Reprinted from —
AFIPS — Conference Proceedings
Volume 40

© AFIPS PRESS
Montvale, N.J. 07645

Bounds on multiprocessing anomalies
and related packing algorithms

by R. L. GRAHAM

Bell Telephone Laboratories, Inc.
Murray Hill, New Jersey

INTRODUCTION

It has been known for some time that certain rather
general models of multiprocessing systems frequently
exhibit behavior which could be termed “anomalous,”
e.g., an increase in the number of processors of tha
system can cause an increase in the time used to com-
plete a job.42:36.20 In order to fully realize the potential
benefits afforded by parallel processing, it becomes im-
portant to understand the underlying causes of this
behavior and the extent to which the resulting system
performance may be degraded.

In this paper we survey a number of theoretical re-
sults obtained during the past few years in connection
with this topic. We also discuss many of the algorithms
designed either to optimize or at least to improve the
performance of the multiprocessor system under
consideration.

The performance of a system or an algorithm can be
measured in several rather different ways.? Two of the
most common involve examining the ezpected behavior
and the worst-case behavior of the object under con-
sideration. Although knowledge of expected behavior
is generally more useful in typical day-to-day applica-
tions, theoretical results in this direction require as-
sumptions concerning the underlying probability dis-
tributions of the parameters involved and historically
have been extremely resistant to attack.

On the other hand, there are many situations for
which worst-case behavior is the appropriate measure
(in addition to the fact that worst-case behavior does
bound expected behavior). This type of analysis is cur-
rently a very active area of research, and theoretical
insight into the worst-case behavior of a number of
algorithms from various disciplines is now beginning to
emerge (e.g., see References 7, 14, 15, 19, 20, 21, 26, 27,
29, 32, 33, 44, 47, and especially Reference 41.) It is
this latter measure of performance which will be used
on the models and algorithms of this paper. Sinee it is

205

essential to have on hand the worst examples one can
think of before conjecturing and (hopefully) proving
bounds on worst-case bchavior, numecrous such ex-
amples will be given throughout the text.

Before concluding this scetion, it seems appropriate
to make a few remarks concerning the general arca of
these topics. Recent years have seen the emergence of
a vital and important new discipline, often ecalled
“analysis of algorithms.” As its broad objective, it
seeks to obtain a deeper understanding of the nature of
algorithms. These investigations range, for example,

‘from the detailed analysis of the behavior of a specific

sorting routine, on one hand, to the recent negative
solutiont to Hilbert’s Tenth Problem by Matijasevi¢®
and Julia Robinson,® on the other. It is within this
general framework that the present discussion should
be viewed.

A GENERAL MULTIPROCESSING SYSTEM

Let us suppose we have n (abstract) identical pro-
cessors P, i=1, ..., n, and we are given a set of tasks
3={T, ..., T,} which is to be processed by the P;.
We are also given a partial ordertt<on 3 and a func-
tion u:3—(0, »). Once a proeessor P; begins to execute
a task T, it works without interruption until the com-
pletion of that task, !t requiring altogether x(7T';) units
of time. It is also required that the partial order be
respected in the following sense: If T;<T; then T'; can-
not be started until 7; has been completed. Finally,
we are given a sequence L= (T, ..., T;,), called the

t Which roughly speaking shows that there is no universal
algorithm for deciding whether a diophantine equation has
solutions or not.

11 See Reference 31 for terminology.

t1t This is known as nonpreemptive scheduling as opposed to
preemptive scheduling in which the execution of a task may be
interrupted.’

206 Spring Joint Computer Conference, 1972

/3 O- »O Tg/9
Ts/4
Te/4
T,/4

w Te/4

Figure 1—A simple graph G

T,72 O

Ts/2 O

T4/2

(priority) list (or schedule) consisting of some permuta-
tion of all the tasks 3. The P; execute the T'; as follows:
Initially, at time 0, all the processors (instantaneously)
scan the list L from the beginning, searching for tasks
T; which are “ready” to be executed, i.e., which have no
predecessors under <. The first ready task T; in L
which P; finds immediately begins to be executed by
P;; P; continues to execute T'; for the u(7T;) units of
time required to complete T;. In general, at any time
a processor P; completes a task, it immediately scans
L for the first available ready task to execute. If there
are currently no such tasks, then P; becomes idle. We
shall also say in this case that P; is executing an empty
task which we denote by ¢ (or ¢:). P; remains idle until
some other P, completes a task, at which time P;
(and, of course, Px) immediately scans L for ready
tasks which may now exist because of the completion
of T;. If two (or more) processors both attempt to
start executing a task, it will be our convention to
assign the task to the processor with the smaller index.
The least time at which all tasks of 7" have been com-
pleted will be denoted by w.

We consider an example which illustrates the work-
ing of the preceding multiprocessing system and various
anomalies associated with it. We indicate the partial
order < on T and the function u by a directed graph’

T‘| i T9 1

T 9 T

T2 | T4 l T 5 I T‘, L
2 2 4 ' 4 '

Ty | ¢ 1 Te L Tg \
2 2 ! 4 ‘ 4 ‘

Figure 2—The timing diagram D for G

+ For terminology in graph theory, see Reference 23.

T, | Ts T ,

T 2 T 9 1

D’ T2, Ts . Tq | P4 i
2 1 4 T 4 1 4 T

Tq | Te . Ts . ¢, .

