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Abstract

In this paper we consider the following problems: we are given a set of n items {u1, . . . , un} and a number
of unit-capacity bins. Each item ui has a size wi ∈ (0, 1] and a penalty pi � 0. An item can be either rejected, in
which casewe pay its penalty, or put into one bin under the constraint that the total size of the items in the bin is
no greater than 1. No item can be spread intomore than one bin. The objective is tominimize the total number
of used bins plus the total penalty paid for the rejected items. We call the problem bin packing with rejection
penalties, and denote it as BPR. For the on-line BPR problem, we present an algorithmwith an absolute com-
petitive ratio of 2.618 while the lower bound is 2.343, and an algorithm with an asymptotic competitive ratio
arbitrarily close to 1.75 while the lower bound is 1.540. For the off-line BPR problem, we present an algorithm
with an absolute worst-case ratio of 2while the lower bound is 1.5, and an algorithmwith an asymptotic worst-
case ratio of 1.5.We also study a closely related bin covering version of the problem. In this case pi means some
amount of profit. If an item is rejected, we get its profit, or it can be put into a bin in such a way that the total
size of the items in the bin is no smaller than 1. The objective is to maximize the number of covered bins plus
the total profit of all rejected items. We call this problem bin covering with rejection (BCR). For the on-line
BCR problem, we show that no algorithm can have absolute competitive ratio greater than 0, and present an
algorithm with asymptotic competitive ratio 1/2, which is the best possible. For the off-line BCR problem,
we also present an algorithm with an absolute worst-case ratio of 1/2 which matches the lower bound.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we consider a variant of the classical bin packing problem which has the special
feature that items can be rejected at a certain cost. We are given a set of n items {u1, . . . , un} and a
number of unit-capacity bins. Each item ui has a size wi ∈ (0, 1] and a penalty pi � 0. The cost of
purchasing one bin is 1. An item can be either rejected, in which case we pay its penalty, or put into
one bin under the constraint that the total size of the items in the bin, called the content of the bin,
is no greater than 1. No item can be spread into more than one bin. The objective is to minimize the
sum of the cost for purchasing bins and the penalties of all rejected items. We call this problem bin
packing with rejection penalties or BPR for short.

This problem may have applications in the real world. Let us first consider a company’s in-
tranet. The intranet enables the company’s employees to access both the company’s own data
files and external files via the Internet [4]. If employees access an external file often, the admin-
istrator of the intranet might copy it to a file server on the intranet to decrease the communi-
cation cost. When a server reaches its capacity, a new server must be purchased. We can model
this situation as follows. We have a list of external files considered for copying, each with a
size and penalty, where the penalty is the estimated communication cost if it is not duplicated
on the intranet. The goal is to minimize the total cost, i.e., the sum of the cost for purchasing
file servers and the total penalties for files that are not duplicated. Clearly this problem can be
reduced to BPR.

As another example, consider a shipping company that owns a fleet of trucks. The company can
pack a shipment of goods in its own trucks, provided that the total size of the goods packed in each
truck is no greater than the truck’s capacity. Or the company can assign the goods to a forwarding
agent. Suppose all of the company’s trucks have the same capacity and the same cost. The total
cost for the shipment is the sum of the cost of its trucks and the cost for sending the goods via the
forwarding agent. The goal is to send the shipment in the cheapest way, to minimize the total cost.
This problem is essentially BPR.

We also consider the dual problem of BPR in this paper, which can be described as follows:
we are given a set of n items {u1, . . . , un}, each item ui is characterized by its size wi ∈ (0, 1] and its
profit pi ∈ [0, 1), and a number of unit-capacity bins. An item can be either rejected, in which case
we obtain its profit, or assigned to one bin. If one bin has a content of at least 1, then we say that
it is covered and provides profit 1. No item can be spread into different bins. The objective is to
maximize the total profit, i.e., the sum of the number of covered bins and the profits of all rejected
items. This problem can also be viewed as a variant of the classical bin covering problem, hence we
also refer it to bin covering with rejection profits or BCR for short.

The problem BCR may model the following application. An industry company holds several
monopolies. It can choose to break them up into smaller companies, each of which must be large
enough to be viable, or sell them to obtain profit. Suppose that the profit of each viable company



G.Dósa, Y.He / Information and Computation 204 (2006) 795–815 797

is the same. The objective is to maximize the total profit, i.e., the number of viable companies and
the profit of those monopolies which are sold.

For the problem BPR, if all pi > 1, i = 1, . . . , n, then no item can be rejected in an optimal
solution. Hence the standard bin packing problem is a special case of BPR. Similarly, in BCR,
if all pi = 0, then again no item can be rejected in an optimal solution. Hence the bin covering
problem is a special case of BCR. It follows that both BPR and BCR are strongly NP-hard
[12].

Bin packing is a classical combinatorial optimization problem that has been extensively studied
for more than three decades. The readers may refer to survey papers [5,6] and papers cited therein.
Meanwhile, the bin covering problem is also well-studied since it was first proposed by Assman et
al. [1]. The first APTAS for bin packing was given by [11], and the first APTAS for bin covering in
[7]. The readers may refer to recent papers [7,16], survey paper [6], and papers cited therein. But to
the authors’ best knowledge, both BPR and BCR are unexplored.

In the on-line versions of BPR and BCR, items arrive one by one, and the algorithm must decide
either reject an item or pack it into a bin before any information about the next item is revealed.
If we are allowed to make decisions with full information of the set of items, the version is called
off-line.

The quality of an approximation algorithm is usually measured by its worst-case ratio (for the
off-line version) or competitive ratio (for the on-line version), respectively. Let I be an instance
of the problem. then let A(I) denote the objective value produced by an approximation algo-
rithm A, and let OPT (I) denote the optimal objective value in the off-line version. Then for the
problem BPR, the absolute worst-case ratio (or absolute competitive ratio) of A, denoted by RA, is
defined by

RA = sup
I

{
A(I)

OPT(I)

}
.

The asymptotic worst-case ratio (or asymptotic competitive ratio) of A, denoted by R∞A , is
defined by

R∞A = lim sup
n→∞

max
{

A(I)

OPT(I)
| OPT(I) = n

}
.

For the problem BCR, the absolute worst-case ratio (absolute competitive ratio) and asymptotic
worst-case ratio (asymptotic competitive ratio) of A, are, respectively, defined by

RA = inf
I

{
A(I)

OPT(I)

}
, R∞A = lim inf

n→∞min
{

A(I)

OPT(I)
| OPT(I) = n

}
.

