
19. Semi-structured databases

The use of the internet and the development of the theory of databases mutually affect each
other. The contents of web sites are usually stored by databases, while the web sites and the
references between them can also be considered a database which has no �xed schema in
the usual sense. The contents of the sites and the references between sites are described by
the sites themselves, therefore we can only speak of semi-structured data, which can be best
characterized by directed labeled graphs. In case of semi-structured data, recursive methods
are used more often for giving data structures and queries than in case of classical relational
databases. Different problems of databases, e.g. restrictions, dependencies, queries, distri-
buted storage, authorities, uncertainty handling, must all be generalized according to this.
Semi-structuredness also raises new questions. Since queries not always form a closed sys-
tem like they do in case of classical databases, that is, the applicability of queries one after
another depends on the type of the result obtained, therefore the problem of checking types
becomes more emphasized.

The theoretical establishment of relational databases is closely related to �nite model-
ling theory, while in case of semi-structured databases, automata, especially tree automata
are most important.

19.1. Semi-structured data and XML
By semi-structured data we mean a directed rooted labeled graph. The root is a special node
of the graph with no entering edges. The nodes of the graph are objects distinguished from
each other using labels. The objects are either atomic or complex. Complex objects are
connected to one or more objects by directed edges. Values are assigned to atomic objects.
Two different models are used: either the vertices or the edges are labeled. The latter one is
more general, since an edge-labeled graph can be assigned to all vertex-labeled graphs in
such a way that the label assigned to the edge is the label assigned to its endpoint. This way
we obtain a directed labeled graph for which all inward directed edges from a vertex have the
same label. Using this transformation, all concepts, de�nitions and statements concerning
edge-labeled graphs can be rewritten for vertex-labeled graphs.

The following method is used to gain a vertex-labeled graph from an edge-labeled
graph. If edge (u, v) has label c, then remove this edge, and introduce a new vertex w with

910 19. Semi-structured databases

Figure 19.1. Edge-labeled graph assigned to a vertex-labeled graph.

Figure 19.2. An edge-labeled graph and the corresponding vertex-labeled graph.

label c, then add edges (u,w) and (w, v). This way we can obtain a vertex-labeled graph of
m + n nodes and 2m edges from an edge-labeled graph of n vertices and m edges. There-
fore all algorithms and cost bounds concerning vertex-labeled graphs can be rewritten for
edge-labeled graphs.

Since most books used in practice use vertex-labeled graphs, we will also use vertex-
labeled graphs in this chapter.

The XML (eXtensible Markup Language) language was originally designed to describe
embedded ordered labeled elements, therefore it can be used to represent trees of semi-
structured data. In a wider sense of the XML language, references between the elements can
also be given, thus arbitrary semi-structured data can be described using the XML language.

The medusa.inf.elte.hu/forbidden site written in XML language is as follows. We can
obtain the vertex-labeled graph of Figure 19.3 naturally from the structural characteristics
of the code.

19.2. Schemas and simulations 911

Figure 19.3. The graph corresponding to the XML �le �forbidden�.

<HTML>

<HEAD>

<TITLE>403 Forbidden</TITLE>

</HEAD>

<BODY>

<H1>Forbidden</H1>

You don't have permission to access /forbidden.
<ADDRESS>Apache Server at medusa.inf.elte.hu </ADDRESS>

</BODY>

</HTML>

Exercises
19.1-1 Give a vertex-labeled graph that represents the structure and formatting of this chap-
ter.
19.1-2 How many different directed vertex-labeled graphs exist with n vertices, m edges
and k possible labels? How many of these graphs are not isomorphic? What values can be
obtained for n = 5, m = 7 and k = 2?
19.1-3 Consider a tree in which all children of a given node are labeled with different num-
bers. Prove that the nodes can be labeled with pairs (av, bv), where av and bv are natural
numbers, in such a way that
a. av < bv for every node v.
b. If u is a descendant of v, then av < au < bu < bv.
c. If u and v are siblings and number(u) < number(v), then bu < av.

19.2. Schemas and simulations
In case of relational databases, schemas play an important role in coding and querying data,
query optimization and storing methods that increase efficiency. When working with semi-

912 19. Semi-structured databases

Figure 19.4. A relational database in the semi-structured model.

structured databases, the schema must be obtained from the graph. The schema restricts the
possible label strings belonging to the paths of the graph.

Figure 19.4 shows the relational schemas with relations R(A, B,C) and Q(C,D), res-
pectively, and the corresponding semi-structured description. The labels of the leaves of
the tree are the components of the tuples. The directed paths leading from the root to the
values contain the label strings database.R.tuple.A, database.R.tuple.B, database.R.tuple.C,
database.Q.tuple.C, database.Q.tuple.D. This can be considered the schema of the semi-
structured database. Note that the schema is also a graph, as it can be seen on Figure 19.5.
The disjoint union of the two graphs is also a graph, on which a simulation mapping can
be de�ned as follows. This way we create a connection between the original graph and the
graph corresponding to the schema.

De�nition 19.1 Let G = (V, E, A, label()) be a vertex-labeled directed graph, where V
denotes the set of nodes, E the set of edges, A the set of labels, and label(v) is the label
belonging to node v. Denote by E−1(v) = {u | (u, v) ∈ E} the set of the start nodes of the
edges leading to node v. A binary relation s (s ⊆ V × V) is a simulation, if, for s(u, v),
i) label(u) = label(v) and
ii) for all u′ ∈ E−1(u) there exists a v′ ∈ E−1(v) such that s(u′, v′)
Node v simulates node u, if there exists a simulation s such that s(u, v). Node u and node v
are similar, u ≈ v, if u simulates v and v simulates u.

It is easy to see that the empty relation is a simulation, that the union of simulations is
a simulation, that there always exists a maximal simulation and that similarity is an equiva-
lence relation. We can write E instead of E−1 in the above de�nition, since that only means
that the direction of the edges of the graph is reversed.

19.2. Schemas and simulations 913

Figure 19.5. The schema of the semi-structured database given in Figure 19.4.

We say that graph D simulates graph S if there exists a mapping f : VS 7→ VD such that
the relation (v, f (v)) is a simulation on the set VS × VD.

Two different schemas are used, a lower bound and an upper bound. If the data graph
D simulates the schema graph S , then S is a lower bound of D. Note that this means that
all label strings belonging to the directed paths in S appear in D at some directed path. If S
simulates D, then S is an upper bound of D. In this case, the label strings of D also appear
in S .

In case of semi-structured databases, the schemas which are greatest lower bounds or
lowest upper bounds play an important role.

A map between graphs S and D that preserves edges is called a morphism. Note that f
is a morphism if and only if D simulates S . To determine whether a morphism from D to
S exists is an NP-complete problem. We will see below, however, that the calculation of a
maximal simulation is a PTIME problem.

Denote by sim(v) the nodes that simulate v. The calculation of the maximal simulation
is equivalent to the determination of all sets sim(v) for v ∈ V . First, our naive calculation
will be based on the de�nition.

N-M-S(G)
1 for all v ∈ V
2 do sim(v)← {u ∈ V | label(u) = label(v)}
3 while ∃ u, v,w ∈ V : v ∈ E−1(u) ∧ w ∈ sim(u) ∧ E−1(w) ∩ sim(v) = ∅
4 do sim(u)← sim(u) \ {w}
5 return {sim(u) | u ∈ V}

Proposition 19.2 The algorithm N-M-S computes the maximal simu-
lation in O(m2n3) time if m ≥ n.

Proof. Let us start with the elements of sim(u). If an element w of sim(u) does not simulate
u by de�nition according to edge (v, u), then we remove w from set sim(u). In this case, we
say that we improved set sim(u) according to edge (v, u). If set sim(u) cannot be improved

914 19. Semi-structured databases

according to any of the edges, then all elements of sim(u) simulate u. To complete the proof,
notice that the while cycle consists of at most n2 iterations.

The efficiency of the algorithm can be improved using special data structures. First,
introduce a set sim-candidate(u), which contains sim(u), and of the elements of whom we
want to �nd out whether they simulate u.

I-M-S(G)
1 for all v ∈ V
2 do sim-candidate(u)← V
3 if E−1(v) = ∅
4 then sim(v)← {u ∈ V | label(u) = label(v)}
5 else sim(v)← {u ∈ V | label(u) = label(v) ∧ E−1(u) , ∅}
6 while ∃ v ∈ V : sim(v) , sim-candidate(v)
7 do removal-candidate← E(sim-candidate(v)) \ E(sim(v))
8 for all u ∈ E(v)
9 do sim(u)← sim(u) \ removal-candidate

10 sim-candidate(v)← sim(v)
11 return {sim(u) | u ∈ V}

The while cycle of the improved algorithm possesses the following invariant characte-
ristics.

I1: ∀ v ∈ V : sim(v) ⊆ sim-candidate(v).
I2: ∀ u, v,w ∈ V : (v ∈ E−1(u) ∧ w ∈ sim(u)) ⇒ (E−1(w) ∩ sim-candidate(v) , ∅).

When improving the set sim(u) according to edge (v, u), we check whether an ele-
ment w ∈ sim(u) has parents in sim(v). It is sufficient to check that for the elements of
sim-candidate(v) instead of sim(v) because of I2. Once an element w′ ∈ sim-candidate(v) \
sim(v) was chosen, it is removed from set sim-candidate(v).

We can further improve the algorithm if we do not compute the set removal-candidate
in the iterations of the while cycle but refresh the set dynamically.

19.2. Schemas and simulations 915

E-M-S(G)
1 for all v ∈ V
2 do sim-candidate(v)← V
3 if E−1(v) = ∅
4 then sim(v)← {u ∈ V | label(u) = label(v)}
5 else sim(v)← {u ∈ V | label(u) = label(v) ∧ E−1(u) , ∅}
6 removal-candidate(v)← E(V) \ E(sim(v))
7 while ∃ v ∈ V : removal-candidate(v) , ∅
8 do for all u ∈ E(v)
9 do for all w ∈ removal-candidate(v)

10 do if w ∈ sim(u)
11 then sim(u)← sim(u) \ {w}
12 for all w′′ ∈ E(w)
13 do if E−1(w′′) ∩ sim(u) = ∅
14 then removal-candidate(u)← removal-candidate(u) ∪ {w′′}
15 sim-candidate(v)← sim(v)
16 removal-candidate(v)← ∅
17 return {sim(u) | u ∈ V}

The above algorithm possesses the following invariant characteristic with respect to the
while cycle.

I3: ∀ v ∈ V: removal-candidate(v) = E(sim-candidate(v)) \ E(sim(v)).

Use an n × n array as a counter for the realization of the algorithm. Let the va-
lue counter[w′′, u] be the nonnegative integer |E−1(w′′) ∩ sim(u)|. The initial values of
the counter are set in O(mn) time. When element w is removed from set sim(u), the va-
lues counter[w′′, u] must be decreased for all children w′′ of w. By this we ensure that
the innermost if condition can be checked in constant time. At the beginning of the al-
gorithm, the initial values of the sets sim(v) are set in O(n2) time if m ≥ n. The setting
of sets removal-candidate(v) takes altogether O(mn) time. For arbitrary nodes v and w, if
w ∈ removal-candidate(v) is true in the i-th iteration of the while cycle, then it will be false
in the j-th iteration for j > i. Since w ∈ removal-candidate(v) implies w < E(sim(v)), the
value of sim-candidate(v) in the j-th iteration is a subset of the value of sim(v) in the i-th
iteration, and we know that invariant I3 holds. Therefore w ∈ sim(u) can be checked in∑

v
∑

w |E(v)| = O(mn) time. w ∈ sim(u) is true at most once for all nodes w and u, since
once the condition holds, we remove w from set sim(u). This implies that the computation
of the outer if condition of the while cycle takes ∑

v
∑

w(1 + |E(v)|) = O(mn) time.
Thus we have proved the following proposition.

Proposition 19.3 The algorithm E-M-S computes the maximal si-
mulation in O(mn) time if m ≥ n.

If the inverse of a simulation is also a simulation, then it is called a bisimulation. The
empty relation is a bisimulation, and there always exist a maximal bisimulation. The maxi-
mal bisimulation can be computed more efficiently than the simulation. The maximal bisi-
mulation can be computed in O(m lg n) time using the PT algorithm. In case of edge-labeled

916 19. Semi-structured databases

graphs, the cost is O(m lg(m + n)).
We will see that bisimulations play an important role in indexing semi-structured data-

bases, since the quotient graph of a graph with respect to a bisimulation contains the same
label strings as the original graph. Note that in practice, instead of simulations, the so-called
DTD descriptions are also used as schemas. DTD consists of data type de�nitions formula-
ted in regular language.

Exercises
19.2-1 Show that simulation does not imply bisimulation.
19.2-2 De�ne the operation turn-tree for a directed, not necessarily acyclic, vertex-labeled
graph G the following way. The result of the operation is a not necessarily �nite graph G′,
the vertices of which are the directed paths of G starting from the root, and the labels of
the paths are the corresponding label strings. Connect node p1 with node p2 by an edge if
p1 can be obtained from p2 by deletion of its endpoint. Prove that G and turn-tree(G) are
similar with respect to the bisimulation.