2 4 ! 4 ! 4 N

Figure 3—The timing diagram D’ when L’ is used

G(<,n). In G(<, u) the vertices correspond to the T';
and a directed edge from 7T, to T; denotes T; < T';. The
vertex T; of G(<, u) will usually be labeled with the
symbols 7T',/u(T;). The activity of each P; is con-
veniently represented by a timing diagram D (also
known as a Gantt chart.® D consists of n horizontal
half-lines (labeled by the P;) in which each line is a
time axis starting from time 0 and is subdivided into
segments labeled according to the corresponding
activity of the P;. In Figure 1 we show a simple graph
G.

In Figure 2, we give the corresponding timing diagram
D assuming that the list L= (T, Ts, ..., Ty) is used
with three processors. The finishing time is w=12.

Note that on D we have labeled the intervals above by
the task and below by the length of time needed to
execute the task.

It is evident from the definition of « that it is a
function of L, u, < and n. Let us vary each of these
four parameters in the example and see the resulting
effect this variation has on .

(i) Replace L by L'=(Ty, Ty, Ts Ts, Ts, Ts, T,
Ty, Ts), leaving u, < and n unchanged (Figure
3). For the new list L', o'=o'(L/, u, <, n)=14.
(ii) Change < to <’ by removing T:<T; and
' T:i<Ts.
For the new partial order <’, o' =w'(L, p, <',n) =16
(Figure 4).

Te |, Te | To |

3 4 ' 9 '

o- LTz .T4 , Tz Py .
2 "2 ! 4 8 T

T, Ts , Tg | ¢, .

27 4 7 4 6 '

Figure 4—The timing diagram D’ when <’ is used

Bounds on Multiprocessing Anomalies 207

/2 O— =0 To/8
Ts/3
Te/3
T,/3

Ta/1 = Tg/3

T,/1 O

Ts/1 O

Figure 5—The new graph G using u’

Tw T . Ts $s3 1
T 3 T 3 T 5 T
o T2 T4 Te , To |
. 1 L] 1 T 3 T 8 T
Ts f1, Tz , ¢ ,
1T 3) 8 T

Figure 6—The timing diagram D’ when 4’ is used

Ty ! Ts | ¢’ 1 |

3 ' 4 ' 8 i

TZ | T5 L Tg 1

2 T 4 T 9 T

D"

T3 | Te | $2 .

2 4 N 9 '

To , Ty , 3 .

2 4 ' 9 '

Figure 7—The timing diagram D’ when 4 processors are used

T4/6

T3/3

T,/20

T3/4

Te/3

Figure 8—Another simple graph

T,/6

Ty, (T, Ts | Ta)
P1 > T 2 T 3 T 6 T
0 T T T w13
3 . Ts 7
P — =3 3 ’

Figure 9—The timing diagram D using the list L

(iii) Decrease u to u’ by defining p'(T;) =u(T:) —1
for all 4. In this case G(<,u) is shown in
Figure 5.

The corresponding timing diagram D’ is shown in

Figure 6 where we see o' =o' (L, p/, <, n) =13.

(iv) Increase n from three to four (Figure 7). In this

case ' =15!

Note that in (iii) by using the list L' = (T, Ts, Ts,
Tsy Ty, Ts, Te, Tw, Ts) we can reduce the finishing time
to 10 which is less than the 12 of the original un-
shortened problem. This does not always have to occur
though, as the example given in Figure 8 shows.

When the (optimal) list L= (Ty, T Ti, Ts, T,
Ty, T7) is used, w=13 (Figure 9).

If all execution times are decreased by one unit then
all lists generate the same finishing time o’'=14. A
typical D’ is shown in Figure 10.

A GENERAL BOUND

The examples in the preceding section show that
contrary to what might generally be expected, relaxing
<, decreasing u or increasing n can all cause w to in-
crease. It is natural to inquire into the extent to which
these changes can affect the finishing time w. The
right measure turns out to be the ratio of the possible
finishing times, and a bound is given in the following
result.

Theorem 192

Suppose we are given a set of tasks 3, which we wisk
to execute twice. The first time we use a time function
u, a partial order <, a list L and a multiprocessing
system composed of n proecessors. The second time we

P‘ T1 ATZ'l T4 t ¢ 4 ¢ %
1717 5 2 5
D”: W' =14
Ts L, Ts Te | T, |
Pz 3 o3 3] 5 '

Figure 10—A timing diagram D using shortened times

208 Spring Joint Computer Conference, 1972

T1 /€ C\r »O T1004/1OOO

5 Ta/A
T, /€
2 T /4
T4/E
Ti003/1

Figure 11—A graph G

use a time function p’<u, a partial orderf <’'C <, a
list L’ and a multiprocessing system composed of n’
processors. Let w and o denote the respective finishing
times. Then

w'/w<l+(n=)1/n". (1)

Furthermore, this bound is best possible in the sense
that the right-hand side cannot be replaced by any
smaller function of n and n'.

For n=n', the bound becomes

W/ w<L2—-1/n (2)

In fact, examples 't can be given®® which show that the
bound in (2) can be achieved (to within an arbitrary
¢>0) by varying any one of the three parameters L, u
and <. Note that (2) implies that using the worst
possible list instead of the best possible list still only
results in an increase in w of at most a factor of 2—1/n.

