Final draft of paper that appeared in ALGORITHMICA 31:2 (2001), 115-138

Bounded Space On-Line Bin Packing:
Best is Better than First

J. Csirik!' and D. S. Johnson?

Abstract

We present a sequence of new linear-time, bounded-space, on-line bin packing algorithms,
the K-Bounded Best Fit algorithms (BBF). They are based on the @ (nlogn) Best Fit algorithm
in much the same way as the Next-K Fit algorithms are based on the ®(nlogn) First Fit algo-
rithm. Unlike the Next-K Fit algorithms, whose asymptotic worst-case ratios approach the limit-
ing value of 17/10 from above as K — oo but never reach it, these new algorithms have worst-
case ratio 17/10 for all K = 2. They also have substantially better average performance than their
bounded-space competition, as we have determined based on extensive experimental results sum-
marized here for instances with item sizes drawn independently and uniformly from intervals of
the form (0,u], 0 < u < 1. Indeed, for each u < 1, it appears that there exists a fixed memory
bound K(u) such that BBF g, obtains significantly better packings on average than does the
First Fit algorithm, even though the latter requires unbounded storage and has a significantly
greater running time. For u = 1, BBF ¢ can still outperform First Fit (and essentially equal Best
Fit) if K is allowed to grow slowly. We provide both theoretical and experimental results con-
cerning the growth rates required.

! Department of Computer Sciences, University of Szeged, Szeged, Hungary. Research partially
supported by a Fulbright grant from the Council for International Exchange of Scholars, by the
NSF Science and Technology Center for Discrete Mathematics and Theoretical Computer Science
(DIMACS), and by AT&T Labs -- Research.

2 AT&T Labs — Research, Florham Park, NJ 07932.

A preliminary, shortened version of this paper appeared under the same title in the Proceedings of
the 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 1991, pp. 309-319.

1. Introduction

In the one-dimensional bin packing problem, we are given a list of items L = aq,a,, - - - ,a,,
each item a; with a positive (rational) size s(a;) < 1, and asked to find a packing of these items
into a minimum number of unit-capacity bins B, k = 1. Since the problem of finding an optimal
packing is NP-hard, research has concentrated on approximation algorithms that find near-optimal
packings. In this paper, we shall direct attention to a specially restricted class of such algorithms:
ones that are ‘‘on-line’’ and use ‘‘bounded space.’’

Definition. A bin packing algorithm is on-line if it assigns items to bins in the order
(ay,as, -), with item a; assigned solely on the basis of the sizes of the preceding items and the
bins to which they were assigned, without reference to the sizes or number of remaining items.

Note that in an on-line algorithm, we may assume without loss of generality that no item is
placed in bin By, {, k = 1, until an item has been placed in bin B;. Thus, if in the packing so far
the non-empty bins are B through By, the possibilities for the next item are B, through B,
with bin B, being referred to as the potential new bin. In the algorithms we consider in this
paper, the possibilities are further limited by a classification of the bins as open and closed. Each
bin B; becomes open when it receives its first item, and remains so until it is declared closed.
Only open bins (and the potential new bin) may receive items. Once a bin is closed, it may never
receive an item again.

Definition. An on-line bin packing algorithm uses K-bounded space if at no time during its
operation does the number of open bins exceed K.

This bounded-space restriction arises in many applications. Consider the problem of pack-
ing trucks at a loading dock that has positions for only K trucks (the open bins). If the next item
to be packed does not fit in any of the trucks currently backed up to the dock, we will need a new
truck, and if there are already K trucks present, one of these will have to drive away (be closed) to
make room (and presumably to start making its deliveries). Alternatively consider a communica-
tion channel in which information moves in large fixed-size blocks. If these blocks are filled with
smaller packets of various sizes that must be assigned to blocks as they arrive at the entrance to
the channel, we have an on-line bin packing problem. If the buffer for the channel input is of
bounded size, we have a bounded-space on-line bin packing problem.

The first bounded-space on-line bin packing algorithms to be studied were the Next-K Fit
(NFg) algorithms, introduced in [12,13]. In Next-K Fit, if B is the current non-empty bin of
highest index, then the set of open bins is {B;: max(1,/—-K+1) < j < J}, and the item a; to be
packed is placed in the lowest-indexed bin among these into which it will fit. If no open bin has
room for a;, then it is placed in B;, (a new bin), and if J = K, bin B;_g, is closed. (Next-1
Fit is often referred to simply as ‘‘Next Fit’” or ‘*‘NF*’ for short.) These algorithms can be viewed
as bounded-space restrictions of the familiar (unbounded-space) First Fit (FF) algorithm, which is
equivalent to Next-co Fit. Not surprisingly, their worst-case ratios approach that of First Fit as
K — oo.

To make this claim formally, we need some additional definitions. Let A(L) be the number
of bins used in the packing of L generated by algorithm A and OPT(L) be the optimum number of
bins.

-3-

A(L)

Definition. R, [A] = max
OPT(L)

:OPT(L) = n}

Definition. The asymptotic worst-case ratio for algorithm A is R”[A] = lim supR,[A].

n—>oo

The precise values of R™[A] have been obtained for both FF and the NF g algorithms:

Theorem [14]. R™[FF] = 1.7.

3
10(K-1)"

Csirik and Imreh [8] first proved the general lower bound for NF g and the upper bound for
NF,; Mao [21] proved the general upper bound. (For K = 1, the result R [NF] = 2 is trivial to
obtain, and was first reported in [12,13].) Note that in recompense for the degraded worst-case

Theorem [8,21]. For K>2, R”[NFg] = 1.7 +

ratios of these algorithms, we obtain substantially faster running times, O(nlogK) or simply
O(n) for each fixed K, in comparison to the ® (nlogn) required by FF.

These are not the best possible bounded-space on-line algorithms, however. Even the 1.7
worst-case ratio for the (unbounded-space) FF algorithm can in fact be beaten (slightly). This
was first observed by Lee and Lee [19], who devised a series of K-bounded-space ‘‘Harmonic’’
algorithms H g whose asymptotic worst-case ratios approach a limiting constant /4, = 1.69103...
In algorithm H g, the input items are divided into K different classes as they arrive, with items in
each class packed separately according to Next Fit. The classification is by item size, with the
size ranges being (1/j,1/(j—1)],2 < j £ K, and (0,1/K]. The worst-case behavior of the algo-
rithms H is intimately connected with the sequence <k;> =1,2,6,42, - - - where k| = 1 and
kizi1 =ki(k;+1), i>1. Let h; = I _y(1/k;). Note that hy =1, hy, = 3/2, hy = 5/3,
hy =1.6904..,and h,, =lim;_,.,h; = 1.69103...

Theorem [19]. Suppose k; < K < k;, | for some i=1. Then

hi+; < R”[Hg] < hﬁé
kivi —1 kiv1(K—1)
Note that the upper and lower bounds coincide when K = k; 1, so for these choices of K the pre-
cise value of R*[H] is known. The precise value can also be determined when K = k; . +1,
as in this case it is easy to construct instances that show that the upper bound given by the theo-
rem is tight. For K=4,5, the precise values were recently derived by van Vliet [29]. For all
other values of K, however, the question of the precise value of R” [H g] remains open, although
we can construct examples improving the lower bounds of the theorem for many values of K.

The current best lower bounds for R*[Hg], 2 £ K < 10, are given in the third column of
Table 1 below. The entries in this table are rounded to four decimal places, but for those K with
matching upper and lower bound entries in the table, the two bounds are in fact equal. Table 1
also includes entries for a variant on the H g algorithms introduced by Woeginger in [30]. These
Simplified Harmonic algorithms (SH g) use a more effective partition of the items and obtain the
same worst-case behavior as the H g using only O(loglogK) space.

The questions of the difference between the upper and lower bounds for Hx and of the
amount by which SH g improves over H g become more and more academic as K increases and
all these bounds approach the same limiting value of 1.69103... This limiting value takes on

added significance in light of a second result of Lee and Lee, which implies that in a sense the
Harmonic (and Simplified Harmonic) algorithms are the best possible bounded-space on-line
algorithms.

Theorem [19]. For any integer K > 0 and any K-bounded-space on-line bin packing algo-
rithm A, R”[A] = h..

Note that this result is in contrast to the result for general (unbounded space) on-line algo-
rithms, where asymptotic worst-case ratios as good as 1.5887 have been obtained [25] and where
the best lower bound known is 1.5400 [28].

