
12. Systolic Systems

Systolic arrays probably constitute a perfect kind of special purpose computer. In their simp-
lest appearance, they may provide only one operation, that is repeated over and over again.
Yet, systolic arrays show an abundance of practice-oriented applications, mainly in �elds do-
minated by iterative procedures: numerical mathematics, combinatorial optimisation, linear
algebra, algorithmic graph theory, image and signal processing, speech and text processing,
et cetera.

For a systolic array can be tailored to the structure of its one and only algorithm thus
accurately! So that time and place of each executed operation are �xed once and for all. And
communicating cells are permanently and directly connected, no switching required. The
algorithm has in fact become hardwired. Systolic algorithms in this respect are considered
to be hardware algorithms.

Please note that the term systolic algorithms usually does not refer to a set of concrete
algorithms for solving a single speci�c computational problem, as for instance sorting. And
this is quite in contrast to terms like sorting algorithms. Rather, systolic algorithms cons-
titute a special style of speci�cation, programming, and computation. So algorithms from
many different areas of application can be systolic in style. But probably not all well-known
algorithms from such an area might be suited to systolic computation.

Hence, this chapter does not intend to present all systolic algorithms, nor will it int-
roduce even the most important systolic algorithms from any �eld of application. Instead,
with a few simple but typical examples, we try to lay the foundations for the readers' general
understanding of systolic algorithms.

The rest of this chapter is organised as follows: Section 12.1 shows some basic con-
cepts of systolic systems by means of an introductory example. Section 12.2 explains how
systolic arrays formally emerge from space-time transformations. Section 12.3 deals with
input/output schemes. Section 12.4 is devoted to all aspects of control in systolic arrays. In
section 12.5 we study the class of linear systolic arrays, raising further questions.

12.1. Basic concepts of systolic systems
The designation systolic follows from the operational principle of the systolic architecture.
The systolic style is characterised by an intensive application of both pipelining and pa-

522 12. Systolic Systems

+*

(b)(a)

A

B

C0

0 0

0 0

0

a11a12a13a14

a21a22a23a24

a31a32a33a34

b11

b12

b13

b14

b15

b21

b22

b23

b24

b25

b31

b32

b33

b34

b35

b41

b42

b43

b44

b45

c11 c12 c13 c14 c15

c21 c22 c23 c24 c25

c31 c32 c33 c34 c35

Figure 12.1. Rectangular systolic array for matrix product. (a) Array structure and input scheme. (b) Cell structure.

rallelism, controlled by a global and completely synchronous clock. Data streams pulsate
rhythmically through the communication network, like streams of blood are driven from the
heart through the veins of the body. Here, pipelining is not constrained to a single space axis
but concerns all data streams possibly moving in different directions and intersecting in the
cells of the systolic array.

A systolic system typically consists of a host computer, and the actual systolic array.
Conceptionally, the host computer is of minor importance, just controlling the operation
of the systolic array and supplying the data. The systolic array can be understood as a
specialised network of cells rapidly performing data-intensive computations, supported by
massive parallelism. A systolic algorithm is the program collaboratively executed by the
cells of a systolic array.

Systolic arrays may appear very differently, but usually share a couple of key features:
discrete time scheme, synchronous operation, regular (frequently two-dimensional) geo-
metric layout, communication limited to directly neighbouring cells, and spartan control
mechanisms.

In this section, we explain fundamental phenomena in context of systolic arrays, dri-
ven by a running example. A computational problem usually allows several solutions, each
implemented by a speci�c systolic array. Among these, the most attractive designs (in wha-
tever respect) may be very complex. Note, however, that in this educational text we are less
interested in advanced solutions, but strive to present important concepts compactly and
intuitively.

12.1.1. An introductory example: matrix product
Figure 12.1 shows a rectangular systolic array consisting of 15 cells for multiplying a 3×N
matrix A by an N × 5 matrix B. The parameter N is not re�ected in the structure of this
particular systolic array, but in the input scheme and the running time of the algorithm.

The input scheme depicted is based on the special choice of parameter N = 4. There-
fore, Figure 12.1 gives a solution to the following problem instance:

12.1. Basic concepts of systolic systems 523

A · B = C ,

where

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

 ,

B =



b11 b12 b13 b14 b15
b21 b22 b23 b24 b25
b31 b32 b33 b34 b35
b41 b42 b43 b44 b45


,

C =


c11 c12 c13 c14 c15
c21 c22 c23 c24 c25
c31 c32 c33 c34 c35

 ,

and

ci j =

4∑

k=1
aik · bk j (1 ≤ i ≤ 3, 1 ≤ j ≤ 5) .

The cells of the systolic array can exchange data through links, drawn as arrows bet-
ween the cells in Figure 12.1(a). Boundary cells of the systolic array can also communicate
with the outside world. All cells of the systolic array share a common connection pattern
for communicating with their environment. The completely regular structure of the systolic
array (placement and connection pattern of the cells) induces regular data �ows along all
connecting directions.

Figure 12.1(b) shows the internal structure of a cell. We �nd a multiplier, an adder,
three registers, and four ports, plus some wiring between these units. Each port represents
an interface to some external link that is attached to the cell. All our cells are of the same
structure.

Each of the registers A, B, C can store a single data item. The designations of the
registers are suggestive here, but arbitrary in principle. Registers A and B get their values
from input ports, shown in Figure 12.1(b) as small circles on the left resp. upper border of
the cell.

The current values of registers A and B are used as operands of the multiplier and,
at the same time, are passed through output ports of the cell, see the circles on the right
resp. lower border. The result of the multiplication is supplied to the adder, with the second
operand originating from register C. The result of the addition eventually overwrites the past
value of register C.

12.1.2. Problem parameters and array parameters
The 15 cells of the systolic array are organised as a rectangular pattern of three rows by
�ve columns, exactly as with matrix C. Also, these dimensions directly correspond to the
number of rows of matrix A and the number of columns of matrix B. The size of the systolic

524 12. Systolic Systems

array, therefore, corresponds to the size of some data structures for the problem to solve. If
we had to multiply an N1 ×N3 matrix A by an N3 ×N2 matrix B in the general case, then we
would need a systolic array with N1 rows and N2 columns.

The quantities N1,N2,N3 are parameters of the problem to solve, because the number
of operations to perform depends on each of them; they are thus problem parameters. The
size of the systolic array, in contrast, depends on the quantities N1 and N2, only. For this
reason, N1 and N2 become also array parameters, for this particular systolic array, whereas
N3 is not an array parameter.

Remark. For matrix product, we will see another systolic array in section 12.2, with
dimensions dependent on all three problem parameters N1,N2,N3.

An N1 × N2 systolic array as shown in Figure 12.1 would also permit to multiply an
M1×M3 matrix A by an M3×M2 matrix B, where M1 ≤ N1 and M2 ≤ N2. This is important
if we intend to use the same systolic array for the multiplication of matrices of varying
dimensions. Then we would operate on a properly dimensioned rectangular subarray, only,
consisting of M1 rows and M2 columns, and located, for instance, in the upper left corner
of the complete array. The remaining cells would also work, but without any contribution to
the solution of the whole problem; they should do no harm, of course.

12.1.3. Space coordinates
Now let's assume that we want to assign unique space coordinates to each cell of a systolic
array, for characterising the geometric position of the cell relative to the whole array. In a
rectangular systolic array, we simply can use the respective row and column numbers, for
instance. The cell marked with c11 in Figure 12.1 thus would get the coordinates (1, 1), the
cell marked with c12 would get the coordinates (1, 2), cell c21 would get (2, 1), and so on.
For the remainder of this section, we take space coordinates constructed in such a way for
granted.

In principle it does not matter where the coordinate origin lies, where the axes are poin-
ting to, which direction in space corresponds to the �rst coordinate, and which to the second.
In the system presented above, the order of the coordinates has been chosen corresponding
to the designation of the matrix components. Thus, the �rst coordinate stands for the rows
numbered top to bottom from position 1, the second component stands for the columns
numbered left to right, also from position 1.

Of course, we could have made a completely different choice for the coordinate system.
But the presented system perfectly matches our particular systolic array: the indices of a
matrix element ci j computed in a cell agree with the coordinates of this cell. The entered
rows of the matrix A carry the same number as the �rst coordinate of the cells they pass;
correspondingly for the second coordinate, concerning the columns of the matrix B. All
links (and thus all passing data �ows) are in parallel to some axis, and towards ascending
coordinates.

It is not always so clear how expressive space coordinates can be determined; we refer
to the systolic array from Figure 12.3(a) as an example. But whatsoever the coordinate
system is chosen: it is important that the regular structure of the systolic array is obviously
re�ected in the coordinates of the cells. Therefore, almost always integral coordinates are
used. Moreover, the coordinates of cells with minimum Euclidean distance should differ in
one component, only, and then with distance 1.

12.1. Basic concepts of systolic systems 525

12.1.4. Serialising generic operators
Each active cell (i, j) from Figure 12.1 computes exactly the element ci j of the result matrix
C. Therefore, the cell must evaluate the dot product

4∑

k=1
aik · bk j .

This is done iteratively: in each step, a product aik ·bk j is calculated and added to the current
partial sum for ci j. Obviously, the partial sum has to be cleared�or set to another initial
value, if required�before starting the accumulation. Inspired by the classical notation of
imperative programming languages, the general proceeding could be speci�ed in pseudo-
code as follows:

M-P(N1,N2,N3)
1 for i← 1 to N1
2 do for j← 1 to N2
3 do c(i, j)← 0
4 for k ← 1 to N3
5 do c(i, j)← c(i, j) + a(i, k) · b(k, j)
6 return C

If N1 = N2 = N3 = N, we have to perform N3 multiplications, additions, and assign-
ments, each. Hence the running time of this algorithm is of order Θ(N3) for any sequential
processor.

The sum operator ∑ is one of the so-called generic operators, that combine an arbitrary
number of operands. In the systolic array from Figure 12.1, all additions contributing to
a particular sum are performed in the same cell. However, there are plenty of examples
where the individual operations of a generic operator are spread over several cells�see, for
instance, the systolic array from Figure 12.3.

Remark. Further examples of generic operators are: product, minimum, maximum, as
well as the Boolean operators , , and  .

Thus, generic operators usually have to be serialised before the calculations to perform
can be assigned to the cells of the systolic array. Since the distribution of the individual ope-
rations to the cells is not unique, generic operators generally must be dealt with in another
way than simple operators with �xed arity, as for instance the dyadic addition.

12.1.5. Assignment-free notation
Instead of using an imperative style as in algorithm M-, we better describe
systolic programs by an assignment-free notation which is based on an equational calcu-
lus. Thus we avoid side effects and are able to directly express parallelism. For instance,
we may be bothered about the reuse of the program variable c(i, j) from algorithm M-
. So, we replace c(i, j) with a sequence of instances c(i, j, k), that stand for the suc-
cessive states of c(i, j). This approach yields a so-called recurrence equation. We are now
able to state the general matrix product from algorithm M- by the following
assignment-free expressions:

526 12. Systolic Systems

input operations
c(i, j, 0) = 0 1 ≤ i ≤ N1, 1 ≤ j ≤ N2.

calculations
c(i, j, k) = c(i, j, k − 1) + a(i, k) · b(k, j) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3.

output operations
ci j = c(i, j,N3) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2 .

(12.1)

System (12.1) explicitly describes the �ne structure of the executed systolic algorithm.
The �rst equation speci�es all input data, the third equation all output data. The systolic
array implements these equations by input/output operations. Only the second equation
corresponds to real calculations.

Each equation of the system is accompanied, on the right side, by a quanti�cation. The
quanti�cation states the set of values the iteration variables i and j (and, for the second
equation, also k) should take. Such a set is called a domain. The iteration variables i, j, k
of the second equation can be combined in an iteration vector (i, j, k). For the input/output
equations, the iteration vector would consist of the components i and j, only. To get a closed
representation, we augment this vector by a third component k, that takes a �xed value.
Inputs then are characterised by k = 0, outputs by k = N3. Overall we get the following
system:

input operations
c(i, j, k) = 0 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = 0.

calculations
c(i, j, k) = c(i, j, k − 1) + a(i, k) · b(k, j) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3.

output operations
ci j = c(i, j, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = N3 .

(12.2)

Note that although the domains for the input/output equations now are formally also of
dimension 3, as a matter of fact they are only two-dimensional in the classical geometric
sense.

12.1.6. Elementary operations
From equations as in system (12.2), we directly can infer the atomic entities to perform in
the cells of the systolic array. We �nd these operations by instantiating each equation of the
system with all points of the respective domain. If an equation contains several suboperati-
ons corresponding to one point of the domain, these are seen as a compound operation, and
are always processed together by the same cell in one working cycle.

In the second equation of system (12.2), for instance, we �nd the multiplication

12.1. Basic concepts of systolic systems 527

a(i, k) · b(k, j) and the successive addition c(i, j, k) = c(i, j, k − 1) + · · · . The correspon-
ding elementary operations�multiplication and addition�are indeed executed together as
a multiply-add compound operation by the cell of the systolic array shown in Figure 12.1(b).