19.3. Queries and indexes
The information stored in semi-structured databases can be retrieved using queries. For this,
we have to �x the form of the questions, so we give a query language, and then de�ne
the meaning of questions, that is, the query evaluation with respect to a semi-structured
database. For efficient evaluation we usually use indexes. The main idea of indexing is that
we reduce the data stored in the database according to some similarity principle, that is, we
create an index that re�ects the structure of the original data. The original query is executed
in the index, then using the result we �nd the data corresponding to the index values in the
original database. The size of the index is usually much smaller than that of the original
database, therefore queries can be executed faster. Note that the inverted list type index used
in case of classical databases can be integrated with the schema type indexes introduced
below. This is especially advantageous when searching XML documents using keywords.

First we will get acquainted with the query language consisting of regular expressions
and the index types used with it.

De�nition 19.4 Given a directed vertex-labeled graph G = (V, E, root,Σ, label, id, value),
where V denotes the set of vertices, E ⊆ V × V the set of edges and Σ the set of labels. Σ

contains two special labels, ROOT and VALUE. The label of vertex v is label(v), and the
identi�er of vertex v is id(v). The root is a node with label ROOT, and from which all nodes
can be reached via directed paths. If v is a leaf, that is, if it has no outgoing edges, then its
label is VALUE, and value(v) is the value corresponding to leaf v. Under the term path we
always mean a directed path, that is, a sequence of nodes n0, . . . , np such that there is an
edge from ni to ni+1 if 0 ≤ i ≤ p−1. A sequence of labels l0, . . . , lp is called a label sequence
or simple expression. Path n0, . . . , np �ts to the label sequence l0, . . . , lp if label(ni) = li for
all 0 ≤ i ≤ p.

We de�ne regular expressions recursively.

De�nition 19.5 Let R ::= ε | Σ | _ | R.R | R|R | (R) | R? | R∗, where R is a regular expression,

19.3. Queries and indexes 917

and ε is the empty expression, _ denotes an arbitrary label, . denotes succession, | is the
logical OR operation, ? is the optional choice, and * means �nite repetition. Denote by
L(R) the regular language consisting of the label sequences determined by R. Node n �ts
to a label sequence if there exists a path from the root to node n such that �ts to the label
sequence. Node n �ts to the regular expression R if there exists a label sequence in the
language L(R), to which node n �ts. The result of the query on graph G determined by the
regular expression R is the set R(G) of nodes that �t to expression R.

Since we are always looking for paths starting from the root when evaluating regular
expressions, the �rst element of the label sequence is always ROOT, which can therefore be
omitted.

Note that the set of languages L(R) corresponding to regular expressions is closed under
intersection, and the problem whether L(R) = ∅ is decidable.

The result of the queries can be computed using the nondeterministic automaton AR
corresponding to the regular expression R. The algorithm given recursively is as follows.

N-E(G, AR)
1 Visited← ∅ B If we were in node u in state s,

then (u, s) was put in set Visited.
2 T (root(G), starting-state(AR))

T(u, s)
1 if (u, s) ∈ Visited
2 then return result[u, s]
3 Visited← Visited ∪ {(u, s)}
4 result[u, s]← ∅
5 for all s ε−→ s′ B If we get to state s′ from state s by reading sign ε.
6 do if s' ∈ �nal-state(AR)
7 then result[u, s]← {u} ∪ result[u, s]
8 result[u, s]← result[u, s] ∪ T(u, s′)
9 for all s label(u)−→ s′ B If we get to state s′ from state s by reading sign label(u).

10 do if s′ ∈ �nal-state(AR)
11 then result[u, s]← {u} ∪ result[u, s]
12 for all v, where (u, v) ∈ E(G) B Continue the traversal for the

children of node u recursively.
13 do result[u, s]← result[u, s] ∪ T(v, s′)
14 return result[u, s]

Proposition 19.6 Given a regular query R and a graph G, the calculation cost of R(G) is
a polynomial of the number of edges of G and the number of different states of the �nite
nondeterministic automaton corresponding to R.

Proof. The sketch of the proof is the following. Let AR be the �nite nondeterministic auto-
maton corresponding to R. Denote by |AR| the number of states of AR. Consider the breadth-
�rst traversal corresponding to the algorithm T of graph G with m edges, starting

918 19. Semi-structured databases

from the root. During the traversal we get to a new state of the automaton according to the
label of the node, and we store the state reached at the node for each node. If the �nal state
of the automaton is acceptance, then the node is a result. During the traversal, we sometimes
have to step back on an edge to ensure we continue to places we have not seen yet. It can be
proved that during a traversal every edge is used at most once in every state, so this is the
number of steps performed by that automaton. This means O(|AR|m) steps altogether, which
completes the proof.

Two nodes of graph G are indistinguishable with regular expressions if there is no
regular R for which one of the nodes is among the results and the other node is not. Of
course, if two nodes cannot be distinguished, then their labels are the same. Let us categorize
the nodes in such a way that nodes with the same label are in the same class. This way we
produce a partition P of the set of nodes, which is called the basic partition. It can also
be seen easily that if two nodes are indistinguishable, then it is also true for the parents.
This implies that the set of label sequences corresponding to paths from the root to the
indistinguishable nodes is the same. Let L(n) = {l0, . . . , lp | n �ts to the label sequence
l0, . . . , lp} for all nodes n. Nodes n1 and n2 are indistinguishable if and only if L(n1) = L(n2).
If the nodes are assigned to classes in such a way that the nodes having the same value
L(n) are arranged to the same class, then we get a re�nement P′ of partition P. For this
new partition, if a node n is among the results of a regular query R, then all nodes from the
equivalence class of n are also among the results of the query.

De�nition 19.7 Given a graph G = (V, E, root,Σ, label, id, value) and a partition P
of V that is a re�nement of the basic partition, that is, for which the nodes belon-
ging to the same equivalence class have the same label. Then the graph I(G) =

(P, E′, root',Σ, label', id′, value') is called an index. The nodes of the index graph are the
equivalence classes of partition P, and (I, J) ∈ E′ if and only if there exist i ∈ I and j ∈ J
such that (i, j) ∈ E. If I ∈ P, then id′(I) is the identi�er of index node I, label'(I) = label(n),
where n ∈ I, and root' is the equivalence class of partition P that contains the root of G. If
label(I) = VALUE, then label'(I) = {value(n) | n ∈ I}.

Given a partition P of set V , denote by class(n) the equivalence class of P that contains
n for n ∈ V . In case of indexes, the notation I(n) can also be used instead of class(n).

Note that basically the indexes can be identi�ed with the different partitions of the
nodes, so partitions can also be called indexes without causing confusion. Those indexes
will be good that are of small size and for which the result of queries is the same on the
graph and on the index. Indexes are usually given by an equivalence relation on the nodes,
and the partition corresponding to the index consists of the equivalence classes.

De�nition 19.8 Let P be the partition for which n,m ∈ I for a class I if and only if L(n) =

L(m). Then the index I(G) corresponding to P is called a naive index.

In case of naive indexes, the same language L(n) is assigned to all elements n of class I
in partition P, which will be denoted by L(I).

Proposition 19.9 Let I be a node of the naive index and R a regular expression. Then
I ∩ R(G) = ∅ or I ⊆ R(G).

Proof. Let n ∈ I ∩ R(G) and m ∈ I. Then there exists a label sequence l0, . . . , lp in L(R) to

19.3. Queries and indexes 919

which n �ts, that is, l0, . . . , lp ∈ L(n). Since L(n) = L(m), m also �ts to this label sequence,
so m ∈ I ∩ R(G).

N-I-E(G,R)
1 let IG be the naive index of G
2 Q← ∅
3 for all I ∈ N-E(IG, AR)
4 do Q← Q ∪ I
5 return Q

Proposition 19.10 Set Q produced by the algorithm N-I-E is equal to
R(G).

Proof. Because of the previous proposition either all elements of a class I are among the
results of a query or none of them.

Using naive indexes we can evaluate queries, but, according to the following proposi-
tion, not efficiently enough. The proposition was proved by Stockmeyer and Meyer in 1973.

Proposition 19.11 The creation of the naive index IG needed in the algorithm N-I-
E is PSPACE-complete.

The other problem with using naive indexes is that the sets L(I) are not necessary dis-
joint for different I, which might cause redundancy in storing.

Because of the above we will try to �nd a re�nement of the partition corresponding to
the naive index, which can be created efficiently and can still be used to produce R(G).

De�nition 19.12 Index I(G) is safe if for any n ∈ V and label sequence l0, . . . , lp such that
n �ts to the label sequence l0, . . . , lp in graph G, class(n) �ts to the label sequence l0, . . . , lp
in graph I(G). Index I(G) is exact if for any class I of the index and label sequence l0, . . . , lp
such that I �ts to the label sequence l0, . . . , lp in graph I(G), arbitrary node n ∈ I �ts to the
label sequence l0, . . . , lp in graph G.

Safety means that the nodes belonging to the result we obtain by evaluation using the
index contain the result of the regular query, that is, R(G) ⊆ R(I(G)), while exactness means
that the evaluation using the index does not provide false results, that is, R(I(G)) ⊆ R(G).
Using the de�nitions of exactness and of the edges of the index the following proposition
follows.

Proposition 19.13 1. Every index is safe.
2. The naive index is safe and exact.

If I is a set of nodes of G, then the language L(I), to the label strings of which the
elements of I �t, was de�ned using graph G. If we wish to indicate this, we use the notation
L(I,G). However, L(I) can also be de�ned using graph I(G), in which I is a node. In this
case, we can use the notation L(I, I(G)) instead of L(I), which denotes all label sequences
to which node I �ts in graph I(G). L(I,G) = L(I, I(G)) for safe and exact indexes, so in this
case we can write L(I) for simplicity. Then L(I) can be computed using I(G), since the size

920 19. Semi-structured databases

of I(G) is usually smaller than that of G.
Arbitrary index graph can be queried using the algorithm N-E. After that

join the index nodes obtained. If we use an exact index, then the result will be the same as
the result we would have obtained by querying the original graph.

I-E(G, I(G), AR)
1 let I(G) be the index of G
2 Q← ∅
3 for all I ∈ N-E(I(G), AR)
4 do Q← Q ∪ I
5 return Q

First, we will de�ne a safe and exact index that can be created efficiently, and is based
on the similarity of nodes. We obtain the 1-index this way. Its size can be decreased if we
only require similarity locally. The A(k)-index obtained this way lacks exactness, therefore
using the algorithm I-E we can get results that do not belong to the result of
the regular query R, so we have to test our results to ensure exactness.

De�nition 19.14 Let ≈ be an equivalence relation on set V such that, for u ≈ v,
i) label(u) = label(v),
ii) if there is an edge from node u′ to node u, then there exists a node v′ for which there is
an edge from node v′ to node v and u′ ≈ v′.
iii) if there is an edge from node v′ to node v, then there exists a node u′ for which there is
an edge from node u′ to node u and u′ ≈ v′.
The above equivalence relation is called a bisimulation. Nodes u and v of a graph are
bisimilar if and only if there exists a bisimulation ≈ such that u ≈ v.

De�nition 19.15 Let P be the partition consisting of the equivalence classes of a bisimu-
lation. The index de�ned using partition P is called 1-index.

Proposition 19.16 The 1-index is a re�nement of the naive index. If the labels of the ingo-
ing edges of the nodes in graph G are different, that is, label(x) , label(x′) for x , x′ and
(x, y), (x′, y) ∈ E, then L(u) = L(v) if and only if u and v are bisimilar.

Proof. label(u) = label(v) if u ≈ v. Let node u �t to the label sequence l0, . . . , lp, and let
u′ be the node corresponding to label lp−1. Then there exists a v′ such that u′ ≈ v′ and
(u′, u), (v′, v) ∈ E. u′ �ts to the label sequence l0, . . . , lp−1, so, by induction, v′ also �ts to the
label sequence l0, . . . , lp−1, therefore v �ts to the label sequence l0, . . . , lp. So, if two nodes
are in the same class according to the 1-index, then they are in the same class according to
the naive index as well.

To prove the second statement of the proposition, it is enough to show that the naive
index corresponds to a bisimulation. Let u and v be in the same class according to the naive
index. Then label(u) = label(v). If (u′, u) ∈ E, then there exists a label sequence l0, . . . , lp
such that the last two nodes corresponding to the labels are u′ and u. Since we assumed that
the labels of the parents are different, L(u) = L′ ∪ L′′, where L′ and L′′ are disjoint, and L′
= {l0, . . . , lp | u′ �ts to the sequence l0, . . . , lp−1, and lp = label(u)}, while L′′ = L(u) \ L′.
Since L(u) = L(v), there exists a v′ such that (v′, v) ∈ E and label(u′) = label(v′). L′ =

19.3. Queries and indexes 921

{l0, . . . , lp | v′ �ts to the sequence l0, . . . , lp−1, and lp = label(v)} because of the different
labels of the parents, so L(u′) = L(v′), and u′ ≈ v′ by induction, therefore u ≈ v.

