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Abstract The notion of fixed-parameter approximation is introduced to investi-
gate the approximability of optimization problems within the framework of fixed-
parameter computation. This work partially aims at enhancing the world of fixed-
parameter computation in parallel with the conventional theory of computation
that includes both exact and approximate computations. In particular, it is proved
that fixed-parameter approximability is closely related to the approximation of
small-cost solutions in polynomial time. It is also demonstrated that many fixed-
parameter intractable problems are not fixed-parameter approximable. On the other
hand, fixed-parameter approximation appears to be a viable approach to solving
some inapproximable yet important optimization problems. For instance, all prob-
lems in the class MAX SNP admit fixed-parameter approximation schemes in time
O(2O((1−ε/O(1))k)p(n)) for any small ε > 0.

Keywords Fixed parameter computation · Fixed-parameter approximation ·
Fixed-parameter tractability · Approximation algorithm · Approximation scheme

1 Introduction

The theory of fixed-parameter complexity was initiated by Downey and Fellows
[17, 19] to study the exact computation of important computational problems whose
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input contains a significant numerical parameter. The complexity of such fixed-
parameter problems is measured in the value of the parameter, as well as the size
of the input. For example, the problem of determining if a given graph G has a
vertex cover of size k can be accomplished in time O(1.2738k + kn) [14]. Thus
the problem is called fixed-parameter tractable since it can be solved feasibly for
small or fixed parameters. In contrast, other problems, such as to determine if a
given graph has a dominating set of size k, seem not to behave well enough from
the fixed-parameter tractability perspective. All known algorithms for such problems
run in time �(nk+1), formidable even for small values of k. Studies [19] have shown
that the fixed-parameter tractability of many computational problems hinges upon
the answers to some long-standing open questions in conventional complexity theory
[17, 18]. In particular, problems, such as determining the existence of a dominating
set of size k, are not fixed-parameter tractable unless SAT ∈ DTIME(2o(n)). Given
such problems, it is natural to ask whether fixed-parameter tractable algorithms may
exist that can give “approximate” answers to decision questions involving these com-
putational problems [23, 24].

Another issue motivating this research is the “asymmetrical” phenomenon
of fixed-parameter algorithms when they are used to find the optimal solution
of optimization problems. For instance, consider the algorithm of running time
O(1.2738k + kn) that can determine if a given graph has a vertex cover of (the given)
size k. It can be used to determine the size k0 of the minimum vertex cover and find
the cover when k0 ≤ k. However, it does not guarantee, with the same running time
in k, to determine the size k0 of the minimum vertex cover for k0 > k. Therefore, one
fundamental issue is how much time is needed in estimating value of k0 with respect
to the value of k. Such issue has been addressed for a few individual fixed-parameter
problems in the past. A typical example is the algorithm developed for the problem of
graph tree decomposition (refer to [19] and [5]). In a fixed-parameter tractable time,
it can either determine if a given graph G has a tree width larger than the parameter
value k or produces a tree decomposition of width ≤ k. The yielded tree decompo-
sition is an approximate solution with a “guaranteed ratio” of 1 with respect to the
given parameter k but not to the optimum. Like conventional approximation, this new
type of approximation produces a range of values as an estimation of the optimum.

We develop this concept into the notion of fixed-parameter (FP-)approximation to
study the existence of fixed-parameter tractable algorithms that may give approximate
answers for fixed-parameter problems. Intuitively speaking, an FP-approximation al-
gorithm for a minimization problem either gives a negative answer to the question of
“OPT(I ) ≤ k?” or produces a solution with value bounded by g(k) for some fixed
function g. In addition, the algorithm runs in time O(f (k)nc) for some fixed function
f and a constant c > 0. In Sect. 3 we give the formal definition for FP-approximation.
FP-approximation is well defined because we can show that either fixed-parameter
tractability or polynomial-time approximation would imply FP-approximation. We
believe the new notion enhances the parameterization framework to be in parallel
with the conventional theory of computing that includes both exact and approxima-
tion computation.

We show that fixed-parameter approximability is equivalent to approximating so-
lutions of a small (but unbounded) cost in polynomial time. This complements the
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known results that fixed-parameter tractability is equivalent to determining solutions
of a small cost in polynomial time [8, 9]. In general, we prove that an optimization
problem is not fixed-parameter approximable to ck unless the problem of finding so-
lutions of cost bounded by s(n) is approximable to the ratio c in polynomial time,
for some unbounded and nondecreasing function s(n). According to the results in
[11, 22], for many optimization problems, approximating solutions of a small cost
cannot be done in polynomial time. Therefore, our research essentially shows the
fixed-parameter inapproximability for many optimization problems. In Sect. 4, we
show that a number of fixed-parameter problems, including finding the minimum
dominating set, are likely not FP-approximable.