Now we can assign a designation to each elementary operation, also called coordinates.
A straight-forward method to de�ne suitable coordinates is provided by the iteration vectors
(i, j, k) used in the quanti�cations.

Applying this concept to system (12.1), we can for instance assign the tuple of coor-
dinates (i, j, k) to the calculation c(i, j, k) = c(i, j, k − 1) + a(i, k) · b(k, j). The same tuple
(i, j, k) is assigned to the input operation c(i, j, k) = 0, but with setting k = 0. By the way:
all domains are disjoint in this example.

If we always use the iteration vectors as designations for the calculations and the in-
put/output operations, there is no further need to distinguish between coordinates and itera-
tion vectors. Note, however, that this decision also mandates that all operations belonging
to a certain point of the domain together constitute a compound operation�even when they
appear in different equations and possibly are not related. For simplicity, we always use the
iteration vectors as coordinates in the sequel.

12.1.7. Discrete timesteps
The various elementary operations always happen in discrete timesteps in the systolic cells.
All these timesteps driving a systolic array are of equal duration. Moreover, all cells of a
systolic array work completely synchronous, i.e., they all start and �nish their respective
communication and calculation steps at the same time. Successive timesteps controlling a
cell seamlessly follow each other.

Remark. But haven't we learned from Albert Einstein that strict simultaneity is phy-
sically impossible? Indeed, all we need here are cells that operate almost simultaneously.
Technically this is guaranteed by providing to all systolic cells a common clock signal that
switches all registers of the array. Within the bounds of the usually achievable accuracy,
the communication between the cells happens sufficiently synchronised, and thus no loss
of data occurs concerning send and receive operations. Therefore, it should be justi�ed to
assume a conceptional simultaneity for theoretical reasoning.

Now we can slice the physical time into units of a timestep, and number the timesteps
consecutively. The origin on the time axis can be arbitrarily chosen, since time is running
synchronously for all cells. A reasonable decision would be to take t = 0 as the time of
the �rst input in any cell. Under this regime, the elementary compound operation of system
(12.1) designated by (i, j, k) would be executed at time i + j + k − 3. On the other hand, it
would be evenly justi�ed to assign the time i + j + k to the coordinates (i, j, k); because this
change would only induce a global time shift by three time units.

So let us assume for the following that the execution of an instance (i, j, k) starts at time
i + j + k. The �rst calculation in our example then happens at time t = 3, the last at time
t = N1 + N2 + N3. The running time thus amounts to N1 + N2 + N3 − 2 timesteps.

12.1.8. External and internal communication
Normally, the data needed for calculation by the systolic array initially are not yet located
inside the cells of the array. Rather, they must be infused into the array from the outside

528 12. Systolic Systems

world. The outside world in this case is a host computer, usually a scalar control processor
accessing a central data storage. The control processor, at the right time, fetches the neces-
sary data from the storage, passes them to the systolic array in a suitable way, and eventually
writes back the calculated results into the storage.

Each cell (i, j) must access the operands aik and bk j during the timestep concerning
index value k. But only the cells of the leftmost column of the systolic array from Figure 12.1
get the items of the matrix A directly as input data from the outside world. All other cells
must be provided with the required values aik from a neighbouring cell. This is done via the
horizontal links between neighbouring cells, see Figure 12.1(a). The item aik successively
passes the cells (i, 1), (i, 2), . . . , (i,N2). Correspondingly, the value bk j enters the array at
cell (1, j), and then �ows through the vertical links, reaching the cells (2, j), (3, j), . . . up to
cell (N1, j). An arrowhead in the Figure shows in which direction the link is oriented.

Frequently, it is considered problematic to transmit a value over large distances within
a single timestep, in a distributed or parallel architecture. Now suppose that, in our example,
cell (i, j) got the value aik during timestep t from cell (i, j − 1), or from the outside world.
For the reasons described above, aik is not passed from cell (i, j) to cell (i, j + 1) in the same
timestep t, but one timestep later, i.e., at time t + 1. This also holds for the values bk j. The
delay is visualised in the detail drawing of the cell from Figure 12.1(b): input data �owing
through a cell always pass one register, and each passed register induces a delay of exactly
one timestep.

Remark. For systolic architectures, it is mandatory that any path between two cells
contains at least one register�even when forwarding data to a neighbouring cell, only. All
registers in the cells are synchronously switched by the global clock signal of the systolic
array. This results in the characteristic rhythmical traffic on all links of the systolic array.
Because of the analogy with pulsating veins, the medical term systole has been reused for
the name of the concept.

To elucidate the delayed forwarding of values, we augment system (12.1) with further
equations. Repeatedly used values like aik are represented by separate instances, one for
each access. The result of this proceeding�that is very characteristic for the design of
systolic algorithms�is shown as system (12.3).

input operations
a(i, j, k) = aik 1 ≤ i ≤ N1, j = 0, 1 ≤ k ≤ N3 ,

b(i, j, k) = bk j i = 0, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 ,

c(i, j, k) = 0 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = 0 .

calculations and forwarding
a(i, j, k) = a(i, j − 1, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 ,

b(i, j, k) = b(i − 1, j, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 ,

c(i, j, k) = c(i, j, k − 1) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 .

+ a(i, j − 1, k) · b(i − 1, j, k)

output operations
ci j = c(i, j, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = N3 .

(12.3)

12.1. Basic concepts of systolic systems 529

Each of the partial sums c(i, j, k) in the progressive evaluation of ci j is calculated in a
certain timestep, and then used only once, namely in the next timestep. Therefore, cell (i, j)
must provide a register (named C in Figure 12.1(b)) where the value of c(i, j, k) can be stored
for one timestep. Once the old value is no longer needed, the register holding c(i, j, k) can be
overwritten with the new value c(i, j, k + 1). When eventually the dot product is completed,
the register contains the value c(i, j,N3), that is the �nal result ci j. Before performing any
computation, the register has to be cleared, i.e., preloaded with a zero value�or any other
desired value.

In contrast, there is no need to store the values aik and bk j permanently in cell (i, j).
As we can learn from Figure 12.1(a), each row of the matrix A is delayed by one timestep
with respect to the preceding row. And so are the columns of the matrix B. Thus the values
a(i, j − 1, k) and b(i − 1, j, k) arrive at cell (i, j) exactly when the calculation of c(i, j, k)
is due. They are put to the registers A resp. B, then immediately fetched from there for the
multiplication, and in the same cycle forwarded to the neighbouring cells. The values aik and
bk j are of no further use for cell (i, j) after they have been multiplied, and need not be stored
there any longer. So A and B are overwritten with new values during the next timestep.

It should be obvious from this exposition that we urgently need to make economic
use of the memory contained in a cell. Any calculation and any communication must be
coordinated in space and time in such a way that storing of values is limited to the shortest-
possible time interval. This goal can be achieved by immediately using and forwarding the
received values. Besides the overall structure of the systolic array, choosing an appropriate
input/output scheme and placing the corresponding number of delays in the cells essentially
facilitates the desired coordination. Figure 12.1(b) in this respect shows the smallest possible
delay by one timestep.

Geometrically, the input input scheme of the example resulted from skewing the matri-
ces A and B. Thereby some places in the input streams for matrix A became vacant and had
to be �lled with zero values; otherwise, the calculation of the ci j would have been garbled.
The input streams in length depend on the problem parameter N3.

As can been seen in Figure 12.1, the items of matrix C are calculated stationary, i.e.,
all additions contributing to an item ci j happen in the same cell. Stationary variables don't
move at all during the calculation in the systolic array. Stationary results eventually must
be forwarded to a border of the array in a supplementary action for getting delivered to the
outside world. Moreover, it is necessary to initialise the register for item ci j. Performing
these extra tasks requires a high expenditure of runtime and hardware. We will further study
this problem in section 12.4.

12.1.9. Pipelining
The characteristic operating style with globally synchronised discrete timesteps of equal
duration and the strict separation in time of the cells by registers suggest systolic arrays
to be special cases of pipelined systems. Here, the registers of the cells correspond to the
well-known pipeline registers. However, classical pipelines come as linear structures, only,
whereas systolic arrays frequently extend into more spatial dimensions�as visible in our
example. A multi-dimensional systolic array can be regarded as a set of interconnected
linear pipelines, with some justi�cation. Hence it should be apparent that basic properties
of one-dimensional pipelining also apply to multi-dimensional systolic arrays.

530 12. Systolic Systems

(b)(a)

x

x

xa13a14

a22a23

a31a32

b13b22

b23

b31

b32b41

c15

c24 c25

c33 c34

a12 ∗ b21 a11 ∗ b12

a21 ∗ b11

a34 ∗ b45

Figure 12.2. Two snapshots for the systolic array from Figure 12.1.

A typical effect of pipelining is the reduced utilisation at startup and during shut-down
of the operation. Initially, the pipe is empty, no pipeline stage active. Then, the �rst stage
receives data and starts working; all other stages are still idle. During the next timestep, the
�rst stage passes data to the second stage and itself receives new data; only these two stages
do some work. More and more stages become active until all stages process data in every
timestep; the pipeline is now fully utilised for the �rst time. After a series of timesteps at
maximum load, with duration dependent on the length of the data stream, the input sequence
ceases; the �rst stage of the pipeline therefore runs out of work. In the next timestep, the
second stage stops working, too. And so on, until eventually all stages have been fallen
asleep again. Phases of reduced activity diminish the average performance of the whole
pipeline, and the relative contribution of this drop in productivity is all the worse, the more
stages the pipeline has in relation to the length of the data stream.

We now study this phenomenon to some depth by analysing the two-dimensional sys-
tolic array from Figure 12.1. As expected, we �nd a lot of idling cells when starting or
�nishing the calculation. In the �rst timestep, only cell (1, 1) performs some useful work;
all other cells in fact do calculations that work like null operations�and that's what they
are supposed to do in this phase. In the second timestep, cells (1, 2) and (2, 1) come to real
work, see Figure 12.2(a). Data is �ooding the array until eventually all cells are doing work.
After the last true data item has left cell (1, 1), the latter is no longer contributing to the
calculation but merely reproduces the �nished value of c11. Step by step, more and more
cells drop off. Finally, only cell (N1,N2) makes a last necessary computation step; Figure
12.2(b) shows this concluding timestep.

Exercises
12.1-1 What must be changed in the input scheme from Figure 12.1(a) to multiply a 2 × 6
matrix by a 6 × 3 matrix on the same systolic array? Could the calculations be organised

12.2. Space-time transformation and systolic arrays 531

such that the result matrix would emerge in the lower right corner of the systolic array?
12.1-2 Why is it necessary to clear spare slots in the input streams for matrix A, as shown
in Figure 12.1? Why haven't we done the same for matrix B also?
12.1-3 If the systolic array from Figure 12.1 should be interpreted as a pipeline: how many
stages would you suggest to adequately describe the behaviour?

12.2. Space-time transformation and systolic arrays
Although the approach taken in the preceding section should be sufficient for a basic unders-
tanding of the topic, we have to work harder to describe and judge the properties of systolic
arrays in a quantitative and precise way. In particular the solution of parametric problems
requires a solid mathematical framework. So, in this section, we study central concepts of a
formal theory on uniform algorithms, based on linear transformations.

12.2.1. Further example: matrix product without stationary variables
System (12.3) can be computed by a multitude of other systolic arrays, besides that from
Figure 12.1. In Figure 12.3, for example, we see such an alternative systolic array. Whereas
the same function is evaluated by both architectures, the appearance of the array from Figure
12.3 is very different:
• The number of cells now is considerably larger, altogether 36, instead of 15.
• The shape of the array is hexagonal, instead of rectangular.
• Each cell now has three input ports and three output ports.
• The input scheme is clearly different from that of Figure 12.1(a).
• And �nally: the matrix C here also �ows through the whole array.

The cell structure from Figure 12.3(b) at �rst view does not appear essentially distin-
guished from that in Figure 12.1(b). But the differences matter: there are no cyclic paths in
the new cell, thus stationary variables can no longer appear. Instead, the cell is provided
with three input ports and three output ports, passing items of all three matrices through the
cell. The direction of communication at the ports on the right and left borders of the cell has
changed, as well as the assignment of the matrices to the ports.

12.2.2. The space-time transformation as a global view
How system (12.3) is related to Figure 12.3? No doubt that you were able to fully unders-
tand the operation of the systolic array from Section 12.1 without any special aid. But for
the present example this is considerably more difficult�so now you may be sufficiently
motivated for the use of a mathematical formalism.

We can assign two fundamental measures to each elementary operation of an algorithm
for describing the execution in the systolic array: the time when the operation is performed,
and the position of the cell where the operation is performed. As will become clear in the
sequel, after �xing the so-called space-time transformation there are hardly any degrees of
freedom left for further design: practically all features of the intended systolic array strictly
follow from the chosen space-time transformation.