Proposition 19.17 The 1-index is safe and exact.

Proof. If xp �ts to the label sequence l0, . . . , lp in graph G because of nodes x0, . . . , xp,
then, by the de�nition of the index graph, there exists an edge from class(xi) to class(xi+1),
0 ≤ i ≤ p − 1, that is, class(xp) �ts to the label sequence l0, . . . , lp in graph I(G). To
prove exactness, assume that Ip �ts to the label sequence l0, . . . , lp in graph I(G) because
of I0, . . . , Ip. Then there are u′ ∈ Ip−1, u ∈ Ip such that u′ ≈ v′ and (v′, v) ∈ E, that is,
v′ ∈ Ip−1. We can see by induction that v′ �ts to the label sequence l0, . . . , lp−1 because
of nodes x0, . . . , xp−2, v′, but then v �ts to the label sequence l0, . . . , lp because of nodes
x0, . . . , xp−2, v′, v in graph G.

If we consider the bisimulation in case of which all nodes are assigned to different par-
titions, then the graph I(G) corresponding to this 1-index is the same as graph G. Therefore
the size of I(G) is at most the size of G, and we also have to store the elements of I for
the nodes I of I(G), which means we have to store all nodes of G. For faster evaluation of
queries we need to �nd the smallest 1-index, that is, the coarsest 1-index. It can be checked
that x and y are in the same class according to the coarsest 1-index if and only if x and y are
bisimilar.

1-I-E(G,R)
1 let I1 be the coarsest 1-index of G
2 return I-E(G, I1, AR)

In the �rst step of the algorithm, the coarsest 1-index has to be given. This can be
reduced to �nding the coarsest stable partition, what we will discuss in the next section of
this chapter. Thus using the efficient version of the PT-algorithm, the coarsest 1-index can
be found with computation cost O(m lg n) and space requirement O(m + n), where n and m
denote the number of nodes and edges of graph G, respectively.

Since graph I1 is safe and exact, it is sufficient to evaluate the query in graph I1, that is,
to �nd the index nodes that �t to the regular expression R. Using Proposition 19.6, the cost
of this is a polynomial of the size of graph I1.

The size of I1 can be estimated using the following parameters. Let p be the number of
different labels in graph G, and k the diameter of graph G, that is, the length of the longest
directed path. (No node can appear twice in the directed path.) If the graph is a tree, then
the diameter is the depth of the tree. We often create websites that form a tree of depth d,
then we add a navigation bar consisting of q elements to each page, that is, we connect each
node of the graph to q chosen pages. It can be proved that in this case the diameter of the
graph is at most d + q(d − 1). In practice, d and q are usually very small compared to the
size of the graph. The proof of the following proposition can be found in the paper of Milo
and Suciu.

Proposition 19.18 Let the number of different labels in graph G be at most p, and let
the diameter of G be less than k. Then the size of the 1-index I1 de�ned by an arbitrary
bisimulation can be bounded from above with a bound that only depends on k and p but
does not depend on the size of G.

922 19. Semi-structured databases

Exercises
19.3-1 Show that the index corresponding to the maximal simulation is between the 1-index
and the naive index with respect to re�nement. Give an example that shows that both inclu-
sions are proper.
19.3-2 Denote by Is(G) the index corresponding to the maximal simulation. Does
Is(Is(G)) = Is(G) hold?
19.3-3 Represent graph G and the state transition graph of the automaton corresponding to
the regular expression R with relational databases. Give an algorithm in a relational query
language, for example in PL/SQL, that computes R(G).

19.4. Stable partitions and the PT-algorithm
Most index structures used for efficient evaluation of queries of semi-structured databases
are based on a partition of the nodes of a graph. The problem of creating indexes can often
be reduced to �nding the coarsest stable partition.

De�nition 19.19 Let E be a binary relation on the �nite set V, that is, E ⊆ V × V. Then
V is the set of nodes, and E is the set of edges. For arbitrary S ⊆ V, let E(S) = {y | ∃x ∈
S , (x, y) ∈ E} and E−1(S) = {x | ∃ y ∈ S , (x, y) ∈ E}. We say that B is stable with respect to
S for arbitrary S ⊆ V and B ⊆ V, if B ⊆ E−1(S) or B ∩ E−1(S) = ∅. Let P be a partition of
V, that is, a decomposition of V into disjoint sets, or in other words, blocks. Then P is stable
with respect to S , if all blocks of P are stable with respect to S . P is stable with respect to
partition P′, if all blocks of P are stable with respect to all blocks of P′. If P is stable with
respect to all of its blocks, then partition P is stable. Let P and Q be two partitions of V. Q
is a re�nement of P, or P is coarser than Q, if every block of P is the union of some blocks
of Q. Given V, E and P, the coarsest stable partition is the coarsest stable re�nement of P,
that is, the stable re�nement of P that is coarser than any other stable re�nement of P.

Note that stability is sometimes de�ned the following way. B is stable with respect to S
if B ⊆ E(S) or B ∩ E(S) = ∅. This is not a major difference, only the direction of the edges
is reversed. So in this case stability is de�ned with respect to the binary relation E−1 instead
of E, where (x, y) ∈ E−1 if and only if (y, x) ∈ E, since (E−1)−1(S) = {x | ∃ y ∈ S , (x, y) ∈
E−1)} = {x | ∃ y ∈ S , (y, x) ∈ E} = E(S).

Let |V | = n and |E| = m. We will prove that there always exists a unique solution of
the problem of �nding the coarsest stable partition, and there is an algorithm that �nds the
solution in O(m lg n) time with space requirement O(m + n). This algorithm was published
by R. Paige and R. E. Tarjan in 1987, therefore it will be called the PT-algorithm.

The main idea of the algorithm is that if a block is not stable, then it can be split into
two in such a way that the two parts obtained are stable. First we will show a naive method.
Then, using the properties of the split operation, we will increase its efficiency by continuing
the procedure with the smallest part.

De�nition 19.20 Let E be a binary relation on V, S ⊆ V and Q a partition of V. Further-
more, let split(S ,Q) be the re�nement of Q which is obtained by splitting all blocks B of Q

19.4. Stable partitions and the PT-algorithm 923

that are not disjoint from E−1(S), that is, B ∩ E−1(S) , ∅ and B \ E−1(S) , ∅. In this case,
add blocks B ∩ E−1(S) and B \ E−1(S) to the partition instead of B. S is a splitter of Q if
split(S ,Q) , Q.

Note that Q is not stable with respect to S if and only if S is a splitter of Q.
Stability and splitting have the following properties, the proofs are left to the Reader.

Proposition 19.21 Let S and T be two subsets of V, while P and Q two partitions of V.
Then
1. Stability is preserved under re�nement, that is, if Q is a re�nement of P, and P is stable
with respect to S , then Q is also stable with respect to S .
2. Stability is preserved under uni�cation, that is, if P is stable with respect to both S and
T , then P is stable with respect to S ∪ T.
3. The split operation is monotonic in its second argument, that is, if P is a re�nement of Q,
then split(S , P) is a re�nement of split(S ,Q).
4. The split operation is commutative in the following sense. For arbitrary S , T and P,
split(S , split(T, P)) = split(T, split(S , P)), and the coarsest partition of P that is stable with
respect to both S and T is split(S , split(T, P)).

In the naive algorithm, we re�ne partition Q starting from partition P, until Q is stable
with respect to all of its blocks. In the re�ning step, we seek a splitter S of Q that is a union
of some blocks of Q. Note that �nding a splitter among the blocks of Q would be sufficient,
but this more general way will help us in improving the algorithm.

N-PT(V, E, P)
1 Q← P
2 while Q is not stable
3 do let S be a splitter of Q that is the union of some blocks of Q
4 Q← split(S ,Q)
5 return Q

Note that the same set S cannot be used twice during the execution of the algorithm,
since stability is preserved under re�nement, and the re�ned partition obtained in step 4 is
stable with respect to S . The union of the sets S used can neither be used later, since stability
is also preserved under uni�cation. It is also obvious that a stable partition is stable with
respect to any S that is a union of some blocks of the partition. The following propositions
can be proved easily using these properties.

Proposition 19.22 In any step of the algorithm N-PT, the coarsest stable re�nement
of P is a re�nement of the actual partition stored in Q.

Proof. The proof is by induction on the number of times the cycle is executed. The case
Q = P is trivial. Suppose that the statement holds for Q before using the splitter S . Let R be
the coarsest stable re�nement of P. Since S consists of blocks of Q, and, by induction, R is
a re�nement of Q, therefore S is the union of some blocks of R. R is stable with respect to
all of its blocks and the union of any of its blocks, thus R is stable with respect to S , that is,
R = split(S ,R). On the other hand, using that the split operation is monotonic, split(S ,R) is
a re�nement of split(S ,Q), which is the actual value of Q.

924 19. Semi-structured databases

Proposition 19.23 The algorithm N-PT determines the unique coarsest stable re�ne-
ment of P, while executing the cycle at most n − 1 times.

Proof. The number of blocks of Q is obviously at least 1 and at most n. Using the split
operation, at least one block of Q is divided into two, so the number of blocks increases.
This implies that the cycle is executed at most n−1 times. Q is a stable re�nement of P when
the algorithm terminates, and, using the previous proposition, the coarsest stable re�nement
of P is a re�nement of Q. This can only happen if Q is the coarsest stable re�nement of P.

Proposition 19.24 If we store the set E−1({x}) for all elements x of V, then the cost of the
algorithm N-PT is at most O(mn).

Proof. We can assume, without restricting the validity of the proof, that there are no sinks
in the graph, that is, every node has outgoing edges. Then 1 ≤ |E({x})| for arbitrary x in V .
Consider a partition P, and split all blocks B of P. Let B′ be the set of the nodes of B that
have at least one outgoing edge. Then B′ = B ∩ E−1(V). Now let B′′ = B \ E−1(V), that is,
the set of sinks of B. Set B′′ is stable with respect to arbitrary S , since B′′ ∩ E−1(S) = ∅,
so B′′ does not have to be split during the algorithm. Therefore, it is enough to examine
partition P′ consisting of blocks B′ instead of P, that is, a partition of set V ′ = E−1(V).
By adding blocks B′′ to the coarsest stable re�nement of P′ we obviously get the coarsest
stable re�nement of P. This means that there is a preparation phase before the algorithm
in which P′ is obtained, and a processing phase after the algorithm in which blocks B′′ are
added to the coarsest stable re�nement obtained by the algorithm. The cost of preparation
and processing can be estimated the following way. V ′ has at most m elements. If, for all x
in V we have E−1({x}), then the preparation and processing requires O(m + n) time.

From now on we will assume that 1 ≤ |E({x})| holds for arbitrary x in V , which implies
that n ≤ m. Since we store sets E−1({x}), we can �nd a splitter among the blocks of partition
Q in O(m) time. This, combined with the previous proposition, means that the algorithm can
be performed in O(mn) time.

The algorithm can be executed more efficiently using a better way of �nding splitter
sets. The main idea of the improved algorithm is that we work with two partitions besides
P, Q and a partition X that is a re�nement of Q in every step such that Q is stable with
respect to all blocks of X. At the start, let Q = P and let X be the partition consisting only
one block, set V . The re�ning step of the algorithm is repeated until Q = X.

PT(V, E, P)
1 Q← P
2 X ← {V}
3 while X , Q
4 do let S be a block of X that is not a block of Q,

and B a block of Q in S for which |B| ≤ |S |/2
5 X ← (X \ {S }) ∪ {B, S \ B}
6 Q← split(S \ B, split(B,Q))
7 return Q

19.4. Stable partitions and the PT-algorithm 925

Proposition 19.25 The result of the PT-algorithm is the same as that of algorithm N-
PT.

Proof. At the start, Q is a stable re�nement of P with respect to the blocks of X. In step 5,
a block of X is split, thus we obtain a re�nement of X. In step 6, by re�ning Q using splits
we ensure that Q is stable with respect to two new blocks of X. The properties of stability
mentioned in Proposition 19.21 and the correctness of algorithm N-PT imply that the
PT-algorithm also determines the unique coarsest stable re�nement of P.

In some cases one of the two splits of step 6 can be omitted. A sufficient condition is
that E is a function of x.

Proposition 19.26 If |E({x})| = 1 for all x in V, then step 6 of the PT-algorithm can be
exchanged with Q← split(B,Q).

Proof. Suppose that Q is stable with respect to a set S which is the union of some blocks of
Q. Let B be a block of Q that is a subset of S . It is enough to prove that split(B,Q) is stable
with respect to (S \ B). Let B1 be a block of split(B,Q). Since the result of a split according
to B is a stable partition with respect to B, either B1 ⊆ E−1(B) or B1 ⊆ E−1(S) \ E−1(B).
Using |E({x})| = 1, we get B1 ∩ E−1(S \ B) = ∅ in the �rst case, and B1 ⊆ E−1(S \ B) in the
second case, which means that we obtained a stable partition with respect to (S \ B).

