
On bin packing with conflicts

Leah Epstein1 and Asaf Levin2

1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel.
Email: lea@math.haifa.ac.il

2 Department of Statistics, The Hebrew University, Jerusalem, Israel.
levinas@mscc.huji.ac.il.

Abstract. We consider the offline and online versions of a bin pack-
ing problem called bin packing with conflicts. Given a set of items
V = {1, 2, . . . , n} with sizes s1, s2 . . . , sn ∈ [0, 1] and a conflict graph
G = (V, E), the goal is to find a partition of the items into independent
sets of G, where the total size of each independent set is at most one, so
that the number of independent sets in the partition is minimized. This
problem is clearly a generalization of both the classical (one-dimensional)
bin packing problem where E = ∅ and of the graph coloring problem
where si = 0 for all i = 1, 2, . . . , n. Since coloring problems on gen-
eral graphs are hard to approximate, following previous work, we study
the problem on specific graph classes. For the offline version we design
improved approximation algorithms for perfect graphs and other spe-
cial classes of graphs, these are a 5

2
= 2.5-approximation algorithm for

perfect graphs, a 7
3
≈ 2.33333-approximation for a sub-class of perfect

graphs, which contains interval graphs, and a 7
4

= 1.75-approximation
for bipartite graphs. For the online problem on interval graphs, we design
a 4.7-competitive algorithm and show a lower bound of 155

36
≈ 4.30556 on

the competitive ratio of any algorithm. To derive the last lower bound,
we introduce the first lower bound on the asymptotic competitive ratio
of any online bin packing algorithm with known optimal value, which is
47
36
≈ 1.30556.

1 Introduction

We consider the following bin packing with conflicts problem (BPC) (see
[15, 3] and also the information on the bin packing problem given in [4]). Given
a set of items V = {1, 2, . . . , n} with sizes s1, s2 . . . , sn ∈ [0, 1] and a conflict
graph G = (V, E), the goal is to find a partition of the items into independent
sets of G where the total size of each independent set is at most one, so that
the number of independent sets in the partition is minimized. This problem
is clearly a generalization of both the classical (one-dimensional) bin packing
problem where E = ∅ and of the graph coloring problem where si = 0 for all
i = 1, 2, . . . , n. In an online environment, items arrive one by one to be packed
immediately and irrevocably. A new item is introduced by its size, together
with all its edges in the current conflict graph (i.e., edges which connect it to
previously introduced items).

This problem arises in assigning processes or tasks to processors. In this case
we are given a set of tasks, where some pairs of tasks are not allowed to execute
on the same processor due to efficiency or fault tolerance reasons. The goal is to
assign a minimum number of processors to this set of processes given that the
makespan is bounded by some constant (see Jansen [14]). Other applications of
this problem arise in the area of database replicas storage, school course time
tables construction, scheduling communication systems (see de Werra [5]), and
finally in load balancing, the parallel solution of partial differential equations
by two dimensional domain decomposition (see Irani and Leung [13]). We follow
earlier work and consider the BPC on sub-classes of perfect graphs. This restric-
tion is motivated by the theoretical hardness of approximating graph coloring
on general graphs.

In order to analyze our approximation and online algorithms we use common
criteria which are the approximation ratio (also called performance guarantee)
and competitive analysis. For an algorithm A, we denote its cost by A as well.
An optimal offline algorithm that knows the complete sequence of items is de-
noted by OPT. We consider the (absolute) approximation (competitive) ratio
that is defined as follows. The (absolute) approximation (competitive) ratio of A
is the infimum R such that for any input, A ≤ R·OPT. If the absolute approx-
imation (competitive) ratio of an offline (online) algorithm is at most ρ we say
that it is a ρ-approximation (ρ-competitive). For the offline problem, we restrict
ourselves to algorithms that run in polynomial time. Our online algorithm is
also a polynomial time algorithm (though this property is not always required
in the competitive analysis literature). We focus on the absolute criteria and not
on the criteria of asymptotic approximation ratio and asymptotic competitive
ratio (these criteria are commonly used for bin packing problems) since a conflict
graph can allow us to magnify small bad instances into large ones (with large
enough values of OPT) with the same absolute ratio. So in general, we do not
expect to have a better asymptotic approximation ratio than the corresponding
absolute approximation ratio, even though this may be possible.

Since the BPC problem generalizes the classical coloring problem that is
known to be extremely hard to approximate, we follow earlier studies and con-
sider the BPC problem on the class of perfect graphs for which the coloring
problem is polynomially solvable (see [25]). The best previously known approx-
imation algorithm for BPC on perfect graphs is the algorithm of Jansen and
Öhring [15] with an approximation ratio of 2.7. In Section 3.1 we improve this
result and present our 2.5-approximation algorithm for BPC on perfect graphs.

Following Jansen and Öhring [15] we consider the class of graphs for which
one can solve in polynomial time the precoloring extension problem de-
fined as follows. Given an undirected graph G = (V, E) and k distinct ver-
tices v1, v2, . . . , vk, the problem is to find a minimum coloring f of G such
that f(vi) = i for i = 1, 2, . . . , k. This problem is reviewed in [12, 21], and it
is known to be polynomially solvable for the following graph classes: interval
graphs, forests, split graphs, complements of bipartite graphs, cographs, partial

K-trees and complements of Meyniel graphs3 (see [12] for a review of these re-
sults) and it is also polynomially solvable for chordal graphs as shown by Marx
[22]. However, it is known to be NP-complete for bipartite graphs [12]. We denote
by C the class of graphs G for which one can solve in polynomial time the pre-
coloring extension problem for any induced subgraph of G (including G itself).
I.e., C is closed under the operation of induced subgraph extraction. Jansen and
Öhring [15] analyzed the following algorithm with precoloring for the case where
G belongs to C. Denote the set of large items by L = {j : sj > 1

2}, and denote by
χI(G) the minimum number of colors used by an optimal solution for the pre-
coloring extension problem defined by G. Finally, we define the set of precolored
vertices to be L. Compute a feasible coloring of G using χI(G) colors, where for
each pair of items in L they are assigned different colors. For each color class,
apply a bin-packing heuristic such as the First-Fit-Decreasing algorithm. They
proved that the resulting algorithm is a 5

2 -approximation algorithm. In Section
3.2 we improve this result by presenting a 7

3 -approximation algorithm.
For all ε > 0 Jansen and Öhring [15] also presented a (2 + ε)-approximation

algorithm for BPC on cographs and partial K-trees. Furthermore, they pre-
sented a 2-approximation algorithm for bipartite graphs. A d-inductive graph
has the property that the vertices can be assigned distinct numbers 1, . . . , n
such that each vertex is adjacent to at most d lower numbered vertices. Jansen
[14] showed an asymptotic fully polynomial time approximation scheme for BPC
on d-inductive graphs where d is a constant. This result includes the cases of
trees, grid graphs, planar graphs and graphs with constant treewidth. Oh and
Son [24] and McCloskey and Shankar [23] considered BPC on graphs that are
union of cliques, but their results are inferior to the 2.7-approximation algorithm
of Jansen and Öhring [15].

The hardness of approximation of BPC follows from the hardness of standard
offline bin packing (with respect to the absolute approximation ratio). It is not
hard to see that unless P = NP, no algorithm can have absolute approximation
ratio of less than 3

2 (due to a simple reduction from the partition problem, see
problem SP12 in [8]). Since standard bin packing is a special case of BPC, where
the conflict graph is an independent set, we get that for all graph classes studied
in this paper, BPC is APX-hard, and unless P = NP, cannot be approximated
within a factor smaller than 3

2 . Note that for bin packing, already the simple
First-Fit-Decreasing algorithm is a 3

2 -approximation [27].
Our results. In Section 2 we describe the methods applied in this paper. We
use weights for our analysis. The weights used throughout the paper have the
unique and novel property that weights are assigned not only as a function of
size of items, but also as a function of the location of items in an optimal solution
or in an approximate solution. We think that this new technical approach can
contribute to the analysis of algorithms for other problems as well.

We use these methods in Section 2 to give improved and tight bounds on
two algorithms designed in [15]. We show that their algorithm for perfect graphs
has performance guarantee of approximately 2.691 and their algorithm with pre-

3 A graph is Meyniel if every cycle of odd length at least five has at least two chords.

coloring has performance guarantee of approximately 2.423. These tight results
follow from our analysis together with bad examples for these algorithms given
in [15]. Note that these bounds and their proofs resemble the analysis of the
Harmonic algorithm [19] (the bounds are one unit higher than the upper bounds
for Harmonic). However, neither the algorithms of [15] nor our algorithms use
a partition into classes as is done in the Harmonic algorithm. Moreover, such a
partition in our case would result in an arbitrarily high approximation ratios.

In Section 3 we present our improved new algorithms for the offline case
of BPC. In Section 3.1 we design an improved algorithm for perfect graphs
with performance guarantee of 2.5. Our algorithm is also a 2.5-approximation
algorithm for BPC on all graph classes where one can solve the regular coloring
problem (i.e., coloring the vertex set of a graph using a minimum number of
colors) in polynomial time. In Section 3.2 we design an improved algorithm
with precoloring with performance guarantee of 7

3 . In Section 3.3 we design a
7
4 -approximation algorithm for bipartite graphs.