532 12. Systolic Systems

+*

(b)(a)

A

B

C

Figure 12.3. Hexagonal systolic array for matrix product. (a) Array structure and principle of the data input/output.
(b) Cell structure.

As for the systolic array from Figure 12.1, the execution of an instance (i, j, k) in the
systolic array from Figure 12.3 happens at time t = i+ j+k. We can represent this expression
as the dot product of a time vector

π =
(

1 1 1
)

(12.4)

by the iteration vector
v =

(
i j k

)
, (12.5)

hence
t = π · v ; (12.6)

so in this case

t =
(

1 1 1
)
·


i
j
k

 = i + j + k . (12.7)

The space coordinates z = (x, y) of the executed operations in the example from Figure
12.1 can be inferred as z = (i, j) from the iteration vector v = (i, j, k) according to our
decision in Section 12.1.3. The chosen map is a projection of the space R3 along the k axis.
This linear map can be described by a projection matrix

P =

(
1 0 0
0 1 0

)
. (12.8)

To �nd the space coordinates, we multiply the projection matrix P by the iteration vector

12.2. Space-time transformation and systolic arrays 533

v, written as
z = P · v . (12.9)

The projection direction can be represented by any vector u perpendicular to all rows
of the projection matrix,

P · u = ~0 . (12.10)
For the projection matrix P from (12.8), one of the possible projection vectors would

be u = (0, 0, 1).
Projections are very popular for describing the space coordinates when designing a

systolic array. Also in our example from Figure 12.3(a), the space coordinates are generated
by projecting the iteration vector. Here, a feasible projection matrix is given by

P =

(
0 −1 1
−1 1 0

)
. (12.11)

A corresponding projection vector would be u = (1, 1, 1).
We can combine the projection matrix and the time vector in a matrix T , that fully

describes the space-time transformation,
(

z
t

)
=

(
P
π

)
· v = T · v . (12.12)

The �rst and second rows of T are constituted by the projection matrix P, the third row
by the time vector π.

For the example from Figure 12.1, the matrix T giving the space-time transformation
reads as

T =


1 0 0
0 1 0
1 1 1

 ; (12.13)

for the example from Figure 12.3 we have

T =


0 −1 1
−1 1 0

1 1 1

 . (12.14)

Space-time transformations may be understood as a global view to the systolic system.
Applying a space-time transformation�that is linear, here, and described by a matrix T�to
a system of recurrence equations directly yields the external features of the systolic array,
i.e., its architecture�consisting of space coordinates, connection pattern, and cell structure.

Remark. Instead of purely linear maps, we alternatively may consider general affine
maps, additionally providing a translative component, T · v + h. Though as long as we treat
all iteration vectors with a common space-time transformation, affine maps are not really
required.

12.2.3. Parametric space coordinates
If the domains are numerically given and contain few points in particular, we can easily
calculate the concrete set of space coordinates via equation (12.9). But when the domains
are speci�ed parametrically as in system (12.3), the positions of the cells must be determined

534 12. Systolic Systems

(1 − N2, N2 − N1) (1 − N2, N2 − 1)

(N3 − N2, N2 − N1)

(0, 1 − N1) (N3 − N2, N2 − 1)

(0, 0)

(N3 − 1, 1 − N1) (N3 − 1, 0)

Figure 12.4. Image of a rectangular domain under projection. Most interior points have been suppressed for clarity.
Images of previous vertex points are shaded.

by symbolic evaluation. The following explanation especially dwells on this problem.
Suppose that each cell of the systolic array is represented geometrically by a point with

space coordinates z = (x, y) in the two-dimensional space R2. From each iteration vector v
of the domain S , by equation (12.9) we get the space coordinates z of a certain processor,
z = P · v: the operations denoted by v are projected onto cell z. The set P(S) = {P · v : v ∈ S }
of space coordinates states the positions of all cells in the systolic array necessary for correct
operation.

To our advantage, we normally use domains that can be described as the set of all inte-
ger points inside a convex region, here a subset of R3�called dense convex domains. The
convex hull of such a domain with a �nite number of domain points is a polytope, with
domain points as vertices. Polytopes map to polytopes again by arbitrary linear transfor-
mations. Now we can make use of the fact that each projection is a linear transformation.
Vertices of the destination polytope then are images of vertices of the source polytope.

Remark. But not all vertices of a source polytope need to be projected to vertices of the
destination polytope, see for instance Figure 12.4.

When projected by an integer matrix P, the lattice Z3 maps to the lattice Z2 if P can be
extended by an integer time vector π to a unimodular space-time matrix T . Practically any
dense convex domain, apart from some exceptions irrelevant to usual applications, thereby
maps to another dense convex set of space coordinates, that is completely characterised by
the vertices of the hull polytope. To determine the shape and the size of the systolic array, it
is therefore sufficient to apply the matrix P to the vertices of the convex hull of S .

12.2. Space-time transformation and systolic arrays 535

N1

N2

N3

Figure 12.5. Partitioning of the space coordinates.

Remark. Any square integer matrix with determinant ±1 is called unimodular. Unimo-
dular matrices have unimodular inverses.

We apply this method to the integer domain

S = [1,N1] × [1,N2] × [1,N3] (12.15)

from system (12.3). The vertices of the convex hull here are

(1, 1, 1), (N1, 1, 1), (1,N2, 1), (1, 1,N3),
(1,N2,N3), (N1, 1,N3), (N1,N2, 1), (N1,N2,N3) .

(12.16)

For the projection matrix P from (12.11), the vertices of the corresponding image have
the positions

(N3 − 1, 0), (N3 − 1, 1 − N1), (0, 1 − N1),
(1 − N2,N2 − N1), (1 − N2,N2 − 1), (N3 − N2,N2 − N1) .

(12.17)

Since S has eight vertices, but the image P(S) only six, it is obvious that two vertices of S
have become interior points of the image, and thus are of no relevance for the size of the
array; namely the vertices (1, 1, 1) and (N1,N2,N3). This phenomenon is sketched in Figure
12.4.

The settings N1 = 3, N2 = 5, and N3 = 4 yield the vertices (3, 0), (3,−2), (0,−2),
(−4, 2), (−4, 4), and (−1, 4). We see that space coordinates in principle can be negative.
Moreover, the choice of an origin�that here lies in the interior of the polytope�might not
always be obvious.

As the image of the projection, we get a systolic array with hexagonal shape and parallel
opposite borders. On these, we �nd N1, N2, and N3 integer points, respectively; cf. Figure
12.5. Thus, as opposed to our �rst example, all problem parameters here are also array
parameters.

The area function of this region is of order Θ(N1 ·N2 +N1 ·N3 +N2 ·N3), and thus depends
on all three matrix dimensions. So this is quite different from the situation in Figure 12.1(a),
where the area function�for the same problem�is of order Θ(N1 · N2).

Improving on this approximate calculation, we �nally count the exact number of cells.
For this process, it might be helpful to partition the entire region into subregions for which

536 12. Systolic Systems

the number of cells comprised can be easily determined; see Figure 12.5. The points (0, 0),
(N3 − 1, 0), (N3 − 1, 1−N1), and (0, 1−N1) are the vertices of a rectangle with N1 ·N3 cells.
If we translate this point set up by N2−1 cells and right by N2−1 cells, we exactly cover the
whole region. Each shift by one cell up and right contributes just another N1 + N3 − 1 cells.
Altogether this yields N1·N3+(N2−1)·(N1+N3−1) = N1·N2+N1·N3+N2·N3−(N1+N2+N3)+1
cells.

For N1 = 3, N2 = 5, and N3 = 4 we thereby get a number of 36 cells, as we have already
learned from Figure 12.3(a).

12.2.4. Symbolically deriving the running time
The running time of a systolic algorithm can be symbolically calculated by an approach
similar to that in section 12.2.3. The time transformation according to formula (12.6) as well
is a linear map. We �nd the timesteps of the �rst and the last calculations as the minimum
resp. maximum in the set π(S) = {π · v : v ∈ S } of execution timesteps. Following the
discussion above, it thereby suffices to vary v over the vertices of the convex hull of S .

The running time is then given by the formula

tΣ = 1 + max P(S) −min P(S) . (12.18)

Adding one is mandatory here, since the �rst as well as the last timestep belong to the
calculation.

For the example from Figure 12.3, the vertices of the polytope as enumerated in (12.16)
are mapped by (12.7) to the set of images

{3, 2 + N1, 2 + N2, 2 + N3, 1 + N1 + N2, 1 + N1 + N3, 1 + N2 + N3,N1 + N2 + N3}qkoz.

With the basic assumption N1,N2,N3 ≥ 1, we get a minimum of 3 and a maximum of
N1 + N2 + N3, thus a running time of N1 + N2 + N3 − 2 timesteps, as for the systolic array
from Figure 12.1�no surprise, since the domains and the time vectors agree.

For the special problem parameters N1 = 3, N2 = 5, and N3 = 4, a running time of
12 − 3 + 1 = 10 timesteps can be derived.

If N1 = N2 = N3 = N, the systolic algorithm shows a running time of order Θ(N), using
Θ(N2) systolic cells.

12.2.5. How to unravel the communication topology
The communication topology of the systolic array is induced by applying the space-time
transformation to the data dependences of the algorithm. Each data dependence results from
a direct use of a variable instance to calculate another instance of the same variable, or an
instance of another variable.

Remark. In contrast to the general situation where a data dependence analysis for impe-
rative programming languages has to be performed by highly optimising compilers, data
dependences here always are �ow dependences. This is a direct consequence from the
assignment-free notation employed by us.

The data dependences can be read off the quanti�ed equations in our assignment-free
notation by comparing their right and left sides. For example, we �rst analyse the equation

12.2. Space-time transformation and systolic arrays 537

c(i, j, k) = c(i, j, k − 1) + a(i, j − 1, k) · b(i − 1, j, k) from system (12.3).
The value c(i, j, k) is calculated from the values c(i, j, k−1), a(i, j−1, k), and b(i−1, j, k).

Thus we have a data �ow from c(i, j, k−1) to c(i, j, k), a data �ow from a(i, j−1, k) to c(i, j, k),
and a data �ow from b(i − 1, j, k) to c(i, j, k).

All properties of such a data �ow that matter here can be covered by a dependence
vector, which is the iteration vector of the calculated variable instance minus the iteration
vector of the correspondingly used variable instance.

The iteration vector for c(i, j, k) is (i, j, k); that for c(i, j, k − 1) is (i, j, k − 1). Thus, as
the difference vector, we �nd

dC =


i
j
k

 −


i
j

k − 1

 =


0
0
1

 . (12.19)

Correspondingly, we get

dA =


i
j
k

 −


i
j − 1

k

 =


0
1
0

 (12.20)

and

dB =


i
j
k

 −


i − 1
j
k

 =


1
0
0

 qkoz. (12.21)

In the equation a(i, j, k) = a(i, j−1, k) from system (12.3), we cannot directly recognise
which is the calculated variable instance, and which is the used variable instance. This
example elucidates the difference between equations and assignments. When �xing that
a(i, j, k) should follow from a(i, j − 1, k) by a copy operation, we get the same dependence
vector dA as in (12.20). Correspondingly for the equation b(i, j, k) = b(i − 1, j, k).

A variable instance with iteration vector v is calculated in cell P·v. If for this calculation
another variable instance with iteration vector v′ is needed, implying a data dependence with
dependence vector d = v−v′, the used variable instance is provided by cell P ·v′. Therefore,
we need a communication from cell z′ = P · v′ to cell z = P · v. In systolic arrays, all
communication has to be via direct static links between the communicating cells. Due to the
linearity of the transformation from (12.9), we have z− z′ = P ·v−P ·v′ = P · (v−v′) = P ·d.

If P ·d = ~0, communication happens exclusively inside the calculating cell, i.e., in time,
only�and not in space. Passing values in time is via registers of the calculating cell.

Whereas for P · d , ~0, a communication between different cells is needed. Then a link
along the �ow direction P · d must be provided from/to all cells of the systolic array. The
vector −P · d, oriented in counter �ow direction, leads from space point z to space point z′.

If there is more than one dependence vector d, we need an appropriate link for each
of them at every cell. Take for example the formulas (12.19), (12.20), and (12.21) together
with (12.11), then we get P · dA = (−1, 1), P · dB = (0,−1), and P · dC = (1, 0). In Figure
12.3(a), terminating at every cell, we see three links corresponding to the various vectors
P · d. This results in a hexagonal communication topology�instead of the orthogonal
communication topology from the �rst example.

538 12. Systolic Systems

12.2.6. Inferring the structure of the cells
Now we apply the space-related techniques from section 12.2.5 to time-related questions. A
variable instance with iteration vector v is calculated in timestep π ·v. If this calculation uses
another variable instance with iteration vector v′, the former had been calculated in timestep
π · v′. Hence communication corresponding to the dependence vector d = v − v′ must take
exactly π · v − π · v′ timesteps.