FP-approximation is also considered as an alternative to polynomial-time approx-
imation. In general, we expect the approximability of certain optimization problems
to be improved under the fixed-parameter setting. Indeed, in Sect. 5 we show that all
optimization problems in the optimization class MAX SNP admit FP-approximation
schemes, i.e., they all have algorithms that run in time O(2O((1−ε/O(1))k)p(n)) to
produce a solution of value bounded by (1 + ε)k for any ε > 0 for a minimization
problem (or, a solution of value bounded by (1−ε)k for any ε > 0 for a maximization
problem). This complements the known results that MAX SNP-complete problems
do not admit polynomial time approximation schemes unless P = NP.

In Sect. 6, we discuss some further results in the approximability improvements
with FP-approximation. In fact, Bodlaender and Fellows [6] are able to show fixed-
parameter approximability for the problem of BANDWIDTH, which is W[1]-hard un-
der a uniform reduction due to Bodlaender [4]. Moreover, we suspect that for some
other polynomial-time approximable optimization problems, the approximation ra-
tios can be improved when fixed-parameter tractability is the only concern regarding
the running time of the algorithm. In particular, we show that problem BIN PACKING,
which is MAX SNP-hard and fixed-parameter intractable unless P = NP [7], admits
an (asymptotic) FP-approximation scheme. Our result improves the one devised by
Karmarkar and Karp [28] in the sense that the ε we obtain in the ratio 1+ ε decreases
much faster with respect to the value of the optimal solution OPT(I ). We conjecture
that the techniques used in the proof may be applied to improving the approximation
performance of other fixed-parameter problems.

2 Preliminaries

2.1 Polynomial-Time Approximation

We provide some basic terminologies for studying approximation algorithms. For a
reference of the theory of approximation, the readers are referred to [2].

An NP optimization problem Q is a 4-tuple (IQ,SQ,fQ,OPT), where:

1. IQ is the set of input instances. It is recognizable in polynomial time.
2. For each instance I ∈ IQ, SQ(I) is the set of feasible solutions for I , which is

defined by a polynomial p and a polynomial time computable predicate π (p and
π only depend on Q) as SQ(I) = {y : |y| ≤ p(|I |) and π(I, y)}.
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3. fQ(I, y) is the objective function mapping a pair I ∈ IQ and y ∈ SQ(I) to a non-
negative integer. The function fQ is computable in polynomial time.

4. OPT ∈ {max,min}. Q is called a maximization problem if OPT = max, and a
minimization problem if OPT = min.

An optimal solution y0 for an instance I ∈ IQ is a feasible solution in SQ(I) such
that fQ(I, y0) = OPT{fQ(I, z) | z ∈ SQ(I)}. We will denote by OPT(I ) the value
OPT{fQ(I, z) | z ∈ SQ(I)}.

An algorithm A is called an approximation algorithm for an NP optimization prob-
lem Q = (IQ,SQ,fQ,OPT) if, for each input instance I in IQ, A returns a feasible
solution yA(I) in SQ(I). The solution yA(I) has an approximation ratio r(n) if it
satisfies the following condition:

OPT(I )/fQ(I, yA(I )) ≤ r(|I |) if Q is a maximization problem,

fQ(I, yA(I ))/OPT(I ) ≤ r(|I |) if Q is a minimization problem.

The approximation algorithm A has an approximation ratio r(n) if for any instance I

in IQ, the solution yA(I) constructed by the algorithm A has an approximation ratio
bounded by r(|I |).

An NP optimization problem Q has a polynomial-time approximation scheme
(PTAS) if there is an algorithm AQ that takes a pair (I, ε) as input, where I is an
instance of Q and ε > 0 is a real number, and returns a feasible solution y for I such
that the approximation ratio of the solution y is bounded by 1 + ε, and for each fixed
ε > 0, the running time of the algorithm AQ is bounded by a polynomial of |I |.

For example, the time complexity of a PTAS algorithm may be of the form
O(21/ε |I |c) for a fixed constant c or of the form O(|I |1/ε). The latter type of com-
putations with small ε values may turn out to be practically intractable. This leads to
the following definition in [12].

An NP optimization problem Q has an efficient polynomial-time approximation
scheme (EPTAS) if it admits a polynomial-time approximation scheme whose time
complexity is bounded by O(f (1/ε)|I |c), where f is a recursive function and c is a
constant.

2.2 Parameterized Complexity

We briefly introduce some basic concepts in the theory of fixed-parameter complex-
ity. We refer the reader to Downey and Fellows [19] for further details.