When n=1, (1) implies '/w<1 which agrees with
the obvious fact that the aforementioned changes in
L, u, < and n can never cause increase in the running
time when compared to that for single processor. On
the other hand, when n>1 then even a large increase

p T Te Ts, ~ --0c Tio0z 1003,
tffe’e 1+ 17 T
D: w=1000+2¢
p. [z, Ti004 N
2¢ 1000 e

Figure 12—2 processors are used to execute the tasks of G

 Since a partial order on J is a subset of 3 X 3, <’ C < has the
obvious meaning.

tt Recent examples of M. T. Kaufman (personal communication)
show that in many cases the bounds of (1) and (2) can be achieved
even when u(T) = lforall T,

in the number of processors (but with a fixed list L) can
cause w to increase as the example given in Figure 11
shows (where 0<e<1).

If the tasks of G are executed by two processors
using the list L= (T, T3, T, . . . , Ti004) then w= 1000+
2¢ (Figure 12).

If the tasks of G are executed by 1000 processors
using the same list L then o’ =1001+-¢ (Figure 13).
However, it is always truc that the use of a suitable list
will prevent « from increasing because of an increase
in n (e.g., in this case, take L= (Twu, Ti, T
..y Tloo,;)) .

We mention here that even if inserted idleness and
preemption? are allowed in the first run, it can be shown
that w/w'’ is still bounded above by 2—1/n.3:18

P T Tq Ti004
1 et 7 {000
e T2, Ts |
2 e 1 7 1000
P Ta, Te |
p: '3 [eT 17 1000 w'=1001+€
T ¢
r. ¢ Tioos,
1000 T 7000

Figure 13—1000 processors are used to execute the tasks of G

SOME SPECIAL BOUNDS

We next consider results arising from attempts at
finding lists which keep the ratio of w/w; close to one.
Sinece for any given problem, there are just finitely
many possible lists then one might be tempted to say:
“Examine them all and select the optimum.”’ Not much
insight is needed, however, to realize that due to the
explosive growth of functions such as =!, this is not a
realistic solution. What one is looking for instead is an
algorithm which will guarantee that w/wo is reasonably
close to one provided we are willing to expend an appro-
priate amount of energy applying the algorithm. Un-
fortunately, no general results of this type presently
exist. There is a special case, however, in which steps in
this direction have been taken. This is the case in which
< is empty, i.e., there are no precedence constraints
between the tasks. We shall restrict ourselves to this
case for the remainder of this section.

Suppose, for some (arbitrary) k, the k tasks with the
largest values of u have been selected? and somehow

ti.e., holding a processor idle when it could be busy and inter-
rupting the execution of a task before completion.

+ Recent results of Blum, Floyd, Pratt, Rivest and Tarjan* allow
this to be done in no more than 6r binary comparisons where r
denotes the number of tasks.

Bounds on Multiprocessing Anomalies 209

arranged in a list L; which is optimal with respeet to
this set of k tasks (i.c., for no other list can this set of
k tasks finish earlier). Form the list L® by adjoining
the remaining tasks arbitrarily but so that they follow
all the tasks of L. Let w(k) denote the finishing time
using this list with a system of n proeessors. If wy denotes
the global optimum, i.c., the minimum possible finish-
ing time over all possible lists then the following result
holds.

Theorem .2

w(k) <1+ 1—1/n
wo 1 + [’C/’I’L]
For k=0(mod n) this bound is best possible.
For the case of k=0(mod n) the following example
establishes the optimality of the bound from below.
For 1<i<k+14+n(n—1), define u(T,) by

n for 1<i<k+1,

(3)

w(T) =
1 fork+2<i<k+1+n(n—1).

For this set of tasks and the list L(k) =(Ty, ..., T,
Tk+2, ey Tk+1+,,(,._1), Tk+1) we have w(k) =Ic—|—2n—1

Py a, : a, —a
n 2n+1
P, a; t Ty t t
p*: P? a3 { Gzn-2 # : w®=4n-1
P"“‘ An-1 : Qns2 f t
P Qn 5 Qna I ‘

Figure 14—The timing diagram D* using the decreasing list L*

Since wp=k+n, and k=0(mod n) then

wk) . 1=1/n
o T e/m

as asserted.
For £=0, (3) reduces to (2) while for £ =n we have

w(n)/w<3/2—1/2n. (4)

The required optimal assignment of the largest n tasks
to the n processors is immediate—just assign each of
these tasks to a different processor. For k=2n, (3)
reduces to

w(2n)/wy<4/3—1/3n, (5)

a bound which will soon be encountered again.
An important property of (3) is that the right-hand
side tends to 1 as k gets larger compared to n. Thus, in

P i3 i
! @4 ' Qon-2 '

P, t +
2 az ! A2n-3

Do wg *3n

P t 1

n-2 ap2 Q41 '
}

Pt gt o t

P ¢ t l
n Q2n—1 Qzn 2041 j

Figure 15—The timing diagram D, using an optimal list

order for w(k) to be assured of being within 10 pereent
of the minimum value we, for example, it suffices to
optimally schedule the largest 9n tasks.

Another heuristie technique for approximating the
optimal finishing time wp is to use the “deecrcasing”
listf L*= (T, Ts, ...) where p(T:) 2u(Ti)2>. ...
The corresponding finishing time w* satisfics the follow-
ing inequality.

Theorem.®®
w*/wp<4/3—1/3n. (6)

This bound is best possible.

