

ALGORITHMS
OF INFORMATICS

Volume 2.

COMPUTER NETWORKS AND
OPTIMIZATION

ELTE EÖTVÖS KIADÓ
Budapest, 2006

Editor: Antal Iványi

Authors: Burkhard Englert, Dariusz Kowalski, Grzegorz Malewicz, Alexander
Shvartsman (Chapter 7), Ferenc Szidarovszky (8), Csanád Imreh (9), Antal Iványi and

Claudia Leopold (10), Tibor Gyires and László Lakatos (11), Systolic Systems (12)

Validators: István Majzik (Chapter 7), János Mayer (8), Béla Vizvári (9), Dezs�o Sima
(10), János Sztrik (11), Dezs�o Sima (12)

Viktor Belényesi, Pál Dömösi, Gábor Farkas, Péter Gács, János Gonda, Csanád Imreh,
Antal Iványi, Gábor Ivanyos, Antal Járai Zoltán Kása, Imre Kátai, Attila Kovács, Claudia
Leopold, Kornél Locher, János Mayer, András Recski, Lajos Rónyai, Jörg Rothe, Ferenc

Szidarovszky, Béla Vizvári, 2005

ISBN: 963 463 664 0

Published by ELTE EÖTVÖS KIADÓ
Budapest, Szerb utca 21�23.

Hungary
Telephone/facsimile: 411-6740

Internet: http://www.elte.hu/szervezet/eotvos_kiado.html
E-mail: eotvoskiado@ludens.elte.hu

Responsible publisher: András Pándi
Cover design: Antal Iványi

Printed and bound by ???

http://people.inf.elte.hu/bvic/�
http://www.inf.unideb.hu/~domosi/�
http://www.compalg.inf.elte.hu/farkasg�
http://www.cs.bu.edu/fac/gacs/�
mailto:andog@compalg.inf.elte.hu�
http://www.inf.u-szeged.hu/~cimreh/�
http://people.inf.elte.hu/tony/�
http://www.sztaki.hu/~ivanyos/�
http://compalg.inf.elte.hu/~ajarai/�
http://www.cs.ubbcluj.ro/~kasa/�
mailto:Katai@compalg.inf.elte.hu�
http://www.compalg.inf.elte.hu/attila�
http://www.se.e-technik.uni-kassel.de/pm/leopoldE.html�
mailto:locherk@freemail.hu�
http://www.unizh.ch/ior/Pages/Deutsch/Mitglieder/Mayer/Mayer.php�
http://www.cs.bme.hu/recski�
http://www.sztaki.hu/~ronyai/�
http://www.cs.uni-duesseldorf.de/~rothe/�
http://www.sie.arizona.edu/faculty/szidar.html�
http://www.cs.elte.hu/vizvari�
http://www.elte.hu/szervezet/eotvos_kiado.html�
mailto:eotvoskiado@ludens.elte.hu�

Introduction

7. Distributed Systems

8. Game Theory

In many situations in engineering and economy there are cases when the con�icting interests
of several decision makers have to be taken into account simultaneously, and the outcome
of the situation depends on the actions of these decision makers. One of the most popular
methodology and modeling is based on game theory.

Let N denote the number of decision makers (who will be called players), and for
each k = 1, 2, . . . ,N let S k be the set of all feasible actions of player Pk. The elements
sk ∈ S k are called strategies of player Pk, S k is the strategy set of this player. In any
realization of the game each player selects a strategy, then the vector s = (s1, s2, . . . , sN)
(sk ∈ S k, k = 1, 2, . . . ,N) is called a simultaneous strategy vector of the players. For each
s ∈ S = S 1 × S 2 × · · · × S N each player has an outcome which is assumed to be a real
value. This value can be imagined as the utility function value of the particular outcome,
in which this function represents how player Pk evaluates the outcomes of the game. If
fk(s1, . . . , sN) denotes this value, then fk : S → R is called the payoff function of player
Pk. The value fk(s) is called the payoff of player Pk and (f1(s), . . . , fN(s)) is called the
payoff vector. The number N of players, the sets S k of strategies and the payoff functions fk
(k = 1, 2, . . . ,N) completely determine and de�ne the N-person game. We will also use the
notation G = {N; S 1, S 2, . . . , S N ; f1, f2, . . . , fN} for this game.

The solution of game G is the Nash-equilibrium, which is a simultaneous strategy
vector s? = (s?1 , . . . , s?N) such that for all k,

1. s?k ∈ S k;

2. for all sk ∈ S k,

fk(s?1 , s?2 , . . . , s?k−1, sk, s?k+1, . . . , s?N) ≤ fk(s?1 , s?2 , . . . , s?k−1, s?k , s?k+1, . . . , s?N) . (8.1)

Condition 1 means that the k-th component of the equilibrium is a feasible strategy of player
Pk, and condition 2 shows that none of the players can increase its payoff by unilaterally
changing its strategy. In other words, it is the interest of all players to keep the equilibrium
since if any player departs from the equilibrium, its payoff does not increase.

8.1. Finite Games 7

Player P2
N C

Player P1
N
C

(−2,−2)
(−1,−10)

(−10,−1)
(−5,−5)

Figure 8.1. Prisoner's dilemma.

8.1. Finite Games
Game G is called �nite if the number of players is �nite and all strategy sets S k contain
�nitely many strategies. The most famous two-person �nite game is the prisoner's dilemma,
which is the following.

8.1. Example. The players are two prisoners who committed a serious crime, but the prosecutor
has only insufficient evidence to prosecute them. The prisoners are held in separate cells and cannot
communicate, and the prosecutor wants them to cooperate with the authorities in order to get the
needed additional information. So N = 2, and the strategy sets for both players have two elements:
cooperating (C), or not cooperating (N). It is told to both prisoners privately that if he is the only one
to confess, then he will get only a light sentence of 1 year, while the other will go to prison for a
period of 10 years. If both confess, then their reward will be a 5 year prison sentence each, and if none
of them confesses, then they will be convicted to a less severe crime with sentence of 2 years each.
The objective of both players are to minimize the time spent in prison, or equivalently to maximize
its negative. Figure 8.1 shows the payoff values, where the rows correspond to the strategies of player
P1, the columns show the strategies of player P2, and for each strategy pair the �rst number is the
payoff of player P1, and the second number is the payoff of player P2. Comparing the payoff values,
it is clear that only (C,C) can be equilibrium, since

f2(N,N) = −2 < f2(N,C) = −1,
f1(N,C) = −10 < f1(C,C) = −5,
f2(C,N) = −10 < f2(C,C) = −5.

The strategy pair (C,C) is really an equilibrium, since

f1(C,C) = −5 > f1(N,C) = −10,
f2(C,C) = −5 > f2(C,N) = −10.

In this case we have a unique equilibrium.

The existence of an equilibrium is not guaranteed in general, and if equilibrium exists,
it might not be unique.

8.2. Example. Modify the payoff values of Figure 8.1 as shown in Figure 8.2. It is easy to see that no
equilibrium exists:

f1(N,N) = 1 < f1(C,N) = 2,
f2(C,N) = 4 < f2(C,C) = 5,
f1(C,C) = 0 < f1(N,C) = 2,
f2(N,C) = 1 < f2(N,N) = 2.

8 8. Game Theory

Player P2
N C

Player P1
N
C

(1, 2)
(2, 4)

(2, 1)
(0, 5)

Figure 8.2. Game with no equilibrium.

If all payoff values are identical, then we have multiple equilibria: any strategy pair is
an equilibrium.

8.1.1. Enumeration
Let N denote the number of players, and for the sake of notational convenience let
s(1)

k , . . . , s(nk)
k denote the feasible strategies of player Pk. That is, S k = {s(1)

k , . . . , s(nk)
k }. A

strategy vector s? = (s(i1)
1 , . . . , s(iN)

N) is an equilibrium if and only if for all k = 1, 2, . . . ,N
and j ∈ {1, 2, . . . , nk} \ ik,

fk(s(i1)
1 , . . . , s(ik−1)

k−1 , s
(j)
k , s(ik+1)

k+1 , . . . , s
(iN)
N) ≤ fk(s(i1)

1 , . . . , s(ik−1)
k−1 , s(ik)

k , s(ik+1)
k+1 , . . . , s

(iN)
N). (8.2)

Notice that in the case of �nite games inequality (8.1) reduces to (8.2).
In applying the enumeration method, inequality (8.2) is checked for all possible strategy

N-tuples s? = (s(i1)
1 , . . . , s(iN)

N) to see if (8.2) holds for all k and j. If it does, then s? is an
equilibrium, otherwise not. If during the process of checking for a particular s? we �nd a
k and j such that (8.2) is violated, then s? is not an equilibrium and we can omit checking
further values of k and j. This algorithm is very simple, it consists of N + 2 imbedded loops
with variables i1, i2, . . . , iN , k and j.

The maximum number of comparisons needed equals


N∏

k=1
nk




N∑

k=1
(nk − 1)

 ,

however in practical cases it might be much lower, since if (8.2) is violated with some j,
then the comparison must stop for the same strategy vector.

The algorithm can formally be given as follows:

8.1. Finite Games 9

1 for i1 ← 1 to n1
2 do for i2 ← 1 to n2

3 . . .

4 do for iN ← 1 to nN
5 do key← 0
6 for k ← 1 to N
7 do for j← 1 to nk
8 do if (8.2) fails
9 then key← 1 and go to 10

10 if key = 0
11 then (s(i1)

1 , . . . , s(iN)
N) is equilibrium

12 and give message accordingly

Consider next the two-person case, N=2, and introduce the n1×n2 real matrixes A(1) and
A(2) with (i, j) elements f1(i, j) and f2(i, j) respectively. Matrixes A(1) and A(2) are called the
payoff matrixes of the two players. A strategy vector

(
s(i1)

1 , s(i2)
2

)
is an equilibrium if and only

if the (i1, i2) element in matrix A(1) is the largest in its column, and in matrix A(2) it is the
largest in its row. In the case when f2 = − f1, the game is called zero-sum, and A(2) = −A(1),
so the game can be completely described by the payoff matrix A(1) of the �rst player. In this
special case a strategy vector (s(i1)

1 , s(i2)
2) is an equilibrium if and only if the element (i1, i2) is

the largest in its column and smallest in its row. In the zero-sum cases the equilibria are also
called the saddle points of the games. Clearly, the enumeration method to �nd equilibria
becomes more simple since we have to deal with a single matrix only.

The simpli�ed algorithm is as follows:

1 for i1 ← 1 to n1
2 do for i2 ← 1 to n2
3 do key← 0
4 for j← 1 to n1
5 do if a(1)

ji2 > a(1)
i1i2

6 then key← 1
7 and go to 12
8 for j← 1 to n2
9 do if a(2)

i1 j > a(2)
i1i2

10 then key← 1
11 and go to 12
12 if key = 0
13 then give message that (s(1)

i1 , s(2)
i2) is equilibrium

10 8. Game Theory

8.1.2. Games Represented by Finite Trees
Many �nite games have the common feature that they can be represented by a �nite directed
tree with the following properties:
1. there is a unique root of the tree (which is not the endpoint of any arc), and the game

starts at this node;
2. to each node of the tree a player is assigned and if the game reaches this node at any

time, then this player will decide on the continuation of the game by selecting an arc
originating from this node. Then the game moves to the endpoint of the chosen arc;

3. to each terminal node (in which no arc originates) an N-dimensional real vector is
assigned which gives the payoff values for the players if the game terminates at this
node;

4. each player knows the tree, the nodes he is assigned to, and all payoff values at the
terminal nodes.
For example, the chess-game satis�es the above properties in which N = 2, the nodes of

the tree are all possible con�gurations on the chessboard twice: once with the white player
and once with the black player assigned to it. The arcs represent all possible moves of the
assigned player from the originating con�gurations. The endpoints are those con�gurations
in which the game terminates. The payoff values are from the set {1, 0,−1} where 1 means
win, −1 represents loss, and 0 shows that the game ends with a tie.

Theorem 8.1 All games represented by �nite trees have at least one equilibrium.

Proof. We present the proof of this result here, since it suggests a practical algorithm to �nd
equilibria. The proof goes by induction with respect to the number of nodes of the game
tree. If the game has only one node, then clearly it is the only equilibrium.

Assume next that the theorem holds for any tree with less than n nodes (n ≥ 2), and
consider a game T0 with n nodes. Let R be the root of the tree and let r1, r2, . . . , rm (m < n)
be the nodes connected to R by an arc. If T1,T2, . . . , Tm denote the disjoint subtrees of T0
with roots r1, r2, . . . , rm, then each subtree has less than n nodes, so each of them has an
equilibrium. Assume that player Pk is assigned to R. Let e1, e2, . . . , em be the equilibrium
payoffs of player Pk on the subtrees T1,T2, . . . ,Tm and let e j = max{e1, e2, . . . , em}. Then
player Pk will move to node r j from the root, and then the equilibrium continues with the
equilibrium obtained on the subtree T j. We note that not all equilibria can be obtained by
this method, however the payoff vectors of all equilibria, which can obtained by this method,
are identical.

We note that not all equilibria can be obtained by this method, however the payoff

vectors of all equilibria, which can be obtained by this method, are identical.
The proof of the theorem suggests a dynamic programming-type algorithm which is

called backward induction. It can be extended to the more general case when the tree has
chance nodes from which the continuations of the game are random according to given
discrete distributions.

The solution algorithm can be formally presented as follows. Assume that the nodes are
numbered so each arc connects nodes i and j only for i < j. The root has to get the smallest
number 1, and the largest number n is given to one of the terminal nodes. For each node i

8.1. Finite Games 11

2

2

3

2

3

2

3

3

1

1

3

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

120

233

−1−1−1

21−2

000

2−13

−1−1−1

0−31

322

414

200

101

PSfrag replacements
(1, 2, 0)
(2, 3, 3)

(−1,−1,−1)
(2, 1,−2)

(0, 0, 0)
(2,−1, 3)

(−1,−1,−1)
(0,−3, 1)

(3, 2, 2)
(4, 1, 4)
(2, 0, 0)
(1, 0, 1)

Figure 8.3. Finite tree of Example 10.3.

let J(i) denote the set of all nodes j such that there is an arc from i to j. For each terminal
node i, J(i) is empty, and let p(i) = (p(i)

1 , . . . , p(i)
N) denote the payoff vector associated to this

node. And �nally we will denote player assigned to node i by Ki for all i. The algorithm
starts at the last node n and moves backward in the order n, n − 1, n − 2, . . . , 2 and 1. Node
n is an endpoint, so vector p(n) has been already assigned. If in the process the next node
i is an endpoint, then p(i) is already given, otherwise we �nd the largest among the values
p(j)

Ki
, j ∈ J(i). Assume that the maximal value occurs at node ji, then we assign p(i) = p(ji)

to node i, and move to node i − 1. After all payoff vectors p(n), p(n−1), . . . ,p(2) and p(1)

are determined, then vector p(1) gives the equilibrium payoffs and the equilibrium path is

12 8. Game Theory

obtained by nodes:
1→ i1 = j1 → i2 = ji1 → i3 = ji2 → . . . ,

until an endpoint is reached, when the equilibrium path terminates.
At each node the number of comparisons equals the number of arcs starting at that node

minus 1. Therefore the total number of comparisons in the algorithm is the total number of
arcs minus the number of nodes.

This algorithm can be formally given as follows:

1 for i← n to 1
2 do p(ji)

Ki
← max{p(l)

Ki
, l ∈ J(i)}

3 p(i) ← p(ji)

4 print sequence 1, i1(= j1), i2(= ji1), i3(= ji2), . . .
until an endpoint is reached

8.3. Example. Figure 8.3 shows a �nite tree. In the circle at each nonterminal node we indicate the
player assigned to that node. The payoff vectors are also shown at all terminal nodes. We have three
players, so the payoff vectors have three elements.

First we number the nodes such that the beginning of each arc has a smaller number than its
endpoint. We indicated these numbers in a box under each node. All nodes i for i ≥ 11 are terminal
nodes, as we start the backward induction with node 10. Since player P3 is assigned to this node we
have to compare the third components of the payoff vectors (2, 0, 0) and (1, 0, 1) associated to the
endpoints of the two arcs originating from node 10. Since 1 > 0, player P3 will select the arc to
node 22 as his best choice. Hence j10 = 22, and p(10) = p(22) = (1, 0, 1). Then we check node 9. By
comparing the third components of vectors p(19) and p(20) it is clear that player P3 will select node
20, so j9 = 20, and p(9) = p(20) = (4, 1, 4). In the graph we also indicated the choices of the players
by thicker arcs. Continuing the procedure in the same way for nodes 8, 7, . . . , 1 we �nally obtain the
payoff vector p(1) = (4, 1, 4) and equilibrium path 1→ 4→ 9→ 20.

Exercises
8.1-1 An entrepreneur (E) enters to a market, which is controlled by a chain store (C).
Their competition is a two-person game. The strategies of the chain store are soft (S), when
it allows the competitor to operate or tough (T), when it tries to drive out the competitor.
The strategies of the entrepreneur are staying in (I) or leaving (L) the market. The payoff

tables of the two player are assumed to be

I L
S 2 5
T 0 5
payoffs of C

I L
S 2 1
T 0 1
payoffs of E

Find the equilibrium.
8.1-2 A salesman sells an equipment to a buyer, which has 3 parts, under the following
conditions. If all parts are good, then the customer pays $α to the salesman, otherwise the
salesman has to pay $β to the customer. Before selling the equipment, the salesman is able
to check any one or more of the parts, but checking any one costs him $γ. Consider a two-

8.2. Continuous Games 13

S

I

T

51

22

00

L

E

C
PSfrag replacements

(5, 1)
(2, 2)
(0, 0)

Figure 8.4. Tree for Exercise 8.1-5.

person game in which player P1 is the salesman with strategies 0, 1, 2, 3 (how many parts
he checks before selling the equipment), and player P2 is the equipment with strategies
0, 1, 2, 3 (how many parts are defective). Show that the payoff matrix of player P1 is given
as below when we assume that the different parts can be defective with equal probability.

player P2
0 1 2 3

player P1

0
1
2
3

α

α − γ
α − 2γ
α − 3γ

−β
− 2

3β − γ
− 1

3β − 5
3γ

−2γ

−β
− 1

3β − γ
− 4

3γ

− 4
3γ

−β
−γ
−γ
−γ

8.1-3 Assume that in the previous problem the payoff of the second player is the negative
of the payoff of the salesman. Give a complete description of the number of equilibria as a
function of the parameter values α, β, γ. Determine the equilibria in all cases.
8.1-4 Assume that the payoff function of the equipment is its value (V if all parts are good,
and zero otherwise) in the previous exercise. Is there an equilibrium point?
8.1-5 Exercise 8.1-1. can be represented by the tree shown in Figure 8.4.
Find the equilibrium with backward induction.
8.1-6 Show that in the one-player case backward induction reduces to the classical dynamic
programming method.
8.1-7 Assume that in the tree of a game some nodes are so called �chance nodes" from
which the game continuous with given probabilities assigned to the possible next nodes.
Show the existence of the equilibrium for this more general case.
8.1-8 Consider the tree given in Figure 8.3, and double the payoff values of player P1,
change the sign of the payoff values of player P2, and do not change those for Player P3.
Find the equilibrium of this new game.

8.2. Continuous Games
If the strategy sets S k are connected subsets of �nite dimensional Euclidean Spaces and the
payoff functions are continuous, then the game is considered continuous.

14 8. Game Theory

8.2.1. Fixed-Point Methods Based on Best Responses
It is very intuitive and usefull from algorithmic point of view to reformulate the equilibrium
concept as follows. For all players Pk and s = (s1, s2, . . . , sN) ∈ S = S 1 × S 2 × · · · × S N
de�ne the mapping:

Bk(s) = {sk ∈ S k | fk(s1, s2, . . . , sk−1, sk, sk+1, . . . , sN)
= max

tk∈S k
fk(s1, s2, . . . , sk−1, tk, sk+1, . . . , sN)}, (8.3)

which is the set of the best choices of player Pk with given strategies s1, s2, . . . , sk−1,
sk+1, . . . , sN of the other players. Note that Bk(s) does not depend on sk, it depends only
on all other strategies sl, k , l. There is no guarantee that maximum exists for all
s ∈ S 1×S 2×· · ·×S N . Let ∑ ⊆ S be the subset of S such that Bk(s) exists for all k and s ∈ ∑.
A simultaneous strategy vector s? = (s?1 , s?2 , . . . , s?N) is an equilibrium if and only if s? ∈ ∑,
and s?k ∈ Bk(s?) for all k. By introducing the best reply mapping, Bk(s) = (B1(s), . . . , BN(s))
we can further simplify the above reformulation:

Theorem 8.2 Vector s? is equilibrium if and only if s? ∈ ∑ and s? ∈ B(s?).

Hence we have shown that the equilibrium-problem of N-person games is equivalent to
�nd �xed points of certain point-to-set mappings.

The most frequently used existence theorems of equilibria are based on �xed point
theorems such as the theorems of Brouwer, Kakutani, Banach, Tarski etc. Any algorithm
for �nding �xed points can be successfully applied for computing equilibria.

The most popular existence result is a straightforward application of the Kakutani-�xed
point theorem.

Theorem 8.3 Assume that in an N-person game
1. the strategy sets S k are nonempty, closed, bounded, convex subsets of �nite dimensional

Euclidean spaces;
for all k,

2. the payoff function fk are continuous on S ;
3. fk is concave in sk with all �xed s1, . . . , sk−1, sk+1, . . . , sN .

Then there is at least one equilibrium.

8.4. Example. Consider a 2-person game, N = 2, with strategy sets S 1 = S 2 = [0, 1], and payoff

functions f1(s1, s2) = s1 s2 − 2s2
1 + 5, and f2(s1, s2) = s1 s2 − 2s2

2 + s2 + 3. We will �rst �nd the best
responses of both players. Both payoff functions are concave parabolas in their variables with vertices:

s1 =
s2

4 and s2 =
s1 + 1

4 .

For all s2 ∈ [0, 1] and s1 ∈ [0, 1] these values are clearly feasible strategies, so

B1(s) =
s2

4 and B2(s) =
s1 + 1

4 .

So (s?1 , s?2) is equilibrium if and only if it satis�es equations:

s?1 =
s?2
4 and s?2 =

s?1 + 1
4 .

8.2. Continuous Games 15

It is easy to see that the unique solution is:

s?1 =
1

15 and s?2 =
4
15 ,

which is therefore the unique equilibrium of the game.

8.5. Example. Consider a portion of a sea-channel, assume it is the unit interval [0, 1]. Player P2 is a
submarine hiding in location s2 ∈ [0, 1], player P1 is an airplane dropping a bomb at certain location
s1 ∈ [0, 1] resulting in a damage αe−β(s1−s2)2 to the submarine. Hence a special two-person game is
de�ned in which S 1 = S 2 = [0, 1], f1(s1, s2) = αe−β(s1−s2)2 and f2(s1, s2) = − f1(s1, s2). With �xed s2,

f1(s1, s2) is maximal if s1 = s2, therefore the best response of player P1 is B1(s) = s2. Player P2 wants
to minimize f1 which occurs if |s1 − s2| is as large as possible, which implies that

B2(s) =


1, if s1 < 1/2,
0, if s1 > 1/2,
{0, 1}, if s1 = 1/2.

Clearly, there is no (s1, s2) ∈ [0, 1] × [0, 1] such that s1 = B1(s) and s2 ∈ B2(s), consequently no
equilibrium exists.

8.2.2. Applying Fan's Inequality
De�ne the aggregation function H : S × S → R as:

Hr(s, z) =

N∑

k=1
rk fk(s1, . . . , sk−1, zk, sk+1, . . . , sN) (8.4)

for all s = (s1, . . . , sN) and z = (z1, . . . , zN) from S and some r = (r1, r2, . . . , rN) > 0.

Theorem 8.4 Vector s? ∈ S is an equilibrium if and only if

Hr(s?, z) ≤ Hr(s?, s?) (8.5)

for all z ∈ S .

Proof. Assume �rst that s? is an equilibrium, then inequality (8.1) holds for all k and sk ∈ S k.
Adding the rk-multiples of these relations for k = 1, 2, . . . ,N we immediately have (8.5).

Assume next that (8.5) holds for all z ∈ S . Select any k and sk ∈ S k, de�ne z =

(s?1 , . . . , s?k−1, sk, s?k+1, . . . , s?N), and apply inequality (8.5). All but the k-th terms cancel and
the remaining term shows that inequality (8.1) holds. Hence s? is an equilibrium.

Introduce function φ(s, z) = Hr(s, z) − Hr(s, s), then clearly s? ∈ S is an equilibrium if
and only if

φ(s?, z) ≤ 0 for all z ∈ S . (8.6)
Relation (8.6) is known as Fan's inequality . It can be rewritten as a variational inequality
(see section 8.2.9 later), or as a �xed point problem. We show here the second approach.
For all s ∈ S de�ne

Φ(s) = {z|z ∈ S , φ(s, z) = max
t∈S

φ(s, t)}. (8.7)

16 8. Game Theory

Since φ(s, s) = 0 for all s ∈ S , relation (8.6) holds if and only if s? ∈ Φ(s?), that is s? is a
�xed-point of mapping Φ : S → 2S . Therefore any method to �nd �xed point is applicable
for computing equilibria.

The computation cost depends on the type and size of the �xed point problem and also
on the selected method.

8.6. Example. Consider again the problem of Example 8.4.. In this case

f1(z1, s2) = z1 s2 − 2z2
1 + 5,

f2(s1, z2) = s1z2 − 2z2
2 + z2 + 3,

so the aggregate function has the form with r1 = r2 = 1 :

Hr(s, z) = z1 s2 − 2z2
1 + s1z2 − 2z2

2 + z2 + 8.

Therefore
Hr(s, s) = 2s1 s2 − 2s2

1 − 2s2
2 + s2 + 8,

and
φ(s, z) = z1 s2 − 2z2

1 + s1z2 − 2z2
2 + z2 − 2s1 s2 + 2s2

1 + 2s2
2 − s2.

Notice that this function is strictly concave in z1 and z2, and is separable in these variables. At the
stationary points:

∂φ

∂z1
= s2 − 4z1 = 0

∂φ

∂z2
= s1 − 4z2 + 1 = 0

implying that at the optimum
z1 =

s2

4 and z2 =
s1 + 1

4 ,

since both right hand sides are feasible. At the �xed point:

s1 =
s2

4 and s2 =
s1 + 1

4 ,

giving the unique solution:
s1 =

1
15 and s2 =

4
15 .

8.2.3. Solving the Kuhn�Tucker Conditions
Assume that for all k,

S k = {sk |gk(sk) ≥ 0},
where gk : Rnk → Rmk is a vector variable vector valued function which is continuously
differentiable in an open set Ok containing S k. Assume furthermore that for all k, the payoff

function fk is continuously differentiable in sk on Ok with any �xed s1, . . . , sk−1, sk+1, . . . , sN .
If s? = (s?1 , . . . , s?N) is an equilibrium, then for all k, s?k is the optimal solution of

problem:
maximize fk(s?1 , . . . , s?k−1, sk, s?k+1, . . . , s?N)
sugject to gk(sk) ≥ 0. (8.8)

8.2. Continuous Games 17

By assuming that at sk the Kuhn�Tucker regularity condition is satis�ed, the solution
has to satisfy the Kuhn�Tucker necessary condition:

uk ≥ 0
gk(sk) ≥ 0

∇k fk(s) + uT
k ∇kgk(sk) = 0T

uT
k gk(sk) = 0,

(8.9)

where uk is an mk-element column vector, uT
k is its transpose, ∇k fk is the gradient of fk (as

a row vector) with respect to sk and ∇kgk is the Jacobian of function gk.

Theorem 8.5 If s? is an equilibrium, then there are vectors u?k such that relations (8.9)
are satis�ed.

Relations (8.9) for k = 1, 2, . . . ,N give a (usually large) system of equations and ine-
qualities for the unknowns sk and uk (k = 1, 2, . . . ,N). Any equilibrium (if exists) has to be
among the solutions. If in addition for all k, all components of gk are concave, and fk is con-
cave in sk, then the Kuhn�Tucker conditions are also sufficient, and therefore all solutions
of (8.9) are equilibria.

The computation cost in solving system (8.9) depends on its type and the chosen met-
hod.

8.7. Example. Consider again the two-person game of the previous example. Clearly,

S 1 = {s1|s1 ≥ 0, 1 − s1 ≥ 0},

S 2 = {s2|s2 ≥ 0, 1 − s2 ≥ 0},
so we have

g1(s1) =

(
s1

1 − s1

)
and g2(s2) =

(
s2

1 − s2

)
.

Simple differentiation shows that

∇1g1(s1) =

(
1
−1

)
, ∇2g2(s2) =

(
1
−1

)
,

∇1 f1(s1, s2) = s2 − 4s1, ∇2 f2(s1, s2) = s1 − 4s2 + 1,
therefore the Kuhn�Tucker conditions can be written as follows:

u(1)
1 , u(1)

2 ≥ 0
s1 ≥ 0
s1 ≤ 1

s2 − 4s1 + u(1)
1 − u(1)

2 = 0
u(1)

1 s1 + u(1)
2 (1 − s1) = 0

u(2)
1 , u(2)

2 ≥ 0
s2 ≥ 0
s2 ≤ 1

s1 − 4s2 + 1 + u(2)
1 − u(2)

2 = 0
u(2)

1 s2 + u(2)
2 (1 − s2) = 0.

18 8. Game Theory

Notice that f1 is concave in s1, f2 is concave in s2, and all constraints are linear, therefore all solutions
of this equality-inequality system are really equilibria. By systematically examining the combination
of cases

s1 = 0, 0 < s1 < 1, s1 = 1,

and
s2 = 0, 0 < s2 < 1, s2 = 1,

it is easy to see that there is a unique solution

u(1)
1 = u(2)

1 = u(1)
2 = u(2)

2 = 0, s1 =
1

15 , s2 =
4
15 .

By introducing slack and surplus variables the Kuhn�Tucker conditions can be rewritten as
a system of equations with some nonnegative variables. The nonnegativity conditions can
be formally eliminated by considering them as squares of some new variables, so the result
becomes a system of (usually) nonlinear equations without additional constraints. There is
a large set of numerical methods for solving such systems.

8.2.4. Reduction to Optimization Problems
Assume that all conditions of the previous section hold. Consider the following optimization
problem:

minimize ∑N
k=1 uT

k gk(sk)
subjective to uk ≥ 0

gk(sk) ≥ 0
∇k fk(s) + uT

k ∇kgk(sk) = 0.
(8.10)

The two �rst constraints imply that the objective function is nonnegative, so is the mini-
mal value of it. Therefore system (8.9) has feasible solution if and only if the optimal value
of the objective function of problem (8.10) is zero, and in this case any optimal solution
satis�es relations (8.9).

Theorem 8.6 The N-person game has equilibrium only if the optimal value of the objective
function is zero. Then any equilibrium is optimal solution of problem (8.10). If in addition
all components of gk are concave and fk is concave in sk for all k, then any optimal solution
of problem (8.10) is equilibrium.

Hence the equilibrium problem of the N-person game has been reduced to �nding the
optimal solutions of this (usually nonlinear) optimization problem. Any nonlinear program-
ming method can be used to solve the problem.

The computation cost in solving the optimization problem (8.10) depends on its type
and the chosen method. For example, if (8.10) is an LP, and solved by the simplex method,
then the maximum number of operations is exponential. However in particular cases the
procedure terminates with much less operations.

8.2. Continuous Games 19

8.8. Example. In the case of the previous problem the optimization problem has the following form:

minimize u(1)
1 s1 + u(1)

2 (1 − s1) + u(2)
1 s2 + u(2)

2 (1 − s2)
subject to u(1)

1 , u(2)
1 , u(1)

2 , u(2)
2 ≥ 0

s1 ≥ 0
s1 ≤ 1
s2 ≥ 0
s2 ≤ 1
s2 − 4s1 + u(1)

1 − u(1)
2 = 0

s1 − 4s2 + 1 + u(2)
1 − u(2)

2 = 0.

Notice that the solution u(1)
1 = u(2)

1 = u(1)
2 = u(2)

2 = 0, s1 = 1/15 and s2 = 4/15 is feasible with zero
objective function value, so it is also optimal. Hence it is a solution of system (8.9) and consequently
an equilibrium.

Mixed Extension of Finite Games
We have seen earlier that a �nite game does not necessary have equilibrium. Even if it does,
in the case of repeating the game many times the players wish to introduce some randomness
into their actions in order to make the other players confused and to seek an equilibrium in
the stochastic sense. This idea can be modeled by introducing probability distributions as
the strategies of the players and the expected payoff values as their new payoff functions.

Keeping the notation of section 8.1. assume that we have N players, the �nite strategy
set of player Pk is S k = {s(1)

k , . . . , s(nk)
k }. In the mixed extension of this �nite game each

player selects a discrete probability distribution on its strategy set and in each realization of
the game an element of S k is chosen according to the selected distribution. Hence the new
strategy set of player Pk is

S k = {xk |xk = (x(1)
k , . . . , x(nk)

k),
nk∑

i=1
x(i)

k = 1, x(i)
k ≥ 0 for all i}, (8.11)

which is the set of all nk-element probability vectors. The new payoff function of this player
is the expected value:

f k(x1, . . . , xN) =

n1∑

i1=1

n2∑

i2=1
. . .

nN∑

iN=1
fk(s(i1)

1 , s(i2)
2 , . . . , s(iN)

N)x(i1)
1 x(i2)

2 . . . x(iN)
N . (8.12)

Notice that the original �pure� strategies s(i)
k can be obtained by selecting xk as the k-th

basis vector. This is a continuous game and as a consequence of Theorem 8.3 it has at least
one equilibrium. Hence if a �nite game is without an equilibrium, its mixed extension has
always at least one equilibrium, which can be obtained by using the methods outlined in the
previous sections.

8.9. Example. Consider the two-person case in which N = 2, and as in section 8.1 introduce matrices
A(1) and A(2) with (i, j) elements f1(s(i)

1 , s(j)
2) and f2(s(i)

1 , s(j)
2). In this special case

f k(x1, x2) =

n1∑

i=1

n2∑

j=1
a(k)

i j x(1)
i x(2)

j = xT
1 A(k)x2 . (8.13)

20 8. Game Theory

The constraints of S k can be rewritten as:

x(i)
k ≥ 0 (i = 1, 2, . . . , nk),

−1 +

nk∑

i=1
x(i)

k ≥ 0,

1 −
nk∑

i=1
x(i)

k ≥ 0.

so we may select

gk(xk) =



x(1)
k
...

x(nk)
k∑nk

i=1 x(i)
k − 1

−∑nk
i=1 x(i)

k + 1



. (8.14)

The optimization problem (8.10) now reduces to the following:

minimize ∑2
k=1[∑nk

i=1 u(i)
k x(i)

k + u(nk+1)
k (∑nk

j=1 x(j)
k − 1) + u(nk+2)

k (−∑nk
j=1 x(j)

k + 1)]
subject to u(i)

k ≥ 0 (1 ≤ i ≤ nk + 2)
x(i)

k ≥ 0 (1 ≤ i ≤ nk)
1T xk = 1
xT

2 (A(1))T + vT
1 + (u(n1+1)

1 − u(n1+2)
1)1T

1 = 0T
1

xT
1 (A(2)) + vT

2 + (u(n2+1)
2 − u(n2+2)

2)1T
2 = 0T

2 ,

(8.15)

where vT
k = (u(1)

k ,u(nk)
k), 1T

k = (1(1), . . . , 1(nk)) and 0T
k = (0(1), . . . , 0(nk)), k = 1, 2 .

Notice this is a quadratic optimization problem. Computation cost depends on the selec-
ted method. Observe that the problem is usually nonconvex, so there is the possibility of
stopping at a local optimum.

Bimatrix games
Mixed extensions of two-person �nite games are called bimatrix games . They were already
examined in Example 8.9.. For notational convenience introduce the simplifying notation:

A = A(1),B = A(2), x = x1, y = x2,m = n1 and n = n2.

We will show that problem (8.15) can be rewritten as quadratic programming problem with
linear constraints.

Consider the objective function �rst. Let

α = u(m+2)
1 − u(m+1)

1 , and β = u(n+2)
2 − u(n+1)

2 ,

then the objective function can be rewritten as follows:

vT
1 x + vT

2 y − α(1T
mx − 1) − β(1T

n y − 1). (8.16)

The last two constraints also simplify:

yT AT + vT
1 − α1T

m = 0T
m,

xT B + vT
2 − β1T

n = 0T
n ,

8.2. Continuous Games 21

implying that
vT

1 = α1T
m − yT AT and vT

2 = β1T
n − xT B, (8.17)

so we may rewrite the objective function again:

(α1T
m − yT AT)x + (β1T

n − xT B)y − α(1T
mx − 1) − β(1T

n y − 1) = α + β − xT (A + B)y,

since
1T

mx = 1T
n y = 1.

Hence we have the following quadratic programming problem :
maximize xT (A + B)y − α − β
subject to x ≥ 0

y ≥ 0
1T

mx = 1
1T

n y = 1
Ay ≤ α1m
BT x ≤ β1n,

(8.18)

where the last two conditions are obtained from (8.17) and the nonnegativity of vectors v1,
v2.

Theorem 8.7 Vectors x? and y? are equilibria of the bimatrix game if and only if with
some α? and β?, (x?, y?, α?, β?) is optimal solution of problem (8.18). The optimal value of
the objective function is zero.

This is a quadratic programming problem. Computation cost depends on the selected
method. Since it is usually nonconvex, the algorithm might terminate at local optimum. We
know that at the global optimum the objective function must be zero, which can be used for
optimality check.

8.10. Example. Select
A =

(
2 −1
−1 1

)

and
B =

(
1 −1
−1 2

)
.

Then
A + B =

(
3 −2
−2 3

)
,

so problem (8.18) has the form:

maximize 3x1y1 − 2x1y2 − 2x2y1 + 3x2y2 − α − β
subject to x1, x2, y1, y2 ≥ 0

x1 + x2 = 1
y1 + y2 = 1
2y1 − y2 ≤ α
−y1 + y2 ≤ α
x1 − x2 ≤ β
−x1 + 2x2 ≤ β,

22 8. Game Theory

where x = (x1, x2)T and y = (y1, y2)T . We also know from Theorem 8.7 that the optimal objective
function value is zero, therefore any feasible solution with zero objective function value is necessarily
optimal. It is easy to see that the solutions

x =

(
1
0

)
, y =

(
0
1

)
, α = 2, β = 1,

x =

(
0
1

)
, y =

(
1
0

)
, α = 1, β = 2,

x =

(
0.6
0.4

)
, y =

(
0.4
0.6

)
, α = 0.2, β = 0.2

are all optimal, so they provide equilibria.

One might apply relations (8.9) to �nd equilibria by solving the equality-inequality
system instead of solving an optimization problem. In the case of bimatrix games problem
(8.9) simpli�es as

xT Ay = α
xT By = β

Ay ≤ α1m
BT x ≤ β1n

x ≥ 0m
y ≥ 0n

1T
mx = 1T

n y = 1,

(8.19)

which can be proved along the lines of the derivation of the quadratic optimization problem.
The computation cost of the solution of system (8.19) depends on the particular method

being selected.

8.11. Example. Consider again the bimatrix game of the previous example. Substitute the �rst and
second constraints α = xT Ay and β = xT By into the third and fourth condition to have

2y1 − y2 ≤ 2x1y1 − x1y2 − x2y1 + x2y2

−y1 + y2 ≤ 2x1y1 − x1y2 − x2y1 + x2y2

x1 − x2 ≤ x1y1 − x1y2 − x2y1 + 2x2y2

−x1 + 2x2 ≤ x1y1 − x1y2 − x2y1 + 2x2y2

x1, x2, y1, y2 ≥ 0
x1 + x2 = y1 + y2 = 1.