In this paper, an off-line (on-line) minimization/maximization problem has a lower /upper bound
� with respect to absolute or asymptotic worst-case (competitive) ratio if no off-line
(on-line) algorithm has a absolute or asymptotic worst-case (competitive) ratio smaller/greater
than �, respectively. An off-line (on-line) algorithm is called best possibleif its worst-case (com-
petitive) ratio matches the corresponding lower/upper bound of the minimization/maximization
problem.
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Table 1
Summary of the results for BPR and BCR

BPR BCR
Upper bound Lower bound Lower bound Upper bound

On-line, abs. 2.618 (RFF 1) 2.343 0 0
On-line, asymp. 1.75+� (RFF 2) 1.540 [24] 0.5 (MDNF ) 0.5 [8]
Off-line, abs. 2 (RFF 3) 1.5 [12] 0.5 (MDNFD) 0.5 [1]
Off-line, asymp. 1.5 (RFF 4) open 0.5 (MDNF ) open

Table 2
Summary of the known best results for bin packing and covering problems

Bin packing problem Bin covering problem
Upper bound Lower bound Lower bound Upper bound

On-line, abs. 1.75 [26] 1.5 [25] 0.5 (DNF ) [1] open
Oon-line, asymp. 1.589 [21] 1.540 [24] 0.5 (DNF ) [1] 0.5 [8]
Off-line, abs. 1.5 [23] 1.5 [20] 0.5 (DNF ) [1] 0.5 [1]
Off-line, asymp. FPTAS [18] 1 FPTAS [16] 1

In this paper, we study the problemsBPRandBCR. Both on-line and off-line versions are consid-
ered. The results are listed in Table 1. Algorithms RFF 1–RFF 4 and MDNFD run in time O(n log n),
and algorithm MDNF runs in time O(n). For comparison purposes, we also list the known best
results of bin packing and covering problems in Table 2. As we know, even for the classical bin
packing and covering problems, it took a long time to obtain most of the results in Table 2, and
it is still open how to close the existing gaps. The BPR and BCR problems are more complicated,
and harder to approximate since one more parameter is introduced for every item. To devise the
algorithms presented in this paper, we will introduce several strategies for trade-off between pack-
ing cost/profit and rejection penalty/profit. Furthermore, we will employ the harmonic technique
with consideration of penalty parameter. In the analysis of the algorithms, we will develop meth-
ods to estimate the optimal value. Especially we will apply a simple linear programming technique
instead of case by case analysis to prove the asymptotic competitive ratio of algorithm RFF 2 (see
Theorem 7).

A related problem is the parallel machine scheduling with rejection, which can be described
as follows: we have m parallel machines and n independent jobs. Each job is characterized by its
processing time and its penalty. A job can be either rejected, in which case we pay its penalty, or
scheduled on one of the machines, in which case it contributes its processing time to the completion
time of that machine. The objectives are to minimize the sum of the penalties of all rejected jobs and
one of the scheduling criteria such as the makespan, weighted completion times, or lateness/tardi-
ness of all accepted jobs. Refs. [2,13,15,20] considered the first objective, Refs. [9,10] considered the
second objective, and Ref. [22] considered the last objective.

This paper is organized as follows. Section 2 considers the problem BPR. Section 3 studies the
problem BCR. Some final remarks are presented in Section 4. A preliminary version of this paper
appeared in a conference proceedings [14].

In the remainder of this paper, let W(S) =∑ui∈S wi and P(S) =
∑

ui∈S pi for an item set S . Define
M1 = {ui|pi/wi > 1} andM2 = {ui|pi/wi � 1}. Define by ε > 0 a sufficiently small number, and by N
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a sufficiently large positive integer, whose exact values are immaterial in later proofs. For simplicity,
in the on-line setting we use the notation ui ∈ M1 to mean pi/wi � 1, and we use the notation ui ∈ M2
to mean pi/wi � 1, even though not all items have arrived.

2. The problem BPR

2.1. Preliminaries

We use I ′ to denote an instance of the bin packing problem, OPT ′(I ′) to denote the min-
imum number of bins used in an optimal solution for I ′ with respect to the bin packing
problem. Because we will use the classic algorithms First Fit (FF) and First Fit Decreasing
(FFD), thus we first explain them briefly. FF always packs the next item into the first bin,
where it fits. If the next item does not fit into any bin, it is packed into a new bin. In case
of algorithm FFD first the items are ordered into the non-increasing order of their sizes, and
then we execute FF.

Lemma 1. For any instance I ′ of the bin packing problem with |I ′| = n′ and wi � 1/2, i = 1, . . . , n′, we
have

FF(I ′)
{
= 1 if

∑n′
i=1 wi � 1,

< 3
2

∑n′
i=1 wi + 1

2 if
∑n′

i=1 wi > 1,

where FF(I ′) denotes the number of bins used by First Fit (FF) algorithm.

Proof. The result for the case
∑n′

i=1 wi � 1 is trivial. Hence we assume that
∑n′

i=1 wi > 1 and FF(I ′) =
k � 1. Johnson et al. [17] proved that FF(I ′) < 3

2

∑n′
i=1 wi + 2.We showhere that the additive constant

can be tightened to 1/2.
Let the total size of items in the ith bin be si, i = 1, . . . , k . If si � 2/3 holds for every i = 1, . . . , k ,

then we obtain that k � 3
2

∑k
i=1 si = 3

2

∑n′
i=1 wi, and we are done. Hence we suppose that there is at

least one index i such that si < 2/3. Let j = min {i : si < 2/3}. If j < k , let ul be any item in the j′th
bin by FF algorithm, where j′ > j. Then wl > 1/3. It states that all items in the j + 1th, . . ., kth bins
have a size of at least 1/3. Note that every bin except the last one must contain at least two items
since every item has size at most 1/2. Hence each of the j + 1th, · · ·, k − 1th bins has items of total
size at least 2/3.

Since sj + sk > 1, we obtain that
∑n′

i=1 wi =
∑k

i=1 si > 2
3 (k − 2)+ 1 = 2

3k − 1
3 , i.e., k <

3
2

∑n′
i=1 wi

+ 1
2 . If j = k , then the last two bins have total content at least 1 and all remaining bins have content

at least 2/3. The result can be obtained similarly. �
The next lemma can be proved in a similar way:

Lemma 2 ([3,5]). For any instance I ′ of the classical bin packing problem with |I ′| = n′, we have

FF(I ′)
{
= 1 if

∑n′
i=1 wi � 1/2,

< 2
∑n′

i=1 wi if
∑n′

i=1 wi > 1/2.
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Corollary 3.
∑n′

i=1 wi � (OPT ′(I ′)− 1)/2.

Theorem 4. For BPR, L = W(M1)+ P(M2) is a lower bound of the optimal value, and L �
(OPT(I)− 1)/2 for any instance I.

Proof. First we prove that OPT(I) � L. To see it, we assume that in an optimal solution there are k
used bins. Let S1 and S2 denote sets consisting of rejected items and accepted items in the optimal
solution, respectively. We obtain

OPT(I) = k +
∑
uj∈S1

pj �
∑
uj∈S2

wj +
∑
uj∈S1

pj �
∑

uj∈S2∪S1
min

{
wj , pj

} = ∑
uj∈M1

wj +
∑
uj∈M2

pj = L.