In Section 4 we discuss online algorithms for BPC on interval graphs. We de-
sign a simple 4.7-competitive algorithm and show a lower bound of 155

36 ≈ 4.30556
on the competitive ratio of any online algorithm. We derive the last lower bound
by introducing the first non-trivial lower bound for online bin packing with
known optimal value, which is 47

36 ≈ 1.30556. We also show an O(log n) compet-
itive algorithm for bipartite graphs, which is best possible. Both algorithms are
adaptations of online algorithms for the standard coloring problem, see [18, 20].

2 Weighting functions and the performance of FFD based
algorithms

In this section, we define weighting functions which are a major tool in the
analysis of algorithms for bin packing. The weights defined in this section are
later adapted and used for the analysis of our improved algorithms.

The idea of such weights is simple. An item receives a weight according to
its size and its packing in some fixed solution. The weights are assigned in a way
that the cost of an algorithm is close to the total sum of weights. In order to
complete the analysis, it is usually necessary to consider the total weight that
can be packed into a single bin of an optimal solution.

In this paper, we exploit this method in order to achieve improved algorithms
for BPC. Though this method was not applied to BPC before, it was widely
used for standard bin packing, and many variants on bin packing. This technique
was used already in 1971 by Ullman [28] (see also [17, 19, 26]).

In this section, we define a set of weights which depends solely on the size of
items. For an item x such that sx > 1

2 we define weight(x) = 1. We define the
interval I1 by I1 = (1

2 , 1]. For an item x such that sx ≤ 1
2 , let j be an integer

such that sx ∈ Ij = (1
j+1 , 1

j]. We define weight(x) = sx + 1
j(j+1) . Note that

even though this classification to intervals was used before, the weight function
is non-standard. Typically either all items in an interval receive the same weight
or are scaled by a common multiplicative factor (see e.g. [19, 2]). We note that

the weight function does not round up the size of an item to the next unit
fraction.

We need to use this special weight function in order to make sure that the
amount of weight is large enough, even if the input is partitioned into several
classes, each of which is packed separately. On the other hand, we must make
sure that the weights are not too large, so that the bound on the performance
guarantee is not increased artificially. A similar (though different) weight func-
tion was used before by Galambos and Woeginger [6]. Their weight function can
be used to prove Corollary 2 and Theorem 1 but not the other results of this
paper. Therefore, we need to modify the weight function of [6] for our needs.

Given this set of weights, we note that for an item x of size sx ∈ Ij (j ≥ 2), the
ratio between its weight and its size is bounded as follows, j+2

j+1 ≤ weight(x)
sx

< j+1
j .

For a set of items X, we denote the sum of weights of all items in X by
W (X). I.e. W (X) =

∑
x∈X weight(x). We next show that any algorithm which

first partitions the input into µ classes, and then applies the algorithm First-Fit-
Decreasing on each class separately, satisfies the following condition on its cost
as a function of the total weight and µ.

Lemma 1. Consider an algorithm A and a subset of items J which forms an
independent set and is packed using First-Fit-Decreasing (FFD). Let Y be the
number of bins used for this packing. Then we have Y ≤ W (J) + 1.

Proof. Note that for the above weight function, any bin which contains an item
of size in (1

2 , 1] has total weight of items at least 1. Note also that the weight of
an item in Ij = (1

j+1 , 1
j] is at least 1

j+1 + 1
j(j+1) = 1

j . Therefore, any bin which
contains j items of size in the interval (1

j+1 , 1
j] has total weight of at least 1.

We can remove such bins from the packing and focus on all other bins called
transition bins (if no bins are left after the removal, we are done).

A transition bin contains only items whose size is at most 1
2 . Note that the

last bin ever opened may result in a transition bin, and it contains at least one
item. Moreover, let a transition bin be of type j (for some j ≥ 2), if the first
item ever packed into it has size in Ij . Next, we argue that there can be at
most one transition bin of each type. Since the items are packed using FFD,
transition bins are created in a sorted order, starting with the smallest type. If
there are two bins of the same type j, this means that during the time between
the packing the first items in these two bins, all packed items were also of size
in interval Ij . Therefore, the first bin must be assigned j such items before
the second transition bin of this type is opened, and thus the first bin is not
a transition bin. Let k be the largest type of any transition bin ever opened
(i.e., the transition bin with the smallest item). Remove from the packing all
items of size at most 1

k+1 . This removal may only decrease the total weight. As
stated above, the weight of all remaining items in the transition bins is at least
a multiplicative factor of k+2

k+1 their size.
Let α be the size of the first item in the last transition bin. Since the last

transition bin is opened, all other bins have a total size of items which is more
than 1 − α. Let i1 < . . . < it < k be the sorted list of types of transition bins.

We consider two cases which are t ≤ bk+2
2 c, and t > bk+2

2 c. In both cases we
need to show that the total weight in all transition bins is at least t (since there
are t + 1 transition bins).

In the first case, if t = 0 we are done. Assume therefore t ≥ 1. We get a total
weight of at least t(1 − α)k+2

k+1 + α + 1
k(k+1) = tk+2

k+1 + 1
k(k+1) − α(tk+2

k+1 − 1) ≥
tk+2

k+1 + 1
k(k+1) −

t k+2
k+1−1

k = tk+2
k+1

k−1
k + k+2

k(k+1) . The inequality holds since the
coefficient multiplied by α is negative and α ≤ 1

k . We need to show that the
weight is at least t, i.e. that t(k2+k−2

k2+k − 1) + k+2
k(k+1) = −2t

k2+k + k+2
k2+k ≥ 0. We get

that this holds for t ≤ k+2
2 .

Consider the second case. The proof of the first case shows that it is enough
to consider the first f = t − bk+2

2 c transition bins, and to show that the total
weight of items in these bins is at least f . These bins are bins of types i1, . . . , if .
Consider the bin of type if+1. Note that if+1 ≤ k−bk+2

2 c since no two transition
bins are of the same type, and if+1 ≥ 3, since if ≥ 2. Let β be the size of the
first item in the bin of type if+1. Let m = if+1. Considering only items of sizes
in (1

m , 1
2], we have that each bin out of the first f transition bins has total size

of such items of at least 1 − β. However, they also have a total size of items in
(1

k+1 , 1
2] of at least 1 − α. Therefore the weight of items in each such bin is at

least (1−β)m+2
m+1 +(β−α)k+2

k+1 = m+2
m+1 +β(1

k+1− 1
m+1)−αk+2

k+1 . We will show that
this amount is never smaller than 1. This expression is minimized for maximum
values of α, β and thus we need to show, (1− 1

m) · m+2
m+1 + (1

m − 1
k) · k+2

k+1 − 1 ≥ 0,
which is equivalent to k−m

km · k+2
k+1 ≥ 2

m(m+1) . Note that k −m ≥ k+1
2 , m + 1 ≥ 4

and thus k−m
km

k+2
k+1 · m(m+1)

2 ≥ k+2
k > 1. This completes the proof.

In the sequel, we consider algorithms for an input I of the following structure.
The set I is partitioned into ν independent sets. Out of these sets µ ≤ ν are
packed using FFD. Each other independent set J is packed into a single bin and
is assigned a total weight of at least 1.

Corollary 1. An algorithm B as above satisfies B ≤ W (I) + µ.

We now give a tight analysis of the FFD based algorithm given in [15] for
perfect graphs. That algorithm finds a coloring of all items with a minimum
number of colors, and then uses FFD to pack each color class. It was shown
in [15] that the performance guarantee of this algorithm is at most 2.7 and at
least 1 + Π∞ ≈ 2.69103. The value Π∞ is the sum of a series and is computed
using the well known sequence πi, i ≥ 1, which often occurs in bin packing. Let

π1 = 2, πi+1 = πi(πi − 1) + 1. Then Π∞ =
∞∑

i=1

1
πi−1 . This sequence is presented

e.g. in [2, 19].
We are now ready to prove a matching upper bound of 1 + Π∞ = 2.691

for this algorithm. In order to do so, we need to find an upper bound on the
total weight which can reside in one bin. The proof is similar to those of [2, 19],
however our weights are defined differently since these proofs do not hold in our
case. We assume that the weight of an item sx of size in I1 is x + 1

2 , which may
only increase the total weight, since we assigned weight 1 to these items.

Lemma 2. Consider a set of items J packed into one bin in OPT. Then W (J) ≤
Π∞ ≈ 1.69103.

Proof. We define the “increase” of an item by its weight minus its size, i.e.,
weight′(x) = weight(x)−sx. Let W ′(X), for a set X, be the sum of the increases
of items in X. We need to show that W ′(J) ≤ Π∞ − 1.

We show that Π∞ − 1 is the supremum increase of a set of items that fits
into a single bin.

First, consider the sequence πi, using its definition, we get that for any value

of k, and small enough δ > 0, the following holds
k∑

i=1

(1
πi

+ δ) < 1. Taking

k → ∞ we get that the total increase in a bin which contains such items tends

to
∞∑

i=1

1
πi(πi−1) =

∞∑
i=1

1
πi+1−1 = Π∞ − 1.

Assume by contradiction that there exists a value ε > 0 (which is an inverse
of an integer M = 1

ε) and a set of items for which the sum of increases is at least
Π∞ − 1 + ε. We prove by induction on i that the bin must contain exactly one
item of each interval Iπi−1, for i ≥ 1.

Assume that we already proved that the bin must contain items from the
intervals Iπ1−1, . . . , Iπi−1−1. We prove that it must contain an item of Iπi−1.