Note that the stability of a partition with respect to S and B generally does not imply
that it is also stable with respect to (S \ B). If this is true, then the execution cost of the
algorithm can be reduced, since the only splits needed are the ones according to B because
of the reduced sizes.

The two splits of step 6 can cut a block into four parts in the general case. According to
the following proposition, one of the two parts gained by the �rst split of a block remains
unchanged at the second split, so the two splits can result in at most three parts. Using this,
the efficiency of the algorithm can be improved even in the general case.

Proposition 19.27 Let Q be a stable partition with respect to S , where S is the union of
some blocks of Q, and let B be a block of Q that is a subset of S . Furthermore, let D be a
block of Q that is cut into two (proper) parts D1 and D2 by the operation split(B,Q) in such
a way that none of these is the empty set. Suppose that block D1 is further divided into the
nonempty sets D11 and D12 by split(S \ B, split(B,Q)). Then
1. D1 = D ∩ E−1(B) and D2 = D \ D1 if and only if D ∩ E−1(B) , ∅ and D \ E−1(B) , ∅.
2. D11 = D1 ∩ E−1(S \ B) and D12 = D1 \ D11 if and only if D1 ∩ E−1(S \ B) , ∅ and
D1 \ E−1(S \ B) , ∅.
3. The operation split(S \ B, split(B,Q)) leaves block D2 unchanged.
4. D12 = D1 ∩ (E−1(B) \ E−1(S \ B)).

Proof. The �rst two statements follow using the de�nition of the split operation. To prove
the third statement, suppose that D2 was obtained from D by a proper decomposition. Then
D∩E−1(B) , ∅, and since B ⊆ S , D∩E−1(S) , ∅. All blocks of partition Q, including D, are
stable with respect to S , which implies D ⊆ E−1(S). Since D2 ⊆ D, D2 ⊆ E−1(S)\E−1(B) =

E−1(S \ B) using the �rst statement, so D2 is stable with respect to the set S \ B, therefore a
split according to S \ B does not divide block D2. Finally, the fourth statement follows from
D1 ⊆ E−1(B) and D12 = D1 \ E−1(S \ B).

926 19. Semi-structured databases

Denote by counter(x, S) the number of nodes in S that can be reached from x, that
is, counter(x, S) = |S ∩ E({x})|. Note that if B ⊆ S , then E−1(B) \ E−1(S \ B) = {x ∈
E−1(B) | counter(x, B) = counter(x, S)}.

Since sizes are always halved, an arbitrary x in V can appear in at most lg n+1 different
sets B that were used for re�nement in the PT-algorithm. In the following, we will give
an execution of the PT algorithm in which the determination of the re�nement according
to block B in steps 5 and 6 of the algorithm costs O(|B| + ∑

y∈B |E−1({y})|). Summing this
for all blocks B used in the algorithm and for all elements of these blocks, we get that the
complexity of the algorithm E-PT is at most O(m lg n). To give such a realization of
the algorithm, we have to choose good data structures for the representation of our data.

• Attach node x to all edges (x, y) of set E, and attach the list {(x, y) | (x, y) ∈ E} to all
nodes y. Then the cost of reading set E−1({y}) is proportional to the size of E−1({y}).

• Let partition Q be a re�nement of partition X. Represent the blocks of the two partitions
by records. A block S of partition X is simple if it consists of one block of Q, otherwise
it is compound.

• Let C be the list of all compound blocks in partition X. At start, let C = {V}, since V is
the union of the blocks of P. If P consists of only one block, then P is its own coarsest
stable re�nement, so no further computation is needed.

• For any block S of partition P, let Q-blocks(S) be the double-chained list of the blocks
of partition Q the union of which is set S . Furthermore, store the values counter(x, S)
for all x in set E−1(S) to which one pointer points from all edges (x, y) such that y is an
element of S . At start, the value assigned to all nodes x is counter(x,V) = |E({x})|, and
make a pointer to all nodes (x, y) that points to the value counter(x,V).

• For any block B of partition Q, let X-block(B) be the block of partition X in which B
appears. Furthermore, let size(B) be the cardinality of B, and elements(B) the double-
chained list of the elements of B. Attach a pointer to all elements that points to the block
of Q in which this element appears. Using double chaining any element can be deleted
in O(1) time.

Using the proof of Proposition 19.24, we can suppose that n ≤ m without restricting the
validity. It can be proved that in this case the space requirement for the construction of such
data structures is O(m).

19.4. Stable partitions and the PT-algorithm 927

E-PT(V, E, P)
1 if |P| = 1
2 then return P
3 Q← P
4 X ← {V}
5 C ← {V} B C is the list of the compound blocks of X.
6 while C , ∅
7 do let S be an element of C
8 let B be the smaller of the �rst two elements of S
9 C ← C \ {S }

10 X ← (X \ {S }) ∪ {{B}, S \ {B}}
11 S ← S \ {B}
12 if |S | > 1
13 then C ← C ∪ {S }
14 Generate set E−1(B) by reading the edges (x, y) of set E for which y

is an element of B, and for all elements x of this set, compute the value
counter(x, B).

15 Find blocks D1 = D ∩ E−1(B) and D2 = D \ D1 for all blocks
D of Q by reading set E−1(B)

16 By reading all edges (x, y) of set E for which y is an element of B,
create set E−1(B) \ E−1(S \ B) checking the condition
counter(x, B) = counter(x, S)

17 Reading set E−1(B) \ E−1(S \ B), for all blocks D of Q,
determine the sets D12 = D1 ∩ (E−1(B) \ E−1(S \ B))
and D11 = D1 \ D12

18 for all blocks D of Q for which D11 , ∅, D12 , ∅ and D2 , ∅
19 do if D is a simple block of X
20 then C ← C ∪ {D}
21 Q← (Q \ {D}) ∪ {D11,D12,D2}
22 Compute the value counter(x, S) by reading

the edges (x, y) of E for which y is an element of B.
23 return Q

Proposition 19.28 The algorithm E-PT determines the coarsest stable re�nement
of P. The computation cost of the algorithm is O(m lg n), and its space requirement is O(m+

n).

Proof. The correctness of algorithm follows from the correctness of the PT-algorithm and
Proposition 19.27. Because of the data structures used, the computation cost of the steps
of the cycle is proportional to the number of edges examined and the number of elements
of block B, which is O(|B| + ∑

y∈B |E−1({y})|) altogether. Sum this for all blocks B used
during the re�nement and all elements of these blocks. Since the size of B is at most half
the size of S , arbitrary x in set V can be in at most lg n + 1 different sets B. Therefore, the
total computation cost of the algorithm is O(m lg n). It can be proved easily that a space of
O(m + n) size is enough for the storage of the data structures used in the algorithm and their
maintenance.

928 19. Semi-structured databases

Note that the algorithm could be further improved by contracting some of its steps but
that would only decrease computation cost by a constant factor.

Let G−1 = (V, E−1) be the graph that can be obtained from G by changing the direction
of all edges of G. Consider a 1-index in graph G determined by the bisimulation ≈. Let I
and J be two classes of the bisimulation, that is, two nodes of I(G). Using the de�nition of
bisimulation, J ⊆ E(I) or E(I) ∩ J = ∅. Since E(I) = (E−1)−1(I), this means that J is stable
with respect to I in graph G−1. So the coarsest 1-index of G is the coarsest stable re�nement
of the basic partition of graph G−1.

Corollary 19.29 The coarsest 1-index can be determined using the algorithm E-
PT. The computation cost of the algorithm is at most O(m lg n), and its space requirement
is at most O(m + n).

Exercises
19.4-1 Prove Proposition 29.21.
19.4-2 Partition P is size-stable with respect to set S if |E({x})∩ S | = |E({y})∩ S | for arbit-
rary elements x, y of a block B of P. A partition is size-stable if it is size-stable with respect
to all its blocks. Prove that the coarsest size-stable re�nement of an arbitrary partition can
be computed in O(m lg n) time.
19.4-3 The 1-index is minimal if no two nodes I and J with the same label can be cont-
racted, since there exists a node K for which I ∪ J is not stable with respect to K. Give an
example that shows that the minimal 1-index is not unique, therefore it is not the same as
the coarsest 1-index.
19.4-4 Prove that in case of an acyclic graph, the minimal 1-index is unique and it is the
same as the coarsest 1-index.

19.5. A(k)-indexes
In case of 1-indexes, nodes of the same class �t to the same label sequences starting from
the root. This means that the nodes of a class cannot be distinguished by their ancestors.
Modifying this condition in such a way that indistinguishability is required only locally, that
is, nodes of the same class cannot be distinguished by at most k generations of ancestors, we
obtain an index that is coarser and consists of less classes than the 1-index. So the size of the
index decreases, which also decreases the cost of the evaluation of queries. The 1-index was
safe and exact, which we would like to preserve, since these guarantee that the result we get
when evaluating the queries according to the index is the result we would have obtained by
evaluating the query according to the original graph. The A(k)-index is also safe, but it is
not exact, so this has to be ensured by modi�cation of the evaluation algorithm.

De�nition 19.30 The k-bisimulation ≈k is anequivalence relation on the nodes V of a
graph de�ned recursively as
i) u ≈0 v if and only if label(u) = label(v),
ii) u ≈k v if and only if u ≈k−1 v and if there is an edge from node u′ to node u, then there
is a node v′ from which there is an edge to node v and u′ ≈k−1 v′, also, if there is an edge
from node v′ to node v, then there is a node u′ from which there is an edge to node u and

19.5. A(k)-indexes 929

u′ ≈k−1 v′.
In case u ≈k v u and v are k-bisimilar. The classes of the partition according to the A(k)-
index are the equivalence classes of the k-bisimulation.

The �A� in the notation refers to the word �approximative�.
Note that the partition belonging to k = 0 is the basic partition, and by increasing k we

re�ne this, until the coarsest 1-index is reached.
Denote by L(u, k,G) the label sequences of length at most k to which u �ts in graph G.

The following properties of the A(k)-index can be easily checked.

Proposition 19.31
1. If u and v are k-bisimilar, then L(u, k,G) = L(v, k,G).
2. If I is a node of the A(k)-index and u ∈ I, then L(I, k, I(G)) = L(u, k,G).
3. The A(k)-index is exact in case of simple expressions of length at most k.
4. The A(k)-index is safe.
5. The (k + 1)-bisimulation is a (not necessarily proper) re�nement of the k-bisimulation.

The A(k)-index compares the k-distance half-neighbourhoods of the nodes which con-
tain the root, so the equivalence of the nodes is not affected by modi�cations outside this
neighbourhood, as the following proposition shows.

Proposition 19.32 Suppose that the shortest paths from node v to nodes x and y contain
more than k edges. Then adding or deleting an edge from u to v does not change the k-
bisimilarity of x and y.

We use a modi�ed version of the PT-algorithm for creating the A(k)-index. Generally,
we can examine the problem of approximation of the coarsest stable re�nement.

De�nition 19.33 Let P be a partition of V in the directed graph G = (V, E), and let
P0, P1, . . . , Pk be a sequence of partitions such that P0 = P and Pi+1 is the coarsest re-
�nement of Pi that is stable with respect to Pi. In this case, partition Pk is the k-step appro-
ximation of the coarsest stable re�nement of P.

Note that every term of sequence Pi is a re�nement of P, and if Pk = Pk−1, then Pk is the
coarsest stable re�nement of P. It can be checked easily that an arbitrary approximation of
the coarsest stable re�nement of P can be computed greedily, similarly to the PT-algorithm.
That is, if a block B of Pi is not stable with respect to a block S of Pi−1, then split B according
to S , and consider the partition split(S , Pi) instead of Pi.

N-A(V, E, P, k)
1 P0 ← P
2 for i← 1 to k
3 do Pi ← Pi−1
4 for all S ∈ Pi−1such that split(S , Pi) , Pi
5 do Pi ← split(S , Pi)
6 return Pk

930 19. Semi-structured databases

Note that the algorithm N-A could also be improved similarly to the
PT-algorithm.

Algorithm N-A can be used to compute the A(k)-index, all we have to
notice is that the partition belonging to the A(k)-index is stable with respect to the partition
belonging to the A(k − 1)-index in graph G−1. It can be shown that the computation cost of
the A(k)-index obtained this way is O(km), where m is the number of edges in graph G.

A(k)-I-E(G, AR, k)
1 let Ik be the A(k)-index of G
2 Q← I-E(G, Ik, AR)
3 for all u ∈ Q
4 do if L(u) ∩ L(AR) = ∅
5 then Q← Q \ {u}
6 return Q

The A(k)-index is safe, but it is only exact for simple expressions of length at most k, so
in step 4, we have to check for all elements u of set Q whether it satis�es query R, and we
have to delete those from the result that do not �t to query R. We can determine using a �nite
nondeterministic automaton whether a given node satis�es expression R as in Proposition
19.6, but the automaton has to run in the other way. The number of these checks can be
reduced according to the following proposition, the proof of which is left to the Reader.