It is easy to see that the solutions given in the previous example solve this system, so they are equilib-
ria.

We can also rewrite the equilibrium problem of bimatrix games as an equality-
inequality system with mixed variables. Assume �rst that all elements of A and B are bet-
ween 0 and 1. This condition is not really restrictive, since by using linear transformations

A = a1A + b11 and B = a2B + b21,

where a1, a2 > 0, and 1 is the matrix all elements of which equal 1, the equilibria remain
the same and all matrix elements can be transformed into interval [0, 1].

8.2. Continuous Games 23

Theorem 8.8 Vectors x, y are an equilibrium if and only if there are real numbers α, β and
zero-one vectors u, and v such that

0 ≤ α1m − Ay ≤ 1m − u ≤ 1m − x
0 ≤ β1n − BT x ≤ 1n − v ≤ 1n − y

x ≥ 0m
y ≥ 0n

1T
mx = 1T

n y = 1,

(8.20)

where 1 denotes the vector with all unit elements.
Proof. Assume �rst that x, y is an equilibrium, then with some α and β, (8.19) is satis�ed.
De�ne

ui =

{
1, if xi > 0,
0, if xi = 0, and v j =

{
1, if y j > 0,
0, if y j = 0.

Since all elements of A and B are between 0 and 1, the values α = xT Ay and β = xT By are
also between 0 and 1. Notice that

0 = xT (α1m − Ay) = yT (β1n − BT x),

which implies that (8.20) holds.
Assume next that (8.20) is satis�ed. Then

0 ≤ x ≤ u ≤ 1m and 0 ≤ y ≤ v ≤ 1n.

If ui = 1, then α − eT
i Ay = 0, (where ei is the i-th basis vector), and if ui = 0, then xi = 0.

Therefore
xT (α1m − Ay) = 0,

implying that α = xT Ay. We can similarly show that β = xT By. Thus (8.19) is satis�ed, so,
x, y is an equilibrium.

The computation cost of the solution of system (8.20) depends on the particular method
being seleced.

8.12. Example. In the case of the bimatrix game introduced earlier in Example 8.10. we have the
following:

0 ≤ α − 2y1 + y2 ≤ 1 − u1 ≤ 1 − x1
0 ≤ α + y1 − y2 ≤ 1 − u2 ≤ 1 − x2
0 ≤ β − x1 + x2 ≤ 1 − v1 ≤ 1 − y1
0 ≤ β + x1 − 2x2 ≤ 1 − v2 ≤ 1 − y2

x1 + x2 = y1 + y2 = 1
x1, x2, y1, y2 ≥ 0
u1, u2, v1, v2 ∈ {0, 1}.

Notice that all three solutions given in Example 8.10. satisfy these relations with

u = (1, 0), v = (0, 1)

u = (0, 1), v = (1, 0)
and

u = (1, 1), v = (1, 1),
respectively.

24 8. Game Theory

Matrix games
In the special case of B = −A, bimatrix games are called matrix games and they are repre-
sented by matrix A. Sometimes we refer to the game as matrix A game. Since A + B = 0,
the quadratic optimization problem (8.18) becomes linear:

minimize α + β
subject to x ≥ 0

y ≥ 0
1mx = 1
1ny = 1
Ay ≤ α1m
AT x ≥ −β1n.

(8.21)

From this formulation we see that the set of the equilibrium strategies is a convex poly-
hedron. Notice that variables (x, β) and (y, α) can be separated, so we have the following
result.

Theorem 8.9 Vectors x? and y? give an equilibrium of the matrix game if and only if with
some α? and β?, (x?, β?) and (y?, α?) are optimal solutions of the linear programming
problems:

minimize α minimize β
subject to y ≥ 0n subject to x ≥ 0m

1T
n y = 1 1T

mx = 1
Ay ≤ α1m AT x ≥ −β1n.

(8.22)

Notice that at the optimum, α+ β = 0. The optimal α value is called the value of the matrix
game .

Solving problem (8.22) requires exponential number of operations if the simplex met-
hod is chosen. With polynomial algorithm (such as the interior point method) the number
of operations is only polynomial.

8.13. Example. Consider the matrix game with matrix:

A =


2 1 0
2 0 3
−1 3 3

 .

In this case problems (8.22) have the from:

minimize α and minimize β

subject to y1, y2, y3 ≥ 0 subject to x1, x2, x3 ≥ 0
y1 + y2 + y3 = 1 x1 + x2 + x3 = 1
2y1 + y2 − α ≤ 0 2x1 + 2x2 − x3 + β ≥ 0
2y1 + 3y3 − α ≤ 0 x1 + 3x3 + β ≥ 0
−y1 + 3y2 + 3y3 − α ≤ 0 3x2 + 3x3 + β ≥ 0.

The application of the simplex method shows that the optimal solutions are α = 9/7, y =

(3/7, 3/7, 1/7)T , β = −9/7, and x = (4/7, 4/21, 5/21)T .

We can also obtain the equilibrium by �nding feasible solutions of a certain set of linear
constraints. Since at the optimum of problem (8.21), α + β = 0, vectors x, y and scalers α

8.2. Continuous Games 25

and β are optimal solutions if and only if

x, y ≥ 0
1T

mx = 1
1T

n y = 1
Ay ≤ α1m

AT x ≥ α1n.

(8.23)

The �rst phase of the simplex method has to be used to solve system (8.23), where the
number of operations might be experimental. However in most practical examples much
less operations are needed.

8.14. Example. Consider again the matrix game of the previous example. In this case system (8.23)
has the following form:

x1, x2, x3, y1, y2, y3 ≥ 0
x1 + x2 + x3 = y1 + y2 + y3 = 1

2y1 + y2 ≤ α

2y1 + 3y3 ≤ α

−y1 + 3y2 + 3y3 ≤ α

2x1 + 2x2 − x3 ≥ α

x1 + 3x3 ≥ α

3x2 + 3x3 ≥ α.

It is easy to see that α = 9/7, x = (4/7, 4/21, 5/21)T , y = (3/7, 3/7, 1/7)T satisfy these relations, so x,
y is an equilibrium.

8.2.5. Method of Fictitious Play
Consider now a matrix game with matrix A. The main idea of this method is that at each
step both players determine their best pure strategy choices against the average strategies of
the other player of all previous steps. Formally the method can be described as follows.

Let x1 be the initial (mixed) strategy of player P1. Select y1 = e j1 (the j1st basis vector)
such that

xT
1 Ae j1 = min

j
{xT

1 Ae j}. (8.24)

In any further step k ≥ 2, let

yk−1 =
1

k − 1((k − 2)yk−2 + yk−1), (8.25)

and select xk = eik so that
eT

ik Ayk−1 = max
i
{eT

i Ayk−1}. (8.26)

Let then
xk =

1
k ((k − 1)xk−1 + xk), (8.27)

26 8. Game Theory

and select yk = e jk so that
xT

k Ae jk = min
j
{xT

k Ae j}. (8.28)

By repeating the general step for k = 2, 3, . . . two sequences are generated: {xk}, and
{yk}. We have the following result:

Theorem 8.10 Any cluster point of these sequences is an equilibrium of the matrix game.
Since all xk and yk are probability vectors, they are bounded. Therefore there is at least one
cluster point.

Assume, matrix A is m × n. In (8.24) we need mn multiplications. In (8.25) and (8.27)
m + n multiplications and divisions. In (8.26) and (8.28) mn multiplications. If we make L
iteration steps, then the total number of multiplications and divisions is:

mn + L[2(m + n) + 2mn] = 	(Lmn).

The formal algorithm is as follows:

1 k ← 1
2 de�ne j1 such that xT

1 Ae j1 = min j{xT
1 Ae j}

3 y1 ← e j1
4 k ← k + 1
5 yk−1 ← 1

k−1 ((k − 2)yk−2 + yk−1)
6 de�ne ik such that eT

ik Ayk−1 = maxi{eT
i Ayk−1}

7 xk ← eik
8 xk ← 1

k ((k − 1)xk−1 + xk)
9 de�ne jk such that xT

k Ae jk = min j{xT
k Ae j}

10 yk ← e jk
11 if ||xk − xk−1|| < ε and ||yk−1 − xk−2|| < ε
12 then (xk, yk−1

) is equilibrium
13 else go back to 4

Here ε > 0 is a user selected error tolerance.

8.15. Example. We applied the above method for the matrix game of the previous example and started
the procedure with x1 = (1, 0, 0)T . After 100 steps we obtained x101 = (0.446, 0.287, 0.267)T and
y101 = (0.386, 0.436, 0.178)T . Comparing it to the true values of the equilibrium strategies we see that
the error is below 0.126, showing the very slow convergence of the method.

8.2.6. Symmetric Matrix Games
A matrix game with skew-symmetric matrix is called symmetric. In this case AT = −A and
the two linear programming problems are identical. Therefore at the optimum α = β = 0,
and the equilibrium strategies of the two players are the same. Hence we have the following
result:

8.2. Continuous Games 27

Theorem 8.11 A vector x? is equilibrium of the symmetric matrix game if and only if

x ≥ 0
1T x = 1
Ax ≤ 0.

(8.29)

Solving system (8.29) the �rst phase of the simplex method is needed, the number of
operations is exponential in the worst case but in practical case usually much less.

8.16. Example. Consider the symmetric matrix game with matrix A =

(
0 1
−1 0

)
. In this case rela-

tions (8.29) simplify as follows:

x1, x2 ≥ 0
x1 + x2 = 1

x2 ≤ 0
−x1 ≤ 0.

Clearly the only solution is x1 = 1 and x2 = 0, that is the �rst pure strategy.

We will see in the next subsection that linear programming problems are equivalent to
symmetric matrix games so any method for solving such games can be applied to solve
linear programming problems, so they serve as alternative methodology to the simplex met-
hod. As we will see next, symmetry is not a strong assumption, since any matrix game is
equivalent to a symmetric matrix game.

Consider therefore a matrix game with matrix A, and construct the skew-symmetric
matrix

P =


0m×m A −1m
−AT 0n×n 1n
1T

m −1T
n 0

 ,

where all components of vector 1 equal 1. Matrix games A and P are equivalent in the
following sense. Assume that A > 0, which is not a restriction, since by adding the same
constant to all element of A they become positive without changing equilibria.

Theorem 8.12

1. If z =


u
v
λ

 is an equilibrium strategy of matrix game P then with a = (1 − λ)/2,

x = (1/a)u and y = (1/a)v is an equilibrium of matrix game A with value v = λ/a;
2. If x, y is an equilibrium of matrix game A and v is the value of the game, then

z =
1

2 + v


x
y
v



is equilibrium strategy of matrix game P.

28 8. Game Theory

Proof. Assume �rst that z is an equilibrium strategy of game P, then u ≥ 0, v ≥ 0, Pz ≤ 0,
so

Av − λ1m ≤ 0
−AT u + λ1n ≤ 0

1T
mu − 1T

n v ≤ 0.
(8.30)

First we show that 0 < λ < 1, that is a , 0. If λ = 1, then (since z is a probability vector)
u = 0 and v = 0, contradicting the second inequality of (8.30). If λ = 0, then 1T

mu+1T
n v = 1,

and by the third inequality of (8.30), v must have at least one positive component which
makes the �rst inequality impossible.

Next we show that 1T u = 1T v. From (8.30) we have

uT Av − λuT 1m ≤ 0,
−vT AT u + λuT 1n ≤ 0

and by adding these inequalities we see that

vT 1n − uT 1m ≤ 0,

and combining this relation with the third inequality of (8.30) we see that 1T
mu − 1T

n v = 0.
Select a = (1 − λ)/2 , 0, then 1T

mu = 1T
n v = a, so both x = u/a, and y = v/a are

probability vectors, furthermore from (8.30),

AT x = 1
a AT u ≥ λ

a 1n,
Ay = 1

a Av ≤ λ
a 1m.

So by selecting α = λ/a and β = −λ/a, x and y are feasible solutions of the pair (8.22)
of linear programming problems with α + β = 0, therefore x, y is an equilibrium of matrix
game A. Part 2. can be proved in a similar way, the details are not given here.

8.2.7. Linear Programming and Matrix Games
In this section we will show that linear programming problems can be solved by �nding the
equilibrium strategies of symmetric matrix games and hence, any method for �nding the
equilibria of symmetric matrix games can be applied instead of the simplex method.

Consider the primal-dual linear programming problem pair:

maximize cT x and minimize bT y
subject to x ≥ 0 subject to y ≥ 0

Ax ≤ b AT y ≥ c.
(8.31)

Construct the skew-symmetric matrix:

P =


0 A −b
−AT 0 c
bT −cT 0

 .

Theorem 8.13 Assume z =


u
v
λ

 is an equilibrium strategy of the symmetric matrix game

8.2. Continuous Games 29

P with λ > 0. Then
x =

1
λ

v and y =
1
λ

u

are optimal solutions of the primal and dual problems, respectively.

Proof. If z is an equilibrium strategy, then Pz ≤ 0, that is,

Av − λb ≤ 0
−AT u + λc ≤ 0
bT u − cT v ≤ 0.

(8.32)

Since z ≥ 0 and λ > 0, both vectors x = (1/λ)v, and y = (1/λ)u are nonnegative, and by
dividing the �rst two relations of (8.32) by λ,

Ax ≤ b and AT y ≥ c,

showing that x and y are feasible for the primal and dual, respectively. From the last condi-
tion of (8.32) we have

bT y ≤ cT x.

However
bT y ≥ (xT AT)y = xT (AT y) ≥ xT c = cT x,

consequently, bT y = cT x, showing that the primal and dual objective functions are equal.
The duality theorem implies the optimality of x and y.

8.17. Example. Consider the linear programming problem:

maximize x1 + 2x2

subject to x1 ≥ 0
−x1 + x2 ≥ 1
5x1 + 7x2 ≤ 25.

First we have to rewrite the problem as a primal problem. Introduce the new variables:

x+
2 =

{
x2, if x2 ≥ 0,
0 otherwise,

x−2 =

{ −x2, if x2 < 0,
0 otherwise.

and multiply the ≥-type constraint by −1. Then the problem becomes the following:

maximize x1 + 2x+
2 − 2x−2

subject to x1, x+
2 , x−2 ≥ 0

x1 − x+
2 + x−2 ≤ −1

5x1 + 7x+
2 − 7x−2 ≤ 25.

Hence
A =

(
1 −1 1
5 7 −7

)
, b =

(−1
25

)
, cT = (1, 2,−2),

30 8. Game Theory

and so matrix P becomes:

P =



0 0
... 1 −1 1

... 1

0 0
... 5 7 −7

... −25
· ·
−1 −5

... 0 0 0
... 1

1 −7
... 0 0 0

... 2

−1 7
... 0 0 0

... −2
· ·
−1 25

... −1 −2 2
... 0



.

8.2.8. The Method of Von Neumann
The �ctitious play method is an iteration algorithm in which at each step the players adjust
their strategies based on the opponent's strategies. This method can therefore be considered
as the realization of a discrete system where the strategy selections of the players are the
state variables. For symmetric matrix games John von Neumann introduced a continuous
systems approach when the players continuously adjust their strategies. This method can be
applied to general matrix games, since�as we have seen earlier�any matrix game is equiva-
lent to a symmetric matrix game. The method can also be used to solve linear programming
problems as we have seen earlier that any primal-dual pair can be reduced to the solution of
a symmetric matrix game.

Let now P be a skew-symmetric n×n matrix. The strategy of player P2, y(t) is conside-
red as the function of time t ≥ 0. Before formulating the dynamism of the system, introduce
the following notation:

ui : Rn → R, ui(y(t)) = eT
i Py(t) (i = 1, 2, . . . , n) ,

φ : R → R, φ(ui) = max{0, ui} ,
Φ : Rn → R, Φ(y(t)) =

∑n
i=1 φ(ui(y(t))) .

(8.33)

For arbitrary probability vector y0 solve the following nonlinear initial-value problem:

y′j(t) = φ(u j(y(t))) − Φ(y(t))y j(t), y j(0) = y j0 (1 ≤ j ≤ n) . (8.34)

Since the right-hand side is continuous, there is at least one solution. The right hand side of
the equation can be interpreted as follows. Assume that φ(u j(y(t))) > 0. If player P2 selects
strategy y(t), then player P1 is able to obtain a positive payoff by choosing the pure strategy
e j, which results in a negative payoff for player P2. However if player P2 increases y j(t) to
one by choosing the same strategy e j its payoff eT

j Pe j becomes zero, so it increases. Hence
it is the interest of player P2 to increase y j(t). This is exactly what the �rst term represents.
The second term is needed to ensure that y(t) remains a probability vector for all t ≥ 0.

The computation of the right hand side of equations (8.34) for all t requires n2 + n
multiplications. The total computation cost depends on the length of solution interval, on
the selected step size, and on the choice of the differential equation solver.

8.2. Continuous Games 31

Theorem 8.14 Assume that t1, t2, . . . is a positive strictly increasing sequence converging
to∞, then any cluster point of the sequence {y(tk)} is equilibrium strategy, furthermore there
is a constant c such that

eT
i Py(tk) ≤

√
n

c + tk
(i = 1, 2, . . . , n) . (8.35)

Proof. First we have to show that y(t) is a probability vector for all t ≥ 0. Assume that with
some j and t1 > 0, y j(t1) < 0. De�ne

t0 = sup{t|0 < t < t1, y j(t) ≥ 0} .

Since y j(t) is continuous and y j(0) ≥ 0, clearly y j(t0) = 0, and for all τ ∈ (t0, t1), y j(τ) < 0.
Then for all τ ∈ (t0, t1],

y′j(τ) = φ(u j(y(τ))) − Φ(y(τ))y j(τ) ≥ 0,

and the Lagrange mean-value theorem implies that with some τ ∈ (t0, t1),

y j(t1) = y j(t0) + y′j(τ)(t1 − t0) ≥ 0 ,

which is a contradiction. Hence y j(t) is nonnegative. Next we show that ∑n
j=1 y j(t) = 1 for

all t. Let f (t) = 1 −∑n
j=1 y j(t), then

f ′(t) = −
n∑

j=1
y′j(t) = −

n∑

j=1
φ(u j(y(t))) + Φ(y(t))(

n∑

j=1
y j(t)) = −Φ(y(t))(1 −

n∑

j=1
y j(t)) ,

so f (t) satis�es the homogeneous equation

f ′(t) = −Φ(y(t)) f (t)

with the initial condition f (0) = 1 − ∑n
j=1 y j0 = 0. Hence for all t ≥ 0, f (t) = 0, showing

that y(t) is a probability vector.
Assume that for some t, φ(ui(y(t))) > 0. Then

d
dtφ(ui(y(t))) =

n∑

j=1
pi jy′j(t) =

n∑

j=1
pi j[φ(u j(y(t))) − Φ(y(t))y j(t)]

=

n∑

j=1
pi jφ(u j(y(t))) − Φ(y(t))φ(ui(y(t))).

(8.36)

By multiplying both sides by φ(ui(y(t))) and adding the resulted equations for i = 1, 2, . . . , n
we have:

n∑

i=1
φ(ui(y(t))) d

dtφ(ui(y(t))) =

n∑

i=1

n∑

j=1
pi jφ(ui(y(t)))φ(u j(y(t)))

−Φ(y(t))(
n∑

i=1
φ2(ui(y(t)))).

(8.37)

32 8. Game Theory

The �rst term is zero, since P is skew-symmetric. Notice that this equation remains valid
even as φ(ui(y(t))) = 0 except the break-points (where the derivative of φ(ui(y(t))) does not
exist) since (8.36) remains true.

Assume next that with a positive t, Φ(y(t)) = 0. Then for all i, φ(ui(y(t))) = 0. Since
equation (8.37) can be rewritten as

1
2

d
dt Ψ(y(t)) = −Φ(y(t))Ψ(y(t)) (8.38)

with
Ψ : Rn → R and Ψ(y(t)) =

n∑

i=1
φ2(ui(y(t))) ,

we see that Ψ(y(t)) satis�es a homogeneous equation with zero initial solution at t, so the
solution remains zero for all τ ≥ t. Therefore φ(ui(y(τ))) = 0 showing that Py(τ) ≤ 0, that
is, y(τ) is equilibrium strategy.

If Φ(y(t)) > 0 for all t ≥ 0, then Ψ(y(t)) > 0, and clearly

1
2

d
dt Ψ(y(t)) ≤ −

√
Ψ(y(t))Ψ(y(t)) ,

that is 1
2

d
dt Ψ(y(t))(Ψ(y(t)))− 3

2 ≤ −1 .

Integrate both sides in interval [0, t] to have

−Ψ(y(t))−(1/2) + c ≤ −t ,

with c = (Ψ(y(0)))−(1/2), which implies that

(Ψ(y(t)))1/2 ≤ 1
c + t . (8.39)

By using the Cauchy�Schwartz inequality we get

eT
i Py(t) = ui(y(t)) ≤ φ(ui(y(t))) ≤ Φ(y(t)) ≤

√
nΨ(y(t)) ≤

√
n

c + t , (8.40)

which is valid even at the break points because of the continuity of functions ui. And �nally,
take a sequence {y(tk)}with tk increasingly converging to∞. The sequence is bounded (being
probability vectors), so there is at least one cluster point y?. From (8.40), by letting tk → ∞
we have that Py? ≤ 0 showing that y? is an equilibrium strategy.

8.18. Example. Consider the matrix game with matrix

A =


2 1 0
2 0 3
−1 3 3

 ,

which was the subject of our earlier Example 8.13. In order to apply the method of von Neumann
we have to �nd �rst an equivalent symmetric matrix game. The application of the method given in
Theorem 8.12. requires that the matrix has to be positive. Without changing the equilibria we can add

8.2. Continuous Games 33

2 to all matrix elements to have

Anew =


4 3 2
4 2 5
1 5 5

 ,

and by using the method we get the skew-symmetric matrix

P =



0 0 0
... 4 3 2

... −1

0 0 0
... 4 2 5

... −1

0 0 0
... 1 5 5

... −1
· ·
−4 −4 −1

... 0 0 0
... 1

−3 −2 −5
... 0 0 0

... 1

−2 −5 −5
... 0 0 0

... 1
· ·

1 1 1
... −1 −1 −1

... 0



.

The differential equations (8.34) were solved by using the 4th order Runge�Kutta method in the inter-
val [0, 100] with the step size h = 0.01 and initial vector y(0) = (1, 0, . . . , 0)T . From y(100) we get the
approximations

x ≈ (0.563619, 0.232359, 0.241988),

y ≈ (0.485258, 0.361633, 0.115144)

of the equilibrium strategies of the original game. Comparing these values to the exact values:

x =

(
4
7 ,

4
21 ,

5
21

)
and y =

(
3
7 ,

3
7 ,

1
7

)

we see that the maximum error is about 0.067.

8.2.9. Diagonally Strictly Concave Games
Consider an N-person continuous game and assume that all conditions presented at
the beginning of Section 8.2.3 are satis�ed. In addition, assume that for all k, S k is
bounded, all components of gk are concave and fk is concave in sk with any �xed
s1, . . . , sk−1, sk+1, . . . , sN . Under these conditions there is at least one equilibrium (Theo-
rem 8.3). The uniqueness of the equilibrium is not true in general, even if all fk are strictly
concave in sk. Such an example is shown next.

8.19. Example. Consider a two-person game with S 1 = S 2 = [0, 1] and f1(s1, s2) = f2(s1, s2) =

1−(s1−s2)2. Clearly both payoff functions are strictly concave and there are in�nitely many equilibria:
s?1 = s?2 ∈ [0, 1].

34 8. Game Theory

Select an arbitrary nonnegative vector r ∈ RN and de�ne function

h : RM → RM , h(s, r) =



r1∇1 f1(s)T

r2∇2 f2(s)T

...
rN∇N fN(s)T


, (8.41)

where M =
∑N

k=1 nk, and ∇k fk is the gradient (as a row vector) of fk with respect to sk. The
game is said to be diagonally strictly concave if for all s(1) , s(2), s(1), s(2) ∈ S and for some
r ≥ 0,

(s(1) − s(2))T (h(s(1), r) − h(s(2), r)) < 0. (8.42)

Theorem 8.15 Under the above conditions the game has exactly one equilibrium.

Proof. The existence of the equilibrium follows from Theorem 8.3. In proving uniqueness
assume that s(1) and s(2) are both equilibria, and both satisfy relations (8.9). Therefore for
l = 1, 2,

u(l)
k

T gk(s(l)
k) = 0

∇k fk(s(l)) + u(l)T

k ∇kgk(s(l)
k) = 0T ,

and the second equation can be rewritten as

∇k fk(s(l)) +

mk∑

j=1
u(l)

k j∇kgk j(s(l)
k) = 0 , (8.43)

where u(l)
k j and gk j are the jth components of u(l)

k and gk, respectively. Multiplying (8.43) by
(rk(s(2)

k − s(1)
k)T) for l = 1 and by rk(s(1)

k − s(2)
k)T for l = 2 and adding the resulted equalities

for k = 1, 2, . . . ,N we have

0 = {(s(2) − s(1))T h(s(1), r) + (s(1) − s(2))T h(s(2), r)}

+

N∑

k=1

mk∑

j=1
rk[u(1)

k j (s(2)
k − s(1)

k)T∇kgk j(s(1)
k) + u(2)

k j (s(1)
k − s(2)

k)T∇kgk j(s(2)
k)] . (8.44)

Notice that the sum of the �rst two terms is positive by the diagonally strict concavity of the
game, the concavity of the components of gk implies that

(s(2)
k − s(1)

k)T∇kgk j(s(1)
k) ≥ gk j(s(2)

k) − gk j(s(1)
k)

and
(s(1)

k − s(2)
k)T∇kgk j(s(2)

k) ≥ gk j(s(1)
k) − gk j(s(2)

k) .
Therefore from (8.44) we have

0 >
N∑

k=1

mk∑

j=1
rk[u(1)

k j (gk j(s(2)
k) − gk j(s(1)

k)) + u(2)
k j (gk j(s(1)

k) − gk j(s(2)
k))]

=

N∑

k=1

mk∑

j=1
rk[u(1)

k j gk j(s(2)
k) + u(2)

k j gk j(s(1)
k)] ≥ 0 ,

8.2. Continuous Games 35

where we used the fact that for all k and l,

0 = u(l)
k

T gk(s(l)
k) =

mk∑

j=1
u(l)

k jgk j(s(l)
k).

This is an obvious contradiction, which completes the proof.

Checking for Uniqueness of Equilibrium
In practical cases the following result is very useful in checking diagonally strict concavity
of N-person games.

Theorem 8.16 Assume S is convex, fk is twice continuously differentiable for all k, and
J(s, r) + J(s, r)T is negative de�nite with some r ≥ 0, where J(s, r) is the Jacobian of h(s, r).
Then the game is diagonally strictly concave.

Proof. Let s(1) , s(2), s(1), s(2) ∈ S . Then for all α ∈ [0, 1], s(α) = αs(1) + (1 − α)s(2) ∈ S and

d
dαh(s(α), r) = J(s(α), r)(s(1) − s(2)) .

Integrate both side in [0, 1] to have

h(s(1), r) − h(s(2), r) =

∫ 1

0
J(s(α), r)(s(1) − s(2))dα ,

and by premultiplying both sides by (s(1) − s(2))T we see that

(s(1) − s(2))T (h(s(1), r) − h(s(2), r)) =

∫ 1

0
(s(1) − s(2))T J(s(α), r)(s(1) − s(2))dα

=
1
2

∫ 1

0
(s(1) − s(2))T (J(s(α), r) + J(s(α), r)T)(s(1) − s(2))dα < 0 ,

completing the proof.

8.20. Example. Consider a simple two-person game with strategy sets S 1 = S 2 = [0, 1], and payoff

functions
f1(s1, s2) = −s2

1 + s1 − s1 s2

and
f2(s1, s2) = −s2

2 + s2 − s1 s2 .

Clearly all conditions, except diagonally strict concavity, are satis�ed. We will use Theorem 8.16 to
show this additional property. In this case

∇1 f1(s1, s2) = −2s1 + 1 − s2, ∇2 f2(s1, s2) = −2s2 + 1 − s1 ,

so
h(s, r) =

(
r1(−2s1 + 1 − s2)
r2(−2s2 + 1 − s1

)

with Jacobian
J(s, r) =

(−2r1 −r1
−r2 −2r2

)
.

36 8. Game Theory

We will show that
J(s, r) + J(s, r)T =

(−4r1 −r1 − r2
−r1 − r2 −4r2

)

is negative de�nite with some r ≥ 0. For example, select r1 = r2 = 1, then this matrix becomes
(−4 −2
−2 −4

)

with characteristic polynomial

φ(λ) = det
(−4 − λ −2

−2 −4 − λ
)

= λ2 + 8λ + 12 ,

having negative eigenvalues λ1 = −2, λ2 = −6.

Iterative Computation of Equilibrium
We have see earlier in Theorem 8.4 that s? ∈ S is an equilibrium if and only if

Hr(s?, s?) ≥ Hr(s?, s) (8.45)

for all s ∈ S , where Hr is the aggregation function (8.4). In the following analysis we assume
that the N-person game satis�es all conditions presented at the beginning of Section 8.2.9
and (8.42) holds with some positive r.

We �rst show the equivalence of (8.45) and a variational inequality.

Theorem 8.17 A vector s? ∈ S satis�es (8.45) if and only if

h(s?, r)T (s − s?) ≤ 0 (8.46)

for all s ∈ S , where h(s, r) is de�ned in (8.41).

Proof. Assume s? satis�es (8.45). Then Hr(s?, s) as function of s obtains maximum at s =

s?, therefore
∇sHr(s?, s?)(s − s?) ≤ 0

for all s ∈ S , and since ∇sHr(s?, s?) is h(s?, r), we proved that s? satis�es (8.46).
Assume next that s? satis�es (8.46). By the concavity of Hr(s?, s) in s and the diagonally

strict concavity of the game we have

Hr(s?, s?) −Hr(s?, s) ≥ h(s, r)T (s? − s) ≥ h(s, r)T (s? − s) + h(s?, r)T (s − s?) > 0 ,

so s? satis�es (8.45).
Hence any method available for solving variational inequalities can be used to �nd

equilibria.
Next we construct a special two-person, game the equilibrium problem of which is

equivalent to the equilibrium problem of the original N-person game.

Theorem 8.18 Vector s? ∈ S satis�es (8.45) if and only if (s?, s?) is an equilibrium of the
two-person game D = {2; S , S ; f ,− f } where f (s, z) = h(z, r)T (s − z).

Proof.

8.2. Continuous Games 37

• Assume �rst that s? ∈ S satis�es (8.45). Then it satis�es (8.46) as well, so

f (s, s?) ≤ 0 = f (s?, s?).

We need in addition to show that

− f (s?, s) ≤ 0 = − f (s?, s?).

In contrary assume that with some s, f (s?, s) < 0. Then

0 > f (s?, s) = h(s, r)T (s? − s) > h(s, r)T (s? − s) + (s − s?)T (h(s, r) − h(s?, r))
= h(s?, r)T (s? − s) ≥ 0,

where we used (8.42) and (8.46). This is a clear contradiction.
• Assume next that (s?, s?) is an equilibrium of game D. Then for any s, z ∈ S ,

f (s, s?) ≤ f (s?, s?) = 0 ≤ f (s?, z).

The �rst part can be rewritten as

h(s?, r)T (s − s?) ≤ 0,

showing that (8.46) is satis�ed, so is (8.45).

Consider the following iteration procedure.
Let s(1) ∈ S be arbitrary, and solve problem

maximize f (s, s(1))
subject to s ∈ S . (8.47)

Let s(2) denote an optimal solution and de�ne µ1 = f (s(2), s(1)). If µ1 = 0, then for all s ∈ S ,

f (s, s(1)) = h(s(1), r)T (s − s(1)) ≤ 0,

so by Theorem 8.17, s(1) is an equilibrium. Since f (s(1), s(1)) = 0, we assume that µ1 > 0.
In the general step k ≥ 2 we have already k vectors s(1), s(2), . . . , s(k), and k − 1 scalers
µ1, µ2, . . . , µk−1 > 0. Then the next vector s(k+1) and next scaler µk are the solutions of the
following problem:

maximize µ
subject to f (s, s(i)) ≥ µ (i = 1, 2, . . . , k)

s ∈ S .
(8.48)

Notice that
f (s(k), s(i)) ≥ µk−1 ≥ 0 (i = 1, 2, . . . , k − 1)

and
f (s(k), s(k)) = 0,

so we know that µk ≥ 0.

38 8. Game Theory

The formal algorithm is as follows:

1 k ← 1
2 solve problem (8.47), let s(2) be optimal solution
3 if f (s(2), s(1)) = 0
4 then s(1) is equilibrium and stop
5 k ← k + 1
6 solve problem (8.48), let s(k+1) be optimal solution
7 if ||s(k+1) − s(k)|| < ε
8 then s(k+1) is equilibrium
9 else go to 4

Before stating the convergence theorem of the algorithm we notice that in the special
case when the strategy sets are de�ned by linear inequalities (that is, all functions gk are
linear) then all constraints of problem (8.48) are linear, so at each iteration step we have to
solve a linear programming problem.

In this linear case the simplex method has to be used in each iteration step with expo-
nential computational cost, so the overall cost is also exponential (with pre�xed number of
steps).

Theorem 8.19 There is a subsequence {s(ki)} of {s(k)} generated by the method that conver-
ges to the unique equilibrium of the N-person game.

Proof. The proof consists of several steps.
First we show that µk → 0 as k → ∞. Since at each new iteration an additional const-

raint is added to (8.48), sequence {µk} is nonincreasing. Since it is also nonnegative, it must
be convergent. Sequence {s(k)} is bounded, since it is from the bounded set S , so it has a
convergent subsequence {s(ki)}. Notice that from (8.48) we have

0 ≤ µki−1 = min
1≤k≤ki−1

h(s(k), r)T (s(ki) − s(k)) ≤ h(s(ki−1), r)T (s(ki) − s(ki−1)) ,

where the right hand side tends to zero. Thus µki−1 → 0 and since the entire sequence {µk}
is monotonic, the entire sequence converges to zero.

Let next s? be an equilibrium of the N-person game, and de�ne

δ(t) = min{(h(s, r) − h(z, r))T (z − s)|‖s − z‖ ≥ t, z, s ∈ S }. (8.49)

By (8.42), δ(t) > 0 for all t > 0. De�ne the indices ki so that

δ(‖s(ki) − s?‖) = min
1≤k≤i

δ(‖s(k) − s?‖) (i = 1, 2, . . .),

then for all k = 1, 2, . . . , i,

δ(‖s(ki) − s?‖) ≤ (h(s(k), r) − h(s?, r))T (s? − s(k))
= h(s(k), r)T (s? − s(k)) − h(s?, r)T (s? − s(k))
≤ h(s(k), r)T (s? − s(k)),

8.2. Continuous Games 39

which implies that

δ(‖s(ki) − s?‖) ≤ min
1≤k≤i

h(s(k), r)T (s? − s(k))

≤ max
s∈S

min
1≤k≤i

h(s(k), r)T (s − s(k))

= min
1≤k≤i

h(s(k), r)T (s(i+1) − s(k))
= µi

where we used again problem (8.48). From this relation we conclude that δ(‖s(ki)− s?‖)→ 0
as i→ ∞. And �nally, notice that function δ(t) satis�es the following properties:
1. δ(t) is continuous in t;
2. δ(t) > 0 if t > 0 (as it was shown just below relation (8.49));
3. if for a convergent sequence {t(k)}, δ(t(k))→ 0, then necessarily t(k) → 0.
By applying property 3. with sequence {‖s(ki) − s?‖} it is clear that ‖s(ki) − s?‖ → 0 so
s(ki) → s?. Thus the proof is complete.

Exercises
8.2-1 Consider a 2-person game with strategy sets S 1 = S 2 = [0, 1], and payoff functions
f1(x1, x2) = x2

1+x1x2+2 and f2(x1, x2) = x1+x2. Show the existence of a unique equilibrium
point by computing it. Show that Theorem 8.3. cannot be applied to prove existence.
8.2-2 Consider the �price war" game in which two �rms are price setting. Assume that p1
and p2 are the strategies of the players, p1, p2 ∈ [0, pmax] and the payoff functions are:

f1(p1, p2) =

{
p1, if p1 ≤ p2,
p1 − c, if p1 > p2,

f2(p1, p2) =

{
p2, if p2 ≤ p1,
p2 − c, if p2 > p1,

by assuming that c < pmax. Is there an equilibrium? How many equilibria were found?
8.2-3 A portion of the sea is modeled by the unit square in which a submarine is hiding.
The strategy of the submarine is the hiding place x ∈ [0, 1] × [0, 1]. An airplane drops a
bomb in a location y = [0, 1] × [0, 1],j which is its strategy. The payoff of the airplane is
the damage αe−β‖x−y‖ occurred by the bomb, and the payoff of the submarine is its negative.
Does this 2-person game have an equilibrium?
8.2-4 In the second-price auction they sell one unit of an item to N bidders. They value the
item as v1 < v2 < · · · < vN . Each of them offers a price for the item simultaneously without
knowing the offers of the others. The bidder with the highest offer will get the item, but he
has to pay only the second highest price. So the strategy of bidder k is [0,∞], so xk ∈ [0,∞],
and the payoff function for this bidder is:

fk(x1, x2, . . . , xN) =

{
vk −max j,k x j, if xk = max j x j,
0 otherwise.

What is the best response function of bidder k? Does this game have equilibrium?
8.2-5 Formulate Fan's inequality for the Problem 8.2-1.

40 8. Game Theory

8.2-6 Formulate and solve Fan's inequality for Problem 8.2-2.

8.2-7 Formulate and solve Fan's inequality for Problem 8.2-4.
8.2-8 Consider a 2-person game with strategy sets S 1 = S 2 = [0, 1], and payoff functions

f1(x1, x2) = −(x1 − x2)2 + 2x1 − x2 + 1

f2(x1, x2) = −(x1 − 2x2)2 − 2x1 + x2 − 1.

Formulate Fan's inequality.
8.2-9 Let n = 2, S 1 = S 2 = [0, 10], f1(x1, x2) = f2(x1, x2) = 2x1 + 2x2 − (x1 + x2)2.
Formulate the Kuhn�Tucker conditions to �nd the equilibrium. Solve the resulted system of
inequalities and equations.
8.2-10 Consider a 3-person game with S 1 = S 2 = S 3 = [0, 1], f1(x1, x2, x3) = (x1−x2)2+x3,
f2(x1, x2, x3) = (x2−x3)2+x1 and f3(x1, x2, x3) = (x3−x1)2+x2. Formulate the Kuhn�Tucker
condition.
8.2-11 Formulate and solve system (8.9) for Problem 8.2-8.
8.2-12 Repeat the previous problem for the game given in Problem 8.2-1.
8.2-13 Rewrite the Kuhn�Tucker conditions for Problem 8.2-8. into the optimization prob-
lem (8.10) and solve it.
8.2-14 Formulate the mixed extension of the �nite game given in Problem 8.1-1.
8.2-15 Formulate and solve optimization problem (8.10) for the game obtained in the pre-
vious problem.
8.2-16 Formulate the mixed extension of the game introduced in Problem 8.2-3.
Formulate and solve the corresponding linear optimization problems (8.22) with α = 5,
β = 3, γ = 1.
8.2-17 Use �ctitious play method for solving the matrix game of Problem 8.2-16.
8.2-18 Generalize the �ctitious play method for bimatrix games.
8.2-19 Generalize the �ctitious play method for the mixed extensions of �nite n-person
games.
8.2-20 Solve the bimatrix game with matrics A =

(
2 −1
−1 1

)
and B =

(
1 −1
−1 2

)
with

the method you have developed in Problem 8.2-18.