It is not difficult to show that 1 −
i−1∑
j=1

1
πj

= 1
πi−1 , for i ≥ 1. Thus, the largest

interval from which the next item can come from is Iπi−1. Assume that there is
no such item. Thus, all item sizes are from the interval (0, 1

πi
] and the increase of

an item is smaller than a multiplicative factor of 1
πi

of its size. The total increase

is therefore smaller than
i−1∑
j=1

1
πj(πj−1) + 1

πi−1 · 1
πi

=
i∑

j=1

1
πi+1−1 < Π∞ − 1.

Continue this process until the upper bound on the remaining space in the
bin is small enough, namely, 1

πi−1 < ε = 1
M . The rest of the items in the bin,

no matter what they are have an increase of at most 1
πi−1

. This means that the
total increase is at most Π∞ − 1 + 1

πi−1
< Π∞ − 1 + ε. Contradiction.

Corollary 2. The performance guarantee of the FFD based algorithm A of [15]
for perfect graphs is Π∞ + 1 ≈ 2.69103.

Proof. As [15] supplies an example which achieves this bound (asymptotically),
we prove the upper bound. Since the input is colored optimally, the number of
independent sets is exactly µ = χ(G) ≤ OPT. We have A ≤ W (I) + OPT.
However W (I) ≤ Π∞ ·OPT and thus A ≤ (Π∞ + 1) ·OPT.

Note that Lemma 2 can be generalized as follows. For an integer z ≥ 1, let

π1(z) = z + 1, πi+1(z) = πi(z)(πi(z)− 1) + 1. Then Π∞(z) =
∞∑

i=1

1
πi(z)−1 .

Lemma 3. Consider a set of items J which consists of the contents of a sub-bin
of size 1

z . Then W (J) ≤ Π∞(z).

The proof is very similar to the proof of Lemma 2. We have an initial bin of size
1

π1−1 . Since we use the same recursive definition, the property 1 −
i−1∑
j=1

1
πj(z) =

1
πi(z)−1 , for i ≥ 1 holds in this case.

In order to analyze the algorithm with precoloring, we need to define a set
of weights which does not give very high weights to items in I1 = (1

2 , 1]. We
define the weight for sx ∈ I1 to be weight(x) = sx + 1

6 . This unique definition
it possible due to the special treatment of items in I1.

In order to establish a lemma regarding the sum of weights in an independent
set, we modify the type of algorithms we allow to use. Once again, the set I
is partitioned into ν independent sets. Each independent set has at most one
item of size in I1. Out of these sets µ ≤ ν are packed using FFD. Each other
independent set J is packed into a single bin, and is assigned a total weight of
at least 1.

Lemma 4. An algorithm B as above satisfies B ≤ W (I) + µ.

Proof. In order to complete the proof, we note that independent sets where no
item of size in I1 exists do not have a change in weights and thus the previous
proof holds. Consider therefore an independent set with a single item in I1. This
item is the first one to be packed by FFD. In this proof we consider this single
bin to be a transition bin as well. Let k be the type of the last transition bin as
in the proof of Lemma 1. If k ≥ 6, we have that the total size y of items in the
first transition bin is at least 5

6 and thus the weight is at least y + 1
6 ≥ 1 (since

the weight of the large item is its size plus 1
6 , and no weight of an item is smaller

than its size). The proof for all other transition bins is the same as in Lemma
1. We are left with five cases k = 1, 2, 3, 4, 5. In the first case there is a single
transition bin and we are done. In the second case, there are two transition bins.
The sum of items in the two bins is more than 1 and so is their weight. If k = 3
there are at most three transition bins. The case of two transition bins is covered
by the case k = 2 thus we may assume that three transition bins exist. As in the
proof of Lemma 1, we lower bound the sum of weights in bins that are not the
first or last transition bin using k+2

k+1 (1 − α). Since 1
k+1 ≤ α ≤ 1

k , this value is
strictly smaller than 1. The weight of items in the first transition bin is at least
1 − α + 1

6 , and in the last one α + k
k+1 . For k = 3 this gives a total weight of

at least 1− α + 1
6 + 5

4 (1− α) + α + 1
12 = 5

2 − 5α
4 ≥ 25

12 > 2. For k = 4 there are
three or four transition bins, let t denote this amount. We get a total weight of
at least 1 − α + 1

6 + (t − 2)6
5 (1 − α) + α + 1

20 = − 6
5α(t − 2) + 6

5 (t − 2) + 73
60 ≥

9
10 (t−2)+ 73

60 > t−1 which holds for t ≤ 4. Finally, for k = 5 we denote again by
t the number of transition bins (which is at least three and at most five) and get
1−α+ 1

6 +(t−2)7
6 (1−α)+α+ 1

30 = − 7
6α(t−2)+ 7

6 (t−2)+ 6
5 ≥ 14

15 (t−2)+ 6
5 ≥ t−1

which holds for t ≤ 5.

We can now show a tight analysis of the FFD based algorithm with pre-
coloring given in [15]. That algorithm finds a coloring of all items with a min-
imum number of colors, with the restriction that items of size in I1 receive

distinct colors, and then uses FFD to pack each color class. It was shown in
[15] that the performance guarantee of this algorithm is at most 2.5 and at least
Π∞(3) + 2 ≈ 2.4231.

Theorem 1. The performance guarantee of the FFD based algorithm with pre-
coloring B of [15] is Π∞(3) + 2 ≈ 2.4231.

Proof. Since in this case µ = χI(G) ≤ OPT, it is left to upper bound the
amount of weight that can fit into a single bin, and show that it is at most
Π∞(3)+1 ≈ 1.4231. Given a packed bin in OPT, we may assume that all items
have size at most 1

2 . Otherwise, there is a single item of size y > 1
2 , replace this

item with two items of size y
2 . If 1

4 < y
2 ≤ 1

3 , then the weight of each of these two
items is y

2 + 1
12 , and their total weight equals the weight of the original item. If

1
3 < y

2 ≤ 1
2 , then the weight of each of these two items is y

2 + 1
6 , and their total

weight is even larger than the weight of the original item. Hence, we can assume
that all items have size at most 1

2 .
If the bin contains zero or one items of size in I2, then since for smaller items,

the ratio between weight and size is at most 4
3 , we conclude that the total weight

is at most 4
3 in the case of zero items and at most 25

18 ≈ 1.38889 in the case of one
item. If it contains two such items, then by Lemma 3, the remainder of the bin is
of size smaller than 1

3 , and we get a total weight of at most Π∞(3)+1 ≈ 1.4231.

3 Improved algorithms

In the previous section we showed better bounds for two variants of the prob-
lem, based on previously known algorithms from [15]. Though this already gives
an improvement over the previously known bounds, the bounds we have shown
are tight bounds, and thus further improvement is possible only using new algo-
rithms, which we now design. To analyze these algorithms we use weighting in
a more complex way.

3.1 Perfect conflict graphs

We design an algorithm which uses a preprocessing phase.
Algorithm Matching Preprocessing:

1. Define the following bipartite graph. One set of vertices consists of all items
of size in I1. The other set of vertices consists of all other items. An edge
(a, b) between vertices of items of sizes sa > 1

2 and sb ≤ 1
2 occurs if the two

following conditions hold.
(a) sa + sb ≤ 1.
(b) (a, b) /∈ E(G).
That is, if these two items can be placed in a bin together. If this edge occurs,
we give it the cost c(a, b) = weight(b), where weight(b) is defined as above
to be sb + 1

j(j+1) , for the integer j such that sb ∈ (1
j+1 , 1

j] .
2. Find a maximum cost matching in the bipartite graph.

3. Each pair of matched vertices are removed from G and packed into a bin
together.

4. Let G′ denote the induced subgraph over the items that were not packed in
the preprocessing.

5. Compute a feasible coloring of G′ using χ(G′) colors.
6. For each color class, apply the First-Fit-Decreasing algorithm.

We next analyze this algorithm.

Theorem 2. The above algorithm is a 5
2 = 2.5-approximation algorithm.

Proof. The outline of the proof is as follows. We assign weights according to an
optimal packing. Afterwards, we take the total weight and re-assign it to items
so that the total weight does not grow and the conditions of Corollary 1 hold.

Fix an optimal packing, OPT. For a bin with no items of size in I1, weights
are defined as before. For an item of size in I1 the weight is always 1. Given a bin
with an item of size in I1 which contains additional items, pick an item of largest
size in the bin among the items in the bin with size at most 1

2 , and give it weight
zero. All other items in the bin receive weights as before. Note that the items
which received zero weight, together with the items of size in I1 placed together
with them in the same bins of OPT form a valid matching in the bipartite graph,
whose cost is exactly the total reduction in the weights of items (compared to the
weights used for perfect graphs in Section 2). We use the notation weight1 for
this reduced weight function, and weight for the regular weight function (as used
in the proofs for perfect graphs in Section 2). Let ω be the cost of the matching
removed by the algorithm. Then by the optimality of the removed matching, we
conclude that

∑
x∈I

(weight(x) − weight1(x)) ≤ ω. We re-assign weights to items

so that an item of size in (0, 1
2] that was removed in the matching receives weight

zero, and any other item receives a weight as usual (as defined by the function
weight). This weight function (after the re-assignment) is called weight2. We
have

∑
x∈I

weight2(x) + ω =
∑
x∈I

weight(x) ≤ ω +
∑
x∈I

weight1(x). Therefore, the

total weight does not grow, and we may analyze the algorithm (but not OPT)
using the weights weight2. Clearly, each of the bins removed by the algorithm
in the matching has weight of at least 1 since each of these contains an item of
unit weight. Therefore, we can use Corollary 1 since the weights of items that
are packed using FFD are the same as before.