For n=2, (6) yiclds a bound of 7/6 which is exactly
the ratio obtained from the canonical example with
five tasks having execution times of 3, 3, 2, 2 and 2.
More generally, the following example shows that (6)
is exact. J consists of r=2n-+1 independent tasks T
with p(Te) =ar=2n~[(k+1)/2] for 1<k<2n and
u(Tani1) =agnpa=n (where [z] denotes the greatest
integer not exceeding z). Thus

’ 0‘2n+1)

=(2n—1,2n—1,2n—2,2n-2,...

(a1, @z, . . .
,n+1,n+1,n,n,n)
In Figure 14, J is executed using the decreasing list

L¥= (T, Tsy ..., Tona).
In Figure 15, 3 is executed using an optimal list.

T1 L T1 | ¢}
6 ' 6 "
T, | T3 Te Ta Te
3 T 3 4 3 1 2 T 2 1
T4 Il T5 | TG l T3 1 T5 1 4) N
> T2 1 2 | 3 L — 1
wy =6 w(6)=7

Figure 16—Example illustrating difference between L* and L(2n)

t Such a list can be formed in essentially no more than r log r/log 2
binary comparisons.33

210 Spring Joint Computer Conference, 1972

It is interesting to observe that although the right-
hand sides of (5) and (6) are the same, arranging the
tasks by decreasing execution time does not necessarily
guarantee that the largest 2n tasks will be executed
optimally by L*. An example showing this (due to
J. H. Spencer (personal communication)) is given in
Figure 16. The execution times of the tasks are
(6, 3, 3, 2, 2, 2) and threc processors are used.

The following result shows that if none of the execu-
tion times is large compared to the sum of all the execu-
tion times then w* cannot be too far from wo.

Theorem.1®

If < isempty and
max u(T)/ 20 w(T) <8
T

then
w*/wp<1+npB. (7N

Another approach is to start with a timing diagram
resulting from some arbitrary list and then make pair-
wise interchanges between tasks executed by pairs of
processors which decrease the finishing time, until this
can no longer be done. If o' denotes the final finishing
time resulting from this operation then it can be shown!®
that

o /n<2—2/(n+1) (8)

and, furthermore, this bound cannot be improved.

SOME ALGORITHMS FOR OPTIMAL LISTS

There seems little doubt that even for the case when
< is empty, u(7T) is an integer, and n=2, any algo-
rithm which determines an optimal list for any set of
tasks must be essentially enumerative’ in its computa-
tional efficiency. This problem can be rephrased as
follows:

Given a sequence S= (s, ..., s, of positive integers
find a choice of ¢;= =1 such that

r
b2 s |
k=1

is minimized.
Thus any hope for efficient algorithms which produce
optimal schedules for more general multiprocessing

+ More precisely, the number of steps it may require cannot be
bounded by a fixed polynomial in the number of bits of informa-
tion needed to specify the input data.

problems seems remote indeed. There are several special
cases, however, for which such algorithms exist.

For the case when u(7T) =1 for all tasks T'and < is a
forest,” Hu? has shown that the following algorithm
generates an optimal list L.

(i) Define the level A(T) of any terminal®? task T
to be 1.
(i) If 7" is an immediate successor of T, define
MT) tobe M(T")+1.
(iii) Form the list Lo= (T, T4y, . . ., Ti,) in order of
decreasing A values, i.e., N(T;)) 2N (Tiy) 2+ 2>
MT5,).

Theorem .8

Ly is an optimal list when u(7) =1 for all T and
< is a tree.

The only other case for which an efficient algorithm
is eurrently known is when u(T)=1for all T, n=2 and
< is arbitrary. In fact, two quite distinet algorithms
have been given. One of these, due to Fujii, Kasami
and Ninomiya!'2 is based on a matching algorithm for
bipartite graphs of Edmonds® and appears to be of
order O(r?). The other, due to Coffman and Graham,?
uses the following labeling technique:

Assuming there are r tasks, each task T will be as-
signed a unique label a(T)e{1, 2,.. ., r}.

(i) Choose an arbitrary terminal task T and define
a(To) = 1
(i) Assume the values 1, 2, ..., k—1 have been
assigned for some k<r. For each unlabeled task
T having all its immediate successors already
labeled, form the decreasing sequence M (T) =
(mq, ma, . .., ms) of the labels of 7”s immediate
successors. These M (T) are lexicographicallyt
ordered. Choose a minimal M (T') in this order
and define a(T") =k.
-(iii) Form the list L*=(T;, Ti, ..., Ts) ac-
cording to decreasing a values, ie., a(T;)>
a(Tsy) > >a(T;,).

Theorem.®

L* is an optimal list when u(7) =1 for all T and
n=2,

t This means that every task T has at most one immediate
successor T/, i.e., T < T’ and forno T is T < T < T'. Actu-
ally, by adding a dummy task T, preceded by all other tagks, <
can be made into a free, without loss of generality.

t1 i.e., a task with no successor.

tie., dictionary order, so that (5, 4, 3) precedes (6, 2) and
(5, 4, 3, 2).

Bounds on Multiprocessing Anomalies 211

This algorithm has been shown to be of order O(r?)
and so, in a sense, is best possible since the partial
order < can also have this order of number of elements.

The increase in complexity of this algorithm over
Hu’s algorithm seems to be due to the greatly increased
structure an arbitrary partial order may have when
compared to that of a tree. Even relatively simple
partial orders can defeat many other algorithms which
might be thought to be optimal for this case. The ex-
ample in Figure 17 illustrates this.