Proposition 19.34 Suppose that in the graph Ik belonging to the A(k)-index, index node I
�ts to a label sequence that ends with s = l0, . . . , lp, p ≤ k − 1. If all label sequences of
the form s'.s that start from the root satisfy expression R in graph G, then all elements of I
satisfy expression R.

Exercises
19.5-1 Denote by Ak(G) the A(k)-index of G. Determine whether Ak(Al(G)) = Ak+l(G).
19.5-2 Prove Proposition 19.31.
19.5-3 Prove Proposition 19.32.
19.5-4 Prove Proposition 19.34.
19.5-5 Prove that the algorithm N- generates the coarsest k-step stable
approximation.
19.5-6 Let A = {A0, A1, . . . , Ak} be a set of indexes, the elements of which are A(0)-, A(1)-,
. . . , A(k)-indexes, respectively. A is minimal, if by uniting any two elements of Ai, Ai is not
stable with respect to Ai−1, 1 ≤ i ≤ k. Prove that for arbitrary graph, there exists a unique
minimal A the elements of which are coarsest A(i)-indexes, 0 ≤ i ≤ k.

19.6. D(k)- and M(k)-indexes
When using A(k)-indexes, the value of k must be chosen appropriately. If k is too large, the
size of the index will be too big, and if k is too small, the result obtained has to be checked
too many times in order to preserve exactness. Nodes of the same class are similar locally,
that is, they cannot be distinguished by their k distance neighbourhoods, or, more precisely,

19.6. D(k)- and M(k)-indexes 931

by the paths of length at most k leading to them. The same k is used for all nodes, even
though there are less important nodes. For instance, some nodes appear very rarely in results
of queries in practice, and only the label sequences of the paths passing through them are
examined. There is no reason for using a better re�nement on the less important nodes. This
suggests the idea of using the dynamic D(k)-index, which assigns different values k to the
nodes according to queries. Suppose that a set of queries is given. If there is an R.a.b and an
R.a.b.c query among them, where R and R′ are regular queries, then a partition according to
at least 1-bisimulation in case of nodes with label b, and according to at least 2-bisimulation
in case of nodes with label c is needed.

De�nition 19.35 Let I(G) be the index graph belonging to graph G, and to all index node
I assign a nonnegative integer k(I). Suppose that the nodes of block I are k(I)-bisimilar. Let
the values k(I) satisfy the following condition: if there is an edge from I to J in graph I(G),
then k(I) ≥ k(J) − 1. The index I(G) having this property is called a D(k)-index.

The �D� in the notation refers to the word �dynamic�. Note that the A(k)-index is a
special case of the D(k)-index, since in case of A(k)-indexes, the elements belonging to any
index node are exactly k-bisimilar.

Since classi�cation according to labels, that is, the basic partition is an A(0)-index, and
in case of �nite graphs, the 1-index is the same as an A(k)-index for some k, these are also
special cases of the D(k)-index. The D(k)-index, just like any other index, is safe, so it is
sufficient to evaluate the queries on them. Results must be checked to ensure exactness.
The following proposition states that exactness is guaranteed for some queries, therefore
checking can be omitted in case of such queries.

Proposition 19.36 Let I1, I2, . . . , Is be a directed path in the D(k)-index, and suppose
that k(I j) ≥ j − 1 if 1 ≤ j ≤ s. Then all elements of Is �t to the label sequence label(I1),
label(I2), . . . , label(Is).

Proof. The proof is by induction on s. The case s = 1 is trivial. By the inductive assumption,
all elements of Is−1 �t to the label sequence label(I1), label(I2), . . . , label(Is−1). Since there
is an edge from node Is−1 to node Is in graph I(G), there exist u ∈ Is and v ∈ Is−1 such that
there is an edge from v to u in graph G. This means that u �ts to the label sequence label(I1),
label(I2), . . . , label(Is) of length s − 1. The elements of Is are at least (s − 1)-bisimilar,
therefore all elements of Is �t to this label sequence.

Corollary 19.37 The D(k)-index is exact with respect to label sequence l0, . . . , lm if k(I) ≥
m for all nodes I of the index graph that �t to this label sequence.

When creating the D(k)-index, we will re�ne the basic partition, that is, the A(0)-index.
We will assign initial values to the classes consisting of nodes with the same label. Suppose
we use t different values. Let K0 be the set of these values, and denote the elements of K0 by
k1 > k2 > . . . > kt. If the elements of K0 do not satisfy the condition given in the D(k)-index,
then we increase them using the algorithm W-C, starting with the greatest value,
in such a way that they satisfy the condition. Thus, the classes consisting of nodes with the
same label will have good k values. After this, we re�ne the classes by splitting them, until
all elements of a class are k-bisimilar, and assign this k to all terms of the split. During this
process the edges of the index graph must be refreshed according to the partition obtained

932 19. Semi-structured databases

by re�nement.

W-C(G, K0)
1 K ← ∅
2 K1 ← K0
3 while K1 , ∅
4 do for all I, where I is a node of the A(0)-index and k(I) = max(K1)
5 do for all J, where J is a node of the A(0)-index and there is an edge from J to I
6 k(J)← max(k(J),max(K1) − 1)
7 K ← K ∪ {max(K1)}
8 K1 ← {k(A) | A is a node of the A(0)-index } \ K
9 return K

It can be checked easily that the computation cost of the algorithm W-C is
O(m), where m is the number of edges of the A(0)-index.

D(k)-I-C(G,K0)
1 let I(G) be the A(0)-index belonging to graph G, let VI be the set of nodes of I(G),

let EI be the set of edges of I(G)
2 K ←W-C(G,K0) B Changing the initial weights

according to the condition of the D(k)-index.
3 for k ← 1 to max(K)
4 do for all I ∈ VI
5 do if k(I) ≥ k
6 then for all J, where (J, I) ∈ EI
7 do VI ← (VI \ {I}) ∪ {I ∩ E(J), I \ E(J)}
8 k(I ∩ E(J))← k(I)
9 k(I \ E(J))← k(I)

10 EI ← {(A, B) | A, B ∈ VI ,∃ a ∈ A,∃ b ∈ B, (a, b) ∈ E}
11 I(G)← (VI , EI)
12 return I(G)

In step 7, a split operation is performed. This ensures that the classes consisting of
(k − 1)-bisimilar elements are split into equivalence classes according to k-bisimilarity. It
can be proved that the computation cost of the algorithm D(k)-I-C is at most
O(km), where m is the number of edges of graph G, and k = max(K0).

In some cases, the D(k)-index results in a partition that is too �ne, and it is not efficient
enough for use because of its huge size. Over-re�nement can originate in the following.
The algorithm D(k)-I-C assigns the same value k to the nodes with the same
label, although some of these nodes might be less important with respect to queries, or
appear more often in results of queries of length much less than k, so less �neness would
be enough for these nodes. Based on the value k assigned to a node, the algorithm W-
C will not decrease the value assigned to the parent node if it is greater than k − 1.
Thus, if these parents are not very signi�cant nodes considering frequent queries, then this
can cause over-re�nement. In order to avoid over-re�nement, we introduce the M(k)-index
and the M∗(k)-index, where the �M� refers to the word �mixed�, and the �*� shows that

19.6. D(k)- and M(k)-indexes 933

not one index is given but a �nite hierarchy of gradually re�ned indexes. The M(k)-index is
a D(k)-index the creation algorithm of which not necessarily assigns nodes with the same
label to the same k-bisimilarity classes.

Let us �rst examine how a D(k)-index I(G) = (VI , EI) must be modi�ed if the initial
weight kI of index node I is increased. If k(I) ≥ kI , then I(G) does not change. Otherwise,
to ensure that the conditions of the D(k)-index on weights are satis�ed, the weights on the
ancestors of I must be increased recursively until the weight assigned to the parents is at least
kI − 1. Then, by splitting according to the parents, the �neness of the index nodes obtained
will be at least kI , that is, the elements belonging to them will be at least kI-bisimilar. This
will be achieved using the algorithm W-I.

W-I(I, kI , I(G))
1 if k(I) ≥ kI
2 then return I(G)
3 for all (J, I) ∈ EI
4 do I(G)←W-I(J, kI − 1, I(G))
5 for all (J, I) ∈ EI
6 do VI ← (VI \ {I}) ∪ {I ∩ E(J), I \ E(J)}
7 EI ← {(A, B) | A, B ∈ VI ,∃ a ∈ A,∃ b ∈ B, (a, b) ∈ E}
8 I(G)← (VI , EI)
9 return I(G)

The following proposition can be easily proved, and with the help of this we will be
able to achieve the appropriate �neness in one step, so we will not have to increase step by
step anymore.

Proposition 19.38 u ≈k v if and only if u ≈0 v, and if there is an edge from node u′ to
node u, then there is a node v′, from which there is an edge to node v and u′ ≈k−1 v′, and,
conversely, if there is an edge from node v′ to node v, then there is a node u′, from which
there is an edge to node u and u′ ≈k−1 v′.

Denote by FRE the set of simple expressions, that is, the label sequences determined
by the frequent regular queries. We want to achieve a �neness of the index that ensures that
it is exact on the queries belonging to FRE. For this, we have to determine the signi�cant
nodes, and modify the algorithm D(k)-I-C in such a way that the not signi�cant
nodes and their ancestors are always deleted at the re�ning split.

Let R ∈ FRE be a frequent simple query. Denote by S and T the set of nodes that �t to
R in the index graph and data graph, respectively, that is S = R(I(G)) and T = R(G). Denote
by k(I) the �neness of index node I in the index graph I(G), then the nodes belonging to I
are at most k(I)-bisimilar.

934 19. Semi-structured databases

R(R, S ,T)
1 for all I ∈ S
2 do I(G)← R-I-N(I, length(R), I ∩ T)
3 while ∃ I ∈ VI such that k(I) < length(R) and I �ts to R
4 do I(G)←W-I(I, length(R), I(G))
5 return I(G)

The re�nement of the index nodes will be done using the following algorithm. First, we
re�ne the signi�cant parents of index node I recursively. Then we split I according to its
signi�cant parents in such a way that the �neness of the new parts is k. The split parts of I
are kept in set H. Lastly, we unite those that do not contain signi�cant nodes, and keep the
original �neness of I for this united set.

R-I-N(I, k, signi�cant-nodes)
1 if k(I) ≥ k
2 then return I(G)
3 for all (J, I) ∈ EI
4 do signi�cant-parents← E−1(signi�cant-nodes) ∩ J
5 if signi�cant-parents , ∅
6 then R-I-N(J, k − 1, signi�cant-parents)
7 k-previous← k(I)
8 H ← {I}
9 for all (J, I) ∈ EI

10 do if E−1(signi�cant-parents) ∩ J , ∅
11 then for all F ∈ H
12 do VI ← (VI \ {F}) ∪ {F ∩ E(J), F \ E(J)}
13 EI ← {(A, B) | A, B ∈ VI ,∃ a ∈ A,∃ b ∈ B, (a, b) ∈ E}
14 k(F ∩ E(J))← k
15 k(F \ E(J))← k
16 I(G)← (VI , EI)
17 H ← (H \ {F}) ∪ {F ∩ E(J), F \ E(J)}
18 remaining← ∅
19 for all F ∈ H
20 do if signi�cant-nodes ∩ F = ∅
21 then remaining← remaining ∪ F
22 VI ← (VI \ {F})
23 VI ← VI ∪ {remaining}
24 EI ← {(A, B) | A, B ∈ VI ,∃ a ∈ A,∃ b ∈ B, (a, b) ∈ E}
25 k(remaining)← k-previous
26 I(G)← (VI , EI)
27 return I(G)

The algorithm R re�nes the index graph I(G) according to a frequent simple exp-
ression in such a way that it splits an index node into not necessarily equally �ne parts, and

19.6. D(k)- and M(k)-indexes 935

thus avoids over-re�nement. If we start from the A(0)-index, and create the re�nement for
all frequent queries, then we get an index graph that is exact with respect to frequent que-
ries. This is called the M(k)-index. The set FRE of frequent queries might change during
the process, so the index must be modi�ed dynamically.

De�nition 19.39 The M(k)-index is a D(k)-index created using the following M(k)-I-
C algorithm.

M(k)-I-C(G,FRE)
1 I(G)← the A(0) index belonging to graph G
2 VI ← the nodes of I(G)
3 for all I ∈ VI
4 do k(I)← 0
5 EI ← the set of edges of I(G)
6 for all R ∈ FRE
7 do I(G)← R(R, R(I(G)), R(G))
8 return I(G)

The M(k)-index is exact with respect to frequent queries. In case of a not frequent query,
we can do the following. The M(k)-index is also a D(k)-index, therefore if an index node
�ts to a simple expression R in the index graph I(G), and the �neness of the index node is at
least the length of R, then all elements of the index node �t to the query R in graph G. If the
�neness of the index node is less, then for all of its elements, we have to check according to
N-E whether it is a solution in graph G.

When using the M(k)-index, over-re�nement is the least if the lengths of the frequent
simple queries are the same. If there are big differences between the lengths of frequent
queries, then the index we get might be too �ne for the short queries. Create the sequence
of gradually �ner indexes with which we can get from the A(0)-index to the M(k)-index in
such a way that, in every step, the �neness of parts obtained by splitting an index node is
greater by at most one than that of the original index node. If the whole sequence of indexes
is known, then we do not have to use the �nest and therefore largest index for the evaluation
of a simple query, but one whose �neness corresponds to the length of the query.