8.2-21 Solve the symmetric matrix game A =


0 1 5
−1 0 −3
−5 3 0

 by linear programming.

8.2-22 Repeat problem 8.2-21. with the method of �ctitious play.
8.2-23 Develop the Kuhn�Tucker conditions (8.9) for the game given in Problem 8.2-21.
above.
8.2-24? Repeat Problems 8.2-21., 8.2-22. and 8.2-23. for the matrix game A =(

1 2 3
−1 0 1

)
. (First �nd the equivalent symmetric matrix game!).

8.2-25 Formulate the linear programming problem to solve the matrix game with matrix
A =

(
1 2
3 1

)
.

8.2-26 Formulate a linear programming solver based on the method of �ctitious play and

8.3. The Oligopoly Problem 41

solve the LP problem:

maximize x1 + x2

subject to x1, x2 ≥ 0
3x1 + x2 ≤ 4
x1 + 3x2 ≤ 4.

8.2-27 Solve the LP problem given in Example 8.17 by the method of �ctitious play.
8.2-28 Solve problem 8.2-21. by the method of von Neumann.
8.2-29 Solve Problem 8.2-24. by the method of von Neumann.
8.2-30 Solve Problem 8.2-17. by the method of von Neumann.
8.2-31? Check the solution obtained in the previous problems by verifying that all const-
raints of (8.21) are satis�ed with zero objective function. Hint. What α and β should be
selected?
8.2-32 Solve problem 8.2-26. by the method of von Neumann.
8.2-33 Let N = 2, S 1 = S 2 = [0, 10], f1(x1, x2) = f2(x1, x2) = 2x1 + 2x2 − (x1 + x2)2. Show
that both payoff functions are strictly concave in x1 and x2 respectively. Prove that there are
in�nitely many equilibria, that is , the strict concavity of the payoff functions does not imply
the uniqueness of the equilibrium.
8.2-34 Can matrix games be strictly diagonally concave?
8.2-35 Consider a two-person game with strategy sets S 1 = S 2 = [0, 1], and payoff func-
tions f1(x1, x2) = −2x2

1 + x1(1 − x2), f2(x1, x2) = −3x2
2 + x2(1 − x1). Show that this game

satis�es all conditions of Theorem 8.16.
8.2-36 Solve the problem of the previous exercise by algorithm (8.47)�(8.48).

8.3. The Oligopoly Problem
The previous sections presented general methodology, however special methods are avai-
lable for almost all special classes of games. In the following parts of this chapter a special
game, the oligopoly game will be examined. It describes a real-life economic situation when
N-�rms produce a homogeneous good to a market, or offers the same service. This model
is known as the classical Cournot model. The �rms are the players. The strategy of each
player is its production level xk with strategy set S k = [0, Lk], where Lk is its capacity limit.
It is assumed that the market price depends on the total production level s = x1 +x2 + · · ·+xN
offered to the market: p(s), and the cost of each player depends on its own production level:
ck(xk). The pro�t of each �rm is given as

fk(x1, . . . , xN) = xk p


N∑

l=1
xl

 − ck(xk). (8.50)

In this way an N-person game G = {N; S 1, . . . , S N ; f1, . . . , fN} is de�ned.
It is usually assumed that functions p and ck (k = 1, 2, . . . ,N) are twice continuously

differentiable, furthermore
1. p′(s) < 0;

42 8. Game Theory

2. p′(s) + xk p′′(s) ≤ 0;
3. p′(s) − c′′k (xk) < 0
for all k, xk ∈ [0, Lk] and s ∈ [0,∑N

l=1 Ll]. Under assumptions 1.�3. the game satis�es all
conditions of Theorem 8.3, so there is at least one equilibrium.

Best Reply Mappings
Notice that with the notation sk =

∑
l,k xl, the payoff function of player Pk can be rewritten

as
xk p(xk + sk) − ck(xk) . (8.51)

Since S k is a compact set and this function is strictly concave in xk, with �xed sk there
is a unique pro�t maximizing production level of player Pk, which is its best reply and is
denoted by Bk(sk).

It is easy to see that there are three cases: Bk(sk) = 0 if p(sk) − c′k(0) ≤ 0, Bk(sk) = Lk if
p(sk + Lk) + Lk p′(sk + Lk) − c′k(Lk) ≥ 0, and otherwise Bk(sk) is the unique solution of the
monotonic equation

p(sk + xk) + xk p′(sk + xk) − c′k(xk) = 0.
Assume that xk ∈ (0, Lk). Then implicit differentiation with respect to sk shows that

p′(1 + B′k) + B′k p′ + xk p′′(1 + B′k) − c′′k B′k = 0

showing that
B′k(sk) = − p′ + xk p′′

2p′ + xk p′′ − c′′k
.

Notice that from assumptions 2. and 3.,

− 1 < B′k(sk) ≤ 0 , (8.52)

which is also true for the other two cases except for the break points.
As in Section 8.2.1. we can introduce the best reply mapping:

B(x1, . . . , xN) =

B1


∑

l,1
xl

 , . . . , BN


∑

l,N
xl


 (8.53)

and look for its �xed points. Another alternative is to introduce dynamic process which
converges to the equilibrium.

Similarly to the method of �ctitious play a discrete system can be developed in which
each �rm selects its best reply against the actions of the competitors chosen at the previous
time period:

xk(t + 1) = Bk(
∑

l,k
xl(t)) (k = 1, 2, . . . ,N) . (8.54)

Based on relation (8.52) we see that for N = 2 the right hand side mapping R2 → R2 is
a contraction, so it converges, however if N > 2, then no convergence can be established.
Consider next a slight modi�cation of this system: with some Kk > 0:

xk(t + 1) = xk(t) + Kk(Bk(
∑

l,k
xl(t)) − xk(t)) (8.55)

8.3. The Oligopoly Problem 43

for k = 1, 2, . . . ,N. Clearly the steady-states of this system are the equilibria, and it can be
proved that if Kk is sufficiently small, then sequences xk(0), xk(1), xk(2), . . . are all conver-
gent to the equilibrium strategies.

Consider next the continuous counterpart of model (8.55), when (similarly to the met-
hod of von Neumann) continuous time scales are assumed:

�xk(t) = Kk(Bk(
∑

l,k
xl(t)) − xk(t)) (k = 1, 2, . . . ,N) . (8.56)

The following result shows the convergence of this process.

Theorem 8.20 Under assumptions 1�3, system (8.56) is asymptotically stable, that is, if
the initial xk(0) values are selected close enough to the equilibrium, then as t → ∞, xk(t)
converges to the equilibrium strategy for all k.

Proof. It is sufficient to show that the eigenvalues of the Jacobian of the system have negative
real parts. Clearly the Jacobian is as follows:

J =



−K1 K1b1 · · · K1b1
K2b2 −K2 · · · K2b2
...

...
...

KNbN KNbN · · · −KN


, (8.57)

where bk = B′k(∑l,k xl) at the equilibrium. From (8.52) we know that −1 < bk ≤ 0 for all k.
In order to compute the eigenvalues of J we will need a simple but very useful fact. Assume
that a and b are N-element real vectors. Then

det(I + abT) = 1 + bT a , (8.58)

where I is the N × N identity matrix. This relation can be easily proved by using �nite
induction with respect to N. By using (8.58), the characteristic polynomial of J can be
written as

φ(λ) = det(J − λI) = det(D + abT − λI)
= det(D − λI)det(I + (D − λI)−1abT)
= det(D − λI)[1 + bT (D − λI)−1a]

= ΠN
k=1(−Kk(1 + bk) − λ)[1 +

N∑

k=1

Kkbk
−Kk(1 + bk) − λ],

where we used the notation

a =



K1b1
K2b2
...

KNbN


, bT = (1, 1, . . . , 1), D =



−K1(1 + b1)
. . .

−KN(1 + bN)

 .

The roots of the �rst factor are all negative: λ = −Kk(1 + bk), and the other eigenvalues are

44 8. Game Theory

the roots of equation

1 +

N∑

k=1

Kkbk
−Kk(1 + bk) − λ = 0.

Notice that by adding the terms with identical denominators this equation becomes

1 +

m∑

l=1

αk
βk + λ

= 0 (8.59)

with αk, βk > 0, and the βk s are different. If g(λ) denotes the left hand side then clearly the
values λ = −βk are the poles,

lim
λ→±∞

g(λ) = 1, lim
λ→−βk±0

g(λ) = ±∞,

g′(λ) =

m∑

l=1

−αl
(βl + λ)2 < 0,

so g(λ) strictly decreases locally. The graph of the function is shown in Figure 8.3. Notice
�rst that (8.59) is equivalent to a polynomial equation of degree m, so there are m real or
complex roots. The properties of function g(λ) indicate that there is one root below −β1, and
one root between each −βk and −βk+1 (k = 1, 2, . . . ,m− 1). Therefore all roots are negative,
which completes the proof.

The general discrete model (8.55) can be examined in the same way. If Kk = 1 for all k,
then model (8.55) reduces to the simple dynamic process (8.54).

8.21. Example. Consider now a 3-person oligopoly with price function

p(s) =

{
2 − 2s − s2, if 0 ≤ s ≤ √3 − 1 ,
0 otherwise ,

strategy sets S 1 = S 2 = S 3 = [0, 1], and cost functions

ck(xk) = kx3
k + xk (k = 1, 2, 3) .

The pro�t of �rm k is therefore the following:

xk(2 − 2s − s2) − (kx3
k + xk) = xk(2 − 2xk − 2sk − x2

k − 2xk sk − s2
k) − kx3

k − xk .

The best reply of play k can be obtained as follows. Following the method outlined at the beginning
of Section 8.3. we have the following three cases. If 1 − 2sk − s2

k ≤ 0, then xk = 0 is the best choice. If
(−6 − 3k) − 6sk − s2

k ≥ 0, then xk = 1 is the optimal decision. Otherwise xk is the solution of equation

∂

∂xk
[xk(2 − 2xk − 2sk − s2

k − 2sk xk − x2
k) − kx3

k − xk]

= 2 − 4xk − 2sk − s2
k − 4sk xk − 3x2

k − 3kx2
k − 1 = 0 ,

where the only positive solution is

xk =
−(4 + 4sk) +

√
(4 + 4sk)2 − 12(1 + k)(s2

k + 2sk − 1)
6(1 + k) .

After the best replies are found, we can easily construct any of the methods presented before.

8.3. The Oligopoly Problem 45

glambda

lambda

1

−b1 −b2 −bm−1 −bm

PSfrag replacements
λ

g(λ)
−β1
−β2
−βm−1
−βm

Figure 8.5. The graph of function g(λ)

Reduction to Single-Dimensional Fixed Point Problems
Consider an N-�rm oligopoly with price function p and cost functions ck (k = 1, 2, . . . ,N).
Introduce the following function

Ψk(s, xk, tk) = tk p(s − xk + tk) − ck(tk) , (8.60)

and de�ne
Xk(s) = {xk |xk ∈ S k, Ψk(s, xk, xk) = max

tk∈S k
Ψk(s, xk, tk)} (8.61)

for k = 1, 2, . . . ,N and let

X(s) = {u|u =

N∑

k=1
xk, xk ∈ Xk(s), k = 1, 2, . . . ,N}. (8.62)

Notice that if s ∈ [0,∑N
k=1 Lk], then all elements of X(s) are also in this interval, therefore X

is a single-dimensional point-to-set mapping. Clearly (x?1 , . . . , x?N) is an equilibrium of the
N-�rm oligopoly game if and only if s? =

∑N
k=1 x?k is a �xed point of mapping X and for all

46 8. Game Theory

k, x?k ∈ Xk(s?). Hence the equilibrium problem has been reduced to �nd �xed points of only
one-dimensional mappings. This is a signi�cant reduction in the difficulty of the problem,
since best replies are N-dimensional mappings.

If conditions 1�3 are satis�ed, then Xk(s) has exactly one element for all s and k:

X(s) =


0, if p(s) − c′k(0) ≤ 0 ,
Lk, if p(s) + Lk p′k(s) − c′k(Lk) ≥ 0,
z? otherwise,

(8.63)

where z? is the unique solution of the monotonic equation

p(s) + zp′(s) − c′k(z) = 0 (8.64)

in the interval (0, Lk). In the third case, the left hand side is positive at z = 0, negative at
z = Lk, and by conditions 2�3, it is strictly decreasing, so there is a unique solution.

In the entire interval [0,∑N
k=1 Lk], Xk(s) is nonincreasing. In the �rst two cases it is

constant and in the third case strictly decreasing. Consider �nally the single-dimensional
equation

N∑

k=1
Xk(s) − s = 0. (8.65)

At s = 0 the left hand side is nonnegative, at s =
∑N

k=1 Lk it is nonpositive, and is strictly
decreasing. Therefore there is a unique solution (that is, �xed point of mapping X), which
can be obtained by any method known to solve single-dimensional equations.

Let [0, S max] be the initial interval for the solution of equation (8.65). After K bisection
steps the accuracy becomes S max/2K , which will be smaller than an error tolerance ε > 0 if
K > log2(S max/ε).

1 solve equation (8.65) for s
2 for k ← 1 to n
3 do solve equation (8.64), and let xk ← z
4 (x1, . . . , xN) is equilibrium

8.22. Example. Consider the 3-person oligopoly examined in the previous example. From (8.63) we
have

X(s) =


0, if 1 − 2s − s2 ≤ 0,
1, if − (1 + 3k) − 4s − s2 ≥ 0,
z? otherwise,

where z? is the unique solution of equation

3kz2 + z(2s + 2) + (−1 + 2s + s2) = 0.

The �rst case occurs for s ≥ √2 − 1, the second case never occurs, and in the third case there is a
unique positive solution:

z? =
−(2s + 2) +

√
(2s + 2)2 − 12k(−1 + 2s + s2)

6k . (8.66)

8.3. The Oligopoly Problem 47

And �nally equation (8.65) has the special form
3∑

k=1

−(s + 1) +
√

(s + 1)2 − 3k(−1 + 2s + s2)
3k − s = 0 .

A single program based on the bisection method gives the solution s? ≈ 0.2982 and then equation
(8.66) gives the equilibrium strategies x?1 ≈ 0.1077, x?2 ≈ 0.0986, x?3 ≈ 0.0919.

Methods Based on Kuhn�Tucker Conditions
Notice �rst that in the case of N-player oligopolies S k = {xk |xk ≥ 0, Lk − xk ≥ 0}, so we
select

gk(xk) =

(
xk

Lk − xk

)
, (8.67)

and since the payoff functions are

fk(x1, . . . , xN) = xk p(xk + sk) − ck(xk) , (8.68)

the Kuhn�Tucker conditions (8.9) have the following form. The components of the 2-
dimensional vectors uk will be denoted by u(1)

k and u(2)
k . So we have for k = 1, 2, . . . ,N,

u(1)
k , u(2)

k ≥ 0
xk ≥ 0

Lk − xk ≥ 0
p(∑N

l=1 xl) + xk p′(∑N
l=1 xl) − c′k(xk) + (u(1)

k , u(2)
k)

(1
−1

)
= 0

u(1)
k xk + u(2)

k (Lk − xk) = 0.

(8.69)

One might either look for feasible solutions of these relations or rewrite them as the optimi-
zation problem (8.10), which has the following special form in this case:

minimize ∑N
k=1(u(1)

k xk + u(2)
k (Lk − xk))

subject to u(1)
k , u(2)

k ≥ 0
xk ≥ 0
Lk − xk ≥ 0
p(∑N

l=1 xl) + xk p′(∑N
l=1 xl) − c′k(xk) + u(1)

k − u(2)
k = 0

(k = 1, 2, . . . ,N).

(8.70)

Computational cost in solving (8.69) or (8.70) depends on the type of functions p and
ck. No general characterization can be given.

8.23. Example. In the case of the three-person oligopoly introduced in Example 8.21. we have

minimize
3∑

k=1
(u(1)

k xk + u(2)
k (1 − xk))

subject to u(1)
k , u(2)

k ≥ 0
xk ≥ 0
1 − xk ≥ 0
1 − 2s − s2 − 2xk − 2xk s − 3kx2

k + u(1)
k − u(2)

k = 0
x1 + x2 + x3 = s.

48 8. Game Theory

A professional optimization software was used to obtain the optimal solutions:

x?1 ≈ 0.1077, x?2 ≈ 0.0986, x?3 ≈ 0.0919 ,

and all u(1)
k = u(2)

k = 0.

Reduction to Complementarity Problems
If (x?1 , . . . , x?N) is an equilibrium of an N-person oligopoly, then with �xed x?1 , . . . ,
x?k−1, x?k+1, . . . , x?N , xk = x?k maximizes the payoff fk of player Pk. Assuming that condition
1�3 are satis�ed, fk is concave in xk, so x?k maximizes fk if and only if at the equilibrium

∂ fk
∂xk

(x?) =


≤ 0, if x?k = 0,
= 0, if 0 < x?k < Lk,
≥ 0, if x?k = Lk.

So introduce the slack variables

zk =

{
= 0, if xk > 0,
≥ 0, if xk = 0

vk =

{
= 0, if xk < Lk,
≥ 0, if xk = Lk

and
wk = Lk − xk. (8.71)

Then clearly at the equilibrium
∂ fk
∂xk

(x) − vk + zk = 0 (8.72)

and by the de�nition of the slack variables

zk xk = 0 (8.73)

vkwk = 0, (8.74)
and if we add the nonnegativity conditions

xk, zk, vk,wk ≥ 0 , (8.75)

then we obtain a system of nonlinear relations (8.71)�(8.75) which are equivalent to the
equilibrium problem.

We can next show that relations (8.71)�(8.75) can be rewritten as a nonlinear comp-
lementarity problem, for the solution of which standard methods are available. For this
purpose introduce the notation

v =



v1
v2
...

vN


, L =



L1
L2
...

LN


, h(x) =



∂ f1
∂x1

(x)
∂ f2
∂x2

(x)
...

∂ fN
∂xN

(x)


,

8.3. The Oligopoly Problem 49

t =

(x
v

)
, and g(t) =

(−h(x) + v
L − x

)
,

then system (8.72)�(8.75) can be rewritten as

t ≥ 0
g(t) ≥ 0

tT g(t) = 0.
(8.76)

This problem is the usual formulation of nonlinear complementarity problems. Notice
that the last condition requires that in each component either t or g(t) or both must be zero.

The computational cost in solving problem (8.76) depends on the type of the involved
functions and the choice of method.

8.24. Example. In the case of the 3-person oligopoly introduced and examined in the previous examp-
les we have:

t =



x1
x2
x3
v1
v2
v3



and g(t) =



−1 + 2 ∑3
l=1 xl + (∑3

l=1 xl)2 + 2x1 + 2x1
∑3

l=1 xl + 3x2
1 + v1

−1 + 2 ∑3
l=1 xl + (∑3

l=1 xl)2 + 2x2 + 2x2
∑3

l=1 xl + 6x2
2 + v2

−1 + 2 ∑3
l=1 xl + (∑3

l=1 xl)2 + 2x3 + 2x3
∑3

l=1 xl + 9x2
3 + v3

1 − x1
1 − x2
1 − x3



.

Linear Oligopolies and Quadratic Programming
In this section N-player oligopolies will be examined under the special condition that the
price and all cost functions are linear :

p(s) = As + B, ck(xk) = bk xk + ck (k = 1, 2, . . . ,N) ,

where B, bk, and ck are positive, but A < 0. Assume again that the strategy set of player Pk
is the interval [0, Lk]. In this special case

fk(x1, . . . , xN) = xk(Ax1 + · · · + AxN + B) − (bk xk + ck) (8.77)

for all k, therefore
∂ fk
∂xk

(x) = 2Axk + A
∑

l,k
xl + B − bk, (8.78)

and relations (8.71)�(8.75) become more special:

2Axk + A
∑

l,k
xl + B − bk − vk + zk = 0

zk xk = vkwk = 0
xk + wk = Lk

xk, vk, zk,wk ≥ 0,

50 8. Game Theory

where we changed the order of them. Introduce the following vectors and matrixes:

Q =



2A A · · · A
A 2A · · · A
...

...
...

A A · · · 2A


, B =



B
B
...
B


, b =



b1
b2
...

bN


,

v =



v1
v2
...

vN


, w =



w1
w2
...

wN


, z =



z1
z2
...

zN


, and L =



L1
L2
...

LN


.

Then the above relations can be summarized as:
Qx + B − b − v + z = 0

x + w = L
xT z = vT w = 0

x, v, z,w ≥ 0 .
(8.79)

Next we prove that matrix Q is negative de�nite. With any nonzero vector a = (ai),

aT Qa = 2A
∑

i
a2

i + A
∑

i

∑

j,i
aia j = A(

∑

i
a2

i + (
∑

i
ai)2) < 0 ,

which proves the assertion.
Observe that relations (8.79) are the Kuhn�Tucker conditions of the strictly concave

quadratic programming problem:
maximize 1

2 xT Qx + (B − b)x
subject to 0 ≤ x ≤ L, (8.80)

and since the feasible set is a bounded linear polyhedron and the objective function is strictly
concave, the Kuhn�Tucker conditions are sufficient and necessary. Consequently a vector
x? is an equilibrium if and only if it is the unique optimal solution of problem (8.80). There
are standard methods to solve problem (8.80) known from the literature.

Since (8.79) is a convex quadratic programming problem, several algorithms are avai-
lable. Their costs are different, so computation cost depends on the particular method being
selected.

8.25. Example. Consider now a duopoly (two-person oligopoly) where the price function is p(s) =

10− s and the cost functions are c1(x1) = 4x1 + 1 and c2(x2) = x2 + 1 with capacity limits L1 = L2 = 5.
That is,

B = 10, A = −1, b1 = 4, b2 = 1, c1 = c2 = 1 .
Therefore,

Q =

(−2 −1
−1 −2

)
, B =

(
10
10

)
, b =

(
4
1

)
, L =

(
5
5

)
,

so the quadratic programming problem can be written as:

maximize 1
2 (−2x2

1 − 2x1 x2 − 2x2
2) + 6x1 + 9x2

subject to 0 ≤ x1 ≤ 5
0 ≤ x2 ≤ 5.

8. Megjegyzések a fejezethez 51

It is easy to see by simple differentiation that the global optimum at the objective function without
the constraints is reached at x?1 = 1 and x?2 = 4. They however satisfy the constraints, so they are the
optimal solutions. Hence they provide the unique equilibrium of the duopoly.

Exercises
8.3-1 Consider a duopoly with S 1 = S 2 = [0, 1], p(s) = 2 − s and costs c1(x) = c2(x) =

x2 + 1. Examine the convergence of the iteration scheme (8.55).
8.3-2 Select n = 2, S 1 = S 2 = [0, 1.5], ck(xk) = 0.5xk (k = 1, 2) and

p(s) =


1.75 − 0.5s, if 0 ≤ s ≤ 1.5,
2.5 − s, if 1.5 ≤ s ≤ 2.5,
0, if 2.5 ≤ s.

Show that there are in�nitely many equilibria:

{(x?1 , x?2)|0.5 ≤ x1 ≤ 1, 0.5 ≤ x2 ≤ 1, x1 + x2 = 1.5}.

8.3-3 Consider the duopoly of Problem 8.3-1. above. Find the best reply mappings of the
players and determine the equilibrium.
8.3-4 Consider again the duopoly of the previous problem.
(a) Construct the one-dimensional �xed point problem of mapping (8.62) and solve it to
obtain the equilibrium.
(b) Formulate the Kuhn�Tucker equations and inequalities (8.69).
(c) Formulate the complementarity problem (8.76) in this case.

Chapter notes
(Economic) Nobel Prize was given only once, in 1994 in the �eld of game theory. One of
the winner was John Nash , who received this honor for his equilibrium concept, which was
introduced in 1951 [42].

Backward induction is a more restrictive equilibrium concept. It was developed by Kuhn
and can be found in [34]. Since it is more restrictive equilibrium, it is also a Nash equilib-
rium.

The existence and computation of equilibria can be reduced to those of �xed points. the
different variants of �xed point theorems-such as that of Brouwer [8], Kakutani[29], Tarski
[58] are successfully used to prove existence in many game classes. The article [44] uses
the �xed point theorem of Kakutani. The books [57] and [21] discuss computer methods
for computing �xed points. The most popular existence result is the well known theorem of
Nikaido and Isoda [44].

The Fan inequality is discussed in the book of Aubin [3]. The Kuhn�Tucker conditi-
ons are presented in the book of Martos [40]. By introducing slack and surplus variables
the Kuhn�Tucker conditions can be rewritten as a system of equations. For their computer
solutions well known methods are available ([57] and [40]).

The reduction of bimatrix games to mixed optimization problems is presented in the
papers of Mills [41] and Shapiro [52]. The reduction to quadratic programming problem is

52 8. Game Theory

given in ([39]).
The method of �ctitious play is discussed in the paper of Robinson [49]. In order to use

the Neumann method we have to solve a system of nonlinear ordinary differential equations.
The Runge�Kutta method is the most popular procedure for doing it. It can be found in [57].

The paper of Rosen [50] introduces diagonally strictly concave games. The computer
method to �nd the equilibria of N-person concave games is introduced in Zuhovitsky et al.
[64].

The different extensions and generalizations of the classical Cournot model can be fo-
und in the books of Okuguchi and Szidarovszky [45, 46]. The proof of Theorem 8.20 is
given in [56]. For the proof of lemma (8.58) see the monograph [46]. The bisection method
is described in [57]. The paper [30] contains methods which are applicable to solve nonli-
near complementarity problems. The solution of problem (8.80) is discussed in the book of
Hadley [23].

The book of von Neumann and Morgenstern [43] is considered the classical textbook
of game theory. There is a large variety of game theory textbooks (see for example [21]).

9. Online Scheduling

In online computation, an algorithm must make its decisions based only on past events
without secure information on future. Such algorithms are called on-line algorithms. Online
algorithms have many applications in different areas such as computer science, economics
and operations research.

The �rst results in this area appeared around 1970, and later since 1990 more and more
researchers started research on problems related to on-line algorithms. Many sub�elds were
developed and investigated. Nowadays new results of the area are presented on the most
important conferences about algorithms. It is not the goal of this chapter to give a detailed
overview about the results, this would not be possible in this framework. The goal of the
chapter is to show some of the main methods of analysing and developing on-line algorithms
by presenting some subareas in more details.

In the next section we de�ne the basic notions used in the analysis of on-line algorithms.
After giving the most important de�nitions we present one of the most known on-line prob-
lems � the on-line k-server problem � and some of the related results. Then we deal with a
new area we present on-line problems belonging to computer networks. In the next section
the on-line bin packing problem and its multidimensional generalizations are presented. Fi-
nally in the last chapter of the section we show some of the basic results concerning the area
of on-line scheduling.

9.1. Notions, definitions
Since an on-line algorithm makes its decisions by partial information without knowing the
whole instance in advance we cannot expect that it gives the optimal solution which can
be given by an algorithm having full information. An algorithms which knows the whole
instance in advance is called offline algorithm.

There are two main methods to measure the performance of on-line algorithms. One
possibility is to use average case analysis where we hypothesize some distribution on events
and we study the expected total cost.

The disadvantage of this approach is that usually we do not have any information about
the distribution of the possible inputs. In this chapter we do not use the average case analysis.

An another approach is a worst case analysis, which is called competitive analysis. In

54 9. Online Scheduling

this case we compare the objective function value of the solution produced by the on-line
algorithm to the optimal offline objective function value. Since we use this measure in this
chapter we give the related de�nitions below.

In case of on-line minimization problems an on-line algorithm is called C-competitive,
if the cost of the solution produced by the on-line algorithm is at most C times more than
the optimal offline cost for each input. The competitive ratio of an algorithm is the smallest
such C for which the algorithm is C-competitive.

For an arbitrary on-line algorithm ALG we denote the objective function value achie-
ved on input I by ALG(I). The optimal offline objective function value on I is denoted by
OPT(I). Using this notation we can de�ne the competitiveness as follows.

Algorithm ALG is C-competitive, if ALG(I) ≤ C · OPT(I) is valid for each input I.
Two further versions of the competitiveness are often used. For a minimization problem

an algorithm ALG is called weakly C-competitive, if there exists such a constant B that
ALG(I) ≤ C · OPT(I) + B is valid for each input I.

The weak competitive ratio of an algorithm is the smallest such C for which the algo-
rithm is weakly C-competitive.

A further version of the competitive ratio is the asymptotic competitive ratio. For mi-
nimization problems the asymptotic competitive ratio of algorithm ALG (R∞ALG) can be
de�ned as follows:

Rn
ALG = sup{ALG(I)

OPT(I) | OPT(I) = n} ,

R∞ALG = lim sup
n→∞

Rn
ALG .

An algorithm is called asymptotically C-competitive if its asymptotic competitive ratio
is at most C.

The main property of the asymptotic ratio that it considers the performance of the algo-
rithm under the assumption that the size of the input tends to ∞. This means that this ratio
is not effected by the behaviour of the algorithm on the small size inputs.

We de�ned the basic notions of the competitive analysis for minimization problems.
Similar de�nitions can be given for maximization problems. Then algorithm ALG is called
C-competitive, if ALG(I) ≥ C ·OPT(I) is valid for each input I, and the algorithm is weakly
C-competitive if there exists such a constant B that ALG(I) ≥ C · OPT(I) + B is valid for
each input I. The asymptotic ratio for maximization problems can be given as follows:

Rn
ALG = inf{ALG(I)

OPT(I) | OPT(I) = n} ,

R∞ALG = lim inf
n→∞

Rn
ALG .

Then the algorithm is called asymptotically C-competitive if its asymptotic ratio is at
least C.

Many scienti�c papers consider randomized on-line algorithms, in this case the objec-
tive function value achieved by the algorithm is a random variable and the expected value of
this variable is used in the de�nition of the competitive ratio. Since we consider only deter-
ministic on-line algorithms in this chapter we do not detail the notions related to randomized
on-line algorithms.

9.2. The k-server problem 55

9.2. The k-server problem
One of the most known online problems is the online k-server problem.To give the de�nition
of the general problem we need the notion of the metric space. A pair (M, d) (where M
contains the points of the space, d is the distance function de�ned on the set M × M) is
called metric space if the following properties are valid:
• d(x, y) ≥ 0 for all x, y ∈ M,
• d(x, y) = d(y, x) for all x, y ∈ M,
• d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ M,
• d(x, y) = 0 holds if and only if x = y.

In the k-server problem a metric space is given and there are k servers which can move
in the space. The decision maker has to satisfy a list of request appearing at the points of the
metric space by sending a server to the point where the request appears.

The problem is online which means that the requests arrive one by one and we must
satisfy each request without any information about the further requests. The goal is to mi-
nimize the total distance travelled by the servers. The model and its special versions have
many applications. In the remaining parts of the section the multiset which contains the po-
ints where the servers are is called the con�guration of the servers. We use multisets since
different servers can be at the same points of the space.

The �rst important results for the k-server problem were achieved by Manasse McGe-
och and Sleator. They developed the following algorithm called B, which we denote
by BAL. During the procedure the servers are in different points. The algorithm maintains
for each server the total distance travelled by the server. We denote by s1, . . . , sk the servers
and also the points in the space where the servers are located. Denote by D1, . . . ,Dk the
total distance travelled by the servers. Then after the arrival at point P of a request algo-
rithm BAL uses the server i for which the value Di + d(si, P) is minimal. This means that
the algorithm tries to balance the distances travelled by the servers. Therefore the algorithm
maintains the S = {s1, . . . , sk} server con�guration and the distances travelled by the servers
which distances have the starting values D1 = · · · = Dk = 0. Then the behaviour of the
algorithm on input I = P1, . . . , Pn can be given by the following pseudocode:

BAL(I)
1 for j← 1 to n
2 i← argmin{Di + d(si, P j)}
3 serve the request with server i
4 Di ← Di + d(si, P j)
5 si ← P j

9.1. Example. Consider the two dimension Euclidean space as the metric space. The points are
two dimensional real vectors (x, y), and the distance between (a, b) and (c, d) is

√
(a − c)2 + (b − d)2.

Suppose that there are two servers which are located at points (0, 0) and (1, 1) at the beginning. Thus
at the beginning D1 = D2 = 0, s1 = (0, 0), s2 = (1, 1). Suppose that the �rst request appears at
point (1, 4). Then D1 + d((0, 0), (1, 4)) =

√
17 > D2 + d((1, 1), (1, 4)) = 3, thus the second server

is used to satisfy the request and after the movement of the server D1 = 0,D2 = 3, s1 = (0, 0),

56 9. Online Scheduling

s2 = (1, 4). Suppose that the second request appears at point (2, 4), then D1 + d((0, 0), (2, 4)) =
√

20 >
D2 + d((1, 4), (2, 4)) = 3 + 1 = 4, thus again the second server is used, and after serving the request
D1 = 0,D2 = 4, s1 = (0, 0), s2 = (2, 4). Suppose that the third request appears at point (1, 4), then
D1 + d((0, 0), (1, 4)) =

√
17 < D2 + d((2, 4), (1, 4)) = 4 + 1 = 5, thus the �rst server is used and after

serving the request D1 =
√

17,D2 = 4, s1 = (1, 4), s2 = (2, 4).

The algorithm is efficient in the cases of some particular metric spaces as it is shown
by the following statement. The references where the proof of the following theorem can be
found are in the chapter notes at the end of the chapter.

Theorem 9.1 Algorithm BALANCE is weakly k-competitive for the metric spaces contai-
ning k + 1 points.

The following statement shows that there is no online algorithm which is better than
k-competitive for the general k-server problem.

Theorem 9.2 There is no such metric space containing at least k + 1 points where an
on-line algorithm exists with smaller competitive ratio than k.

Proof. Consider an arbitrary metric space containing at least k+1 points and an arbitrary on-
line algorithm, denote the algorithm by ONL. Denote the points of the starting con�guration
of ONL by P1, P2, . . . , Pk, and let Pk+1 be an another point of the metric space. Consider the
following long list of requests I = Q1, . . . ,Qn. The next request appears at the point among
P1, P2, . . . , Pk+1 where ONL has no server.

Calculate �rst the value ONL(I). The algorithm does not have server at point Q j+1 after
serving Q j, thus the request appeared at Q j is served by the server located at point Q j+1.
Therefore the cost of serving Q j is d(Q j,Q j+1), which yields that

ONL(I) =

n∑

j=1
d(Q j,Q j+1) ,

where Qn+1 denote the point from which the server sent to serve Qn. (This is the point where
the (n + 1)-th request would appear.) Now consider the cost OPT(I). Instead of calculating
the optimal offline cost we de�ne k different offline algorithms, and we use the average of
the costs resulted by these algorithms. Since the cost of each offline algorithm is at least
as much as the optimal offline cost thus the calculated average is an upper bound on the
optimal offline cost.

We de�ne the following k offline algorithms, denoted by OFF1, . . . ,OFFk. Suppose that
the servers are in the points P1, P2, . . . , P j−1, P j+1, . . . Pk+1 in the starting con�guration of
OFF j. We can move the servers into this starting con�guration using an extra constant cost
C j.

The algorithms satisfy the requests as follows. If an algorithm OFF j has a server at point
Qi, then none of the servers moves, otherwise the request is served by the server which is
located at point Qi−1. The algorithms are well-de�ned, if Qi does not contain a server then
each of the other points among P1, P2, . . . , Pk+1 contains a servers, thus there is a server
located at Qi−1. Moreover Q1 = Pk+1, thus at the beginning each algorithm has a server at
the requested point.

9.2. The k-server problem 57

We show that the servers of algorithms OFF1, . . . ,OFFk are always in different con�gu-
rations. At the beginning this property is valid by the de�nition of the algorithms. Consider
now the step where a request is served. Call the algorithms stable which do not move a ser-
ver for serving the request, and the other algorithms unstable. The server con�gurations of
the stable algorithms remain unchanged, so these con�gurations remain different from each
other. Any unstable algorithm moves a server from the point Qi−1. This point is the place
of the last request thus the stable algorithms have server in it. Therefore, an unstable algo-
rithm and a stable algorithm cannot have the same con�guration after serving the request.
Furthermore, any of the unstable algorithms moves a server from Qi−1 to Qi, thus the server
con�gurations of the unstable algorithms remain different from each other.

So at the arrival of the request at point Qi the servers of the algorithms are in different
con�guration. On the other hand each con�guration has a server at point Qi−1, therefore
there is only one con�guration where no server located at point Qi. Consequently the cost
of serving Qi is d(Qi−1,Qi) for one of the algorithms and 0 for the other algorithms.

Therefore
k∑

j=1
OFF j(I) = C +

n∑

i=2
d(Qi,Qi−1) ,

where C =
∑k

j=1 C j is an absolute constant which is independent from the input (this is the
cost of moving the servers to the starting con�guration of the de�ned algorithms).

On the other hand the optimal offline cost cannot be larger than the cost of any of the
above de�ned algorithms, thus k · OPT(I) ≤ ∑k

j=1 OFF j(I). This yields that

k · OPT(I) ≤ C +

n∑

i=2
d(Qi,Qi−1) ≤ C + ONL(I),

which inequality shows that the weak competitive ratio of ONL cannot be smaller than k,
since the value OPT(I) can be arbitrarily large as the length of the input is increasing.

Many researchers started to work on the problem and some interesting results appeared
during the next few years. For the general case the �rst constant-competitive algorithm
(O(2k)-competitive) was developed by Fiat, Rabani and Ravid. Then the researchers could
not signi�cantly decrease the gap between the lower and upper bounds for a long time. Later
Koutsoupias and Papadimitriou could analyze an algorithm based on the work function
technique and they could prove that the algorithm is (2k − 1)-competitive. They could not
determine the competitive ratio of the algorithm, but it is a widely believed hypothesis that
the algorithm is k-competitive. To determine the competitive ratio of the algorithm, or to
develop a k-competitive algorithm are still among the most important open questions in the
area of on-line algorithms. We present the work function algorithm below.

Denote by A0 the starting con�guration of the on-line servers. Then after the t-th request
the work function value belonging to the multiset X is the minimal cost which can be used
to serve the �rst t requests starting at the con�guration A0 and ending at the con�guration X.
This value is denoted by wt(X). The W F algorithm is based on the above de�ned
work function. Suppose that At−1 is the server con�guration before the arrival of the t-th
request, and denote the place of the t-th request by Rt. Then the W F algorithm
uses the server s to serve the request for which the value wt−1(At−1 \ {P} ∪ {Rt}) + d(P,Rt) is
minimal, where P denotes the point where the server is actually located.

58 9. Online Scheduling

9.2. Example. Consider the metric space which contains three points A, B and C and the distances are
d(A, B) = 1, d(B,C) = 2, d(A,C) = 3. Suppose that we have two servers and the starting con�guration
is {A, B}. Then the starting work function values are w0({A, A}) = 1, w0({A, B}) = 0, w0({A,C}) = 2,
w0({B, B}) = 1, w0({B,C}) = 3, w0({C,C}) = 4. Suppose that the �rst request appears at point C. Then
w0({A, B} \ {A} ∪ {C}) + d(A,C) = 3 + 3 = 6 and w0({A, B} \ {B} ∪ {C}) + d(B,C) = 2 + 2 = 4, thus
algorithm W F uses the server from point B to serve the request.

The following statement is valid for the algorithm.

Theorem 9.3 The W F algorithm is weakly 2k − 1-competitive.