The drawback to the Harmonic (and Simplified Harmonic) algorithms is that they perform
much more poorly on average than do the NFg. Let L, be a random n-item list with item sizes
chosen independently from a uniform distribution on [0,1]. Then the average value of
NF g (L,)/OPT(L,) empirically approaches 1 as K — oo, whereas the expected ratio for the H g
approaches 1.28986... [7,18], and it is reported in [30] that computational experiments suggest
that SH g performs just as poorly. The question thus arises whether there exist bounded-space
on-line algorithms that have better worst-case ratios than the NF g algorithms and have at least as
good average-case performance. In this paper we answer this question in the affirmative, present-
ing a sequence of algorithms that is provably better in the worst case and is experimentally
observed to be better on average as well.

We shall call these algorithms the K-Bounded Best Fit algorithms (BBFg), as they are
derived from the familiar (unbounded) Best Fit (BF) algorithm in much the same way that the
NF g algorithms were derived from First Fit. As with NF g, algorithm BBF runs in time
O(nlogK), whereas BF requires time ®(nlogn). Algorithm BBF g differs from NF g, however,
both in the way it chooses the bin into which to pack the current item and in the way it chooses
the bin to close when a new bin must be started. Let us denote by s(B) the sum of the sizes of the
items currently in bin B. In the packing rule for BBF g, a; is placed in the open bin with maxi-
mum value of s(B) among those open bins B with s(B) + s(a;) < 1. Ties are broken in favor of
the bin with lower index. (Recall that in NF ; we simply chose the lowest indexed open bin with
s(B) + s(a;) £ 1.) If no open bin has enough space, a new bin is started. If in this case there
are already K open bins, we first close the currently open bin B with maximum value of s(B),
again breaking ties in favor of the lower index. (Recall that in NFx we simply closed the lowest
indexed open bin.)

Note that the Best Fit algorithm can be viewed simply as BBF,, for which, as with FF, we
have R”[BF] = 1.7 [14]. Our main result is the following:

Theorem 1. Forall K > 2, R°[BBFg] = 1.7.

This is a surprising result because the original proof that R [BF] = 1.7 relied heavily on the fact
that in BF all bins remain open and available for future items. In fact, as Theorem 1 indicates,
only two open bins are necessary. Observe that this implies that, although the algorithms BBF ¢
asymptotically lose out to the Harmonic algorithms in worst-case performance, they outperform
the H g for small values of K. Table 1 compares the values of R*[A] for BBF g, NFg, Hg, and
SHg when 2 < K<10. (For K =1 all three algorithms yield identical packings and have
asymptotic worst-case ratios of 2.) Note that BBFy strictly dominates Hx and SHy for
2 < K <4, andis at least as good for all K < 5.

K | NFg BBFy Hg> Hy < SH
2 | 20000 17000 2.0000 2.0000 2.0000
3 | 1.8500 17000 1.7500 1.7500 1.7500
4 | 1.8000 17000 1.7143 17143 1.7222
5 | 17750 17000 1.7000 1.7000 1.7000
6 | 17600 17000 1.7000 1.7000 1.6944
7 | 17500 17000 1.6944 1.6944 1.6939
8 | 1.7429 1.7000 1.6938 1.6939 1.6911
9 | 17375 17000 1.6933 1.6935 1.6910

10 | 17333 17000 1.6929 1.6931 1.6910

TABLE 1. Asymptotic worst case ratios.

An important observation is that both the packing and closing rules of the BBF g algorithms
are needed if we are to obtain a result like Theorem 1. Consider the following four rules:

P-FF: Place the current item b in the lowest indexed open bin that has room for it (if any
do). Otherwise open a new bin and place b in it.

P-BF: Place the current item b is the fullest open bin that has room for it (if any do), ties
broken in favor of the lowest index. Otherwise open a new bin and place b in it.

C-FF: Close the lowest indexed open bin.
C-BF: Close the fullest open bin, ties broken in favor of the lowest index.

Four algorithms with K-bounded space can be constructed using these rules. For any com-
bination of a packing rule (P-FF or P-BF) with a closing rule (C-FF or C-BF), one applies the
packing rule to each item in turn, subject to the following constraint: If no current bin has room
for b and there are K open bins, then the closing rule must be invoked before starting a new bin.
The combination of P-FF with C-FF yields NF ¢ and the combination of P-BF with C-BF yields
BBF . Let ABFg denote the (P-BF,C-FF) combination, and AFB g denote the (P-FF,C-BF)
combination. In the preliminary version of this paper [9] we showed that both AFB g and ABF
had asymptotic worst-case ratios of at least 1.7 + 3/(10K) for all K>2. Subsequently, tight
bounds have been obtained for the two algorithms by Mao [22] and Zhang [31] respectively:

Theorem [22]. Forall K>2, ABFg=1.7+ H)LK
Theorem [31]. Forall K>2, AFBg=1.7+ #
10(K-1)

Note that AFB g has precisely the same worst-case behavior as NF g, while ABFg is
slightly better for all K>2.

This paper is organized as follows. We begin in Section 2 by presenting our extensive
experimental results. These results serve to validate our claim that the algorithms BBF g are sub-
stantially better than their counterparts on average, and raise many interesting theoretical ques-
tions. For instance, our results suggest that if items are uniformly distributed in the interval
(0,u], u < 1, then for sufficiently large fixed K(u), BBFg(,, appears to outperform NF y for all
K, and indeed to do better than the limiting, unbounded-space First Fit algorithm. Our results

-6-

also suggest that if one allows K to grow slightly more quickly than \ n,_BBF x will perform as
well as Best Fit while using less space and time. We conclude the section by considering the one
dimension under which algorithms like NF ¢ have an advantage over BBF g, their delay charac-
teristics. Note that under BBF g, a bin may remain nonempty and open for an unbounded amount
of time. This is a potential drawback in applications such as those mentioned above, where
timely delivery may be important. We consequently examine various ways to bound the output
delay of BBFg, and experimentally confirm that there are ways to do this without seriously
degrading overall performance.

In Section 3 we prove Theorem 1. The proof borrows a weighting function from the proof
of [14] that R [FF] = R”[BF] = 1.7, but beyond that takes an entirely different approach, using
a complicated induction to arrive at a much more general conclusion. It implies R*[A] < 1.7 for
a broad class of algorithms that includes the BBF g, K > 2, as well as many variants. In Section 4
we provide proofs for some of the improved lower bounds mentioned in this paper, in particular
the new lower bounds on R”[Hg] cited in Table 1 and an improved lower bound on the
average-case behavior of any on-line, bounded-space algorithm that is stated in Section 2. The
paper concludes in Section 5 with a brief summary and a discussion of directions for future
research.

2. The Average Case: Experimental Results

Our claims of the superiority of BBF g ‘‘on average’ are based on experiments with lists
L, , of n items with sizes drawn independently from uniform distributions on intervals [0,u],
0 < u £ 1. Such lists elicit an intriguing diversity of algorithmic behavior, and most of the inter-
esting theoretical results about expected performance of bin packing algorithms that have been
proved to date concern them. Our experiments will thus be placed in an informative theoretical
context, and can suggest new questions to which probabilistic analysis might be applied.

Let us define s(L) to be the sum of the sizes of the items in L, observing that
s(L) < OPT(L) for all L. For all the distributions in question, we have E[s(L, ,)] = ©(n) and
lim E[OPT(L, ,)/s(L, ,)]=1[3]. Moreover,

n—oo
O(l) O<ux<l1

E[OPT(Ln,u)_S(Ln,u)] = {@(l’ls) u=1

where the result for u = 1 was first proved in [16,20] and the results for # < 1 are from [3].

Based on the above results, it is reasonable to perform one’s comparisons between A (L) and
s(L), and this is what we shall do, by means of the following definition.

