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ABSTRACT

In the standard bin packing problem, we are given a list of items, with
sizes between O and 1, and are asked to partition them into as few sets as
possible so that no set contains items whose sizes sum to more than 1. It
has been shown that the ’first-fit” algorithm constructs partitions which

never ocontain more than % times the minimum possible number of

sets. There is a number-theoretic explanation of this fractional bound “11%’

which we conjecture also yields the correct bound over an entire spectrum
of bin packing problems, of which the standard one is merely a special case.
We discuss this conjecture and present partial results in its support.

1. INTRODUCTION

The ’bin-packing” problem studied in [2], [3], [4], [5], [6], [7] is
among the most simply structured, yet mathematically complex, packing
problems encountered in computer science and operations research. It
models a wide variety of real problems, involving such tasks as stock-cutting,
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computer memory allocation, and multiprocessor scheduling [2], [3], [4].
Stated informally, we assume that we have a collection of identical, fixed-
capacity bins and a set of items of various sizes. Our goal is to pack the
items into as few bins as possible so that no bin contains items whose sizes
sum to more than the bin capacity. Because this problem is known to be
“NP-complete” [ 1], most efforts have concentrated on finding and analyzing
simple algorithms that construct near-optimal” packings [4], [5], [6], [7].
In this paper we shall be concerned with further investigating the properties
of one such algorithm, called the “first-fit algorithm”, which is known

never to use more than % times the minimum possible number of bins.

In particular, we shall be concerned with the effect of applying the first-fit
algorithm to pack items already packed in bins of one fixed capacity into
bins of a different capacity. As we shall see, this problem gives rise to a
variety of interesting number-theoretic results and conjectures, which also

provide some additional insight into the derivation of the number i—g in

the previously mentioned bound.

We begin with some basic definitions. For any number o> 0, we
define an o-list to be an ordered set L = {a;,a,,...,a,} of items along
with a size function s which assigns to each a,€ L asize s(ai) satisfying

<s(a)<a. A packing of an o-list L into “’bins” of capacity «o
(Ca-bins”) is a partition P= <A1’A2’ ...,A,) of L such that

ZA s(@)< a for each j, 1<j<m. The number of bins used by the
ac
J

packing P is m=|P|. For an o-list L, the optimal number of bins
of capacity a is defined by

OPT (L,®) = min{| P|: P is a packing of L into a-bins},
and a particular packing P is called an optimal packing if | P| = OPT (L, o).

The first-fit (FF) packing Prg of an arbitrary o-list L is con-
structed as follows. Define the level of any set 4 € L to be level (4) =

= 2; s(a). The construction begins with n empty sets A4 p 1<i<n,
ac

i.e., each set having level 0. It then proceeds to assign each item in L to
one of the sets, the assignments taking place one at a time, in the sequence
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given by the ordering of L. Informally, each item a; is assigned in
its turn to the “first” set into which it will fit”. More formally, to place
a, we set j* to be the least j> 1 for which the current level of A
added to s(a ) does not exceed «, and we then update the set A % to

i+ U g, }. The construction of Ppp is completed once a, has been
ass1gned and the final packing consmts only of those A havmg positive
levels. Notationally we define FF (L, «) = gl

We shall be interested in comparing the values of OPT (L, ®) and
FF (L, &) forvarious lists L and bin capacities a and o' By normalizing
appropriately, there is no loss of generality in restricting our attention to
the case of o = 1. Thus we define the following worst-case measures:

_ FF(L,1) L isa min{a, 1}-list
(1.1) RN[FF’“]‘max{OPT(L &' and OPT(L.o)=N )

(1.2)  R_[FF,q] = lim sup R, [FF, a].
N—> o

The standard bin-packing problem is concerned only with the case of
a= 1, that is, the case in which the same bin capacity is used for both
the optimal and FF packings. For this case, the following intriguing result
has been obtained [4], [5], [7}:

Theorem 1. R_[FF, 1] =11,

This result says that asymptotically the FF packing uses no more than
70% more 1-bins than an optimal packing and, furthermore, that there

exist lists which cause FF to use this many additional bins in the limit. The
reason we called this result “intriguing” is that the number % seems to

appear out of mid-air in the proof, with no apparent intuitive justification.
One motivation for turning to the generalized problem is to seek further

insight into why the number % occurs in this bound.