Beside the general problem many particular cases were investigated. If the distance of
any pair of points is 1, then we obtain the on-line paging problem as the special case. An
another well investigated metric space is the line. The points of the line are considered as real
numbers, and the distance of points a and b is |a− b|. In this special case a k-competitive al-
gorithm was developed by Chrobak and Larmore, the algorithm is called D-.
A request at point P is served by the server s which is closest to P. Moreover, if there are
also servers on the opposite side of P then the closest server among them moves distance
d(s, P) into the direction of P. In the following parts we denote the D- algo-
rithm by DC. The input of the algorithm is the list of requests which is a list of points (real
numbers) denoted by I = P1, . . . , Pn and the starting con�guration of the servers denoted
by S = (s1, . . . , sk) which contains also points (real numbers). The algorithm can be de�ned
by the following pseudocode:

DC(I, S)
1 for j← 1 to n
2 do i← argminld(P j, sl)
3 if si = maxl sl or si = maxl sl
4 then the request is served by the i-th server
5 si ← P j
6 else if si ≤ P j
7 then m← argminl:sl>P j

d(sl, P j)
8 the request is served by the i-th server
9 sm ← sm − d(si, P j)

10 si ← P j
11 else if si ≥ P j
12 then n← argminl:sl<P j

d(sl, P j)
13 the request is served by the i-th server
14 sn ← sn + d(si, P j)
15 si ← P j

9.3. Example. Suppose that there are three servers s1, s2, s3 located at the points 0, 1, 2. If the next
request appears at point 4 then DC uses the closest server s3 to serve the request. The locations of the
other servers remain unchanged, the cost of serving the request is 2 and the servers are at the points
0, 1, 4. If the next request appears at point 2 then DC uses the closest server s2 to serve the request, but
there are servers on the opposite side of the request thus s3 also moves distance 1 into the direction of
2. Therefore the cost of serving the request is 2 and the servers will be at the points 0, 2, 3.

9.2. The k-server problem 59

The following statement which can be proved by the potential function technique is
valid for algorithm DC. This technique is often used in the analysis of on-line algorithms.

Theorem 9.4 If the metric space is the line then algorithm DC is weakly k-competitive.

Proof. Consider an arbitrary sequence of requests denote this input by I. During the analysis
of the procedure we suppose that one offline optimal algorithm and DC are running parallel
on the input. We also suppose that each request is served �rst by the offline algorithm and
then by the on-line algorithm. The servers of the on-line algorithm and also the positions of
the servers (which are real numbers) are denoted by s1, . . . , sk, and the servers of the optimal
offline algorithm and also the positions of the servers are denoted by x1, . . . , xk. We suppose
that for the positions s1 ≤ s2 ≤ · · · ≤ sk and x1 ≤ x2 ≤ · · · ≤ xk are always valid, this can be
achieved by changing the notations of the servers.

We prove the theorem by the potential function technique. The potential function as-
signs a value to the actual positions of the servers, the on-line and offline costs are compared
using the changes of the potential function. De�ne the following potential function

Φ = k
k∑

i=1
|xi − si| +

∑

i< j
(s j − si) .

We show that the following statements are valid for the potential function.
• While OPT serves a request the increase of the potential function is not more than k

times the distance moved by the servers of OPT.
• While DC serves a request, the decrease of Φ is at least as much as the cost of serving

the request.
If the above properties are valid then one can prove easily the theorem. In this case

Φ f − Φ0 ≤ k · OPT(I) − DC(I), where Φ f and Φ0 are the �nal and the starting values of the
potential function. Furthermore Φ is nonnegative so we obtain that DC(I) ≤ kOPT(I) + Φ0,
which yields by the de�nition that the algorithms is weakly k-competitive.

Now we prove the properties of the potential function.
First consider the case when one of the offline servers moves distance d. Then the �rst

part of the potential function increases at most kd. The second part does not change thus we
proved the �rst property of the potential function.

Consider the servers of DC. Suppose that the request appears at point P. Since the
request is �rst served by OPT, x j = P for some j. Distinguish the following two cases
depending on the positions of the on-line servers.

Suppose �rst that the on-line servers are on the same side of P. We can assume that the
positions of the servers are not smaller than P, the other case is completely similar. Then s1
is the closest server and DC sends s1 to P, the other on-line servers do not move. Therefore
the cost of DC is d(s1, P). In the �rst sum of the potential function only |x1 − s1| is changing
that decreases d(s1, P), thus the �rst part decreases kd(s1, P). The second sum is increasing
the increase is (k − 1)d(s1, P), thus the value of Φ decreases d(s1, P).

Consider the second case. Then there are servers on both sides of P, suppose that the
closest servers are si and si+1. We assume that si is closer to P, the other case is completely
similar. Then the cost of DC is 2d(si, P). Consider the �rst sum of the potential function.
The i-th and the i + 1-th part are changing. Since x j = P for some j thus one of the i-th and

60 9. Online Scheduling

the i + 1-th parts decreases d(si, P), the increase of the other one is at most d(si, P) thus the
�rst sum does not increase. The change of the second sum of Φ is

d(si, P)(− (k − i) + (i − 1) − (i) + (k − (i + 1))) = −2d(si, P) .

Therefore we proved that the second property of the potential function is also valid in this
case.

Since we investigated all of the possible cases we proved the properties of the potential
function, and the statement of the theorem follows.

Exercises
9.2-1 Suppose that (M, d) is a metric space. Prove that (M, q) is also a metric space where
q(x, y) = min{1, d(x, y)}.
9.2-2 Consider the greedy algorithm which serves each request by the server which is
closest to the place of the request. Prove that the algorithm is not constant competitive
for the line.
9.2-3 Prove that for arbitrary k-element multisets X and Z and for arbitrary t the inequality
wt(Z) ≤ wt(X) + d(X,Z) is valid, where d(X,Z) is the cost of the minimal matching of X
and Z, (the minimal cost which can be used to move the servers from con�guration X to
con�guration Z).
9.2-4 Consider the line as a metric space. Suppose that the servers of the on-line algorithm
are at the points 2, 4, 5, 7, and the servers of the offline algorithm are at the points 1, 3, 6, 9.
Calculate the value of the potential function used in the proof of theorem 9.4. How this
potential function is changed if the on-line server moves from point 7 to point 8?

9.3. Models related to computer networks
The theory of computer networks became one of the most signi�cant areas of the compu-
ter science. In the planning of computer networks many optimization problems arise and
most of these problems are actually on-line, since neither the traffic nor the changes in the
topology of a computer network cannot be precisely predicted. Recently some researchers
working at the area of on-line algorithms de�ned some on-line mathematical models for
problems related to computer networks. In this section we consider this area we present
three problems and show the basic results. First the data acknowledgement problem is con-
sidered, then we present the web caching problem, and the section is closed by the on-line
routing problem.

9.3.1. The data acknowledgement problem
In the communication of a computer network the information is sent by packets. If the com-
munication channel is not completely safe then the arrival of the packets are acknowledged.
In the data acknowledgement problem we try to determine the time of sending acknowled-
gements. One acknowledgement can acknowledge many packets but waiting for long time
can cause the resending of the packets and that results the congestion of the network. On the
other hand sending immediately an acknowledgement about the arrival of each packet wo-
uld cause again the congestion of the network. The �rst optimization model for determining

9.3. Models related to computer networks 61

the sending time of the acknowledgements was developed by Dooly, Goldman and Scott in
1998. Below we present the developed model and some of the basic results.

In the mathematical model of the data acknowledgement problem the input is the list
of the arrival times a1, . . . , an of the packets. The decision maker has to determine when to
send acknowledgements, these times are denoted by t1, . . . , tk. In the optimization model the
cost function is:

k +

k∑

j=1
ν j ,

where k is the number of the sent acknowledgements and ν j =
∑

t j−1<ai≤t j (t j − ai) is the to-
tal latency collected by the j-th acknowledgement. We consider the on-line problem which
means that at time t the decision maker only knows the arrival times of the packets already
arrived and has no information about the further packets. We denote the set of the unack-
nowledged packets at the arrival time ai by σi.

For the solution of the problem the class of the alarming algorithms was developed. An
alarming algorithm works as follows. At the arrival time a j an alarm is set for time a j + e j.
If no packet arrives before time a j + e j, then an acknowledgement is sent at time a j + e j
which acknowledges all of the unacknowledged packets. Otherwise at the arrival of the next
packet at time a j+1 the alarm is reset for time a j+1 + e j+1. Below we analyze in details an
algorithm from this class. This algorithm sets the alarm to collect total latency 1 by the
acknowledgement. The algorithm is called A. We obtain the above de�ned rule from
the general de�nition using the solution of the following equation as value e j

1 = |σ j|e j +
∑

ai∈σ j

(a j − ai) .

9.4. Example. Consider the following example. The �rst packet arrives at time 0 (a1 = 0), then
A sets an alarm with the value e1 = 1 for time 1. Suppose that the next arrival time is a2 = 1/2.
This arrival is before the alarm time thus the �rst packet is not acknowledged yet and we reset the
alarm with the value e2 = (1 − 1/2)/2 = 1/4 for time 1/2 + 1/4. Suppose that the next arrival time
is a3 = 5/8. This arrival is before the alarm time thus the �rst two packets are not acknowledged yet
and we reset the alarm with value e3 = (1 − 5/8 − 1/8)/3 = 1/12 for time 5/8 + 1/12. Suppose that
the next arrival time is a4 = 1. Then no packet arrived before the alarm time 5/8 + 1/12, thus at that
time the �rst three packets were acknowledged and the alarm is set for the new packet with the value
e4 = 1 for time 2.

The following theorem is valid for the competitive ratio of the algorithm.

Theorem 9.5 Algorithm A is 2-competitive.

Proof. Suppose that algorithm A sends k acknowledgements. These acknowledge-
ments divide the time into k time intervals. The cost of the algorithm is 2k, since k is the
cost of the acknowledgements, and the alarm is set to have total latency 1 for each acknow-
ledgement.

Suppose that the optimal offline algorithm sends k∗ acknowledgements. If k∗ ≥ k,
then OPT(I) ≥ k = A(I)/2 is obviously valid, thus we have that the algorithm is
2-competitive. If k∗ < k, then at least k−k∗ among the time intervals de�ned by the acknow-
ledgements of algorithm A do not contain any of the offline acknowledgements. This

62 9. Online Scheduling

yields that the offline total latency is at most k − k∗, thus we obtain that OPT(I) ≥ k which
inequality proves that A is 2-competitive.

As the following theorem shows algorithm A has the smallest possible competitive
ratio.

Theorem 9.6 There is not such on-line algorithm for the data acknowledgement problem
which has smaller competitive ratio than 2.

Proof. Consider an arbitrary on-line algorithm denote it by ONL. Analyze the following
input. Consider a long sequence of packets where the packets always arrive immediately
after the time when ONL sends an acknowledgement. Then the on-line cost of a sequence
containing 2n packets is ONL(I2n) = 2n + t2n, since the cost resulted from the acknowledge-
ments is 2n, and the latency of the i-th acknowledgement is ti − ti−1, where the value t0 = 0
is used.

Consider the following two on-line algorithms. ODD sends the acknowledgements after
the odd numbered packets and EV sends the acknowledgements after the even numbered
packets.

Then the costs achieved by these algorithms are

EV(I2n) = n +

n−1∑

i=0
(t2i+1 − t2i) ,

and
ODD = n + 1 +

n∑

i=1
(t2i − t2i−1) .

Therefore EV(I2n) + ODD(I2n) = ONL(I2n) + 1. On the other hand none of the
costs achieved by ODD and EV is greater than the optimal offline cost thus OPT(I2n) ≤
min{EV(I2n),ODD(I2n)}, which yields that ONL(I2n)/OPT(I2n) ≥ 2 − 1/OPT(I2n). By this
inequality it follows that the competitive ratio of ONL is not smaller than 2, because using
a sufficiently long sequence of packets the value OPT(I2n) can be arbitrarily large.

9.3.2. The file caching problem
The �le caching problem is a generalization of the caching problem presented in the me-
mory management chapter. The world-wide-web browsers are using caches to store some
�les. This makes it possible to use the stored �les if a user wants to see some web-page
many times during a short time interval. If the cache becomes full then some �les must be
eliminated to make place for the new �le. The �le caching problem models this scenario,
the goal is to �nd good strategies for determining which �les should be eliminated. The
difference to the standard paging problem is that the �les have size and retrieval cost (the
problem is reduced to the paging if each size and each retrieval cost are 1). So the following
mathematical model describes the problem.

There is a given cache of size k, the input is a sequence of pages. Each page p has a
size denoted by s(p) and a retrieval cost denoted by c(p). The pages arrive from a list one
by one and after the arrival of a page the algorithm has to place it into the cache. If the page
is not contained in the cache and there is not enough place to put it into the cache then the
algorithm has to delete some pages from the cache to make enough place for the requested

9.3. Models related to computer networks 63

page. If the required page is in the cache then the cost of serving the request is 0 otherwise
the cost is c(p). The objective is to minimize the total cost. The problem is on-line which
means that for the decisions (which pages should be deleted from the cache) only the earlier
pages and decisions can be used, the algorithm has no information about the further pages.
We assume that the size of the cache and also the sizes of the pages are positive integers.

For the solution of the problem and for its particular cases many algorithms were de-
veloped. Here we present algorithm L which algorithm was developed by Young.

The algorithm maintains a credit value 0 ≤ cr(f) ≤ c(f) for each page f which is
contained in the actual cache. In the following part of the section the set of the pages in the
actual cache of L is denoted by LA. If L has to retrieve a page g then the
following steps are performed.

L(LA, g)
1 if g is not contained in LA
2 then while there is not enough place for g
3 ∆← min f∈LA cr(f)/s(f)
4 for each f ∈ LA let cr(f)← cr(f) − ∆ · s(f)
5 evict some pages with cr(f) = 0
6 place g into the cache LA and let cr(g)← c(g)
7 else reset cr(g) to any value between cr(g) and c(g)

9.5. Example. Suppose that k = 10 and LA contains the following three pages: g1 with s(g1) =

2, cr(g1) = 1, g2 with s(g2) = 4, cr(g2) = 3 and g3 with s(g3) = 3, cr(g3) = 3. Suppose that the next
requested page is g4, with the parameters s(g4) = 4, c(g4) = 4. Then there is not enough place for it
in the cache, so some pages must be evicted. L determines the value ∆ = 1/2 and changes
the credits as follows: cr(g1) = 0, cr(g2) = 1, cr(g3) = 3/2, thus g1 is evicted from the cache LA. Still
there is not enough place for g4 in the cache. The new ∆ value is ∆ = 1/4 and the new credits are:
cr(g2) = 0, cr(g3) = 3/4, thus g2 is evicted from the cache. Then there is enough place for g4, thus it
is placed into the cache LA with the credit value cr(g4) = 4.

L is weakly k-competitive, but a stronger statement is also true. For the web
caching problem an on-line algorithm ALG is called (C, k, h)-competitive, if there exists
such an absolute constant B, that ALGk(I) ≤ C · OPTh(I) + B is valid for each input, where
ALGk(I) is the cost of ALG using a cache of size k and OPTh(I) is the optimal offline cost
using a cache of size h. The following statement is true for algorithm L.

Theorem 9.7 If h ≤ k, then algorithm L is (k/(k − h + 1), k, h)-competitive.

Proof. Consider an arbitrary input sequence of pages, denote the input by I. We use the
potential function technique. During the analysis of the procedure we suppose that an offline
optimal algorithm with cache size h and L with cache size k are running parallel on
the input. We also suppose that each page is placed �rst by the offline algorithm into the
offline cache and then it is placed by the on-line algorithm into LA. We denote the set of the
pages contained in the actual cache of the optimal offline algorithm by OPT . Consider the
following potential function

64 9. Online Scheduling

Φ = (h − 1)
∑

f∈LA
cr(f) + k

∑

f∈OPT
(c(f) − cr(f)) .

Investigate the changes of the potential function during the retrievals of a page g.
• OPT places g into its cache.

Then OPT has cost c(g). In the potential function only the second part may change. On
the other hand cr(g) ≥ 0, thus the increase of the potential function is at most k · c(g).

• L decreases the credit value for each f ∈ LA.
In this case for each f ∈ LA the decrease of cr(f) is ∆ · s(f), thus the decrease of Φ is

∆((h − 1)s(LA) − ks(OPT ∩ LA)) ,

where s(LA) and s(OPT ∩ LA) denote the total size of the pages contained in sets LA
and OPT ∩ LA respectively. At the time when this step is performed OPT have already
placed the page g into its cache OPT , but the page is not contained in the cache LA.
Therefore s(OPT∩LA) ≤ h−s(g). On the other hand this step is performed if there is not
enough place for the page in LA thus s(LA) > k− s(g), which yields s(LA) ≥ k− s(g)+1
because the sizes are positive integers. Therefore we obtain that the decrease of Φ is at
least

∆
((h − 1)(k − s(g) + 1) − k(h − s(g))) .

Since s(g) ≥ 1 and k ≥ h, this decrease is at least ∆((h − 1)(k − 1 + 1) − k(h − 1)) = 0.
• L evicts a page f from cache LA.

Since L evicts only pages having credit 0, thus during this step Φ remains un-
changed.

• L places page g into the cache LA and sets the value cr(g) = c(g).
Then the cost of L is c(g). On the other hand g was not contained in the cache
LA before the performance of this step, thus cr(g) = 0 was valid. Furthermore �rst OPT
places the page into its cache thus g ∈ OPT is also valid. Therefore the decrease of Φ

is −(h − 1)c(g) + kc(g) = (k − h + 1)c(g).
• L resets for a page g ∈ HA the credit to a value between cr(g) and c(g).

In this case g ∈ OPT is valid, since OPT places �rst the page g into its cache. The value
cr(g) is not decreased and k > h − 1, thus Φ can not increase during this step.

We have investigated the possible steps of the algorithms and we proved the following
properties of the potential function.
• If OPT places a page into its cache, then the increase of the potential function is at most

k times more than the cost of OPT.
• If L places a page into its cache, then the decrease of Φ is (k−h+1) times more

than the cost of L.
• During the other steps Φ does not increase.

9.3. Models related to computer networks 65

By the above properties we obtain that Φ f −Φ0 ≤ k ·OPTh(I)−(k−h+1) ·Lk(I),
where Φ0 and Φ f are the starting and �nal values of the potential function. The potential
function is nonnegative, thus we obtain that (k − h + 1) · Lk(I) ≤ k · OPTh(I) + Φ0,
which proves that L is (k/(k − h + 1), k, h)-competitive.

9.3.3. On-line routing
In computer networks the congestion of the communication channels decreases the speed
of the communication and may cause loss of information. Thus congestion control is one of
the most important problems in the area of computer networks. A related important problem
is the routing of the communication where we have to determine the path in the network for
the messages. Since we have no information about the further traffic of the network thus
routing is an on-line problem. Here we present two on-line optimization models for the
routing problem.
The mathematical model

The network is given by a graph, each edge e has a maximal available bandwidth deno-
ted by u(e), the number of edges is denoted by m. The input is a sequence of requests, where
the j-th request is given by a vector (s j, t j, r j, d j, b j), and to satisfy the request bandwidth r j
must be reserved on a path from s j to t j for time duration d j, the bene�t of serving a request
is b j. In the followings we assume the assumption d j = ∞, and we omit the value of d j
from the requests. The problem is on-line which means that after the arrival of a request the
algorithm has to make the decisions without any information about the further requests. We
consider the following two models.

Load balancing model: In this model all requests must be satis�ed. The objective is to
minimize the maximum of the overload of the edges. The overload is the ratio of the sum
of the bandwidths reserved on the edge and the available bandwidth. Since each request is
served thus the bene�t is not signi�cant in this model.

Throughput model: In this model the decision maker is allowed to reject some requests.
The sum of the bandwidths reserved on an edge can not be more than the available band-
width. The goal is to maximize the sum of the bene�ts of the accepted requests. We inves-
tigate this model in details. It is important to note that this is a maximization problem thus
we use the notion of competitiveness in the form de�ned for maximization problems.

Below we de�ne the exponential algorithm. We need the following notations to de-
�ne and analyze the algorithm. Denote Pi the path which is assigned to the accepted re-
quest i. Let A denote the set of requests accepted by the on-line algorithm. Then le(j) =∑

i∈A,i< j,e∈Pi ri/u(e) is the ratio of the reserved bandwidth and the available bandwidth on e
before the arrival of request j.

The basic idea of the exponential algorithm is the following. The algorithm assigns a
cost which is exponential in le(j) to each e and chooses the path which has the minimal cost.
Below we de�ne and analyze the exponential algorithm for the throughput model. Let µ be
a constant which depends on the parameters of the problem, its value will be given later. Let
ce(j) = µle(j), for each request j and edge e. Then the exponential algorithm performs the
following steps after the arrival of a request (s j, t j, r j, b j).

66 9. Online Scheduling

EXP(s j, t j, r j, b j)
1 let U j be the set of the paths (s j, t j)
2 P j ← argminP∈U j

{∑e∈P
r j

u(e) ce(j)}
3 if C(P j) =

∑
e∈P j

r j
u(e) ce(j) ≤ 2mb j

4 then reserve the bandwidth r j on path P j
5 else reject the request

Remark. If we modify this algorithm to accept each request then we obtain an exponen-
tial algorithm for the load balancing model.

9.6. Example. Consider the network which contains the vertices A, B, C, D and the edges
(A, B), (B,D), (A,C), (C,D), where the available bandwidths of the edges are u(A, B) = 1, u(B,D) =

3/2, u(A,C) = 2, u(C,D) = 3/2. Suppose that µ = 10 and that the reserved bandwidths are: 3/4
on the path (A, B,D), 5/4 on the path (A,C,D), 1/2 on the path (B,D), 1/2 on the path (A,C). The
next request j is to reserve bandwidth 1/8 on some path between A and D. Then the values le(j) are:
l(A,B)(j) = (3/4) : 1 = 3/4, l(B,D)(j) = (3/4 + 1/2) : (3/2) = 5/6, l(A,C)(j) = (5/4 + 1/2) : 2 = 7/8,
l(C,D)(j) = (5/4) : (3/2) = 5/6. There are two paths between A and D, the costs are:

C(A, B,D) = 1/8 · 103/4 + 1/12 · 105/6 = 1.269 ,

C(A,C,D) = 1/16 · 107/8 + 1/12 · 105/6 = 1.035 .
The minimal cost belongs to the path (A,C,D). Therefore, if 2mb j = 8b j ≥ 1, 035, then the

request is accepted and the bandwidth is reserved on the path (A,C,D). Otherwise the request is
rejected.

To analyze the algorithm consider an arbitrary input sequence I. Denote A the set of the
requests accepted by EXP, and denote A∗ the set of the requests which are accepted by OPT
and rejected by EXP. Furthermore denote P j

∗ the path reserved by OPT for each request j
accepted by OPT. De�ne the value le(v) =

∑
i∈A,e∈Pi ri/u(e) for each e, this value gives the

ratio of the reserved bandwidth and the available bandwidth for e at the end of the on-line
algorithm.

Let µ = 4mPB, where B is an upper bound on the bene�ts and for each request and each
edge the inequality

1
P ≤

r(j)
u(e) ≤

1
lg µ

is valid. Then the following statements hold.

Lemma 9.8 The solution given by algorithm EXP is feasible, the sum of the reserved band-
widths is not more than the available bandwidth for each edge.

Proof. We prove the statement by contradiction. Suppose that there is an edge f where the
available bandwidth is violated. Let j be the �rst such accepted request which violates the
available bandwidth on f .

The inequality r j/u(f) ≤ 1/ lg µ is valid for j and f (it is valid for all edges and re-
quests). Furthermore after the acceptance of request j the sum of the bandwidths is greater
than the available bandwidth on edge f , thus we obtain that l f (j) > 1− 1/ lg µ. On the other
hand this yields that the inequality

9.3. Models related to computer networks 67

C(P j) =
∑

e∈P j

r j

u(e)ce(j) ≥ r j

u(f)c f (j) >
r j

u(f)µ
1−1/ lg µ

holds for the value C(P j) used in algorithm EXP. Using the assumption on P we obtain that
r j

u(e) ≥ 1
P , and µ1−1/ lg m = µ/2, thus by the above inequality we obtain that

C(P) > 1
P
µ

2 = 2mB .

On the other hand this inequality is a contradiction since EXP would reject the request.
Therefore we obtained a contradiction thus we proved the statement of the lemma.

Lemma 9.9 For the solution given by OPT the following inequality holds:
∑

j∈A∗
b j ≤ 1

2m
∑

e∈E
ce(v) .

Proof. Since EXP rejected j for each j ∈ A∗, thus b j <
1

2m
∑

e∈P j
∗

r j
u(e) ce(j) for each j ∈ A∗,

because this inequality is valid for all paths between s j and t j. Therefore
∑

j∈A∗
b j <

1
2m

∑

j∈A∗

∑

e∈P j
∗

r j

u(e)ce(j) .

On the other hand ce(j) ≤ ce(v) holds for each e, thus we obtain that
∑

j∈A∗
b j <

1
2m

∑

e∈E
ce(v)

(∑

j∈A∗:e∈P j
∗

r j

u(e)
)
.

The sum of the bandwidths reserved by OPT is at most the available bandwidth u(e) for
each e, thus ∑

j∈A∗:e∈P∗(j)
r j

u(e) ≤ 1.
Consequently

∑

j∈A∗
b j ≤ 1

2m
∑

e∈E
ce(v)

which inequality is the one which we wanted to prove.

Lemma 9.10 For the solution given by algorithm EXP the following inequality holds

1
2m

∑

e∈E
ce(v) ≤ (1 + lg µ)

∑

j∈A
b j .

Proof. To prove the lemma it is enough to show that the inequality ∑
e∈P j (ce(j+1)−ce(j)) ≤

2mb j log2 µ is valid for each request j ∈ A. On the other hand

ce(j + 1) − ce(j) = µle(j)+ r j
u(e) − µle(j) = µle(j)(2log2 µ

r j
u(e) − 1) .

Since 2x − 1 < x, if 0 ≤ x ≤ 1, and by the assumptions 0 ≤ log2 µ
r j

u(e) ≤ 1, thus we
obtain that

ce(j + 1) − ce(j) ≤ µle(j) log2 µ
r j

u(e) .

68 9. Online Scheduling

Summarizing the bounds given above we obtain that
∑

e∈P j

(ce(j + 1) − ce(j)) ≤ log2 µ
∑

e∈P j

µle(j) r j

u(e) = log2 µ ·C(P j) .

Since EXP accepts the requests with the property C(P j) ≤ 2mb j, thus the above inequality
proves the required statement.

By the above lemmas we can prove the following theorem.

Theorem 9.11 Algorithm EXP is 1/O(lg µ)-competitive, if µ = 4mPB, where B is an upper
bound on the bene�ts, and for all edges and requests

1
P ≤

r(j)
u(e) ≤

1
lg µ .

Proof. By lemma 9.8 it follows that the algorithm results in a feasible solution where the
available bandwidths are not violated. Using the notations de�ned before the lemmas we
obtain that the bene�t of algorithm EXP on the input I is EXP(I) =

∑
j∈A b j, and the bene�t

of OPT is at most ∑ j∈A∪A∗ b j. Therefore by lemma 9.9 and lemma 9.10 it follows that

OPT(I) ≤
∑

j∈A∪A∗
b j ≤ (2 + log2 µ)

∑

j∈A
b j ≤ (2 + log2 µ)EXP(I) ,

which inequality proves the theorem.

Exercises
9.3-1 Consider the modi�ed version of the data acknowledgement problem with the ob-
jective function k +

∑k
j=1 µ j, where k is the number of acknowledgements and µ j =

maxt j−1<ai≤t j {t j − ai} is the maximal latency of the j-th acknowledgement. Prove that al-
gorithm A is also 2-competitive in this modi�ed model.
9.3-2 Represent the special case of the web caching problem, where s(g) = c(g) = 1 for
each page g as a special case of the k-server problem. De�ne the metric space which can be
used.
9.3-3 In the web caching problem the cache LA of size 8 contains three pages a, b, c with the
following sizes and credits: s(a) = 3, s(b) = 2, s(c) = 3, cr(a) = 2, cr(b) = 1/2, cr(c) = 2.
We want to retrieve a page d of size 3, and retrieval cost 4. The optimal offline algorithm
OPT with cache of size 6 already placed the page into its cache, its cache contains the pages
d and c. Which pages are evicted by L to place d? What kind of changes the poten-
tial function de�ned in the proof of theorem 9.7 has?
9.3-4 Prove that if in the throughput model no bounds are given for the ratios r(j)/u(e) then
there is not constant-competitive on-line algorithm.

9.4. On-line bin packing models
In this section we consider the on-line bin packing problem and its multidimensional gene-
ralizations. First we present the classical on-line bin packing problem and some fundamental
results of the area. Then we de�ne the multidimensional generalizations and present some
details from the area of on-line strip packing.

9.4. On-line bin packing models 69

9.4.1. On-line bin packing
In the bin packing problem the input is a list of items, where the i-th item is given by its
size ai ∈ (0, 1]. The goal is to pack the items into unit size bins and minimize the number
of the used bins. In a more formal way we can say that we have to divide the items into
groups where each group has the property that the total size of the items is at most 1 and the
goal is to minimize the number of groups. This problem also appears in the area of memory
management.

In this section we investigate the on-line problem which means that the decision maker
has to make decisions about the packing of the i-th item based on the values a1, . . . , ai
without any information about the further items.

NF algorithm, bounded space algorithms
First we consider the model where the number of the open bins is limited. The k-

bounded space model means that if the number of open bins reaches the bound k then the
algorithm can open a new bin only after closing some of the bins, and the closed bins cannot
be used for packing further items. If only one bin can be open then the natural algorithm
packs the item into the open bin if it �ts otherwise it closes the bin, opens a new one and
put the item into it. We call this algorithm NF (Next Fit) algorithm. We do not present the
pseudocode of the algorithm it can be found in this book in the chapter about memory ma-
nagement. The asymptotic competitive ratio of algorithm NF is determined by the following
theorem.

Theorem 9.12 The asymptotic competitive ratio of NF is 2.

Proof. Consider an arbitrary sequence of items, denote it by σ. Denote n the number of bins
used by OPT and denote m the number of bins used by NF. Furthermore let S i, i = 1, . . . ,m
the total size of the items packed into the i-th bin by NF.

Then S i + S i+1 > 1, since in the opposite case the �rst item of the (i + 1)-th bin �ts into
the i-th bin which contradicts to the de�nition of the algorithm. Therefore the total size of
the items is more than bm/2c.

On the other hand the optimal offline algorithm cannot put items with total size more
than 1 into the same bin, thus we obtain that n > bm/2c. This yields that m ≤ 2n − 1, thus

NF(σ)
OPT(σ) ≤

2n − 1
n = 2 − 1/n .

Consequently we proved that the algorithm is asymptotically 2-competitive.
Now we prove that the bound is tight. Consider for each n the following sequence

denoted by σn. The sequence contains 4n − 2 items, the size of the 2i − 1-th item is 1/2,
the size of the 2i-th item is 1/4n, i = 1, . . . , 2n. Then algorithm NF puts the (2i − 1)-th and
the 2i-th items into the i-th bin for each bin, thus NF(σn) = 2n − 1. The optimal offline
algorithm puts pairs of 1/2 size items into the �rst n − 1 bins and it puts one 1/2 size item
and the small items into the n-th bin, thus OPT(σn) = n. Since NF(σn)/OPT(σn) = 2 − 1/n
and this function tends to 2 as n tends to∞, thus we proved that the asymptotic competitive
ratio of the algorithm is at least 2.

If k > 1 then better algorithms than NF are known for the k-bounded space model. The
best known bounded space on-line algorithms belong to the family of harmonic algorithms,
where the basic idea is that the interval (0, 1] is divided into subintervals and each item has

70 9. Online Scheduling

a type which is the subinterval of its size. The items of the different types are packed into
different bins. The algorithm uses parallel versions of NF to pack the items belonging to the
same type.
Algorithm FF and the weight function technique

In this part we present a method which is often used in the analysis of the bin packing
algorithms. We show the method by analyzing algorithm FF (First Fit).

Algorithm FF can be used if the number of open bins is not bounded. The algorithm
puts the item into the earliest opened bin where it �ts. If the item does not �t into any of
the bins then a new bin is opened and the algorithm puts the item into it. The pseudocode
of the algorithm is also presented in the chapter of memory management. The asymptotic
competitive ratio of the algorithm is bounded above by the following theorem.

Theorem 9.13 FF is asymptotically 1.7-competitive.

Proof. In the proof we use the weight function technique where the idea is that a weight
is assigned to each item which measures in some way that how difficult can be to pack the
item. Then the weight function and the total size of the items are used to bound the offline
and on-line objective function values. De�ne the following weight function:

w(x) =



6x/5, ha 0 ≤ x ≤ 1/6
9x/5 − 1/10, ha 1/6 ≤ x ≤ 1/3
6x/5 + 1/10, ha 1/3 ≤ x ≤ 1/2
6x/5 + 2/5, ha 1/2 < x .

Let w(H) =
∑

i∈H w(ai) for any set H of items. Then the following statements are valid
for the weight function. Both lemmas can be proven by case disjunction based on the sizes
of the possible items. The proofs are long and contain many technical details, therefore here
we omit them.

Lemma 9.14 If ∑i∈H ai ≤ 1 is valid for a set H of items, then w(H) ≤ 17/10 also holds.

Lemma 9.15 For an arbitrary list L of items w(L) ≥ FF(L) − 2.

Using these lemmas we can prove easily that the algorithm is asymptotically 1.7-
competitive. Consider an arbitrary list L of items. The optimal offline algorithm can pack
the items of the list into OPT(L) bins. The algorithm packs items with total size at most 1
into each bin, thus by Lemma 9.14 it follows that w(L) ≤ 1.7OPT(L). On the other hand by
Lemma 9.15 we obtain that FF(L) − 2 ≤ w(L) which yields that FF(L) ≤ 1.7OPT(L) + 2,
and that inequality proves that the algorithm is asymptotically 1.7-competitive.

It is important to note that the above bound is tight, it is also true that the asymptotic
competitive ratio of FF is 1.7.

Many algorithms were developed with smaller asymptotic competitive ratio than 17/10,
the best known algorithm is asymptotically 1.5888-competitive.
Lower bounds

In this part we consider the techniques for proving lower bounds on the possible asymp-
totic competitive ratio. First we present a simple lower bound and then we show how the
idea of the proof can be extended into a general method.

9.4. On-line bin packing models 71

Theorem 9.16 No on-line algorithm for the bin packing problem can have smaller asymp-
totic competitive ratio than 4/3.

Proof. Let A be an arbitrary on-line algorithm. Consider the following sequence of items.
Let ε < 1/12 and L1 be a list of n items of size 1/3 + ε, and L2 be a list of n items of
size 1/2 + ε. The input is started by L1. Then A packs two items or one item into the bins.
Denote by k the number of bins containing two items. Then the cost of the algorithm is
A(L1) = k + n − 2k = n − k. On the other hand the optimal offline algorithm can pack pairs
of items into the bins thus OPT (L1) = n/2.

Now suppose that the input is the combined list L1L2. The algorithm is an on-line
algorithm it does not know at the beginning that it is the input L1 or L1L2, thus it also
uses k bins for packing two items from the part L1. Therefore among the items of size
1/2 + ε only n− 2k can be paired with earlier items the other ones need their own bin. Thus
A(L1L2) ≥ n− k + (n− (n− 2k)) = n + k. On the other hand the optimal offline algorithm can
pack one smaller (size 1/3 + ε) item and one larger (size 1/2 + ε) item into each bin, thus
OPT (L1L2) = n.

So we obtained that there is a list for algorithm A where

A(L)/OPT (L) ≥ max
{

n − k
n/2 ,

n + k
n

}
≥ 4/3 .

Moreover in the constructed lists OPT (L) is at least n/2 which can be arbitrarily large.
This yields that the above inequality proves that the asymptotic competitive ratio of A is at
least 4/3, and this is what we wanted to prove.

The fundamental idea of the above proof is that a long sequence is considered (in this
proof L1L2) and depending on the behaviour of the algorithm such pre�x of the sequence is
selected as input where the ratio of the costs is maximal. It is a natural extension to consider
more difficult sequences. Many lower bounds were proven based on different sequences. On
the other hand the computations which are necessary to analyze the sequence became more
and more difficult. Below we show how the analysis of such sequences can be interpreted as
mixed integer programming problem, which makes it possible to use computers to develop
lower bounds.

Consider the following sequence of items. Let L = L1L2 . . . Lk, where Li contains
ni = αin identical items of size ai. If algorithm A is asymptotically C-competitive then
the inequality

C ≥ lim sup
n→∞

A(L1 . . . L j)
OPT(L1 . . . L j)

is valid for each j. It is enough to consider such algorithm for which the technique can
achieve the minimal lower bound, thus or goal is to determine the value

R = minAmax j=1,...,k lim sup
n→∞

A(L1 . . . L j)
OPT(L1 . . . L j)

,

which value gives a lower bound on the possible asymptotic competitive ratio. We can deter-
mine this value as an optimal solution of a mixed integer programming problem. To de�ne
this programming problem we need the following de�nitions.

The contain of a bin can be described by the packing pattern of the bin, which gives

72 9. Online Scheduling

how many elements are contained in the bin from the subsequences. Formally a packing
pattern is a k-dimensional vector (p1, . . . , pk), where the coordinate p j is the number of
elements contained in the bin from subsequence L j. For the packing patterns the constraint∑k

j=1 a j p j ≤ 1 must hold. (This constraint ensures that the items described by the packing
pattern �t into the bin.)

Classify the set T of the possible packing patterns. For each j let T j be the set of the
patterns for which the �rst positive coordinate is the j-th. (The pattern p belongs to class T j
if pi = 0 for i < j and p j > 0.)

Consider the packing produced by A. Each bin is packed by some packing pattern the-
refore the packing can be described by the packing patterns. For each p ∈ T denote by
n(p) the number of bins which are packed by the pattern p. The packing produced by the
algorithm is given by the variables n(p).

Observe that the bins which are packed by a pattern from class T j receive their �rst
element from the subsequence L j. Therefore we obtain that the number of bins opened by A
to pack the elements of subsequence L1 . . . L j can be given by the variables n(p) as follows:

A(L1 . . . L j) =

j∑

i=1

∑

p∈Ti

n(p).

Consequently for a given n the required value R can be determined by the solution of
the following mixed integer programming problem.

Min R
∑

p∈T p jn(p) = n j, 1 ≤ j ≤ k
∑ j

i=1
∑

p∈Ti np ≤ R · OPT (L1 . . . L j), 1 ≤ j ≤ k
n(p) ∈ {0, 1, . . . }, p ∈ T

The �rst k constraints describe that the algorithm has to pack all items. The second k
constraints describe that R is at least as large as the ratio of the on-line and offline costs for
the subsequences considered.

By the list L1L2 . . . Lk the set T of the possible packing patterns and also the optimal
solutions OPT (L1 . . . L j) can be determined.

In this programming problem the number and the value of the variables can be large,
thus instead of the problem its linear programming relaxation is considered. Moreover we
are interested in the solution under the assumption that n tends to ∞ and it can be proven
that the integer programming and the linear programming relaxation give the same bound
in this case.

The best currently known bound was proven by this method and it states that no on-line
algorithm can have smaller asymptotic competitive ratio than 1.5401.

9.4.2. Multidimensional models
The bin packing problem has three different multidimensional generalizations the vector
packing, the box packing and the strip packing models. We only consider in details the strip
packing problem. For the other generalizations we just give the model. In the vector packing
problem the input is a list of d-dimensional vectors, and the algorithm has to pack these

9.4. On-line bin packing models 73

vectors into the minimal number of bins. A packing is legal for a bin if for each coordinate
the sum of the values of the elements packed into the bin is at most 1. In the on-line version
the vectors are coming one by one and the algorithm has to assign the vectors to the bins
without any information about the further vectors. In the box packing problem the input is
a list of d-dimensional boxes and the goal is to pack the items into the minimal number of
d-dimensional unit cube without overlapping. In the on-line version the items are coming
one by one and the algorithm has to pack them into the cubes without any information about
the further items.