Consider a feasible solution that accepts all items in M1, packs them optimally, and rejects all
items inM2. Hence we haveOPT(I) � OPT ′(M1)+ P(M2). Combining this inequality with Corollary
3, we obtain W(M1) � (OPT ′(M1)− 1)/2 � (OPT(I)− P(M2)− 1)/2. It follows that

L = W(M1)+ P(M2) �
OPT(I)− P(M2)− 1

2
+ P(M2) �

OPT(I)− 1
2

. �

2.2. On-line algorithms

First, we present a simple 2.618-competitive algorithm: All of the initial sequence of items are
rejected until they accumulate a penalty of not more than 0.618; thereafter, reject all items such that
pk � wk and apply First Fit to pack the other items. Formally:

Algorithm RFF 1:

1. k = 1, P = 0. Let ! =
√
5−1
2 ≈ 0.618.

2. If no new item arrives, stop. Else go to 3.
3. If P + pk < !, then reject uk , set P = P + pk , k = k + 1 and go to 2; Otherwise go to 4.
4. If uk ∈ M1, then pack it by FF algorithm; Otherwise reject it. Set k = k + 1. If no new item arrives,

stop. Else go back to 4.

Theorem 5. RRFF 1 = 1+!
! = 2+ ! =

√
5+3
2 ≈ 2.618.

Proof.Wefirst show that RFF 1(I)
OPT(I) � 1+!

! for any instance I . If the total penaltyof all items is less than!,
thenRFF 1 rejects all items and thus yields an optimal solution. Let I ′ be the set consisting of all items
packed or rejected by Step 4.We then have thatRFF 1(I \ I ′) < !. DefineM ′1 = {ui ∈ M1|ui ∈ I ′}, and
M ′2 = {ui ∈ M2|ui ∈ I ′}. We distinguish three cases to obtain the result.

Case 1. OPT(I) < 1. Thus, in an optimal solution all items must be rejected, and OPT(I) =∑n
i=1 pi < 1. If M ′1 = ∅, RFF 1 yields the optimal solution. Hence we assume M ′1 /= ∅. By the defi-

nition of M1 and
∑n

i=1 pi < 1, we obtain that W(M ′1) < P(M ′1) < 1, and RFF 1 uses exactly one bin.
Hence

RFF 1(I) = 1+ RFF 1(I \ I ′)+ P
(
M ′2
)
.
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On the other hand,

OPT(I) � max
{
!,RFF 1(I \ I ′)+ P

(
M ′2
)}

holds trivially, thus we obtain

RFF 1(I)
OPT(I)

�
1+ RFF 1(I \ I ′)+ P

(
M ′2
)

max
{
!,RFF 1(I \ I ′)+ P

(
M ′2
)} < 1+ !

!
.

Case 2. OPT(I) � 1 and W(M ′1) � 0.5. By Lemma 2 and Theorem 4, we obtain

RFF 1(I ′) � 2W(M ′1)+ P
(
M ′2
)

� 2
(
W(M ′1)+ P

(
M ′2
))

� 2OPT(I ′).

Therefore, we have

RFF 1(I) = RFF 1(I \ I ′)+ RFF 1(I ′) < ! + 2OPT(I ′) � ! + 2OPT(I) � (2+ !)OPT(I).

Case 3. OPT(I) � 1 and 0 < W(M ′1) < 0.5. Thus RFF 1 uses only one bin, and

RFF 1(I) = RFF 1(I \ I ′)+ 1+ P
(
M ′2
)
< 1+ ! + P

(
M ′2
)
.

t is trivial that OPT(I) � max
{
1, P
(
M ′2
)}

. We thus obtain

RFF 1(I)
OPT(I)

<
1+ ! + P

(
M ′2
)

max
{
1, P
(
M ′2
)} � 2+ !.

The following item sequence shows that the absolute competitive ratio of algorithm RFF 1 cannot
be smaller than 2+ !. Let w1 = ε, p1 = ! − ε, w2 = ε, p2 = 2ε, w3 = 1− 2ε, p3 = 1− 3ε. Then RFF 1
rejects the first and third items and accepts the second one, while all items are packed into one bin
in an optimal solution. Therefore, RFF 1(I)/OPT(I) = (2+ ! − 4ε)/1→ 2+ ! as ε→ 0. �

Next we consider the lower bound of the problemBPR in terms of the absolute competitive ratio.
Consider the following system of equations:

2+ " + x

1+ x
= 1+ "

"
= " + 2x + 1, (1)

where " and x are real variables. This system leads to the following equations

" (1+ ") (1+ 2") = 1+ 3", x = "

1+ 2"
. (2)

Since function f (") = " (1+ ") (1+ 2") is convex for " � 0, and f (0) = 0while the value of 1+ 3"
for" = 0 is 1, follows that (2) canhave atmost one positive solution. Becausef ′ (")→∞ as"→∞,
follows that the equation has a unique positive solution, which can be computed for example by
MAPLE. Define % = (−1/3) arctan((2/9)√237)+ �/3, and "0 =

√
21ei% . Then the exact solution
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of (2) is " = 1
6"0 + 7

2"0
− 1

2 ≈ 0.7446, and x ≈ 0.2991. In the next theorem we will construct such
instances I , for which the ratio A(I)/OPT(I) is bounded by below by some term of (1). Thus, we
obtain the best lower bound, if the three terms are equal.←−
Theorem 6. No deterministic on-line algorithm can have an absolute competitive ratio of less than
1+"
" ≈ 2.343.

Proof. We show the result by adversary method. Recall that N denotes a sufficiently big number,
and ε is chosen in such a way that even Nε is sufficiently small. Let I1 consist of N copies of ( ε

2N , "N ),
I2 is just one item

(
x
N − 2ε, xN − 2ε

)
, I3 consists of N − 1 copies of

(
x
N − ε, xN − ε

)
, I4 is also one item

(x, x), and let I ′ = I1 ∪ I2 ∪ I3 ∪ I4, it consists of 2N + 1 items. Then all sequences I which are used
to obtain the desired result, when we remove the appropriately chosen last 0, 1 or 2 items, are all
prefixes of sequence I ′. The adversary watches the algorithm A until the time t when the first item
which is packed. If the first accepted item is some item of I ′, then the next items of I ′ do not come,
but we append 0, 1 or 2 well-chosen items depending on t, so that the objective function has value
at least (1+ ") /". Define y = x

N − 2ε.
If uk , 1 � k � N , is the first accepted item by an on-line algorithm A, then no more item

comes. We have OPT(I) = k"
N , and A(I) = (k−1)"

N + 1. Thus

A(I)

OPT(I)
= (k − 1) " + N

k"
�
(N − 1)" + N

N"
→ 1+ "

"
as N →∞.

If uN+1 is the first accepted item by A, two copies of ( 12 − ε
4 , 1) come. Then A may accept items

uN+1, uN+2, uN+3 and pack them into two bins (the total size of these three items is larger than 1),
while in an optimal solution only uN+1 is rejected and all remaining items are packed into one bin.
As
∑N

i=1 pi = ", we obtain that A(I) � 2+ ", and OPT(I) = 1+ y . We thus obtain

A(I)

OPT(I)
�

2+ "

1+ y
= 2+ "

1+ x/N − 2ε
>

1+ "

"
as N →∞.