A fixed-parameter problem is defined over �∗ × N , where � is a finite alphabet
and N is the set of natural numbers. Each instance of the fixed-parameter problem �

is a pair (I, k), where k is called the parameter. A fixed-parameter problem is fixed-
parameter tractable if there is an algorithm to decide the membership of the problem
in time O(f (k)nc), where f (k) is a recursive function and c is a constant.

The fixed-parameter (decision) version of a given optimization problem � is
defined in [7]. It asks whether the problem has the optimal cost OPT(I ) ≥ k, or
OPT(I ) ≤ k, depending on whether � is a maximization or minimization problem.

In this paper, whenever there is no confusion, we do not distinguish between an
optimization problem and its fixed-parameter decision version. In our discussions, we
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always assume that the complexity functions are “nice” with both domain and range
being non-negative integers and the values of the functions and their inverses can be
easily computed.

3 Definition of FP-Approximation

We define the fixed-parameter approximation in the following. This notion was origi-
nally conceived by Downey and Fellows [23, 24]. Independently, Chen et al. [16] and
Downey et al. [20] introduced similar frameworks of parameterized approximation
from slightly different perspectives. Recently Marx has a review paper [29] “Parame-
terized Complexity and Approximation Algorithms”, which discussed the different
ways of parameterized approximation, provided a review of the results from these
works, and proposed future research directions on parameterized approximation.

Definition Let � be the fixed-parameter version of a minimization problem. Let f

be a (recursive) function, p be a polynomial independent of f , and k be a constant.
Then � is fixed-parameter approximable to g(k) in time O(f (k)p(n)) for some fixed
function g if there is an algorithm such that given any instance I with parameter k,
and question OPT(I ) ≤ k, the algorithm which runs in O(f (k)p(n)) steps, where
n = |I |, (1) either outputs “no” (asserting the optimal cost is larger than k), or (2) out-
puts “yes” and produces a solution of cost at most g(k).

Fixed-parameter approximation for a maximization problem can be defined simi-
larly.

The problem � is called FP-approximable to g(k) or simply FP-approximable
when g is linear in k. The algorithm is called an FP approximation algorithm for the
problem. We define FPA to be the class of fixed-parameter optimization problems
that can be FP-approximable to g(k) for some recursive function g.

Definition A minimization (or, maximization) problem � is said to have a fixed-
parameter approximation scheme, if the minimization problem � can be FP-
approximable to (1 + ε)k for any given small constant ε > 0 (or, if the maximization
problem � can be FP-approximable to (1 − ε)k for any given small constant ε > 0).

In the above definition, the time function of the approximation algorithm may de-
pend on the given value of ε. The fixed-parameter approximation scheme is efficient
if the polynomial p in the time function O(f (k)p(n)) does not depend on ε. In ad-
dition, when � is fixed-parameter approximable under the situation for sufficiently
large k, it is called asymptotic fixed-parameter approximable.

We show that the fixed-parameter approximability is well-defined under the para-
meterization framework. Essentially, we prove that fixed-parameter tractability im-
plies fixed-parameter approximability. As shown in the following, this relationship
holds for many optimization problems that are solution-constructible, a property first
introduced by Cai and Chen [7]. (Note that in [7] the term fixed-parameter tractability
with witness is used instead of solution constructible. Interested readers are referred
to [32] for another related notion of self-reducibility.)



Algorithmica (2010) 57: 398–412 403

Definition Assume the existence of a fixed-parameter algorithm with running time
T (|I |, k) that can determine OPT(I ) ≤ k (or, OPT(I ) ≥ k) for each input (I, k).
A minimization (or, maximization) problem is solution-constructible if for any input
(I, k), a solution of cost at most (or, at least) k (if it does exist) can be constructed in
time polynomial in both |I | and T (|I |, k).

Almost all NP-hard optimization problems studied in the literature [2, 25, 27] are
solution-constructible. In fact, solution-constructibility is one of the necessities that
the decision problem formulation characterizes the difficulty of the original optimiza-
tion problem.

Theorem 3.1 Let � be a fixed-parameter version of some solution-constructible op-
timization problem. If � is fixed-parameter tractable, then � is fixed-parameter ap-
proximable to k.

Proof We briefly verify this for minimization problems. The proof for maximization
problems is similar. We describe a fixed-parameter tractable approximation algorithm
for the problem � as follows.