Of course the generalized problem has practical implications in its
own right. For example, suppose R [FF, ;] = —176 (as indeed it does).
This tells us that by doubling the bin capacity and packing using first-fit
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we will be guaranteed to save at least 30% over the number of bins used by
any packing into bins of the original capacity. Thus the function R _[FF,q]
provides bounds on the reduction (or increase) in number of bins used
when FF is applied to pack the items into bins of a different capacity.

We now proceed to describe a number-theoretic conjecture concerning
the precise value of R_[FF,a] as a function of «. The conjecture
involves certain decompositions of the number o« into a sum of unit
fractions.

For any real number a> 0, a feasible decomposition of «a is any

sequence D(a) = pL,pL, .. > where the p; are integers satisfying:
1 2

D

1
_=a
i>1pl‘
(ii) 2<p1<p2<...

(iii) at least two pi’s exceed 2.

For any sequence D = <qL, —ql—, .. > of unit fractions with all ¢, > 2,
1
the augmented sum AS (D) is defined to be
1
AS(D)= 2> ——.
( ) i»1 qi -1

The function W: (0, <) - (0, e) is then defined as follows:
W(c) = sup {AS (D(«)): D(a) is a feasible decomposition of al.
We can now state our conjecture about the value of R_[FF,a].
Conjecture. For all o> 0, R_[FF, o] = W(o).

This may not appear at first glance to be a particularly informative
conjecture, because no method is given for evaluating W(«). However, in
the next section we shall remedy this defect by showing that for all «
there is a specific, easily described, feasible decomposition of « whose
augmented sum is just W(a).

In the remainder of the paper we present a number of results support-
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ing the conjecture. In Section 3 we provide examples to show that for all
o, R_[FF, a] > W(a). In Section 4 we prove that the conjecture holds for
infinitely many values of o.

II. EVALUATING W(«)

The following observation will be useful later. If D= <i,—1~, .. >
Py Py
is a sequence of unit fractions with 2< p, Sp,<... thenforany k
for which p, is defined, we have

p
ey  Slcaswmy-. 3 L "k 1
ik D; 1<i<k P;— 1 " pp—1i5% p;

We now introduce, for each a > 0, a special feasible decomposition
1 1
DX =(—%, 7%, -
(@)= P¥ B
will be used in computing W(c). (Interested readers should be able to
deduce what the greedy decomposition is, and why it had to be modified so
that it always is a feasible decomposition.)

. .>, called the modified greedy decomposition, which

We define D*(o) inductively. Suppose py,p3,...,p;_, are de-
k~1
fined and let §=a— O %. If §=0, then D*(c) is complete and

i= i

jD*(a)] = k — 1. Otherwise, let

p* = min {p> 2: p is an integer and 6> %}

If 6= —l;l:; and either k=1 or p;_, =2, thenweset p/ =p*+ 1 and
Pi.1 =P (@*+ 1), completing the specification of D*(a) with
|D*(a)} = k+ 1. Otherwise, we set pp= p*.

It is not hard to see that D*(a) is finite iff o is rational (e.g., see
[8]). Also, it is clear that D*(a) is always a feasible decomposition of .
As examples, we have

. 111
D*1)=(3.3:%)

and
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oyl 111111 1 1
D*m=(3:%3%273 728 61" 5030

It follows from the definition of D*(a) that for «> 1 and k> 1,

1 1
2.2 25—*<"**
2.2 >k p; Dy—1

The main result of this section is the following.
Theorem 2. For any a> 0,
W(a) = AS (D*(a0)).

Proof. For a> 0, D*(«) is a feasible decomposition of « and so,
by the definition of W,

W(c) = AS (D*()).

It remains to show the reverse inequality.

Suppose D'(a) = <q_ qL . > is some other feasible decomposition

for a. Let k> 0 be the greatest integer such that g, = p} for 1 <i<k,
and define

s > L 1
1<i<k P 1<i<k 4;
Since by hypothesis D'(a) and D*(a) are different, then a >, and
hence p; ., and q, , must be defined.

Suppose g, ., <P;,, — 1. By the definition of D*(a), this
implies that

wopo—Ll -1 1

* *
9rv1 Pr+r  Pri2

and

Prs1 =49kt 1.