If uN+k+1, 1 � k � N − 1, is the first accepted itembyA, two copies of ( 12 − x
2N + 3

4ε, 1) come. Then
similarly as above, A has to pack items uN+k+1, uN+k+2, uN+k+3 into two bins, while in an optimal
solution items u1, u2, . . . , uN+1 and uN+k+2, uN+k+3 are packed into one bin, and all remaining items
are rejected. Therefore, we have A(I) � 2+ " + ky + (k − 1)ε, andOPT(I) = 1+ k(y + ε). It follows
that

A(I)

OPT(I)
�

2+ " + ky + (k − 1)ε
1+ k(y + ε)

→ 2+ " + ky

1+ ky
�

2+ " + x

1+ x
as ε→ 0.

If u2N+1 is the first accepted item byA, two copies of ( 12 − x
2 + 1

2 (N + 1
2 )ε, 1) come. Then as before,

A has to pack items u2N+1, u2N+2, u2N+3 into two bins. Noting that the sum of penalties of the first
2N items is " + y + (N − 1) (y + ε) = " + x − (N + 1) ε, we have A(I) � 2+ " + x − (N + 1) ε. At
the same time, only u2N+1 is rejected and all remaining items are packed into one bin in an optimal
solution. Hence OPT(I) = 1+ x. It follows that
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A(I)

OPT(I)
�

2+ " + x − (N + 1) ε
1+ x

→ 2+ " + x

1+ x
= 1+ "

"
as ε→ 0.

Hence we assume that algorithm A rejects the first 2N + 1 items. Then the last item is (ε, 1). No
matter whether this item is rejected, we have A(I) = 1+∑2N+1

i=1 pi = 1+ " + 2x − (N + 1) ε while
OPT(I) = 1. Thus, we obtain

A(I)

OPT(I)
= 1+ " + 2x − (N + 1) ε→ 1+ " + 2x = 1+ "

"
as ε→ 0.

Therefore, the proof is completed. �
Nowwe turn to study theasymptotic competitive ratiosofon-line algorithms.To showtheasymp-

totic competitive ratio of RFF 1, we consider the following sequence with 2N + 1 items: w1 = ε, p1 =
! − ε, w2 = · · · = w2N+1 = ε+ 1/2, p2 = · · · = p2N+1 = 2ε+ 0.5. Then RFF 1 rejects only the first
itemwhile the optimal solution only accepts the first two items. Therefore RFF 1(I)

OPT(I) = 2N+!−ε
N+4Nε−2ε+1/2 →

2 asNε→ 0, andN →∞. It follows that the asymptotic competitive ratio ofRFF 1 cannot be smaller
than 2. In the following, we present another on-line algorithmRFF 2 with an asymptotic competitive
ratio of arbitrarily close to 7/4.

Let m be a large positive integer. We construct the next sets: S1 = {j |m+ 1 � j � 2m}, and S2 =
{(j, k) |j ∈ S1,m+ 1 � k � j − 1} . We partition set M1 into several subsets as follows:

M11 = {ui ∈ M1|wi � 1
2 },

Mjk =
{
ui ∈ M1|mj < wi � m

j−1 ,
k−1
m <

pi
wi

� k
m

}
, (j, k) ∈ S2

Mjj = {ui ∈ M1|mj < wi � m
j−1 ,

j−1
m <

pi
wi
}, j ∈ S1.

Then the algorithm can be described as follows:

Algorithm RFF 2:

1. If the incoming item is in M11, pack it by FF algorithm.
2. If the incoming item is in Mjk , (j, k) ∈ S2, or M2, reject it.
3. If the incoming item is inMjj , j ∈ S1, then pack it each into a bin, and this bin will not be used to

pack any other item.

Theorem 7.For any given positive integerm � 2,R∞RFF 2 � 7m−3
4m−2 , hence there exists an on-line algorithm

with an asymptotic competitive ratio of arbitrarily close to 7/4 = 1.75.

Proof. Since all items in M11 have sizes no greater than 1/2, and are packed by FF algorithm, we
have

RFF 2(M11) = FF(M11) � max
{
3
2
W(M11)+ 1

2
, 1
}

�
3
2
W(M11)+ 1
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by Lemma 1. By the definition of Mjk , (j, k) ∈ S2, we have P(Mjk) � k
mW(Mjk). Since every item in

Mjj does not share a bin with any other item in RFF 2 algorithm, the number of bins used for the
items in Mjj is

|Mjj| �
∑
ui∈Mjj

j

m
wi = j

m
W(Mjj),

where the inequality holds because m
j < wi, i.e.,

j
mwi > 1, for any item ui ∈ Mjj . Therefore, we have

RFF 2(I) �
3
2
W(M11)+ 1+

∑
(j,k)∈S2

k

m
W(Mjk)+

∑
j∈S1

j

m
W(Mjj)+ P (M2) . (3)

By Theorem 4, we have

OPT(I) � W(M11)+
∑

(j,k)∈S2
W(Mjk)+

∑
j∈S1

W(Mjj)+ P (M2) . (4)

Next we are going to obtain another lower bound of OPT(I). Let

I ′ = I \ (M11 ∪M2) =
⋃

j=m+1,...,2m,k=m+1,...,j
Mjk .

It is obvious that OPT(I ′) � OPT(I). Let us consider an optimal solution for instance I ′. For every
item ui ∈ Mjk ⊆ I ′, (j, k) ∈ S2, since wi > 1/2, this item cannot share a bin with any other item in
I ′, if the item is accepted in the optimal solution. In this case, the item’s contribution to objective
value is 1 � j−1

m wi . If this item is rejected in the optimal solution, the contribution to objective value
is pi � k−1

m wi . Hence we conclude that the contribution of item ui to the optimal value is at least

min
{
j−1
m , k−1m

}
wi = k−1

m wi . Similarly, for any ui ∈ Mjj , j ∈ S1, its contribution to the optimal value

of I ′ is at least j−1
m wi . Therefore, we obtain

OPT(I) � OPT(I ′) �
∑

(j,k)∈S2

k − 1
m

W(Mjk)+
∑
j∈S1

j − 1
m

W(Mjj). (5)

To obtain the asymptotic competitive ratio, we need to show that there exist constants a, b such
that RFF 2(I)

OPT(I) � a+ b
OPT(I) for any instance I . We are interested in the maximum possible value of

RFF 2(I)
OPT(I) . Dividing the inequalities (3)–(5) by OPT(I), we construct a linear program as follows:

max z = 3
2
x11+ ∑

(j,k)∈S2
k
mxjk +

∑
j∈S1

j
mxjj + y

s.t. x11+ ∑
(j,k)∈S2

xjk + ∑
j∈S1

xjj + y � 1, (6)

∑
(j,k)∈S2

k−1
m xjk + ∑

j∈S1
j−1
m xjj � 1,

x11 � 0, xjk � 0, m+ 1 � k � j � 2m, y � 0,
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where x11 = W(M11)
OPT(I) , xjk =

W(Mjk)

OPT(I) ,m+ 1 � k � j � 2m, y = P (M2)
OPT(I) , and z = RFF 2(I)