Let B be an algorithm that solves the decision problem �. For each input of size
n and parameter k, it runs in time O(h(k)nc) for some (recursive) function h(k) and
some constant c > 0. Given an input (I, k), B is called to determine OPT(I ) ≤ k. If
k < OPT(I ), output “no” and halt. Otherwise, because � is solution-constructible,
there is an algorithm that constructs a solution of cost at most k. The time used
for the construction is O(T dp(n)) for some constant d and polynomial p, where
T is the running time of B . So the total running time is bounded by O(h(k)dq(n))

for some polynomial q . Therefore, � is fixed-parameter approximable to k in time
O(h(k)dq(n)). �

We establish a close relationship between polynomial-time approximation and
fixed-parameter approximability. We show the simple fact that if an optimization
problem admits a polynomial-time approximation algorithm then the problem is
fixed-parameter approximable. We consider minimization problems only. Similar re-
sults hold for maximization problems as well.

Theorem 3.2 Let � be a minimization problem that is approximable in polynomial
time to the ratio r ≥ 1 for some constant r . Then � is fixed-parameter approximable
to rk.

Proof Let A be a polynomial-time approximation algorithm for � achieving the
ratio r . Let A(I) be the cost of a solution S obtained by the algorithm A such
that A(I)/OPT(I ) ≤ r . Given an input I and a value for the parameter k, one
can approximately answer the question “is OPT(I ) ≤ k?” by utilizing the algo-
rithm A in the following way. First, answer “no” if k < A(I)/r . According to the
definition of fixed-parameter approximability, this is the only correct answer since
k < A(I)/r ≤ OPT(I ). Second, if k > A(I), or A(I)/r ≤ k ≤ A(I), then output the
solution S. Note that in the second case, the algorithm returns a solution with cost
A(I) ≤ rk. �
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4 Fixed-Parameter Inapproximability

Many optimization problems including CLIQUE, DOMINATING SET, and LONGEST

COMMON SUBSEQUENCE are provably fixed-parameter intractable, i.e., they are hard
for various levels of the W-hierarchy. Since the set of all fixed-parameter tractable
problems forms the lowest level of the W-hierarchy, the above problems are not
fixed-parameter tractable unless the W-hierarchy collapses to the lowest level. It is
desirable to know whether there are fixed-parameter tractable algorithms that give
approximate answers. In this section, we show that for many optimization problems
such approximation algorithms do not exist either. First, we relate fixed-parameter
approximability to the approximation of solutions with a small cost in polynomial
time.

Lemma 4.1 Let � be an optimization problem and r be a constant. Then � is not
fixed-parameter approximable to rk unless � is approximable in time t (OPT(I ))nc

to the ratio r for some (recursive) function t and some constant c.

Proof We give the proof for minimization problems. The proof for maximization
problems is similar.

Let � be a minimization problem. Assume that � is fixed-parameter approx-
imable to rk. Then there is an algorithm A for � that runs in time O(f (k)nc), for
some nondecreasing function f and constant c. Furthermore, given an input (I, k),
the algorithm gives an approximate answer to the question whether OPT(I ) ≤ k, for
each value of the parameter k. Fix an input I . Then for the parameter k = 0,1, . . . , k0,
where k0 = (OPT(I ) − 1)/r , the algorithm will output “no” because producing a so-
lution of cost A(I) ≤ rk ≤ r(OPT(I )−1)/r) implies that A(I) ≤ OPT(I )−1. Let k1
be the largest value of the parameter k that allows the algorithm to output “no”. Then
k1 + 1 allows the algorithm to produce a solution with cost ≤ r(k1 + 1) ≤ rOPT(I )

because the answer of the algorithm on the parameter k = OPT(I ) cannot be “no”.
We construct an algorithm B that calls the fixed-parameter approximation algo-

rithm A for k = 0,1, . . . , until A produces a solution. According to the analysis
above, the solution has the cost rk ≤ r(k1 +1) ≤ rOPT(I ). The solution achieves the
ratio rOPT(I )/OPT(I ) = r . The total running time for algorithm B is bounded by
(k1 + 1)f (k1 + 1)nc ≤ OPT(I )f (OPT(I ))nc = t (OPT(I ))nc , where t (OPT(I )) =
OPT(I )f (OPT(I )). �

Lemma 4.1 gives some surprisingly nice implications.

Theorem 4.1 For any constant r > 1, a minimization problem � is not fixed-
parameter approximable to rk, unless the problem of finding solutions of cost
bounded by s(n) can be approximated to the ratio r in polynomial time, for some
unbounded non-decreasing function s(n).

Proof Assume that � is fixed-parameter approximable to rk. By Lemma 4.1 and its
proof, � can be approximated to the ratio r by an algorithm A of time t (OPT(I ))nd

for some recursive function t and some constant d . When the input instance I is
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subject to the restriction that OPT(I ) ≤ s(n), where s is the inverse function of t ,
the algorithm A runs in time t (s(n))nd = nd+1 to approximate solutions of cost at
most s(n) (see [7, 8] for techniques for constructing and computing inverse func-
tions). �

Theorem 4.1 has a direct impact on the fixed-parameter approximability of the
problem DOMINATING SET. We have the following result.