Definition. If A is a bin packing algorithm, ER;[A] = lim E[A(L,, ,)/s(L,)]

n—>oo
Precise values of ER;, [A] have only been determined for a few choices of bounded-space
on-line algorithms A and bounds u. Coffman, Hofri, and So [6] showed that ERT [NF ;] = 4/3,
and Karmarkar [15] showed how the values of ER; [NF] could be determined for 1/2<u < 1.
Lee and Lee [19] showed that I}im ERT [Hg] = 1.2898... For other algorithms and values of u,
Soo

the best we can do at present is estimate the values of ER;; [A] empirically by performing experi-
ments on long random lists. Table 2 is the average-case analogue of Table 1, giving the average

K Hy SH NF ¢ BBF LB
2 | 12986 | 1.2986 | 1.2387 | 1.1782 | 1.0833
3| 12917 | 12917 | 1.1972 | 1.1378 | 1.0625
4 | 12904 | 12904 | 1.1729 | 1.1159 | 1.0500
5 | 1.2901 | 1.2912 | 1.1564 | 1.1015 | 1.0417
6 | 12900 | 12912 | 1.1443 | 1.0912 | 1.0357
7 | 12899 | 12912 | 1.1349 | 1.0832 | 1.0313
8 | 1.2899 | 1.2912 | 1.1272 | 1.0769 | 1.0278
9 | 12899 | 12912 | 1.1209 | 1.0717 | 1.0250
10 | 1.2899 | 12912 | 1.1155 | 1.0673 | 1.0227
20 | 1.2899 | 12912 | 1.0858 | 1.0439 | 1.0119
40 | 1.2899 | 12912 | 1.0636 | 1.0280 | 1.0061
80 | 12899 | 1.2912 | 1.0470 | 1.0175 | 1.0031
160 | 1.2900 | 1.2912 | 1.0345 | 1.0107 | 1.0016
320 | 1.2903 | 12912 | 1.0252 | 1.0065 | 1.0008
640 | 1.2909 | 1.2912 | 1.0183 | 1.0040 | 1.0004
oo | 12932 | 12912 | 1.0069 | 1.0026 | 1.0000

TABLE 2. Average values of A(L,)/s(L,) forn = 1,000,000.

values, over 100 trials, of A(L, ;)/s(L, ;) when n = 1,000,000. For n this large, the variances
of the performance ratios are so small that the 95 % confidence range is less than £1 for the last
decimal place displayed. The row labeled ‘‘eo’” gives the results for the limiting, unbounded stor-
age algorithms H,,, FF, and BF. Algorithm H., is the generalization of the H algorithms in
which there is an infinite number of item classes, one for each interval (1/j,1/(j—1)],j = 2. For
the results in Table 2, we simulated H., by using H; o99.000- The column labelled ‘LB’ gives a
lower bound on the best possible value of ER;[A] for any on-line algorithm using K-bounded
space. The bounds are derived from the following theorem, which is a strengthening of an earlier
result of Coffman and Shor [5] and will be proved in Section 4.

Theorem 2. For any integer K and any on-line bin packing algorithm A using K-bounded
space,

1

ERT[A] 21 + ——
4K+1)

Before considering the performance ratios in Table 2, let us first say something about the
implementations. The implementations of all the algorithms in this study shared a common call-
ing program that generated item sizes using a shift-register random number generator as described
in [1,17]. (Limited experiments were performed with other random number generators to confirm
that no major bias was introduced by this choice.) To reduce variance, a common seed was used
for the random number generator for each set of experiments, meaning that all algorithms ran on
the same set of lists. In order to be able to obtain results for long lists, we programmed in C and
used relatively efficient implementations for all the algorithms, i.e., O(nlogn) for Best Fit and

-8-

First Fit (the latter using the data structures of [12]), O(nK) for the K-bounded space algorithms
other than BBF g, and O(nlogK) for BBF . The slowest of these implementations was that for
NF¢49, but even this took only 19 seconds on a 194 Mhz MIPS™ R 10000 processor to handle a
million-item list. (MIPS is a trademark of Silicon Graphics, Inc.) The fastest, H,, took about a
half second.

Let us now look in more detail at the average performance ratios presented in Table 2. As
predicted, for each value of K > 1, NF is better than Hg, and BBF g is better than NFg. In
addition, however, Table 2 exhibits several perhaps unexpected trends. First, the average-case
behavior of the Harmonic algorithms H g actually gets worse once K becomes sufficiently large.
This is an artifact of our having held » fixed; the expected ratio results for the H g are asymptotic
in n. The Harmonic algorithms create a separate bin class for items in each interval
(1/j,1/(j—1)], 2 £ j £ K, and if K is sufficiently large with respect to n, many of these classes
will consist of a single, mostly empty bin. If one considers lists of length n =10% instead of just
10°, the average ratio of Hego (L, 1)/s(L, ;) drops to 1.2899.

A second surprise is that as soon as K is sufficiently large for the Simplified Harmonic algo-
rithm SH g to differ algorithmically from the Harmonic algorithm H, i.e., as soon as K=5, the
average-case behavior for the former becomes slightly worse than that for the latter, even though
its worst-case behavior is better. This perhaps shouldn’t be a surprise, given the many other situ-
ations in which actions taken to improve worst-case behavior result in degraded average-case
behavior, but it does contradict the tentative claim of equivalent average-caes behavior made in
[30]). The reason for the degradation is that SH g, for K>5, groups the items in (1/6,1/5] and
(1/5,1/4] into one class that is packed by Next Fit, rather than two separate classes, and for items
uniformly distributed between 1/4 and 1/6, using separate classes is marginally more effective.

As a final surprise, note that the average ratios for the bounded-space algorithms BBF 35,
and BBFg, are both better than the average for the unbounded storage FF algorithm! This is
again an artifact of our having fixed n and does not hold asymptotically. For n =10 instead of
10°, the average for FF drops to 1.0034 versus 1.0038 for BBF ¢49. Indeed, it is impossible for
any bounded-space on-line algorithm to asymptotically outperform FF on average, as a conse-
quence of Theorem 2 and results from [5,26].

Theorem [3,4,26]. ERT [FF] = 1.

More precisely, in [3] it was shown that E[FF(L, ;)—s(L,)] = 0(n%?), a result that was
subsequently improved to ®(n>?) in [4,26]. Thus for u = 1 and all fixed K, FF asymptotically
dominates BBF g, which by Theorem 2 must have ERT [BBF] > 1. It may well be the case,
however, that for smaller u the situation is reversed. So let us now consider random lists L, ,
withu < 1.

Let us first examine the situation when K is small. Figure 1 charts the average ratios
A(L, ,)/s(L,,) for the algorithms NF x and BBF g with assorted values of K <5 (NF = NF).
The number 7 of items is 128,000, u ranges from 0.05 to 1.0 in steps of 0.05, and each data point
represents the average of 50 runs. (The 95% confidence ranges are about 10 times as large as
those for Table 2, but still smaller than the resolution of the figure.) The dashed lines represent
the curves for the NF ;¢ algorithms, and the solid lines represent the BBF ;. We also include a
dotted line for ‘‘Smart Next Fit’” (SNF) an intermediate algorithm between NF and BF, proposed

-9.-

and studied in [23]. In SNF there is only one ‘‘current bin’’ allowed, but if the next item to be
packed does not fit in that current bin and is bigger than the total contents of that bin, then the
new item is packed into a new bin which is immediately closed, leaving the current bin open.
This algorithm has the same worst-case behavior as NF, but its average case performance is sig-
nificantly better (and even better than NF, for large u).

1.5

==~ |NF,
| SNF
NF,
BBF,
NF;
BBF,
BBF,

FIGURE 1. Average values of A(L, ,)/s(L,_,) as a function of u for n = 128,000.

The figure also includes a solid line representing the analytically derived asymptotic
expected ratio for the Harmonic algorithms H g as K and n go to eo. (The derivation is straightfor-
ward and left as an exercise for the reader.) Data points on this curve go from .01 to 1.00 in steps
of .01, which explains its greater smoothness. As suggested by Table 2, choosing the correct K to
attain the plotted ratios when r is fixed at 128,000 might have been a tricky task, but based on
limited experiments, it appears that the ratios can be approached fairly closely, even for small u,
if the correct K is chosen. (For u > 0.5, we could also have derived the points on the NF curve
analytically, using results from [6,15], although these again would have been limiting values as
n — oo, rather than values specifically for n = 128,000.)

Note that the Harmonic algorithm certainly lives up to its name, given the oscillatory behav-
ior of its expected ratio as illustrated in Figure 1. More significantly, the average-case dominance
of H,, over NF suggested by the theoretical results in [6,19] appears now to be an artifact of the
standard bias toward u =1 in the literature. The range of u’s for which H,, is significantly worse
than NF is substantially larger than that for which it is better. And for no u is it better than NF,.
More germane to our purpose here, note that for all K depicted in the figure, BBF i significantly
outperforms NF . The lead of the BBF i over the NF x seems to be growing with K, in the sense
that NF 5 is dominated not only by BBF 5 but also by BBF,. The lead also increases with u, so

- 10 -

that even BBF; dominates NF5 at the high end of the scale. As K increases further, this phe-
nomenon becomes more pronounced. See Figure 2.

1.05 F

NFy,
1.04

NF160
1.03

NF320
1.02

BBFy,

FF
1.01 | BBFis0

.|BBF

BF 320

100 T | | | | |
0.5 0.6 0.7 0.8 0.9 1.0

FIGURE 2. Average values of A(L,, ,)/s(L,,) as a function of u for n = 128,000.