OPT(I) are variables. Note
that we omit the additive factor 1/OPT(I) from the objective function of the linear program, since we
are considering the asymptotic competitive ratio. It is clear that the asymptotic competitive ratio is
no greater than the optimal value of (6). We state that (6) has a unique optimal solution as follows:
x11 = m−1

2m−1 , x2m,2m = m
2m−1 , and the values of all remaining variables equal to 0. The optimal value is

3
2
m−1
2m−1 + 2 m

2m−1 = 7m−3
4m−2 which can be arbitrarily close to 7/4 if m is chosen to be large enough. To

obtain the optimum solution one need to have some intuition about the LP, but it is easy to verify

that this is really the unique optimum solution: The optimal basis is
[
a11, a2m,2m

] = [ 1 1
0 2m−1

m

]
, the

pricing vector is �′ = c′BB−1 =
[
3/2, m

2(2m−1)
]
. Thus, �′ajk − cjk =

[
3/2, m

2(2m−1)
] [

1, k−1m

]′ − k/m =
3/2+ k−1

2(2m−1) − k/m, and �′ajj − cjj =
[
3/2, m

2(2m−1)
] [

1, j−1m
]′ − j/m = 3/2+ j−1

2(2m−1) − j/m, and

these values are nonnegative for any possible values of k and m. Thus, by complementary slackness
the solution is optimal, and the proof is completed. �

For the classical bin packing problem, no on-line algorithm can have an asymptotic competitive
ratio of less than 1.540 [24], we conclude that no on-line algorithm can have an asymptotic compet-
itive ratio of less than 1.540 for the problem BPR, too. It is open whether a larger lower bound of
the problem BPR in terms of asymptotic competitive ratio exists.

2.3. Off-line algorithms

Algorithm RFF 3:

1. For
∑n

i=1 wi � 1, if
∑n

i=1 pi > 1, then all items are accepted and packed into one bin, otherwise
reject all jobs.

2. For
∑n

i=1 wi > 1, if ui ∈ M1, i = 1, 2, . . . , n, then pack it by FF algorithm, otherwise reject it.

Theorem 8. RRFF 3 = 2.

Proof.For thecase
∑n

i=1 wi � 1, it is clear thatRFF 3yieldsanoptimal solution.For thecase
∑n

i=1 wi >
1, we have FF(M1) � 2

∑
i∈M1

wi by Lemma 2. Combining this result with Theorem 4, we have

RFF 3(I) = FF(M1)+ P(M2) � 2
∑

ui∈M1
wi + P(M2)

� 2(
∑

ui∈M1
wi + P(M2)) � 2OPT(I).

To see that the ratio cannot be smaller than 2, we consider the following instance: We have a
total of 2N items; each item has the same size ε+ 1/2 and the same penalty 2ε+ 1/2. It is clear that
RFF 3(I)/OPT(I) = 2N/(N + 4Nε)→ 2 as ε→ 0. �

From the instance given in the proof of Theorem 8, it is clear that R∞RFF 3 = 2. Furthermore,
the absolute and asymptotic worst-case ratios of RFF 3 cannot become smaller if we replace FF
algorithm by First Fit Decreasing (FFD) algorithm in Step 2. Note that there does not exist a poly-
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nomial algorithm with an absolute worst-case ratio of smaller than 3/2 for the classical bin packing
problem, unless P=NP [20], this statement still holds for the problem BPR.

In the remainder of this section, we present an off-line algorithm with an asymptotic worst-case
ratio of 3/2.

First we split M1 into four subsets as follows:

M1h =
{
ui ∈ M1 : wi > 2

3

}
, M1l =

{
ui ∈ M1 : 1

2 < wi � 2
3

}
,

M1m =
{
ui ∈ M1 : 1

3 < wi � 1
2

}
, M1s =

{
ui ∈ M1 : wi � 1

3

}
,

and the items in M1h,M1l,M1m,M1s are called as huge, large, medium and small items respectively.
We propose a procedure for pre-processing as follows, which puts one large item and one medium
item pairwise into one bin as much as possible. Define by max(I) the maximum number k such that
k large items and k medium items can be packed pairwise into k bins for instance I . Then the next
proposition holds.

Proposition 9. Suppose that ul1, ul2, . . . , ulk are k large items, and um1, um2, . . . , umk are k medium items
such that uli and umi can be packed into a common bin, for every i = 1, . . . , k, and k = max(I). Then
for any i = 1, · · · , k, we have max(I \ {uli, umi}) = max(I)− 1.

Lemma 10. Let ul1 be the largest large item for which there exists a medium item umj such
that wl1 + wmj � 1, and let um" be an arbitrary medium item satisfying wl1 + wm" � 1. Then
max(I \ {ul1, um"}) = max(I)− 1.

Proof. We construct a bipartite graph G = (N ,E) = (N1 ∪ N2,E) to prove the result. Let L(I)

and M(I) be the sets consisting of large, and medium items of I , respectively, then the bipar-
tite graph can be obtained as follows: The node set N = L(I) ∪M(I) satisfies N1 = L(I) and
N2 = M(I), i.e., each large and medium item corresponds to a node of G, and there is an
edge between uli ∈ L(I) and umj ∈ M(I) if and only if wli + wmj � 1, i.e., these two items can
fit commonly into a bin.

It is straightforward to know that max(I) is equal to the number of edges of a maximum match-
ing (here the maximum matching means that its cardinality is maximum among all matchings).
We only need to prove that there is a maximum matching which contains edge (ul1, um"). To see
it, let MM = {(ul1, um1) , (ul2, um2) , . . . , (ulk , umk)} be a maximum matching, where k = max(I). Let
L = {ul1, ul2, . . . , ulk} and M = {um1, um2, . . . , umk}. We consider four cases as follows:

Case 1. ul1 /∈ L and um" /∈ M . Then MM could be increased by adding edge (ul1, um"), a contra-
diction. Thus this case cannot occur.

Case 2. ul1 /∈ L and um" ∈ M . Then um" = umi for some i ∈ {1, . . . , k}. Thus, simply replacing the
edge (uli, umi) by (ul1, umi) = (ul1, um") , we obtain another maximum matching, which contains
edge (ul1, um").

Case 3. ul1 ∈ L and um" /∈ M . The statement can be shown in the same way as Case 2.
Case 4. ul1 ∈ L and um" ∈ M . If edge (ul1, um") ∈ MM , then we are done. Thus, we assume that

(ul1, um") /∈ MM . Let ul1 = uli and um" = umj for some 1 � i, j � k , i /= j. From the definition of ul1,
it follows that wl1 � wlj . Thus, wlj + wmi � wl1 + wmi = wli + wmi � 1 holds, i.e., nodes ulj and umi
are adjacent in the graph. By replacing edges (ul1, umi) and (ulj , um") inMM by edges (ul1, um") and
(ulj , umi), we obtain a new maximum matching with the desired property.
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Therefore, we conclude that there is a maximum matching which contains edge (ul1, um"), and
the lemma follows directly from Proposition 9. �

Applying Lemma 10, we can describe the pre-process procedure, which puts large and medium
items commonly into bins as much as possible in a greedy way:

Procedure Greedy:

1. Let M ′1l = M1l and M ′1m = M1m. Sort items in M ′1l in non-increasing order of their sizes.
2. If M ′1l or M

′
1m is empty then go to 5.