Corollary 4.1 For any r ≥ 1, DOMINATING SET is not fixed-parameter approx-
imable to rk in time O(2knd), where d is a constant, unless LOG DOMINATING SET

is approximable to the ratio r in polynomial time, where LOG DOMINATING SET is
the problem of finding dominating sets of size ≤ logn in a given graph of n vertices.

We then relate the fixed-parameter approximability of the problem DOMINATING

SET to another problem TOURNAMENT DOMINATING SET, which is complete un-
der the polynomial time reduction for the complexity classes LOGSNP introduced by
Papadimitriou and Yannakakis [31].

A tournament graph is a directed graph G = (V ,E), where for any two vertices
u,v ∈ V , u �= v, exactly one of the directed edge (u, v) or (v,u) is in E.

TOURNAMENT DOMINATING SET-DECISION: given a tournament graph G,
and a parameter k, is there is there a dominating set of size at most k for the
graph G?

Note that [31] when k > logn, the answer to TOURNAMENT DOMINATING SET-
DECISION is always positive. Therefore, the problem instances become non-trivial
only when k ≤ logn. The problem can be solved in time O(nlogn). Hence, the prob-
lem is unlikely to be NP-hard. It is unknown whether the problem is solvable in
polynomial time.

The following is the optimization problem.

TOURNAMENT DOMINATING SET: given a tournament graph G, try to find a
minimum dominating set for the graph G.

From Theorem 4.1, we have

Corollary 4.2 For any r ≥ 1, DOMINATING SET is not fixed-parameter approx-
imable to rk in time O(2knd), where d is a constant, unless TOURNAMENT DOM-
INATING SET is approximable to the ratio r in polynomial time.

Interested readers are referred to [13, 26] for a recent complementary result which
shows the impracticability of approximation algorithms with small approximation ra-
tio for LOG DOMINATING SET and TOURNAMENT DOMINATING SET. Specifically, it
was shown in [13, 26] that LOG DOMINATING SET and TOURNAMENT DOMINATING

SET are unlikely to have polynomial time approximation schemes of running time
f (1/ε)no(1/ε), for any recursive function f .

Theorem 4.1 shows the close relationship between fixed-parameter approximabil-
ity and the ability to approximate small-value instances in polynomial time. The ap-



406 Algorithmica (2010) 57: 398–412

proximability of optimization problems with small value constrained objective func-
tions have been studied in the literature (see for example, [11, 22]). In partciular, it
has been shown that, for a number of important problems, including CLIQUE, DOM-
INATING SET that are hard for the W-hierarchy, the approximation for small value
instances, such as LOG CLIQUE, LOG DOMINATING SET, is as hard as subexponential-
time (randomized) simulation of NP-computation. Note that subexponential-time
(randomized) simulation of NP-computation is a seemingly weaker assumption than
P = NP but still highly unlikely. Since the collapsing of the W-hierarchy would
also imply subexponential-time simulation of NP-computation, the fixed-parameter
inapproximability results developed in this section complement nicely the fixed-
parameter intractability results developed in [7, 9, 19].

5 FP-Approximation Scheme for Problems in MAX SNP

In this section, we show that the notion of FP-approximation provides a viable al-
ternative to approximation. In particular, we prove that FP-approximation schemes
exist for all problems in the class MAX SNP. This is somewhat surprising since it is a
well-known result that MAX SNP-complete problems do not admit polynomial-time
approximation scheme unless P = NP.

The class MAX SNP was introduced by Papadimitriou and Yannakakis [30] to
capture a collection of optimization problems. For the purpose of investigating the
approximability of these problems, the following approximation-preserving reduc-
tion was introduced.

Definition (see [30]) Let �1 and �2 be two optimization problems with cost func-
tions f1 and f2. �1 L-reduces to �2 if there are two polynomial time algorithms A

and B and two constants α, β > 0 such that for each instance I1 of �1, (1) the al-
gorithm A produces an instance I2 = A(I1) such that OPT�2(I2) ≤ αOPT�1(I1),
and (2) given any solution S2 for I2 with cost f2(I2, S2), algorithm B produces
a solution S1 for I1 with cost f1(I1, S1) such that |OPT�1(I1) − f1(I1, S1)| ≤
β|OPT�2(I2) − f2(I2, S2)|.