In Figure 2, we focus on the region where u > .5, comparing NF ¢ and BBF g algorithms
with each other and with FF and BF. (The curve for FF is smoother than the others for u > .70,
since it includes data points going up by steps of .01 rather than .05, as a result of experiments
performed in an earlier study.) Here we observe that BBF g, dominates NF 3, across the board.
Moreover, mirroring the behavior we saw for larger n in Table 2, BBF ;47 and BBF 3, both domi-
nate NF g for all K > 0, since they dominate the limiting FF algorithm. Furthermore, in contrast
to the situation when u = 1, here there is no strong reason why the dominance of BBF ¢ over FF
might not hold for arbitrarily large »n and at least some values of u < 1.

The large bumps at the right hand sides of the FF and BF curves are an artifact of the small
value of n, but experimental evidence suggests that the gap between the curves at values u < 1 is
real and persists for arbitrarily large n (see also [2]). Thus we join [27] in the following conjec-
ture.

Conjecture. Forall u,0 < u < 1,

ER?[FF] > ER”[BF] > 1.

We suspect that for u < .90 the true values are not much lower than those indicated by the
curves in Figure 2, and are prepared to make the additional conjecture that, for u < .90, ER;; [FF]
> ER; [BBF 14901 > ER;; [BF]. We have studied this question in detail for the case of u = .80,
where for n = 128,000 the gap between FF and BF seems to be close to a maximum. Table 3
compares the average ratios for FF, BBFg,, BBF ¢y, and BF for u = .80 as n increases by

-11 -

powers of 2 from 128,000 to 8,192,000. For n > 1,000,000, the 95% confidence range is no
more than 14 for the last decimal place displayed, and no more than t1 for the last decimal place
in the n=8,192,000 entries. Note that by n = 8,192,000, both the BBF x algorithms appear to
have converged, and both FF and BF seem to be very near their asymptotes, leaving the BBF
algorithms with a sizable lead over FF.

n/1000 FF BBFg, | BBFq BF

128 1.01905 1.01448 1.01409 1.01408
256 1.01873 1.01441 1.01394 1.01389
512 1.01855 1.01437 1.01387 1.01378
1024 1.01840 1.01435 1.01384 1.01371
2048 1.01832 1.01434 1.01382 1.01367
4096 1.01826 1.01434 1.01381 1.01364
8192 1.01822 1.01434 1.01381 1.01362

TABLE 3. Average values of A(L,, .80)/5(L,.0.80)-

The question is thus raised: Given n and u, how large must K be for BBF g to outperform
FF? Of special interest is the case where u = 1, for which as we have seen above, no fixed value
of K will work for all n. Assuming we allow K to grow with n, how slow a growth rate will suf-

172 10g3/4

fice? For u = 1, a growth rate of @(n n) certainly suffices, as a consequence of the fol-

lowing result.

Theorem 3. There exists a constant ¢ > 0 such that if g(n) = cn 172 10g3/4 n, then
E[BBFg(n)(Ln,l)_S(Ln,l)] = @(n1/210g3/4n).

Note that this expected difference is substantially smaller than the abovementioned © (n>/?)

expected difference for FF, and is within a constant factor of the expected difference for BF, as
determined by Shor in [26]. The proof of Theorem 3 is omitted, as it simply involves showing
that the machinery of Shor’s proof can be applied to BBF ¢ when K grows at the specified rate.
The argument does not allow us to conclude, however, that the expected growth rates for
BF(L)—s(L) and BBF,,)(L)—s(L) have the same constants of proportionality. To investigate
this question, we compared BF to BBF ¢ for K equal to (1/2)n'"?log**n rounded to the nearest
integer, logarithms taken to the base e. We used a testbed consisting of lists with lengths going up
by factors of two from n =1,000 to 8,192,000, with 25 to 1600 random lists considered for each
value of n, the higher numbers being for the smaller values of n. Surprisingly, the two algorithms
used precisely the same number of bins for every list in the study! (We did not check to see if the
packings within those bins were identical, although this seems less likely.)

That K must be allowed to grow roughly as fast as n'/?log**n for BBF g to successfully
mimic BF in this way is suggested by the data summarized in Figure 3. Here the average values
of (BE(L)—s(L))/n'"? for the above testbed are charted as a function of n and compared to the

172

corresponding averages for BBFy when K is the nearest integer to n '“. Observe that now

BBF g definitely produces more waste than BF, and the gap is growing with n.

-12 -

+

1.4

+ : BBF,: "

* 1 BF and BBF 514475,
1.2
1.0+

Normalized Average Excess: L_i@)
0.8 Vn
10° 104 10° 10° 107

FIGURE 3. Normalized average excesses as a function of n, with n going from 1,000 to
8,192,000 by powers of 2.

Note also that the question of how fast K must grow for BBF x to mimic BF is not entirely
academic. At least for the straightforward O(nlogn) and O(nlogK) implementations used here,

letting K grow as roughly n '/

yields BBF g algorithms that should run roughly twice as fast as
BF. For large n, BBF ¢ actually did substantially better than this, presumably because its lower
space requirement led to better cache performance. Thus BBF g may be of interest even when

bounded space per se is not an issue.

When bounded space is important, however, there is one potential drawback to using algo-
rithms like the BBFg. Let us say an item is ‘‘output’” when the bin into which it was packed is
closed. In many applications, it may be important that the delay between the time an item is input
and the time it is output be minimized. This could well be the case in both the loading dock and
communication buffer applications described in the introduction. The NF algorithms provide a
guarantee that an item will be output by the time subsequent items with total size K have arrived.
No such bounded guarantee is provided by the BBFx. Even on average, relatively large delays
occur. For instance, over five runs of BBF j; on random lists L, ; with n = 1,000,000, the old-
est item in an unclosed bin when the millionth item was packed had typically arrived over 67
items earlier, compared to the roughly 2K = 20 maximum item delay one might expect for NF .
For BBF3,(, the oldest item had arrived an average of over 8,000 items earlier, compared to the
roughly 2K = 640 maximum item delay expected from NF,,. Note that the ratio of maximum
delays for BBF g and NF g increased from roughly 3.3 to 12.5 as we went from K = 10 to
K = 320.

Can we obtain the improved packings of the BBF g algorithms without allowing such long
delays. One option is the hybrid algorithm ABF g described in Section 1, which combines the
Best Fit packing rule with the First Fit closing rule. As we saw in Section 1, ABF g does not

- 13-

perform as well as BBF g in the worst case, but it does do better than NF g in the worst-case as
soon as K=2. One might hope that it would also produce better packings than NF g, while having
the same delay characteristics. Table 4 compares results for ABFy with those for BBF g and
NF g for lists L, ; with n = 1,000,000 and for various values of K from 2 to 640. The results are
the averages over 100 trials each for the new algorithms, and once again the last digits are accu-
rate to within =1 with a 95% confidence level.

K NF ABFj BBFy,x BBFg.x BBFggx BBFg ¢k BBF
1.2387 1.2363 1.2131 1.1843 1.1785 1.1782 1.1782

1.1564 1.1520 1.1383 1.1116 1.1026 1.1016 1.1015

10 | 1.1155 1.1108 1.1026 1.0793 1.0692 1.0674 1.0673
20 | 1.0858 1.0810 1.0760 1.0566 1.0466 1.0441 1.0439
40 | 1.0636 1.0587 1.0556 1.0403 1.0313 1.0284 1.0280
80 | 1.0470 1.0420 1.0401 1.0285 1.0210 1.0181 1.0175
160 | 1.0345 1.0297 1.0285 1.0200 1.0141 1.0114 1.0107
320 | 1.0252 1.0208 1.0200 1.0139 1.0096 1.0073 1.0065
640 | 1.0183 1.0144 1.0139 1.0096 1.0066 1.0048 1.0040

TABLE 4. Average values of A(L, ;)/s(L,) for bounded-delay algorithms when n = 1,000,000.

Table 4 also reports results for a sequence of algorithms that attempt to attack the delay
problem head on, while maintaining more of the good packing behavior of the algorithms BBF .
Algorithm BBF g ;, measures time by the number of items that have arrived so far, and assigns to
each newly-opened bin a timestamp equal to the time when the first item was placed in it. When
the jth item arrives to be packed, the algorithm first checks to see whether any bin with a times-
tamp of j— D or less remains open. If so, it closes it (after first adding the jth item, should it fit).
If no such timed-out open bin exists (or if the jth item didn’t fit), the algorithm then proceeds as
in BBF . Note that we may assume without loss of generality that D > K, as the time-outs imply
that BBF ¢ ;, can never have more than D bins open.

Now these modifications of BBF ¢ do not come without a significant worst-case penalty.
As can be seen by considering lists consisting entirely of items of size €/D for arbitrarily small €,
R”[BBFg p] = o for all fixed D and K. However, one might hope on average to approach the
quality of the BBF ¢ packings as D is allowed to increase, and the extra processing required by
the timestamping should add little to the running times of the algorithms. Table 4 covers results
for values of D equal to 2K (corresponding to NF ; and ABF), 4K, 8K, and 16K.