Since (12.6) describes a linear map, we have π · v − π · v′ = π · (v − v′) = π · d.
According to the systolic principle, each communication must involve at least one register.
The dependence vectors d are �xed, and so the choice of a time vector π is constrained by

π · d ≥ 1 . (12.22)

In case P · d = ~0, we must provide registers for stationary variables in all cells. But
each register is overwritten with a new value in every timestep. Hence, if π · d ≥ 2, the old
value must be carried on to a further register. Since this is repeated for π · d timesteps, the
cell needs exactly π ·d registers per stationary variable. The values of the stationary variable
successively pass all these registers before eventually being used. If P · d , ~0, the transport
of values analogously goes by π · d registers, though these are not required to belong all to
the same cell.

For each dependence vector d, we thus need an appropriate number of registers. In
Figure 12.3(b), we see three input ports at the cell, corresponding to the dependence vectors
dA, dB, and dC . Since for these we have P · d , ~0. Moreover, π · d = 1 due to (12.7) and
(12.4). Thus, we need one register per dependence vector. Finally, the regularity of system
(12.3) forces three output ports for every cell, opposite to the corresponding input ports.

Good news: we can infer in general that each cell needs only a few registers, because
the number of dependence vectors d is statically bounded with a system like (12.3), and for
each of the dependence vectors the amount of registers π · d has a �xed and usually small
value.

The three input and output ports at every cell now permit the use of three moving mat-
rices. Very differently from Figure 12.1, a dot product ∑4

k=1 aik · bk j here is not calculated
within a single cell, but dispersed over the systolic array. As a prerequisite, we had to dis-
solve the sum into a sequence of single additions. We call this principle a distributed generic
operator.

Apart from the three input ports with their registers, and the three output ports, Fi-
gure 12.3(b) shows a multiplier chained to an adder. Both units are induced in each
cell by applying the transformation (12.9) to the domain S of the equation c(i, j, k) =

c(i, j, k − 1) + a(i, j − 1, k) · b(i − 1, j, k) from system (12.3). According to this equation,
the addition has to follow the calculation of the product, so the order of the hardware ope-
rators as seen in Figure 12.3(b) is implied.

The source cell for each of the used operands follows from the projection of the corres-
ponding dependence vector. Here, variable a(i, j − 1, k) is related to the dependence vector
dA = (0, 1, 0). The projection P ·dA = (−1, 1) constitutes the �ow direction of matrix A. Thus
the value to be used has to be expected, as observed by the calculating cell, in opposite di-
rection (1,−1), in this case from the port in the lower left corner of the cell, passing through
register A. All the same, b(i − 1, j, k) comes from the right via register B, and c(i, j, k − 1)
from above through register C. The calculated values a(i, j, k), b(i, j, k), and c(i, j, k) are out-

12.3. Input/output schemes 539

put into the opposite directions through the appropriate ports: to the upper right, to the left,
and downwards.

If alternatively we use the projection matrix P from (12.8), then for dC we get the
direction (0, 0). The formula π · dC = 1 results in the requirement of exactly one register C
for each item of the matrix C. This register provides the value c(i, j, k−1) for the calculation
of c(i, j, k), and after this calculation receives the value c(i, j, k). All this reasoning matches
with the cell from Figure 12.1(b). Figure 12.1(a) correspondingly shows no links for matrix
C between the cells: for the matrix is stationary.

Exercises
12.2-1 Each projection vector u induces several corresponding projection matrices P.
a. Show that

P =

(
0 1 −1
−1 0 1

)

also is a projection matrix �tting with projection vector u = (1, 1, 1).
b. Use this projection matrix to transform the domain from system (12.3).
c. The resulting space coordinates differ from that in section 12.2.3. Why, in spite of this,

both point sets are topologically equivalent?
d. Analyse the cells in both arrangements for common and differing features.

12.2-2 Apply all techniques from section 12.2 to system (12.3), employing a space-time
matrix

T =


1 0 1
0 1 1
1 1 1

 .

12.3. Input/output schemes
In Figure 12.3(a), the input/output scheme is only sketched by the�ow directions for the
matrices A, B,C. The necessary details to understand the input/output operations are now
provided by Figure 12.6.

The input/output scheme in Figure 12.6 shows some new phenomena when compared
with Figure 12.1(a). The input and output cells belonging to any matrix are no longer thre-
aded all on a single straight line; now, for each matrix, they lie along two adjacent borders,
that additionally may differ in the number of links to the outside world. The data structures
from Figure 12.6 also differ from that in Figure 12.1(a) in the angle of inclination. Moreo-
ver, the matrices A and B from Figure 12.6 arrive at the boundary cells with only one third
of the data rate, compared to Figure 12.1(a).

Spending some effort, even here it might be possible in principle to construct�item
by item�the appropriate input/output scheme �tting the present systolic array. But it is
much more safe to apply a formal derivation. The following subsections are devoted to the
presentation of the various methodical steps for achieving our goal.

540 12. Systolic Systems

A

B

C

a11

a12

a13

a14

a21

a22

a23

a24

a31

a32

a33

a34

b11

b12

b13

b14

b15

b21

b22

b23

b24

b25

b31

b32

b33

b34

b35

b41

b42

b43

b44

b45

c11

c12

c13

c14

c15

c21

c22

c23

c24

c25

c31

c32

c33

c34

c35

Figure 12.6. Detailed input/output scheme for the systolic array from Figure 12.3(a).

12.3.1. From data structure indices to iteration vectors
First, we need to construct a formal relation between the abstract data structures and the
concrete variable instances in the assignment-free representation.

Each item of the matrix A can be characterised by a row index i and a column index k.
These data structure indices can be comprised in a data structure vector w = (i, k). Item aik
in system (12.3) corresponds to the instances a(i, j, k), with any j. The coordinates of these
instances all lie on a line along direction q = (0, 1, 0) in space R3. Thus, in this case, the
formal change from data structure vector (i, k) to coordinates (i, j, k) can be described by the
transformation


i
j
k

 =


1 0
0 0
0 1

 ·
(

i
k

)
+ j ·


0
1
0

 +


0
0
0

 . (12.23)

In system (12.3), the coordinate vector (i, j, k) of every variable instance equals the
iteration vector of the domain point representing the calculation of this variable instance.
Thus we also may interpret formula (12.23) as a relation between data structure vectors and

12.3. Input/output schemes 541

iteration vectors. Abstractly, the desired iteration vectors v can be inferred from the data
structure vector w by the formula

v = H · w + λ · q + p . (12.24)

The affine vector p is necessary in more general cases, though always null in our
example.

Because of b(i, j, k) = bk j, the representation for matrix B correspondingly is


i
j
k

 =


0 0
0 1
1 0

 ·
(

k
j

)
+ i ·


1
0
0

 +


0
0
0

 . (12.25)

Concerning matrix C, each variable instance c(i, j, k) may denote a different value. Ne-
vertheless, all instances c(i, j, k) to a �xed index pair (i, j) can be regarded as belonging to
the same matrix item ci j, since they all stem from the serialisation of the sum operator for
the calculation of ci j. Thus, for matrix C, following formula (12.24) we may set


i
j
k

 =


1 0
0 1
0 0

 ·
(

i
j

)
+ k ·


0
0
1

 +


0
0
0

 . (12.26)

12.3.2. Snapshots of data structures
Each of the three matrices A, B,C is generated by two directions with regard to the data
structure indices: along a row, and along a column. The difference vector (0, 1) thereby
describes a move from an item to the next item of the same row, i.e., in the next column:
(0, 1) = (x, y + 1) − (x, y). Correspondingly, the difference vector (1, 0) stands for sliding
from an item to the next item in the same column and next row: (1, 0) = (x + 1, y) − (x, y).

Input/output schemes of the appearance shown in Figures 12.1(a) and 12.6 denote
snapshots: all positions of data items depicted, with respect to the entire systolic array,
are related to a common timestep.

As we can notice from Figure 12.6, the rectangular shapes of the abstract data structures
are mapped to parallelograms in the snapshot, due to the linearity of the applied space-time
transformation. These parallelograms can be described by difference vectors along their
borders, too.

Next we will translate difference vectors ∆w from data structure vectors into spatial
difference vectors ∆z for the snapshot. Therefore, by choosing the parameter λ in formula
(12.24), we pick a pair of iteration vectors v, v′ that are mapped to the same timestep under
our space-time transformation. For the moment it is not important which concrete timestep
we thereby get. Thus, we set up

π · v = π · v′ with v = H · w + λ · q + p and v′ = H · w′ + λ′ · q + p , (12.27)

implying
π · H · (w − w′) + (λ − λ′) · π · q = 0 , (12.28)

542 12. Systolic Systems

and thus
∆λ = (λ − λ′) =

−π · H · (w − w′)
π · q . (12.29)

Due to the linearity of all used transformations, the wanted spatial difference vector ∆z
hence follows from the difference vector of the data structure ∆w = w − w′ as

∆z = P · ∆v = P · H · ∆w + ∆λ · P · q , (12.30)

or
∆z = P · H · ∆w − π · H · ∆w

π · q · P · q . (12.31)

With the aid of formula (12.31), we now can determine the spatial difference vectors ∆z
for matrix A. As mentioned above, we have

H =


1 0
0 0
0 1

 , q =


0
1
0

 , P =

(
0 −1 1
−1 1 0

)
, π =

(
1 1 1

)
.

Noting π · q = 1, we get

∆z =

(
0 1
−1 0

)
· ∆w + ∆λ ·

(−1
1

)
with ∆λ = −

(
1 1

)
· ∆w .

For the rows, we have the difference vector ∆w = (0, 1), yielding the spatial difference
vector ∆z = (2,−1). Correspondingly, from ∆w = (1, 0) for the columns we get ∆z = (1,−2).
If we check with Figure 12.6, we see that the rows of A in fact run along the vector (2,−1),
the columns along the vector (1,−2).

Similarly, we get ∆z = (−1, 2) for the rows of B, and ∆z = (1, 1) for the columns of B;
as well as ∆z = (−2, 1) for the rows of C, and ∆z = (−1,−1) for the columns of C.

Applying these instruments, we are now able to reliably generate appropriate in-
put/output schemes�although separately for each matrix at the moment.

12.3.3. Superposition of input/output schemes
Now, the shapes of the matrices A, B,C for the snapshot have been �xed. But we still have
to adjust the matrices relative to the systolic array�and thus, also relative to each other.
Fortunately, there is a simple graphical method for doing the task.

We �rst choose an arbitrary iteration vector, say v = (1, 1, 1). The latter we map with
the projection matrix P to the cell where the calculation takes place,

z =

(
0 −1 1
−1 1 0

)
·


1
1
1

 =

(
0
0

)
.

The iteration vector (1, 1, 1) represents the calculations a(1, 1, 1), b(1, 1, 1), and
c(1, 1, 1); these in turn correspond to the data items a11, b11, and c11. We now lay the in-
put/output schemes for the matrices A, B,C on the systolic array in a way that the entries
a11, b11, and c11 all are located in cell z = (0, 0).

In principle, we would be done now. Unfortunately, our input/output schemes overlap

12.3. Input/output schemes 543

with the cells of the systolic array, and are therefore not easily perceivable. Thus, we simul-
taneously retract the input/output schemes of all matrices in counter �ow direction, place by
place, until there is no more overlapping. With this method, we get exactly the input/output
scheme from Figure 12.6.

As an alternative to this nice graphical method, we also could formally calculate an
overlap-free placement of the various input/output schemes.

Only after specifying the input/output schemes, we can correctly calculate the number
of timesteps effectively needed. The �rst relevant timestep starts with the �rst input opera-
tion. The last relevant timestep ends with the last output of a result. For the example, we
determine from Figure 12.6 the beginning of the calculation with the input of the data item
b11 in timestep 0, and the end of the calculation after output of the result c35 in timestep
14. Altogether, we identify 15 timesteps��ve more than with pure treatment of the real
calculations.

12.3.4. Data rates induced by space-time transformations
The input schemes of the matrices A and B from Figure 12.1(a) have a dense layout: if
we drew the borders of the matrices shown in the Figure, there would be no spare places
comprised.

Not so in Figure 12.6. In any input data stream, each data item is followed by two spare
places there. For the input matrices this means: the boundary cells of the systolic array
receive a proper data item only every third timestep.

This property is a direct result of the employed space-time transformation. In both
examples, the abstract data structures themselves are dense. But how close the various items
really come in the input/output scheme depends on the absolute value of the determinant of
the transformation matrix T : in every input/output data stream, the proper items follow each
other with a spacing of exactly |det(T)| places. Indeed |det(T)| = 1 for Figure 12.1; as for
Figure 12.6, we now can rate the �uffy spacing as a practical consequence of |det(T)| = 3.

