witthoff [27]. Transformation from 3-
PARTITION.

Comment. Unlike ordinary BANDWIDTH, which can be solved in polyno-
mial time for any fixed K [39], this problem remains NP-complete for K = 2 (it is
trivial for K = 1). It can, however, be solved in polynomial time for any fixed K

if G is required to be connected. The ‘‘separation’’ variant, in which both dis-
tances above must exceed K, is NP-complete for K = 1 and connected G, as is the
corresponding variant of ordinary BANDWIDTH. For DIRECTED BAND-
WIDTH [GT41], the ‘‘separation’’ variant is NP-complete for arbitrary K, but
solvable for in-forests or out-forests, for interval orders, and for K = 1 [27].

We turn now to a problem involving the ordering of edges, rather than ver-
tices.

- 9 -

[4] SEARCH NUMBER

INSTANCE: Graph G = (V ,E), positive integer K ≤ | V |.

QUESTION: Does G have a search number of K or less, i.e., can K searchers
‘‘clear’’ the graph according to the following rules:

(a) A move consists of placing a searcher on a vertex, removing a searcher from
a vertex, or moving a searcher along an edge. A vertex is guarded if it con-
tains a searcher.

(b) An edge is clear if it has been ‘‘cleared’’ and there is no unguarded path
from it to an unclear edge. Initially, all edges are unclear.

(c) If {u ,v} is an edge and u is guarded, then {u ,v} can be cleared by placing a
second searcher at u and then moving it along the edge to v. If {u ,v} is the
only unclear edge with u as endpoint, the second searcher is not needed and
we may clear the edge by moving the u’s guard from u to v along it.

Reference. Megiddo, Hakimi, Garey, Johnson, Papadimitriou [31]. Trans-
formation from MINIMUM CUT INTO EQUAL-SIZED SUBSETS (see com-
ments to [ND17]).

Comment. This problem was first studied by Parsons [35,36]. The fact that
the problem is really about edge permutations (and hence is in NP), is due to a
recent result of LaPaugh [26], who shows that if the search number of G is K,
then G can be cleared by K searchers in such a way that no edge is ever ‘‘re-
contaminated.’’ In other words, no guard is ever removed from a vertex if its
absence will open up an unguarded path from an uncleared edge to a cleared
one. Thus any search strategy determines, and is determined by, a permutation
of the edges, and the existence of the desired strategy can be verified in nonde-
terministic polynomial time by guessing this permutation. The problem can be
solved in deterministic polynomial time if K ≤ 3 or if G is a tree [31]. There is an
interesting connection between SEARCH NUMBER and MINIMUM CUT
LINEAR ARRANGEMENT: for any graph G the search number is no greater
than cutwidth (where ‘‘cutwidth’’ is the quantity minimized in MINIMUM CUT
LINEAR ARRANGEMENT). The quantities are in fact equal for trees of maxi-
mum degree 3 [8], although not in general.

Our final three problems concern the generation of permutations.

[5] MINIMUM LENGTH GENERATOR SEQUENCE

INSTANCE: A set {g i : 1 ≤ i ≤ k} of generators of a permutation group G, a tar-
get permutation P ∈ G, and a positive integer K.

QUESTION: Is there a sequence g i1
,g i2

, . . . , g i j
, j ≤ K, such that P = g i1

g i2
. . . g i j

?

- 10 -

Reference. Even and Goldreich [9]. Transformation from X3C.

Comment. Also NP-hard is the problem, given a set of generators and an in-
teger K, of determining whether all permutations in G can be generated by gen-
erator sequences of length K or less.

[6] SHUFFLED STRING

INSTANCE: Finite alphabet Σ, strings w and w 1 , w 2 , . . . , w n in Σ*.