From the results for the BBF g p algorithms, it is clear that the BBF g need to allow an
occasional large delay in order to attain their good results. Note that even the BBF g ;¢ suffer a
bit of degradation from the behavior of the BBF g, at least for K >2, although the degradation
would be insignificant in most applications. In general the behavior of the BBFg ¢ gets pro-
gressively worse as o decreases, although even for oo = 2 the algorithms are still better than the
ABFg. These in turn are better than the NF g, as expected, but only by a small amount. The
hybrid algorithms AFB g (which don’t have good delay characteristics and are therefore not
included in the table) provide a much more substantial improvement over the NF ., with perfor-
mance ratios that fall somewhere between those for the BBF g ¢ and the BBF g 4.

-14 -

One concludes that it is possible to limit delays and still get packings almost as good as
those provided by the BBF g, although there is a trade-off between the quality of the packings and
the amount of worst-case delay one is willing to tolerate.

3. Proof of Theorem 1: The 1.7 Upper Bound

Theorem 1 states that the asymptotic worst-case ratio for BBF g is 1.7 for all K = 2. We shall
show that this conclusion actually holds for a much larger class of algorithms than just the BBF g,
a class we shall call the (non-subscripted) BBF algorithms. These are like the algorithms BBF g,
but with the linkage between the packing and bin-closing operations relaxed: Whenever there are
at least three non-empty open bins, one is free to close one of them, although one is under no
stricture to do so. The application of a BBF algorithm to a list of items L thus consists of a series
of pack and close operations, applied in sequence until a state is reached in which neither is appli-
cable (at which time all items in L will have been packed and all but at most two of the bins will
be closed). A BBF algorithm is defined by the choices it makes when both operations are appli-
cable.

Packing must follow the standard Best Fit rule with respect to the open bins. Close opera-
tions must close the open bin whose gap is of minimum size among all ‘‘mature’’ open bins (ties
broken in favor of the lowest indexed bin), where a mature bin is either the first bin or any non-
empty bin that did not receive its first item in the most recent pack operation. (A bin other than
the first bin that did receive its first item in the most recent pack operation is called newborn.)

Note that for all K > 2, BBF can be viewed as an algorithm of this form. We apply the
pack operation whenever there are unpacked items and K or fewer open bins, and we apply the
close operation whenever there are K + 1 open bins, or when all items have been packed and there
are 3 or more open bins. (BBF g need not use more than K ‘‘physical’’ bins, since a close opera-
tion must immediately follow the algorithmic creation of a K + 1st open bin, and we can postpone
the physical creation of that bin until after the close operation has taken place. Note that the
K + 1st bin is not a candidate for being closed in this situation, as it is newborn.) We shall show
that for any BBF algorithm A and any list L,

A(L) < [(1.7)-OPT(L)]

We may assume without loss of generality that the s(L)>1, as otherwise it is trivial that
A(L) = OPT(L). Not surprisingly, we make use of several tools originally developed for the
17/10 proofs for FF and BF. In particular, a weighting function and several related lemmas from
[11] serve as our starting point. The weighting function W: [0,1] — [0,8/5] is defined as fol-
lows.

(6/5)a for 0 <o <1/6,
(9/5)a — 1/10 for 1/6 < a < 1/3,
(6/5)a + 1/10 for 173 < a <1/2,
(6/5)a + 4/10 for 12 < a < 1.

W) = 1

Lemma 1. Forallo e [0,1], W(a) = (6/5) .

- 15 -

Proof. By inspection. O

If B is a set of items let us define s(B) to be X,cp s(b) and W(B) to be X, g W(s(b)).
We also shall identify a bin B with the set of items it contains.

Lemma 2. If B is a set of items such that s(B) < 1, then W(B) < 1.7.

Proof. See proof of Lemma 1(a) in [11]. O

Lemma 3. If o < 1/2 and B is a set of items such that |B| > 2, s(b) > o for all b € B,
and s(B) 21 — o, then W(B) 2> 1.

Proof. See proof of Lemma 3 in [11]. O

Lemma 4. If o < 1/2 and B is a set of items such that |B| 2 2, s(b) > o for all b € B,
and s(B) = 1 —o.— P for some B > 0, then W(B)>1 — (6/5).

Proof. See proof of Lemma 4(b) in [11]. O
Lemma 5. [f W(L) > A(L) — 1, then A(L) <[(1.7) OPT(L) |

Proof. W(L) < (1.7)OPT(L) by Lemma 2 applied separately to the bins of an optimal
packing and then summed over all such bins. Thus if W(L) > A(L) — 1, we have A(L) <
(1.7) OPT(L) + 1, which yields the desired conclusion since A (L) is an integer. O

In light of Lemma 5, the proof of Theorem 1 reduces to showing that W(L) > A(L) — 1.
Our proof of this fact will be by induction on the number ¢ of operations performed so far by algo-
rithm A, starting with ¢ = 1. We will have three induction hypotheses, (H1), (H2), and (H3). In
order to specify them, we need a few more definitions and one more (easy) lemma. Let P[z]
denote the packing after the 1™ operation has been performed, and let ,,,, denote the number of
operations that algorithm A performs before it halts. Let B[¢] denote the contents of bin B in
packing P[¢]. (When the relevant value of ¢ is clear from context, we will typically drop the
“It]”’ from B][¢t], but sometimes it is useful to retain it.)

Lemma 6. Forallt, 1 <t < t,. Plt] contains at most one open bin B with s(B) < 1/2.
Proof. This follows immediately from the fact that no bin is started unless the item being

packed is bigger than the gaps in all currently open bins. O

Let N - [¢] be the number of closed bins in P[¢] and let C[¢] be the set of all items in closed
bins in P[¢].

INDUCTION HYPOTHESIS (H1). In packing P[t], there exists a mature open bin B [t],
which we shall call the leader, such that

W(C[r]) + W(B_[1]) 2 Nclr] + (6/5)s(B[t]).

In other words, the total weight of items in the closed bins plus the leader bin falls short of
an average of 1 per bin by at most 1 — (6/5)s(B[¢]).

Hypothesis (H1) alone would be enough to imply that W(L) > A(L) — 1, as desired, if it
could be shown to hold for ¢t = 7,,,. By our assumption that s(L) > 1, we know that P[# .«]
contains at least two non-empty bins. Hence, by the definition of the close operation and its
applicability, there must be precisely two open bins in P[f,,,,], a leader B; and a non-leader By,
and Nc[tmax] = A(L) — 2. Moreover, by the same argument as used to prove Lemma 6, we

- 16 -

must have s(By) > 1 — s(B;). Thus by (H1) and Lemma 1 we would have
W(L) = W(Cltmax]) + W(BL) + W(By)
2 Ncltmax] + (6/5)s(Br) + (6/5)s(By)
> A(L) — 2+ (6/5) > A(L) — 1,

as desired.

Our remaining hypotheses are needed for technical reasons, in order to make the induction
go through. To specify them, we will need some additional definitions.

Definition. For any bin B, let gap(B) = 1 — s(B) and min(B) be the size of the smallest
item in B.

Definition. If B and B’ are open bins, we say that gap(B’) <* gap(B) if either
gap(B") < gap(B) or gap(B’) = gap(B) and B’ has lower index.

Note that if gap(B’) < * gap(B), an item that would fit in both bins B and B” will not be
packed in B (by the definition of the pack rule). Also, with this relationship between gaps, bin B
cannot be closed (by the definition of the close rule).

Definition. An open bin in P[t] is senior if W(B) = 1 and junior otherwise.
Definition. For every non-leading junior bin B,
If |B| = 1, generators(B) = {B’: B’ is an open bin other than B}.

If |B| 2 2, generators(B) = {B’: gap(B’) <* gap(B) and B’ is either the leader or a junior
bin).

Definition. For every non-leading junior bin B, [b(B) = max{gap(B’):B" €
generators(B) }. (By convention the maximum of an empty set is 0.)

Definition. A non-leading junior bin B is well-bounded if min(B) > Ib(B).

INDUCTION HYPOTHESIS (H2). For all non-leading junior bins B’
gap(Bp[t]) <* gap(B’[1]).
INDUCTION HYPOTHESIS (H3). All non-leading junior bins are well-bounded.

Note that if (H2) holds, then the leader bin is a generator for all non-leading junior bins.

To complete the proof, we show that (H1), (H2), and (H3) hold for all P[¢]. Itis easy to see
that the hypotheses hold for = 1: In P[1] there is just one open bin and no closed bins. Hence
Nc[1] =0and C[1] = ¢. We can take the one open bin to be the leader B, [1]. Since there are
no non-leader junior bins, (H2) and (H3) hold vacuously. (H1) holds since

W(C[1]) + W(B.[1]) — Nc[l1]
= W(BL[1]) 2 (6/5)s(B.[1])

by Lemma 1.