Finally, we need to analyze the largest amount of weight that can be packed
into a single bin of OPT. Using Theorem 1, we can see that if all item sizes are
no larger than 1

2 , then this amount is smaller than 3
2 . We can use this as the

weights of all the items considered here, are the same as in that proof. Consider
now a bin with an item of size in I1. If this is the only item in the bin, then the
total weight is 1. Otherwise let x1 ≥ . . . ≥ xt be the sorted list of other items in
the bin, where x1 is the item which was assigned a zero weight in weight1. Let
j ≥ 2 be an integer such that x1 ∈ Ij . The total weight of the large item and

items x1, . . . , xt is therefore at most j+1
j (

t∑
i=2

sxi) + 1 ≤ 1 + j+1
j (1− 1

2 − 1
j+1) =

1 + j+1
2j − 1

j = 1 + j−1
2j < 3

2 .

We next show that our analysis of Algorithm Matching Preprocessing is tight.

Proposition 1. The approximation ratio of Algorithm Matching Preprocessing
is at least 2.5.

Proof. Let M and ` be large constants and ε = 1
2M . To construct the set of items

we do as follows. We use one sequence of ` items a1, . . . , a` each with size 1
2 + ε.

Furthermore, we have (M − 1)` additional items bi,j , 1 ≤ i ≤ `, 1 ≤ j ≤ M − 1,
each of size ε. The conflict graph induces a clique with the ` items bi,M−1, and
contains no further edges.

An optimal solution is given by ` independent sets Ui = {ai, bi,1, . . . , bi,M−1}
with total size of exactly one for each set. Thus OPT = `.

The preprocessing step finds ` sets of pairs, which are {ai, bi,1}. Next, a
coloring with ` colors which is found for the remaining items consists of one
independent set which contains all items bi,j for 1 ≤ i ≤ `, 2 ≤ j ≤ M − 2, and
additionally contains b1,M−1. Each other independent set contains a single item
bi,M−1 for 2 ≤ i ≤ `. The number of bins used to color the first independent set
is d `(M−3)+1

2M e, since this is the total size of items. Each other independent set
consumes one additional bin, thus in total we get at least 2`− 1 + `

2 − 3`
2M bins.

It can be seen that for M = `2 and ` >> 1, the ratio becomes arbitrarily close
to 5

2 .

Remark 1. Algorithm Matching Preprocessing is a 2.5-approximation algorithm
for BPC on any hereditary class of graphs for which one can find in polynomial
time a coloring that uses a minimum number of colors.

3.2 Conflict graphs that belong to C
In this section we study an approximation algorithm for the case where the
conflict graph G belongs to C. I.e., given an induced subgraph of G, G′ = (V ′, E′)
and a set of vertices L′ ⊆ V ′, we can find a coloring of G using a minimum
number of colors such that each pair of vertices from L′ are assigned distinct
colors.

We analyze the following algorithm. The weight function weight is defined
as in Section 2 for items with size at most 1

2 and for an item x such that sx ∈ I1,
weight(x) = sx + 1

6 . We can use Lemma 4 since our algorithm will follow its
conditions.
Algorithm Greedy Preprocessing:

1. While there is a set of three items {a, b, c} that can fit into one bin (i.e.,
sa+sb+sc ≤ 1 and {a, b, c} is an independent set of G) such that weight(a)+
weight(b) + weight(c) > 1 and sc ≤ sb ≤ sa ≤ 1

2 , or two items {a, b} that
can fit into one bin (i.e., sa + sb ≤ 1 and {a, b} is an independent set of G)

such that weight(a) + weight(b) > 1 do as follows.
Choose such a set A of maximal total weight. Delete A from G, and assign
a new bin for the items of A that is dedicated to this set of items.
Denote by G′ = (V ′, E′) the resulting conflict graph induced by the remain-
ing items.

2. Denote the set of large items by L = {j ∈ V ′ : sj > 1
2}, and denote

by χI(G′) the minimum number of colors used by the optimal solution for
the precoloring extension problem defined by G′ and the set of precolored
vertices L. Compute a feasible coloring of G′ using χI(G′) colors, where any
two items in L are assigned different colors.

3. For each color class, apply the First-Fit-Decreasing algorithm.

Theorem 3. The approximation ratio of the above algorithm is exactly 7
3 ≈

2.33333.

Proof. Fix an optimal solution OPT. Let weight be the weight function as used
in the algorithm. We assign weights according to OPT, and denote this weight
function by weight1. For an optimal bin which contains no items of size in I1,
and contains no triple of items of total weight strictly larger than 1 with respect
to weight, we use weight1 = weight to define weights of items for all items in
the bin. For a bin which contains an item x of size in I1, but contains no other
item y such that weight(x)+ weight(y) > 1, we again use weight1 = weight for
every item in the bin.

For a bin which contains no items of size in I1, but contains a triple of items
of total weight strictly larger than 1 with respect to weight, let a1, a2, a3 be
three items with largest weights in the bin ordered according to their weight.
Note that sa1 ∈ I2 ∪ I3, since otherwise the sum of weights of the three items
cannot exceed 1. We define the reduction value for this bin to be

∆ =
weight(a1) + weight(a2) + weight(a3)− 1

3
.

For any item b in this bin such that b 6= ai for i = 1, 2, 3, we define weight1(b) =
weight(b). Note that the algorithm in the preprocessing step removes at least
one of a1, a2 and a3 since otherwise if all three items are not removed, then the
preprocessing step cannot terminate. Let i′ be the index of the item of an item
ai such that 1 ≤ i′ ≤ 3, and ai′ is removed no later than aj for all 1 ≤ j ≤ 3. We
define weight1(ai′) = weight(ai′)−∆, and for i 6= i′, weight1(ai) = weight(ai).

For a bin which contains an item x of size in I1 and contains another item
y such that weight(x) + weight(y) > 1, let y be such an item with maximum
weight according to weight. We define the reduction value for this bin to be
∆ = weight(x)+weight(y)−1

3 . For any item b in the bin for b 6= x, y, we define
weight1(b) = weight(b). Note that at least one of x and y is removed in the
preprocessing step. If y is removed no later than x, we define weight1(y) =
weight(y)−∆ and weight1(x) = weight(x), and otherwise weight1(y) = weight(y)
and weight1(x) = weight(x)−∆.

Consider a bin which is removed in the greedy preprocessing step. We next
argue that the total weight of the items in this bin according to weight1 is greater

than 1. First note that the total weight of the items according to weight is at
least one. Therefore, if for every item a in this bin, weight1(a) = weight(a), we
get that the sum of weights in this bin is strictly larger than 1. We will show
that a possible reduction in the weights does not decrease the sum of weights

below 1. Let A be the set of items in this bin and Γ =

 P
a∈A

weight(a)

!
−1

3 . For
an item a ∈ A, we have weight1(a) < w(a) if the following conditions hold.
Consider the bin to which a belongs in OPT. Then a value ∆(a) was computed
for this bin such that weight1(a) = weight(a)−∆(a). We get that a is removed
in the preprocessing, and at the time of removal of a, it belongs to a set of
items A of largest weight that is valid for removal in the preprocessing step.
Moreover, no item of A has been already removed at the time that a is being
removed. This means that in the greedy process, we have Γ ≥ ∆(a). Thus
we have

∑
a∈A

weight1(a) =
∑

a∈A

[weight(a) − ∆(a)] ≥ ∑
a∈A

weight(a) − 3Γ = 1.

Therefore, each of the bins that were removed by the algorithm in the greedy
preprocessing step, has weight of at least 1. Therefore we can use Lemma 4 since
the weights of items that are packed using FFD are the same as in Section 2.

Finally, we need to analyze the largest amount of weight that can be packed
into a single bin of OPT. This analysis is done with respect to w1. Consider the
set of items A in a given bin of OPT.

If all items in A have size at most 1
3 , then for all a ∈ A, weight1(a) ≤ 4

3 · sa,
and thus the total weight of the items in A is at most 4

3 . This covers both the
case where there is no reduction in the weight of items in weight1 compared to
weight and the case where there is such a reduction for some items.

Next, assume that A has an item x of size in I2, but all weights in this bin
were assigned according to weight (i.e., for all a ∈ A weight1(a) = weight(a)).
This can happen in two cases. If A contains an additional item y of size in I2, then
A = {x, y}. This is so as a third item in the bin would imply a triple whose total
weight is strictly more than 1 and hence we will have weight1(x) 6= weight(x).
Therefore, in this case where A = {x, y} we get a total weight of sx+ 1

6 +sy + 1
6 ≤

1 + 1
3 ≤ 4

3 . Otherwise, for all y ∈ A \ {x}, we conclude that sy ∈ (0, 1
3]. If all

y ∈ A\{x} actually have size in (0, 1
4], then weight1(y) ≤ 5

4 ·sy, and the total size
of all items in A \ {x} is at most 1− sx. Together this gives a total weight of at
most sx+ 1

6 + 5
4 ·(1−sx) = 17

12− sx

4 . This value is maximized when sx is minimized,
and therefore the total weight of the items in A is at most 16

12 = 4
3 . Finally, if

there is y ∈ A such that sy ∈ I3, then we conclude that all items of A \ {x, y}
have size in (0, 1

6], and thus their weights are at most 7
6 times their sizes. A third

item of size in (1
6 , 1

4] in the bin would imply a triple whose total weight is at
least 1

2 + 1
3 + 1

5 > 1. This triple will force weight1(x) < weight(x) contradicting
our assumption. Therefore, in this case the total weight of the items in A is at
most sx + 1