On-line strip packing
In the strip packing problem there is a set of two dimensional rectangles, de�ned by

their widths and heights, and the task is to pack them without rotation into a vertical strip
of width w by minimizing the total height of the strip. We assume that the width of the
rectangles is at most w and the height of the rectangles is at most 1. This problem appears
in many situations. Usually, scheduling of tasks with shared resource involves two dimen-
sions, the resource and the time. We can consider the widths as the resource and the heights
as the time. Our goal is to minimize the total amount of time used. Some applications can
be found in computer scheduling problems. We consider the on-line version where the rec-
tangles arrive from a list one by one and we have to pack the rectangle into the vertical strip
without any information about the further items. Most of the algorithms developed for the
strip packing problem belong to the class of shelf algorithms. We consider this family of
algorithms below.

S algorithms
One basic way of packing into the strip is to de�ne shelves and pack the rectangles into

the shelves. By shelf we mean a rectangular part of the strip. Shelf packing algorithms place
each rectangle into one of the shelves. If the algorithm decides which shelf will contain the
rectangle, then the rectangle is placed into the shelf as much to the left as it is possible
without overlapping the other rectangles placed earlier into the shelf considered. Therefore,
after the arrival of a rectangle, the algorithm has to make two decisions. The �rst decision is
whether to create a new shelf or not. If the algorithm creates a new shelf it also has to decide
the height of the new shelf. The created shelves always start from the top of the previous
shelf. The �rst shelf is placed to the bottom of the strip. The algorithm also has to choose the
shelf to which it puts the rectangle. In what follows, we will say that it is possible to pack
a rectangle into a shelf, if there is enough room for the rectangle in the shelf. It is obvious
that if a rectangle is higher than a shelf we cannot place it into the shelf.

We consider only one algorithm in details. This algorithm was developed and analyzed
by Baker and Schwarz in 1983 and it is called NFSr algorithm. The algorithm depends on
a parameter r < 1. For each j there is at most one active shelf with height r j. We give the
behaviour of the algorithm below.

After the arrival of a rectangle pi = (wi, hi) choose a value for k which satis�es rk+1 <
hi ≤ rk. If there is an active shelf with height rk and it is possible to pack the rectangle into
it, then pack it there. If there is no active shelf with height rk, or it is not possible to pack the
rectangle into the active shelf with height rk, then create a new shelf with height rk, put the
rectangle into it, and let this new shelf be the active shelf with height rk (if we had earlier
an active shelf with height rk then we close it).

74 9. Online Scheduling

9.7. Example. Let r = 1/2. Suppose that the size of the �rst item is (w/2, 3/4). Then it is assigned to
a shelf of height 1. We de�ne a shelf of height 1 at the bottom of the strip, this shelf will be the active
shelf with height 1 and we place the item into the left corner of this shelf. Suppose that the size of the
next item is (3w/4, 1/4). Then it is placed into a shelf of height 1/4. There is no active shelf with this
height so we de�ne a new shelf of height 1/4 on the top of the previous shelf. This will be the active
shelf of height 1/4 and the item is placed into its left corner. Suppose that the size of the next item is
(3w/4, 5/8). Then this item is placed into a shelf of height 1. It is not possible to pack it into the active
shelf thus we close the active shelf and we de�ne a new shelf of height 1 on the top of the previous
shelf. This will be the active shelf of height 1 and the item is placed into its left corner. Suppose that
the size of the next item is (w/8, 3/16). Then this item is placed into a shelf of height 1/4. We can
pack it into the active shelf of height 1/4 thus we pack it into that shelf as left as it is possible.

For the competitive ratio of NFSr the following statements are valid.

Theorem 9.17 Algorithm NFSr is (2
r + 1

r(1−r)
)-competitive. Algorithm NFSr is asymptoti-

cally 2/r-competitive.

Proof. First we prove that the algorithm is (2
r + 1

r(1−r)
)-competitive. Consider an arbitrary list

of rectangles denote it by L. Let HA denote the sum of the heights of the shelves which are
active at the end of the packing, and let HC be the sum of the heights of the other shelves. Let
h be the height of the highest active shelf, and let H be the height of the highest rectangle.
Since the algorithm created a shelf with height h, we have H > rh. As there is at most 1
active shelf for each height

HA ≤ h
∞∑

i=0
ri =

h
1 − r ≤

H
r(1 − r) .

Consider the shelves which are not active at the end. Consider the shelves of height hri

for each i, denote the number of the closed shelves by ni. Let S be one of these shelves with
height hri. The next shelf S ′ with height hri contains one rectangle which would not �t into
S . Therefore, the total width of the rectangles is at least w. Furthermore the height of these
rectangles is at least hri+1, thus the total area of the rectangles packed into S and S ′ is at
least hwri+1. If we pair the shelves of height hrk for each i in this way, using the active shelf
if the number of the shelves of the considered height is odd, we obtain that the total area of
the rectangles assigned to shelves of height hri is at least wnihri+1/2. Thus the total area of
the rectangles is at least ∑∞

i=0 wnihri+1/2, and this yields that OPT(L) ≥ ∑∞
i=0 nihri+1/2. On

the other hand the total height of the closed shelves is HZ =
∑∞

i=0 nihri, and we obtain that
HZ ≤ 2OPT(L)/r.

Since OPT(L) ≥ H is valid we proved the required inequality

NFSr(L) ≤ OPT(L)(2/r + 1/r(1 − r) .

Since the heights of the rectangles are bounded by 1, thus H and HA are bounded by a
constant so we obtain immediately the result about the asymptotic competitive ratio.

Besides this algorithm some other shelf algorithms were investigated for the solution of
the problem. We can interpret the basic idea of NFSr as follows. We de�ne classes of items
belonging to types of shelves and the rectangles assigned to the classes are packed by the

9.5. On-line scheduling 75

classical bin packing algorithm NF. It is a straightforward idea to use other bin packing al-
gorithms. The best known shelf algorithm was developed by Csirik and Woeginger in 1997,
that algorithm uses the harmonic bin packing algorithm to pack the rectangles assigned to
the classes.

Exercises
9.4-1 Suppose that the size of the items is bounded above by 1/3. Prove that under this
assumption the asymptotic competitive ratio of NF is 3/2.
9.4-2 Suppose that the size of the items is bounded above by 1/3. Prove Lemma 9.15 under
this assumption.
9.4-3 Suppose that the sequence of items is given by a list L1L2L3, where L1 contains n
items of size 1/2, L2 contains n items of size 1/3, L3 contains n items of size 1/4. Which
packing patterns can be used? Which patterns belong to the class T2?
9.4-4 Consider the version of the strip packing problem where one can lengthen the rectang-
les keeping the area �xed. Consider the extension of NFSr which lengthen the rectangles
before the packing to have the same height as the shelf which is chosen to pack it. Prove
that this algorithm is 2 + 1

r(1−r) -competitive.

9.5. On-line scheduling
The area of scheduling theory has a huge literature. The �rst result in on-line scheduling
belongs to Graham, who analyzed in 1966 the L scheduling algorithm. We can say that
despite the fact that Graham did not use the terminology which was developed in the area
of the on-line algorithms, and he did not consider the algorithm as an on-line algorithm, he
analyzed it as an approximation algorithm.

From the area of scheduling we only recall the de�nitions which are used in this chapter.
In a scheduling problem we have to �nd an optimal schedule of jobs. In the most fun-

damental model each job has a known processing time and to schedule the job we have to
assign it to a machine and we have to give its starting time and a completion time, where
the difference between the completion time and the starting time is the processing time. No
machine may simultaneously run two jobs.

Concerning the machine environment three different models are considered. If the pro-
cessing time of a job is the same for each machine then we call the machines identical
machines. If each machine has a speed si, the jobs has a processing weight p j and the pro-
cessing time of job j on the i-th machine is p j/si, then we call the machines related machi-
nes. If the processing time of job j is given by an arbitrary positive P j = (p j(1), . . . , p j(m))
vector, where the processing time of the job on the i-th machine is p j(i), then we call the
machines unrelated machines.

Many objective functions are considered for scheduling problems, here we only consi-
der such models where the goal is the minimization of the makespan (the maximal comple-
tion time).

In the next subsection we de�ne the two most fundamental on-line scheduling models,
and in the following two subsections we consider these models in details.

76 9. Online Scheduling

9.5.1. On-line scheduling models
Probably the following models are the most fundamental examples of online machine sche-
duling problems.

LIST model
In this model we have a �xed number of machines denoted by M1, M2, . . . , Mm and the

jobs arrive from a list. This means that the jobs and their processing times are revealed to the
online algorithm one by one. When a job is revealed the online algorithm must irrevocably
assign the job to a machine with a starting time and a completion time.

By the load of a machine, we mean the sum of the processing times of all jobs assigned
to the machine. Since the objective function is to minimize the maximal completion time, it
is enough to consider the schedules where the jobs are scheduled on the machines without
idle time. For these schedules the maximal completion time is the load for each machine.
Therefore this scheduling problem is reduced to a load balancing problem, the algorithm has
to assign the jobs to the machines minimizing the maximum load, which is the makespan in
this case.

9.8. Example. Consider the LIST model and two identical machines. Consider the following sequence
of jobs where the jobs are given by their processing time: I = {(j1 = 4, j2 = 3, j3 = 2, j4 = 5)}. Then
the on-line algorithm �rst receives job j1 from the list, the algorithm has to assign this job to one of
the machines. Suppose that the job is assigned to machine M1. Next the on-line algorithm receives
job j2 from the list, the algorithm has to assign this job to one of the machines. Suppose that the job
is assigned to machine M2. Next the on-line algorithm receives job j3 from the list, the algorithm has
to assign this job to one of the machines. Suppose that the job is assigned to machine M2. Finally
the on-line algorithm receives job j4 from the list, the algorithm has to assign this job to one of the
machines, suppose that the job is assigned to machine M1. Then the loads on the machines are 4 + 5
and 3 + 2, and we can give a schedule where the maximal completion times on the machines are the
loads: we can schedule the jobs on the �rst machine in the time intervals (0, 4) and (4, 9), and we can
schedule the jobs on the second machine in the time intervals (0, 3) and (3, 5).

TIME model
In this model again there are a �xed number of machines. Each job has a processing

time and a release time. A job is revealed to the online algorithm at its release time. For
each job the online algorithm must choose which machine it will run on and assign a start
time. No machine may simultaneously run two jobs. Note that the algorithm is not required
to immediately assign a job at its release time. However, if the online algorithm assigns a
job at time t then it cannot use information about jobs released after time t and it cannot
start the job before time t. The objective is to minimize the makespan.

9.9. Example. Consider the TIME model with two related machines. Let the �rst machine be M1
with speed 1, and the second machine be M2 with speed 2. Consider the following input I = { j1 =

(1, 0), j2 = (1, 1), j3 = (1, 1), j4 = (1, 1)}, where the jobs are given by the (processing time, release
time) pairs. Thus a job arrives at time 0 with processing time 1, the algorithm can start to process it
on one of the machines or it can wait for jobs with larger processing time. Suppose that the algorithm
waits till time 1/2 and then it starts to process the job on machine M1. The completion time of the
job is 3/2. At time 1 three further jobs arrive, at that time only M2 can be used. Suppose that the

9.5. On-line scheduling 77

algorithm starts to process job j2 on this machine. At time 3/2 both jobs are completed, suppose
that the remaining jobs are started on machines M1 and M2 the completion times are 5/2 and 2, thus
the makespan achieved by the algorithm is 5/2. Observe that an algorithm which starts the �rst job
immediately at time 0 can make a better schedule with makespan 2. But it is important to note that in
some cases it can be useful to wait for larger jobs before starting a job.

9.5.2. LIST model
The �rst algorithm in this model was developed by Graham. Algorithm LIST assigns each
job to the machine where the actual load is minimal, if there are more machines with this
property it uses the machine with the smallest index. This means that the algorithm tries to
balance the loads on the machines. The competitive ratio of this algorithm is determined by
the following theorem.

Theorem 9.18 The competitive ratio of algorithm LIST is 2−1/m in the identical machines
case.

Proof. First we prove that the algorithm is 2− 1/m-competitive. Consider an arbitrary input
sequence denote it by σ = { j1, . . . , jn}, denote the processing times by p1, . . . , pn. Consider
the schedule produced by LIST. Let jl be a job with maximal completion time. Investigate
the starting time S l of this job. Since LIST chooses the machine with minimal load thus the
load was at least S l on each of the machines when jl was scheduled. Therefore we obtain
that

S l ≤ 1
m

n∑
j=1
j,l

p j =
1
m (

n∑

j=1
p j − pl) =

1
m (

n∑

j=1
p j) − 1

m pl .

This yields that

LIS T (σ) = S l + pl ≤ 1
m (

n∑

j=1
p j) +

m − 1
m pl .

On the other hand OPT also processes all of the jobs thus we obtain that OPT (σ) ≥
1
m (∑n

j=1 p j). Furthermore pl is scheduled on one of the machines of OPT thus OPT (σ) ≥ pl.
By these bounds we obtain that

LIS T (σ) ≤ (1 +
m − 1

m)OPT (σ),

which inequality proves that LIST is 2 − 1/m-competitive.
Now we prove that the bound is tight. Consider the following input. It contains m(m−1)

jobs with processing time 1/m and one job with processing time 1. Then LIST assigns m−1
small jobs to each machine and the last large job is assigned to M1. Therefore its makespan
is 1 + (m−1)/m. On the other hand the optimal algorithm schedules the large job on M1 and
m small jobs on the other machines, and its makespan is 1. Thus the ratio of the makespans
is 2 − 1/m which shows that the competitive ratio of LIST is at least 2 − 1/m.

It is hard to imagine any other algorithm for the on-line case, but many other algorithms
were developed. The competitive ratios of the better algorithms tend to smaller number than

78 9. Online Scheduling

2 as the number of machines tends to∞. Most of these algorithms are based on the following
idea. The jobs are scheduled keeping the load uniformly on most of the machines but in
contrast with LIST the loads are kept low on some of the machines, keeping the possibility
to use these machines for scheduling large jobs which may arrive later.

Below we consider the more general cases where the machines are not identical. LIST
may perform very badly, the processing time of a job can be very large on the machine
where the actual load is minimal. But we can easily change the greedy idea of LIST as
follows. The extended algorithm is called GREEDY and it assigns the job to the machine
where the load with the processing time of the job is minimal. If there are more machines
which has minimal value then the algorithm chooses among them the machine where the
processing time of the job is minimal, if there are more machines with this property the
algorithm chooses among them the one with the smallest index.

9.10. Example. Consider the case of related machines where there are 3 machines M1, M2,M3 and the
speeds are s1 = s2 = 1, s2 = 3. Suppose that the input is I = { j1 = 2, j2 = 1, j3 = 1, j4 = 3, j5 = 2)},
where the jobs are de�ned by their processing weight. Then the load after the �rst job is 2/3 on
machine M3 and 2 on the other machines, thus j1 is assigned to M3. The load after job j2 is 1 on all
of the machines, its processing time is minimal on machine M3, thus GREEDY assigns it to M3. The
load after job j3 is 1 on M1 and M2, and 4/3 on M3, thus the job is assigned to M1. The load after job
j4 is 4 on M1, 3 on M2, and 2 on M3, thus the job is assigned to M3. Finally the load after job j5 is 3
on M1, 2 on and M2, and 8/3 on M3, thus the job is assigned to M2.

9.11. Example. Consider the unrelated machines case with two machines and the following input
I = { j1 = (1, 2), j2 = (1, 2), j3 = (1, 3), j4 = (1, 3)}, where the jobs are de�ned by the vectors of
processing times. The load after job j1 is 1 on M1 and 2 on M2, thus the job is assigned to M1. The
load after job j2 is 2 on M1 and also on M2, thus the job is assigned to M1 because it has smaller
processing time there. The load after job j3 is 3 on M1 and M2, thus the job is assigned to M1 because
it has smaller processing time there. Finally the load after job j4 is 4 on M1 and 3 on M2, thus the job
is assigned to M2.

The competitive ratio of the algorithm is determined by the following theorems.
Theorem 9.19 The competitive ratio of algorithm GREEDY is m in the unrelated machi-
nes case.
Proof. First we prove that the competitive ratio of the algorithm is at least m. Consider the
following input sequence. Let ε > 0 be a small number. The sequence contains m jobs. The
processing time of job j1 is 1 on machine M1, 1 + ε on machine Mm, and ∞ on the other
machines, (p1(1) = 1, p1(i) = ∞, i = 2, . . . ,m − 1, p1(m) = 1 + ε). For job ji, i = 2, . . . ,m
the processing time is i on machine Mi, 1 +ε on machine Mi−1 and∞ on the other machines
(p j(j − 1) = 1 + ε, p j(j) = j, p j(i) = ∞, if i , j − 1 and i , j).

Then job ji is scheduled on Mi by GREEDY and the makespan is m. On the other hand
the optimal offline algorithm schedules j1 on Mm and ji is scheduled on Mi−1 for the other
jobs thus the optimal makespan is 1 + ε. The ratio of the makespans is m/(1 + ε). This ratio
tends to m, as ε tends to 0, and this proves that the competitive ratio of the algorithm is at
least m.

Now we prove that the algorithm is m-competitive. Consider an arbitrary input se-
quence, denote the makespan in the optimal offline schedule by L∗ and let L(k) denote the

9.5. On-line scheduling 79

maximal load in the schedule produced by GREEDY after scheduling the �rst k jobs. Since
the processing time of the i-th job is at least min j pi(j), and the load is at most L∗ on the
machines in the offline optimal schedule, thus we obtain that mL∗ ≥ ∑n

i=1 min j pi(j).
We prove by induction that the inequality L(k) ≤ ∑k

i=1 min j pi(j) is valid. Since the �rst
job is assigned to the machine where its processing time is minimal, thus the statement is
obviously true for k = 1. Let 1 ≤ k < n be arbitrary and suppose that the statement is true
for k. Consider the k + 1-th job. Let Ml be the machine where the processing time of this job
is minimal. If we assign the job to Ml then we obtain by the induction hypothesis that the
load on this machines is at most L(k) + pk+1(l) ≤ ∑k+1

i=1 min j pi(j).
On the other hand the maximal load in the schedule produced by GREEDY can not be

more than the maximal load in the case when the job is assigned to Ml, thus L(k + 1) ≤∑k+1
i=1 min j pi(j), which means that we proved the inequality for k + 1.

Therefore we obtained that mL∗ ≥ ∑n
i=1 min j pi(j) ≥ L(n), which yields that the algo-

rithm is m-competitive.
To investigate the related machines case consider an arbitrary input. Let L and L∗ denote

the makespans achieved by GREEDY and OPT respectively. The analysis of the algorithm
is based on the following lemmas which give bounds on the loads of the machines.

Lemma 9.20 The load on the fastest machine is at least L − L∗.

Proof. Consider the schedule produced by GREEDY. Consider a job J which causes the
makespan (its completion time is maximal). If this job is scheduled on the fastest machine
then the lemma immediately follows, the load on the fastest machine is L. Suppose that J is
not scheduled on the fastest machine. The optimal maximal load is L∗, thus the processing
time of J on the fastest machine is at most L∗. On the other hand the completion time of J is
L, thus at the time when the job was scheduled the load was at least (L − L∗) on the fastest
machine, otherwise GREEDY would assign J to the fastest machine.

Lemma 9.21 If the loads are at least l on all machines having speed at least v then the
loads are at least l − 4L∗ on all machines having speed at least v/2.

Proof. If l < 4L∗, then the statement is obviously valid. Suppose that l ≥ 4L∗. Consider the
jobs which are scheduled by GREEDY on the machines having speed at least v in the time
interval [l − 2L∗, l]. The total processing weight of these jobs is at least 2L∗ times the total
speed of the machines having speed at least v. This yields that there exists such job among
them which is assigned by OPT to a machine having speed smaller than v (otherwise the
optimal offline makespan would be larger than L∗). Let J be such a job.

Since OPT schedules J on a machine having speed smaller than v, thus the processing
weight of J is at most vL∗. This yields that the processing time of J is at most 2L∗ on the
machines having speed at least v/2. On the other hand GREEDY produces a schedule where
the completion time of J is at least l − 2L∗, thus at the time when the job was scheduled the
loads were at least l − 4L∗ on the machines having speed at most v/2 (otherwise GREEDY
would assign J to one of these machines).

Now we can prove the following statement.

Theorem 9.22 The competitive ratio of algorithm GREEDY is Θ(log m) in the related
machines case.

80 9. Online Scheduling

Proof. First we prove that GREEDY is O(lg m)-competitive. Consider an arbitrary input.
Let L and L∗ denote the makespans achieved by GREEDY and OPT respectively.

Let vmax be the speed of the fastest machine. Then by Lemma 9.20 the load on this
machine is at least L − L∗. Then using Lemma 9.21 we obtain that the loads are at least
L − L∗ − 4iL∗ on the machines having speed at least vmax2−i. Therefore the loads are at least
L − (1 + 4dlg me)L∗ on the machines having speed at least vmax/m. Denote I the set of the
machines having speed at most vmax/m.

Denote W the sum of the processing weights of the jobs. OPT can �nd a schedule of
the jobs which has maximal load L∗, and there are at most m machines having smaller speed
than vmax/m thus

W ≤ L∗
m∑

i=1
vi ≤ mL∗vmax/m + L∗

∑

i<I
vi ≤ 2L∗

∑

i<I
vi .

On the other hand GREEDY schedules the same jobs thus the load on some machine
not included in I is smaller than 2L∗ in the schedule produced by GREEDY (otherwise we
would obtain that the sum of the processing weights is greater than W).

Therefore we obtain that

L − (1 + 4dlg me)L∗ ≤ 2L∗ ,

which yields that L ≤ 3 + 4dlg me)L∗, which proves that GREEDY is O(lg m)-competitive.

Now we prove that the competitive ratio of the algorithm is at least Ω(lg m). Consider
the following set of machines. G0 contains one machine with speed 1, G1 contains 2 machi-
nes with speed 1/2. For each i = 1, 2, . . . , k, Gi contains machines with speed 2−i, and Gi
contains |Gi| = ∑i−1

j=0 |G j|2i− j machines. Observe that the number of jobs of size 2−i which
can be scheduled during time 1 is the same on the machines of Gi and on the machines of
G0 ∪ G1 . . . ,∪Gi−1. It is easy to calculate that |Gi| = 22i−1, if i ≥ 1, thus the number of
machines is 1 + 2

3 (4k − 1).
Consider the following input sequence. In the �rst phase |Gk | jobs arrive having proces-

sing weight 2−k, in the second phase |Gk−1| jobs arrive having processing weight 2−(k−1), in
the i-th phase |Gi| jobs arrive with processing weight 2−i, and the sequence ends with the
k + 1-th phase, which contains one job with processing weight 1. An offline algorithm can
schedule the jobs of the i-th phase on the machines of set Gk+1−i achieving maximal load 1,
thus the optimal offline cost is at most 1.

Investigate the behaviour of algorithm GREEDY on this input. The jobs of the �rst
phase can be scheduled on the machines of G0, . . . ,Gk−1 during time 1, and it takes also
time 1 to schedule these jobs on the machines of Gk. Thus GREEDY schedules these jobs
on the machines of G0, . . . ,Gk−1, and the loads are 1 on these machines after the �rst phase.
Then the jobs of the second phase are scheduled on the machines of G0, . . . ,Gk−2, the jobs
of the third phase are scheduled on the machines of G0, . . . ,Gk−3 and so on. Finally the jobs
of the k-th and k + 1-th phase are scheduled on the machine of set G0. Thus the cost of
GREEDY is k + 1, (this is the load on the machine of set G0). Since k = Ω(lg m), thus we
proved the required statement.

9.5. On-line scheduling 81

9.5.3. TIME model
In this model we only investigate one algorithm. The basic idea is to divide the jobs into
groups by the release time and to use an optimal offline algorithm to schedule the jobs from
the groups. This algorithm is called interval scheduling algorithm and we denote it by
INTV. Let t0 be the release time of the �rst job, and i = 0. Then the algorithm is de�ned by
the following pseudocode:

INTV(I)
1 while not end of sequence
2 let Hi be the set of the unscheduled jobs released till ti
3 let OFFi be an optimal offline schedule of the jobs of Hi
4 schedule the jobs as it is determined by OFFi starting the schedule at ti
5 let qi be the maximal completion time
6 if new job is released in time interval (ti, qi] or the sequence is ended
7 then ti+1 ← qi
7 else let ti+1 be the release time of the next job
8 i← i + 1

9.12. Example. Consider two identical machines. Suppose that the sequence of jobs is I = { j1 =

(1, 0), j2 = (1/2, 0), j3 = (1/2, 0), j4 = (1, 3/2), j5 = (1, 3/2), j6 = (2, 2)}, where the jobs are de�ned
by the (processing time, release time) pairs. In the �rst iteration j1, j2, j3 are scheduled, an optimal
offline algorithm schedules j1 on machine M1 and j2, j3 on machine M2, the jobs are completed at
time 1. Then no new job released in the time interval (0, 1] thus the algorithm waits for new job till
time 3/2. Then the second iteration starts j4 and j5 are scheduled on M1 and M2 respectively in the
time interval [3/2, 5/2). During this time interval j6 released thus at time 5/2 the next iteration starts
and INTV schedules j6 on M1 in the time interval [5/2, 9/2].

The following statement holds for the competitive ratio of algorithm INTV.

Theorem 9.23 In the TIME model algorithm INTV is 2-competitive.

Proof. Consider an arbitrary input and the schedule produced by INTV. Denote the number
of iterations by i. Let T3 = ti+1 − ti, T2 = ti − ti−1, T1 = ti−1 and let TOPT denote the optimal
offline cost. Then T2 ≤ TOPT . This inequality is obvious if ti+1 , qi. If ti+1 = qi, then the
inequality holds because the optimal offline algorithm also has to schedule the jobs which
are scheduled in the i-th iteration by INTV and INTV uses an optimal offline schedule in
each iteration. On the other hand T1 + T3 ≤ TOPT . To prove this inequality �rst observe that
the release time is at least T1 = ti−1 for the jobs scheduled in the i-th iteration (otherwise the
algorithm would schedule them in the i − 1-th iteration). Therefore the optimal algorithm
also must schedule these jobs after time T1. On the the other hand it takes at least time T3
to process these jobs because INTV uses optimal offline algorithm in the iterations. The
makespan of the schedule produced by INTV is T1 + T2 + T3, and we have shown that
T1 + T2 + T3 ≤ 2TOPT thus we proved that the algorithm is 2-competitive.

Some other algorithms are also developed in the TIME model. Vestjens proved that the
on-line LPT algorithm is 3/2-competitive. This algorithm schedules the longest unschedu-
led, released job at any time when some machine is available. The following lower bound

82 9. Online Scheduling

for the possible competitive ratios of the on-line algorithms is also given by Vestjens.

Theorem 9.24 The competitive ratio of any on-line algorithm is at least 1.3473 in the
TIME model for minimizing the makespan.

Proof. Let α = 0.3473 be the solution of the equation α3 − 3α + 1 = 0 which belongs
to the interval [1/3, 1/2]. We prove that no on-line algorithm can have smaller competitive
ratio than 1 + α. Consider an arbitrary on-line algorithm, denote it by ALG. Investigate the
following input sequence.

At time 0 one job arrives with processing time 1. Let S 1 be the time when the algorithm
starts to process the job on one of the machines. If S 1 > α, then the sequence is ended and
ALG(I)/OPT(I) > 1 + α, which proves the statement. So we can suppose that S 1 ≤ α.

The release time of the next job is S 1 and its processing time is α/(1 − α). Denote its
starting time by S 2. If S 2 ≤ S 1 + 1 − α/(1 − α), then we end the sequence with m − 1 jobs
having release time S 2, and processing time 1 + α/(1 − α) − S 2. Then an optimal offline
algorithm schedules the �rst two jobs on the same machine and the last m − 1 jobs on the
other machines starting them at time S 2, thus its cost is 1 +α/(1−α). On the other hand the
on-line algorithm must schedule one of the last m−1 jobs after the completion of the �rst or
the second job thus ALG(I) ≥ 1 + 2α/(1− α) in this case, which yields that the competitive
ratio of the algorithm is at least 1+α. Therefore we can suppose that S 2 > S 1 +1−α/(1−α).

Then at time S 1 +1−α/(1−α) further m−2 jobs arrive having processing time α/(1−α)
and one job having processing time 1−α/(1−α). The optimal offline algorithm schedules the
second and the last jobs on the same machine the other jobs are scheduled alone on the other
machines and the makespan of the schedule is 1 + S 1. Since before time S 1 + 1 − α/(1 − α)
none of the last m jobs is started by ALG thus after this time ALG must schedule at least two
jobs on one of the machines and the maximal completion time is at least S 1 + 2−α/(1−α).
Since S 1 ≤ α, thus the ratio OPT(I)/ALG(I) is minimal if S 1 = α and in this case the ratio
is 1 + α, which proves the theorem.

Exercises
9.5-1 Prove that the competitive ratio is at least 3/2 for any on-line algorithm in the case of
two identical machines.
9.5-2 Prove that LIST is not constant competitive in the unrelated machines case.
9.5-3 Prove that the modi�cation of INTV which uses a c-approximation schedule (a sche-
dule with at most c times more cost than the optimal cost) in each step instead of the optimal
offline schedule is 2c-competitive.

Problems

9-1. Paging problem
Consider the special case of the k-server problem where the distance between each pair
of points is 1. (This problem is equivalent with the on-line paging problem.) Analyze the
algorithm which serves the requests not having server on their place by the server which
was used least recently. (This algorithm is equivalent with the LRU paging strategy.) Prove
that the algorithm is k-competitive.

9. Megjegyzések a fejezethez 83

9-2. ALARM2 algorithm
Consider the following alarming algorithm for the data acknowledgement problem.
ALARM2 is obtained from the general de�nition with the values e j = 1/|σ j|. Prove that
the algorithm is not constant-competitive.
9-3. Bin packing lower bound

Prove, that no on-line algorithm can have smaller competitive ratio than 3/2 using a se-
quence which contains items of size 1/7 + ε, 1/3 + ε, 1/2 + ε, where ε is a small positive
number.
9-4. Strip packing with modi�able rectangles

Consider the following version of the strip packing problem. In the new model the al-
gorithms are allowed to lengthen the rectangles keeping the area �xed. Develop a 4-
competitive algorithm for the solution of the problem.
9-5. On-line LPT algorithm

Consider the algorithm in the TIME model which starts the longest unscheduled released
job at any time when a machine is available. This algorithm is called on-line LPT. Prove
that the algorithm is 3/2-competitive.

Chapter notes
More details about the results on on-line algorithms can be found in the books [7, 19].

The �rst results about the k-server problem (Theorems 9.1 and 9.2) are published by
Manasse, McGeoch and Sleator in [38]. The presented algorithm for the line (Theorem 9.3)
was developed by Chrobak, Karloff, Payne and Viswanathan (see [12]). Later Chrobak and
Larmore in [10] extended the algorithm for trees. The �rst constant-competitive algorithm
for the general problem was developed by Fiat, Rabani and Ravid (see [18]). The best known
algorithm is based on the work function technique. The �rst work function algorithm for the
problem was developed in [11] by Chrobak and Larmore. Koutsoupias and Papadimitriou
proved in [33] that the work function algorithm is 2k − 1-competitive.

The �rst mathematical model for the data acknowledgement problem and the �rst re-
sults (Theorems 9.5 and 9.6) are presented in [16] by Dooly, Goldman, and Scott. Albers and
Bals considered a different objective function in [1]. Karlin Kenyon and Randall investiga-
ted randomized algorithms for the data acknowledgement problem in [31]. The L

algorithm was developed in [62] by Young. The detailed description of the results in the
area of on-line routing can be found in the survey [36] written by Leonardi. The exponential
algorithm for the load balancing model is investigated by Aspnes, Azar, Fiat, Plotkin and
Waarts in [2]. The exponential algorithm for the throughput objective function is applied by
Awerbuch, Azar and Plotkin in [4].

A detailed survey about the theory of on-line bin packing is written by Csirik and Wo-
eginger (see [13]). The algorithms NF and FF are analyzed with competitive analysis by
Johnson, Demers, Ullman, Garey and Graham in [27, 28], further results can be found in
the PhD thesis of Johnson ([26]). Van Vliet applied the packing patterns to prove lower bo-
unds for the possible competitive ratios in [60, 65]. For the on-line strip packing problem
algorithm NFSr was developed and analyzed by Baker and Schwarz in [6]. Later further
shelf packing algorithms were developed, the best shelf packing algorithm for the strip pac-

84 9. Online Scheduling

king problem was developed by Csirik and Woeginger in [14].
A detailed survey about the results in the area of on-line scheduling was written by

Sgall ([51]). The �rst on-line result is the analysis of algorithm LIST, it was published in
[22] by Graham. Many further algorithms were developed and analyzed for the identical
machines case, the algorithm with smallest competitive ratio (tends to 1.9201 as the number
of machines tends to ∞) was developed by Fleischer and Wahl in [20]. The lower bound
for the competitive ratio of GREEDY in the related machines model was proven by Cho
and Sahni in [9]. The upper bound, the related machines case and a more sophisticated
exponential function based algorithm were presented by Aspnes, Azar, Fiat, Plotkin and
Waarts in [2]. A summary of the further results about the applications of the exponential
function technique in the area of on-line scheduling can be found in the paper of Azar ([5]).
The interval algorithm presented in the TIME model and Theorem 9.23 are based on the
results of Shmoys, Wein and Williamson (see [53]). A detailed description of the further
results (on-line LPT, lower bounds) in the area TIME model can be found in the PhD thesis
of Vestjens [66]. We only presented the most fundamental on-line scheduling models in the
chapter, recently an interesting model was developed where the number of the machines is
not �xed the algorithm is allowed to purchase machines, the model is investigated in the
papers [25] and [17].

Problem 9-1. is based on [55], Problem 9-2. is based on [16], Problem 9-3. is based on
[61], Problem 9-4. is based on [24] and Problem 9-5. is based on [66].

10. Parallel Computations

11. Network Simulation

12. Systolic Systems

Systolic arrays probably constitute a perfect kind of special purpose computer. In their simp-
lest appearance, they may provide only one operation, that is repeated over and over again.
Yet, systolic arrays show an abundance of practice-oriented applications, mainly in �elds do-
minated by iterative procedures: numerical mathematics, combinatorial optimisation, linear
algebra, algorithmic graph theory, image and signal processing, speech and text processing,
et cetera.

For a systolic array can be tailored to the structure of its one and only algorithm thus
accurately! So that time and place of each executed operation are �xed once and for all. And
communicating cells are permanently and directly connected, no switching required. The
algorithm has in fact become hardwired. Systolic algorithms in this respect are considered
to be hardware algorithms.

Please note that the term systolic algorithms usually does not refer to a set of concrete
algorithms for solving a single speci�c computational problem, as for instance sorting. And
this is quite in contrast to terms like sorting algorithms. Rather, systolic algorithms cons-
titute a special style of speci�cation, programming, and computation. So algorithms from
many different areas of application can be systolic in style. But probably not all well-known
algorithms from such an area might be suited to systolic computation.

Hence, this chapter does not intend to present all systolic algorithms, nor will it int-
roduce even the most important systolic algorithms from any �eld of application. Instead,
with a few simple but typical examples, we try to lay the foundations for the readers' general
understanding of systolic algorithms.

The rest of this chapter is organised as follows: Section 12.1 shows some basic con-
cepts of systolic systems by means of an introductory example. Section 12.2 explains how
systolic arrays formally emerge from space-time transformations. Section 12.3 deals with
input/output schemes. Section 12.4 is devoted to all aspects of control in systolic arrays. In
section 12.5 we study the class of linear systolic arrays, raising further questions.

12.1. Basic concepts of systolic systems
The designation systolic follows from the operational principle of the systolic architecture.
The systolic style is characterised by an intensive application of both pipelining and pa-

12.1. Basic concepts of systolic systems 523

+*

(b)(a)

A

B

C0

0 0

0 0

0

a11a12a13a14

a21a22a23a24

a31a32a33a34

b11

b12

b13

b14

b15

b21

b22

b23

b24

b25

b31

b32

b33

b34

b35

b41

b42

b43

b44

b45

c11 c12 c13 c14 c15

c21 c22 c23 c24 c25

c31 c32 c33 c34 c35

Figure 12.1. Rectangular systolic array for matrix product. (a) Array structure and input scheme. (b) Cell structure.

rallelism, controlled by a global and completely synchronous clock. Data streams pulsate
rhythmically through the communication network, like streams of blood are driven from the
heart through the veins of the body. Here, pipelining is not constrained to a single space axis
but concerns all data streams possibly moving in different directions and intersecting in the
cells of the systolic array.

A systolic system typically consists of a host computer, and the actual systolic array.
Conceptionally, the host computer is of minor importance, just controlling the operation
of the systolic array and supplying the data. The systolic array can be understood as a
specialised network of cells rapidly performing data-intensive computations, supported by
massive parallelism. A systolic algorithm is the program collaboratively executed by the
cells of a systolic array.

Systolic arrays may appear very differently, but usually share a couple of key features:
discrete time scheme, synchronous operation, regular (frequently two-dimensional) geo-
metric layout, communication limited to directly neighbouring cells, and spartan control
mechanisms.

In this section, we explain fundamental phenomena in context of systolic arrays, dri-
ven by a running example. A computational problem usually allows several solutions, each
implemented by a speci�c systolic array. Among these, the most attractive designs (in wha-
tever respect) may be very complex. Note, however, that in this educational text we are less
interested in advanced solutions, but strive to present important concepts compactly and
intuitively.

12.1.1. An introductory example: matrix product
Figure 12.1 shows a rectangular systolic array consisting of 15 cells for multiplying a 3×N
matrix A by an N × 5 matrix B. The parameter N is not re�ected in the structure of this
particular systolic array, but in the input scheme and the running time of the algorithm.

The input scheme depicted is based on the special choice of parameter N = 4. There-
fore, Figure 12.1 gives a solution to the following problem instance:

524 12. Systolic Systems

A · B = C ,

where

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

 ,

B =



b11 b12 b13 b14 b15
b21 b22 b23 b24 b25
b31 b32 b33 b34 b35
b41 b42 b43 b44 b45


,

C =


c11 c12 c13 c14 c15
c21 c22 c23 c24 c25
c31 c32 c33 c34 c35

 ,

and

ci j =

4∑

k=1
aik · bk j (1 ≤ i ≤ 3, 1 ≤ j ≤ 5) .

The cells of the systolic array can exchange data through links, drawn as arrows bet-
ween the cells in Figure 12.1(a). Boundary cells of the systolic array can also communicate
with the outside world. All cells of the systolic array share a common connection pattern
for communicating with their environment. The completely regular structure of the systolic
array (placement and connection pattern of the cells) induces regular data �ows along all
connecting directions.

Figure 12.1(b) shows the internal structure of a cell. We �nd a multiplier, an adder,
three registers, and four ports, plus some wiring between these units. Each port represents
an interface to some external link that is attached to the cell. All our cells are of the same
structure.

Each of the registers A, B, C can store a single data item. The designations of the
registers are suggestive here, but arbitrary in principle. Registers A and B get their values
from input ports, shown in Figure 12.1(b) as small circles on the left resp. upper border of
the cell.

The current values of registers A and B are used as operands of the multiplier and,
at the same time, are passed through output ports of the cell, see the circles on the right
resp. lower border. The result of the multiplication is supplied to the adder, with the second
operand originating from register C. The result of the addition eventually overwrites the past
value of register C.