Now suppose that the induction hypotheses hold for ¢ < #,,x. We shall show that they con-
tinue to hold for # + 1. There are two main cases to consider, depending on whether the ¢+ 1st

-17 -

operation is a pack or a close operation.
CASE 1. Pack Operation.

In this case the set of closed bins remains unchanged, so C[¢t+1] = C[t] and
Nclt+1] = N[t]. We shall also leave the leader bin unchanged, i.e., By [t+1] = B [t]. Let
b be the item packed. We divide into subcases depending on the type of bin into which b is
packed.

CASE 1.1. Item b goes into B [t].

Hypothesis (H1) continues to hold since
W(C[t+1]) + W(BL[t+1]) — Nclt+1]

W(C[t]) + W(BL[t]) + W(s(b)) — Ncl1]

v

(6/5)s(B[t]) + (6/5)s(b)
= (6/5)s(Blt+1]),

by Lemma 1 and the fact that (H1) holds for P[¢]. Hypothesis (H2) continues to hold trivially,
since gap (B) can only have decreased. Finally, Hypothesis (H3) continues to hold since, for
every non-leading junior bin B, the pack operation did not effect the contents of B, did not change
the set generators(B), and did not increase the gap in any of those bins.

CASE 1.2. Item b goes into a non-leading senior bin.

Hypothesis (H1) holds trivially since it held for P[¢], Hypothesis (H2) is unaffected, and
Property (H3) continues to hold for the same reasons as in the previous case.

CASE 1.3. Item b goes into a non-leading junior bin.

Hypothesis (H1) continues to hold trivially, but (H2) and (H3) now need more careful argu-
ment. Let B be the bin into which b goes.

First, let us argue that (H2) must be preserved. Suppose not. Then B must remain a junior
bin in P[t+ 1] and we must have gap(B[t+1]) <* gap(B[t+1]) = gap(B[t]), despite the
fact that gap (B [t] <* gap(B[t]) by (H2) for P[#]. Now since (H3) holds for P[7], we must
have min(B[t]) > [b(B[t]) = gap(B[t]). Since b went into B despite the fact that
gap(B[t]) <* gap(B[t]), we must also have s(b) > gap(B[t]). Therefore
min(B[t+1]) > gap(B[t]). Note also that the addition of b to B insures that |B[t+1]| > 2.
Thus Lemma 3 must apply with o = gap (B [¢]). (We must have o0 < 1/2, as required by the
lemma, since otherwise gap (B[t]) = gap(B [t]) = 1/2, contradicting Lemma 6.) But Lemma 3
implies that W(B[t+1]) = 1, contradicting our assumption that B[#+1] is a junior bin. Thus
(H2) must be preserved.

In order to prove that (H3) is also preserved, we divide into two cases.
CASE 1.3.1. W(B[t+1]) < 1.

In this case, bin B remains a junior bin. We first show that Hypothesis (H3) continues to
hold for bin B, i.e., that B remains well-bounded in P[7+1]. First note that by (H3) for P[¢], all

items in B[7+ 1] except b are of size at least [b(B[¢]). Also, b must be larger than [b(B[¢]): By
the packing rule it must exceed max{gap(B’[t]): B’[t] is an open bin with

- 18 -

gap(B’[t]) <* gap(B[t])}, and this quantity is itself an upper bound on lb(B[t]), since the set
of bins being maximized over here is by definition a (not-necessarily proper) superset of
generators(B[t]). Thus we conclude that min(B[¢t+1]) = [b(B[t]). But note that since gap(B)
decreases due to the addition of » and no other open bin has a change in gap, the set
generators(B[t+1]) must be a (not-necessarily proper) subset of generators(B[t]). Thus
Ib(B[t+1]) < Ib(B[t]), and so bin B remains well-bounded.

We now consider whether the addition of b to B can have caused any other non-leading
junior bin B’ to violate the well-boundedness property. For such a violation to be introduced, the
packing of » must have caused an increase in [b(B’). If generators(B") remains unchanged or
shrinks after b is packed, then [b(B’) cannot increase. Thus if /b(B’) increased, it must be
because generators(B’) gained a new member. Since only bin B has changed, this new member
must be B, and so we must have gap(B[t+1]) <* gap(B’[t+1]) = gap(B’[t]) <* gap(B[t]).

But note that this means B” € generators(B[t]) and hence that [b(B[t]) > gap(B’) by def-
inition of Ib(B). Hence, by the well-boundedness of B[], min(B[t]) > gap(B’). Furthermore,
since gap(B’) <* gap(B[t]) and yet b went into bin B, the pack rule implies that
s(b) > gap(B’). Thus min(B[t+1]) > gap(B’), and Lemma 3 is applicable to B[7+ 1] with
o = gap(B’). (We have |B[t+1]| = 2 since B was already open when b was added. We have
o < 1/2 since by Lemma 6 at most one bin in P[t] has a gap of 1/2 or more, and
gap(B’) <* gap(B[t]) implies that B” cannot be that bin.) By applying Lemma 3 we then have
W(B[t+1]) = 1, a contradiction of the basic assumption for this subcase. Thus all non-leading
junior bins remain well-bounded, and so (H3) continues to hold, as required.

CASE 1.3.2. W(B[t+1]) =2 1.

In this case, bin B becomes a (non-leading) senior bin, and is no longer subject to Hypothe-
sis (H3). The only question is whether the addition of b to B might cause a violation of well-
boundedness for some remaining non-leading junior bin B’, by increasing the value of [b(B”). As
in the previous case, this can only happen if in going from P[?] to P[t+1], we add bin B to
generators(B”). This cannot be the case if |B’| > 2, as in that case no non-leading senior bin can
be in generators(B’). Nor can it be the case if |B| = I, because then all open bins are in
generators(B’) in the first place. Consequently, Hypothesis (H3) continues to hold, as required.

CASE 1.4. Item b goes into a new(born) bin.
We divide into two cases, depending on whether s(b) > 1/2 or not.
CASE 1.4.1. s(b) > 1/2.

In this case, W(b) > 1 and the new bin B into which b is placed will be a non-leading
senior bin, so (H2) is unaffected. Since such bins are irrelevant to Hypothesis (H1), that property
also must be preserved. Such bins also are not directly subject to Hypothesis (H3), so the only
question is whether the creation of bin B causes a violation of (H3) for some already existing
non-leading junior bin B”. If |B’| > 2, bin B is irrelevant, since generators(B”) does not contain
any non-leading senior bins. On the other hand, if |B’| =1, we have that
s(b) > gap(B’) = 1 — min(B”) since b would not have started a new bin if it had fit in the gap
of bin B”. Thus min(B’) > 1 — s(b) = gap(B), and even if the creation of B increases Ib(B’),
B’ will remain well-bounded. Consequently (H3) also continues to hold.

CASE 1.4.2. s(b) < 1/2.

-19-

In this case, W(b) < 1 and the new bin B is a non-leading junior bin. It is irrelevant to
(HT), which hence continues to hold. Moreover, we must have gap(B[t+1]) < gap(B[t+1])
(else both B, [t+1] and B[t+ 1] would have gaps of 1/2 or greater, contradicting Lemma 6).
Thus (H2) is preserved. Finally, let us consider (H3). First note that since B[#+ 1] is a one-item
bin, generators(B[t+1]) is the set of all open bins other than B. But since b did not fit in any
open bin of P[t], we must have min(B) = s(b) > gap(B’) for all open bins B’. Consequently B
is well-bounded. Could the creation of the new junior bin B[t + 1] have stopped any other non-
leading junior bin B” from being well-bounded? Note that B” must contain at least two items, as
otherwise B” and B would constitute a violation of Lemma 6. But then, since gap(B[¢+1]) must
be the strictly larger than the gap in any other non-leading junior bin of P[#+ 1] (again by Lemma
6), B cannot be in generators(B’), and hence cannot affect [b(B”). Hence the well-boundedness
property is preserved for all the non-leading junior bins of P[t].

This completes the proof that the pack operation preserves (H1) through (H3).

CASE 2. Close Operation.
Let B be the bin that is closed.
CASE 2.1. B was a non-leading junior bin.

Since (H2) holds for P[¢], no non-leading junior bin can be closed in preference to B [7],
so this case cannot occur.

CASE 2.2. B was a non-leading senior bin in P|t].