QUESTION: Is the string w in the shuffle of w 1 , w 2 , . . . , w n, i.e., is it of the form
w 1 [1] w 2 [1]...w n [1] w 1 [2] w 2 [2]...w n [2]...w 1 [k] w 2 [k]...w n [k], where w i [1] w i [2]...w i [k]
is a partition of w i into a sequence of (possibly empty) substrings, 1 ≤ i ≤ n?

Reference. Warmuth and Haussler [42]. Transformation from 3-
PARTITION.

Comment. Remains NP-complete even if | Σ| = 2. If | Σ| = 3, remains NP-
complete even if w 1 = w 2 = . . . = w n, in which case we are asking whether w is
in the iterated shuffle of w 1. If we extend the definition of iterated shuffle to
languages in the standard way, there exist fixed context free languages L such
that membership in the iterated shuffle of L is NP-complete. For any fixed regu-
lar language L, however, the problem is solvable in polynomial time. Reference
[42] also contains a number of other results along this line, asking when NP-
complete languages can be generated by combining the shuffle and iterated
shuffle operators with the standard ones for generating languages, i.e., ∪, ., *,
etc. For more on theoretical aspects of the shuffle, see [19].

[7] DEFECTIVE SORTING NETWORK

INSTANCE: Sequence x 1 ,x 2 ,... ,x n of input variables and a program P consisting
of a sequence of statements of the form ‘‘if x i ≥ x j, then interchange their val-
ues,’’ where i < j. (Note that there is a one-to-one correspondence between
such programs and ‘‘comparator networks’’ (as described in [24], Section
5.3.4), so long as no comparators are allowed to operate in parallel).

QUESTION: Is there an input to program P which P fails to sort into nonde-
creasing order, i.e., are there integer input values x i = z i, 1 ≤ i ≤ n, and an index k,
1 ≤ k < n, such that, after program P has been executed, x k > x k + 1?

Reference. Rabin [37]. Transformation from 3-DIMENSIONAL MATCH-
ING.

Comment. Can be solved in polynomial time if all statements are of the form
‘‘if x i ≥ x i + 1, then interchange their values,’’ i.e., if all comparators link adjacent
lines in the network (see [24], Exercise 5.3.4-36c). Sorting networks are in

- 11 -

vogue again, what with the recent claim by Ajtai, Komlós, and Szemerédi [3] of
a network with O(nlogn) comparators and O(logn) delay time, both bounds offer-
ing an improvement by a factor of logn over bounds that had stood for some 18
years.

5. UPDATES

Since this column is in danger of overflowing its page allotment, I will limit
myself to some minor items that can be disposed of quickly. In the last column
[Jun. 1982], the ‘‘to appear’’ citation on reference [31] should be moved to ref-
erence [32], and the first occurrence of the word ‘‘NP-complete’’ in the com-
ments to Problem 13 should be replaced by ‘‘NP-hard.’’ Also, the claim that
11-colorability of Steiner triple systems is NP-complete turns out to have been
based on a misreading of that column’s reference [11]. The appropriate conclu-
sion is that 14-colorability is NP-complete. Our final comment concerns the
source problem in many of the transformations reported in the last two columns.
The proof of the NP-completeness of PLANAR 3-SAT has at last made its for-
mal appearance [28], after four years as an ‘‘unpublished manuscript.’’

REFERENCES

1. L. ADLEMAN AND K. MANDERS, Reducibility, randomness, and intractability, in ‘‘Proceedings
9th Ann. ACM Symp. on Theory of Computing,’’ pp. 151-153, Association for Computing Ma-
chinery, New York, 1977.

2. A. V. AHO AND J. D. ULLMAN, ‘‘The Theory of Parsing, Translation, and Compiling, Vol. II:
Compiling,’’ Prentice-Hall, Englewood Cliffs, N. J., 1972.