An optimal list for this example is L*= (T, T, . . .,
T:) where we assume u(T;) =1 for all . Any algorithm
which allows Ty not to be executed first is not optimal, as,
for example, executing tasks on the basis of the longest
chain to a terminal task (i.e., according to levels), or
executing tasks on the basis of the largest number of
SUCCESSOTS.

For n>2 and u(T) =1 for all T, the algorithm no
longer produces optimal lists as the example in Figure 18
shows.

It would be interesting to know the worst-case behavior
of the lists produced by this algorithm for general ».

The current state of affairs here seems to be similar
to that of the job-shop scheduling problem?® for which
optimal schedules ean be efficiently generated when
n=2, while for n>2 no satisfactory algorithms are
known.

A DUAL PROBLEM

Up to this point, we have generally regarded the
number of processors as fixed and asked for the list

Figure 17—A useful graph for counterexamples

Figure 18—A counterexample to optimality when n = 3

L which (approximately) minimizes the finishing time
w. We now invert this question as follows: For a fixed
deadline w*, we ask for a list L which when used will
(approximately) minimize the number of processors
needed to execute all tasks by the time w*. Of course,
the two questions are essentially equivalent, and so no
efficient algorithms are known for the general case.?
Nevertheless, a number of recent results are now avail-
able for several special cases and these will be the sub-
ject of this section.

We first make a few remarks concerning the general
case. It is not hard to see that if A* denotes the length
of the longest chain'' in the partially-ordered set of
tasks 3, then we must have «*>X*. Otherwise, no num-
ber of processors could execute all tasks of 3 in w* time
units. On the other hand, if sufficiently many processors
are available then all tasks of 3 can be executed in
time A*. In fact, if m* denotes the maximal number of
mutually ¢ncomparable? tasks of 3, then it is never
necessary to have more than m* processors in the sys-
tem since clearly no more than m* can be in operation
at any one time,

t Both of these questions are raised in Reference 10.

ttie., a sequence Ty < Tip < ++o< Ty with X i p (T;,)
maximal.

t T: and T; are incomparable if neither T: < T; nor T; < T
hold.

212 Spring Joint Computer Conference, 1972

16 T—°
34 34
No=10:
51 51
(X 3) (X7
729 77
3
33 / 3 / .
10(X5) [50
Nep =17 34
FF 16(x3) |48
51
6(X7) |42
10(x2) |20 34
(X5) (X10)

Figure 19—An example with Nrr/N, = 17/10

For the case in which u(T') =1 for all tasks T, lower
bounds for both problems are provided by results of
Hu.”® In this case, if A(T') denotes the level of a task
T as defined in the preceding section, let m denote the
mazximum level of any task in 3 and for 0<k<m, let
A(k) denote the number of tasks having level strictly
greater than k.

Theorem .2

If n processors can execute 3 with finishing time w

then
w> max (k+A(k)/n). 9
0<k<m

For other early results dealing with these and related
problems, the reader may consult References 1, 5, 13,
24, 38, 42, 45, and 46.

For the remainder of this section, we restrict ourselves
to the special case in which there are no precedence
constraints on the tasks. In this case the second problem
becomes a special case of the one-dimensional cutting
stock problem!®7 as well as a special case of the as-
sembly-line balancing problem.s

We can also think of the problem in the following
terms. We are given a set of objects ;,0 with O;having
weight a;=pu(T:), 1<i<r. We have at our disposal an
unlimited supply of boxes Bj;, each with a maximum
capacity of w* units of weight. It is required to assign
all the objects to the minimum number N, of boxes
subject to the constraint that the total weight assigned
to any box can be no more than o*. In this form, this
question takes the form of a typical loading or packing
problem.® Integer linear programming algorithms have
been given®1¢.17:% for obtaining optimal solutions for

this problem, but the amount of computation necessary
soon becomes excessive as the size of the problem grows.

Several heuristic algorithms have been suggested?®:154
for approximating N,. One of these, which we call the
“first-fit” algorithm, is defined as follows: For a given
list L= (ati5, @iy . .., @i,), the a;, are successively as-
signed in order of increasing k, each to the box B; of
lowest index into which it can validly be placed. The
number of boxes thys required will be denoted by
Nyrr(L), or just Npp, when the dependence on L is
suppressed.

If L is chosen so that a;,>a;,>--+>a;, then the
first-fit algorithm using this list is called the “first-fit
decreasing” algorithm and the corresponding Ngp(L)
18 anOted by NFFD-

Instead of first-fit, one might instead assign the next
ax in a list L to the box in which the resulting unused
capacity is minimal. This is called the “best-fit”’
algorithm and Npr will denote the number of boxes
required in this case. The corresponding definitions of
“best-fit decreasing”” and N gpp are analogous to first-fit
decreasing and Nrrp and are omitted.

One of the first questions which arises concerning
these algorithms is the extent by which they can ever
deviate from No. Only for Nrr is the behavior accurately
known.

Theorem 47:18

For any ¢>0, if N, is sufficiently large then
Nrr/No<17/104e. (10)

The 17/10 in (10) is best possible. An example for
which Npp/No¢=17/10 is given in Figure 19 (where

2.0F
S 1.5 _
(1 8
0 I
] |
765

bl;r—-
()jl_s._—
QR MN-=r

Figure 20—The function R(a)

Bounds on Multiprocessing Anomalies 213

w*=101). The multiplicity of types of boxes and ob-
jects are given in parentheses.

For any «>0 examples can be given with Ngp/No>
17/10—e and N, arbitrarily large. It appears, however,
that for N, sufficiently large, Npp/N, is strictly less
than 17/10.