However, since D'(a) is feasible, then we must have k> 1 and q; > 2.
But this implies that p; =g, > 2 so that the modified greedy decom-
position would in fact have p;_ , = ¢, ,, which is a contradiction.
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Thus g, ., >p;,, — 1. In this case, by the definition of k we
actually have

*
dis1 ZPge 1

Thus

| 1
isk+1p;f — 1 Piv1— 1 i>kr1 p;

1 1 1
= — + 2 5= +oa— B,
Pie1@iir — D is1 P ey @ - D “-F

and, by (2.1),

1 < i +1 _1_< (p;:+*1 +1
i>k+19;—1 g1 — 1V izk+1 g Pr i1

¥

Subtracting, we obtain

* . ! = 1 —_ y 1
AS (D*(@) = ASD'@) = 2wy — 2 o 2

1 (a—p)
= —5 — = =0
pk+1(p1:+1 -1 Py
since
1
a—fB< —5———7
Pry1 —1

by (2.2). Therefore, AS (D'(®)) < AS (D*()) and, since D'(a) was an
arbitrary feasible decomposition of « (differing from D*(«a)),

W(a) = sup {AS (D(a)): D feasible} < AS (D*(a)).

This proves the theorem.ll

III. LOWER BOUND EXAMPLES
In this section we shall prove that for all a> 0,
a1 R_[FF, o] = W(a).
This will follow as a straightforward corollary of the following result.
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Theorem 3. Forall a>0, if D is a feasible decomposition of a,
then for any €> 0 and any N, thereis an N= N, such that

(3.2)  Ry[FF,a]>AS (D) —e.

Proof. Suppose D = (pl L.}, By the definition of AS (D)
1

there is an integer M > 2 such that

(33) S, 2

>AS(D)———

Let K be a large multiple of L.e.m. {p; — Lo...py — 1}. We shall con-
struct a list L such that

(3.9 N0<N=OPT(L,a)<K+1
and
(3.5) FF(L,1)> S, K

This will imply by the definition of R, [FF,a] that
S K

M
Ry[FF,0]> 29— =S

Kri=Sm K1 ASD) e

for K sufficiently large (using (3.3)). Thus, the theorem will be proved

once we construct L and show that it obeys (3.4) and (3.5).

Our list L will consist of M types of elements, with K + 1 elements
of each type. The j-th element of type i will be denoted by a;lj] and

will have size specified as follows (with v = WI%_
M

For 1<j<K+1,
1

— 4+ 'y j odd,
: Py
say /D) = )
-1 .
—— . even,
Par y? j
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1 2j-1
- » j odd,
Py 1

s(ay LD =
+ 44, j even,

Py -1
and, for 1<i<M-1,
| 2j
s(a; D) = — + v*.
P;
Even though we have yet to specify the order of the elements a,[j]

in L, we can already show that (3.4) holds. To see that OPT (L, a) <
< K+ 1, simply note that for each j, 1 <j< K+ 1,

%’l N B T
2 s@ip= 2 5 -7 a - -Hn<e

i
since < ]l_l'l To guarantee that OPT (L, ) > N,, all we need do is
choose a sufficiently large K, since
M

K+1
2 2 sl

OPT (L, ) = <

Rl

Thus (3.4) holds for sufficiently large K.

To complete the definition of the list L, we shall now specify an
order for the elements a,[j]. The elements of the ordered list L will be
denoted by

L'=(bM[l],bM[Z],...,bM[K],bM_l[l],...
.,bM_l[K],bM_z[l],...
...,bl[K],bO[l],b0[2],...,bO[M]>.
The b,[j] are identified as follows:
a].[K+l], 1<j<M-2
bo[j]= aM_I[I], i=M-1
ay 2], j=M.
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For 1<i<M-2,
b,lil1=4alil, 1<j<Kk.

The only complicated part of the ordering concerns the b, _ 1 Ul’s and
by [/1’s, which are identified as follows

aM_l[j+2], I<j<K-1 and j odd
by _ 1 U1=1 a5, _,[il, 2<j<K and j even

ay_([K+1], j=K and K odd

ay Ul 1<j<K and j odd
bylil=1a,li+2], 2<j<K-1 and j even

aM[K+ 1, j=K and K even.