12.1.2. Problem parameters and array parameters
The 15 cells of the systolic array are organised as a rectangular pattern of three rows by
�ve columns, exactly as with matrix C. Also, these dimensions directly correspond to the
number of rows of matrix A and the number of columns of matrix B. The size of the systolic

12.1. Basic concepts of systolic systems 525

array, therefore, corresponds to the size of some data structures for the problem to solve. If
we had to multiply an N1 ×N3 matrix A by an N3 ×N2 matrix B in the general case, then we
would need a systolic array with N1 rows and N2 columns.

The quantities N1,N2,N3 are parameters of the problem to solve, because the number
of operations to perform depends on each of them; they are thus problem parameters. The
size of the systolic array, in contrast, depends on the quantities N1 and N2, only. For this
reason, N1 and N2 become also array parameters, for this particular systolic array, whereas
N3 is not an array parameter.

Remark. For matrix product, we will see another systolic array in section 12.2, with
dimensions dependent on all three problem parameters N1,N2,N3.

An N1 × N2 systolic array as shown in Figure 12.1 would also permit to multiply an
M1×M3 matrix A by an M3×M2 matrix B, where M1 ≤ N1 and M2 ≤ N2. This is important
if we intend to use the same systolic array for the multiplication of matrices of varying
dimensions. Then we would operate on a properly dimensioned rectangular subarray, only,
consisting of M1 rows and M2 columns, and located, for instance, in the upper left corner
of the complete array. The remaining cells would also work, but without any contribution to
the solution of the whole problem; they should do no harm, of course.

12.1.3. Space coordinates
Now let's assume that we want to assign unique space coordinates to each cell of a systolic
array, for characterising the geometric position of the cell relative to the whole array. In a
rectangular systolic array, we simply can use the respective row and column numbers, for
instance. The cell marked with c11 in Figure 12.1 thus would get the coordinates (1, 1), the
cell marked with c12 would get the coordinates (1, 2), cell c21 would get (2, 1), and so on.
For the remainder of this section, we take space coordinates constructed in such a way for
granted.

In principle it does not matter where the coordinate origin lies, where the axes are poin-
ting to, which direction in space corresponds to the �rst coordinate, and which to the second.
In the system presented above, the order of the coordinates has been chosen corresponding
to the designation of the matrix components. Thus, the �rst coordinate stands for the rows
numbered top to bottom from position 1, the second component stands for the columns
numbered left to right, also from position 1.

Of course, we could have made a completely different choice for the coordinate system.
But the presented system perfectly matches our particular systolic array: the indices of a
matrix element ci j computed in a cell agree with the coordinates of this cell. The entered
rows of the matrix A carry the same number as the �rst coordinate of the cells they pass;
correspondingly for the second coordinate, concerning the columns of the matrix B. All
links (and thus all passing data �ows) are in parallel to some axis, and towards ascending
coordinates.

It is not always so clear how expressive space coordinates can be determined; we refer
to the systolic array from Figure 12.3(a) as an example. But whatsoever the coordinate
system is chosen: it is important that the regular structure of the systolic array is obviously
re�ected in the coordinates of the cells. Therefore, almost always integral coordinates are
used. Moreover, the coordinates of cells with minimum Euclidean distance should differ in
one component, only, and then with distance 1.

526 12. Systolic Systems

12.1.4. Serialising generic operators
Each active cell (i, j) from Figure 12.1 computes exactly the element ci j of the result matrix
C. Therefore, the cell must evaluate the dot product

4∑

k=1
aik · bk j .

This is done iteratively: in each step, a product aik ·bk j is calculated and added to the current
partial sum for ci j. Obviously, the partial sum has to be cleared�or set to another initial
value, if required�before starting the accumulation. Inspired by the classical notation of
imperative programming languages, the general proceeding could be speci�ed in pseudo-
code as follows:

M-P(N1,N2,N3)
1 for i← 1 to N1
2 do for j← 1 to N2
3 do c(i, j)← 0
4 for k ← 1 to N3
5 do c(i, j)← c(i, j) + a(i, k) · b(k, j)
6 return C

If N1 = N2 = N3 = N, we have to perform N3 multiplications, additions, and assign-
ments, each. Hence the running time of this algorithm is of order Θ(N3) for any sequential
processor.

The sum operator ∑ is one of the so-called generic operators, that combine an arbitrary
number of operands. In the systolic array from Figure 12.1, all additions contributing to
a particular sum are performed in the same cell. However, there are plenty of examples
where the individual operations of a generic operator are spread over several cells�see, for
instance, the systolic array from Figure 12.3.

Remark. Further examples of generic operators are: product, minimum, maximum, as
well as the Boolean operators , , and  .

Thus, generic operators usually have to be serialised before the calculations to perform
can be assigned to the cells of the systolic array. Since the distribution of the individual ope-
rations to the cells is not unique, generic operators generally must be dealt with in another
way than simple operators with �xed arity, as for instance the dyadic addition.

12.1.5. Assignment-free notation
Instead of using an imperative style as in algorithm M-, we better describe
systolic programs by an assignment-free notation which is based on an equational calcu-
lus. Thus we avoid side effects and are able to directly express parallelism. For instance,
we may be bothered about the reuse of the program variable c(i, j) from algorithm M-
. So, we replace c(i, j) with a sequence of instances c(i, j, k), that stand for the suc-
cessive states of c(i, j). This approach yields a so-called recurrence equation. We are now
able to state the general matrix product from algorithm M- by the following
assignment-free expressions:

12.1. Basic concepts of systolic systems 527

input operations
c(i, j, 0) = 0 1 ≤ i ≤ N1, 1 ≤ j ≤ N2.

calculations
c(i, j, k) = c(i, j, k − 1) + a(i, k) · b(k, j) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3.

output operations
ci j = c(i, j,N3) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2 .

(12.1)

System (12.1) explicitly describes the �ne structure of the executed systolic algorithm.
The �rst equation speci�es all input data, the third equation all output data. The systolic
array implements these equations by input/output operations. Only the second equation
corresponds to real calculations.

Each equation of the system is accompanied, on the right side, by a quanti�cation. The
quanti�cation states the set of values the iteration variables i and j (and, for the second
equation, also k) should take. Such a set is called a domain. The iteration variables i, j, k
of the second equation can be combined in an iteration vector (i, j, k). For the input/output
equations, the iteration vector would consist of the components i and j, only. To get a closed
representation, we augment this vector by a third component k, that takes a �xed value.
Inputs then are characterised by k = 0, outputs by k = N3. Overall we get the following
system:

input operations
c(i, j, k) = 0 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = 0.

calculations
c(i, j, k) = c(i, j, k − 1) + a(i, k) · b(k, j) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3.

output operations
ci j = c(i, j, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = N3 .

(12.2)

Note that although the domains for the input/output equations now are formally also of
dimension 3, as a matter of fact they are only two-dimensional in the classical geometric
sense.

12.1.6. Elementary operations
From equations as in system (12.2), we directly can infer the atomic entities to perform in
the cells of the systolic array. We �nd these operations by instantiating each equation of the
system with all points of the respective domain. If an equation contains several suboperati-
ons corresponding to one point of the domain, these are seen as a compound operation, and
are always processed together by the same cell in one working cycle.

In the second equation of system (12.2), for instance, we �nd the multiplication

528 12. Systolic Systems

a(i, k) · b(k, j) and the successive addition c(i, j, k) = c(i, j, k − 1) + · · · . The correspon-
ding elementary operations�multiplication and addition�are indeed executed together as
a multiply-add compound operation by the cell of the systolic array shown in Figure 12.1(b).

Now we can assign a designation to each elementary operation, also called coordinates.
A straight-forward method to de�ne suitable coordinates is provided by the iteration vectors
(i, j, k) used in the quanti�cations.

Applying this concept to system (12.1), we can for instance assign the tuple of coor-
dinates (i, j, k) to the calculation c(i, j, k) = c(i, j, k − 1) + a(i, k) · b(k, j). The same tuple
(i, j, k) is assigned to the input operation c(i, j, k) = 0, but with setting k = 0. By the way:
all domains are disjoint in this example.

If we always use the iteration vectors as designations for the calculations and the in-
put/output operations, there is no further need to distinguish between coordinates and itera-
tion vectors. Note, however, that this decision also mandates that all operations belonging
to a certain point of the domain together constitute a compound operation�even when they
appear in different equations and possibly are not related. For simplicity, we always use the
iteration vectors as coordinates in the sequel.

12.1.7. Discrete timesteps
The various elementary operations always happen in discrete timesteps in the systolic cells.
All these timesteps driving a systolic array are of equal duration. Moreover, all cells of a
systolic array work completely synchronous, i.e., they all start and �nish their respective
communication and calculation steps at the same time. Successive timesteps controlling a
cell seamlessly follow each other.

Remark. But haven't we learned from Albert Einstein that strict simultaneity is phy-
sically impossible? Indeed, all we need here are cells that operate almost simultaneously.
Technically this is guaranteed by providing to all systolic cells a common clock signal that
switches all registers of the array. Within the bounds of the usually achievable accuracy,
the communication between the cells happens sufficiently synchronised, and thus no loss
of data occurs concerning send and receive operations. Therefore, it should be justi�ed to
assume a conceptional simultaneity for theoretical reasoning.

Now we can slice the physical time into units of a timestep, and number the timesteps
consecutively. The origin on the time axis can be arbitrarily chosen, since time is running
synchronously for all cells. A reasonable decision would be to take t = 0 as the time of
the �rst input in any cell. Under this regime, the elementary compound operation of system
(12.1) designated by (i, j, k) would be executed at time i + j + k − 3. On the other hand, it
would be evenly justi�ed to assign the time i + j + k to the coordinates (i, j, k); because this
change would only induce a global time shift by three time units.

So let us assume for the following that the execution of an instance (i, j, k) starts at time
i + j + k. The �rst calculation in our example then happens at time t = 3, the last at time
t = N1 + N2 + N3. The running time thus amounts to N1 + N2 + N3 − 2 timesteps.

12.1.8. External and internal communication
Normally, the data needed for calculation by the systolic array initially are not yet located
inside the cells of the array. Rather, they must be infused into the array from the outside

12.1. Basic concepts of systolic systems 529

world. The outside world in this case is a host computer, usually a scalar control processor
accessing a central data storage. The control processor, at the right time, fetches the neces-
sary data from the storage, passes them to the systolic array in a suitable way, and eventually
writes back the calculated results into the storage.

Each cell (i, j) must access the operands aik and bk j during the timestep concerning
index value k. But only the cells of the leftmost column of the systolic array from Figure 12.1
get the items of the matrix A directly as input data from the outside world. All other cells
must be provided with the required values aik from a neighbouring cell. This is done via the
horizontal links between neighbouring cells, see Figure 12.1(a). The item aik successively
passes the cells (i, 1), (i, 2), . . . , (i,N2). Correspondingly, the value bk j enters the array at
cell (1, j), and then �ows through the vertical links, reaching the cells (2, j), (3, j), . . . up to
cell (N1, j). An arrowhead in the Figure shows in which direction the link is oriented.

Frequently, it is considered problematic to transmit a value over large distances within
a single timestep, in a distributed or parallel architecture. Now suppose that, in our example,
cell (i, j) got the value aik during timestep t from cell (i, j − 1), or from the outside world.
For the reasons described above, aik is not passed from cell (i, j) to cell (i, j + 1) in the same
timestep t, but one timestep later, i.e., at time t + 1. This also holds for the values bk j. The
delay is visualised in the detail drawing of the cell from Figure 12.1(b): input data �owing
through a cell always pass one register, and each passed register induces a delay of exactly
one timestep.

Remark. For systolic architectures, it is mandatory that any path between two cells
contains at least one register�even when forwarding data to a neighbouring cell, only. All
registers in the cells are synchronously switched by the global clock signal of the systolic
array. This results in the characteristic rhythmical traffic on all links of the systolic array.
Because of the analogy with pulsating veins, the medical term systole has been reused for
the name of the concept.

To elucidate the delayed forwarding of values, we augment system (12.1) with further
equations. Repeatedly used values like aik are represented by separate instances, one for
each access. The result of this proceeding�that is very characteristic for the design of
systolic algorithms�is shown as system (12.3).

input operations
a(i, j, k) = aik 1 ≤ i ≤ N1, j = 0, 1 ≤ k ≤ N3 ,

b(i, j, k) = bk j i = 0, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 ,

c(i, j, k) = 0 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = 0 .

calculations and forwarding
a(i, j, k) = a(i, j − 1, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 ,

b(i, j, k) = b(i − 1, j, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 ,

c(i, j, k) = c(i, j, k − 1) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 .

+ a(i, j − 1, k) · b(i − 1, j, k)

output operations
ci j = c(i, j, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = N3 .

(12.3)

530 12. Systolic Systems

Each of the partial sums c(i, j, k) in the progressive evaluation of ci j is calculated in a
certain timestep, and then used only once, namely in the next timestep. Therefore, cell (i, j)
must provide a register (named C in Figure 12.1(b)) where the value of c(i, j, k) can be stored
for one timestep. Once the old value is no longer needed, the register holding c(i, j, k) can be
overwritten with the new value c(i, j, k + 1). When eventually the dot product is completed,
the register contains the value c(i, j,N3), that is the �nal result ci j. Before performing any
computation, the register has to be cleared, i.e., preloaded with a zero value�or any other
desired value.

In contrast, there is no need to store the values aik and bk j permanently in cell (i, j).
As we can learn from Figure 12.1(a), each row of the matrix A is delayed by one timestep
with respect to the preceding row. And so are the columns of the matrix B. Thus the values
a(i, j − 1, k) and b(i − 1, j, k) arrive at cell (i, j) exactly when the calculation of c(i, j, k)
is due. They are put to the registers A resp. B, then immediately fetched from there for the
multiplication, and in the same cycle forwarded to the neighbouring cells. The values aik and
bk j are of no further use for cell (i, j) after they have been multiplied, and need not be stored
there any longer. So A and B are overwritten with new values during the next timestep.

It should be obvious from this exposition that we urgently need to make economic
use of the memory contained in a cell. Any calculation and any communication must be
coordinated in space and time in such a way that storing of values is limited to the shortest-
possible time interval. This goal can be achieved by immediately using and forwarding the
received values. Besides the overall structure of the systolic array, choosing an appropriate
input/output scheme and placing the corresponding number of delays in the cells essentially
facilitates the desired coordination. Figure 12.1(b) in this respect shows the smallest possible
delay by one timestep.

Geometrically, the input input scheme of the example resulted from skewing the matri-
ces A and B. Thereby some places in the input streams for matrix A became vacant and had
to be �lled with zero values; otherwise, the calculation of the ci j would have been garbled.
The input streams in length depend on the problem parameter N3.

As can been seen in Figure 12.1, the items of matrix C are calculated stationary, i.e.,
all additions contributing to an item ci j happen in the same cell. Stationary variables don't
move at all during the calculation in the systolic array. Stationary results eventually must
be forwarded to a border of the array in a supplementary action for getting delivered to the
outside world. Moreover, it is necessary to initialise the register for item ci j. Performing
these extra tasks requires a high expenditure of runtime and hardware. We will further study
this problem in section 12.4.

12.1.9. Pipelining
The characteristic operating style with globally synchronised discrete timesteps of equal
duration and the strict separation in time of the cells by registers suggest systolic arrays
to be special cases of pipelined systems. Here, the registers of the cells correspond to the
well-known pipeline registers. However, classical pipelines come as linear structures, only,
whereas systolic arrays frequently extend into more spatial dimensions�as visible in our
example. A multi-dimensional systolic array can be regarded as a set of interconnected
linear pipelines, with some justi�cation. Hence it should be apparent that basic properties
of one-dimensional pipelining also apply to multi-dimensional systolic arrays.

12.1. Basic concepts of systolic systems 531

(b)(a)

x

x

xa13a14

a22a23

a31a32

b13b22

b23

b31

b32b41

c15

c24 c25

c33 c34

a12 ∗ b21 a11 ∗ b12

a21 ∗ b11

a34 ∗ b45

Figure 12.2. Two snapshots for the systolic array from Figure 12.1.

A typical effect of pipelining is the reduced utilisation at startup and during shut-down
of the operation. Initially, the pipe is empty, no pipeline stage active. Then, the �rst stage
receives data and starts working; all other stages are still idle. During the next timestep, the
�rst stage passes data to the second stage and itself receives new data; only these two stages
do some work. More and more stages become active until all stages process data in every
timestep; the pipeline is now fully utilised for the �rst time. After a series of timesteps at
maximum load, with duration dependent on the length of the data stream, the input sequence
ceases; the �rst stage of the pipeline therefore runs out of work. In the next timestep, the
second stage stops working, too. And so on, until eventually all stages have been fallen
asleep again. Phases of reduced activity diminish the average performance of the whole
pipeline, and the relative contribution of this drop in productivity is all the worse, the more
stages the pipeline has in relation to the length of the data stream.

We now study this phenomenon to some depth by analysing the two-dimensional sys-
tolic array from Figure 12.1. As expected, we �nd a lot of idling cells when starting or
�nishing the calculation. In the �rst timestep, only cell (1, 1) performs some useful work;
all other cells in fact do calculations that work like null operations�and that's what they
are supposed to do in this phase. In the second timestep, cells (1, 2) and (2, 1) come to real
work, see Figure 12.2(a). Data is �ooding the array until eventually all cells are doing work.
After the last true data item has left cell (1, 1), the latter is no longer contributing to the
calculation but merely reproduces the �nished value of c11. Step by step, more and more
cells drop off. Finally, only cell (N1,N2) makes a last necessary computation step; Figure
12.2(b) shows this concluding timestep.

Exercises
12.1-1 What must be changed in the input scheme from Figure 12.1(a) to multiply a 2 × 6
matrix by a 6 × 3 matrix on the same systolic array? Could the calculations be organised

532 12. Systolic Systems

such that the result matrix would emerge in the lower right corner of the systolic array?
12.1-2 Why is it necessary to clear spare slots in the input streams for matrix A, as shown
in Figure 12.1? Why haven't we done the same for matrix B also?
12.1-3 If the systolic array from Figure 12.1 should be interpreted as a pipeline: how many
stages would you suggest to adequately describe the behaviour?

12.2. Space-time transformation and systolic arrays
Although the approach taken in the preceding section should be sufficient for a basic unders-
tanding of the topic, we have to work harder to describe and judge the properties of systolic
arrays in a quantitative and precise way. In particular the solution of parametric problems
requires a solid mathematical framework. So, in this section, we study central concepts of a
formal theory on uniform algorithms, based on linear transformations.

12.2.1. Further example: matrix product without stationary variables
System (12.3) can be computed by a multitude of other systolic arrays, besides that from
Figure 12.1. In Figure 12.3, for example, we see such an alternative systolic array. Whereas
the same function is evaluated by both architectures, the appearance of the array from Figure
12.3 is very different:
• The number of cells now is considerably larger, altogether 36, instead of 15.
• The shape of the array is hexagonal, instead of rectangular.
• Each cell now has three input ports and three output ports.
• The input scheme is clearly different from that of Figure 12.1(a).
• And �nally: the matrix C here also �ows through the whole array.

The cell structure from Figure 12.3(b) at �rst view does not appear essentially distin-
guished from that in Figure 12.1(b). But the differences matter: there are no cyclic paths in
the new cell, thus stationary variables can no longer appear. Instead, the cell is provided
with three input ports and three output ports, passing items of all three matrices through the
cell. The direction of communication at the ports on the right and left borders of the cell has
changed, as well as the assignment of the matrices to the ports.

12.2.2. The space-time transformation as a global view
How system (12.3) is related to Figure 12.3? No doubt that you were able to fully unders-
tand the operation of the systolic array from Section 12.1 without any special aid. But for
the present example this is considerably more difficult�so now you may be sufficiently
motivated for the use of a mathematical formalism.

We can assign two fundamental measures to each elementary operation of an algorithm
for describing the execution in the systolic array: the time when the operation is performed,
and the position of the cell where the operation is performed. As will become clear in the
sequel, after �xing the so-called space-time transformation there are hardly any degrees of
freedom left for further design: practically all features of the intended systolic array strictly
follow from the chosen space-time transformation.

12.2. Space-time transformation and systolic arrays 533

+*

(b)(a)

A

B

C

Figure 12.3. Hexagonal systolic array for matrix product. (a) Array structure and principle of the data input/output.
(b) Cell structure.

As for the systolic array from Figure 12.1, the execution of an instance (i, j, k) in the
systolic array from Figure 12.3 happens at time t = i+ j+k. We can represent this expression
as the dot product of a time vector

π =
(

1 1 1
)

(12.4)

by the iteration vector
v =

(
i j k

)
, (12.5)

hence
t = π · v ; (12.6)

so in this case

t =
(

1 1 1
)
·


i
j
k

 = i + j + k . (12.7)

The space coordinates z = (x, y) of the executed operations in the example from Figure
12.1 can be inferred as z = (i, j) from the iteration vector v = (i, j, k) according to our
decision in Section 12.1.3. The chosen map is a projection of the space R3 along the k axis.
This linear map can be described by a projection matrix

P =

(
1 0 0
0 1 0

)
. (12.8)

To �nd the space coordinates, we multiply the projection matrix P by the iteration vector

534 12. Systolic Systems

v, written as
z = P · v . (12.9)

The projection direction can be represented by any vector u perpendicular to all rows
of the projection matrix,

P · u = ~0 . (12.10)
For the projection matrix P from (12.8), one of the possible projection vectors would

be u = (0, 0, 1).
Projections are very popular for describing the space coordinates when designing a

systolic array. Also in our example from Figure 12.3(a), the space coordinates are generated
by projecting the iteration vector. Here, a feasible projection matrix is given by

P =

(
0 −1 1
−1 1 0

)
. (12.11)

A corresponding projection vector would be u = (1, 1, 1).
We can combine the projection matrix and the time vector in a matrix T , that fully

describes the space-time transformation,
(

z
t

)
=

(
P
π

)
· v = T · v . (12.12)

The �rst and second rows of T are constituted by the projection matrix P, the third row
by the time vector π.

For the example from Figure 12.1, the matrix T giving the space-time transformation
reads as

T =


1 0 0
0 1 0
1 1 1

 ; (12.13)

for the example from Figure 12.3 we have

T =


0 −1 1
−1 1 0

1 1 1

 . (12.14)

Space-time transformations may be understood as a global view to the systolic system.
Applying a space-time transformation�that is linear, here, and described by a matrix T�to
a system of recurrence equations directly yields the external features of the systolic array,
i.e., its architecture�consisting of space coordinates, connection pattern, and cell structure.

Remark. Instead of purely linear maps, we alternatively may consider general affine
maps, additionally providing a translative component, T · v + h. Though as long as we treat
all iteration vectors with a common space-time transformation, affine maps are not really
required.

12.2.3. Parametric space coordinates
If the domains are numerically given and contain few points in particular, we can easily
calculate the concrete set of space coordinates via equation (12.9). But when the domains
are speci�ed parametrically as in system (12.3), the positions of the cells must be determined

12.2. Space-time transformation and systolic arrays 535

(1 − N2, N2 − N1) (1 − N2, N2 − 1)

(N3 − N2, N2 − N1)

(0, 1 − N1) (N3 − N2, N2 − 1)

(0, 0)

(N3 − 1, 1 − N1) (N3 − 1, 0)

Figure 12.4. Image of a rectangular domain under projection. Most interior points have been suppressed for clarity.
Images of previous vertex points are shaded.

by symbolic evaluation. The following explanation especially dwells on this problem.
Suppose that each cell of the systolic array is represented geometrically by a point with

space coordinates z = (x, y) in the two-dimensional space R2. From each iteration vector v
of the domain S , by equation (12.9) we get the space coordinates z of a certain processor,
z = P · v: the operations denoted by v are projected onto cell z. The set P(S) = {P · v : v ∈ S }
of space coordinates states the positions of all cells in the systolic array necessary for correct
operation.

To our advantage, we normally use domains that can be described as the set of all inte-
ger points inside a convex region, here a subset of R3�called dense convex domains. The
convex hull of such a domain with a �nite number of domain points is a polytope, with
domain points as vertices. Polytopes map to polytopes again by arbitrary linear transfor-
mations. Now we can make use of the fact that each projection is a linear transformation.
Vertices of the destination polytope then are images of vertices of the source polytope.

Remark. But not all vertices of a source polytope need to be projected to vertices of the
destination polytope, see for instance Figure 12.4.

When projected by an integer matrix P, the lattice Z3 maps to the lattice Z2 if P can be
extended by an integer time vector π to a unimodular space-time matrix T . Practically any
dense convex domain, apart from some exceptions irrelevant to usual applications, thereby
maps to another dense convex set of space coordinates, that is completely characterised by
the vertices of the hull polytope. To determine the shape and the size of the systolic array, it
is therefore sufficient to apply the matrix P to the vertices of the convex hull of S .

536 12. Systolic Systems

N1

N2

N3

Figure 12.5. Partitioning of the space coordinates.

Remark. Any square integer matrix with determinant ±1 is called unimodular. Unimo-
dular matrices have unimodular inverses.

We apply this method to the integer domain

S = [1,N1] × [1,N2] × [1,N3] (12.15)

from system (12.3). The vertices of the convex hull here are

(1, 1, 1), (N1, 1, 1), (1,N2, 1), (1, 1,N3),
(1,N2,N3), (N1, 1,N3), (N1,N2, 1), (N1,N2,N3) .

(12.16)

For the projection matrix P from (12.11), the vertices of the corresponding image have
the positions

(N3 − 1, 0), (N3 − 1, 1 − N1), (0, 1 − N1),
(1 − N2,N2 − N1), (1 − N2,N2 − 1), (N3 − N2,N2 − N1) .

(12.17)

Since S has eight vertices, but the image P(S) only six, it is obvious that two vertices of S
have become interior points of the image, and thus are of no relevance for the size of the
array; namely the vertices (1, 1, 1) and (N1,N2,N3). This phenomenon is sketched in Figure
12.4.

The settings N1 = 3, N2 = 5, and N3 = 4 yield the vertices (3, 0), (3,−2), (0,−2),
(−4, 2), (−4, 4), and (−1, 4). We see that space coordinates in principle can be negative.
Moreover, the choice of an origin�that here lies in the interior of the polytope�might not
always be obvious.

As the image of the projection, we get a systolic array with hexagonal shape and parallel
opposite borders. On these, we �nd N1, N2, and N3 integer points, respectively; cf. Figure
12.5. Thus, as opposed to our �rst example, all problem parameters here are also array
parameters.

The area function of this region is of order Θ(N1 ·N2 +N1 ·N3 +N2 ·N3), and thus depends
on all three matrix dimensions. So this is quite different from the situation in Figure 12.1(a),
where the area function�for the same problem�is of order Θ(N1 · N2).

Improving on this approximate calculation, we �nally count the exact number of cells.
For this process, it might be helpful to partition the entire region into subregions for which

12.2. Space-time transformation and systolic arrays 537

the number of cells comprised can be easily determined; see Figure 12.5. The points (0, 0),
(N3 − 1, 0), (N3 − 1, 1−N1), and (0, 1−N1) are the vertices of a rectangle with N1 ·N3 cells.
If we translate this point set up by N2−1 cells and right by N2−1 cells, we exactly cover the
whole region. Each shift by one cell up and right contributes just another N1 + N3 − 1 cells.
Altogether this yields N1·N3+(N2−1)·(N1+N3−1) = N1·N2+N1·N3+N2·N3−(N1+N2+N3)+1
cells.

For N1 = 3, N2 = 5, and N3 = 4 we thereby get a number of 36 cells, as we have already
learned from Figure 12.3(a).

12.2.4. Symbolically deriving the running time
The running time of a systolic algorithm can be symbolically calculated by an approach
similar to that in section 12.2.3. The time transformation according to formula (12.6) as well
is a linear map. We �nd the timesteps of the �rst and the last calculations as the minimum
resp. maximum in the set π(S) = {π · v : v ∈ S } of execution timesteps. Following the
discussion above, it thereby suffices to vary v over the vertices of the convex hull of S .

The running time is then given by the formula

tΣ = 1 + max P(S) −min P(S) . (12.18)

Adding one is mandatory here, since the �rst as well as the last timestep belong to the
calculation.

For the example from Figure 12.3, the vertices of the polytope as enumerated in (12.16)
are mapped by (12.7) to the set of images

{3, 2 + N1, 2 + N2, 2 + N3, 1 + N1 + N2, 1 + N1 + N3, 1 + N2 + N3,N1 + N2 + N3}qkoz.

With the basic assumption N1,N2,N3 ≥ 1, we get a minimum of 3 and a maximum of
N1 + N2 + N3, thus a running time of N1 + N2 + N3 − 2 timesteps, as for the systolic array
from Figure 12.1�no surprise, since the domains and the time vectors agree.

For the special problem parameters N1 = 3, N2 = 5, and N3 = 4, a running time of
12 − 3 + 1 = 10 timesteps can be derived.

If N1 = N2 = N3 = N, the systolic algorithm shows a running time of order Θ(N), using
Θ(N2) systolic cells.

12.2.5. How to unravel the communication topology
The communication topology of the systolic array is induced by applying the space-time
transformation to the data dependences of the algorithm. Each data dependence results from
a direct use of a variable instance to calculate another instance of the same variable, or an
instance of another variable.

Remark. In contrast to the general situation where a data dependence analysis for impe-
rative programming languages has to be performed by highly optimising compilers, data
dependences here always are �ow dependences. This is a direct consequence from the
assignment-free notation employed by us.

The data dependences can be read off the quanti�ed equations in our assignment-free
notation by comparing their right and left sides. For example, we �rst analyse the equation

538 12. Systolic Systems

c(i, j, k) = c(i, j, k − 1) + a(i, j − 1, k) · b(i − 1, j, k) from system (12.3).
The value c(i, j, k) is calculated from the values c(i, j, k−1), a(i, j−1, k), and b(i−1, j, k).

Thus we have a data �ow from c(i, j, k−1) to c(i, j, k), a data �ow from a(i, j−1, k) to c(i, j, k),
and a data �ow from b(i − 1, j, k) to c(i, j, k).

All properties of such a data �ow that matter here can be covered by a dependence
vector, which is the iteration vector of the calculated variable instance minus the iteration
vector of the correspondingly used variable instance.

The iteration vector for c(i, j, k) is (i, j, k); that for c(i, j, k − 1) is (i, j, k − 1). Thus, as
the difference vector, we �nd

dC =


i
j
k

 −


i
j

k − 1

 =


0
0
1

 . (12.19)

Correspondingly, we get

dA =


i
j
k

 −


i
j − 1

k

 =


0
1
0

 (12.20)

and

dB =


i
j
k

 −


i − 1
j
k

 =


1
0
0

 qkoz. (12.21)

In the equation a(i, j, k) = a(i, j−1, k) from system (12.3), we cannot directly recognise
which is the calculated variable instance, and which is the used variable instance. This
example elucidates the difference between equations and assignments. When �xing that
a(i, j, k) should follow from a(i, j − 1, k) by a copy operation, we get the same dependence
vector dA as in (12.20). Correspondingly for the equation b(i, j, k) = b(i − 1, j, k).

A variable instance with iteration vector v is calculated in cell P·v. If for this calculation
another variable instance with iteration vector v′ is needed, implying a data dependence with
dependence vector d = v−v′, the used variable instance is provided by cell P ·v′. Therefore,
we need a communication from cell z′ = P · v′ to cell z = P · v. In systolic arrays, all
communication has to be via direct static links between the communicating cells. Due to the
linearity of the transformation from (12.9), we have z− z′ = P ·v−P ·v′ = P · (v−v′) = P ·d.

If P ·d = ~0, communication happens exclusively inside the calculating cell, i.e., in time,
only�and not in space. Passing values in time is via registers of the calculating cell.

Whereas for P · d , ~0, a communication between different cells is needed. Then a link
along the �ow direction P · d must be provided from/to all cells of the systolic array. The
vector −P · d, oriented in counter �ow direction, leads from space point z to space point z′.

If there is more than one dependence vector d, we need an appropriate link for each
of them at every cell. Take for example the formulas (12.19), (12.20), and (12.21) together
with (12.11), then we get P · dA = (−1, 1), P · dB = (0,−1), and P · dC = (1, 0). In Figure
12.3(a), terminating at every cell, we see three links corresponding to the various vectors
P · d. This results in a hexagonal communication topology�instead of the orthogonal
communication topology from the �rst example.

12.2. Space-time transformation and systolic arrays 539

12.2.6. Inferring the structure of the cells
Now we apply the space-related techniques from section 12.2.5 to time-related questions. A
variable instance with iteration vector v is calculated in timestep π ·v. If this calculation uses
another variable instance with iteration vector v′, the former had been calculated in timestep
π · v′. Hence communication corresponding to the dependence vector d = v − v′ must take
exactly π · v − π · v′ timesteps.

Since (12.6) describes a linear map, we have π · v − π · v′ = π · (v − v′) = π · d.
According to the systolic principle, each communication must involve at least one register.
The dependence vectors d are �xed, and so the choice of a time vector π is constrained by

π · d ≥ 1 . (12.22)

In case P · d = ~0, we must provide registers for stationary variables in all cells. But
each register is overwritten with a new value in every timestep. Hence, if π · d ≥ 2, the old
value must be carried on to a further register. Since this is repeated for π · d timesteps, the
cell needs exactly π ·d registers per stationary variable. The values of the stationary variable
successively pass all these registers before eventually being used. If P · d , ~0, the transport
of values analogously goes by π · d registers, though these are not required to belong all to
the same cell.

For each dependence vector d, we thus need an appropriate number of registers. In
Figure 12.3(b), we see three input ports at the cell, corresponding to the dependence vectors
dA, dB, and dC . Since for these we have P · d , ~0. Moreover, π · d = 1 due to (12.7) and
(12.4). Thus, we need one register per dependence vector. Finally, the regularity of system
(12.3) forces three output ports for every cell, opposite to the corresponding input ports.

Good news: we can infer in general that each cell needs only a few registers, because
the number of dependence vectors d is statically bounded with a system like (12.3), and for
each of the dependence vectors the amount of registers π · d has a �xed and usually small
value.

The three input and output ports at every cell now permit the use of three moving mat-
rices. Very differently from Figure 12.1, a dot product ∑4

k=1 aik · bk j here is not calculated
within a single cell, but dispersed over the systolic array. As a prerequisite, we had to dis-
solve the sum into a sequence of single additions. We call this principle a distributed generic
operator.

Apart from the three input ports with their registers, and the three output ports, Fi-
gure 12.3(b) shows a multiplier chained to an adder. Both units are induced in each
cell by applying the transformation (12.9) to the domain S of the equation c(i, j, k) =

c(i, j, k − 1) + a(i, j − 1, k) · b(i − 1, j, k) from system (12.3). According to this equation,
the addition has to follow the calculation of the product, so the order of the hardware ope-
rators as seen in Figure 12.3(b) is implied.

The source cell for each of the used operands follows from the projection of the corres-
ponding dependence vector. Here, variable a(i, j − 1, k) is related to the dependence vector
dA = (0, 1, 0). The projection P ·dA = (−1, 1) constitutes the �ow direction of matrix A. Thus
the value to be used has to be expected, as observed by the calculating cell, in opposite di-
rection (1,−1), in this case from the port in the lower left corner of the cell, passing through
register A. All the same, b(i − 1, j, k) comes from the right via register B, and c(i, j, k − 1)
from above through register C. The calculated values a(i, j, k), b(i, j, k), and c(i, j, k) are out-

540 12. Systolic Systems

put into the opposite directions through the appropriate ports: to the upper right, to the left,
and downwards.

If alternatively we use the projection matrix P from (12.8), then for dC we get the
direction (0, 0). The formula π · dC = 1 results in the requirement of exactly one register C
for each item of the matrix C. This register provides the value c(i, j, k−1) for the calculation
of c(i, j, k), and after this calculation receives the value c(i, j, k). All this reasoning matches
with the cell from Figure 12.1(b). Figure 12.1(a) correspondingly shows no links for matrix
C between the cells: for the matrix is stationary.

Exercises
12.2-1 Each projection vector u induces several corresponding projection matrices P.
a. Show that

P =

(
0 1 −1
−1 0 1

)

also is a projection matrix �tting with projection vector u = (1, 1, 1).
b. Use this projection matrix to transform the domain from system (12.3).
c. The resulting space coordinates differ from that in section 12.2.3. Why, in spite of this,

both point sets are topologically equivalent?
d. Analyse the cells in both arrangements for common and differing features.

12.2-2 Apply all techniques from section 12.2 to system (12.3), employing a space-time
matrix

T =


1 0 1
0 1 1
1 1 1

 .

12.3. Input/output schemes
In Figure 12.3(a), the input/output scheme is only sketched by the�ow directions for the
matrices A, B,C. The necessary details to understand the input/output operations are now
provided by Figure 12.6.

The input/output scheme in Figure 12.6 shows some new phenomena when compared
with Figure 12.1(a). The input and output cells belonging to any matrix are no longer thre-
aded all on a single straight line; now, for each matrix, they lie along two adjacent borders,
that additionally may differ in the number of links to the outside world. The data structures
from Figure 12.6 also differ from that in Figure 12.1(a) in the angle of inclination. Moreo-
ver, the matrices A and B from Figure 12.6 arrive at the boundary cells with only one third
of the data rate, compared to Figure 12.1(a).

Spending some effort, even here it might be possible in principle to construct�item
by item�the appropriate input/output scheme �tting the present systolic array. But it is
much more safe to apply a formal derivation. The following subsections are devoted to the
presentation of the various methodical steps for achieving our goal.

12.3. Input/output schemes 541

A

B

C

a11

a12

a13

a14

a21

a22

a23

a24

a31

a32

a33

a34

b11

b12

b13

b14

b15

b21

b22

b23

b24

b25

b31

b32

b33

b34

b35

b41

b42

b43

b44

b45

c11

c12

c13

c14

c15

c21

c22

c23

c24

c25

c31

c32

c33

c34

c35

Figure 12.6. Detailed input/output scheme for the systolic array from Figure 12.3(a).

12.3.1. From data structure indices to iteration vectors
First, we need to construct a formal relation between the abstract data structures and the
concrete variable instances in the assignment-free representation.

Each item of the matrix A can be characterised by a row index i and a column index k.
These data structure indices can be comprised in a data structure vector w = (i, k). Item aik
in system (12.3) corresponds to the instances a(i, j, k), with any j. The coordinates of these
instances all lie on a line along direction q = (0, 1, 0) in space R3. Thus, in this case, the
formal change from data structure vector (i, k) to coordinates (i, j, k) can be described by the
transformation


i
j
k

 =


1 0
0 0
0 1

 ·
(

i
k

)
+ j ·


0
1
0

 +


0
0
0

 . (12.23)

In system (12.3), the coordinate vector (i, j, k) of every variable instance equals the
iteration vector of the domain point representing the calculation of this variable instance.
Thus we also may interpret formula (12.23) as a relation between data structure vectors and

542 12. Systolic Systems

iteration vectors. Abstractly, the desired iteration vectors v can be inferred from the data
structure vector w by the formula

v = H · w + λ · q + p . (12.24)

The affine vector p is necessary in more general cases, though always null in our
example.