In order to achieve a ratio Npr/N, close to 17/10 it is
necessary’® to have some of the a; exceed w*/2. Con-
versely, if all a; are small compared to w* then Npy/N,
must be relatively close to one. This is stated precisely
in the following result.

Theorem 1%

Suppose max a;/w*<a. Then for any >0, if N, is
sufficiently large then

17/10 for a> %,
Nrr/No—e< (11)
1+ Hor0<a<i.

The right-hand side of (11) cannot be replaced by any
smaller function of a.

We denote the right-hand side of (11) by R(a) and
illustrate it in Figure 20.

It is conjectured’® that the worst-case behavior of
Npgr/Nyis the same as that of Nyr/Ny but this has not
yet been established. It is known that R(a) is also a
lower bound for Npr/N, when max a; <aw*.

As one might suspect, Nprp/N, cannot differ from
1 by as much as Nrr/Ny can. This is shown in the
following result.

1_ 1_
.} 2¢ 3 2€
1 1
Z+E 7-2¢
Ng=9n: 2 -
1 ‘T+25
2*e 1
Z+2€
{X6n) (X 3n)
rrrrrn 8€
i V///1
3-3€ 7 A a-3¢ 1-2¢
1 1
2 +2¢ T +€ 1
Nepp=11n: 4 ‘: ‘: 2e
—+€ A_
—;—+e T ‘1‘ 2e
zt¢e Z —2¢€
(X 6n) (X 2n) (X 3n)

Figure 21—An example with Nrrp/Ng = 11/9 and N, large

Ngrp=10n:

Nepp=11n:

2+2¢

(X 5n)

(Xn)

Figure 22-—An example with Nrrp/Nprp = 11/10 and N, large

Theorem 18

For any ¢>0, if N, is sufficiently large then
Nrrp/No<5/4+e. (12)
The example in Figure 21 shows that
Nrrp/No2>11/9 (13)

is possible for Ny arbitrarily large. It is conjectured
that the 5/4 in (12) can be replaced by 11/9; this has
been established! for some restricted classes of a;.

The preceding remarks also apply, mutatis mutandsis,
to the ratio Ngrp/No. This is implied by the following
somewhat surprising result.

Theorem.15

If max ai/w*Z 1/5 then NFFD = NBFD~

The quantity 1/5 above cannot be replaced by any
smaller number as the example in Figure 22 shows.

This example raises the whole question concerning
the extent by which the numbers Npy, N sry, Nrrp and
Ngrp may differ among themselves (assuming that N,
is large). The example in Figure 22 shows that
Nrrp/Nprp>11/10 is possible for arbitrarily large Nj.
On the other hand, the example of Figure 23 shows that
Nrp/Nrpp>13/12 is possible for arbitrarily large No.
These two examples represent the worst behavior of
Nrrp/Ngrp and Ngrp/Nprp currently known.

Another algorithm which has been proposed® pro-
ceeds by first selecting from all the «; a subset which
packs By as well as possible, then selecting from the

214 Spring Joint Computer Conference, 1972

£-2¢ -€
A+e -g
NFFD=12n2 —1—+E
- 3
£+
3 1
34’5
(X 6n) (X 6n)
€

% //é—?»s PZ7777777 4 2 €
& +E

1

Ngrp=13n: 3+e %_25
24¢ (x 8)
3 1se
3
(X 6n) (X6n) (Xn)

Figure 23—An example with Nerp/Nrrp = 13/12 and N, large

remaining «; a subset which packs B, as well as possible,
etc. Although more computation would usually be re-
quired for this algorithm than for the first-fit decreasing
algorithm it might be hoped that the number N of
boxes required is reasonably close to No. This does not
have to be the case, however, since examples exist for
any ¢>0 for which N is arbitrarily large and

N/No> i 1/(2*—1)—e. (14)

n=l

The quantity

3 1/(2n—1)=1.606695 . . .

n=1

in (14) is conjectured®® to be best possible.

Some of the difficulty in proving many of the preced-
ing results and conjectures seems to stem from the
fact that a decrease in the values of the a; may result
in an ¢ncrease in the number of boxes required. For
example, if the weights (760, 395, 395, 379, 379, 241,
200, 105, 105, 40) are packed into boxes of capacity

3 4
5 6
1
N=3:
7 9 7

Figure 24—An optimal packing using L

1000 using the first-fit decreasing algorithm then we
find Nprp=3 which is optimal. However, if all the
weights are decreased by one, so that now the weights
(759, 394, 394, 378, 378, 240, 199, 104, 104, 39) are
packed into boxes of capacity 1000 using the first-fit
decreasing algorithm, we have Nppp=4 which is clearly
not optimal. In fact, the following example shows that
Nrr can increase when some of the a; are deleted. In
Figure 24 the list L= (7,9, 7, 1, 6, 2, 4, 3) is used with
the first-fit algorithm to pack boxes of capacity 13,
resulting in Npp(L) =3.