3. M. AJTAI, J. KOMLÓS, AND E. SZEMERÉ DI, in preparation, (1982).
4. T. AKIYAMA, T. NISHIZEKI, AND N. SAITO, NP-completeness of the Hamiltonian cycle problem

for bipartite graphs, Journal of Information Processing 3 (1980), 73-76.
5. S. F. ASSMAN, G. W. PECK, M. M. SYSLO, AND J. ZAK, The bandwidth of caterpillars with hairs

of length 1 and 2, SIAM J. Algebraic and Discrete Methods 2 (1981), 387-393.
6. T. BAKER, J. GILL, AND R. SOLOVAY, Relativizations of the P =? NP question, SIAM J. Com-

put. 4 (1975), 431-442.
7. C. H. BENNETT AND J. GILL, Relative to a random oracle A, P A ≠ NP A ≠ co − NP A with proba-

bility 1, SIAM J. Comput. 10 (1981), 96-113.
8. M-J. CHUNG, F MAKEDON, I. H. SUDBOROUGH, AND J. TURNER, Polynomial algorithms for the

min cut problem on degree restricted trees, manuscript (1982).
9. S. EVEN AND O. GOLDREICH, The minimum-length generator sequence problem is NP-hard, J.

Algorithms 2 (1981), 311-313.
10. W. FERNANDEZ DE LA VEGA AND G. S. LUEKER, Bin packing can be solved within 1 + ε in linear

time, Combinatorica 1 (1981), 349-355.
11. D. K. FRIESEN AND M. A. LANGSTON, Analysis of a compound bin packing algorithm,

manuscript (1981).
12. M. R. GAREY, R. L. GRAHAM, D. S. JOHNSON, AND D. E. KNUTH, Complexity results for band-

width minimization, SIAM J. Appl. Math. 34 (1978), 835-859.

- 12 -

13. M. R. GAREY, R. L. GRAHAM, AND J. D. ULLMAN, Worst-case analysis of memory allocation al-
gorithms, in ‘‘Proceedings 4th Ann. ACM Symp. on Theory of Computing,’’ pp. 143-150, As-
sociation for Computing Machinery, New York, 1972.

14. M. R. GAREY AND D. S. JOHNSON, A 71/60 algorithm for one-dimensional bin packing,
manuscript (1980).

15. P. C. GILMORE AND R. E. GOMORY, A linear programming approach to the cutting-stock prob-
lem, Operations Res. 9 (1961), 849-859.

16. R. L. GRAHAM AND R. W. ROBINSON, private communication (1982).
17. M. GRO

..
TSCHEL, L. LOVÁSZ, AND A. SCHRIJVER, The ellipsoid method and its consequences in

combinatorial optimization, Combinatorica 1 (1981), 169-198.
18. F. HARARY AND R. W. ROBINSON, Isomorphic factorizations VIII: Bisectable trees, manuscript

(1981).
19. M. JANTZEN, ‘‘Eigenschaften von Petrinetzsprachen,’’ Report No. IFI-HH-B-64, Fachbereich In-

formatik, Universita..t Hamburg, Hamburg, 1979.
20. D. S. JOHNSON, ‘‘Near-optimal bin packing algorithms,’’ Report No. MAC TR-109, Project

MAC, Massachusetts Institute of Technology, Cambridge, Mass., 1973.
21. D. S. JOHNSON, Fast algorithms for bin packing, J. Comput. System Sci. 8 (1974), 272-314.
22. D. S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY, AND R. L. GRAHAM, Worst-case per-

formance bounds for simple one-dimensional packing algorithms, SIAM J. Comput. 3 (1974),
299-325.

23. R. M. KARP AND N. KARMARKAR, An efficient approximation scheme for the one-dimensional
bin packing problem, in ‘‘Proceedings 23rd Ann. Symp. on Foundations of Computer Science,’’
IEEE Computer Society, Long Beach, Calif., 1982 (to appear).

24. D. E. KNUTH, ‘‘The Art of Computer Programming, Vol. 3: Sorting and Searching,’’ Addison-
Wesley Publishing Company, Inc., Reading, Mass., 1973.