The reader may verify that the FF-packing is constructed as follows.
Let B,=<b,[1],...,b,[K]), 1<i<M. Suppose M>j>1 and all
elements in all B, with i>j have been assigned. Then the elements of B].
all go in new bins, the first p;— 1 elements in the first new bin, the second

p;— 1 elements in the second new bin, and so on, until -

]
have been formed, each containing p; — 1 elements from B].. The packing
proceeds in this way until only the b,[j] elementsremain to be assigned,

M
at which point there will already be Z _K __ S, K non-empty bins.

i=1 pi_l

i new bins

Thus, no matter what happens to these last M elements, we- will have
FF(L,1)> SMK, which shows that (3.5) holds.

Thus, as was argued earlier, if K is sufficiently large, (3.2) must hold.
The theorem is proved.l

IV. SPECIAL CASE UPPER BOUND RESULTS

In light of (3.1), all that we need do to show that the Conjecture holds
for a particular value of o isto prove that R_[FF, a] < W(«). Although
we have as yet been unable to prove this for arbitrary «> 0, we have
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been able to establish it in two interesting special cases.

The first result is presented without proof, as it follows directly by
means of the methods for proving Theorem 1 in [4], [5], [7].

Theorem 4. Suppose o= Lz( for some positive integer K. Then

R_[FF, o] = W) = K — 1—30.

The second result represents our only successful attempt to gen-
eralize the proof method for Theorem 1.

Theorem §. Suppose the modified greedy decomposition D*(a) = D
satisfies |D|= 2. Then

R_[FF, o] = W(a).

Proof. Observe first that in order for |D| to be 2, we must have

a< % Suppose D = <—l,—l>. By Theorem 2 we then have W(a) =
qp
1

71 + ;i—l Moreover, by the definition of the modified greedy de-

composition we have p> g > 2 and by (2.2) we have
4.1 p=q(q—1).

We shall proceed by proving a sequence of lemmas. We first define a
weighting function f: (0, o] - (0, W(a)] as follows (see Figure 1)

—-B—x, 0<x<l
p—1 p
x — 1 1 1
@-D@_1y p<*<7q
=1 1, _p
q——l+(x_E)p——l=
—_ p +‘I(P—1)—P(q—1) _l< < .
{ p—1"" Tqp—-Dg-1) * ¢qS*s¢«

If L isan olist and A S L, we define f*(4)= GZA f(s(@)). Our
a
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Wa) =
I T T e
“q-1 p-1
) I |
q-1 | |
| I
| |
I |
| |
| |
1 { }
p-1 | | I
| L [
1 1 11 x
= — —+-=q
)/ q P q

Fig. 1. The function f: (0, a] - (0, W(o)]

lemmas deal with the relations between |A|, level (4), and f*(4) for
such subsets A.

Lemma 4.1. Suppose L is an olist and A S L is such that
level (A) < a. Then f*(A)< W(a).

Proof of lemma. Suppose L and A4 ={a,,a,,...,a,} C L give
a counterexample. We can make certain normalizing assumptions about A4,
given the nature of f. Observe that the following two properties follow
from the definition of f.

, 1 1 1
() If 0<x<o, then f([—é) +x)=f(5] + fix).
(i) If O<e<x<y<%—e, then fix)+ fY)<fix—¢€)+ fly + e).

Using these properties and the fact that level (4)<a, it is a straight-
forward matter to show that we may assume the following about our
counterexample A.
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1) [{aca: g<s@<a}|=0
@ |{aca: —;—<s(a)<%}|< 1

@ |{aca: 0<s@<}]<1

1
qg—1

Hence, the highest possible value for f*(4) is f(%) + f(%) =

+ p_—i i = W(®), a contradiction.®

Lemma 4.2. Suppose L is an oclist and A S L is such that
level (A)>1—a. Then |Al>q— 1.

Proof of lemma. If |A|<q — 2, then

level (4) < (¢ — 2)a = (q — 1)(% + %) _a<
1 1
<@-DNl———+=] —a=1
@-Diggmn*tyg —o=t-
by (4.1), a contradiction.®
Lemma 4.3. Suppose L isan c-list, A={a,,a,,... s d,} €L, and

c€ [0 o) are such that level(A)>1—c and s(a)>c, for 1<i<
<q-—-1. Then f*(A)= 1.