Because of b(i, j, k) = bk j, the representation for matrix B correspondingly is


i
j
k

 =


0 0
0 1
1 0

 ·
(

k
j

)
+ i ·


1
0
0

 +


0
0
0

 . (12.25)

Concerning matrix C, each variable instance c(i, j, k) may denote a different value. Ne-
vertheless, all instances c(i, j, k) to a �xed index pair (i, j) can be regarded as belonging to
the same matrix item ci j, since they all stem from the serialisation of the sum operator for
the calculation of ci j. Thus, for matrix C, following formula (12.24) we may set


i
j
k

 =


1 0
0 1
0 0

 ·
(

i
j

)
+ k ·


0
0
1

 +


0
0
0

 . (12.26)

12.3.2. Snapshots of data structures
Each of the three matrices A, B,C is generated by two directions with regard to the data
structure indices: along a row, and along a column. The difference vector (0, 1) thereby
describes a move from an item to the next item of the same row, i.e., in the next column:
(0, 1) = (x, y + 1) − (x, y). Correspondingly, the difference vector (1, 0) stands for sliding
from an item to the next item in the same column and next row: (1, 0) = (x + 1, y) − (x, y).

Input/output schemes of the appearance shown in Figures 12.1(a) and 12.6 denote
snapshots: all positions of data items depicted, with respect to the entire systolic array,
are related to a common timestep.

As we can notice from Figure 12.6, the rectangular shapes of the abstract data structures
are mapped to parallelograms in the snapshot, due to the linearity of the applied space-time
transformation. These parallelograms can be described by difference vectors along their
borders, too.

Next we will translate difference vectors ∆w from data structure vectors into spatial
difference vectors ∆z for the snapshot. Therefore, by choosing the parameter λ in formula
(12.24), we pick a pair of iteration vectors v, v′ that are mapped to the same timestep under
our space-time transformation. For the moment it is not important which concrete timestep
we thereby get. Thus, we set up

π · v = π · v′ with v = H · w + λ · q + p and v′ = H · w′ + λ′ · q + p , (12.27)

implying
π · H · (w − w′) + (λ − λ′) · π · q = 0 , (12.28)

12.3. Input/output schemes 543

and thus
∆λ = (λ − λ′) =

−π · H · (w − w′)
π · q . (12.29)

Due to the linearity of all used transformations, the wanted spatial difference vector ∆z
hence follows from the difference vector of the data structure ∆w = w − w′ as

∆z = P · ∆v = P · H · ∆w + ∆λ · P · q , (12.30)

or
∆z = P · H · ∆w − π · H · ∆w

π · q · P · q . (12.31)

With the aid of formula (12.31), we now can determine the spatial difference vectors ∆z
for matrix A. As mentioned above, we have

H =


1 0
0 0
0 1

 , q =


0
1
0

 , P =

(
0 −1 1
−1 1 0

)
, π =

(
1 1 1

)
.

Noting π · q = 1, we get

∆z =

(
0 1
−1 0

)
· ∆w + ∆λ ·

(−1
1

)
with ∆λ = −

(
1 1

)
· ∆w .

For the rows, we have the difference vector ∆w = (0, 1), yielding the spatial difference
vector ∆z = (2,−1). Correspondingly, from ∆w = (1, 0) for the columns we get ∆z = (1,−2).
If we check with Figure 12.6, we see that the rows of A in fact run along the vector (2,−1),
the columns along the vector (1,−2).

Similarly, we get ∆z = (−1, 2) for the rows of B, and ∆z = (1, 1) for the columns of B;
as well as ∆z = (−2, 1) for the rows of C, and ∆z = (−1,−1) for the columns of C.

Applying these instruments, we are now able to reliably generate appropriate in-
put/output schemes�although separately for each matrix at the moment.

12.3.3. Superposition of input/output schemes
Now, the shapes of the matrices A, B,C for the snapshot have been �xed. But we still have
to adjust the matrices relative to the systolic array�and thus, also relative to each other.
Fortunately, there is a simple graphical method for doing the task.

We �rst choose an arbitrary iteration vector, say v = (1, 1, 1). The latter we map with
the projection matrix P to the cell where the calculation takes place,

z =

(
0 −1 1
−1 1 0

)
·


1
1
1

 =

(
0
0

)
.

The iteration vector (1, 1, 1) represents the calculations a(1, 1, 1), b(1, 1, 1), and
c(1, 1, 1); these in turn correspond to the data items a11, b11, and c11. We now lay the in-
put/output schemes for the matrices A, B,C on the systolic array in a way that the entries
a11, b11, and c11 all are located in cell z = (0, 0).

In principle, we would be done now. Unfortunately, our input/output schemes overlap

544 12. Systolic Systems

with the cells of the systolic array, and are therefore not easily perceivable. Thus, we simul-
taneously retract the input/output schemes of all matrices in counter �ow direction, place by
place, until there is no more overlapping. With this method, we get exactly the input/output
scheme from Figure 12.6.

As an alternative to this nice graphical method, we also could formally calculate an
overlap-free placement of the various input/output schemes.

Only after specifying the input/output schemes, we can correctly calculate the number
of timesteps effectively needed. The �rst relevant timestep starts with the �rst input opera-
tion. The last relevant timestep ends with the last output of a result. For the example, we
determine from Figure 12.6 the beginning of the calculation with the input of the data item
b11 in timestep 0, and the end of the calculation after output of the result c35 in timestep
14. Altogether, we identify 15 timesteps��ve more than with pure treatment of the real
calculations.

12.3.4. Data rates induced by space-time transformations
The input schemes of the matrices A and B from Figure 12.1(a) have a dense layout: if
we drew the borders of the matrices shown in the Figure, there would be no spare places
comprised.

Not so in Figure 12.6. In any input data stream, each data item is followed by two spare
places there. For the input matrices this means: the boundary cells of the systolic array
receive a proper data item only every third timestep.

This property is a direct result of the employed space-time transformation. In both
examples, the abstract data structures themselves are dense. But how close the various items
really come in the input/output scheme depends on the absolute value of the determinant of
the transformation matrix T : in every input/output data stream, the proper items follow each
other with a spacing of exactly |det(T)| places. Indeed |det(T)| = 1 for Figure 12.1; as for
Figure 12.6, we now can rate the �uffy spacing as a practical consequence of |det(T)| = 3.

What to do with spare places as those in Figure 12.6? Although each cell of the systolic
array from Figure 12.3 in fact does useful work only every third timestep, it would be
nonsense to pause during two out of three timesteps. Strictly speaking, we can argue that
values on places marked with dots in Figure 12.6 have no in�uence on the calculation of
the shown items ci j, because they never reach an active cell at time of the calculation of
a variable c(i, j, k). Thus, we may simply �ll spare places with any value, no danger of
disturbing the result. It is even feasible to execute three different matrix products at the
same time on the systolic array from Figure 12.3, without interference. This will be our
topic in section 12.3.7.

12.3.5. Input/output expansion and extended input/output scheme
When further studying Figure 12.6, we can identify another problem. Check, for example,
the itinerary of c22 through the cells of the systolic array. According to the space-time trans-
formation, the calculations contributing to the value of c22 happen in the cells (−1, 0), (0, 0),
(1, 0), and (2, 0). But the input/output scheme from Figure 12.6 tells us that c22 also passes
through cell (−2, 0) before, and eventually visits cell (3, 0), too.

This may be interpreted as some spurious calculations being introduced into the system

12.3. Input/output schemes 545

(12.3) by the used space-time transformation, here, for example, at the new domain points
(2, 2, 0) and (2, 2, 5). The reason for this phenomenon is that the domains of the input/output
operations are not in parallel to the chosen projection direction. Thus, some input/output
operations are projected onto cells that do not belong to the boundary of the systolic array.
But in the interior of the systolic array, no input/output operation can be performed directly.
The problem can be solved by extending the trajectory, in �ow or counter �ow direction,
from these inner cells up to the boundary of the systolic array. But thereby we introduce
some new calculations, and possibly also some new domain points. This technique is called
input/output expansion.

We must avoid that the additional calculations taking place in the cells (−2, 0) and
(3, 0) corrupt the correct value of c22. For the matrix product, this is quite easy�though
the general case is more difficult. The generic sum operator has a neutral element, namely
zero. Thus, if we can guarantee that by new calculations only zero is added, there will be
no harm. All we have to do is providing always at least one zero operand to any spurious
multiplication; this can be achieved by �lling appropriate input slots with zero items.

Figure 12.7 shows an example of a properly extended input/output scheme. Preceding
and following the items of matrix A, the necessary zero items have been �lled in. Since the
entered zeroes count like data items, the input/output scheme from Figure 12.6 has been
retracted again by one place. The calculation now begins already in timestep −1, but ends
as before with timestep 14. Thus we need 16 timesteps altogether.

12.3.6. Coping with stationary variables
Let us come back to the example from Figure 12.1(a). For inputting the items of matrices A
and B, no expansion is required, since these items are always used in boundary cells �rst.
But not so with matrix C! The items of C are calculated in stationary variables, hence always
in the same cell. Thus most results ci j are produced in inner cells of the systolic array, from
where they have to be moved�in a separate action�to boundary cells of the systolic array.

Although this new challenge, on the face of it, appears very similar to the problem
from section 12.3.5, and thus very easy to solve, in fact we here have a completely different
situation. It is not sufficient to extend existing data �ows forward or backward up to the
boundary of the systolic array. Since for stationary variables the dependence vector is the
null vector, which constitutes no extensible direction, there can be no spatial �ow induced
by this dependency. Possibly, we can construct some auxiliary extraction paths, but usually
there are many degrees of freedom. Moreover, we then need a control mechanism inside the
cells. For all these reasons, the problem is further dwelled on in section 12.4.

12.3.7. Interleaving of calculations
As can be easily noticed, the utilisation of the systolic array from Figure 12.3 with in-
put/output scheme from Figure 12.7 is quite poor. Even without any deeper study of the
starting phase and the closing phase, we cannot ignore that the average utilisation of the
array is below one third�after all, each cell at most in every third timestep makes a proper
contribution to the calculation.

A simple technique to improve this behaviour is to interleave calculations. If we have
three independent matrix products, we can successively input their respective data, delayed

546 12. Systolic Systems

0

0

0
0

0

0

A

B

C

a11

a12

a13

a14

a21

a22

a23

a24

a31

a32

a33

a34

b11

b12

b13

b14

b15

b21

b22

b23

b24

b25

b31

b32

b33

b34

b35

b41

b42

b43

b44

b45

c11

c12

c13

c14

c15

c21

c22

c23

c24

c25

c31

c32

c33

c34

c35

Figure 12.7. Extended input/output scheme, correcting Figure 12.6.

by only one timestep, without any changes to the systolic array or its cells. Figure 12.8
shows a snapshot of the systolic array, with parts of the corresponding input/output scheme.

Now we must check by a formal derivation whether this idea is really working. The-
refore, we slightly modify system (12.3). We augment the variables and the domains by a
fourth dimension, needed to distinguish the three matrix products:

12.3. Input/output schemes 547

32 21

32 22

33 23

23

22 21

23 31

13

24

12 21

13 31

14 41

14

41

13 32

0 * b
31 42

0 * b
32 32

1

2

3

2

3

1

3

1

2

1

2

1

3

3 1 2

1

2

1 2

1

3

1

2

1

3

2a

a

a

a

a

a

a

a

a

a

aa

aa

a b

b

b

∗ b

∗ b

∗ b

∗ b

∗ b

∗ b∗ b

∗ 0∗ 0

∗ 0

Figure 12.8. Interleaved calculation of three matrix products on the systolic array from Figure 12.3.

input operations
a(i, j, k, l) = al

ik 1 ≤ i ≤ N1, j = 0, 1 ≤ k ≤ N3, 1 ≤ l ≤ 3,
b(i, j, k, l) = bl

k j i = 0, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3, 1 ≤ l ≤ 3,
c(i, j, k, l) = 0 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = 0, 1 ≤ l ≤ 3.

calculations and forwarding
a(i, j, k, l) = a(i, j − 1, k, l) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3, 1 ≤ l ≤ 3,
b(i, j, k, l) = b(i − 1, j, k, l) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3, 1 ≤ l ≤ 3,
c(i, j, k, l) = c(i, j, k − 1, l) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3, 1 ≤ l ≤ 3.

+ a(i, j − 1, k, l) · b(i − 1, j, k, l)

output operations
cl

i j = c(i, j, k, l) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = N3, 1 ≤ l ≤ 3 .

(12.32)

Obviously, in system (12.32), problems with different values of l are not related. Now
we must preserve this property in the systolic array. A suitable space-time matrix would be

T =


0 −1 1 0
−1 1 0 0

1 1 1 1

 . (12.33)

Notice that T is not square here. But for calculating the space coordinates, the fourth
dimension of the iteration vector is completely irrelevant, and thus can simply be neutralised
by corresponding zero entries in the fourth column of the �rst and second rows of T .

The last row of T again constitutes the time vector π. Appropriate choice of π embeds
the three problems to solve into the space-time continuum, avoiding any intersection. Cor-
responding instances of the iteration vectors of the three problems are projected to the same

548 12. Systolic Systems

+*

(b)(a)

A

B

C

Figure 12.9. Resetting registers via global control. (a) Array structure. (b) Cell structure.

cell with a respective spacing of one timestep, because the fourth entry of π equals 1.
Finally, we calculate the average utilisation�with or without interleaving�for the

concrete problem parameters N1 = 3, N2 = 5, and N3 = 4. For a single matrix product,
we have to perform N1 · N2 · N3 = 60 calculations, considering a multiplication and a
corresponding addition as a compound operation, i.e., counting both together as only one
calculation; input/output operations are not counted at all. The systolic array has 36 cells.

Without interleaving, our systolic array altogether takes 16 timesteps for calculating a
single matrix product, resulting in an average utilisation of 60/(16 ·36) ≈ 0.104 calculations
per timestep and cell. When applying the described interleaving technique, the calculation
of all three matrix products needs only two timesteps more, i.e., 18 timesteps altogether. But
the number of calculations performed thereby has tripled, so we get an average utilisation
of the cells amounting to 3 · 60/(18 · 36) ≈ 0.278 calculations per timestep and cell. Thus,
by interleaving, we were able to improve the utilisation of the cells to 267 per cent!

Exercises
12.3-1 From equation (12.31), formally derive the spatial difference vectors of matrices B
and C for the input/output scheme shown in Figure 12.6.
12.3-2 Augmenting Figure 12.6, draw an extended input/output scheme that forces both
operands of all spurious multiplications to zero.
12.3-3 Apply the techniques presented in section 12.3 to the systolic array from Figure
12.1.
12.3-4? Proof the properties claimed in section 12.3.7 for the special space-time transfor-
mation (12.33) with respect to system (12.32).

12.4. Control
So far we have assumed that each cell of a systolic array behaves in completely the same
way during every timestep. Admittedly there are some relevant examples of such systolic

12.4. Control 549

arrays. However, in general the cells successively have to work in several operation modes,
switched to by some control mechanism. In the sequel, we study some typical situations for
exerting control.

12.4.1. Cells without control
The cell from Figure 12.3(b) contains the registers A, B, and C, that�when activated by
the global clock signal�accept the data applied to their inputs and then reliably reproduce
these values at their outputs for one clock cycle. Apart from this system-wide activity, the
function calculated by the cell is invariant for all timesteps: a fused multiply-add operation
is applied to the three input operands A, B, and C, with result passed to a neighbouring cell;
during the same cycle, the operands A and B are also forwarded to two other neighbouring
cells. So in this case, the cell needs no control at all.

The initial values c(i, j, 0) for the execution of the generic sum operator�which could
also be different from zero here�are provided to the systolic array via the input streams,
see Figure 12.7; the �nal results c(i, j,N3) continue to �ow into the same direction up to
the boundary of the array. Therefore, the input/output activities for the cell from Figure
12.3(b) constitute an intrinsic part of the normal cell function. The price to pay for this
extremely simple cell function without any control is a restriction in all three dimensions
of the matrices: on a systolic array like that from Figure 12.3, with �xed array parameters
N1,N2,N3, an M1 × M3 matrix A can only be multiplied by an M3 × M2 matrix B if the
relations M1 ≤ N1, M2 ≤ N2, and M3 ≤ N3 hold.

12.4.2. Global control
In this respect, constraints for the array from Figure 12.1 are not so restrictive: though the
problem parameters M1 and M2 also are bounded by M1 ≤ N1 and M2 ≤ N2, there is no
constraint for M3. Problem parameters unconstrained in spite of �xed array parameters can
only emerge in time but not in space, thus mandating the use of stationary variables.

Before a new calculation can start, each register assigned to a stationary variable has
to be reset to an initial state independent from the previously performed calculations. For
instance, concerning the systolic cell from Figure 12.3(b), this should be the case for register
C. By a global signal similar to the clock, register C can be cleared in all cells at the same
time, i.e., reset to a zero value. To prevent a corruption of the reset by the current values of
A or B, at least one of the registers A or B must be cleared at the same time, too. Figure 12.9
shows an array structure and a cell structure implementing this idea.

12.4.3. Local control
Unfortunately, for the matrix product the principle of the global control is not sufficient wit-
hout further measures. Since the systolic array presented in Figure 12.1 even lacks another
essential property: the results ci j are not passed to the boundary but stay in the cells.

At �rst sight, it seems quite simple to forward the results to the boundary: when the
calculation of an item ci j is �nished, the links from cell (i, j) to the neighbouring cells
(i, j + 1) and (i + 1, j) are no longer needed to forward items of the matrices A and B. These
links can be reused then for any other purpose. For example, we could pass all items of C

550 12. Systolic Systems

c11

c12

c13

c14

c15

c21

c22

c23

c24

c25

c31

c32

c33

c34

c35

Figure 12.10. Output scheme with delayed output of results.

through the downward-directed links to the lower border of the systolic array.
But it turns out that leading through results from the upper cells is hampered by ongoing

calculations in the lower parts of the array. If the result ci j, �nished in timestep i + j + N3,
would be passed to cell (i+1, j) in the next timestep, a con�ict would be introduced between
two values: since only one value per timestep can be sent from cell (i + 1, j) via the lower
port, we would be forced to keep either ci j or ci+1 j, the result currently �nished in cell
(i + 1, j). This effect would spread over all cells down.

To �x the problem, we could slow down the forwarding of items ci j. If it would take
two timesteps for ci j to pass a cell, no collisions could occur. Then, the results stage a
procession through the same link, each separated from the next by one timestep. From the
lower boundary cell of a column, the host computer �rst receives the result of the bottom
row, then that of the penultimate row; this procedure continues until eventually we see the
result of the top row. Thus we get the output scheme shown in Figure 12.10.

How can a cell recognise when to change from forwarding items of matrix B to passing
items of matrix C through the lower port? We can solve this task by an automaton combining
global control with local control in the cell:

If we send a global signal to all cells at exactly the moment when the last items of A and
B are input to cell (1, 1), each cell can start a countdown process: in each successive times-
tep, we decrement a counter initially set to the number of the remaining calculation steps.
Thereby cell (i, j) still has to perform i + j − 1 calculations before changing to propagation
mode. Later, the already mentioned global reset signal switches the cell back to calculation
mode.

Figure 12.11 presents a systolic array implementing this local/global principle. Basi-
cally, the array structure and the communication topology have been preserved. But each
cell can run in one of two states now, switched by a control logic:
1. In calculation mode, as before, the result of the addition is written to register C. At

the same time, the value in register B�i.e., the operand used for the multiplication�is
forwarded through the lower port of the cell.

2. In propagation mode, registers B and C are connected in series. In this mode, the only
function of the cell is to guide each value received at the upper port down to the lower
port, thereby enforcing a delay of two timesteps.

12.4. Control 551

+

*

(b)(a)

R

SQ

Q

counter

A

B

C

i+j−1

Figure 12.11. Combined local/global control. (a) Array structure. (b) Cell structure.

The �rst value output from cell (i, j) in propagation mode is the currently calculated
value ci j, stored in register C. All further output values are results forwarded from cells
above. A formal description of the algorithm implemented in Figure 12.11 is given by the
assignment-free system (12.34).

input operations
a(i, j, k) = aik 1 ≤ i ≤ N1, j = 0, 1 ≤ k ≤ N3,

b(i, j, k) = bk j i = 0, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3,

c(i, j, k) = 0 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = 0.

calculations and forwarding
a(i, j, k) = a(i, j − 1, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3,

b(i, j, k) = b(i − 1, j, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3,

c(i, j, k) = c(i, j, k − 1) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3.

+ a(i, j − 1, k) · b(i − 1, j, k)

propagation
b(i, j, k) = c(i, j, k − 1) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ i + N3,

c(i, j, k) = b(i − 1, j, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ i − 1 + N3,

output operations
c1+N1+N3−k, j = b(i, j, k) i = N1, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ N1 + N3 .

(12.34)

It rests to explain how the control signals in a cell are generated in this model. As
a prerequisite, the cell must contain a state �ip-�op indicating the current operation mode.

552 12. Systolic Systems

The output of this �ip-�op is connected to the control inputs of both multiplexors, see Figure
12.11(b). The global reset signal clears the state �ip-�op, as well as the registers A and C:
the cell now works in calculation mode.

The global ready signal starts the countdown in all cells, so in every timestep the co-
unter is diminished by 1. The counter is initially set to the precalculated value i + j − 1,
dependent on the position of the cell. When the counter reaches zero, the �ip-�op is set: the
cell switches to propagation mode.

If desisting from a direct reset of the register C, the last value passed, before the reset,
from register B to register C of a cell can be used as a freely decidable initial value for the
next dot product to evaluate in the cell. We then even calculate, as already in the systolic
array from Figure 12.3, the more general problem

C = A · B + D , (12.35)

detailed by the following equation system:

input operations
a(i, j, k) = aik 1 ≤ i ≤ N1, j = 0, 1 ≤ k ≤ N3,

b(i, j, k) = bk j i = 0, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3,

c(i, j, k) = di j 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = 0 .

calculations and forwarding
a(i, j, k) = a(i, j − 1, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3,

b(i, j, k) = b(i − 1, j, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3,

c(i, j, k) = c(i, j, k − 1) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 .

+ a(i, j − 1, k) · b(i − 1, j, k)

propagation
b(i, j, k) = c(i, j, k − 1) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ i + N3,

c(i, j, k) = b(i − 1, j, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ i − 1 + N3 .

output operations
c1+N1+N3−k, j = b(i, j, k) i = N1, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ N1 + N3 .

(12.36)

12.4.4. Distributed control
The method sketched in Figure 12.11 still has the following drawbacks:
1. The systolic array uses global control signals, requiring a high technical accuracy.
2. Each cell needs a counter with counting register, introducing a considerable hardware

expense.
3. The initial value of the counter varies between the cells. Thus, each cell must be indivi-

dually designed and implemented.

12.4. Control 553

4. The input data of any successive problem must wait outside the cells until all results
from the current problem have left the systolic array.

These disadvantages can be avoided, if control signals are propagated like data�
meaning a distributed control. Therefore, we preserve the connections of the registers B
and C with the multiplexors from Figure 12.11(b), but do not generate any control signals
in the cells; also, there will be no global reset signal. Instead, a cell receives the necessary
control signal from one of the neighbours, stores it in a new one-bit register S, and approp-
riately forwards it to further neighbouring cells. The primary control signals are generated
by the host computer, and infused into the systolic array by boundary cells, only. Figure
12.12(a) shows the required array structure, Figure 12.12(b) the modi�ed cell structure.

Switching to the propagation mode occurs successively down one cell in a column,
always delayed by one timestep. The delay introduced by register S is therefore sufficient.

Reset to the calculation mode is performed via the same control wire, and thus also
happens with a delay of one timestep per cell. But since the results ci j sink down at half
speed, only, we have to wait sufficiently long with the reset: if a cell is switched to calcula-
tion mode in timestep t, it goes to propagation mode in timestep t + N3, and is reset back to
calculation mode in timestep t + N1 + N3.

So we learned that in a systolic array, distributed control induces a different macroscopic
timing behaviour than local/global control. Whereas the systolic array from Figure 12.12 can
start the calculation of a new problem (12.35) every N1 + N3 timesteps, the systolic array
from Figure 12.11 must wait for 2 ·N1 + N2 + N3 − 2 timesteps. The time difference N1 + N3
resp. 2 · N1 + N2 + N3 − 2 is called the period, its reciprocal being the throughput.

System (12.37) formally describes the relations between distributed control and calcula-
tions. We thereby assume an in�nite, densely packed sequence of matrix product problems,
the additional iteration variable l being unbounded. The equation headed variables with
alias describes but pure identity relations.

554 12. Systolic Systems

control
s(i, j, k, l) = 0 i = 0, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3,

s(i, j, k, l) = 1 i = 0, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ N1 + N3,

s(i, j, k, l) = s(i − 1, j, k, l) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N1 + N3 .

input operations
a(i, j, k, l) = al

ik 1 ≤ i ≤ N1, j = 0, 1 ≤ k ≤ N3,

b(i, j, k, l) = bl
k j i = 0, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3,

b(i, j, k, l) = dl+1
N1+N3+1−k, j i = 0, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ N1 + N3 .

variables with alias
c(i, j, k, l) = c(i, j,N1 + N3, l − 1) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = 0 .

calculations and forwarding
a(i, j, k, l) = a(i, j − 1, k, l) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N1 + N3 ,

b(i, j, k, l) =

{
b(i − 1, j, k, l) : s(i − 1, j, k, l) = 0
c(i, j, k − 1, l) : s(i − 1, j, k, l) = 1 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N1 + N3 ,

c(i, j, k, l) =



c(i, j, k − 1, l)
+ a(i, j − 1, k, l)
· b(i − 1, j, k, l) : s(i − 1, j, k, l) = 0
b(i − 1, j, k, l) : s(i − 1, j, k, l) = 1

1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N1 + N3 .

output operations
cl

1+N1+N3−k, j = b(i, j, k, l) i = N1, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ N1 + N3 .
(12.37)

Formula (12.38) shows the corresponding space-time matrix. Note that one entry of T
is not constant but depends on the problem parameters:

T =


1 0 0 0
0 1 0 0
1 1 1 N1 + N3

 (12.38)

Interestingly, also the cells in a row switch one timestep later when moving one position
to the right. Sacri�cing some regularity, we could use this circumstance to relieve the host
computer by applying control to the systolic array at cell (1, 1), only. We therefore would
have to change the control scheme in the following way:

12.4. Control 555

+

*

(b)(a)

A

B

C

S

0
0

0
0

0

0
0

0
0

0

0
0

0
0

0

0
0

0
0

0

1
1

1
1

1

1
1

1
1

1

1
1

1
1

1

a11a12a13a14

a21a22a23a24

a31a32a33a34

b11

b12

b13

b14

b15

b21

b22

b23

b24

b25

b31

b32

b33

b34

b35

b41

b42

b43

b44

b45

d11

d12

d13

d14

d15

d21

d22

d23

d24

d25

d31

d32

d33

d34

d35

Figure 12.12. Matrix product on a rectangular systolic array, with output of results and distributed control. (a)
Array structure. (b) Cell structure.

control
s(i, j, k, l) = 0 i = 1, j = 0, 1 ≤ k ≤ N3 ,

s(i, j, k, l) = 1 i = 1, j = 0, 1 + N3 ≤ k ≤ N1 + N3 ,

s(i, j, k, l) = s(i − 1, j, k, l) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N1 + N3 ,

. . .

variables with alias
s(i, j, k, l) = s(i + 1, j − 1, k, l) i = 0, 1 ≤ j ≤ N2, 1 ≤ k ≤ N1 + N3 ,

. . .

(12.39)

Figure 12.13 shows the result of this modi�cation. We now need cells of two kinds:
cells on the upper border of the systolic array must be like that in Figure 12.13(b); all other
cells would be as before, see Figure 12.13(c). Moreover, the communication topology on the
upper border of the systolic array would be slightly different from that in the regular area.

12.4.5. The cell program as a local view
The chosen space-time transformation widely determines the architecture of the systolic
array. Mapping recurrence equations to space-time coordinates yields an explicit view to
the geometric properties of the systolic array, but gives no real insight into the function of
the cells. In contrast, the processes performed inside a cell can be directly expressed by
a cell program. This approach is particularly of interest if dealing with a programmable
systolic array, consisting of cells indeed controlled by a repetitive program.

556 12. Systolic Systems

+

*

(b)

+

*

(c)(a)

A

A

B

B

C

C

S

S

0 0 0 0 1 1 1
a11a12a13a14

a21a22a23a24

a31a32a33a34

b11

b12

b13

b14

b15

b21

b22

b23

b24

b25

b31

b32

b33

b34

b35

b41

b42

b43

b44

b45

d11

d12

d13

d14

d15

d21

d22

d23

d24

d25

d31

d32

d33

d34

d35

Figure 12.13. Matrix product on a rectangular systolic array, with output of results and distributed control. (a)
Array structure. (b) Cell on the upper border. (c) Regular cell.

Like the global view, i.e., the structure of the systolic array, the local view given by a
cell program in fact is already �xed by the space-time transformation. But, this local view is
only induced implicitly here, and thus, by a further mathematical transformation, an explicit
representation must be extracted, suitable as a cell program.

In general, we denote instances of program variables with the aid of index expressions,
that refer to iteration variables. Take, for instance, the equation

c(i, j, k) = c(i, j, k − 1) + a(i, j − 1, k) · b(i − 1, j, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3

from system (12.3). The instance c(i, j, k−1) of the program variable c is speci�ed using
the index expressions i, j, and k − 1, which can be regarded as functions of the iteration
variables i, j, k.

As we have noticed, the set of iteration vectors (i, j, k) from the quanti�cation becomes
a set of space-time coordinates (x, y, t) when applying a space-time transformation (12.12)
with transformation matrix T from (12.14),


x
y
t

 = T ·


i
j
k

 =


0 −1 1
−1 1 0

1 1 1

 ·


i
j
k

 . (12.40)

Since each cell is denoted by space coordinates (x, y), and the cell program must refer

12.4. Control 557

to the current time t, the iteration variables i, j, k in the index expressions for the program
variables are not suitable, and must be translated into the new coordinates x, y, t. Therefore,
using the inverse of the space-time transformation from (12.40), we express the iteration
variables i, j, k as functions of the space-time coordinates (x, y, t),


i
j
k

 = T−1 ·


x
y
t

 =
1
3 ·


−1 −2 1
−1 1 1

2 1 1

 ·


x
y
t

 . (12.41)

The existence of such an inverse transformation is guaranteed if the space-time trans-
formation is injective on the domain�and that it should always be: if not, some instances
must be calculated by a cell in the same timestep. In the example, reversibility is guaranteed
by the square, non singular matrix T , even without referral to the domain. With respect to
the time vector π and any projection vector u, the property π · u , 0 is sufficient.

Replacing iteration variables by space-time coordinates, which might be interpreted as
a transformation of the domain, frequently yields very unpleasant index expressions. Here,
for example, from c(i, j, k − 1) we get

c((−x − 2 · y + t)/3, (−x + y + t)/3, (2 · x + y + t)/3)qkoz.

But, by a successive transformation of the index sets, we can relabel the instances of the
program variables such that the reference to cell and time appears more evident. In parti-
cular, it seems worthwhile to transform the equation system back into output normal form,
i.e., to denote the results calculated during timestep t in cell (x, y) by instances (x, y, t) of
the program variables. We best gain a real understanding of this approach via an abstract
mathematical formalism, that we can �t to our special situation.

Therefore, let
r(ψr(v)) = F(. . . , s(ψs(v)), . . .) v ∈ S (12.42)

be a quanti�ed equation over a domain S , with program variables r and s. The index
functions ψr and ψs generate the instances of the program variables as tuples of index
expressions.

By transforming the domain with a function ϕ that is injective on S , equation (12.42)
becomes

r(ψr(ϕ−1(e))) = F(. . . , s(ψs(ϕ−1(e))), . . .) e ∈ ϕ(S), (12.43)
where ϕ−1 is a function that constitutes an inverse of ϕ on ϕ(S). The new index functions

are ψr ◦ ϕ−1 and ψs ◦ ϕ−1.
Transformations of index sets don't touch the domain; they can be applied to each

program variable separately, since only the instances of this program variable are renamed,
and in a consistent way. With such renamings ϑr and ϑs, equation (12.43) becomes

r(ϑr(ψr(ϕ−1(e)))) = F(. . . , s(ϑs(ψs(ϕ−1(e)))), . . .) e ∈ ϕ(S) . (12.44)

If output normal form is desired, ϑr ◦ ψr ◦ ϕ−1 has to be the identity.
In the most simple case (as for our example), ψr is the identity, and ψs is an affine

transformation of the form ψs(v) = v − d, with constant d�the already known dependence
vector. ψr then can be represented in the same way, with d = ~0. Transformation of the
domains happens by the space-time transformation ϕ(v) = T · v, with an invertible matrix T .

558 12. Systolic Systems

For all index transformations, we choose the same ϑ = ϕ. Thus equation (12.44) becomes

r(e) = F(. . . , s(e − T · d), . . .) e ∈ T (S). (12.45)

For the generation of a cell program, we have to know the following information for
every timestep: the operation to perform, the source of the data, and the destination of the
results�known from assembler programs as opc, src, dst.

The operation to perform (opc) follows directly from the function F. For a cell with
control, we must also �nd the timesteps when to perform this individual function F. The set
of these timesteps, as a function of the space coordinates, can be determined by projecting
the set T (S) onto the time axis; for general polyhedric S with the aid of a Fourier-Motzkin
elimination, for example.

In system (12.45), we get a new dependence vector T ·d, consisting of two components:
a (vectorial) spatial part, and a (scalar) timely part. The spatial part ∆z, as a difference vec-
tor, speci�es which neighbouring cell has calculated the operand. We directly can translate
this information, concerning the input of operands to cell z, into a port speci�er with port
position −∆z, serving as the src operand of the instruction. In the same way, the cell cal-
culating the operand, with position z − ∆z, must write this value to a port with port position
∆z, used as the dst operand in the instruction.

The timely part of T · d speci�es, as a time difference ∆t, when the calculation of the
operand has been performed. If ∆t = 1, this information is irrelevant, because the reading
cell z always gets the output of the immediately preceding timestep from neighbouring cells.
However, for ∆t > 1, the value must be buffered for ∆t− 1 timesteps, either by the producer
cell z − ∆z, or by the consumer cell z�or by both, sharing the burden. This need can be
realised in the cell program, for example, with ∆t − 1 copy instructions executed by the
producer cell z − ∆z, preserving the value of the operand until its �nal output from the cell
by passing it through ∆t − 1 registers.

Applying this method to system (12.37), with transformation matrix T as in (12.38),
yields

s(x, y, t) = s(x − 1, y, t − 1)
a(x, y, t) = a(x, y − 1, t − 1)

b(x, y, t) =

{
b(x − 1, y, t − 1) : s(x − 1, y, t − 1) = 0
c(x, y, t − 1) : s(x − 1, y, t − 1) = 1

c(x, y, t) =



c(x, y, t − 1)
+ a(x, y − 1, t − 1)
· b(x − 1, y, t − 1) : s(x − 1, y, t − 1) = 0
b(x − 1, y, t − 1) : s(x − 1, y, t − 1) = 1

(12.46)

The iteration variable l, being relevant only for the input/output scheme, can be set to
a �xed value prior to the transformation. The corresponding cell program for the systolic
array from Figure 12.12, performed once in every timestep, reads as follows:

12.4. Control 559

C-P

1 S← C(−1, 0)(0)
2 A← C(0,−1)
3 B← C(−1, 0)(1 : N)
4 C(1, 0)(0)← S

5 C(0, 1)← A

6 if S = 1
7 then C(1, 0)(1 : N)← C

8 C← B

9 else C(1, 0)(1 : N)← B

10 C← C + A · B

The port speci�ers stand for local input/output to/from the cell. For each, a pair of
quali�ers is derived from the geometric position of the ports relative to the centre of the cell.
Port C(0,−1) is situated on the left border of the cell, C(0, 1) on the right border; C(−1, 0)
is above the centre, C(1, 0) below. Each port speci�er can be augmented by a bit range:
C(−1, 0)(0) stands for bit 0 of the port, only; C(−1, 0)(1 : N) denotes the bits 1 to N. The
designations A, B, . . . without port quali�ers stand for registers of the cell.

By application of matrix T from (12.13) to system (12.36), we get

a(x, y, t) = a(x, y − 1, t − 1) 1 + x + y ≤ t ≤ x + y + N3 ,

b(x, y, t) = b(x − 1, y, t − 1) 1 + x + y ≤ t ≤ x + y + N3 ,

c(x, y, t) = c(x, y, t − 1) 1 + x + y ≤ t ≤ x + y + N3 ,

+ a(x, y − 1, t − 1) · b(x − 1, y, t − 1)
b(x, y, t) = c(x, y, t − 1) x + y + 1 + N3 ≤ t ≤ 2 · x + y + N3 ,

c(x, y, t) = b(x − 1, y, t − 1) x + y + 1 + N3 ≤ t ≤ 2 · x + y − 1 + N3 .

(12.47)

Now the advantages of distributed control become obvious. The cell program for
(12.46) can be written with referral to the respective timestep t, only. And thus, we need
no reaction to global control signals, no counting register, no counting operations, and no
coding of the local cell coordinates.

Exercises
12.4-1 Specify appropriate input/output schemes for performing, on the systolic arrays pre-
sented in Figures 12.11 and 12.12, two evaluations of system (12.36) that follow each other
closest in time.
12.4-2 How could we change the systolic array from Figure 12.12, to efficiently support
the calculation of matrix products with parameters M1 < N1 or M2 < N2?
12.4-3 Write a cell program for the systolic array from Figure 12.3.
12.4-4? Which throughput allows the systolic array from Figure 12.3 for the assumed va-
lues of N1,N2,N3? Which for general N1,N2,N3?
12.4-5? Modify the systolic array from Figure 12.1 such that the results stored in stati-
onary variables are output through additional links directed half right down, i.e., from cell
(i, j) to cell (i+1, j+1). Develop an assignment-free equation system functionally equivalent
to system (12.36), that is compatible with the extended structure. How looks the resulting

560 12. Systolic Systems

min

max

(b)(a)

X

M

S

01 1 1 1
MAX MAX MAX MAX MAX

x1

x2

x3

x4

x5

m1

m2

m3

m4

m5

Figure 12.14. Bubble sort algorithm on a linear systolic array. (a) Array structure with input/output scheme. (b)
Cell structure.

input/output scheme? Which period is obtained?

12.5. Linear systolic arrays
Explanations in the sections above heavily focused on two-dimensional systolic arrays, but
in principle also apply to one-dimensional systolic arrays, called linear systolic arrays in
the sequel. The most relevant difference between both kinds concerns the boundary of the
systolic array. Linear systolic arrays can be regarded as consisting of boundary cells, only;
under this assumption, input from and output to the host computer needs no special concern.
However, the geometry of a linear systolic array provides one full dimension as well as one
�ctitious dimension, and thus communication along the full-dimensional axis may involve
similar questions as in section 12.3.5. Eventually, the boundary of the linear systolic array
can also be de�ned in a radically different way, namely to consist of both end cells, only.

12.5.1. Matrix-vector product
If we set one of the problem parameters N1 or N2 to value 1 for a systolic array as that from
Figure 12.1, the matrix product means to multiply a matrix by a vector, from left or right.
The two-dimensional systolic array then degenerates to a one-dimensional systolic array.
The vector by which to multiply is provided as an input data stream through an end cell of
the linear systolic array. The matrix items are input to the array simultaneously, using the
complete broadside.

As for full matrix product, results emerge stationary. But now, they either can be drained
along the array to one of the end cells, or they are sent directly from the producer cells to
the host computer. Both methods result in different control mechanisms, time schemes, and
running time.

12.5. Linear systolic arrays 561

Now, would it be possible to provide all inputs via end cells? The answer is negative
if the running time should be of complexity Θ(N). Matrix A contains Θ(N2) items, thus
there are Θ(N) items per timestep to read. But the number of items receivable through an
end cell during one timestep is bounded. Thus, the input/output data rate�of order Θ(N),
here�may already constrain the possible design space.