25. S. L. KURTZ, On the random oracle hypothesis, in ‘‘Proceedings 14th Ann. ACM Symp. on The-
ory of Computing,’’ pp. 224-233, Association for Computing Machinery, New York, 1982.

26. A. S. LAPAUGH, Recontamination does not help, manuscript (1982).
27. J. Y-T. LEUNG, O. VORNBERGER, AND J. D. WITTHOFF, On some variants of the bandwidth mini-

mization problem, manuscript (1982).
28. D. LICHTENSTEIN, Planar formulae and their uses, SIAM J. Comput. 11 (1982), 329-343.
29. A. LUBIW, Some NP-complete problems similar to graph isomorphism, SIAM J. Comput. 10

(1981), 11-21.
30. R. MATHON, A note on the graph isomorphism counting problem, Inform. Process. Lett. 8

(1979), 131-132.
31. N. MEGIDDO, S. L. HAKIMI, M. R. GAREY, D. S. JOHNSON, AND C. H. PAPADIMITRIOU, The com-

plexity of searching a graph (preliminary version), in ‘‘Proceedings 22nd Ann. Symp. on Foun-
dations of Computer Science,’’ pp. 376-385, IEEE Computer Society, Los Angeles, 1981.

32. C. H. PAPADIMITRIOU, On the complexity of unique solutions, in ‘‘Proceedings 23rd Ann. Symp.
on Foundations of Computer Science,’’ IEEE Computer Society, Long Beach, Calif., 1982 (to
appear).

33. C. H. PAPADIMITRIOU AND U. V. VAZIRANI, On two geometric problems related to the travelling
salesman problem, manuscript (1981).

34. C. H. PAPADIMITRIOU AND M. YANNAKAKIS, The complexity of facets (and some facets of com-
plexity), in ‘‘Proceedings 14th Ann. ACM Symp. on Theory of Computing,’’ pp. 255-260, As-
sociation for Computing Machinery, New York, 1982.

35. T. D. PARSONS, Pursuit-evasion in a graph, in ‘‘Theory and Application of Graphs,’’ (Y. Alavi
and D. R. Lick, eds.) pp. 426-441, Springer-Verlag, Berlin, 1976.

36. T. D. PARSONS, The search number of a connected graph, in ‘‘Proceedings 9th Southeastern
Conference on Combinatorics, Graph Theory, and Computing,’’ pp. 549-554, Utilitas Mathe-
matica Publishing, Winnipeg, Ont., 1978.

- 13 -

37. M. O. RABIN, private communication (1981).
38. M. V. S. RAMANATH, The Hamiltonian path and cycle problems are P-time solvable for re-

ducible flow graphs, manuscript (1982).
39. J. B. SAXE, Dynamic-programming algorithms for recognizing small-bandwidth graphs in poly-

nomial time, SIAM J. Algebraic and Discrete Methods 1 (1980), 363-369.
40. J. VAN LEEUWEN AND A. A. SCHOONE, ‘‘Untangling a traveling salesman tour in the plane,’’ Re-

port No. RUU-CS-80-11, Department of Computer Science, University of Utrecht, the Nether-
lands, 1980.

41. C. J. VAN WYCK, A graphics typesetting language, SIGPLAN Notices 16 (1981), 99-107.
42. M. K. WARMUTH AND D. HAUSSLER, ‘‘On the complexity of iterated shuffle,’’ Report No. CU-

CS-201-81, Department of Computer Science, University of Colorado, Boulder, Colo., 1981.
43. A. WIGDERSON, ‘‘The complexity of the Hamiltonian circuit problem for maximal planar

graphs,’’ Report No. 298, Electrical Engineering and Computer Science Department, Princeton
University, Princeton, N.J., 1982.

44. A. C. YAO, New algorithms for bin packing, J. Assoc. Comput. Mach. 27 (1980), 207-227.
45. F. F. YAO, Graph 2-isomorphism is NP-complete, Inform. Process. Lett. 9 (1979), 68-72.