6 + sy + 1
12 + (1− sx − sy) · 7

6 = 17
12 −

sx+sy

6 ≤ 17
12 − 7

72 = 95
72 < 4

3 .
Suppose that A has an item y of size in I1. If A = {y}, then the total weight

is at most 7
6 . Otherwise, let A = {y, x1, x2, . . . , xt} where sx1 ≥ . . . ≥ sxt is

the sorted list of other items in the bin. Then, x1 is an item of largest weight
according to weight among A\{y}. Let j ≥ 2 be an integer such that x1 ∈ Ij . Let

∆ = weight(y)+weight(x1)−1
3 =

sy+ 1
6+sx1+ 1

j(j+1)−1

3 be the reduction value of this
bin. We have weight(y) + weight(x1) = 3∆ + 1. The total weight (according to

weight1) of the items y, x1, . . . , xt is therefore at most j+1
j (

t∑
i=2

sxi
)+weight(y)+

weight(x1) − ∆ ≤ j+1
j (1 − sy − sx1) + 1 + 2

3 (sy + 1
6 + sx1 + 1

j(j+1) − 1) =

− (j+3)(sy+sx)
3j + j+1

j + 4
9 + 2

3j(j+1) . We use sy ≥ 1
2 and sx1 ≥ 1

j+1 , and get total

weight of at most − 3(j+3)2

18j(j+1) + 18(j+1)2+8j(j+1)+12
18j(j+1) = 23j2+26j+3

18j(j+1) = 23
18 + 1

6j . If
j ≥ 3 we are done. However, if j = 2, then all items but y and x1 are of size
strictly smaller than 1

6 , and thus their weights are at most 7
6 times their sizes.

We get a weight of at most 7
6 (1 − sy − sx1) + 1 + 2

3 (sy + 1
6 + sx1 + 1

6 − 1) =
− sx1+sy

2 + 31
18 ≤ − 5

12 + 31
18 = 47

36 < 4
3 .

It is left to consider the case where all items in A are no larger than 1
2 , but

weight1 is not equal to weight for all items. Such a bin must contain at least one
item of size in I2 (otherwise, this case is already covered). There are two types
of such bins. One option is that A has two items of size in I2. The other option
is that A has a single item of size in I2. In the second option A must contain at
least one item of size in I3, otherwise this case is already covered by the proof
where weight = weight1 for all items (since in our case, the weight according
to weight1 can only be smaller, and for that proof we made no assumption on
whether any reductions of weight were applied to this bin).

Consider the first option. Let y1, y2 ∈ A be the items of size in the inter-
val I2 and assume that A = {y1, y2, x1, . . . , xt} where sx1 ≥ · · · ≥ sxt , so x1

is an item of largest weight according to weight in A \ {y1, y2}. Let j ≥ 3
be an integer such that sx1 ∈ Ij . Let ∆ = weight(y1)+weight(y2)+weight(x1)−1

3 =
sy1+ 1

6+sy1+ 1
6+sx1+ 1

j(j+1)−1

3 be the reduction value of this bin. We have weight(y1)+
weight(y2) + weight(x1) = 3∆ + 1. The total weight (according to weight1) of

the items in A is therefore at most j+1
j (

t∑
i=2

sxi) + weight(y1) + weight(y2) +

weight(x1) − ∆ ≤ j+1
j (1 − sy1 − sy2 − sx1) + 1 + 2

3 (sy1 + 1
6 + sy2 + 1

6 + sx1 +
1

j(j+1) − 1) = − (j+3)(sy1+sy2+sx)

3j + j+1
j + 5

9 + 2
3j(j+1) . We use sy1 , sy2 ≥ 1

3 and

sx1 ≥ 1
j+1 , and get a total weight of at most − (j+3)(2j+5)

9j(j+1) + 9(j+1)2+5j(j+1)+6
9j(j+1) =

− 2j2+11j+15
9j(j+1) + 9j2+18j+9+5j2+5j+6

9j(j+1) = 4
3 .

Consider the second option. Let y1, y2 be the items of sizes in I2,I3 (re-
spectively), and assume that A = {y1, y2, x1, . . . , xt} where sx1 ≥ · · · ≥ sxt , so
x1 is an item of largest weight according to weight in A \ {y1, y2}. Let j ≥ 3
be an integer such that sx1 ∈ Ij . Let ∆ = weight(y1)+weight(y2)+weight(x1)−1

3 =
sy1+ 1

6+sy2+ 1
12+sx1+ 1

j(j+1)−1

3 be the reduction value of this bin. We have weight(y1)+
weight(y2) + weight(x1) = 3∆ + 1. The total weight (according to weight1) of

the items in A is therefore at most j+1
j (

t∑
i=2

sxi) + weight(y1) + weight(y2) +

weight(x1)−∆ ≤ j+1
j (1−sy1−sy2−sx1)+1+ 2

3 (sy1 + 1
6 +sy2 + 1

12 +sx1 + 1
j(j+1)−

1) = − (j+3)(sy1+sy2+sx)

3j + j+1
j + 1

2 + 2
3j(j+1) . We use sy1 ≥ 1

3 , sy2 ≥ 1
4 and sx1 ≥

1
j+1 , and get a total weight of at most − (j+3)(7j+19)

36j(j+1) + 36(j+1)2+18j(j+1)+24
36j(j+1) =

− 7j2+40j+57
36j(j+1) + 36j2+72j+36+18j2+18j+24

36j(j+1) = 47
36 + 1

12j ≤ 4
3 .

We next show that our analysis of Algorithm Greedy Preprocessing is tight.
Let M and ` be large constants and ε = 1

3M . To construct the set of items we
do as follows. We use two sequences of ` items each, a1, . . . , a`,b1, . . . , b`, where
each of these items has size 1

3 + ε. Furthermore, we have (M − 2)` additional
items ci,j , 1 ≤ i ≤ `, 1 ≤ j ≤ M − 2, each of size ε. The conflict graph induces
a clique on the ` items ci,M−2, and contains no further edges.

An optimal solution is given by ` independent sets Ui = {ai, bi, ci,1, . . . , ci,M−2}
with total size of exactly one for each set. Thus OPT = `.

The preprocessing step finds ` sets of triples, which are {ai, bi, ci,1}. Next,
a coloring with ` colors which is found for the remaining items consists of one
independent set which contains all items ci,j for 1 ≤ i ≤ `, 2 ≤ j ≤ M − 3, and
additionally contains c1,M−2. Each other independent set contains a single item
ci,M−2 for 2 ≤ i ≤ `. The number of bins used to color the first independent
set is d `(M−4)+1

3M e, since `(M−4)+1
3M is the total size of these items. Each other

independent set consumes one additional bin, thus in total we get at least 2`−
1 + `

3 − 4`
3M bins. It can be seen that for M = `2 and ` >> 1, the ratio becomes

arbitrarily close to 7
3 .

Note that this example shows that even if the triples are removed optimally,
the performance cannot be improved. Note also that we apply a greedy removal
step on triples. Another way to handle the preprocessing is to use a clever removal
method such as local search. Such a method for weighted elements can be found
in [1]. It allows the removal of almost half the weight which can be removed by
an optimal algorithm (for removal of triples), rather than one third of the weight
as we achieve using a näıve greedy algorithm.

3.3 Bipartite graphs

In [15] it was shown that a simple algorithm which finds some coloring of
the graph with two colors, and packs each color class using Next-Fit, is a 2-
approximation. It was shown there that even if Next-Fit is replaced by FFD,
still this algorithm does not have a better approximation ratio.

We design an algorithm which gives special treatment to some of the prob-
lematic cases and thus get a 7

4 -approximation.
We start with an analysis of the algorithm above (with FFD), which we call

two-set (TS), as a function of the value OPT. Let A and B denote the sets of
items of the two colors. Let `(A) and `(B) denote the numbers of bins packed by
FFD for each of the two sets, let s(X) denote the sum of item sizes in a set X,
i.e., s(X) =

∑
x∈X sx, and let OPT(X) denote the cost of an optimal solution

for a set X. Clearly, we have s(X) ≤ OPT(X) ≤ OPT for X = A, B, and also
OPT ≥ s(A) + s(B).

Simchi-Levi [27] proved that for any input Y , the solution of FFD on this
output satisfies FFD(Y) ≤ 3

2OPT(Y). Therefore, if the size of one of the sets

(without loss of generality, the set A) is small enough, namely, this set fits into
one bin s(A) ≤ 1, we get TS ≤ FFD(B) + 1 ≤ 3

2OPT + 1.
Otherwise, if for both sets, the output of FFD created at least one bin where

the smallest item that opens a new bin is in the interval (0, 1
3]. Then, for each

set A and B, all bins but the last one are occupied by more than 2
3 , and the

sum of items in the two last bins together is more than 1. We get for X = A,B,
s(X) > 2

3 (`(X)− 2) + 1. Thus TS ≤ `(A) + `(B) < 3
2OPT + 1.

Suppose next that both sets A and B do not have a bin opened by an item
with size in the interval (0, 1

3]. Then, we remove all items smaller than 1
3 from

the input. Clearly, the output does not change. Each bin contains an item of
size in (1

2 , 1] (and possibly one smaller item as well) or two items in the interval
(1
3 , 1

2], except possibly the last bin for each set, that may contain a single item
of this last interval. Let Z denote the number of items of size in (1

2 , 1] in A ∪B
and let V denote the number of items from A∪B with size in the interval (1

3 , 1
2].