3. Let ui be the first item in M ′1l.
4. Let uj be the first item inM ′1m satisfying wi + wj � 1. If it does not exist, then delete item ui from

setM ′1l and go to 2; Otherwise pack items ui and uj into a new bin, delete them from setM ′1l and
M ′1m, respectively. Go to 2.

5. For all unpacked medium items, pack them pairwise into a bin. If the number of unpacked
medium items is odd, then pack the last unpacked medium item alone into a bin.

6. Each unpacked large item with penalty at least 1 packed into its own bin.
7. Pack each huge item into its own bin.

Remark 11. Procedure Greedy does not decide whether and how to pack small items in M1s, some
large items with penalty less than 1, and items in M2.

Corollary 12. Let greedy(I) be the number of bins in which one large and one medium items are packed
by Step 4 of procedure Greedy. Then greedy(I) = max(I).

Proof. This assertion follows directly from Lemma 10 by induction on the number of items. �
Call the bins used in Steps 4-7 as B1-, B2-, B3-, and B4-bins, respectively. In the remainder of this

subsection, we call a bin open if it is allowed to pack more items, otherwise it is closed. Now we can
describe the algorithm.

Algorithm RFF 4:

1. Apply procedure Greedy . Sort items inM1s in non-increasing order of their sizes. Let all B1-, B2-,
and B4-bins be closed.

2. Arbitrarily choose an open B3-bin if it exists, else go to 5.
3. Pack the first small item inM1s into this open bin, if it fits into this bin, and delete it fromM1s, go

to 3.
4. If the first small item in M1s does not fit into this open bin, close this bin, and go to 2.
5. If there does not exist open B3-bin, (andM1s is not empty yet), and there is at least one unpacked

large item in M1, then pack the first unpacked large item into a new bin. Call this bin as an open
B5-bin. Go to 3.

6. If there are no unpacked small items, and there are unpacked large items, then reject them. Define
by R6 the set consisting of all rejected large items. Go to 8.

7. If all large items are packed, then pack all remaining small items inM1s into new bins by algorithm
FF . Let these bins denoted as B7-bins. Go to 8.

8. Reject all items in M2.
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Before obtaining the asymptotic worst-case ratio of algorithmRFF 4, we first estimate the content
of used bins. It can be listed as follows:

(i) Every B1-bin contains a large and a medium item, its content is more than 5/6.
(ii) Every B2-bin except the last one contains two medium items, its content is more than 2/3.
(iii) Every B4-bin contains a huge item, its content is more than 2/3.
(iv) Every closed B3-, and B5-bin contains one large and at least one small items. We show as

follows that its content is more than 3/4. In fact, if one small item in one such bin has size at
least 1/4, then the content of this bin is more than 1/2+ 1/4 = 3/4. If all small items in this bin
are less than 1/4, then let x be the small item which first does not fit into this bin, and causes
the bin closed. Since small items are sorted in non-increasing order of their sizes, we know that
x < 1/4, and again the content of the bin is more than 3/4.

(v) Every open B3-, and B5-bin contains one large and possibly some small items, its content is
more than 1/2. Furthermore, there is at most one open B5-bin. If Step 5 is executed at least
once, then every B3-bin is closed. Otherwise, if there is at least one opened B3-bin, then no
B5-bin exists.

Theorem 13. R∞RFF 4 � 3
2 .

Proof. It is trivial that the algorithm packs or rejects all items. We consider all possible situations
which may occur. First suppose that there is at least one B7-bin. Because the size of a small item is
at most 1

3 , then we conclude that
(I) No open B3- or B5-bin exists. Hence the content of every used bin except B7-bins and the last

B2-bin is at least 2
3 ;

(II) No R6-item exists.
From (I), we observe that the number of used bins except B7-bins and the last B2-bin is no more

than 3
2 times of the total sizes of all items packed in these bins. Note that Lemma 1 provides an

upper bound of the number of B7-bins. Hence we conclude that the number of all used bins by RFF 4
is at most 2+ 3

2

∑
ui∈M1

wi . Therefore, we obtain

RFF 4(I) � 2+ 3
2

∑
ui∈M1

wi + P(M2)

� 2+ 3
2
(
∑
ui∈M1

wi + P(M2)) � 2+ 3
2
OPT(I),

which is the desired asymptotic worst-case ratio. Thus, we suppose that no B7-bin exists in the
following.

Define by a, b, c, d , e, f the number ofB1-,B2-, closedB3-, openB3-,B4-, and closedB5-bins respec-
tively. Let |R6| = g and P(M2) = h. Recall that there is at most one open B5-bin. Clearly we have

RFF 4(I) � a+ b+ c + d + e + f + 1+
∑
ui∈R6

pi + h

� a+ b+ c + d + e + f + g+ h+ 1 .= ω + 2,
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where ω = a+ b+ c + d + e + f + g+ h− 1. Hence it suffices to show that

OPT(I) �
2
3
ω

to obtain the desired asymptotical worst-case ratio. Four cases are considered as follows.
Case 1. Step 5 is never executed, and d + g � a+ 2h.
To obtain a tight lower bound of OPT(I), we need a better estimate of the total size of all items

in M1 by analyzing the content of every used bin by RFF 4. Recall that no B5-bin exists now, thus
f = 0. By above (i)–(v), and the fact that every item of R6 has a size at least 1/2, we have

OPT(I) �
∑
ui∈M1

wi + P(M2) �
5
6
a+ 2

3
(b− 1)+ 3

4
c + 1

2
d + 2

3
e + 1

2
g+ h

�
2
3
(a+ b+ c + d + e + g+ h− 1)+ 1

6
(a+ 2h− d − g) �

2
3
ω.

Case 2. Step 5 is executed at least once, and 2a+ c + f + 4h � 2g.
Recall that at this moment every B3-bin is closed and thus d = 0. Similar to Case 1, we have

OPT(I) �
∑
ui∈M1

wi + P(M2) �
5
6
a+ 2

3
(b− 1)+ 3

4
c + 2

3
e + 3

4
f + 1

2
g+ h

�
2
3
(a+ b+ c + f + g+ h− 1)+ 1

12
(2a+ c + f − 2g+ 4h) �

2
3
ω.

For the remaining two cases, we obtain the desired result by contradiction. Suppose that there
exists a counterexample which violates RFF 4(I) � 3

2OPT(I)+ 2, hence a minimal counterexample I
with fewest items should exist. We first present two useful propositions. Their proofs are trivial and
omitted here.

Proposition 14. For any instance I , if item ui is rejected in an optimal solution, then we have
OPT(I \ {ui}) = OPT(I)− pi.

Proposition 15. For any instance I , if item ui ∈ R6, then we have RFF 4(I \ {ui}) = RFF 4(I)− pi.