What to do with spare places as those in Figure 12.6? Although each cell of the systolic
array from Figure 12.3 in fact does useful work only every third timestep, it would be
nonsense to pause during two out of three timesteps. Strictly speaking, we can argue that
values on places marked with dots in Figure 12.6 have no in�uence on the calculation of
the shown items ci j, because they never reach an active cell at time of the calculation of
a variable c(i, j, k). Thus, we may simply �ll spare places with any value, no danger of
disturbing the result. It is even feasible to execute three different matrix products at the
same time on the systolic array from Figure 12.3, without interference. This will be our
topic in section 12.3.7.

12.3.5. Input/output expansion and extended input/output scheme
When further studying Figure 12.6, we can identify another problem. Check, for example,
the itinerary of c22 through the cells of the systolic array. According to the space-time trans-
formation, the calculations contributing to the value of c22 happen in the cells (−1, 0), (0, 0),
(1, 0), and (2, 0). But the input/output scheme from Figure 12.6 tells us that c22 also passes
through cell (−2, 0) before, and eventually visits cell (3, 0), too.

This may be interpreted as some spurious calculations being introduced into the system

544 12. Systolic Systems

(12.3) by the used space-time transformation, here, for example, at the new domain points
(2, 2, 0) and (2, 2, 5). The reason for this phenomenon is that the domains of the input/output
operations are not in parallel to the chosen projection direction. Thus, some input/output
operations are projected onto cells that do not belong to the boundary of the systolic array.
But in the interior of the systolic array, no input/output operation can be performed directly.
The problem can be solved by extending the trajectory, in �ow or counter �ow direction,
from these inner cells up to the boundary of the systolic array. But thereby we introduce
some new calculations, and possibly also some new domain points. This technique is called
input/output expansion.

We must avoid that the additional calculations taking place in the cells (−2, 0) and
(3, 0) corrupt the correct value of c22. For the matrix product, this is quite easy�though
the general case is more difficult. The generic sum operator has a neutral element, namely
zero. Thus, if we can guarantee that by new calculations only zero is added, there will be
no harm. All we have to do is providing always at least one zero operand to any spurious
multiplication; this can be achieved by �lling appropriate input slots with zero items.

Figure 12.7 shows an example of a properly extended input/output scheme. Preceding
and following the items of matrix A, the necessary zero items have been �lled in. Since the
entered zeroes count like data items, the input/output scheme from Figure 12.6 has been
retracted again by one place. The calculation now begins already in timestep −1, but ends
as before with timestep 14. Thus we need 16 timesteps altogether.

12.3.6. Coping with stationary variables
Let us come back to the example from Figure 12.1(a). For inputting the items of matrices A
and B, no expansion is required, since these items are always used in boundary cells �rst.
But not so with matrix C! The items of C are calculated in stationary variables, hence always
in the same cell. Thus most results ci j are produced in inner cells of the systolic array, from
where they have to be moved�in a separate action�to boundary cells of the systolic array.

Although this new challenge, on the face of it, appears very similar to the problem
from section 12.3.5, and thus very easy to solve, in fact we here have a completely different
situation. It is not sufficient to extend existing data �ows forward or backward up to the
boundary of the systolic array. Since for stationary variables the dependence vector is the
null vector, which constitutes no extensible direction, there can be no spatial �ow induced
by this dependency. Possibly, we can construct some auxiliary extraction paths, but usually
there are many degrees of freedom. Moreover, we then need a control mechanism inside the
cells. For all these reasons, the problem is further dwelled on in section 12.4.

12.3.7. Interleaving of calculations
As can be easily noticed, the utilisation of the systolic array from Figure 12.3 with in-
put/output scheme from Figure 12.7 is quite poor. Even without any deeper study of the
starting phase and the closing phase, we cannot ignore that the average utilisation of the
array is below one third�after all, each cell at most in every third timestep makes a proper
contribution to the calculation.

A simple technique to improve this behaviour is to interleave calculations. If we have
three independent matrix products, we can successively input their respective data, delayed

12.3. Input/output schemes 545

0

0

0
0

0

0

A

B

C

a11

a12

a13

a14

a21

a22

a23

a24

a31

a32

a33

a34

b11

b12

b13

b14

b15

b21

b22

b23

b24

b25

b31

b32

b33

b34

b35

b41

b42

b43

b44

b45

c11

c12

c13

c14

c15

c21

c22

c23

c24

c25

c31

c32

c33

c34

c35

Figure 12.7. Extended input/output scheme, correcting Figure 12.6.

by only one timestep, without any changes to the systolic array or its cells. Figure 12.8
shows a snapshot of the systolic array, with parts of the corresponding input/output scheme.

Now we must check by a formal derivation whether this idea is really working. The-
refore, we slightly modify system (12.3). We augment the variables and the domains by a
fourth dimension, needed to distinguish the three matrix products:

546 12. Systolic Systems

32 21

32 22

33 23

23

22 21

23 31

13

24

12 21

13 31

14 41

14

41

13 32

0 * b
31 42

0 * b
32 32

1

2

3

2

3

1

3

1

2

1

2

1

3

3 1 2

1

2

1 2

1

3

1

2

1

3

2a

a

a

a

a

a

a

a

a

a

aa

aa

a b

b

b

∗ b

∗ b

∗ b

∗ b

∗ b

∗ b∗ b

∗ 0∗ 0

∗ 0

Figure 12.8. Interleaved calculation of three matrix products on the systolic array from Figure 12.3.

input operations
a(i, j, k, l) = al

ik 1 ≤ i ≤ N1, j = 0, 1 ≤ k ≤ N3, 1 ≤ l ≤ 3,
b(i, j, k, l) = bl

k j i = 0, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3, 1 ≤ l ≤ 3,
c(i, j, k, l) = 0 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = 0, 1 ≤ l ≤ 3.

calculations and forwarding
a(i, j, k, l) = a(i, j − 1, k, l) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3, 1 ≤ l ≤ 3,
b(i, j, k, l) = b(i − 1, j, k, l) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3, 1 ≤ l ≤ 3,
c(i, j, k, l) = c(i, j, k − 1, l) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3, 1 ≤ l ≤ 3.

+ a(i, j − 1, k, l) · b(i − 1, j, k, l)

output operations
cl

i j = c(i, j, k, l) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = N3, 1 ≤ l ≤ 3 .

(12.32)

Obviously, in system (12.32), problems with different values of l are not related. Now
we must preserve this property in the systolic array. A suitable space-time matrix would be

T =


0 −1 1 0
−1 1 0 0

1 1 1 1

 . (12.33)

Notice that T is not square here. But for calculating the space coordinates, the fourth
dimension of the iteration vector is completely irrelevant, and thus can simply be neutralised
by corresponding zero entries in the fourth column of the �rst and second rows of T .

The last row of T again constitutes the time vector π. Appropriate choice of π embeds
the three problems to solve into the space-time continuum, avoiding any intersection. Cor-
responding instances of the iteration vectors of the three problems are projected to the same

12.4. Control 547

+*

(b)(a)

A

B

C

Figure 12.9. Resetting registers via global control. (a) Array structure. (b) Cell structure.

cell with a respective spacing of one timestep, because the fourth entry of π equals 1.
Finally, we calculate the average utilisation�with or without interleaving�for the

concrete problem parameters N1 = 3, N2 = 5, and N3 = 4. For a single matrix product,
we have to perform N1 · N2 · N3 = 60 calculations, considering a multiplication and a
corresponding addition as a compound operation, i.e., counting both together as only one
calculation; input/output operations are not counted at all. The systolic array has 36 cells.

Without interleaving, our systolic array altogether takes 16 timesteps for calculating a
single matrix product, resulting in an average utilisation of 60/(16 ·36) ≈ 0.104 calculations
per timestep and cell. When applying the described interleaving technique, the calculation
of all three matrix products needs only two timesteps more, i.e., 18 timesteps altogether. But
the number of calculations performed thereby has tripled, so we get an average utilisation
of the cells amounting to 3 · 60/(18 · 36) ≈ 0.278 calculations per timestep and cell. Thus,
by interleaving, we were able to improve the utilisation of the cells to 267 per cent!

Exercises
12.3-1 From equation (12.31), formally derive the spatial difference vectors of matrices B
and C for the input/output scheme shown in Figure 12.6.
12.3-2 Augmenting Figure 12.6, draw an extended input/output scheme that forces both
operands of all spurious multiplications to zero.
12.3-3 Apply the techniques presented in section 12.3 to the systolic array from Figure
12.1.
12.3-4? Proof the properties claimed in section 12.3.7 for the special space-time transfor-
mation (12.33) with respect to system (12.32).

12.4. Control
So far we have assumed that each cell of a systolic array behaves in completely the same
way during every timestep. Admittedly there are some relevant examples of such systolic

548 12. Systolic Systems

arrays. However, in general the cells successively have to work in several operation modes,
switched to by some control mechanism. In the sequel, we study some typical situations for
exerting control.

12.4.1. Cells without control
The cell from Figure 12.3(b) contains the registers A, B, and C, that�when activated by
the global clock signal�accept the data applied to their inputs and then reliably reproduce
these values at their outputs for one clock cycle. Apart from this system-wide activity, the
function calculated by the cell is invariant for all timesteps: a fused multiply-add operation
is applied to the three input operands A, B, and C, with result passed to a neighbouring cell;
during the same cycle, the operands A and B are also forwarded to two other neighbouring
cells. So in this case, the cell needs no control at all.

The initial values c(i, j, 0) for the execution of the generic sum operator�which could
also be different from zero here�are provided to the systolic array via the input streams,
see Figure 12.7; the �nal results c(i, j,N3) continue to �ow into the same direction up to
the boundary of the array. Therefore, the input/output activities for the cell from Figure
12.3(b) constitute an intrinsic part of the normal cell function. The price to pay for this
extremely simple cell function without any control is a restriction in all three dimensions
of the matrices: on a systolic array like that from Figure 12.3, with �xed array parameters
N1,N2,N3, an M1 × M3 matrix A can only be multiplied by an M3 × M2 matrix B if the
relations M1 ≤ N1, M2 ≤ N2, and M3 ≤ N3 hold.

12.4.2. Global control
In this respect, constraints for the array from Figure 12.1 are not so restrictive: though the
problem parameters M1 and M2 also are bounded by M1 ≤ N1 and M2 ≤ N2, there is no
constraint for M3. Problem parameters unconstrained in spite of �xed array parameters can
only emerge in time but not in space, thus mandating the use of stationary variables.

Before a new calculation can start, each register assigned to a stationary variable has
to be reset to an initial state independent from the previously performed calculations. For
instance, concerning the systolic cell from Figure 12.3(b), this should be the case for register
C. By a global signal similar to the clock, register C can be cleared in all cells at the same
time, i.e., reset to a zero value. To prevent a corruption of the reset by the current values of
A or B, at least one of the registers A or B must be cleared at the same time, too. Figure 12.9
shows an array structure and a cell structure implementing this idea.

12.4.3. Local control
Unfortunately, for the matrix product the principle of the global control is not sufficient wit-
hout further measures. Since the systolic array presented in Figure 12.1 even lacks another
essential property: the results ci j are not passed to the boundary but stay in the cells.

At �rst sight, it seems quite simple to forward the results to the boundary: when the
calculation of an item ci j is �nished, the links from cell (i, j) to the neighbouring cells
(i, j + 1) and (i + 1, j) are no longer needed to forward items of the matrices A and B. These
links can be reused then for any other purpose. For example, we could pass all items of C

12.4. Control 549

c11

c12

c13

c14

c15

c21

c22

c23

c24

c25

c31

c32

c33

c34

c35

Figure 12.10. Output scheme with delayed output of results.

through the downward-directed links to the lower border of the systolic array.
But it turns out that leading through results from the upper cells is hampered by ongoing

calculations in the lower parts of the array. If the result ci j, �nished in timestep i + j + N3,
would be passed to cell (i+1, j) in the next timestep, a con�ict would be introduced between
two values: since only one value per timestep can be sent from cell (i + 1, j) via the lower
port, we would be forced to keep either ci j or ci+1 j, the result currently �nished in cell
(i + 1, j). This effect would spread over all cells down.

To �x the problem, we could slow down the forwarding of items ci j. If it would take
two timesteps for ci j to pass a cell, no collisions could occur. Then, the results stage a
procession through the same link, each separated from the next by one timestep. From the
lower boundary cell of a column, the host computer �rst receives the result of the bottom
row, then that of the penultimate row; this procedure continues until eventually we see the
result of the top row. Thus we get the output scheme shown in Figure 12.10.

How can a cell recognise when to change from forwarding items of matrix B to passing
items of matrix C through the lower port? We can solve this task by an automaton combining
global control with local control in the cell:

If we send a global signal to all cells at exactly the moment when the last items of A and
B are input to cell (1, 1), each cell can start a countdown process: in each successive times-
tep, we decrement a counter initially set to the number of the remaining calculation steps.
Thereby cell (i, j) still has to perform i + j − 1 calculations before changing to propagation
mode. Later, the already mentioned global reset signal switches the cell back to calculation
mode.