Therefore, TS ≤ Z+ V−2
2 +2 = Z+ V

2 +1. However, for any packing and thus for
an optimal one we have that each bin contains at most one item with size larger
than 1

2 , and at most two items with size larger than 1
3 , thus we have OPT ≥ Z

and OPT ≥ Z+V
2 . We get TS ≤ Z+V

2 + Z
2 + 1 ≤ 3

2OPT + 1.
We are left with the case where (without loss of generality) the set A contains

a bin opened by an item in (0, 1
3], and B does not. If A does not contain a bin

opened by an item of size in (0, 1
4], we can remove all items smaller than 1

4
from the input, and get the same output. Let Z denote again the number of
items in (1

2 , 1] and V denote the number of items in (1
4 , 1

2]. We now argue that
V ≤ 3(OPT − Z) + Z = 3OPT − 2Z. this last inequality holds, since a bin
with an item larger than 1

2 , can contain at most one item larger than 1
4 , and any

other bin can contain at most three such items. Therefore, TS ≤ Z + V−2
2 +2 ≤

Z + 3
2OPT− Z + 1 ≤ 3

2OPT + 1.
Finally, we need to consider the case that A contains at least one bin opened

by an item of size in (0, 1
4], and B does not have a bin opened by an item whose

size is at most 1
3 . Thus all bins of A but the last one are occupied by more than

3
4 . We get s(A) > 3

4 (`(A)− 2) + 1 and s(B) > 1
2`(B). The last inequality holds

for any Any-Fit type algorithm, and for FFD in particular. Moreover, note that
the packing of B is an optimal one. This can be proved using simple exchange
arguments (see [27]). Thus we have `(B) ≤ OPT. We get OPT ≥ s(A)+s(B) >
3
4`(A) + 1

2`(B)− 1
2 . Thus SL < 4

3OPT + 2
3 + 1

3OPT = 5
3OPT + 2

3 . Since both
OPT and SL are integers, we get SL ≤ 5

3OPT + 1
3 .

We can prove the following lemma.

Lemma 5. If OPT ≥ 3 then the algorithm above satisfies SL ≤ 7
4OPT and

this bound is tight when OPT = 4.

Proof. We obtained two bounds and since SL is integer we conclude that SL ≤
max{b 3

2OPT + 1c, b 5
3OPT + 1

3c}. If OPT ≥ 4 we get 3
2OPT + 1 ≤ 7

4OPT and
b 5

3OPT + 1
3c ≤ 7

4OPT. For OPT = 3 we get SL ≤ 5 ≤ 5
3OPT.

To see that this bound is tight consider the following example. Let ε > 0 be
a small number and define the following set of item sizes A = { 1

4 + ε, 1
4 + ε, 1

4 +

ε, 1
4 + ε, 1

4 − 2ε, 1
4 − 2ε, 1

4 − 2ε, 1
4 − 2ε}, and B = { 1

2 + ε, 1
2 + ε, 1

2 + ε, 1
2 + ε}.

Assume that the conflict graph has a single edge between one item of size 1
2 + ε

and one of the items of size 1
4 + ε. Then an optimal solution has four bins each

of which has one item of size 1
2 + ε, one item of size 1

4 + ε, and one item of size
1
4 − 2ε. Clearly the two items which have a conflict do not share a bin. However,
assume that the coloring into two colors partitions the items into A and B. Then,
FFD(A) = 3 and FFD(B) = 4. Therefore, for this example OPT = 4 and the
algorithm returns a solution that uses seven bins.

As we can see, the only case which is left is OPT = 2 which requires a
special treatment. This case can be identified by a solution of cost 4. Clearly,
such solutions can be achieved also for OPT = 3 and OPT = 4. We define
an algorithm and prove that it succeeds if OPT = 2. Thus, if it fails, then
OPT ≥ 3 which means that the original solution already does not violate the
approximation ratio 7

4 which we would like to prove. We call this algorithm
modified Two-Set.

If OPT = 2, this means that it is possible to color the input using two colors,
and pack each independent set into a single bin. If the conflict graph is connected,
there is a unique way to color the items, and thus this optimal packing can be
achieved. However, a bipartite disconnected graph has more than one possible
coloring with two colors, since the roles of the two colors in each connected
component can be swapped. As a first step, we color each connected component
using two colors. Let z be the number of components, and denote the items of
component i by Vi. For each 1 ≤ i ≤ z, we get two sets Ai and Bi, such that
Ai ∪ Bi = Vi and Ai ∩ Bi = ∅. Each set contains the vertices of Vi that share
a color. We define pi = |s(Ai) − s(Bi)|. Let qi = max{s(Ai), s(Bi)} − pi. The
sizes pi define a scheduling problem on two machines. We run LPT (Longest
Processing Time First) on this input. This means that we initialize two empty
sets, A and B. Sort the sizes pi in non-increasing order. Then starting from the
largest size, we assign each size to the set whose total sum is minimal. Graham
[10] defined and analyzed this algorithm for an arbitrary number of machines
(subsets). It is not difficult to see that when the algorithm terminates, we have
|s(A) − s(B)| ≤ pk, where k is the last index of size assigned to the set with
larger sum. For 1 ≤ i ≤ z, we define a coloring using two colors (which are
defined by the sets C and D) as follows. If s(Ai) ≥ s(Bi), and pi is in A or if
s(Ai) < s(Bi), and pi is in B, assign the items in Ai to C and the items in Bi

to D. Otherwise assign the items in Bi to C and the items in Ai to D. This

assignment means that s(C) =
∑
i∈A

pi +
z∑

i=1

qi and s(D) =
∑
i∈B

pi +
z∑

i=1

qi. Thus

we have |s(C) − s(D)| ≤ pk as well. Assume (without loss of generality) that
s(C) ≥ s(D). Since OPT = 2, S(C) + S(D) ≤ 2. Thus s(D) ≤ 1 and all the
items assigned to D fit into a single bin. Now remove pk + qk from s(C). We get
a total of less than s(D) ≤ 1, and thus the remaining items of C fit into one
bin. Finally the items of the larger set among s(Ak) and s(Bk) must be packed
together in a solution with two bins only, and since OPT = 2, we get that these
items also fit into one bin.

We proved the following theorem.

Theorem 4. Algorithm modified Two-Set has an approximation ratio of ex-
actly 7

4 .

Proof. We showed that if OPT = 2, the process above succeeds to pack the
input into two bins. Otherwise, the theorem follows from Lemma 5.

4 Online algorithms

In this section we discuss online algorithms for interval graphs. For many classes
of graphs, the online problem is hard to approximate. The coloring problem is a
special case of BPC, where all item sizes are zero.

Consider e.g. the problem on trees. Gyárfás and Lehel [11] proved a deter-
ministic lower bound of Ω(log n) on the online coloring of bipartite graphs on n
vertices, which holds already for trees. Lovász, Saks and Trotter [20] showed an
online coloring algorithm which colors such a graph (which is 2 colorable) using
O(log n) colors. This immediately implies an online coloring algorithm for BPC
on bipartite graphs, which is optimal up to a constant multiplicative factor on
the competitive ratio. This algorithm A uses the algorithm of [20] to color the
conflict graph using C colors. Then each color class is colored by some reasonable
algorithm, e.g. Next-Fit. We get that for each color class i, which contains `i bins,
the total size of items Si is more than `i−1

2 (since no two consecutive bins can be

combined). We get that A ≤
C∑

i=1

`i <
C∑

i=1

(2Si +1) ≤ 2OPT+C ≤ O(log n)OPT.

Since the same can be applied for any graph class for which no constant com-
petitive algorithm exists, we focus on a graph class for which such an algorithm
exists, namely, interval graphs. Kierstead and Trotter [18] constructed an online
coloring algorithm for interval graphs which uses at most 3ω− 2 colors where ω
is the maximum clique size of the graph. They also presented a matching lower
bound of 3ω − 2 on the number of colors in a coloring of an arbitrary online
coloring algorithm. Note that the chromatic number of interval graphs equals to
the size of a maximum clique, which is equivalent in the case of interval graphs
to the largest number of intervals that intersect any point (see [16, 9]). The tech-
nique above implies a 5-competitive algorithm. We can show that using First-Fit
(FF) instead of Next-Fit for coloring each class slightly improves this bound.

Theorem 5. The algorithm of [18] combined with FF for coloring each class
has competitive ratio 4.7.

Proof. The proof is similar to the proof of [15] for perfect graphs. We can use the
well known weight function ŵ defined for FF already in [7]. It was shown that
for a set of items J on which FF is applied, we have `(J) ≤ W (J) + 1, where
W (J) denotes the total weight of items in J , and `(J) is the number of bins in
the packing of J by FF. On the other hand if we remove the incompatibility con-
straint (i.e., assume that the conflict graph has no edges), and let OPT’ denote
an optimal solution for this instance, we have W (I) ≤ 1.7OPT′ ≤ 1.7OPT. Let

Ij denote the items colored by the algorithm of [18] by color j. This algorithm
colors the items with at most 3χ(G) − 2 ≤ 3OPT − 2 colors, and thus we get

A ≤
C∑

j=1

`(Ij) <
C∑

i=1

(W (Ij) + 1) ≤ W (I) + C ≤ 4.7OPT.

Based on the examples of [17, 15] and [18], we can show a sequence of in-
stances whose competitive ratio is arbitrarily close to 4.7. We fix a value of
OPT = k +2 and a value of ε >> δ > 0 that is small enough, and we denote by
` = k

10 . The construction is composed of two phases. In the first phase we repeat
the construction of [18] with a maximum clique size k +1 where all sizes defined
for the vertices which the intervals represent all have zero size. We repeat the
construction to have 3k copies of this construction that use the same set of 3k+1
colors. Since the intervals are colored by the algorithm of [18], all structures are
all colored in the same way. We call these 3k + 1 colors 1, 2, . . . , 3k + 1.