In this case, set By [t+1] = B [t]. Note that since the leader bin is unchanged, closing B
cannot cause /b(B”) to increase for any non-leading junior bin B’, and so can have no effect on
Hypothesis (H3). Since neither the leader nor any non-leading junior bins are affected, (H2) also
continues to hold. Finally, closing B must also preserve Hypothesis (H1), for observe that

W(C[t+1]) + W(B [t+1]) — Nc[t+1]

= (W(C[t]D) + W(B)) + W(B_[1]) = (Nclt]+1)

(W(C[t]) + W(BL[1]) = Nclt]) + W(B) — 1

v

(6/5)s(B[t]) + W(B) — 1
2 (6/5)s(Bplt+1]),

as required, since By [t+1] = B [t] and w(B) = 1 by the definition of senior bin.
CASE 2.3. B = B [t], i.e., B was the leader bin in P[t].

In this case we need a new leader.
CASE 2.3.1. There exists a non-leading junior bin B” in P[t] with |B’| = 2.

Our choice for the new leader will be the bin of this type with smallest value for gap(B”)
(ties broken in favor of the lowest indexed bin). Note that since B’ contains at least two items it
cannot be a newborn bin and hence is eligible for promotion to leader. We also note that it has
the smallest value for gap(B”) over all junior bins, with value strictly smaller than for those bins
that contain only one item. (Such a 1-item bin B”” would have to have gap(B’’) > 1/2 if it is to
be junior, and by Lemma 6 there can be at most one bin in P[#] with gap that large, so we must

-20 -

have gap(B’) < gap(B’").) Thus (H2) is satisfied.

Hypothesis (H3) will be preserved by this promotion, as bin B’ was already in
generators(B’") for any other non-leading junior bin B”’, given that gap(B’) <* gap(B’’) by
our choice of B’.

To see that Hypothesis (H1) is preserved, we first note that by the close rule we have
gap(B[t]) <* gap(B’). Thus Ib(B’) 2 gap(B[t]), and by the well-boundedness property
min(B") > gap(B[t]). Moreover, gap(B [t]) < 1/2 (otherwise both B” and B, [¢] would have
gaps 1/2 or greater, again violating Lemma 6). Thus either Lemma 3 or Lemma 4 applies to bin
B’ with o0 = gap (B [t]), depending on whether gap(B’) is equal to gap (B [t]) or is strictly less
than it. If gap(B”) = gap(B[t]), Lemma 3 would apply, but this impossible, since the conclu-
sion would be that W(B’) > 1, contrary to our assumption that B” is a junior bin. Thus
gap(B’) > gap(B[t]) and Lemma 4 applies. Consequently we have W(B") >= 1 — (6/5) A,
where A = gap(B’) - gap(B [t]). Closing B [t] and making B’ the new leader thus yields

W(C[t+1]) + W(B[t+1]) — Ncl[t+1]
= (W(CltD+W(BL[t])) + W(B") = (Nclt]+1)
> (6/5)s(B.[t]) + (1=(6/5)A) — 1
= (6/5)(s(BL[t]) = A) = (6/5)s(B’)
= (6/5)s(B.[t+1])
and (H1) holds as required.

CASE 2.3.2. There exists no non-leading junior bin B’ with |B’| > 2.

In this case, there can be at most one non-leading junior bin, since as seen above, one-item
non-leading junior bins must have gaps of at least 1/2, and there can be only one bin with a gap
that large. Thus, since the close operation applies only when there are three open bins, there must
be a non-leading senior bin B’, and our choice for the new leader will be the one with the smallest
gap (ties broken in favor of lowest index). Hypothesis (H2) holds for the by now standard reason
that gap(B’) < 1/2 by Lemma 6, implying that gap(B’) is smaller than the gap of any non-
leading junior bin (should one exist). Hypothesis (H3) will be preserved since if there is a non-
leading junior bin B”” it has |B”’| = 1 and so bin B’ is already in generators(B’”).

Thus the only question is whether (H1) is preserved. By the close rule, we know that
s(B”) £ s(B[t]). By the definition of senior, we have W(B”) > 1. Consequently,

W(C[t+1]) + W(B[t+1]) — Nc[t+1]
= (W(C[tD+W(BL[1])) + W(B") — (Nclt]+1)
2 (6/5)s(B[t]) + (1 =-1)
> (6/5)s(B)
This exhausts the possibilities for the close operation, and so we have shown that Hypothe-

ses (H1) through (H3) are preserved by both the pack and the close operations. By induction, this
completes the proof that R”[A] < 1.7 for all BBF algorithms A, and hence of Theorem 1. O

-21 -

We should remark that our proof actually applies to even more algorithms than those in the
general class of BBF algorithms defined at the beginning of this section. A careful consideration
of Case 2.2 allows one to conclude that the 1.7 upper bound holds even if one allows a general-
ized closing rule in which one can close either the fullest bin or any bin B with W(B) = 1.

4. Lower Bound Proofs

In this section, we present bin packing instances to prove the lower bounds claimed in Section 1
for the H g and the general lower bound claimed in Section 2 for the average-case behavior of any
bounded-space on-line algorithm when lists have item sizes chosen uniformly from (0,1].

4.1 New lower bounds for H; algorithms

In this subsection, we provide instances that justify the new lower bound claims for Hg,
K>7, listed in Table 1. (These bounds have been independently obtained by A. van Vliet [29].)
For these values of K, we will only be using items in the size ranges (0,1/K], (1/7,1/6],
(173,1/2], and (1/2,1]. Our lists will be parameterized by constants x g and y g, the values of x x
and yg being chosen so that x; = 42(1 — 1/K — 1/6) yx and both are integers. The lists will
consist of 6N (x g +yg) items of size 1/2 + 0, 6N(xx +yg) items of size 1/3 + 3, 6 Nx items
of size 1/7 + 9, and 6 Ny ¢ copies of the sequence 1/K,<S(1 — 2/K + 3,8)>.

We first observe that the H g packing will use 10Nxg + 15Ny bins. Next, assuming 0 is
sufficiently small and divides 1/42 and 1/K evenly, note that the optimal packing will consist of
6Nxg bins containing 1/2 + 8,1/3 + 8,1/7 + 6,<S(1/42 — 35,8)>, 6Ny bins containing
1/2 + 6,1/3 + 3,1/K,<S(1/6 — 1/K — 28,8)>, and one bin containing the remaining
I18N(xx + yg) items of size 8. The limiting ratio H g (L)/OPT (L) is thus at least

Ny [420(1 - % - %) + 15
10Nxg + I5Nyg 365K — 420
6Nxg + 6Ny) 216K — 252

1
252(1 = — — —
NyKIS()6

Plugging in the values K = 7,8,9,10 yields the bounds cited in Table 1.

4.2 New Lower Bound on Best Possible Average-Case Behavior

In this subsection we present a proof of Theorem 2, which stated that for any on-line bin
packing algorithm A that uses K-bounded space, ERT[A]=1+1/(4K+4). As in Section 2, let
L, ; be arandom n-item list with item sizes drawn independently and uniformly from [0,1]. We
will show that

n

E[A(Ln,])_S(Ln,l)] 2 m

The claimed result will follow since E[s(L,)]=n/2.

Our proof of the above inequality follows the basic framework introduced by Coffman and
Shor [5] in proving the first lower bound of this sort. Suppose we are about to pack x;, the jth
iteminL, ;. Letl;,l,, -+ ,lx denote the levels of (sum of the item sizes in) the bins inspected

-22 -

by algorithm A in deciding where to pack x;, and let /¢ ; =0 denote the level of the next avail-
able empty bin. For any ¢, 0<c <1, define p.(/,), 1<t<K+1 to be the probability that x; fits in
the bin with level /, and would fill this bin to a level at least 1 —¢/(K +1). Then

Kil it 1=1, > ﬁ
pc(lt): c

1-1 if 1-1, <
ro 1 7 K+1

and hence p . (1;)<c/(K +1) for all .

if p. denotes the probability that x ; 18 packed so as to fill a bin to within ¢/(K +1) of its
capacity, we thus have

N K+1
pPe < Y pcly) sc
t=1

for all ¢, 0<c <1. This also holds true for x;, 1<j<n, and so the expected number of times a bin
gets filled to within ¢/(K +1) of its capacity over the entire packing is at most cn. Thus clearly
the expected number of bins filled to within ¢/(K + 1) of capacity in the final packing can also be
at most cn, 0<c <1. Since the expected number of bins required in the final packing is at least
n/2, we thus have an average of at least n/2 —cn bins with gaps of ¢/(K +1) or more in the final
packing.

Now note that A(L)—s(L) is simply the sum of the gaps in all the bins of the packing pro-
duced for L by algorithm A. Coffman and Shor [5] obtained a lower bound on this quantity by
simply determining that value of ¢ that maximizes (n/2—cn)(c/(K+1)), yielding
E[A(L, 1)—s(L, 1)]2n/(16(K+1)). We obtain a better lower bound by in effect integrating
an appropriate function of ¢ from c=0to c=1/2.