If the number 1 is deleted from L, to form the list
L'=(7,9,7,6,2,4,3), then we see in Figure 25 that
Npp(L') =4,

DYNAMIC TASK SELECTION

As an alternative to having a fixed list L prior to
execution time which determines the order in which

Figure 25—A nonoptimal packing using the deleted list L’

tasks should be attempted, one might employ an algo-
rithm which determines the scheduling of the tasks in a
dynamic way, making decisions dependent on the
intermediate results of the execution. Unfortunately,
no efficient algorithms of this type are known which
can prevent the worst possible worst-case behavior.
Perhaps the most natural candidate is the “eritical-
path” algorithm,® which always selects as the next task
to be executed, that available task which belongs to the
longest chain of currently unexecuted tasks. This type
of analysis forms the basis for many of the project
planning techniques which have been developed such
as PERT, CPM, ete.® Its worst-case behavior can be
bad as possible as the example in Figure 26 shows
(where 0<e<1).
If wcp denotes the finishing time for three processors
when the critical path algorithm is used on the example
in Figure 26, we have wcp=2n—1—2¢. However, the

t Where, as mentioned before, the length of a chain
Ta <ee+ < Tinis Zk a(Tiy).

Bounds on Multiprocessing Anomalies 215

optimal solution has wo=n, giving a ratio of
wep/wo=2—1+42¢/n (15)

Since ¢ may be chosen arbitrarily close to 0, then
wep/wo may be arbitrarily close to the previous bound
of 2—1/n.

This example also applies to the algorithm which
selects as the next task to be executed, that available
task for which the sum of the execution times of all its
successors is maximal.

It may be true that the critical path algorithm may

not have such extreme worst-case behavior when all the
u(T;) are nearly equal, although not too much in this
direction can be hoped for as the example in Figure 27
shows.
In this example, where n processors are used and all
w(Ts) =1, wep=2n is possible depending on how some
of the ties are broken. Since wy=n-+1 then we obtain
a ratio

wcp/wo=2—2/(’n+ 1) (16)

which may be the maximum value possible in this case.

CONCLUDING REMARKS

As the reader will have gathered from the preceding
discussion, there are certainly more questions than
answers available at this point in time. We take this
opportunity to comment on several of these questions,
indicating what seem to the author to be fruitful direc-
tions for further research.

1. What efficient algorithms exist for preventing
worst-case behavior in the general multiprocessor
problem from approaching the 2 — 1/n bound? It

Ton/1
QO
T. ./€
‘n
O Ton-y/n-1-¢

OTyse O
OTn—{/e
OTn/n-1‘€
OTzp-2/n—1-¢

Figure 26—FExample which causes worst possible critical path
algorithm behavior

Figure 27—Example which can cause bad critical path algorithm
behavior

certainly seems that just as in the case when there
are no precedence constraints between tasks, it should
be possible to show in some quantitative sense, that
if one is willing to use more complex algorithms, one
can be guaranteed of getting closer to the optimum.

2. There seems to be little possibility that an effi-
cient algorithm exists for the determination of optimal
schedules for the general multiprocessor problem.
Recent work of S. Cook® and R. M. Karp (personal
communication) helps to clarify some of these issues.
They show that a large class of combinatorial problems
(one of which is a special case of this problem) are
equivalent in this respect, i.e., either they all have
efficient algorithms or none do. However, up to now
everyone has been singularly unsuccessful in proving
the nonexistence of such algorithms. The time seems
ripe to remedy this unsatisfactory situation.

3. In the other direction, it seems likely that efficient
algorithms should exist for other special cases. For ex-
ample, good candidates would appear to be the cases
n=3, u(T)=1 for all T and n=2, u(T)=1 or 2 for
all 7'.

4. In reference to the dual (cutting stock) problem
of an earlier section, a number of interesting open
questions remain, in addition to those already men-
tioned. For example, one could allow boxes of different
capacities and study the behavior of Npp(L)/Npr(L')
for a fixed set of weights, as a function of the lists L
and L', the ordering of the boxes, the distribution of the
capacitics and weights, ete.? It would also be of interest
to examine two-dimensional analogues of these prob-
lems in view of the applicability of the results (e.g., see
References 16 and 17).

5. Much of the motivation for studying worst-case
behavior is derived from the possible insight the results

t In the sense of Edmonds.®

216 Spring Joint Computer Conference, 1972

may provide for the typical or expected behavior of the
system. Very little has been rigorously established in
this direction so far although some empirical results are
available. For example, in simulation studies involving
fairly large task sets, from two to nine processors, and
unit task execution times, Manacher® reports that in
roughly four-fifths of his runs, optimal lists fail to re-
main optimal when the task execution times are (ran-
domly) slightly perturbed. In other studies, Krone3*
has investigated the typical behavior of several algo-
rithms applied to tasks with no precedence constraints.
In particular, he compared the finishing times w* and
o' obtained by using the ‘“decreasing’’ list L* and by
using stabilized pairwise interchanges, respectively. He
found that usually o’ <w* when execution times had a
large variance (in spite of the fact that their worst-case
behavior is reversed). On the other hand, when the
execution times were more nearly equal, w* was very
good and, in fact, frequently optimal.

In view of the remarkable progress which has oc-
curred in this and other branches of computer science
during the past decade, there is little doubt in my
mind that the answers to these and many other related
questions will be uncovered in the not-too-distant
future.