At the end of the first phase, for each sub-interval of the real line that contains
a copy of the construction of [18] that uses the color set {1, 2, . . . , 3k + 1} we
shrink this sub-interval and replace it with a point of interest. We do it only to
simplify the construction, and in order to implement this we replace each interval
[a, b] that contains such point of interest with an interval that is adjacent to all
the vertices in the corresponding copy of the first phase construction.

We next present 3k disjoint intervals one by one (i.e., this set of intervals
are independent set of G). Each of these intervals contains exactly one point of
interest from the first phase, and therefore these intervals cannot be colored using
colors 1, 2, . . . , 3k + 1. The first k intervals are denoted by ai,p for i = 1, . . . , 10
and p = 1, . . . , ` have sizes according to the following. ai,p has size 1

6 + ε
3p − δ for

1 ≤ i ≤ 5 and otherwise it has size 1
6 − ε

3p+1 −δ. These k intervals are introduced
according to the following order:

a1,1, a2,1, a3,1, a6,1, a7,1, a4,1, a5,1, a8,1, a9,1, a10,1, a1,2,

The next k intervals are denoted by bi,p for i = 1, . . . , 10 and p = 1, . . . , `. Their
sizes are defined according to the following. The size of bi,p for 1 ≤ i ≤ 5 is 1

3 +
ε

3p−1−δ and otherwise the size of bi,p is 1
3− ε

3p−δ. These k intervals are introduced
in the following order b1,1, b6,1, b2,1, b7,1, b3,1, b8,1, b4,1, b9,1, b5,1, b10,1, b1,2, The
last k intervals are denoted by ci for i = 1, 2, . . . , k and each of these has size of
1
2 + δ.

Note that the coloring algorithm of [18] will color all the intervals of the
second phase using color 3k+2 and therefore we need to compute the number of
bins that the First-Fit algorithm uses in order to pack all these items. Applying
First-Fit will open ` bins of the following type {a1,p, a2,p, a3,p, a6,p, a7,p} for p =
1, 2, . . . , `. It will use another ` bins of the following type {a4,p, a5,p, a8,p, a9,p, a10,p}.
There will be another 5` bins each containing {bi,p, bi+5,p} for i = 1, 2, . . . , 5 and
p = 1, 2, . . . , `. Last, the algorithm will pack each of the items ci separately us-
ing another 10` bins. The total number of bins used to pack the second phase
intervals is 17` = 1.7k. By adding the 3k + 1 colors that are used to color the
first phase intervals, we get a solution whose cost is 4.7k + 1.

It remains to show that the optimal solution costs k + 2. We first show
a packing of the second phase intervals using exactly k + 2 bins. We use 5`
bins each containing {ai,p, b5+i,p, c5(p−1)+i} for i = 1, . . . , 5 and p = 1, . . . , `.
We use another 5` − 10 bins each containing {a5+i,p−2, bi,p, c5(p+`−3)+i}. We
use another five bins containing {c10(`−1)+i, bi,1} for i = 1, . . . , 5, and another
five bins containing {c10(`−1)+5+i, bi,2} for i = 1, . . . , 5. We have another two
bins where the first one consists of {a6,`−1, a7,`−1, a8,`−1, a9,`−1, a10,`−1} and the
second bin consists of {a6,`, a7,`, a8,`, a9,`, a10,`}. Then for each construction of
the first phase we have a list of k + 2 colors such that one of them is used in the
coloring of the second phase interval that is adjacent to it. Therefore, we have
a set of k + 1 colors that can be used to color the intervals of the first phase
construction. However, this can be done as the maximum clique size in each such
construction is k + 1. Therefore, we are able to color the entire set of intervals
using k+2 colors each of them containing items of total size at most one. Hence,
OPT = k + 2.

We can show that an algorithm of much smaller competitive ratio does not
exist.

Theorem 6. The competitive ratio of any online algorithm for BPC on interval
graphs has competitive ratio of at least 155

36 ≈ 4.30556.

In order to prove this theorem, we prove the following two lemmas.

Lemma 6. Let c be a lower bound on the asymptotic competitive ratio of any
online algorithm for standard bin packing, which knows the value OPT in ad-
vance. Then the competitive ratio for any online algorithm for BPC on interval
graphs has competitive ratio of at least 3 + c.

Proof. We use a construction similar to the lower bound given in [18]. In this
construction we assume that we know the optimal value OPT = k, and thus we
are allowed to use a set of at most (3+c)k colors. The construction is composed of
two phases. In the first phase we introduce intervals such that the corresponding
vertices have size zero (we call them zero sized intervals, where the size of an
interval is unrelated to its length). The maximum cardinality clique among these
intervals is k−1 and the algorithm is forced to use at least 3k−5 colors, denoted
by 1, 2, . . . , 3k − 5. We next describe this phase in detail.

During the first phase, we shrink some parts of the line into single points.
Given a point p, that is a result of shrinking an interval [a, b]. Every interval pre-
sented in the past which is contained in [a, b] is also shrunk into p and therefore
such a point inherits a list of colors that such intervals received. These colors
cannot be assigned to any interval that contains the point p. The shrinking is
done only for simplification purposes. In practice it means that for a given point
p that is the result of shrinking, every future interval either contains this point
or not, i.e., it either contains all intervals that were shrunk into this point, or
has no overlap with any of them.

If an algorithm uses more than U = (3 + c)k colors, we can stop the con-
struction. Therefore, we assume that the algorithm is initially given a palette

of U colors. As soon as all these colors are used, the proof is complete. This is
just one stopping condition, we may stop the sequence earlier as well, after the
algorithm used 3k − 5 colors from the set of colors {1, 2, . . . , (3 + c)k}. In this
case a second phase is used.

The first phase is composed of at most k−1 steps that we define as follows. At
the first step of the first phase we introduce S disjoint intervals where S = U3k.
Since the algorithm is using at most U colors, this means that there exists a
set of S

U intervals that share the exact same color c. We shrink all intervals into
single points. Later steps result in additional points.

We now define step j of the first phase. The steps are constructed in a way
that in the beginning of step j there is a set of at least U3k−j+1 points that
contain a given subset of the U colors. These points are called points of interest.

There exist some other points containing other subsets of colors. All these
points are called void points. At this time, we partition the points of interest into
consecutive sets of four. At most three points of interest that do not participate
in this become void points.

We next define additional intervals, increasing the size of the largest cardi-
nality clique (with respect to the number of intervals, i.e., ignoring sizes) by
exactly one. Given a set of four points listed from left to right a1, a2, a3, a4, let
b be the leftmost void point on the right hand side of a1, between a1 and a2. If
no such point exists, then let b = a1+a2

2 , i.e., the point which is halfway between
a1 and a2. Similarly, let d be the rightmost void point between a3 and a4, and if
no such point exists then d = a3+a4

2 . Let f be a point between a2 and a3 that is
not a void point. We introduce the intervals I1 = [a1,

a1+b
2] and I2 = [d+a4

2 , a4].

If they both receive the same color, we introduce the intervals I3 = [a1+b
2 , f]

and I4 = [f, d+a4
2]. The interval I3 intersects with a2, and with I1. The second

interval I4 intersects I3, a3 and I2, therefore two new colors must be used. In
total, three new colors were used.

If I1, I2 receive distinct colors, we introduce the interval I5 = [a1+b
2 , d+a4

2].
Interval I5 intersects with I1, I2, a2, a3, and thus gets a new color. In total, three
new colors were used.

We shrink every such interval [a1, a4] into a single point. Each of the new
shrunk points received three new colors.

Note that we do not use more than U colors, and each new shrunk point
receives three new colors. Four intervals are introduced only if the first two
received the same color. There are less than U3

6 options to choose from the set
of three new colors. We can choose at least 6 · U3k(i−j) points having the same
set of used colors. The points containing these exact sets of colors become the
points of interest of the next step, and the others become void points of the
next step. Points that are void points of previous steps and are not contained
in shrunk intervals remain void points. Note that the points where the new
intervals intersect are points with no previous intervals, and therefore the clique
size increases by exactly 1.

At the end of the k − 1-th step, the first phase where we have a set of zero
sized intervals ends, and online algorithm used at least 3k − 5 colors to color
these intervals.

Assume that c is a lower bound on the asymptotic competitive ratio of any
online algorithm for standard bin packing, which knows the value OPT = k in
advance. I.e., let ε > 0 be a small value, then there is a sequence of at most f(k)
items such that OPT = k and the algorithm is forced to use at least (c − ε)k
bins. E.g., in the proof of Lemma 7, f(k) = 3k. (Note that even if the lower
bound construction uses an infinite number of items, we can use a subsequence
of the construction of finite length which gives a lower bound of c− ε.)

We repeat the first phase construction f(k) · (U
3k−5

)
times (where each time

is totally disjoint to the other times). In this way we create f(k) sub-intervals of
the real line, each has a set of zero sized intervals and these intervals are colored
with colors {1, 2, . . . , 3k − 5}. In the second phase we will introduce intervals
which match these sub-intervals of the real line. In this way the vertices of the
new intervals will be adjacent to vertices of intervals with colors 1, 2, . . . , 3k − 5
and therefore must be colored using a higher color.