Figure 12.11 presents a systolic array implementing this local/global principle. Basi-
cally, the array structure and the communication topology have been preserved. But each
cell can run in one of two states now, switched by a control logic:
1. In calculation mode, as before, the result of the addition is written to register C. At

the same time, the value in register B�i.e., the operand used for the multiplication�is
forwarded through the lower port of the cell.

2. In propagation mode, registers B and C are connected in series. In this mode, the only
function of the cell is to guide each value received at the upper port down to the lower
port, thereby enforcing a delay of two timesteps.

550 12. Systolic Systems

+

*

(b)(a)

R

SQ

Q

counter

A

B

C

i+j−1

Figure 12.11. Combined local/global control. (a) Array structure. (b) Cell structure.

The �rst value output from cell (i, j) in propagation mode is the currently calculated
value ci j, stored in register C. All further output values are results forwarded from cells
above. A formal description of the algorithm implemented in Figure 12.11 is given by the
assignment-free system (12.34).

input operations
a(i, j, k) = aik 1 ≤ i ≤ N1, j = 0, 1 ≤ k ≤ N3,

b(i, j, k) = bk j i = 0, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3,

c(i, j, k) = 0 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = 0.

calculations and forwarding
a(i, j, k) = a(i, j − 1, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3,

b(i, j, k) = b(i − 1, j, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3,

c(i, j, k) = c(i, j, k − 1) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3.

+ a(i, j − 1, k) · b(i − 1, j, k)

propagation
b(i, j, k) = c(i, j, k − 1) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ i + N3,

c(i, j, k) = b(i − 1, j, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ i − 1 + N3,

output operations
c1+N1+N3−k, j = b(i, j, k) i = N1, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ N1 + N3 .

(12.34)

It rests to explain how the control signals in a cell are generated in this model. As
a prerequisite, the cell must contain a state �ip-�op indicating the current operation mode.

12.4. Control 551

The output of this �ip-�op is connected to the control inputs of both multiplexors, see Figure
12.11(b). The global reset signal clears the state �ip-�op, as well as the registers A and C:
the cell now works in calculation mode.

The global ready signal starts the countdown in all cells, so in every timestep the co-
unter is diminished by 1. The counter is initially set to the precalculated value i + j − 1,
dependent on the position of the cell. When the counter reaches zero, the �ip-�op is set: the
cell switches to propagation mode.

If desisting from a direct reset of the register C, the last value passed, before the reset,
from register B to register C of a cell can be used as a freely decidable initial value for the
next dot product to evaluate in the cell. We then even calculate, as already in the systolic
array from Figure 12.3, the more general problem

C = A · B + D , (12.35)

detailed by the following equation system:

input operations
a(i, j, k) = aik 1 ≤ i ≤ N1, j = 0, 1 ≤ k ≤ N3,

b(i, j, k) = bk j i = 0, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3,

c(i, j, k) = di j 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = 0 .

calculations and forwarding
a(i, j, k) = a(i, j − 1, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3,

b(i, j, k) = b(i − 1, j, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3,

c(i, j, k) = c(i, j, k − 1) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3 .

+ a(i, j − 1, k) · b(i − 1, j, k)

propagation
b(i, j, k) = c(i, j, k − 1) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ i + N3,

c(i, j, k) = b(i − 1, j, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ i − 1 + N3 .

output operations
c1+N1+N3−k, j = b(i, j, k) i = N1, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ N1 + N3 .

(12.36)

12.4.4. Distributed control
The method sketched in Figure 12.11 still has the following drawbacks:
1. The systolic array uses global control signals, requiring a high technical accuracy.
2. Each cell needs a counter with counting register, introducing a considerable hardware

expense.
3. The initial value of the counter varies between the cells. Thus, each cell must be indivi-

dually designed and implemented.

552 12. Systolic Systems

4. The input data of any successive problem must wait outside the cells until all results
from the current problem have left the systolic array.

These disadvantages can be avoided, if control signals are propagated like data�
meaning a distributed control. Therefore, we preserve the connections of the registers B
and C with the multiplexors from Figure 12.11(b), but do not generate any control signals
in the cells; also, there will be no global reset signal. Instead, a cell receives the necessary
control signal from one of the neighbours, stores it in a new one-bit register S, and approp-
riately forwards it to further neighbouring cells. The primary control signals are generated
by the host computer, and infused into the systolic array by boundary cells, only. Figure
12.12(a) shows the required array structure, Figure 12.12(b) the modi�ed cell structure.

Switching to the propagation mode occurs successively down one cell in a column,
always delayed by one timestep. The delay introduced by register S is therefore sufficient.

Reset to the calculation mode is performed via the same control wire, and thus also
happens with a delay of one timestep per cell. But since the results ci j sink down at half
speed, only, we have to wait sufficiently long with the reset: if a cell is switched to calcula-
tion mode in timestep t, it goes to propagation mode in timestep t + N3, and is reset back to
calculation mode in timestep t + N1 + N3.

So we learned that in a systolic array, distributed control induces a different macroscopic
timing behaviour than local/global control. Whereas the systolic array from Figure 12.12 can
start the calculation of a new problem (12.35) every N1 + N3 timesteps, the systolic array
from Figure 12.11 must wait for 2 ·N1 + N2 + N3 − 2 timesteps. The time difference N1 + N3
resp. 2 · N1 + N2 + N3 − 2 is called the period, its reciprocal being the throughput.

System (12.37) formally describes the relations between distributed control and calcula-
tions. We thereby assume an in�nite, densely packed sequence of matrix product problems,
the additional iteration variable l being unbounded. The equation headed variables with
alias describes but pure identity relations.

12.4. Control 553

control
s(i, j, k, l) = 0 i = 0, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3,

s(i, j, k, l) = 1 i = 0, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ N1 + N3,

s(i, j, k, l) = s(i − 1, j, k, l) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N1 + N3 .

input operations
a(i, j, k, l) = al

ik 1 ≤ i ≤ N1, j = 0, 1 ≤ k ≤ N3,

b(i, j, k, l) = bl
k j i = 0, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3,

b(i, j, k, l) = dl+1
N1+N3+1−k, j i = 0, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ N1 + N3 .

variables with alias
c(i, j, k, l) = c(i, j,N1 + N3, l − 1) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, k = 0 .

calculations and forwarding
a(i, j, k, l) = a(i, j − 1, k, l) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N1 + N3 ,

b(i, j, k, l) =

{
b(i − 1, j, k, l) : s(i − 1, j, k, l) = 0
c(i, j, k − 1, l) : s(i − 1, j, k, l) = 1 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N1 + N3 ,

c(i, j, k, l) =



c(i, j, k − 1, l)
+ a(i, j − 1, k, l)
· b(i − 1, j, k, l) : s(i − 1, j, k, l) = 0
b(i − 1, j, k, l) : s(i − 1, j, k, l) = 1

1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N1 + N3 .

output operations
cl

1+N1+N3−k, j = b(i, j, k, l) i = N1, 1 ≤ j ≤ N2, 1 + N3 ≤ k ≤ N1 + N3 .
(12.37)

Formula (12.38) shows the corresponding space-time matrix. Note that one entry of T
is not constant but depends on the problem parameters:

T =


1 0 0 0
0 1 0 0
1 1 1 N1 + N3

 (12.38)

Interestingly, also the cells in a row switch one timestep later when moving one position
to the right. Sacri�cing some regularity, we could use this circumstance to relieve the host
computer by applying control to the systolic array at cell (1, 1), only. We therefore would
have to change the control scheme in the following way:

554 12. Systolic Systems

+

*

(b)(a)

A

B

C

S

0
0

0
0

0

0
0

0
0

0

0
0

0
0

0

0
0

0
0

0

1
1

1
1

1

1
1

1
1

1

1
1

1
1

1

a11a12a13a14

a21a22a23a24

a31a32a33a34

b11

b12

b13

b14

b15

b21

b22

b23

b24

b25

b31

b32

b33

b34

b35

b41

b42

b43

b44

b45

d11

d12

d13

d14

d15

d21

d22

d23

d24

d25

d31

d32

d33

d34

d35

Figure 12.12. Matrix product on a rectangular systolic array, with output of results and distributed control. (a)
Array structure. (b) Cell structure.

control
s(i, j, k, l) = 0 i = 1, j = 0, 1 ≤ k ≤ N3 ,

s(i, j, k, l) = 1 i = 1, j = 0, 1 + N3 ≤ k ≤ N1 + N3 ,

s(i, j, k, l) = s(i − 1, j, k, l) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N1 + N3 ,

. . .

variables with alias
s(i, j, k, l) = s(i + 1, j − 1, k, l) i = 0, 1 ≤ j ≤ N2, 1 ≤ k ≤ N1 + N3 ,

. . .

(12.39)

Figure 12.13 shows the result of this modi�cation. We now need cells of two kinds:
cells on the upper border of the systolic array must be like that in Figure 12.13(b); all other
cells would be as before, see Figure 12.13(c). Moreover, the communication topology on the
upper border of the systolic array would be slightly different from that in the regular area.

12.4.5. The cell program as a local view
The chosen space-time transformation widely determines the architecture of the systolic
array. Mapping recurrence equations to space-time coordinates yields an explicit view to
the geometric properties of the systolic array, but gives no real insight into the function of
the cells. In contrast, the processes performed inside a cell can be directly expressed by
a cell program. This approach is particularly of interest if dealing with a programmable
systolic array, consisting of cells indeed controlled by a repetitive program.

12.4. Control 555

+

*

(b)

+

*

(c)(a)

A

A

B

B

C

C

S

S

0 0 0 0 1 1 1
a11a12a13a14

a21a22a23a24

a31a32a33a34

b11

b12

b13

b14

b15

b21

b22

b23

b24

b25

b31

b32

b33

b34

b35

b41

b42

b43

b44

b45

d11

d12

d13

d14

d15

d21

d22

d23

d24

d25

d31

d32

d33

d34

d35

Figure 12.13. Matrix product on a rectangular systolic array, with output of results and distributed control. (a)
Array structure. (b) Cell on the upper border. (c) Regular cell.

Like the global view, i.e., the structure of the systolic array, the local view given by a
cell program in fact is already �xed by the space-time transformation. But, this local view is
only induced implicitly here, and thus, by a further mathematical transformation, an explicit
representation must be extracted, suitable as a cell program.

In general, we denote instances of program variables with the aid of index expressions,
that refer to iteration variables. Take, for instance, the equation

c(i, j, k) = c(i, j, k − 1) + a(i, j − 1, k) · b(i − 1, j, k) 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3

from system (12.3). The instance c(i, j, k−1) of the program variable c is speci�ed using
the index expressions i, j, and k − 1, which can be regarded as functions of the iteration
variables i, j, k.

As we have noticed, the set of iteration vectors (i, j, k) from the quanti�cation becomes
a set of space-time coordinates (x, y, t) when applying a space-time transformation (12.12)
with transformation matrix T from (12.14),


x
y
t

 = T ·


i
j
k

 =


0 −1 1
−1 1 0

1 1 1

 ·


i
j
k

 . (12.40)

Since each cell is denoted by space coordinates (x, y), and the cell program must refer

556 12. Systolic Systems

to the current time t, the iteration variables i, j, k in the index expressions for the program
variables are not suitable, and must be translated into the new coordinates x, y, t. Therefore,
using the inverse of the space-time transformation from (12.40), we express the iteration
variables i, j, k as functions of the space-time coordinates (x, y, t),


i
j
k

 = T−1 ·


x
y
t

 =
1
3 ·


−1 −2 1
−1 1 1

2 1 1

 ·


x
y
t

 . (12.41)

The existence of such an inverse transformation is guaranteed if the space-time trans-
formation is injective on the domain�and that it should always be: if not, some instances
must be calculated by a cell in the same timestep. In the example, reversibility is guaranteed
by the square, non singular matrix T , even without referral to the domain. With respect to
the time vector π and any projection vector u, the property π · u , 0 is sufficient.

Replacing iteration variables by space-time coordinates, which might be interpreted as
a transformation of the domain, frequently yields very unpleasant index expressions. Here,
for example, from c(i, j, k − 1) we get

c((−x − 2 · y + t)/3, (−x + y + t)/3, (2 · x + y + t)/3)qkoz.

But, by a successive transformation of the index sets, we can relabel the instances of the
program variables such that the reference to cell and time appears more evident. In parti-
cular, it seems worthwhile to transform the equation system back into output normal form,
i.e., to denote the results calculated during timestep t in cell (x, y) by instances (x, y, t) of
the program variables. We best gain a real understanding of this approach via an abstract
mathematical formalism, that we can �t to our special situation.

Therefore, let
r(ψr(v)) = F (. . . , s(ψs(v)), . . .) v ∈ S (12.42)

be a quanti�ed equation over a domain S , with program variables r and s. The index
functions ψr and ψs generate the instances of the program variables as tuples of index
expressions.