De�nition 19.40 The M∗(k)-index is a sequence of indexes I0, I1, . . . , Ik such that
1. Index Ii is an M(i)-index, where i = 0, 1, . . . , k.
2. The �neness of all index nodes in Ii is at most i, where i = 0, 1, . . . , k.
3. Ii+1 is a re�nement of Ii, where i = 0, 1, . . . , k − 1.
4. If node J of index Ii is split in index Ii+1, and J′ is a set obtained by this split, that is,

J′ ⊆ J, then k(J) ≤ k(J′) ≤ k(J) + 1.
5. Let J be a node of index Ii, and k(J) < i. Then k(J) = k(J′) for i < i′ and for all J′ index

nodes of Ii′ such that J′ ⊆ J.

It follows from the de�nition that in case of M∗(k)-indexes I0 is the A(0)-index. The
last property says that if the re�nement of an index node stops, then its �neness will not

936 19. Semi-structured databases

change anymore. The M∗(k)-index possesses the good characteristics of the M(k)-index,
and its structure is also similar: according to frequent queries the index is further re�ned if
it is necessary to make it exact on frequent queries, but now we store and refresh the coarser
indexes as well, not only the �nest.

When representing the M∗(k)-index, we can make use of the fact that if an index node
is not split anymore, then we do not need to store this node in the new indexes, it is enough
to refer to it. Similarly, edges between such nodes do not have to be stored in the sequence
of indexes repeatedly, it is enough to refer to them. Creation of the M∗(k)-index can be done
similarly to the M(k)-I-C algorithm. The detailed description of the algorithm
can be found in the paper of He and Yang.

With the help of the M∗(k)-index, we can use several strategies for the evaluation of
queries. Let R be a frequent simple query.

The simplest strategy is to use the index the �neness of which is the same as the length
of the query.

M∗(k)-I-N-E(G, FRE, R)
1 {I0, I1 ,. . . , Ik}← the M∗(k)-index corresponding to graph G
2 h← length(R)
3 return I-E(G, Ih, AR)

The evaluation can also be done by gradually evaluating the longer pre�xes of the query
according to the index the �neness of which is the same as the length of the pre�x. For the
evaluation of a pre�x, consider the partitions of the nodes found during the evaluation of
the previous pre�x in the next index and from these, seek edges labeled with the following
symbol. Let R = l0, l1, . . . ,lh be a simple frequent query, that is, length(R) = h.

19.7. Branching queries 937

M∗(k)-I-E-T--B(G, FRE, R)
1 {I0, I1, . . . , Ik}← the M∗(k)-index corresponding to graph G
2 R0 ← l0
3 H0 ← ∅
4 for all C ∈ EI0 (root(I0)) B The children of the root in graph I0.
5 do if label(C) = l0
6 then H0 ← H0 ∪ {C}
7 for j← 1 to length(R)
8 do H j ← ∅
9 R j ← R j−1.l j

10 H j−1 ← M∗(k)-I-E-T--B(G,FRE, R j−1)
11 for all A ∈ H j−1 B Node A is a node of graph I j−1.
12 do if A = ∪Bm, where Bm ∈ VI j B The partition of node A in graph I j.
13 then for minden Bm
14 do for all C ∈ EI j (Bm) B For all children of

Bm in graph I j.
15 do if label(C) = l j
16 then H j ← H j ∪ {C}
17 return Hh

Our strategy could also be that we �rst �nd a subsequence of the label sequence cor-
responding to the simple query that contains few nodes, that is, its selectivity is large. Then
�nd the �tting nodes in the index corresponding to the length of the subsequence, and using
the sequence of indexes see how these nodes are split into new nodes in the �ner index
corresponding to the length of the query. Finally, starting from these nodes, �nd the no-
des that �t to the remaining part of the original query. The detailed form of the algorithm
M∗(k)-I-P-E is left to the Reader.

Exercises
19.6-1 Find the detailed form of the algorithm M∗(k)-I-P-E . What
is the cost of the algorithm?
19.6-2 Prove Proposition 19.38.
19.6-3 Prove that the computation cost of the algorithm W-C is O(m), where
m is the number of edges of the A(0)-index.

19.7. Branching queries
With the help of regular queries we can select the nodes of a graph that are reached from
the root by a path the labels of which �t to a given regular pattern. A natural generalization
is to add more conditions that the nodes of the path leading to the node have to satisfy. For
example, we might require that the node can be reached by a label sequence from a node
with a given label. Or, that a node with a given label can be reached from another node
by a path with a given label sequence. We can take more of these conditions, or use their
negation or composition. To check whether the required conditions hold, we have to step not

938 19. Semi-structured databases

only forward according to the direction of the edges, but sometimes also backward. In the
following, we will give the description of the language of branching queries, and introduce
the forward-backward indexes. The forward-backward index which is safe and exact with
respect to all branching queries is called FB-index. Just like the 1-index, this is also usually
too large, therefore we often use an FB(f , b, d)-index instead, which is exact if the length
of successive forward steps is at most f , the length of successive backward steps is at most
b, and the depth of the composition of conditions is at most d. In practice, values f , b and
d are usually small. In case of queries for which the value of one of these parameters is
greater than the corresponding value of the index, a checking step must be added, that is,
we evaluate the query on the index, and only keep those nodes of the resulted index nodes
that satisfy the query.

If there is a directed edge from node n to node m, then this can be denoted by n/m or
m\n. If node m can be reached from node n by a directed path, then we can denote that by
n//m or m\\n. (Until now we used . instead of /, so // represents the regular expression _*
or * in short.)

From now on, a label sequence is a sequence in which separators are the forward signs
(/, //) and the backward signs (\, \\). A sequence of nodes �t to a label sequence if the
relation of successive nodes is determined by the corresponding separator, and the labels of
the nodes come according to the label sequence.

There are only forward signs in forward label sequences, and only backward signs in
backward label sequences.

Branching queries are de�ned by the following grammar .

branching_query ::= forward_label sequence [or_expression] forward_sign branching_expression
| forward_label_sequence [or_expression]
| forward_label_sequence

or_expression ::= and_expression or or_expression
| and_expressnion

and_expression ::= branching_condition and and_expression
| not_branching_condition and and_expression
| branching_condition
| not_branching_condition

not_branching_condition ::= not branching_condition
branching_condition ::= condition_label_sequence [or_expression] branching_condition

| condition_label_sequence [or_expression]
| condition_label_sequence

condition_label_sequence ::= forward_sign label_sequence
| backward_sign label_sequence

In branching queries, a condition on a node with a given label holds if there exists a
label sequence that �ts to the condition. For example, the root//a/b[\c//d and not \e/ f]/g
query seeks nodes with label g such that the node can be reached from the root in such a
way that the labels of the last two nodes are a and b, furthermore, there exists a parent of
the node with label b whose label is c, and among the descendants of the node with label c
there is one with label d, but it has no children with label e that has a parent with label f .

If we omit all conditions written between signs [] from a branching query, then we get
the main query corresponding to the branching query. In our previous example, this is the

19.7. Branching queries 939

query root//a/b/g. The main query always corresponds to a forward label sequence.
A directed graph can be assigned naturally to branching queries. Assign nodes with

the same label to the label sequence of the query, in case of separators / and \, connect the
successive nodes with a directed edge according to the separator, and in case of separators //

and \\, draw the directed edge and label it with label // or \\. Finally, the logic connectives
are assigned to the starting edge of the corresponding condition as a label. Thus, it might
happen that an edge has two labels, for example // and �and�. Note that the graph obtained
cannot contain a directed cycle because of the de�nition of the grammar.

A simple degree of complexity of the query can be de�ned using the tree obtained.
Assign 0 to the nodes of the main query and to the nodes from which there is a directed
path to a node of the main query. Then assign 1 to the nodes that can be reached from the
nodes with sign 0 on a directed path and have no sign yet. Assign 2 to the nodes from which
a node with sign 1 can be reached and have no sign yet. Assign 3 to the nodes that can be
reached from nodes with sign 2 and have no sign yet, etc. Assign 2k + 1 to the nodes that
can be reached from nodes with sign 2k and have no sign yet, then assign 2k +2 to the nodes
from which nodes with sign 2k + 1 can be reached and have no sign yet. The value of the
greatest sign in the query is called the depth of the tree. The depth of the tree shows how
many times the direction changes during the evaluation of the query, that is, we have to seek
children or parents according to the direction of the edges. The same query could have been
given in different ways by composing the conditions differently, but it can be proved that the
value de�ned above does not depend on that, that is why the complexity of a query was not
de�ned as the number of conditions composed.

The 1-index assigns the nodes into classes according to incoming paths, using bisimu-
lations. The concept of stability used for computations was descendant-stability. A set A
of the nodes of a graph is descendant-stable with respect to a set B of nodes if A ⊆ E(B)
or A ∩ E(B) = ∅, where E(B) is the set of nodes that can be reached by edges from B. A
partition is stable if any two elements of the partition are descendant-stable with respect to
each other. The 1-index is the coarsest descendant-stable partition that assigns nodes with
the same label to same classes, which can be computed using the PT-algorithm. In case of
branching queries, we also have to go backwards on directed edges, so we will need the
concept of ancestor-stability as well. A set A of nodes of a graph is ancestor-stable with
respect to a set B of the nodes if A ⊆ E−1(B) or A ∩ E−1(B) = ∅, where E−1(B) denotes the
nodes from which a node of B can be reached.

De�nition 19.41 The FB-index is the coarsest re�nement of the basic partition that is
ancestor-stable and descendant-stable.

Note that if the direction of the edges of the graph is reversed, then an ancestor-stable
partition becomes a descendant-stable partition and vice versa, therefore the PT-algorithm
and its improvements can be used to compute the coarsest ancestor-stable partition. We will
use this in the following algorithm. We start with classes of nodes with the same label,
compute the 1-index corresponding to this partition, then reverse the direction of the edges,
and re�ne this by computing the 1-index corresponding to this. When the algorithm stops,
we get a re�nement of the initial partition that is ancestor-stable and descendant-stable at
the same time. This way we obtain the coarsest such partition. The proof of this is left to the
Reader.

940 19. Semi-structured databases

FB-I-C(V, E)
1 P← A(0) B Start with classes of nodes with the same label.
2 while P changes
3 do P← PT (V, E−1, P) B Compute the 1-index.
4 P← PT (V, E, P) B Reverse the direction of edges, and

B compute the 1-index.
5 return P

The following corollary follows simply from the two stabilities.
Corollary 19.42 The FB-index is safe and exact with respect to branching queries.
The complexity of the algorithm can be computed from the complexity of the PT-algorithm.
Since P is always the re�nement of the previous partition, in the worst case re�nement is
done one by one, that is, we always take one element of a class and create a new class
consisting of that element. So in the worst case, the cycle is repeated O(n) times. Therefore,
the cost of the algorithm is at most O(mn lg n).

The partition gained by executing the cycle only once is called the F+B-index, the
partition obtained by repeating the cycle twice is the F+B+F+B-index, etc.

The following proposition can be proved easily.

Proposition 19.43 The F+B+F+B+· · ·+F+B-index, where F+B appears d times, is safe
and exact with respect to the branching queries of depth at most d.

Nodes of the same class according to the FB-index cannot be distinguished by bran-
ching queries. This restriction is usually too strong, therefore the size of the FB-index is
usually much smaller than the size of the original graph. Very long branching queries are
seldom used in practice, so we only require local equivalence, similarly to the A(k)-index,
but now we will describe it with two parameters depending on what we want to restrict: the
length of the directed paths or the length of the paths with reversed direction. We can also
restrict the depth of the query. We can introduce the FB(f , b, d)-index, with which such rest-
ricted branching queries can be evaluated exactly. We can also evaluate branching queries
that do not satisfy the restrictions, but then the result must be checked.

FB(f , b, d)-I-C(V, E, f , b, d)
1 P← A(0) B start with classes of nodes with the same label.
2 for i← 1 to d
3 do P← N-A(V , E−1, P, f) B Compute the A(f)-index.
4 P← N-A(V , E, P, b) B Reverse the direction of the edges, and

B compute the A(b)-index.
5 return P

The cost of the algorithm, based on the computation cost of the A(k)-index, is at most
O(dm max(f , b)), which is much better than the computation cost of the FB-index, and the
index graph obtained is also usually much smaller.

The following proposition obviously holds for the index obtained.

19.8. Index refresh 941

Proposition 19.44 The FB(f , b, d)-index is safe and exact for the branching queries in
which the length of forward-sequences is at most f , the length of backward-sequences is at
most b, and the depth of the tree corresponding to the query is at most d.

As a special case we get that the FB(∞,∞,∞)-index is the FB-index, the FB(∞,∞, d)-
index is the F+B+· · ·+F+B-index, where F+B appears d times, the FB(∞, 0, 1)-index is the
1-index, and the FB(k, 0, 1)-index is the A(k)-index.