In the second phase we consider the lower bound instance of the bin packing
problem where OPT is known to the algorithm. If the lower bound construction
asks to present an item of size si we present an interval with size si that overlaps
exactly one sub-interval of the real line defined by the first phase (and therefore it
cannot be colored with a color from {1, 2, . . . , 3k− 5}), and it does not intersect
to any preceding interval of the second phase. In this way all intervals of the
second phase are colored with colors greater than 3k− 5, and since they cannot
be packed by the online algorithm using less than (c− ε)k bins, they use colors
3k − 4, . . . , (3 + c− ε)k − 5 (this is w.l.o.g. after renaming the colors).

To prove the claim it suffices to show that OPT = k. To see this note
that each of the first phase construction can be colored using k − 1 colors (as
the maximum clique size in it is k − 1). Therefore, we consider the optimal
solution for the bin packing instance that uses k bins. Then we traverse the
first phase constructions one by one and allocate the intervals in the first phase
constructions to k−1 colors among the existing k colors so that the overlapping
interval of the second phase (if there is such one) has a different color. In this
way the total size of items that are allocated to a color is at most one, and we
obtain a coloring using k colors that satisfies the conflicts constraints such that
the total size of each color class is at most one.

Lemma 7. Any online algorithm for standard bin packing, which knows the
value OPT in advance, has competitive ratio of at least 47

36 ≈ 1.30556.

Proof. We use a construction similar to the lower bound given by Yao in [30]
(see also [29]). The difference is that since we commit on a given value of OPT
in advance, we need to pad the sequence with items of size 1 in cases where we
would otherwise simply stop the sequence.

Let N be a large integer which is divisible by 6. The input consists of one of
the following three inputs.

1. N items of size 0.15, followed by 5
6N items of size 1.

2. N items of size 0.15, followed by N items of size 0.34, followed by N
2 items

of size 1.
3. N items of size 0.15, followed by N items of size 0.34, followed by N items

of size 0.51.

It is not difficult to verify that in all three cases, OPT = N . We use the following
variables. For i = 1, . . . , 6, Xi denotes the number of bins with exactly i items
of size 0.15, after only these items have arrived. For i = 0, . . . , 6, 0 ≤ j ≤ 2,
i + j > 0, Xi,j denotes the number of bins with exactly i items of size 0.15 and
j items of size 0.34, after these two sets of items have arrived. Clearly, if i ≥ 3
then Xi,2 = 0 and if i ≥ 5 then Xi,j = 0 for j 6= 0. For convenience we also let
X0,0 = 0. We define X0 = X0,1+X0,2 to be the number of bins with only (one or
two) items of size 0.34. Moreover we have for 1 ≤ i ≤ 6, Xi = Xi,0 +Xi,1 +Xi,2.

The following equalities must hold due to amounts of items.
6∑

i=1

iXi = N and

6∑
i=0

2∑
j=0

jXi,j = N .

Let R be the competitive ratio of an algorithm. We can compute the cost of
the algorithm for each of the three inputs. This cost is at most R ·N . The costs

are
6∑

i=1

Xi + 5
6N ,

6∑
i=0

Xi + N
2 , since in these cases, the algorithm must put the

large items into new bins, and X0,2+X1,2+X2,1+X2,2+X3,1+X4+X5+X6+N .
This is true since the following bins can accommodate an item of size 0.51; bins
with no items of size 0.34 and at most three items of size 0.15, bins with one
item of each of these sizes, and bins with only one item, which is of size 0.34.

We have three inequalities, which we multiply by the coefficients 1, 2, 3, re-
spectively, and get the following.

2X0,1 + 5X0,2 + 3X1,0 + 3X1,1 + 6X1,2 + 3X2,0 + 6X2,1 + 6X2,2 +

3X3,0 + 6X3,1 + 6X4,0 + 6X4,1 + 6X5,0 + 6X6,0 +
29
6

N ≤ 6RN

We have established the following two equalities
6∑

i=1

iXi = N and
6∑

i=0

2∑
j=0

jXi,j =

N , which we multiply by the coefficients 1, 2, respectively. Hence, we get the fol-
lowing.

2X0,1 + 4X0,2 + X1,0 + 3X1,1 + 5X1,2 + 2X2,0 + 4X2,1 + 6X2,2 +
3X3,0 + 5X3,1 + 4X4,0 + 6X4,1 + 5X5,0 + 6X6,0 = 3N

Since all variables are non-negative, we substitute and get 29
6 N + 3N ≤ 6RN ,

and thus R ≥ 47
36 .

5 Conclusion

We have improved the upper bounds for BPC on perfect graphs, interval graphs
(and a few related classes) and bipartite graphs. Most our results follow from

adaptation of weighting systems to enable analysis of algorithms for BPC, and
new algorithms which carefully remove small subgraphs of items which cause
problematic instances. There is still a gap between the inapproximability which
follows from bin packing, and the upper bounds. An open problem would be to
close this gap.

Another open question is the following. As in [15], we used the absolute
approximation ratio to analyze the performance of our algorithms. It can be
seen that using the asymptotic approximation ratio, we can achieve a slightly
better upper bound for bipartite graphs. It is unclear whether the same is true
for other graph classes, i.e., whether the asymptotic approximation ratio for
BPC is strictly lower than the absolute one for some cases.

References

1. E. Arkin and R. Hassin. On local search for weighted packing problems. Mathe-
matics of Operations Research, 23:640–648, 1998.

2. B. S. Baker and E. G. Coffman, Jr. A tight asymptotic bound for next-fit-decreasing
bin-packing. SIAM J. on Algebraic and Discrete Methods, 2(2):147–152, 1981.

3. E. G. Coffman, Jr., J. Csirik, and J. Leung. Variants of classical bin packing. In
T. F. Gonzalez, editor, Approximation algorithms and metaheuristics. Chapman
and Hall/CRC. To appear.

4. P. Crescenzi, V. Kann, M. M. Halldórsson, M. Karpinski, and
G. J. Woeginger. A compendium of NP optimization problems.
http://www.nada.kth.se/ viggo/problemlist/compendium.html.

5. D. de Werra. An introduction to timetabling. European Journal of Operational
Research, 19:151–162, 1985.

6. G. Galambos and G. J. Woeginger. Repacking helps in bounded space online bin
packing. Computing, 49:329–338, 1993.

7. M. R. Garey, R. L. Graham, D. S. Johnson, and A. C. C. Yao. Resource constrained
scheduling as generalized bin packing. Journal of Combinatorial Theory (Series
A), 21:257–298, 1976.

8. M. R. Garey and D. S. Johnson. Computers and intractability. W. H. Freeman
and Company, New York, 1979.

9. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,
1980.

10. R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on
Applied Mathematics, 17:263–269, 1969.

11. A. Gyárfás and J. Lehel. On-line and first-fit colorings of graphs. Journal of Graph
Theory, 12:217–227, 1988.

12. M. Hujter and Z. Tuza. Precoloring extension, III: Classes of perfect graphs.
Combinatorics, Probability and Computing, 5:35–56, 1996.

13. S. Irani and V. J. Leung. Scheduling with conflicts, and applications to traffic signal
control. In Proc. of 7th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’96), pages 85–94, 1996.

14. K. Jansen. An approximation scheme for bin packing with conflicts. Journal of
Combinatorial Optimization, 3(4):363–377, 1999.

15. K. Jansen and S. Öhring. Approximation algorithms for time constrained schedul-
ing. Information and Computation, 132:85–108, 1997.

16. T. R. Jensen and B. Toft. Graph coloring problems. Wiley, 1995.
17. D. S. Johnson, A. Demers, J. D. Ullman, Michael R. Garey, and Ronald L. Graham.

Worst-case performance bounds for simple one-dimensional packing algorithms.
SIAM Journal on Computing, 3:256–278, 1974.

18. H. A. Kierstead and W. T. Trotter. An extremal problem in recursive combina-
torics. Congressus Numerantium, 33:143–153, 1981.

19. C. C. Lee and D. T. Lee. A simple online bin packing algorithm. Journal of the
ACM, 32(3):562–572, 1985.

20. L. Lovász, M. Saks, and W. T. Trotter. An on-line graph coloring algorithm with
sublinear performance ratio. Discrete Math., 75:319–325, 1989.

21. D. Marx. Precoloring extension. http://www.cs.bme.hu/ dmarx/prext.html.
22. D. Marx. Precoloring extension on chordal graphs. manuscript, 2004.
23. B. McCloskey and A. Shankar. Approaches to bin packing with clique-graph con-

flicts. Technical Report UCB/CSD-05-1378, EECS Department, University of Cal-
ifornia, Berkeley, 2005.

24. Y. Oh and S. H. Son. On a constrained bin-packing problem. Technical Report
CS-95-14, Department of Computer Science, University of Virginia, 1995.

25. A. Schrijver. Combinatorial optimization polyhedra and efficiency. Springer-Verlag,
2003.

26. S. S. Seiden. On the online bin packing problem. Journal of the ACM, 49(5):640–
671, 2002.

27. D. Simchi-Levi. New worst-case results for the bin-packing problem. Naval Res.
Logist., 41(4):579–585, 1994.

28. J. D. Ullman. The performance of a memory allocation algorithm. Technical
Report 100, Princeton University, Princeton, NJ, 1971.

29. A. van Vliet. An improved lower bound for online bin packing algorithms. Infor-
mation Processing Letters, 43(5):277–284, 1992.

30. A. C. C. Yao. New algorithms for bin packing. Journal of the ACM, 27:207–227,
1980.