Therefore, we assume that we are dealing with the minimal counterexample I . Suppose ui ∈ R6.
If it is also rejected in an optimal solution, then by Propositions 14–15, we obtain

RFF 4(I \ {ui})− 2
OPT(I \ {ui}) = RFF 4(I)− pi − 2

OPT(I)− pi
>

RFF 4(I)− 2
OPT(I)

>
3
2
,

a contradiction. Therefore, we assume in the following that every item ui ∈ R6 is accepted in the
optimal solution.

Case 3. Step 5 is never executed, and d + g > a+ 2h.
Consider the instance modified from I by deleting all small items, and denoted by I ′. It is trivial

that OPT(I ′) � OPT(I). We next give a lower bound of OPT(I ′) by the same method for proving
Inequality (5) in the proof of Theorem 7. Each large item is either packed individually into its
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own bin or rejected. We have seen that every item ui ∈ R6 must be packed into different bins, their
contribution to OPT(I ′) is g. The large items being packed into B3-bins must be also accepted in
the optimal solution since their penalty are at least 1, hence their contribution is c + d . Noting that
the penalty is no smaller than the size for each item inM1, we conclude that the contribution of the
large items in B1-bins is at least a

2 no matter whether the items are accepted or rejected. Thus the
total contribution of all large items to OPT(I ′) is at least a

2 + c + d + g. From Corollary 12 there
are at most a bins, each of which can be shared by a large item and a medium item. Hence there
are at least 2b− 1 medium items which do not share bins with large items in the optimal solution.
Their contribution is at least 2b−1

3 . It is also clear that for the huge items, their total contribution
is at least 2

3e no matter whether they are packed individually into different bins, or rejected. Recall
that f = 0. Thus applying d + g > a+ 2h, we have

OPT(I) � OPT(I ′) �
1
2
a+ 2b− 1

3
+ c + d + 2

3
e + g

� 2
3
(a+ b+ c + d + e + g+ h− 1)+ 1

6
(2c + 2d + 2g− a− 4h)

� 2
3
(a+ b+ c + d + e + g+ h− 1)+ 1

6
(2c + a) �

2
3
ω.

Case 4. Step 5 is executed at least once, and 2a+ c + f + 4h < 2g.
Then d = 0. Similar to Case 3, we obtain

OPT(I) � OPT(I ′) �
1
2
a+ 2b− 1

3
+ c + 2

3
e + 1

2
f + g

� 2
3
(a+ b+ d + e + f + g+ h− 1)+ 1

6
(−a− f + 2c + 2g− 4h) �

2
3
ω.

In summary, we have shown that RFF 4(I) � 2+ 3
2OPT(I) for all possible cases, hence we obtain

Theorem 13. �
Whether there is an asymptotic PTAS for BPR is open.

3. The problem BCR

First we explain briefly the classic algorithms Dual Next Fit (DNF) and Dual Next Fit Decreas-
ing (DNF). DNF always packs the next item into the first bin, which is not fully covered. In case of
algorithm DNFD the items are first ordered into the non-increasing order of their sizes, and then
we execute DNF.

3.1. On-line algorithms

Theorem 16. No on-line algorithm can have an absolute competitive ratio of greater than 0.
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Proof. Let w1 = 1/2, p1 = ε. If an algorithm A packs this item into a bin, then no more item comes.
The ratio isA(I)/OPT(I) = 0/ε = 0. IfA rejects this item, then the second and last itemwithw2 = 1/2
and p2 = ε comes. We have A(I)/OPT(I) � 2ε/1→ 0 as ε→ 0, too. �

Hence in the remainder of this subsection, we consider the asymptotic competitive ratio of on-
line algorithms. Since for the bin covering problem, no on-line algorithm can have an asymptotic
competitive ratio of greater than 1/2 [8], this bound also holds for BCR. Next we present an on-line
algorithm with matching asymptotic competitive ratio of 1/2.

Noting that Dual Next Fit (DNF ) is the best possible on-line algorithm for the classical bin cov-
ering problem in terms of asymptotic competitive ratio [1], we next show that a simple modification
of DNF also works for BCR. Recall that M1 = {ui|pi > wi} and M2 = {ui|pi � wi}.

Algorithm MDNF :

1. If the incoming item is in M2, pack it by DNF algorithm.
2. If the incoming item is in M1, reject it.

The next lemma is useful for proving the main theorem:

Lemma 17. Let I ′ be an instance of the classical bin covering with n′ items. (1) ([1]) We have

DNF(I ′) �
⌊∑n′

j=1 wj
2

⌋
. (2) Furthermore, if

∑n′
j=1 wj � 2k + 1 for some integer k , then DNF(I ′) �

k + 1.

Proof. Because wi � 1, i = 1, . . . , n, the content of every covered bin is less than 2 by DNF . Thus

DNF(I ′) �
⌊∑n′

j=1 wj
2

⌋
. If
∑n′

j=1 wj � 2k + 1 for some integer k , the number of covered bins is at least

k . Furthermore, wi � 1, i = 1, . . . , n implies that the total content of the first k bins is less than 2k .
Thus there is at least one more covered bin. �
Theorem 18. R∞MDNF = 1/2, thus MDNF is the best possible on-line algorithm in terms of asymptotic
competitive ratio.

Proof. With an argument analogous to the proof of Theorem 4, we can obtain

OPT(I) �
∑
j∈M2

wj +
∑
j∈M1

pj. (7)

On the other hand, From Lemma 17 (1), the number of covered bins is at least
⌊∑

j∈M2
wj

2

⌋
by

MDNF . Thus, the objective value produced by MDNF is MDNF(I) �
⌊∑

j∈M2
wj

2

⌋
+∑j∈M1

pj , and

asymptotic competitive ratio follows. �

3.2. Off-line algorithms

Since the classical bin covering problem is a special case of BCR, we conclude that no off-line
algorithm can have an absolute worst-case ratio of greater than 1/2, unless P=NP ([1]). Next we
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present a modified Dual Next Fit Decreasing (MDNFD) algorithm with an absolute worst-case
ratio of 1/2.

Algorithm MDNFD:

1. If
∑n

i=1 wi < 1, reject all items and stop.
2. If W(M2) < 1 and P(M1) < 1, pack all items into one bin and stop.
3. If W(M2) < 1 and P(M1) � 1, reject all items and stop.
4. Determine an integer ω � 0 and real number 0 � 6 < 2 such that W(M2) = 2ω + 1+ 6 .
5. If 6 � 1 or P(M1) � 1, then apply algorithm MDNF to all items and stop.
6. If W (M2 ∪M1) � 2ω + 3, then accept all items, pack them by DNF algorithm, and stop.
7. Sort the items of M2 in non-increasing order of their ratios between sizes and profits wi/pi such

that w1
p1

� w2
p2

� · · · � w|M2|
p|M2|

. Determine

k̄ = min

{
j :

j∑
i=1

wi � 2ω + 1, ui ∈ M2, i = 1, . . . , j

}
. (8)

8. Pack the first k̄ items of M2 by DNF , reject the remaining items of M2 and all items of M1. Stop.

Theorem 19. RMDNFD = 1/2, thus MDNFD is the best possible in terms of absolute worst-case ratio.