It is known from the work of Cai and Chen [7] that the standard parame-
terized versions of all maximization problems in the class MAX SNP are fixed-
parameterized tractable. The proof of this earlier result was later refined by Cai and
Juedes [10] to show that L-reductions actually preserve subexponential-time com-
putability. We show in the following that L-reduction preserves FP-approximation
scheme as well.

Lemma 5.1 Let �1 and �2 are two minimization problems with �1 L-reducible
to �2. Then �1 has an FP-approximation scheme if �2 has one.

Proof Let algorithms A and B be the two algorithms associated with the L-reduction
of running time q(n) and r(n) respectively. Also let α, β be the two associated
constants. We assume that �2 admits a FP-approximation scheme M with running
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time f (k, ε)p(n, ε). We give in the following an FP-approximation scheme for prob-
lem �1.

FP-APPROXIMATION SCHEME FOR �1

1. Given an input instance I1 for �1, parameter k, and ε > 0, call algorithm A to
produce an instance I2 = A(I1) for �2.

2. For h = 0,1,2, . . . , αk, and ε′ = ε/αβ , run M on the instance I2 to decide if
OPT�2(I2) ≤ h. Then there must exist an h0, 0 ≤ h0 ≤ αk, such that M an-
swers “no” on all h = 0,1, . . . , h0 but yields on h0 + 1 an solution S2 with value
f2(I2, S2) ≤ (1 + ε′)(h0 + 1).

3. If h0 = αk, it is clear that OPT�2(I2) > α · k. By the L-reduction, OPT�2(I2) ≤
αOPT�1(I1), it can be concluded that OPT�1(I1) > k. So output “no” and stop.

4. Otherwise, the solution S2 satisfies f2(I2, S2) ≤ (1 + ε′)(h0 + 1) ≤
(1 + ε′)αk. Because OPT�2(I2) > h0, OPT�2(I2) ≥ h0 + 1. This means the ratio
f2(I2, S2)/OPT�2(I2) ≤ 1 + ε′.

5. Call algorithm B on S2 and I2 to produce a solution S1 of value f1(I1, S1). This
solution S1 satisfies ratio f1(I1, S1)/OPT�1(I1) ≤ 1+αβε′ = 1+ε (refer to [30],
Proposition 2).

6. If f1(I1, S1) ≤ (1 + ε)k, output solution S1 and stop.
7. Otherwise, f1(I1, S1) > (1 + ε)k. Because f1(I1, S1) ≤ (1 + ε)OPT�1(I1), this

implies OPT�1(I1) > k. Output “no” and stop.

On the question “OPT�1(I1) ≤ k?”, the above algorithm outputs either “no”
or a solution S1 of value f1(I1, S1) ≤ (1 + ε)k. The total time is q(n) + r(n) +
αkf (k, ε′)p(n, ε′), which is bounded by O(f ′(k, ε)p′(n, ε)) for some polynomial
p′ and recursive function f ′. �

By carefully examining the time complexity analysis given in the proof of
Lemma 5.1, we have the following technical lemma

Lemma 5.2 Let �1 and �2 are two minimization problems with �1 L-reducible to
�2 associated with two constants α and β . If �2 has an FP-approximation scheme of
time O(2O((1−ε)k)p(n)) for some polynomial p, then �1 has an FP-approximation
scheme of time O(2O((1−ε/αβ)k)q(n)) for some polynomial q .

Before we establish the main result of this section, we prove the following

Lemma 5.3 The MAX SNP-complete problem VERTEX COVER with bounded de-
gree 3 (abbreviated as VC-3) admits an FP-approximation scheme of running time
O(2O((1−ε/O(1))k)p(n)), where p is a polynomial.

Proof Let G = (V ,E) be a connected graph with bounded degree 3. Suppose n =
|V | > 4, k is the parameter, and 0 < ε < 1. We first partition the vertex set V into
two subsets V1 and V2 such that |V1| = δn and |V2| = (1 − δ)n, where δ = ε/4. Let
G1 = (V1,E1) and G2 = (V2,E2) be the two subgraphs of G induced by V1 and V2
respectively. Then we apply the fixed-parameter algorithm in [14] to the subgraph G2.
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Suppose the minimum vertex cover found by the fixed-parameter algorithm for
the subgraph G2 is C2. It is clear that the vertices in C2 plus the vertices in V1 form
a vertex cover of G. Let OPT(G) be the size of the minimum vertex cover of G. We
claim that (|C2| + |V1|)/OPT(G) ≤ 1 + ε.