By transforming the domain with a function ϕ that is injective on S , equation (12.42)
becomes

r(ψr(ϕ−1(e))) = F (. . . , s(ψs(ϕ−1(e))), . . .) e ∈ ϕ(S), (12.43)
where ϕ−1 is a function that constitutes an inverse of ϕ on ϕ(S). The new index functions

are ψr ◦ ϕ−1 and ψs ◦ ϕ−1.
Transformations of index sets don't touch the domain; they can be applied to each

program variable separately, since only the instances of this program variable are renamed,
and in a consistent way. With such renamings ϑr and ϑs, equation (12.43) becomes

r(ϑr(ψr(ϕ−1(e)))) = F (. . . , s(ϑs(ψs(ϕ−1(e)))), . . .) e ∈ ϕ(S) . (12.44)

If output normal form is desired, ϑr ◦ ψr ◦ ϕ−1 has to be the identity.
In the most simple case (as for our example), ψr is the identity, and ψs is an affine

transformation of the form ψs(v) = v − d, with constant d�the already known dependence
vector. ψr then can be represented in the same way, with d = ~0. Transformation of the
domains happens by the space-time transformation ϕ(v) = T · v, with an invertible matrix T .

12.4. Control 557

For all index transformations, we choose the same ϑ = ϕ. Thus equation (12.44) becomes

r(e) = F (. . . , s(e − T · d), . . .) e ∈ T (S). (12.45)

For the generation of a cell program, we have to know the following information for
every timestep: the operation to perform, the source of the data, and the destination of the
results�known from assembler programs as opc, src, dst.

The operation to perform (opc) follows directly from the function F . For a cell with
control, we must also �nd the timesteps when to perform this individual function F . The set
of these timesteps, as a function of the space coordinates, can be determined by projecting
the set T (S) onto the time axis; for general polyhedric S with the aid of a Fourier�Motzkin
elimination, for example.

In system (12.45), we get a new dependence vector T ·d, consisting of two components:
a (vectorial) spatial part, and a (scalar) timely part. The spatial part ∆z, as a difference vec-
tor, speci�es which neighbouring cell has calculated the operand. We directly can translate
this information, concerning the input of operands to cell z, into a port speci�er with port
position −∆z, serving as the src operand of the instruction. In the same way, the cell cal-
culating the operand, with position z − ∆z, must write this value to a port with port position
∆z, used as the dst operand in the instruction.

The timely part of T · d speci�es, as a time difference ∆t, when the calculation of the
operand has been performed. If ∆t = 1, this information is irrelevant, because the reading
cell z always gets the output of the immediately preceding timestep from neighbouring cells.
However, for ∆t > 1, the value must be buffered for ∆t− 1 timesteps, either by the producer
cell z − ∆z, or by the consumer cell z�or by both, sharing the burden. This need can be
realised in the cell program, for example, with ∆t − 1 copy instructions executed by the
producer cell z − ∆z, preserving the value of the operand until its �nal output from the cell
by passing it through ∆t − 1 registers.

Applying this method to system (12.37), with transformation matrix T as in (12.38),
yields

s(x, y, t) = s(x − 1, y, t − 1)
a(x, y, t) = a(x, y − 1, t − 1)

b(x, y, t) =

{
b(x − 1, y, t − 1) : s(x − 1, y, t − 1) = 0
c(x, y, t − 1) : s(x − 1, y, t − 1) = 1

c(x, y, t) =



c(x, y, t − 1)
+ a(x, y − 1, t − 1)
· b(x − 1, y, t − 1) : s(x − 1, y, t − 1) = 0
b(x − 1, y, t − 1) : s(x − 1, y, t − 1) = 1

(12.46)

The iteration variable l, being relevant only for the input/output scheme, can be set to
a �xed value prior to the transformation. The corresponding cell program for the systolic
array from Figure 12.12, performed once in every timestep, reads as follows:

558 12. Systolic Systems

C-P

1 S← C(−1, 0)(0)
2 A← C(0,−1)
3 B← C(−1, 0)(1 : N)
4 C(1, 0)(0)← S

5 C(0, 1)← A

6 if S = 1
7 then C(1, 0)(1 : N)← C

8 C← B

9 else C(1, 0)(1 : N)← B

10 C← C + A · B

The port speci�ers stand for local input/output to/from the cell. For each, a pair of
quali�ers is derived from the geometric position of the ports relative to the centre of the cell.
Port C(0,−1) is situated on the left border of the cell, C(0, 1) on the right border; C(−1, 0)
is above the centre, C(1, 0) below. Each port speci�er can be augmented by a bit range:
C(−1, 0)(0) stands for bit 0 of the port, only; C(−1, 0)(1 : N) denotes the bits 1 to N. The
designations A, B, . . . without port quali�ers stand for registers of the cell.

By application of matrix T from (12.13) to system (12.36), we get

a(x, y, t) = a(x, y − 1, t − 1) 1 + x + y ≤ t ≤ x + y + N3 ,

b(x, y, t) = b(x − 1, y, t − 1) 1 + x + y ≤ t ≤ x + y + N3 ,

c(x, y, t) = c(x, y, t − 1) 1 + x + y ≤ t ≤ x + y + N3 ,

+ a(x, y − 1, t − 1) · b(x − 1, y, t − 1)
b(x, y, t) = c(x, y, t − 1) x + y + 1 + N3 ≤ t ≤ 2 · x + y + N3 ,

c(x, y, t) = b(x − 1, y, t − 1) x + y + 1 + N3 ≤ t ≤ 2 · x + y − 1 + N3 .

(12.47)

Now the advantages of distributed control become obvious. The cell program for
(12.46) can be written with referral to the respective timestep t, only. And thus, we need
no reaction to global control signals, no counting register, no counting operations, and no
coding of the local cell coordinates.

Exercises
12.4-1 Specify appropriate input/output schemes for performing, on the systolic arrays pre-
sented in Figures 12.11 and 12.12, two evaluations of system (12.36) that follow each other
closest in time.
12.4-2 How could we change the systolic array from Figure 12.12, to efficiently support
the calculation of matrix products with parameters M1 < N1 or M2 < N2?
12.4-3 Write a cell program for the systolic array from Figure 12.3.
12.4-4? Which throughput allows the systolic array from Figure 12.3 for the assumed va-
lues of N1,N2,N3? Which for general N1,N2,N3?
12.4-5? Modify the systolic array from Figure 12.1 such that the results stored in stati-
onary variables are output through additional links directed half right down, i.e., from cell
(i, j) to cell (i+1, j+1). Develop an assignment-free equation system functionally equivalent
to system (12.36), that is compatible with the extended structure. How looks the resulting

12.5. Linear systolic arrays 559

min

max

(b)(a)

X

M

S

01 1 1 1
MAX MAX MAX MAX MAX

x1

x2

x3

x4

x5

m1

m2

m3

m4

m5

Figure 12.14. Bubble sort algorithm on a linear systolic array. (a) Array structure with input/output scheme. (b)
Cell structure.

input/output scheme? Which period is obtained?

12.5. Linear systolic arrays
Explanations in the sections above heavily focused on two-dimensional systolic arrays, but
in principle also apply to one-dimensional systolic arrays, called linear systolic arrays in
the sequel. The most relevant difference between both kinds concerns the boundary of the
systolic array. Linear systolic arrays can be regarded as consisting of boundary cells, only;
under this assumption, input from and output to the host computer needs no special concern.
However, the geometry of a linear systolic array provides one full dimension as well as one
�ctitious dimension, and thus communication along the full-dimensional axis may involve
similar questions as in section 12.3.5. Eventually, the boundary of the linear systolic array
can also be de�ned in a radically different way, namely to consist of both end cells, only.

12.5.1. Matrix-vector product
If we set one of the problem parameters N1 or N2 to value 1 for a systolic array as that from
Figure 12.1, the matrix product means to multiply a matrix by a vector, from left or right.
The two-dimensional systolic array then degenerates to a one-dimensional systolic array.
The vector by which to multiply is provided as an input data stream through an end cell of
the linear systolic array. The matrix items are input to the array simultaneously, using the
complete broadside.

As for full matrix product, results emerge stationary. But now, they either can be drained
along the array to one of the end cells, or they are sent directly from the producer cells to
the host computer. Both methods result in different control mechanisms, time schemes, and
running time.

560 12. Systolic Systems

Now, would it be possible to provide all inputs via end cells? The answer is negative
if the running time should be of complexity Θ(N). Matrix A contains Θ(N2) items, thus
there are Θ(N) items per timestep to read. But the number of items receivable through an
end cell during one timestep is bounded. Thus, the input/output data rate�of order Θ(N),
here�may already constrain the possible design space.

12.5.2. Sorting algorithms
For sorting, the task is to bring the elements from a set {x1, . . . , xN}, subset of a totally
ordered basic set G, into an ascending order {mi}i=1,...,N where mi ≤ mk for i < k. A solution
to this problem is described by the following assignment-free equation system, where MAX
denotes the maximum in G:

input operations
x(i, j) = xi 1 ≤ i ≤ N, j = 0,
m(i, j) = MAX 1 ≤ j ≤ N, i = j − 1 .

calculations
m(i, j) = min{x(i, j − 1),m(i − 1, j)} 1 ≤ i ≤ N, 1 ≤ j ≤ i ,
x(i, j) = max{x(i, j − 1),m(i − 1, j)} 1 ≤ i ≤ N, 1 ≤ j ≤ i .

output operations
m(i, j) = m j 1 ≤ j ≤ N, i = N .

(12.48)

By completing a projection along direction u = (1, 1) to a space-time transformation
(

x
t

)
=

(
1 −1
1 1

)
·
(

i
j

)
, (12.49)

we get the linear systolic array from Figure 12.14, as an implementation of the bubble
sort algorithm.

Correspondingly, the space-time matrix

T =

(
0 1
1 1

)
(12.50)

would induce another linear systolic array, that implements insertion sort. Eventually,
the space-time matrix

T =

(
1 0
1 1

)
(12.51)

would lead to still another linear systolic array, this one for selection sort.
For the sorting problem, we have Θ(N) input items, Θ(N) output items, and Θ(N) times-

teps. This results in an input/output data rate of order Θ(1). In contrast to the matrix-vector
product from section 12.5.1, the sorting problem with any prescribed input/output data rate
in principle allows to perform the communication exclusively through the end cells of a
linear systolic array.

Note that, in all three variants of sorting described so far, direct input is necessary to

12.5. Linear systolic arrays 561

all cells: the values to order for bubble sort, the constant values MAX for insertion sort, and
both for selection sort. However, instead of inputting the constants, the cells could generate
them, or read them from a local memory.

All three variants require a cell control: insertion sort and selection sort use stationary
variables; bubble sort has to switch between the processing of input data and the output of
calculated values.

12.5.3. Lower triangular linear equation systems
System (12.52) below describes a localised algorithm for solving the linear equation system
A · x = b, where the N × N matrix A is a lower triangular matrix.

input operations
a(i, j) = ai, j+1 1 ≤ i ≤ N, 0 ≤ j ≤ i − 1 ,
u(i, j) = bi 1 ≤ i ≤ N, j = 0 .

calculations and forwarding
u(i, j) = u(i, j − 1) − a(i, j − 1) · x(i − 1, j) 2 ≤ i ≤ N, 1 ≤ j ≤ i − 1 ,
x(i, j) = u(i, j − 1)/a(i, j − 1) 1 ≤ i ≤ N, j = i ,
x(i, j) = x(i − 1, j) 2 ≤ i ≤ N − 1, 1 ≤ j ≤ i − 1 .

output operations
xi = x(i, j) 1 ≤ i ≤ N, j = i .

(12.52)

All previous examples had in common that, apart from copy operations, the same kind
of calculation had to be performed for each domain point: fused multiply/add for the matrix
algorithms, minimum and maximum for the sorting algorithms. In contrast, system (12.52)
contains some domain points where multiply and subtract is required, as well as some others
needing division.

When projecting system (12.52) to a linear systolic array, depending on the chosen
projection direction we get �xed or varying cell functions. Peculiar for projecting along
u = (1, 1), we see a single cell with divider; all other cells need a multiply/subtract unit.
Projection along u = (1, 0) or u = (0, 1) yields identical cells, all containing a divider as
well as a multiply/subtract unit. Projection vector u = (1,−1) results in a linear systolic array
with three different cell types: both end cells need a divider, only; all other cells contain a
multiply/subtract unit, with or without divider, alternatingly. Thus, a certain projection can
introduce inhomogeneities into a systolic array�that may be desirable, or not.

Exercises
12.5-1 For both variants of matrix-vector product as in section 12.5.1�output of the results
by an end cell versus communication by all cells�specify a suitable array structure with
input/output scheme and cell structure, including the necessary control mechanisms.
12.5-2 Study the effects of further projection directions on system (12.52).
12.5-3 Construct systolic arrays implementing insertion sort and selection sort, as mentio-
ned in section 12.5.2. Also draw the corresponding cell structures.