More precisely, let us consider values of ¢ of the form

Ly ci<m-t
2 m

for a large fixed integer m.

For i =1 we will have at least n/(2m) bins with gaps at least for a total gap of

m—1
2m(K+1)°

at least M Inductively, for 1<i<m—1 we will have at least ni/(2m) bins with
2m)~(K+1)
gaps at least &, of which at most n(i—1)/(2m) will have been previously been
2m(K+1) -
accounted for. The remaining n/(2m) bins have total gap at least w
2m)“(K+1)
Summing for all i, we get that the total overall gap is at least
mil n(m—i) _ n m(m—-1) _ n(m-1)
S Cm)A(K+1) 4mP(K+1) 2 Sm(K+1).
For arbitrarily large m, this is arbitrarily close to L, as claimed. O

8(K+1)

-3 -

5. Directions for Further Research

In this paper we have considered the behavior of on-line bin packing algorithms subject to a space
bound, and introduced a new sequence of algorithms which are currently the champions in this
class when it comes to combined worst-case/average-case performance. An interesting theoretical
question is whether any other sequence (bounded-space or not) can do substantially better. More
specifically, can there be a sequence of on-line algorithms A g whose expected ratios ERT [A k]
approach 1 (as do the ratios for our BBF g algorithms), and whose asymptotic worst-case ratios
R%[A k] approach some constant smaller than 1.7 (the value of R [BBF] for all K > 2)? We
conjecture that the answer is no, but at present do not know how to go about proving such a
result.

An even more fundamental issue that we don’t know how to attack analytically is the ques-
tion of just what the asymptotic ratios ER; [A] are. Experiments appear to yield reliable esti-
mates, but to date probabilistic analysis has only succeeded with the simplest of algorithms (Next
Fit [6,15], Smart Next Fit [23], and variants on the Harmonic algorithms [7,18,24]). Barring
exact analysis, can we prove the following conjecture, suggested by our experiments: For any u,
0 < u < 1, there exists a constant K such that BBF ¢ performs better on average than FF when
item sizes are drawn independently and uniformly from the interval (0,u]. Can we even prove
simply that there exists a u < 1 such that ER;[FF] > 1?7 (Recall that we conjectured in Section
2 that this held for all such u.) We consider this latter question to be the major open problem in
the probabilistic analysis of bin packing algorithms, and offer it as a challenge to the reader.

References

1. J. L. BENTLEY, ‘‘Software Exploratorium: Some random thoughts,”” UNIX Review 10:6 (June 1992),
71-77.

2. J. L. BENTLEY, D. S. JOHNSON, F. T. LEIGHTON, AND C. C. MCGEOCH, ‘‘An experimental study of bin
packing,”” in Proc. 21st Ann. Allerton Conf. on Communication, Control, and Computing, University
of Illinois, Urbana, IL, 1983, 51-60.

3. J. L. BENTLEY, D. S. JOHNSON, F. T. LEIGHTON, C. C. MCGEOCH, AND L. A. MCGEOCH, ‘‘Some unex-
pected expected behavior results for bin packing,”” in ‘‘Proceedings 16th Ann. ACM Symp. on Theory
of Computing,”” Association for Computing Machinery, New York, 1984, 279-288.

4. E. G. COFFMAN, JR, D. S. JOHNSON, P. W. SHOR, R. R. WEBER, ‘‘Tight bounds on first fit,”” Random
Structures and Algorithms 10 (1997), 69-101.

5. E. G. COFFMAN, JR AND P. W. SHOR, ‘‘Packing in two dimensions: Asymptotic average-case analysis
of algorithms,”” Algorithmica 9 (1993), 253-277.

6. E. G. COFFMAN, JR, M. HOFRI, K. SO, AND A. C. YAO, ‘‘A stochastic model of bin packing,”” Informa-
tion and Control 44 (1980), 105-115.

7. J. CSIRIK, J. B. G. FRENK, A. FRIEZE, G. GALAMBOS, AND A. H. G. RINNOOY KAN, ‘‘A probabilistic
analysis of the next fit decreasing bin packing heuristic,”” Operations Res. Lett. 5 (1986), 233-236.

8. J. CSIRIK AND B. IMREH, ‘‘On the worst-case performance of the NkF bin-packing heuristic,”” Acta
Cybernetica 9 (1989), 89-105.

9. J. CsSIRIK AND D. S. JOHNSON, ‘‘Bounded space on-line bin packing: Best is better than first,”” in ‘‘Pro-
ceedings 2nd Ann. ACM-SIAM Symp. on Discrete Algorithms,”” Society for Industrial Mathematics,
Philadelphia, PA, 1991, 309-319.

10

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.
28.

29.

30.

31.

_24 -

. G. N. FREDERICKSON, ‘‘Probabilistic analysis for simple one- and two-dimensional bin packing algo-
rithms,”” Inform. Process. Lett. 11 (1980), 156-161.

M. R. GAREY, R. L. GRAHAM, D. S. JOHNSON, AND A. C.-C. YAO, ‘‘Resource constrained scheduling
as generalized bin packing,”” J. Comb. Theory 21 (1976), 257-298.

D. S. JOHNSON, Near-Optimal Bin Packing Algorithms, Doctoral Dissertation, Department of Mathe-
matics, Massachussetts Institute of Technology, Cambridge, MA, 1973.

D. S. JOHNSON, ‘‘Fast algorithms for bin packing,”’ J. Comput. System Sci. 8 (1974), 272-314.

D. S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY, AND R. L. GRAHAM, ‘‘Worst-case perfor-
mance bounds for simple one-dimensional packing algorithms,”” SIAM J. Comput. 3 (1974), 299-325.
N. KARMARKAR, ‘‘Probabilistic analysis of some bin-packing alogorithms,”’ in ‘‘Proceedings 23rd
Ann. Symp. on Foundations of Computer Science,”” IEEE Computer Society, Los Angeles, Calif.,
1982, 107-111.

W. KNODEL, *‘A bin packing algorithm with complexity O (nlogn) and performance 1 in the stochas-
tic limit,”” in ‘‘Proc. 10th Symp. on Mathematical Foundations of Computer Science,”’ J. Gruska and
M. Chytil (eds.), Lecture Notes in Computer Science 118, Springer-Verlag, 1981, 369-378.

D. E. KNUTH, The Art of Computer Programming: Seminumerical Algorithms, Addison-Wesley, Read-
ing, MA, 1981, Section 3.6.

C. C.LEEAND D. T. LEE, ‘‘A new algorithm for on-line bin packing,”” Report No. 83-03-FC-02, Dept.
of EECS, Northwestern University, Evanston, IL, 1983.

C. C. LEE AND D. T. LEE, ‘‘A simple on-line packing algorithm,”” J. Assoc. Comput. Mach. 32 (1985),
562-572.

G. S. LUEKER, ‘‘An average-case analysis of bin packing with uniformly distributed item sizes,”’
Report No. 181, Department of Information and Computer Science, University of California, Irvine,
CA, 1982.

W. MAo, ““Tight worst-case performance bounds for next-k-fit bin packing,”” SIAM J. Comput. 22
(1993), 46-56.

W. Mao, ‘‘Best-k-Fit Bin Packing,”” Computing 50 (1993), 265-270.

P. RAMANAN, ‘‘Average-case analysis of the smart next fit algorithm,”” Inform. Process. Lett. 31
(1989), 221-225.

P. RAMANAN AND K. TSUGA, ‘‘Average-case analysis of the modified harmonic algorithm,”” Algorith-
mica 4 (1989), 519-534.

M. B. RICHEY, ‘‘Improved bounds for harmonic-based bin packing algorithms,”” Disc. Applied
Math. 24 (1991), 203-227.

P. W. SHOR, ‘‘The average case analysis of some on-line algorithms for bin packing,”” Combinator-
ica 6 (1986), 179-200.

P. W. SHOR, private communication (1990).

A. VAN VLIET, ‘‘An improved lower bound for on-line bin packing algorithms,”” Inform. Process.
Lett. 43 (1992), 277-284.

A. VAN VLIET, ‘‘On the asymptotic worst case behavior of harmonic fit,”” J. Algorithms 20 (1996),
113-136.

G. WOEGINGER, ‘‘Improved space for bounded-space, on-line bin-packing,”” SIAM J. Disc. Math. 6
(1993), 575-581.

G. ZHANG, ‘‘Tight Worst-case Performance Bound for AFB;,”” Report No. 015, Institute of Applied
Mathematics, Academia Sinica, Beijing, China, May, 1994.