Exercises
19.7-1 Prove that the algorithm FB-I-C produces the coarsest ancestor-stable
and descendant-stable re�nement of the basic partition.
19.7-2 Prove Proposition 19.44.

19.8. Index refresh
In database management we usually have three important aspects in mind. We want space
requirement to be as small as possible, queries to be as fast as possible, and insertion, dele-
tion and modi�cation of the database to be as quick as possible. Generally, a result that is
good with respect to one of these aspects is worse with respect to another aspect. By adding
indexes of typical queries to the database, space requirement increases, but in return we can
evaluate queries on indexes which makes them faster. In case of dynamic databases that are
often modi�ed we have to keep in mind that not only the original data but also the index has
to be modi�ed accordingly. The most costly method which is trivially exact is that we create
the index again after every modi�cation to the database. It is worth seeking procedures to
get the modi�ed indexes by smaller modi�cations to those indexes we already have.

Sometimes we index the index or its modi�cation as well. The index of an index is also
an index of the original graph, although formally it consists of classes of index nodes, but
we can unite the elements of the index nodes belonging to the same class. It is easy to see
that by that we get a partition of the nodes of the graph, that is, an index.

In the following, we will discuss those modi�cations of semi-structured databases when
a new graph is attached to the root and when a new edges is added to the graph, since these
are the ones we need when creating a new website or a new reference.

Suppose that I(G) is the 1-index of graph G. Let H be a graph that has no common
node with G. Denote by I(H) the 1-index of H. Let F = G + H be the graph obtained by
uniting the roots of G and H. We want to create I(G+H) using I(G) and I(H). The following
proposition will help us.

Proposition 19.45 Let I(G) be the 1-index of graph G, and let J be an arbitrary re�nement
of I(G). Then I(J) = I(G).

Proof. Let u and v be two nodes of G. We have to show that u and v are bisimilar in G with
respect to the 1-index if and only if J(u) and J(v) are bisimilar in the index graph I(G) with
respect to the 1-index of I(G). Let u and v be bisimilar in G with respect to the 1-index.
We will prove that there is a bisimulation according to which J(u) and J(v) are bisimilar
in I(G). Since the 1-index is the partition corresponding to the coarsest bisimulation, the
given bisimulation is a re�nement of the bisimulation corresponding to the 1-index, so J(u)

942 19. Semi-structured databases

and J(v) are also bisimilar with respect to the bisimulation corresponding to the 1-index of
I(G). Let J(a) ≈′ J(b) if and only if a and b are bisimilar in G with respect to the 1-index.
Note that since J is a re�nement of I(G), all elements of J(a) and J(b) are bisimilar in G
if J(a) ≈′ J(b). To show that the relation ≈′ is a bisimulation, let J(u′) be a parent of J(u),
where u′ is a parent of u1, and u1 is an element of J(u). Then u1, u and v are bisimilar in G,
so there is a parent v′ of v for which u′ and v′ are bisimilar in G. Therefore J(v′) is a parent
of J(v), and J(u′) ≈′ J(v′). Since bisimulation is symmetric, relation ≈′ is also symmetric.
We have proved the �rst part of the proposition.

Let J(u) and J(v) be bisimilar in I(G) with respect to the 1-index of I(G). It is sufficient
to show that there is a bisimulation on the nodes of G according to which u and v are
bisimilar. Let a ≈′ b if and only if J(a) ≈ J(b) with respect to the 1-index of I(G). To prove
bisimilarity, let u′ be a parent of U. Then J(u′) is also a parent of J(u). Since J(u) and J(v)
are bisimilar if u ≈′ v, there is a parent J(v′′) of J(v) for which J(u′) and J(v′′) are bisimilar
with respect to the 1-index of I(G), and v′′ is a parent of an element v1 of J(v). Since v and
v1 are bisimilar, there is a parent v′ of v such that v′ and v′′ are bisimilar. Using the �rst part
of the proof, it follows that J(v′) and J(v′′) are bisimilar with respect to the 1-index of I(G).
Since bisimilarity is transitive, J(u′) and J(v′) are bisimilar with respect to the 1-index of
I(G), so u′ ≈′ v′. Since relation ≈′ is symmetric by de�nition, we get a bisimulation.

As a consequence of this proposition, I(G + H) can be created with the following algo-
rithm for disjoint G and H.

G-1-I(G, H)
1 PG ← AG(0) B PG is the basic partition according to labels.
2 PH ← AH(0) B PH is the basic partition according to labels.
3 I1 ← PT (VG, E−1

G , PG) B I1 is the 1-index of G.
4 I2 ← PT (VH , E−1

H , PH) B I2 is the 1-index of H.
5 J ← I1 + I2 B The 1-indexes are joined at the roots.
6 PJ ← AJ(0) B PJ is the basic partition according to labels.
7 I ← PT (VJ , E−1

J , PJ) B I is the 1-index of J.
8 return I

To compute the cost of the algorithm, suppose that the 1-index I(G) of G is given. Then
the cost of the creation of I(G + H) is O(mH lg nH + (mI(H) + mI(G)) lg(nI(G) + nI(H))), where
n and m denote the number of nodes and edges of the graph, respectively.

To prove that the algorithm works, we only have to notice that I(G)+I(H) is a re�nement
of I(G+H) if G and H are disjoint. This also implies that index I(G)+ I(H) is safe and exact,
so we can use this as well if we do not want to �nd the minimal index. This is especially
useful if new graphs are added to our graph many times. In this case we use the lazy method,
that is, instead of computing the minimal index for every pair, we simply sum the indexes
of the addends and then minimize only once.

Proposition 19.46 Let I(Gi) be the 1-index of graph Gi, i = 1, . . . , k, and let the graphs be
disjoint. Then I(G1 + · · · + Gk) = I(I(G1) + · · · + I(Gk)) for the 1-index I(G1 + · · · + Gk) of
the union of the graphs joined at the roots.

In the following we will examine what happens to the index if a new edge is added to the

19.8. Index refresh 943

graph. Even an operation like this can have signi�cant effects. It is not difficult to construct
a graph that contains two identical subgraphs at a distant of 2 from the root which cannot be
contracted because of a missing edge. If we add this critical edge to the graph, then the two
subgraphs can be contracted, and therefore the size of the index graph decreases to about
the half of its original size.

Suppose we added a new edge to graph G from u to v. Denote the new graph by G′, that
is, G′ = G + (u, v). Let partition I(G) be the 1-index of G. If there was an edge from I(u) to
I(v) in I(G), then the index graph does not have to be modi�ed, since there is a parent of the
elements of I(v), that is, of all elements bisimilar to v, in I(u) whose elements are bisimilar
to u. Therefore I(G′) = I(G).

If there was no edge from I(u) to I(v), then we have to add this edge, but this might
cause that I(v) will no longer be stable with respect to I(u). Let Q be the partition we get
from I(G) by splitting I(v) in such a way that v is in one part and the other elements of I(v)
are in the other, and leaving all other classes of the partition unchanged. Q de�nes its edges
the usual way, that is, if there is an edge from an element of a class to an element of another
class, then we connect the two classes with an edge directed the same way.

Let partition X be the original I(G). Then Q is a re�nement of X, and Q is stable with
respect to X according to G′. Note that the same invariant property appeared in the PT-
algorithm for partitions X and Q. Using Proposition 19.45 it is enough to �nd a re�nement
of I(G′). If we can �nd an arbitrary stable re�nement of the basic partition of G′, then,
since the 1-index is the coarsest stable partition, this will be a re�nement of I(G′). X is a
re�nement of the basic partition, that is, the partition according to labels, and so is Q. So
if Q is stable, then we are done. If it is not, then we can stabilize it using the PT-algorithm
by starting with the above partitions X and Q. First we have to examine those classes of the
partition that contain a children of v, because these might lost their stability with respect to
the two new classes gained by the split. The PT-algorithm stabilizes these by splitting them,
but because of this we now have to check their children, since they might have lost stability
because of the split, etc. We can obtain a stable re�nement using this stability-propagator
method. Since we only walk through the nodes that can be reached from v, this might not
be the coarsest stable re�nement. We have shown that the following algorithm computes the
1-index of the graph G + (u, v).

944 19. Semi-structured databases

E-1-I(G, (u, v))
1 PG ← AG(0) B PG is the basic partition according to labels.
2 I ← PT (VG, E−1

G , PG) B I is the 1-index of G.
3 G′ ← G + (u, v) B Add edge (u, v).
4 if (I(u), I(v)) ∈ EI B If there was an edge from I(u) to I(v),

then no modi�cation is needed.
5 then return I
6 I′ ← {v} B Split I(v).
7 I′′ ← I(v) \ {v}
8 X ← I B X is the old partition.
9 EI ← EI ∪ {(I(u), I(v))} B Add an edge from I(u) to I(v).

10 Q← (I \ {I(v)}) ∪ {I′, I′′} B Replace I(v) with I′ and I′′.
11 E ← EQ B Determine the edges of Q.
12 J ← PT (VG′ , E−1

G′ , PG′ , X,Q) B Execute the PT-algorithm starting with X and Q.
13 J ← PT (VJ , E−1

J , PJ) B J is the coarsest stable re�nement.
14 return J

Step 13 can be omitted in practice, since the stable re�nement obtained in step 12 is
a good enough approximation of the coarsest stable partition, there is only 5% difference
between them in size.

In the following we will discuss how FB-indexes and A(k)-indexes can be refreshed.
The difference between FB-indexes and 1-indexes is that in the FB-index, two nodes are
in the same similarity class if not only the incoming but also the outgoing paths have the
same label sequences. We saw that in order to create the FB-index we have to execute the
PT-algorithm twice, using it on the graph with the edges reversed at the second time. The
FB-index can be refreshed similarly to the 1-index. The following proposition can be proved
similarly to Proposition 19.45, therefore we leave it to the Reader.

Proposition 19.47 Let I(G) be the FB-index of graph G, and let J be an arbitrary re�ne-
ment of I(G). Denote by I(J) the FB-index of J. Then I(J) = I(G).

As a consequence of the above proposition, the FB-index of G + H can be created using
the following algorithm for disjoint G and H.

G-FB-I(G, H)
1 I1 ← FB-I-C(VG, EG) B I1 is the FB-index of G.
2 I2 ← FB-I-C(VH , EH) B I2 is the FB-index of H.
3 J ← I1 + I2 B Join the FB-indexes at their roots.
4 I ← FB-I-C(VJ , EJ) B I is the FB-index of J.
5 return I

When adding edge (u, v), we must keep in mind that stability can be lost in both di-
rections, so not only I(v) but also I(u) has to be split into {v}, (I \ {v}) and {u}, (I(u) \ {u}),
respectively. Let X be the partition before the modi�cation, and Q the partition obtained

19.8. Index refresh 945

after the splits. We start the PT-algorithm with X and Q in step 3 of the algorithm FB-I-
C. When stabilizing, we will now walk through all descendants of v and all ancestors
of u.

E-FB-I(G, (u, v))
1 I ← FB--(VG, EG) B I is the FB-index of G.
2 G′ ← G + (u, v) B Add edge (u, v).
3 if (I(u), I(v)) ∈ EI B If there was an edge from I(u) to I(v),

then no modi�cation is needed.
4 then return I
5 I1 ← {v} B Split I(v).
6 I2 ← I(v) \ {v}
7 I3 ← {u} B Split I(u).
8 I4 ← I(u) \ {u}
9 X ← I B X is the old partition.

10 EI ← EI ∪ {(I(u), I(v))} B Add an edge form I(u) to I(v).
11 Q← (I \ {I(v), I(u)}) ∪ {I1, I2, I3, I4} B Replace I(v) with I1 and I2,

I(u) with I3 and I4.
12 E ← EQ B Determine the edges of Q.
13 J ← FB-I-C(VG′ , EG′ , X,Q) B Start the PT-algorithm with X and Q

in the algorithm FB-I-C.
14 J ← FB-I-C(VJ , EJ) B J is the coarsest ancestor-stable

and descendant-stable re�nement.
15 return J

Refreshing the A(k)-index after adding an edge is different than what we have seen.
There is no problem with adding a graph though, since the following proposition holds, the
proof of which is left to the Reader.

Proposition 19.48 Let I(G) be the A(k)-index of graph G, and let J be an arbitrary re�ne-
ment of I(G). Denote by I(J) the A(k)-index of I(J). Then I(J) = I(G).

As a consequence of the above proposition, the A(k)-index of G + H can be created
using the following algorithm for disjoint G and H.