Proof. It is clear thatMDNFD yields an optimal solution if the algorithm stops at Step 1. IfMDNFD
stops at Step 2,we have that

∑n
i=1 wi � 1 and thusMDNFD(I) � 1. By (7), we haveOPT(I) � W(M2)+

P(M1) � 2 and thusMDNFD(I) � 1
2OPT(I). IfMDNFD stops at Step 3,we haveMDNFD(I) � P(M1) >

1
2 (W(M2)+ P(M1)) � 1

2OPT(I).
Hence we are left to consider the cases that the algorithm stops at Steps 5, 6 or 8. It follows

that W(M2) � 1. Hence there exist unique nonnegative integer ω and 0 � 6 < 2 such that W(M2) =
2ω + 1+ 6 .

If MDNFD stops at Step 5, either 6 � 1 or P(M1) � 1 holds. If 6 � 1, we have 2ω + 1 � W(M2) �
2ω + 2. By Lemma 17 (2) and the algorithm rule, we have

MDNFD(I) � ω + 1+ P(M1) � 1
2 (W(M2)+ P(M1)) � 1

2OPT(I).

If 6 > 1 and P(M1) � 1, we have 2ω + 2 � W(M2) < 2ω + 3, and thus

MDNFD(I) � ω + 1+ P(M1) � 1
2 (W(M2)− 1)+ P(M1)

� 1
2 (W(M2)+ P(M1)) � 1

2OPT(I),

where the third equality is from P(M1) � 1, and the last one is from (7).
IfMDNFD stops at Step 6, we have 1 < 6 < 2 and P(M1) < 1. We thus obtain OPT(I) � W(M2)+

P(M1) < (2ω + 3)+ 1 = 2 (ω + 2). On the other hand, we have MDNFD(I) � ω + 2 by Lemma 17
(2) and the algorithm rule. Therefore, MDNFD(I) � 1

2OPT(I).
Nowwe only need to consider the case thatMDNFD stops at Step 8.We have 6 > 1, P(M1) < 1, and

W(M1 ∪M2) < 2ω + 3. 6 > 1 impliesW(M2) � 2ω + 2. To reach the goal, we need to obtain a better
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upper bound of the optimal value for this case. For this purpose we consider a linear programming
relaxation of the problem.

It is clear that at most n bins can be covered in an optimal solution for the instance consisting of
n items. Define

yi =
{
1 if the ith bin is used,
0 otherwise, xij =

{
1 if uj is put in the ith bin,
0 otherwise.

Then BCR can be formulated as a linear program as follows:

max
n∑
i=1

yi +
n∑
j=1

pj

(
1−

n∑
i=1

xij

)

s.t.
n∑
j=1

wjxij � yi, i = 1, . . . , n

n∑
i=1

xij � 1, j = 1, . . . , n

yi = 0, 1, i = 1, . . . , n
xij = 0, 1, i, j = 1, . . . , n

Replacing xij = 0, 1 by 0 � xij � 1 for every i, j = 1, . . . , n, we obtain a relaxed problem: any item can
be cut and spread into different bins, we call it the problem BCR with preemption. Let the optimal
value of the instance I for the relaxed problem beOPTR(I). Then we haveOPTR(I) � OPT(I) trivially.

Recall that all items in M2 are sorted in non-increasing order of their ratios between sizes and
profits, wi/pi, we define

l(k) = min


j :

j∑
i=1

wi � k , ui ∈ M2, i = 1, . . . , j


 , k = 1, . . . , 2ω + 2,

and

t(k) =
l(k)∑
i=1

wi − k , k = 1, . . . , 2ω + 2.

It is clear that 0 � t(k) < wl(k), k = 1, . . . , 2ω + 2. For any t(k) > 0, k = 1, . . . , 2ω + 2, let 1k1 =
t(k)/ wl(k) and 1k2 = 1− 1k1 , and cut item ul(k) into items ul(k)1, ul(k)2 with wl(k)i = 1ki wl(k) and
pl(k)i = 1ki pl(k), i = 1, 2. Let

M ′2 = M2 ∪

 ⋃
k=1,...,2ω+2

{
ul(k)1, ul(k)2

} \ {ul(k)}

 ,

and partition M ′2 into two subsets M21 and M22, where

M21 = {u1, u2, . . . , ul(2ω+2)−1, ul(2ω+2)1}
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and

M22 = {ul(2ω+2)2, ul(2ω+2)+1, ul(2ω+2)+2, . . . , u|M2|}.

Consider a feasible solution that packs all items in M21 by DNF algorithm and rejects all items
in M22 and M1. Hence we have

OPTR(I) � 2ω + 2+ P(M22)+ P(M1). (9)

(In fact, it is not hard to show that OPTR(I) = 2ω + 2+ P(M22)+ P(M1), but the weaker state-
ment (9) is also enough for us to complete the proof). It is trivial that P({ul(2ω+2), ul(2ω+2)+1,
ul(2ω+2)+2, . . . , u|M2|}) � P(M22), because almost the same items are in sets {ul(2ω+2), ul(2ω+2)+1,
ul(2ω+2)+2, . . . , u|M2|} and M22, except that both ul(2ω+2)1 and ul(2ω+2)2 are in the first set while
ul(2ω+2)1 is missing from the second set. Now we are ready to prove the last case of Theorem 19.
Since l(2ω + 2) � k̄ , we have

MDNFD(I) � ω + 1+ P
({ul(2ω+2), ul(2ω+2)+1, . . . , u|M2|}

)+ P(M1)

� ω + 1+ P(M22)+ P(M1) � 1
2OPTR(I) � 1

2OPT(I)

applying (9). This bound completes the proof. �
The following instance can show that the asymptotic worst-case ratio is still 1/2. Let I be an

instance with 2N + 2 items, each with size 1− ε and profit 1− 2ε. Then we know M1 = ∅. MDNFD
stops at Step 5, and we have MDNFD(I) = N + 1 while OPT(I) = (2N + 2)(1− 2ε). We obtain that
A(I)/OPT(I)→ 1/2 as ε→ 0.

To give an off-line algorithm with an asymptotic worst-case ratio of greater than 1/2 is open.

4. Final remarks

In this paper, we considered bin packing problems with rejection penalties and their dual prob-
lems. We studied their approximation algorithms by distinguishing on-line, off-line, and absolute
competitive (worst-case) ratio and asymptotic competitive (worst-case) ratio. All results are listed
in Table 1. Note that algorithms FF , FFD, and DNFD for the bin packing and covering problems
run in time O(n log n), and DNF runs in time O(n), our algorithms also run in time either O(n log n)
or O(n).

Our study suggests problems for further research. For example, could randomized algorithms
perform better, on average, than our deterministic algorithms? Could we achieve better perfor-
mance bounds in special cases, such as when every item has the same penalty p , or when the size of
every item is less than a constant a < 1? It also would be interesting to study higher-dimensional bin
packing problems with rejection penalties and vector packing problems with rejection penalties.
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