REFERENCES

1 R BELLMAN
Mathematical aspects of scheduling theory
SIAM Jour of App Math 4 1956 pp 168-205
2 W CLARK
The Gantt chart
3rd ed Pitman and Sons London 1952
3 E G COFFMAN JR R L GRAHAM
Optimal scheduling for two-processor systems
To appear Acta Informatica 2 1972
4 E G COFFMAN JR P J DENNING
Operating systems theory
To appear Prentice-Hall 1972
5 R W CONWAY W L MAXWELL L W MILLER
Theory of scheduling
Addison-Wesley Reading 1967
6 S COOK
The complexity of theorem proving
Proc 3rd Annual ACM Symp on Theory of Computing
1971 pp 151-158
7 W L EASTMAN S EVEN I M ISAACS
Bounds for the optimal scheduling of n jobs on m processors
Manag Sci 11 No 2 1964 pp 268-279
8 J EDMONDS
Paths, trees and flowers
Can Jour of Math 17 1965 pp 449-467
9 S EILON N CHRISTOFIDES
The loading problem
Manag Sci 17 No 5 1971 pp 259-268

10 L R FORD JR D R FULKERSON
Flows in networks
Princeton Univ Press Princeton 1962
11 M FUJII T KASAMI K NINOMIYA
Optimal sequencing of two equivalent processors
SIAM Jour of App Math 17 No 3 1969 pp 784-789
12
Erratum
SIAM Jour of App Math 20 No 1 1971 p 141
13 D R FULKERSON
Scheduling in project networks
Proc IBM Scientific Computing Symp on Combinatorial
Problems IBM Corp New York 1966 pp 73-92
14 M R GAREY R L GRAHAM
Asymiptotic performance bounds on the splitting algorithm for
binary testing
To appear in Acta Informatica
15 M R GAREY R L GRAHAM J D ULLMAN
An analysis of some cutting stock algorithms
To appear
16 P C GILMORE R E GOMORY
A linear programming approach to the cutting stock problem
Oper Res 9 1961 pp 849-859
A linear programming approach to the cutting stock
problem 11
Oper Res 11 1963 pp 863-888
18 R L GRAHAM
Unpublished

17

19
Bounds for certain multiprocessing anomalies
Bell Sys Tech Jour 45 No 9 1966 pp 1563-1581
20
Bounds on multiprocessing timing anomalies
SIAM Jour of App Math 17 No 2 1969 pp 416-429
21
On sorting by comparisons
Computers in Number Theory Ed by A O L Atkin and
B J Birch Acad Press New York 1971 pp 263-269
22 A L GUTJAHR G L NEMHAUSER
An algorithm for the line balancing problem
Manag Sci 11 No 2 1964 pp 308-315
23 F HARARY
Graph theory
Addison-Wesley Reading 1969
24 M HELD R M KARP
A dynamic programming approach to sequencing problems
SIAM Jour of App Math 10 No 2 1962

25 M HELD R M KARP R SHARESKIAN

Assembly-line balancing dynamic programming with
precedence constraints
Oper Res 11 1963 pp 442-459

26 J HOPCROFT R TARJAN
Planarity testing in V log V steps
Information Processing 1971 Proc of IFIP Congress 71
1971

27 J HOPCROFT R M KARP
An n5 algorithm for mazimum matchings in bipartite graphs
IEEE Conf Record of the Twelfth Annual Symp on
Switching and Automata 1971

28 T C HU
Parallel sequencing and assembly line problems
Oper Res 9 No 6 1961 pp 841-848

Bounds on Multiprocessing Anomalies 217

29

30

31

32

33

34

35

36

37

F K HWANG S LIN

Optimal merging of 2 elements with n elements

Acta Informatica 1 1971 pp 145-158

S M JOHNSON

Optimal two- and three-stage production schedules with setup
times included

Nav Res Log Quart 1 No 1 1954. Also Industrial Scheduling
ed by F F Muth and G L Thompson Prentice-Hall
Englewood Cliffs NJ 1963

J L KELLEY

General topology

Van Nostrand Princeton 1955

V KLEE G J MINTY

How good 1s the simplex algorithm?

Inequalities III ed by O Shisha Acad Press New York 1972
pp 159-175

D E KNUTH

The art of computer programming

Vol 3 Addison-Wesley 1972

M J KRONE

Heuristic programming applied to scheduling problems
PhD dissertation EE Dept. Princeton Univ 1970

E L LAWLER

On scheduling problems with deferral costs

Manag Sei 11 No 2 1964 pp 280-288

G K MANACHER

Production and stabilization of real-time task schedules
JACM 14 No 3 1967 pp 439-465

Ju v MATIJASEVIC

Enumerable sets are diophantine

(In Russian) Doklady 191 1970 pp 279-282

38

39

40

41

42

43

4

45

46

47

R McNAUGHTON

Scheduling with deadlines and loss functions

Manag Sei 6 No 1 1959 pp 1-12

J J MODER C R PHILLIPS

Project management with CPM and PERT Reinhold
New York 1964

R C PRIM

Personal communication

E M REINGOLD

Establishing lower bounds on algorithms: a survey

AFIPS Conf Proc 40 1972

P RICHARDS

Parallel programming

Report TD-B60-37 Technical Operations Inc 1960

J ROBINSON

Diophantine decision problems

Studies in Number Theory ed by W J LeVeque MAA
Studies in Math Vol 6 1969

J M ROBSON

An estimate of the store size necessary for dynamic storage
allocation

JACM 18 No 3 1971 pp 416-423

J G ROOT

Scheduling with deadlines and loss functions on k parallel
machines

Manag Sci-11 No 3 1965 pp 460-475

M H ROTHKOPF

Scheduling independent tasks on parallel processors

Manag Sci 12 No 5 1966 pp 437-447

J D ULLMAN

The performance of a memory allocation algorithm

Tech Report No 100 EE Dept Princeton Univ 1971