Since G2 = (V2,E2) is a subgraph of the graph G, the size of its minimum vertex
cover is not larger than the size of the minimum vertex cover of G. That is, |C2| ≤
OPT(G). For the graph G with n vertices, the number of edges |E| ≥ n− 1. Since G

has bounded degree 3, the size of the minimum vertex cover |OPT| satisfies: |OPT| ≥
(n − 1)/3 ≥ n/4, since n > 4. Therefore,

(|C2| + |V1|)/OPT(G) ≤ (OPT(G) + |V1|)/OPT(G)

= 1 + δn/OPT(G)

≤ 1 + δn/(n/4)

≤ 1 + 4δ

= 1 + ε.

The running time of the FP-approximation algorithm is bounded by the time
for finding the minimum vertex cover for G2, which is O(1.2738O((1−δ)n)p(n))

[14]. Since k ≥ OPT(G) ≥ n/4, and δ = ε/4, we have the time complexity
O(1.2738O((1−δ)k)p(n)) = O(1.2738O((1−ε/4)k)p(n)). �

By Lemma 5.2 and Lemma 5.3, we have

Theorem 5.1 All minimization problems in the class MAX SNP admit FP-approx-
imation schemes of time O(2O((1−ε/O(1))k)p(n)), where p is a polynomial.

Note that for maximization problems in the class MAX SNP, it is proved by
Cai and Chen (Theorem 3.4, [7]) that they are in FPT and can be solved in time
O(2kp(n)). These exact algorithms can determine if OPT ≥ (1 − ε)k in time
O(2O((1−ε)k)p(n)). Therefore,

Theorem 5.2 All maximization problems in the class MAX SNP admit FP-approx-
imation schemes of time O(2O((1−ε)k)p(n)), where p is a polynomial.

In conclusion,

Corollary 5.1 All problems in the class MAX SNP admit FP-approximation schemes
of time O(2O((1−ε/O(1))k)p(n)), where p is a polynomial.

Theorem 4.1 shows that, with an amount of time less than what is needed by exact
algorithms, the optimization problems in MAX SNP can be FP-approximated to an
arbitrary accuracy. On the other hand, any improvement in the running time of the
parameterized algorithms for the parameterized decision problems would imply more
efficient FP-approximation schemes for the problems. For example, by applying the
parameterized algorithm of time O(1.194kk2 + n) for the problem VC-3 in [15], the
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time complexity of the FP-approximation scheme for VC-3 could be improved from
the aforementioned O(1.2738O((1−ε/4)k)p(n)) to O(1.194O((1−ε/4)k)q(n)), where p

and q are polynomials.

6 Improving Approximability for BIN PACKING

In this section, we show that the notion of FP-approximation can be used to improve
the approximation of parameterized intractable problems as well.

Consider the BIN PACKING problem [25]: Given a finite set U = {u1, . . . , un} of
items and a rational size s(u) ∈ [0,1] for each item u ∈ U , find a partition of U

into disjoint subsets U1, . . . ,Uk such that the sum of the sizes of the items in each
Ui is no more than 1 and k is minimized. Note that the decision problem for k = 3
is NP-hard [25] and that it is not fixed-parameter tractable unless P = NP [7]. So,
we cannot claim fixed-parameter approximability simply from the results shown in
Sect. 2. However, based on Theorem 3.2 and the fact that this problem can be ap-
proximated to the ratio 3/2 [33], we obtain the following result. (Note that better
asymptotic ratios for BIN PACKING are known [2].)

Corollary 6.1 BIN PACKING is fixed-parameter approximable to (3/2)k.

We show in the following that this approximation ratio can be significantly im-
proved when fixed-parameter feasibility is the only concern regarding the running
time of the algorithm.

Let 0 < ε ≤ 1/2 be a rational number such that ε ≤ 1/OPT(U), where U is the
set of items for an instance of BIN PACKING. Let V ⊆ U such that u ∈ V if and only
if s(u) ≥ ε. We have the following lemma.

Lemma 6.1 Let B be an optimal packing for the set V . There is an algorithm A

that uses B to construct an approximate packing for U such that A(U)/OPT(U) ≤
1 + 2ε + 2/OPT(U).

Proof Assume B = U1, . . . ,Up is an optimal packing for V . Then B(V ) =
OPT(V ) = p. The algorithm constructs another packing A for U as follows. Pick
items from U − V and pack them into bins U1, . . . ,Up using the well-known FFD
(first fit decreasing) heuristic [25]. Notice that FFD may need to use some extra bins
Up+1, . . . ,Uq to complete the packing.