12.5.2. Sorting algorithms
For sorting, the task is to bring the elements from a set {x1, . . . , xN}, subset of a totally
ordered basic set G, into an ascending order {mi}i=1,...,N where mi ≤ mk for i < k. A solution
to this problem is described by the following assignment-free equation system, where MAX
denotes the maximum in G:

input operations
x(i, j) = xi 1 ≤ i ≤ N, j = 0,
m(i, j) = MAX 1 ≤ j ≤ N, i = j − 1 .

calculations
m(i, j) = min{x(i, j − 1),m(i − 1, j)} 1 ≤ i ≤ N, 1 ≤ j ≤ i ,
x(i, j) = max{x(i, j − 1),m(i − 1, j)} 1 ≤ i ≤ N, 1 ≤ j ≤ i .

output operations
m(i, j) = m j 1 ≤ j ≤ N, i = N .

(12.48)

By completing a projection along direction u = (1, 1) to a space-time transformation
(

x
t

)
=

(
1 −1
1 1

)
·
(

i
j

)
, (12.49)

we get the linear systolic array from Figure 12.14, as an implementation of the bubble
sort algorithm.

Correspondingly, the space-time matrix

T =

(
0 1
1 1

)
(12.50)

would induce another linear systolic array, that implements insertion sort. Eventually,
the space-time matrix

T =

(
1 0
1 1

)
(12.51)

would lead to still another linear systolic array, this one for selection sort.
For the sorting problem, we have Θ(N) input items, Θ(N) output items, and Θ(N) times-

teps. This results in an input/output data rate of order Θ(1). In contrast to the matrix-vector
product from section 12.5.1, the sorting problem with any prescribed input/output data rate
in principle allows to perform the communication exclusively through the end cells of a
linear systolic array.

Note that, in all three variants of sorting described so far, direct input is necessary to

562 12. Systolic Systems

all cells: the values to order for bubble sort, the constant values MAX for insertion sort, and
both for selection sort. However, instead of inputting the constants, the cells could generate
them, or read them from a local memory.

All three variants require a cell control: insertion sort and selection sort use stationary
variables; bubble sort has to switch between the processing of input data and the output of
calculated values.

12.5.3. Lower triangular linear equation systems
System (12.52) below describes a localised algorithm for solving the linear equation system
A · x = b, where the N × N matrix A is a lower triangular matrix.

input operations
a(i, j) = ai, j+1 1 ≤ i ≤ N, 0 ≤ j ≤ i − 1 ,
u(i, j) = bi 1 ≤ i ≤ N, j = 0 .

calculations and forwarding
u(i, j) = u(i, j − 1) − a(i, j − 1) · x(i − 1, j) 2 ≤ i ≤ N, 1 ≤ j ≤ i − 1 ,
x(i, j) = u(i, j − 1)/a(i, j − 1) 1 ≤ i ≤ N, j = i ,
x(i, j) = x(i − 1, j) 2 ≤ i ≤ N − 1, 1 ≤ j ≤ i − 1 .

output operations
xi = x(i, j) 1 ≤ i ≤ N, j = i .

(12.52)

All previous examples had in common that, apart from copy operations, the same kind
of calculation had to be performed for each domain point: fused multiply/add for the matrix
algorithms, minimum and maximum for the sorting algorithms. In contrast, system (12.52)
contains some domain points where multiply and subtract is required, as well as some others
needing division.

When projecting system (12.52) to a linear systolic array, depending on the chosen
projection direction we get �xed or varying cell functions. Peculiar for projecting along
u = (1, 1), we see a single cell with divider; all other cells need a multiply/subtract unit.
Projection along u = (1, 0) or u = (0, 1) yields identical cells, all containing a divider as
well as a multiply/subtract unit. Projection vector u = (1,−1) results in a linear systolic array
with three different cell types: both end cells need a divider, only; all other cells contain a
multiply/subtract unit, with or without divider, alternatingly. Thus, a certain projection can
introduce inhomogeneities into a systolic array�that may be desirable, or not.

Exercises
12.5-1 For both variants of matrix-vector product as in section 12.5.1�output of the results
by an end cell versus communication by all cells�specify a suitable array structure with
input/output scheme and cell structure, including the necessary control mechanisms.
12.5-2 Study the effects of further projection directions on system (12.52).
12.5-3 Construct systolic arrays implementing insertion sort and selection sort, as mentio-
ned in section 12.5.2. Also draw the corresponding cell structures.

12. Problems 563

12.5-4? The systolic array for bubble sort from Figure 12.14 could be operated without
control by cleverly organising the input streams. Can you �nd the trick?
12.5-5? What purpose serves the value MAX in system (12.48)? How system (12.48) co-
uld be formulated without this constant value? Which consequences this would incur for the
systolic arrays described?

Problems

12-1. Band matrix algorithms
In sections 12.1, 12.2, 12.5.1, and 12.5.3, we always assumed full input matrices, i.e., each
matrix item ai j used could be nonzero in principle. (Though in a lower triangular matrix,
items above the main diagonal are all zero. Note, however, that these items are not inputs to
any of the algorithms described.)

In contrast, practical problems frequently involve band matrices, (see)cf.
Kung/Leiserson [35]. In such a matrix, most diagonals are zero, left alone a small band
around the main diagonal. Formally, we have ai j = 0 for all i, j with i − j ≥ K or j − i ≥ L,
where K and L are positive integers. The band width, i.e., the number of diagonals where
nonzero items may appear, here amounts to K + L − 1.

Now the question arises whether we could pro�t from the band structure in one or more
input matrices to optimise the systolic calculation. One opportunity would be to delete cells
doing no useful work. Other bene�ts could be shorter input/output data streams, reduced
running time, or higher throughput.

Study all systolic arrays presented in this chapter for improvements with respect to these
criteria.

Chapter notes
The term systolic array has been coined by Kung and Leiserson in their seminal paper [35].

Karp, Miller, and Winograd did some pioneering work [32] for uniform recurrence
equations.

Essential stimuli for a theory on the systematic design of systolic arrays have been Rao's
PhD dissertation [48] and the work of Quinton [47].

The contribution of Teich and Thiele [59] shows that a formal derivation of the cell cont-
rol can be achieved by methods very similar to those for a determination of the geometric
array structure and the basic cell function.

The up-to-date book by Darte, Robert, and Vivien [15] joins advanced methods from
compiler design and systolic array design, dealing also with the analysis of data dependen-
ces.

The monograph [63] still seems to be the most comprehensive work on systolic systems.
Each systolic array can also be modelled as a cellular automaton. The registers in a

cell together hold the state of the cell. Thus, a factorised state space is adequate. Cells of
different kind, for instance with varying cell functionality or position-dependent cell control,
can be described with the aid of further components of the state space.

564 12. Systolic Systems

Each systolic algorithm also can be regarded as a PRAM algorithm with the same timing
behaviour. Thereby, each register in a systolic cell corresponds to a PRAM memory cell,
and vice versa. The EREW PRAM model is sufficient, because in every timestep exactly
one systolic cell reads from this register, and then exactly one systolic cell writes to this
register.

Each systolic system also is a special kind of synchronous network as de�ned by Lynch
[37]. Time complexity measures agree. Communication complexity usually is no topic with
systolic arrays. Restriction to input/output through boundary cells, frequently demanded for
systolic arrays, also can be modelled in a synchronous network. The concept of failures is
not required for systolic arrays.

The book [54] due to Sima, Kacsuk and Fountaine considers systolic systems in details.

Bibliography

[1] S. Albers, H. Bals. Dynamic TCP acknowledgement, penalizing long delays. In Proceedings of the 25th
ACM-SIAM Symposium on Discrete Algorithms, pp. 47�55, 2003. 83

[2] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, O. Waarts. On-line load balancing with applications to machine sche-
duling and virtual circuit routing. Journal of the ACM, 44:486�504, 1997. 83, 84

[3] J-P. Aubin. Mathematical Methods of Game and Economic Theory. North-Holland, 1979. 51
[4] B. Awerbuch, Y. Azar S. Plotkin. Throughput-competitive online routing. In Proceedings of the 34th Annual

Symposium on Foundations of Computer Science, pp. 32�40, 1993. 83
[5] Y. Azar. On-line load balancing. Lecture Notes in Computer Science, Vol. 1442. Springer-Verlag, pp. 178�

195, 1998. 84
[6] B. S. Baker, J. S. Schwartz. Shelf algorithms for two dimensional packing problems. SIAM Journal on

Computing, 12:508�525, 1983. 83
[7] A. Borodin R. El-Yaniv. Online computation and competitive analysis. Cambridge University Press, 1998.

83
[8] L. E. J. Brouwer. Über Abbildung von Manningfaltigkeiten. Mathematische Annalen, pp. 97�115. 51
[9] Y. Cho, S. Sahni. Bounds for list schedules on uniform processors. SIAM Journal on Computing, 9(1):91�

103, 1980. 84
[10] M. Chrobak, L. Larmore. An optimal algorithm for k-servers on trees. SIAM Journal on Computing, 20:144�

148, 1991. 83
[11] M. Chrobak, L. Larmore. The server problem and on-line games. DIMACS Series in Discrete Mathematics

and Theoretical Computer Science, Vol. 7, pp. 11-64. American Mathematical Society, 1992. 83
[12] M. Chrobak, H. J. Karloff, T. Payne, S. Vishwanathan. New results on the server problem. SIAM Journal on

Discrete Mathematics, 4:172�181, 1991. 83
[13] J. Csirik, G. Woeginger. On-line packing and covering problems. Lecture Notes in Computer Science, Vol.

1442, pp. 147�177. Springer-Verlag, 1998. 83
[14] J. Csirik, G. J. Woeginger. Shelf algorithms for on-line strip packing. Information Processing Letters,

63:171�175, 1997. 84
[15] A. Darte, Y. Robert, F. Vivien. Scheduling and Automatic Parallelization. Birkhäuser Boston, 2000. 563
[16] D. R. Dooly, S. A. Goldman, S. D. Scott. On-line analysis of the TCP acknowledgement delay problem.

Journal of the ACM, 48:243�273, 2001. 83, 84
[17] Gy. Dósa, Y. He. Better online algorithms for scheduling with machine cost. SIAM Journal on Computing,

33(5):1035�1051, 2004. 84
[18] A. Fiat, Y. Rabani, Y. Ravid. Competitive k-server algorithms. Journal of Computer and System Sciences,

48:410�428, 1994. 83
[19] A. Fiat, G. Woeginger (szerkeszt�ok). Online Algorithms. The State of Art. Springer-Verlag, 1998. 83
[20] R. Fleischer, M. Wahl. On-line scheduling revisited. Journal of Scheduling, 3(6):343�353, 2000. 84
[21] F. Forgó, J. Szép, F. Szidarovszky. Introduction to the Theory of Games: Concepts, Methods and Applicati-

ons. Kluwer Academic Publishers, 1999. 51, 52

http://www.informatik.uni-freiburg.de/~salbers/�
http://www.cs.yale.edu/homes/aspnes/�
http://www.math.tau.ac.il/~azar/�
http://www.math.tau.ac.il/~fiat/�
http://troll-w.stanford.edu/plotkin/�
http://www.acm.org�
file:www.elsevier.nl/.dvi�
http://www.cs.jhu.edu/~baruch/�
http://www.math.tau.ac.il/~azar/�
http://troll-w.stanford.edu/plotkin/�
http://www.math.tau.ac.il/~azar/�
http://www.link.springer.de/link/service/series/0558/index.htm�
http://www.springer.de/ �
http://cm.bell-labs.com/who/bsb/�
http://epubs.siam.org/sam-bin/dbq/toclist/SICOMP�
http://www.cs.toronto.edu/~bor/�
http://www.cs.technion.ac.il/~rani/�
http://uk.cambridge.org/�
http://ssrnet.snu.ac.kr/~cho/�
http://www.cise.ufl.edu/~sahni/�
http://epubs.siam.org/sam-bin/dbq/toclist/SICOMP�
http://www.cs.ucr.edu/~marek/�
http://www.egr.unlv.edu/~larmore/�
http://epubs.siam.org/sam-bin/dbq/toclist/SICOMP�
http://www.cs.ucr.edu/~marek/�
http://www.egr.unlv.edu/~larmore/�
http://dimacs.rutgers.edu/Volumes/index.html�
http://www.ams.org/�
http://www.cs.ucr.edu/~marek/�
http://www.cs.ucr.edu/~thp/�
http://www.cse.iitb.ac.in/~sundar/�
http://epubs.siam.org/sam-bin/dbq/toclist/SIDMA�
http://www.inf.u-szeged.hu/~csirik�
http://www.win.tue.nl/~gwoegi/�
http://www.link.springer.de/link/service/series/0558/index.htm�
http://www.springer.de/�
http://www.inf.u-szeged.hu/~csirik�
http://www.win.tue.nl/~gwoegi/�
http://perso.ens-lyon.fr/alain.darte/�
http://graal.ens-lyon.fr/~yrobert/�
http://graal.ens-lyon.fr/~fvivien/�
file:www.birkhauser.com/.dvi�
http://www.cs.wustl.edu/~drd1/�
http://www.cs.wustl.edu/~sg/�
http://www.cse.unl.edu/~sscott/�
http://www.acm.org�
http://epubs.siam.org/sam-bin/dbq/toclist/SICOMP�
http://www.math.tau.ac.il/~fiat/�
http://www.cs.technion.ac.il/~rabani/�
http://www.sciencedirect.com/science/journal/00220000/�
http://www.math.tau.ac.il/~fiat/�
http://www.win.tue.nl/~gwoegi/�
http://www.springer.de/�
http://www.cs.ust.hk/~rudolf/�
http://www3.interscience.wiley.com/cgi-bin/jhome/6265�
http://www.sie.arizona.edu/faculty/szidar.html�
file:www.wkap�

566 Bibliography

[22] R. L. Graham. Bounds for certain multiprocessor anomalies. The Bell System Technical Journal, 45:1563�
1581, 1966. 84

[23] G. Hadley. Nonlinear and Dynamic Programming. Addison-Wesley, 1964. 52
[24] Cs. Imreh. Online strip packing with modi�able boxes. Operations Research Letters, 66:79�86, 2001. 84
[25] Cs. Imreh, J. Noga. Scheduling with machine cost. In Proceedings of APPROX'99, Lecture Notes in

Computer Science, Vol. 1540, pp. 168�176, 1999. 84
[26] D. S. Johnson. Near-Optimal Bin Packing Algorithms. PhD thesis. 83
[27] D. S. Johnson. Fast algorithms for bin packing. Journal of Computer and System Sciences, 8:272�314, 1974.

83
[28] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, R. L. Graham. Worst-case performance-bounds for

simple one-dimensional bin packing algorithms. SIAM Journal on Computing, 3:299�325, 1974. 83
[29] S. Kakutani. A generalization of Brouwer's �xed point theorem. Duke Mathematical Journal, 8:457�459,

1941. 51
[30] S. Karamardian. The nonlinear complementarity problems with applications. I, II. Journal of Optimization

Theory and Applications, 4:87�98 and 167�181, 1969. 52
[31] A. R. Karlin, C. Kenyon, D. Randall. Dynamic TCP acknowledgement and other stories about e/(e − 1). In

Proceedings of the 31st Annual ACM Symposium on Theory of Computing, 502�509. o., 2001. 83
[32] R. M. Karp, R. E. Miller, S. Winograd. The organization of computations for uniform recurrence equations.

Journal of the ACM, 14:563�590, 1967. 563
[33] E. Koutsoupias, C. Papadimitriou. On the k-server conjecture. Journal of the ACM, 42:971�983, 1995. 83
[34] H. W. Kuhn, A. Tucker (szerkeszt�ok). Contributions to the Theory of Games. II. Princeton University Press,

1953. 51
[35] H. T. Kung, C. E. Leiserson. Systolic arrays (for VLSI). In I. S. Duff, G. W. Stewart (szerkeszt�ok), Sparse

Matrix Proceedings, pp. 256�282. SIAM, 1978. 563
[36] S. Leonardi. On-line network routing. Lecture Notes in Computer Science, Vol. 1442, pp. 242�267. Springer-

Verlag, 1998. 83
[37] N. A. Lynch. Distributed Algorithms. Morgan Kaufman Publisher, 2001 (�fth edition). 564
[38] M. Manasse, L. McGeoch, D. Sleator. Competitive algorithms for server problems. Journal of Algorithms,

11:208�230, 1990. 83
[39] O. Mangasarian, H. Stone. Two-person zero-sum games and quadratic programming. Journal of Mathema-

tical Analysis and its Applications, 9:348�355, 1964. 52
[40] B. Martos. Nonlinear Programming Theory and Methods. Akadémiai Kiadó, 1975. 51
[41] H. Mills. Equilibrium points of �nite games. SIAM Journal of Applied Mathematics, 8:397�402, 1976. 51
[42] J. Nash. Noncooperative games. Annals of Mathematics, 54:286�295, 1951. 51
[43] J. Neumann, O. Morgenstern. Theory of Games and Economical Behaviour. Princeton University Press,

1947 (2. edition). 52
[44] H. Nikaido, K. Isoda. Note on noncooperative games. Paci�c Journal of Mathematics, 5:807�815, 1955. 51
[45] K. Okuguchi. Expectation and Stability of Oligopoly Models. Springer, 1976. 52
[46] K. Okuguchi, F. Szidarovszky. The Theory of Oligopoly with Multi-Product Firms. Springer, 1999 (2. kia-

dás). 52
[47] P. Quinton. Automatic synthesis of systolic arrays from uniform recurrent equations. In Proceedings of the

11th Annual International Symposium on Computer Architecture, pp. 208�214, 1984. 563
[48] S. K. Rao. Regular iterative algorithms and their implementations on processor arrays. Doktori értekezés,

Stanford University, 1985. 563
[49] J. Robinson. An iterative method of solving a game. Annals of Mathematics, 154:296�301, 1951. 52
[50] J. Rosen. Existence and uniqueness of equilibrium points for concave n-person games. Econometrica,

33:520�534, 1965. 52
[51] J. Sgall. On-line scheduling. Lecture Notes in Computer Science, Vol. 1442, pp. 196�231. Springer-Verlag,

1998. 84
[52] H. N. Shapiro. Note on a computation method in the theory of games. Communications on Pure and Applied

Mathematics, 11:587�593, 1958. 51

http://math.ucsd.edu/~fan/ron�
http://www.lucent.com/minds/techjournal/�
http://www.aw.com/�
http://www.inf.u-szeged.hu/~cimreh�
 http://www.sciencedirect.com/science/journal/01676377�
http://www.inf.u-szeged.hu/~cimreh/�
http://www.cs.ucr.edu/~jnoga/�
http://www.link.springer.de/link/service/series/0558/index.htm�
http://www.research.att.com/~dsj/�
http://www.research.att.com/~dsj�
http://www.sciencedirect.com/science/journal/00220000/�
http://www.research.att.com/~dsj/�
http://www.cs.cornell.edu/annual_report/00-01/bios.htm#demers�
http://www-db.stanford.edu/~ullman/�
http://cm.bell-labs.com/cm/ms/former/mrg/�
http://math.ucsd.edu/~fan/ron�
http://epubs.siam.org/sam-bin/dbq/toclist/SICOMP�
http://www.dukemathjournal.org/index.shtml�
http://www.kluweronline.com/issn/0022-3239�
http://www.cs.washington.edu/homes/karlin/�
http://www.lix.polytechnique.fr/~kenyon/�
http://www.math.gatech.edu/~randall/�
http://www.icir.org/karp/�
http://portal.acm.org/browse_dl.cfm?linked=1&part=journal&idx=J401&coll=portal&dl=ACM&CFID=10136019&CFTOKEN=486195�
http://cgi.di.uoa.gr/~elias/�
http://www.cs.berkeley.edu/~christos/�
http://www.acm.org�
file:pup.princeton.edu/.dvi�
http://theory.lcs.mit.edu/~cel/�
http://www.siam.org/�
http://www.dis.uniroma1.it/~leon/�
http://www.link.springer.de/link/service/series/0558/index.htm�
http://www.springer.de/�
http://theory.lcs.mit.edu/~lynch�
file:www.mkp.com/.dvi�
http://research.microsoft.com/users/manasse/�
http://www.cs.amherst.edu/lam/�
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/user/sleator/www/�
file:www.academicpress.com/jalgor.dvi�
file:www.akkrt.hu/.dvi�
http://epubs.siam.org/sam-bin/dbq/toclist/SIAP�
http://www.math.princeton.edu/~annals/�
http://pup.princeton.edu/�
http://nyjm.albany.edu:8000/PacJ/�
http://www.nanzan-u.ac.jp/~economic/STAFF/okuguchi.html�
http://www.springer-ny.com/�
http://www.nanzan-u.ac.jp/~economic/STAFF/okuguchi.html�
http://www.sie.arizona.edu/faculty/szidar.html�
http://www.springer-ny.com/�
http://www.irisa.fr/cosi/Quinton/�
file:www.acm.org/dl/.dvi�
http://www.cs.berkeley.edu/~satishr�
file:www.stanford.edu/.dvi�
http://www.math.princeton.edu/~annals/�
http://www.jstor.org/journals/00129682.html�
http://www.math.cas.cz/~sgall/�
http://www.link.springer.de/link/service/series/0558/index.htm�
http://www.springer.de/�
http://www3.interscience.wiley.com/cgi-bin/jhome/29240�

Bibliography 567

[53] D. B. Shmoys, J. Wein, D. P. Williamson. Scheduling parallel machines online. SIAM Journal on Computing,
24:1313�1331, 1995. 84

[54] D. Sima, T. Fountain, P. Kacsuk. Advanced Computer Architectures: a Design Space Approach. Addison-
Wesley Publishing Company, 1998 (2. edition). 564

[55] D. Sleator R. E. Tarjan. Amortized efficiency of list update and paging rules. Communications of the ACM,
28:202�208, 1985. 84

[56] F. Szidarovszky, C. Chiarella. Dynamic oligopolies, stability and bifurcation. Cubo Mathemática Educatio-
nal, 3(2):267�284, 2001. 52

[57] F. Szidarovszky, S. Yakowitz. Principles and Procedures of Numerical Analysis. Plenum Press, 1998. 51, 52
[58] A. Tarski. A lattice-theoretical �xpoint theorem and its application. Paci�c Journal of Mathematics, 5:285�

308, 1955. 51
[59] J. Teich, L. Thiele. Control generation in the design of processor arrays. International Journal of VLSI and

Signal Processing, 3(2):77�92, 1991. 563
[60] A. van Vliet. An improved lower bound for on-line bin packing algorithms. Information Processing Letters,

43:277�284, 1992. 83
[61] A. C. C. Yao. New algorithms for bin packing. Journal of the ACM, 27:207�227, 1980. 84
[62] N. Young. On-line �le caching. Algorithmica, 33:371�383, 2002. 83
[63] E. Zehendner. Entwurf systolischer Systeme: Abbildung regulärer Algorithmen auf synchrone Prozessorar-

rays. B. G. Teubner Verlagsgesellschaft, 1996. 563
[64] S. I. Zuhovitsky, R. A. Polyak, M. E. Primak. Concave n-person games (numerical methods). Ékonomika i

Matematicheskie Methody, 7:888�900, 1971 (in Russian). 52
[65] A. van Vliet. Lower and upper bounds for on-line bin packing and scheduling heuristics. PhD thesis,

Erasmus University, Rotterdam, 1995. 83
[66] A. Vestjens. On-line machine scheduling. PhD thesis, Eindhoven University of Technology, 1997. 84

http://www.orie.cornell.edu/~shmoys/�
http://ebbets.poly.edu/PDC-lab/wein.html�
http://www.almaden.ibm.com/cs/people/dpw/�
http://epubs.siam.org/sam-bin/dbq/toclist/SICOMP�
http://www.bmf.hu/02szervezeti/sima_dezso.htm�
http://www.lpds.sztaki.hu/index.php?menu=staff&&load=staff/member.php&&mid=0�
http://www.aw.com/�
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/user/sleator/www/�
http://www.cs.princeton.edu/~ret/�
http://portal.acm.org/browse_dl.cfm?linked=1&part=magazine&idx=J79&coll=portal&dl=ACM&CFID=10136019&CFTOKEN=486195�
http://www.sie.arizona.edu/faculty/szidar.html�
http://www.sie.arizona.edu/faculty/szidar.html�
http://isbndb.com/d/publisher/plenum_press.html�
http://nyjm.albany.edu:8000/PacJ/�
http://www-date.uni-paderborn.de/MEMBERS/teich.html�
http://www.tik.ee.ethz.ch/~thiele/�
http://www.kluweronline.com/issn/0922-5773/contents�
http://www.elsevier.nl/inca/publications/store/5/0/5/6/1/2/�
http://www.cs.princeton.edu/~yao/�
http://www.acm.org�
http://www.cs.ucr.edu/~neal/�
http://link.springer.de/link/service/journals/00453/�
http://www2.informatik.uni-jena.de/~nez/�
http://www.teubner.de/�
http://www.eur.nl/�
http://w3.tue.nl/en/�

Name index

A, Á
Albers, Susanne, 83, 565
Aspnes, James, 83, 84, 565
Aubin, Jean-Pierre, 51, 565
Awerbuch, Baruch, 83, 565
Azar, Yossi, 83, 84, 565

B
Baker, S. Brenda, 73, 83, 565
Bals, Helge, 83, 565
Banach, Stephan (1892�1945), 14
Borodin, Allan, 565
Brouwer, Luitzer Egbertus Jan (1881�1966), 14, 51,

565

C
Cauchy, Augustin-Louis (1789�1857), 32
Chiarella, Carl, 52, 567
Cho, Yookun, 84, 565
Chrobak, Marek, 58, 83, 565
Cournot, Antoine Augustin (1801�1877), 41, 52

CS
Csirik, János, 75, 83, 84, 565

D
Darte, Alain, 563, 565
Demers, Alan, 83, 566
Dooly, R. Dan, 61, 83, 565
Dósa, György, 565
Dömösi Pál, 3
Duff, Iain S., 566

E, É
Einstein, Albert (1879�1955), 528
El-Yaniv, Ran, 565

F
Fan, Ky, 15, 39, 51
Fiat, Amos, 57, 83, 84, 565
Fleischer, Rudolf, 84, 565
Forgó, Ferenc, 51, 565

Fountain, Terence J., 564, 567
Fourier, Jean Baptiste Joseph (1768�1830), 558

G
Garey, Michael R., 83, 566
Goldman, A. Sally, 61, 83, 565
Graham, Ronald Lewis, 75, 83, 84, 565, 566

H
Hadley, George F., 52, 566
He, Yong, 565

I, Í
Imreh, Csanád, 566
Isoda, K., 566

J
Jacobi, Carl Gustav Jacob (1804�1851), 17
Johnson, David S., 83, 566

K
Kacsuk, Péter, 564, 567
Kakutani, Shizou, 14, 51, 566
Karamardian, S., 566
Karlin, Anna R., 83, 566
Karloff, J. Howard, 83, 565
Karp, Richard M., 563, 566
Kenyon, Claire, 83, 566
Koutsoupias, Elias, 57, 83, 566
Kuhn, Harold W., 16, 51, 566
Kung, H. T., 563, 566
Kutta, Wilhelm Martin (1867�1944), 33

L
Lagrange, Joseph Louis (1736�1813), 31
Larmore, Lawrence, 58, 83, 565
Leiserson, Charles E., 563, 566
Leonardi, Stefano, 83, 566
Lynch, Nancy Ann, 566

M

Name index 569

Manasse, Mark, 55, 83, 566
Mangasarian, Olvi L., 566
Martos, Béla, 51, 566
McGeoch, Lyle, 55, 83, 566
Miller, Raymond E., 563, 566
Mills, H., 566
Morgenstern, Oscar (1902�1976), 52, 566
Motzkin, Theodore Samuel, 558

N
Nash, John F., Jr., 6, 51, 566
Neumann, John, von (1903�1957), 30, 52, 566
Nikaido, Hukukane, 51, 566
Noga, John, 566

O, Ó
Okuguchi, Koji, 52, 566

P
Papadimitriou, Christos H., 57, 83, 566
Payne, Tom, 83, 565
Plotkin, Serge, 83, 84, 565
Polyak, Roman A., 567
Primak, M. E., 567

Q
Quinton, Patrice, 563, 566

R
Rabani, Yuval, 57, 83, 565
Randall, Dana, 83, 566
Rao, Sailesh K., 563, 566
Ravid, Yiftach, 57, 83, 565
Robert, Yves, 563, 565
Robinson, Julia, 52, 566
Rosen, J. B., 52, 566
Runge, Carl David Tolmé (1856�1927), 33

S
Sahni, Sartaj, 84, 565
Schwartz, Jacob Theodore, 32
Schwarz, S. Jerald, 73, 83, 565
Scott, D. Stephen, 61, 83, 565
Sgall, Jirí, 84, 566
Shapiro, Harold N., 566

Shmoys, David B., 84, 566
Sima, Dezs�o, 564, 567
Sleator, Daniel, 55, 83, 566, 567
Stewart, G. W., 566
Stone, H., 566

SZ
Szép, Jen�o (1920�2004), 51, 565
Szidarovszky, Ferenc, 51, 52, 565�567

T
Tarjan, Robert Endre, 567
Tarski, Alfred, 51
Tarski, Alfred (1902�1983), 14, 567
Teich, Jürgen, 563, 567
Thiele, Lothar, 563, 567
Tucker, Albert W., 16, 51, 566

U, Ú
Ullman, Jeffrey D., 83
Ullman, Jeffrey David, 566

V
van Vliet, André, 83, 567
Vestjens, Arjen, 81, 84, 567
Vishwanathan, Sundar, 83, 565
Vivien, Frédéric, 563, 565

W
Waarts, Orli, 83, 84, 565
Wahl, Michaela, 84, 565
Wein, Joel, 84, 566
Williamson, David P., 84, 566
Winograd, Shmuel, 563, 566
Woeginger, J. Gerhard, 75, 83, 84, 565

Y
Yakowitz, Sidney, 52, 567
Yao, C. C. Andrew, 567
Young, Neal, 63, 83, 567

Z
Zehendner, Eberhard, 563, 567
Zuhovitsky, S. I., 52, 567

Subject Index

A, Á
aggregation function, 15
A , 61
alarming algorithms, 61
algorithm FF, 70
assignment-free notation, 526, 537
asymptotically C-competitive, 54
asymptotic competitive ratio, 54
average case analysis, 53

B
backward induction, 10
BAL, see BALANCE
BALANCE, 55
band matrix, 563
band width, 563
best reply mapping, 14
bimatrix games, 20
box packing problem, 73
bubble sort, 560áb, 561

C
C-competitive, 54
cell, 523, 529, 539

boundary, 524, 540, 544, 545, 553, 560
program, 555
structure of, 523áb, 524, 533áb, 534, 539, 540,

555áb, 560áb
with distributed control, 552�555, 553
with global control, 548áb, 549
with local control, 549�552
without control, 549

cellular automaton, 563
C-(k, h)-competitive, 63
classical Cournot model, 41
clear, 526, 530, 549
clock signal, 523, 528, 529, 549
communication

external, 528
internal, 528

communication topology
hexagonal, 538
of systolic array, 537, 555
orthogonal, 538

competitive analysis, 53
competitive ratio, 54

compound operation, 527, 528, 548
con�guration of the servers, 55
connection pattern, 524, 534
continuous games, 13
control

local/global, 550, 551áb
control signal

propagated, 553
copy operation, 538

D
data

input, 527, 529
output, 527

data acknowledgement problem, 60
data dependence, 537
data �ow, 538

regular, 524
data rate, 540, 544, 561
data storage, 529
data stream, 523

input, 544, 560
input/output, 544
length of, 531

data structure index, 541, 542
data structure vector, 541
DC algorithm, 58
delay, 529, 530, 550
dependence vector, 538, 557
diagonally strictly concave games, 34
domain, 527

dense convex, 535
of input/output operations, 545
parametric, 534

dot product, 526
D- , 58

E, É
end cell, 560, 561
equational calculus, 526
EXP algorithm, 66

F
failure, 564

Subject Index 571

Fan's inequality, 15
�le caching problem, 62
�nite games, 7
�ow direction, 538, 539, 540
Fourier-Motzkin elimination, 558

G
games, 6
games representable by �nite trees, 10
generic operator, 526, 545

distributed, 539
global view, 556

H
hardware algorithm, 522
harmonic algorithms, 69
host computer, 523, 529, 550, 553, 554, 560

I, Í
index expression, 556
index function, 557
inhomogeneity, 562
input/output expansion, 545
input/output scheme, 523, 530, 540, 541áb, 542,

550áb, 560áb
extended, 544, 545, 545, 546áb
superposition of, 543, 544

input stream, 530, 549
length of, 530

insertion sort, 561
instance, 526, 529
interleaving, 545, 547áb
interval scheduling algorithm, 81
iteration

variable, 527, 557
vector, 527, 528, 533, 541, 542, 547

K
Kuhn�Tucker conditions, 16

L
L, 63
link, 524, 529, 538

directed, 529
LIST on-line scheduling model, 76
load, 76
load balancing routing model, 65
local view, 556

M
matrix

full, 563
unimodular, 536

matrix games, 24
M-P, 523, 524, 526, 532, 533áb, 555áb
matrix-vector product, 560
mixed extensions of �nite games, 19
multiply-add, 528

N
Nash-equilibrium, 6

NFSr algorithm, 73
nonlinear complementarity problem, 49

O, Ó
offline algorithm, 53
oligopoly game, 41
on-line algorithms, 53
on-line LPT, 81
operation

elementary, 528
input/output, 527

operation mode, 549, 551
output

delayed, 550áb
output normal form, 557
outside world, 524, 528, 530

P
packing pattern, 71
parallelism

directly express, 526
massive, 522, 523

parametric problem, 532
payoff, 6
payoff function, 6
payoff matrixes, 9
payoff vector, 6
period, 553
pipelining, 522, 523, 530, 531
players, 6
port, 524, 539

input, 524, 532, 539
output, 524, 532, 539

PRAM algorithm, 564
prisoner's dilemma, 7
problem parameter, 525
projection, 533

direction, 534, 545, 562
matrix, 533
vector, 534, 557

Q
quanti�cation, 527

R
randomized on-line algorithms, 54
recurrence equation, 526

uniform, 563
register, 539
release time, 76
reset, 548áb
retrieval cost, 62
running time

of systolic algorithm, 523, 526, 528, 537, 561

S
saddle points, 9
scalar control processor, 529
selection sort, 561
serialisation, 526
S algorithms, 73
side effect, 526
simultaneity, 528

572 Subject Index

simultaneous strategy vector, 6
size, 62
skew, 530
slow down, 550
snapshot, 531áb, 542
sorting algorithms, 561, 562
space coordinates, 525, 533, 534

parametric, 534�537
space-time

matrix, 535, 547
transformation, 532�540, 534, 555

spurious operation, 544, 545
state �ip-�op, 551
stationary

matrix, 530, 540
variable, 530, 539, 545, 549

strategies, 6
strategy set, 6
strip packing problem, 73
symbolic evaluation, 535
symmetric matrix games, 26
synchronous, 528

network, 564
systolic, 522

algorithm, 523
architecture, 529
C-P, 559
system, 522�564, 523
timestep, 528

systolic array, 522�564, 523
architecture of, 534
border of, 530, 536, 540
boundary of, 545, 560
degenerated, 560
hexagonal, 532, 533áb, 536
linear, 560
multi-dimensional, 530
parameter of, 525
programmable, 555
rectangular, 523, 532, 555áb

shape of, 532, 535, 536
size of, 524, 535
structure of, 523, 524, 533áb, 555áb, 556, 560áb

T
the mathematical model of routing, 65
throughput, 553
Throughput routing model, 65
TIME on-line scheduling model, 76
timestep, 529

discrete, 528
time vector, 533, 539, 547, 557
transformation

of domain, 557
of index set, 557

triangular matrix
lower, 562

U, Ú
uniform algorithm, 532
utilisation, 531, 545, 548

V
value of matrix games, 24
vector packing problem, 72

W
weak competitive ratio, 54
weakly C-competitive, 54
work function, 57
W F , 57

Z
zero-sum games, 9

Contents

7. Distributed Systems (Burkhard Englert, Dariusz Kowalski, Grzegorz Male-
wicz, Alexander Shvartsman) . 5

8. Game Theory (Ferenc Szidarovszky) . 6
8.1. Finite Games . 7

8.1.1. Enumeration . 8
8.1.2. Games Represented by Finite Trees 10

8.2. Continuous Games . 13
8.2.1. Fixed-Point Methods Based on Best Responses 14
8.2.2. Applying Fan's Inequality . 15
8.2.3. Solving the Kuhn�Tucker Conditions 16
8.2.4. Reduction to Optimization Problems 18

Mixed Extension of Finite Games 19
Bimatrix games . 20
Matrix games . 24

8.2.5. Method of Fictitious Play . 25
8.2.6. Symmetric Matrix Games . 26
8.2.7. Linear Programming and Matrix Games 28
8.2.8. The Method of Von Neumann . 30
8.2.9. Diagonally Strictly Concave Games 33

Checking for Uniqueness of Equilibrium 35
Iterative Computation of Equilibrium 36

8.3. The Oligopoly Problem . 41
Best Reply Mappings . 42
Reduction to Single-Dimensional Fixed Point Problems 45
Methods Based on Kuhn�Tucker Conditions 47
Reduction to Complementarity Problems 48
Linear Oligopolies and Quadratic Programming 49

9. Online Scheduling (Imreh Csanád) . 53
9.1. Notions, de�nitions . 53
9.2. The k-server problem . 55
9.3. Models related to computer networks . 60

9.3.1. The data acknowledgement problem 60
9.3.2. The �le caching problem . 62

574 Contents

9.3.3. On-line routing . 65
9.4. On-line bin packing models . 68

9.4.1. On-line bin packing . 69
9.4.2. Multidimensional models . 72

9.5. On-line scheduling . 75
9.5.1. On-line scheduling models . 76
9.5.2. LIST model . 77
9.5.3. TIME model . 81

10. Parallel Computations (Antal Iványi and Claudia Leopold) 85
11. Network Simulation (Tibor Gyires and László Lakatos) 521
12. Systolic Systems (Eberhard Zehendner) . 522

12.1. Basic concepts of systolic systems . 522
12.1.1. An introductory example: matrix product 523
12.1.2. Problem parameters and array parameters 524
12.1.3. Space coordinates . 525
12.1.4. Serialising generic operators . 526
12.1.5. Assignment-free notation . 526
12.1.6. Elementary operations . 527
12.1.7. Discrete timesteps . 528
12.1.8. External and internal communication 528
12.1.9. Pipelining . 530

12.2. Space-time transformation and systolic arrays 532
12.2.1. Further example: matrix product without stationary variables 532
12.2.2. The space-time transformation as a global view 532
12.2.3. Parametric space coordinates . 534
12.2.4. Symbolically deriving the running time 537
12.2.5. How to unravel the communication topology 537
12.2.6. Inferring the structure of the cells 539

12.3. Input/output schemes . 540
12.3.1. From data structure indices to iteration vectors 541
12.3.2. Snapshots of data structures . 542
12.3.3. Superposition of input/output schemes 543
12.3.4. Data rates induced by space-time transformations 544
12.3.5. Input/output expansion and extended input/output scheme 544
12.3.6. Coping with stationary variables 545
12.3.7. Interleaving of calculations . 545

12.4. Control . 548
12.4.1. Cells without control . 549
12.4.2. Global control . 549
12.4.3. Local control . 549
12.4.4. Distributed control . 552
12.4.5. The cell program as a local view 555

12.5. Linear systolic arrays . 560
12.5.1. Matrix-vector product . 560
12.5.2. Sorting algorithms . 561

Contents 575

12.5.3. Lower triangular linear equation systems 562
Bibliography . 565
Name index . 568
Subject Index . 570