Proof of lemma. We first observe that the hypotheses of the lemma
are consistent, since m>q — 1 by Lemma 4.2. Our proof divides into
three cases.

Case 1. 0<c<l.
p

In this case f*(A)>‘i)—iLl’18VCI(A)>—p——iL'1‘ (1 ——-%) = 1.
1

Case 2. 1<c<—.
p q

We first observe that ¢ <211— implies (g — 1)¢< 1 —c. Thus from

Lemma 4.2 and the definition of f we have
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@3> @ - 0[5y + 5l e~ @@= Del =

1
=p—ilepa-1+p-pgcl=1.

Case 3. ZII~< c<a.

By Lemma 4.2 and the definition of f we have

> @D = 1.

This exhausts the possibilities. B

Lemma 4.4. Suppose L isan o-list, ASL, and c€ (0, ], and
B> 0 are such that s(a)>c forall ac A and level(A)=1—-c—- 3>

>1—a Then f*(A)>1 - (;1_’—1];3.

Proof of lemma. Since level(4)> 1 —«, we have |A|>qg —1 by
Lemma 4.2. Consider an «o-list L' such that L'2 AU Y, where Y=
={V1sVgr - ,yp} and s(y,) = g, 1<i<p. Since level(AU Y)=
= ] — ¢ and the elements of A constitute at least g — 1 elements of
AU Y with size exceeding ¢, Lemma 4.3 applies and we conclude

ffav =+ (NH= L

However, since all elements of Y have size B < %, we have f*(Y) =

= (;‘_e_—l) B. The conclusion of the lemma follows.ll

We now resume the direct line of our proof of Theorem 5. Clearly we
will be done if we can prove that the following inequality holds for all
o-lists L:

“4.2) FF (L, 1)< W(aw) - OPT (L, ) + 1.

So suppose L isan o-list. We first observe that by applying Lemma 4.1 to
the bins of an optimal packing of L into o-bins, we obtain

4.3) (L)< W(a) - OPT (L, ).
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Now consider the FF packing P=(4,,4,,... s Apr 1)) of L
into 1-bins. For each i, 2<i<FF (L, 1), define the coarseness of bin

A;, denoted by c[i], by
cli] = max {1 — level (A].): 1<j<i},

and set c[1] = 0 by convention. Note that coarseness is a non-decreasing
function of bin index, and all elements of A ; must have size exceeding
c[i] by the definition of FF, and that no bin can have coarseness as large
as o Thus level Ap>1-~a forall i, I<Si<FF(L,1)~1, and each
of these bins must satisfy the hypotheses of either Lemma 4.3 (with ¢ =
=c[i]) or Lemma 4.4 (with c=c[i] and B=c[i+ 1]- c[i]). Since
AFF(L’I) must contain at least one item of size exceeding ¢[FF (L, 1)],
we thus can conclude

FF(L,1)-1
= 20 At pf,l ¢[FF (L, 1)] >
FF(_{,,I)
>FF (L, 1) — _p—f—l _22 (cli] — c[i — 1] +

4.9 4+ Z)—%T ¢[FF (L, 1)] =

= FF (L, 1) = 1 = -5 (FF (L, D] - e1) +
+;€-1 c[FF (L, )]1=FF (L, 1) — 1

Combining this with (4.3) we get (4.2) and hence the theorem is proved. i

The two special case theorems presented in this section only establish
our basic conjecture for a very small (though infinite) set of values for a.
However, the results of our attempts to extend the type of weighting func-
tion argument used here to more general situations have been unsuccessful.
The twin goals of constructing a weighting function f* which satisfies in-
equalities (4.3) and (4.4), even for |D|= 3, appear to be irreconcilable.
Alternative approaches have also been fruitless. Future researchers might
wish to approach the general problem by attempting to prove the follow-
ing result (currently still open despite its apparently obvious validity).
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Conjecture. For all a> 0,

R_[FF,a+ %] - 1+ R_[FF,al.

A proof of this conjecture might suggest analogous results for unit

fractions other than %, and lead to a proof of the general result.
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