562 12. Systolic Systems

12.5-4? The systolic array for bubble sort from Figure 12.14 could be operated without
control by cleverly organising the input streams. Can you �nd the trick?
12.5-5? What purpose serves the value MAX in system (12.48)? How system (12.48) co-
uld be formulated without this constant value? Which consequences this would incur for the
systolic arrays described?

Problems

12-1. Band matrix algorithms
In sections 12.1, 12.2, 12.5.1, and 12.5.3, we always assumed full input matrices, i.e., each
matrix item ai j used could be nonzero in principle. (Though in a lower triangular matrix,
items above the main diagonal are all zero. Note, however, that these items are not inputs to
any of the algorithms described.)

In contrast, practical problems frequently involve band matrices, (see)cf.
Kung/Leiserson [3]. In such a matrix, most diagonals are zero, left alone a small band aro-
und the main diagonal. Formally, we have ai j = 0 for all i, j with i − j ≥ K or j − i ≥ L,
where K and L are positive integers. The band width, i.e., the number of diagonals where
nonzero items may appear, here amounts to K + L − 1.

Now the question arises whether we could pro�t from the band structure in one or more
input matrices to optimise the systolic calculation. One opportunity would be to delete cells
doing no useful work. Other bene�ts could be shorter input/output data streams, reduced
running time, or higher throughput.

Study all systolic arrays presented in this chapter for improvements with respect to these
criteria.

Chapter notes
The term systolic array has been coined by Kung and Leiserson in their seminal paper [3].

Karp, Miller, and Winograd did some pioneering work [2] for uniform recurrence equa-
tions.

Essential stimuli for a theory on the systematic design of systolic arrays have been Rao's
PhD dissertation [6] and the work of Quinton [5].

The contribution of Teich and Thiele [8] shows that a formal derivation of the cell cont-
rol can be achieved by methods very similar to those for a determination of the geometric
array structure and the basic cell function.

The up-to-date book by Darte, Robert, and Vivien [1] joins advanced methods from
compiler design and systolic array design, dealing also with the analysis of data dependen-
ces.

The monograph [9] still seems to be the most comprehensive work on systolic systems.
Each systolic array can also be modelled as a cellular automaton. The registers in a

cell together hold the state of the cell. Thus, a factorised state space is adequate. Cells of
different kind, for instance with varying cell functionality or position-dependent cell control,
can be described with the aid of further components of the state space.

12. Megjegyzések a fejezethez 563

Each systolic algorithm also can be regarded as a PRAM algorithm with the same timing
behaviour. Thereby, each register in a systolic cell corresponds to a PRAM memory cell,
and vice versa. The EREW PRAM model is sufficient, because in every timestep exactly
one systolic cell reads from this register, and then exactly one systolic cell writes to this
register.

Each systolic system also is a special kind of synchronous network as de�ned by Lynch
[4]. Time complexity measures agree. Communication complexity usually is no topic with
systolic arrays. Restriction to input/output through boundary cells, frequently demanded for
systolic arrays, also can be modelled in a synchronous network. The concept of failures is
not required for systolic arrays.

The book [7] due to Sima, Kacsuk and Fountaine considers systolic systems in details.

Bibliography

[1] A. Darte, Y. Robert, F. Vivien. Scheduling and Automatic Parallelization. Birkhäuser Boston, 2000. 562
[2] R. M. Karp, R. E. Miller, S. Winograd. The organization of computations for uniform recurrence equations.

Journal of the ACM, 14:563�590, 1967. 562
[3] H. T. Kung, C. E. Leiserson. Systolic arrays (for VLSI). In I. S. Duff, G. W. Stewart (szerkeszt�ok), Sparse

Matrix Proceedings, pp. 256�282. SIAM, 1978. 562
[4] N. A. Lynch. Distributed Algorithms. Morgan Kaufman Publisher, 2001 (�fth edition). 563
[5] P. Quinton. Automatic synthesis of systolic arrays from uniform recurrent equations. In Proceedings of the

11th Annual International Symposium on Computer Architecture, pp. 208�214, 1984. 562
[6] S. K. Rao. Regular iterative algorithms and their implementations on processor arrays. Doktori értekezés,

Stanford University, 1985. 562
[7] D. Sima, T. Fountain, P. Kacsuk. Advanced Computer Architectures: a Design Space Approach. Addison-

Wesley Publishing Company, 1998 (2. edition). 563
[8] J. Teich, L. Thiele. Control generation in the design of processor arrays. International Journal of VLSI and

Signal Processing, 3(2):77�92, 1991. 562
[9] E. Zehendner. Entwurf systolischer Systeme: Abbildung regulärer Algorithmen auf synchrone Prozessorar-

rays. B. G. Teubner Verlagsgesellschaft, 1996. 562

http://perso.ens-lyon.fr/alain.darte/�
http://graal.ens-lyon.fr/~yrobert/�
http://graal.ens-lyon.fr/~fvivien/�
file:www.birkhauser.com/.dvi�
http://www.icir.org/karp/�
http://portal.acm.org/browse_dl.cfm?linked=1&part=journal&idx=J401&coll=portal&dl=ACM&CFID=10136019&CFTOKEN=486195�
http://theory.lcs.mit.edu/~cel/�
http://www.siam.org/�
http://theory.lcs.mit.edu/~lynch�
file:www.mkp.com/.dvi�
http://www.irisa.fr/cosi/Quinton/�
file:www.acm.org/dl/.dvi�
http://www.cs.berkeley.edu/~satishr�
file:www.stanford.edu/.dvi�
http://www.bmf.hu/02szervezeti/sima_dezso.htm�
http://www.lpds.sztaki.hu/index.php?menu=staff&&load=staff/member.php&&mid=0�
http://www.aw.com/�
http://www-date.uni-paderborn.de/MEMBERS/teich.html�
http://www.tik.ee.ethz.ch/~thiele/�
http://www.kluweronline.com/issn/0922-5773/contents�
http://www2.informatik.uni-jena.de/~nez/�
http://www.teubner.de/�

Name index

D
Darte, Alain, 562, 564
Duff, Iain S., 564

E, É
Einstein, Albert (1879�1955), 527

F
Fountain, Terence J., 563, 564
Fourier, Jean Baptiste Joseph (1768�1830), 557

K
Kacsuk, Péter, 563, 564
Karp, Richard M., 562, 564
Kung, H. T., 562, 564

L
Leiserson, Charles E., 562, 564
Lynch, Nancy Ann, 564

M
Miller, Raymond E., 562, 564
Motzkin, Theodore Samuel, 557

Q
Quinton, Patrice, 562, 564

R
Rao, Sailesh K., 562, 564
Robert, Yves, 562, 564

S
Sima, Dezs�o, 563, 564
Stewart, G. W., 564

T
Teich, Jürgen, 562, 564
Thiele, Lothar, 562, 564

V
Vivien, Frédéric, 562, 564

W
Winograd, Shmuel, 562, 564

Z
Zehendner, Eberhard, 562, 564

Subject Index

A, Á
assignment-free notation, 525, 536

B
band matrix, 562
band width, 562
bubble sort, 559áb, 560

C
cell, 522, 528, 538

boundary, 523, 539, 543, 544, 552, 559
program, 554
structure of, 522áb, 523, 532áb, 533, 538, 539,

554áb, 559áb
with distributed control, 551�554, 552
with global control, 547áb, 548
with local control, 548�551
without control, 548

cellular automaton, 562
clear, 525, 529, 548
clock signal, 522, 527, 528, 548
communication

external, 527
internal, 527

communication topology
hexagonal, 537
of systolic array, 536, 554
orthogonal, 537

compound operation, 526, 527, 547
connection pattern, 523, 533
control

local/global, 549, 550áb
control signal

propagated, 552
copy operation, 537

D
data

input, 526, 528
output, 526

data dependence, 536
data �ow, 537

regular, 523
data rate, 539, 543, 560
data storage, 528

data stream, 522
input, 543, 559
input/output, 543
length of, 530

data structure index, 540, 541
data structure vector, 540
delay, 528, 529, 549
dependence vector, 537, 556
domain, 526

dense convex, 534
of input/output operations, 544
parametric, 533

dot product, 525

E, É
end cell, 559, 560
equational calculus, 525

F
failure, 563
�ow direction, 537, 538, 539
Fourier�Motzkin elimination, 557

G
generic operator, 525, 544

distributed, 538
global view, 555

H
hardware algorithm, 521
host computer, 522, 528, 549, 552, 553, 559

I, Í
index expression, 555
index function, 556
inhomogeneity, 561
input/output expansion, 544
input/output scheme, 522, 529, 539, 540áb, 541,

549áb, 559áb
extended, 543, 544, 544, 545áb
superposition of, 542, 543

input stream, 529, 548

Subject Index 567

length of, 529
insertion sort, 560
instance, 525, 528
interleaving, 544, 546áb
iteration

variable, 526, 556
vector, 526, 527, 532, 540, 541, 546

L
link, 523, 528, 537

directed, 528
local view, 555

M
matrix

full, 562
unimodular, 535

M-P, 522, 523, 525, 531, 532áb, 554áb
matrix-vector product, 559
multiply-add, 527

O, Ó
operation

elementary, 527
input/output, 526

operation mode, 548, 550
output

delayed, 549áb
output normal form, 556
outside world, 523, 527, 529

P
parallelism

directly express, 525
massive, 521, 522

parametric problem, 531
period, 552
pipelining, 521, 522, 529, 530
port, 523, 538

input, 523, 531, 538
output, 523, 531, 538

PRAM algorithm, 563
problem parameter, 524
projection, 532

direction, 533, 544, 561
matrix, 532
vector, 533, 556

Q
quanti�cation, 526

R
recurrence equation, 525

uniform, 562
register, 538
reset, 547áb
running time

of systolic algorithm, 522, 525, 527, 536, 560

S
scalar control processor, 528
selection sort, 560
serialisation, 525
side effect, 525
simultaneity, 527
skew, 529
slow down, 549
snapshot, 530áb, 541
sorting algorithms, 560, 561
space coordinates, 524, 532, 533

parametric, 533�536
space-time

matrix, 534, 546
transformation, 531�539, 533, 554

spurious operation, 543, 544
state �ip-�op, 550
stationary

matrix, 529, 539
variable, 529, 538, 544, 548

symbolic evaluation, 534
synchronous, 527

network, 563
systolic, 521

algorithm, 522
architecture, 528
C-P, 558
system, 521�563, 522
timestep, 527

systolic array, 521�563, 522
architecture of, 533
border of, 529, 535, 539
boundary of, 544, 559
degenerated, 559
hexagonal, 531, 532áb, 535
linear, 559
multi-dimensional, 529
parameter of, 524
programmable, 554
rectangular, 522, 531, 554áb
shape of, 531, 534, 535
size of, 523, 534
structure of, 522, 523, 532áb, 554áb, 555, 559áb

T
throughput, 552
timestep, 528

discrete, 527
time vector, 532, 538, 546, 556
transformation

of domain, 556
of index set, 556

triangular matrix
lower, 561

U, Ú
uniform algorithm, 531
utilisation, 530, 544, 547

Contents

12. Systolic Systems (Eberhard Zehendner) . 521
12.1. Basic concepts of systolic systems . 521

12.1.1. An introductory example: matrix product 522
12.1.2. Problem parameters and array parameters 523
12.1.3. Space coordinates . 524
12.1.4. Serialising generic operators . 525
12.1.5. Assignment-free notation . 525
12.1.6. Elementary operations . 526
12.1.7. Discrete timesteps . 527
12.1.8. External and internal communication 527
12.1.9. Pipelining . 529

12.2. Space-time transformation and systolic arrays 531
12.2.1. Further example: matrix product without stationary variables 531
12.2.2. The space-time transformation as a global view 531
12.2.3. Parametric space coordinates . 533
12.2.4. Symbolically deriving the running time 536
12.2.5. How to unravel the communication topology 536
12.2.6. Inferring the structure of the cells 538

12.3. Input/output schemes . 539
12.3.1. From data structure indices to iteration vectors 540
12.3.2. Snapshots of data structures . 541
12.3.3. Superposition of input/output schemes 542
12.3.4. Data rates induced by space-time transformations 543
12.3.5. Input/output expansion and extended input/output scheme 543
12.3.6. Coping with stationary variables 544
12.3.7. Interleaving of calculations . 544

12.4. Control . 547
12.4.1. Cells without control . 548
12.4.2. Global control . 548
12.4.3. Local control . 548
12.4.4. Distributed control . 551
12.4.5. The cell program as a local view 554

12.5. Linear systolic arrays . 559

Contents 569

12.5.1. Matrix-vector product . 559
12.5.2. Sorting algorithms . 560
12.5.3. Lower triangular linear equation systems 561

Bibliography . 564
Name index . 565
Subject Index . 566