The size of the space left in each bin Ui , i = p + 1, . . . , q − 1 must be smaller
than ε since each element in U − V has size < ε. Moreover, observe that (1) if
q > p, the size of the space left in each Ui , i = 1, . . . , p is also smaller than ε; and
(2) if p = q , A(U) = OPT(U). It is easy to see that the observation (1) is true. We
justify observation (2). When p = q , no new bins are needed to pack the items from
the set U −V . If A(U) > OPT(U), there must be an optimal packing for U that uses
a smaller number of bins than p. If we take out all items in U −V from this packing,
then this results in a packing for the set V that uses fewer than OPT(V ) bins. This is
a contradiction.
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Based on these observations, A(U)/OPT(U) = 1 in the case when p = q . When
q > p, we have two cases. When

∑
u∈Uq

s(u) ≥ 1 − ε, we have

OPT(U) ≥
∑

u∈U

s(u) =
q∑

i=1

∑

s∈Ui

s(u)

≥ q(1 − ε)

≥ A(U)(1 − ε).

Since ε ≤ 1/2, we have that A(U)/OPT(U) ≤ 1+2ε. When
∑

u∈Uq
s(u) < 1−ε,

we have

OPT(U) ≥
∑

u∈U

s(u) =
q∑

i=1

∑

s∈Ui

s(u)

≥ (q − 1)(1 − ε) +
∑

u∈Uq

s(u)

≥ A(U)(1 − ε) − α,

where α = −(ε − 1 + ∑
u∈Uq

s(u)). It is clear that α ≤ 1. Since (1 − ε) ≥ 1/2,
A(U)/OPT(U) ≤ 1 + 2ε + 2α/OPT(U) ≤ 1 + 2ε + 2/OPT(U). �

Now we are ready to prove the main theorem of this section.

Theorem 6.1 For any δ > 0, problem BIN PACKING is (asymptotic) fixed-parameter
approximable to (1 + δ)k.

Proof We describe a fixed-parameter tractable process for BIN PACKING in the fol-
lowing. For a given δ, let ε = δ/4.

Given a set U of items and an integer k for the problem, first run the approximation
algorithm FFD on U . Let the number of bins in the packing obtained by the algorithm
be m and the approximation ratio be r . Output “no” and halt if k < m/r . Otherwise,
let V ⊆ U such that u ∈ V if and only if s(u) ≥ ε. Then find an optimal packing
B for set V by a brute force approach. According to Lemma 6.1, there is a packing
algorithm A for the original set U of items achieving the ratio bounded by 1 + 4ε =
1 + δ, because the ratio 1 + 2ε + 2/OPT(U) is asymptotically bounded by (1 + 4ε)

for a sufficiently large number of bins for the problem BIN PACKING.
Now output “no” and halt if k < A(U)/(1 + δ). If k ≥ A(U)/(1 + δ), output the

packing with cost A(U) bounded by (1 + δ)k. The running time of FFD is quadratic
in n. The time for A to construct the packing is also bounded by a polynomial in n.
The time for constructing the packing B is O(|V ||V |). Note that |V | < OPT(V )/ε

because each item in set V has the size at least ε and it needs at least ε|V | number of
bins for the packing V alone. It is clear that OPT(V ) ≤ OPT(U) ≤ m ≤ kr , where m

is the cost of the packing obtained by FFD. So |V | ≤ ck for some constant c and the
time for constructing packing B is bounded by O((ck)ck). It is not hard to see that
the total time for the above process is O((ck)ck + nd) for some constant d . �
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According to the proof of Theorem 6.1, the total time of O((ck)ck + nd) is very
impractical when k is a large number. We obtain the following corollary regarding
approximation of a small number of bins for the problem BIN PACKING.

Corollary 6.2 There is an asymptotic polynomial-time approximation scheme for
BIN PACKING when the number of bins is bounded by logn/ log logn.

Note that BIN PACKING cannot be approximated to the ratio 3/2 − ε in polyno-
mial time for any ε > 0 unless P = NP [25]. Therefore, it is not possible for the
problem to have a polynomial-time approximation scheme. However, Karmarkar and
Karp [28] devised an efficient approximation scheme for the problem with asymp-
totic ratio 1 + β , where β = O(log2 OPT(U)/OPT(U)). Our proof in Lemma 6.1
shows an improvement in that the ratio 1 + β is determined by β = O(1/OPT(U)).

7 Further Research Work

This is a preliminary work for the new framework of fixed-parameter approxima-
tion. Further research may derive more positive and negative results. For example,
the work on the fixed-parameter approximability of planar graph problems, such
as PLANAR VERTEX COVER, PLANAR DOMINATING SET, and PLANAR INDEPEN-
DENT SET, will be very interesting, compared with the results of Alber et al. [1],
the O(2

√
knc)-time parameterized algorithms, and of Baker [3], the O(21/εnc)-time

PTAS algorithm for these problems. Also we believe the inapproximability results
derived in the present paper may shed light on the study of the FP-approximability of
the problems in the newly-proposed parameterized class MINI[1] (refer to [21]).
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