G-A(k)-I(G,H)
1 PG ← AG(0) B PG is the basic partition according to labels.
2 I1 ← N-A(VG, E−1

G , PG, k) B I1 is the A(k)-index of G.
3 PH ← AH(0) B PH is the basic partition according to labels.
4 I2 ← N-A(VH , E−1

H , PH , k) B I1 is the A(k)-index of H.
5 J ← I1 + I2 B Join the A(k)-indexes.
6 PJ ← AJ(0) B PJ is the basic partition according to labels.
7 I ← N-A(VJ , E−1

J , PJ , k) B I is the A(k)-index of J.
8 return I

946 19. Semi-structured databases

If we add a new edge (u, v) to the graph, then, as earlier, �rst we split I(v) into two
parts, one of which is I′ = {v}, then we have to repair the lost k-stabilities walking through
the descendants of v, but only within a distant of k. What causes the problem is that the
A(k)-index contains information only about k-bisimilarity, it tells us nothing about (k − 1)-
bisimilarity. For example, let v1 be a child of v, and let k = 1. When stabilizing according
to the 1-index, v1 has to be detached from its class if there is an element in this class that
is not a children of v. This condition is too strong in case of the A(1)-index, and therefore
it causes too many unnecessary splits. In this case, v1 should only be detached if there is
an element in its class that has no 0-bisimilar parent, that is, that has the same label as v.
Because of this, if we refreshed the A(k)-index the above way when adding a new edge, we
would get a very bad approximation of the A(k)-index belonging to the modi�cation, so we
use a different method. The main idea is to store all A(i)-indexes not only the A(k)-index,
where i = 1, . . . , k. Yi et al. give an algorithm based on this idea, and creates the A(k)-index
belonging to the modi�cation. The given algorithms can also be used for the deletion of
edges with minor modi�cations, in case of 1-indexes and A(k)-indexes.

Exercises
19.8-1 Prove Proposition 19.47.
19.8-2 Give an algorithm for the modi�cation of the index when an edge is deleted from
the data graph. Examine different indexes. What is the cost of the algorithm?
19.8-3 Give algorithms for the modi�cation of the D(k)-index when the data graph is mo-
di�ed.

Problems

19-1. Implication problem regarding constraints
Let R and Q be regular expressions, x and y two nodes. Let predicate R(x, y) mean that y
can be reached from x by a label sequence that �ts to R. Denote by R ⊆ Q the constraint
∀x(R(root, x)→ Q(root, x)). R = Q if R ⊆ Q and Q ⊆ R. Let C be a �nite set of constraints,
and c a constraint.
a. Prove that the implication problem C |= c is a 2-EXPSPACE problem.
b. Denote by R ⊆ Q@u the constraint ∀v(R(u, v) → Q(u, v)). Prove that the implication

problem is undecidable with respect to this class.

19-2. Transformational distance of trees
Let the transformational distance of vertex-labeled trees be the minimal number of basic
operations with which a tree can be transformed to the other. We can use three basic opera-
tions: addition of a new node, deletion of a node, and renaming of a label.
a. Prove that the transformational distance of trees T and T ′ can be computed in

O(nT nT ′dT dT ′) time, with storage cost of O(nT nT ′), where nT is the number of nodes of
the tree and dT is the depth of the tree.

b. Let S and S ′ be two trees. Give an algorithm that generates all pairs (T,T ′), where T
and T ′ simulates graphs S and S ′, respectively, and the transformational distance of T
and T ′ is less then a given integer n. (This operation is called approximate join.)

19. Megjegyzések a fejezethez 947

19-3. Queries of distributed databases
A distributed database is a vertex-labeled directed graph the nodes of which are distributed
in m partitions (servers). The edges between different partitions are cross references. Com-
munication is by message broadcasting between the servers. An algorithm that evaluates
a query is efficient, if the number of communication steps is constant, that is, it does not
depend on the data and the query, and the size of the data transmitted during communica-
tion only depends on the size of the result of the query and the number of cross references.
Prove that an efficient algorithm can be given for the regular query of distributed databa-
ses in which the number of communication steps is 4, and the size of data transmitted is
O(n2) + O(k), where n is the size of the result of the query, and k is the number of cross
references. (Hint: Try to modify the algorithm N-E for this purpose.)

Chapter notes
This chapter examined those �elds of the world of semi-structured databases where the
morphisms of graphs could be used. Thus we discussed the creation of schemas and indexes
from the algorithmic point of view. The world of semi-structured databases and XML is
much broader than that. A short summary of the development, current issues and the pos-
sible future development of semi-structured databases can be found in the paper of Vianu
[22].

The paper of M. Henzinger, T. Henzinger and Kopke [10] discusses the computation of
the maximal simulation. They extend the concept of simulation to in�nite graphs that can
be represented efficiently (these are called effective graphs), and prove that for such graphs,
it can be determined whether two nodes are similar. In their paper, Corneil and Gotlieb
[6] deal with quotient graphs and the determination of isomorphism of graphs. Arenas and
Libkin [1] extend normal forms used in the relational model to XML documents. They show
that arbitrary DTD can be rewritten without loss as XNF, a normal form they introduced.

Buneman, Fernandez and Suciu [4] introduce a query language, the UnQL, based on
structural recursion, where the data model used is de�ned by bisimulation. Gottlob, Koch
and Pichler [8] examine the classes of the query language XPath with respect to complexity
and parallelization. For an overview of complexity problems we recommend the classical
work of Garey and Johnson [7] and the paper of Stockmeyer and Meyer [20].

The PT-algorithm was �rst published in the paper of Paige and Tarjan [18]. The 1-
index based on bisimulations is discussed in detail by Milo and Suciu [17], where they also
introduce the 2-index, and as a generalization of this, the T-index

The A(k)-index was introduced by Kaushik, Shenoy, Bohannon and Gudes [11]. The
D(k)-index �rst appeared in the work of Chen, Lim and Ong [5]. The M(k)-index and the
M∗(k)-index, based on frequent queries, are the results of He and Yang [9]. FB-indexes of
branching queries were �rst examined by Kaushik, Bohannon, Naughton and Korth [13].

The algorithms of the modi�cations of 1-indexes, FB-indexes and A(k)-indexes were
summarized by Kaushik, Bohannon, Naughton and Shenoy [14]. The methods discussed
here are improved and generalized in the work of Yi, He, Stanoi and Yang [23]. Polyzotis
and Garafalakis use a probability model for the study of the selectivity of queries [19].

948 19. Semi-structured databases

Kaushik, Krishnamurthy, Naughton and Ramakrishnan [12] suggest the combined use of
structural indexes and inverted lists.

The book of Tucker [21] and the encyclopedia edited by Khosrow-Pour [15] deal with
the use of XML in practice.

The theory of XML has no literature in Hungarian yet, but several books discuss its
practical use [2, 3, 16].

Bibliography

[1] M. Arenas, L. Libkin. A normal form for XML documents. In Proceedings of the 21st Symposium on Prin-
ciples of Database Systems, 2002, pp. 85�96. 947

[2] C. F. Bates. XML in Theory and Praxis. John Wiley & Sons, 2003. 948
[3] N. Bradley. The XML Companion (3. edition). Addison-Wesley, 2004. 948
[4] P. Buneman, M. Fernandez, D. Suciu. UnQL: a query language and algebra for semistructured data based on

structural recursion. The International Journal on Very Large Data Bases, 9(1):76�110, 2000. 947
[5] Q. Chen, A. Lim, K. W. Ong. An adaptive structural summary for graph-structured data. In Proceedings of

the 2003 ACM SIGMOD International Conference on Management of Data, 2003, pp. 134�144. 947
[6] D. G. Corneil, C. Gotlieb. An efficient algorithm for graph isomorphism. Journal of the ACM, 17(1):51�64,

1970. 947
[7] M. R. Garey, D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.

H. Freeman, 1979. 947
[8] G. Gottlob, C. Koch, R. Pichler. The complexity of XPath query evaluation. In Proceedings of the 22nd

Symposium on Principles of Database Systems, 2003, pp. 179�190. 947
[9] H. He, J. Yang. Multiresolution indexing of XML for frequent queries. In Proceedings of the 20th Internati-

onal Conference on Data Engineering, 2004, pp. 683�694. 947
[10] M. R. Henzinger, T. A. Henzinger, P. Kopke. Computing simulations on �nite and in�nite graphs. In Proce-

edings of the 36th Annual Symposium on Foundations of Computer Science. IEEE Computer Society Press,
1995, pp. 453�462. 947

[11] R. Kaushik, R. Krishnamurthy, J. F. Naughton, R. Ramakrishnan. Exploiting local similarity for indexing
paths in graph-structured data. In Proceedings of the 18th International Conference on Data Engineering.
947

[12] R. Kaushik, R. Shenoy, P. F. Bohannon, E. Gudes. On the integration of structure indexes and inverted lists.
In Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, 2004, pp.
779�790. 948

[13] R. R. Kaushik, P. Bohannon, J. F. Naughton, H. Korth. Covering indexes for branching path queries. In
Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data, 2002, pp. 133�
144. 947

[14] R. R. Kaushik, P. Bohannon, J. F. Naughton, H. Korth, P. Shenoy. Updates for structure indexes. In Procee-
dings of Very Large Data Bases, 2002, pp. 239�250. 947

[15] M. Khosrow-Pour (szerkeszt�o). Encyclopedia of Information Science and Technology, Vol. 1, Vol. 2, Vol. 3,
Vol. 4, Vol. 5. Idea Group Inc., 2005. 948

[16] B. McLaughlin. Java and XML. O'Reilly, 2000. 948
[17] T. Milo, D. Suciu. Index structures for path expressions. Lecture Notes in Computer Science, Vol. 1540.

Springer-Verlag, 1999, pp. 277�295. 947
[18] R. Paige, R. Tarjan. Three partition re�nement algorithms. SIAM Journal on Computing, 16(6):973�989,

1987. 947
[19] N. Polyzotis, M. N. Garofalakis. Statistical synopses for graph-structured XML databases. In Proceedings of

the 2002 ACM SIGMOD international Conference on Management of Data, 2002, pp. 358�369. 947

http://www.cs.toronto.edu/~marenas/�
http://www.cs.toronto.edu/~libkin/�
http://homepages.shu.ac.uk/~cmscrb/�
http://www.wiley.com/�
http://www.aw.com/�
http://www.cis.upenn.edu/~peter/�
http://www.research.att.com/~mff/�
http://www.cs.washington.edu/homes/suciu/�
http://springerlink.metapress.com/app/home/journal.asp?wasp=6p8qd4wxrp6wvmehwkak&referrer=parent&backto=subject,139,142;�
http://www.cs.wisc.edu/~qun/�
http://www.ieor.berkeley.edu/~lim/�
http://www.cs.toronto.edu/DCS/People/Faculty/dgc.html�
http://www.cs.toronto.edu/DCS/People/Faculty/ccg.html�
http://portal.acm.org/browse_dl.cfm?linked=1&part=journal&idx=J401&coll=portal&dl=ACM&CFID=10136019&CFTOKEN=486195�
http://cm.bell-labs.com/cm/ms/former/mrg/�
http://www.research.att.com/~dsj/�
http://www.whfreeman.com/�
http://www.dbai.tuwien.ac.at/staff/gottlob/�
http://www.dbai.tuwien.ac.at/staff/koch/�
http://www.logic.at/staff/reini/�
http://www.cs.duke.edu/~haohe/�
http://www.cs.duke.edu/~junyang/�
http://www.cs.cornell.edu/Info/Department/Annual96/Faculty/MHenzinger.html�
http://www.henzinger.com/monika/�
http://www.ieee.org/organizations/pubs/press/�
http://www.cs.wisc.edu/~raghav/�
http://www.cs.wisc.edu/~sekar/�
http://www.cs.wisc.edu/~naughton/naughton.html�
http://www.cs.wisc.edu/~raghu/�
http://www.cs.wisc.edu/~raghav/�
http://www.cs.washington.edu/homes/pshenoy/�
http://www.bell-labs.com/user/bohannon/�
http://www.cs.bgu.ac.il/~ehud/�
http://www.cs.wisc.edu/~raghav/�
http://www.bell-labs.com/user/bohannon/�
http://www.cs.wisc.edu/~naughton/naughton.html�
http://www.bell-labs.com/user/hfk/�
http://www.cs.wisc.edu/~raghav/�
http://www.bell-labs.com/user/bohannon/�
http://www.cs.wisc.edu/~naughton/naughton.html�
http://www.bell-labs.com/user/hfk/�
http://www.cs.washington.edu/homes/pshenoy/�
http://www.idea-group.com/encyclopedia/authors.asp?id=26&pub_id=4455�
http://www.idea-group.com/�
http://www.oreilly.de�
http://www.math.tau.ac.il/~milo/�
http://www.cs.washington.edu/homes/suciu/�
http://www.link.springer.de/link/service/series/0558/index.htm�
http://www.springer.de/�
http://www.cs.nyu.edu/cs/faculty/paige/�
http://www.cs.princeton.edu/~ret/�
http://epubs.siam.org/sam-bin/dbq/toclist/SICOMP�
http://www.cs.ucsc.edu/~alkis/�
http://www.bell-labs.com/user/minos/�

950 Bibliography

[20] L. Stockmeyer, A. R. Meyer. Word problems requiring exponential time. In Proceedings of the 28th Annual
ACM Symposium on Theory of Computing. ACM Press, 1973, pp. 1�9. 947

[21] A. Tucker. Handbook of Computer Science. Chapman & Hall/CRC, 2004. 948
[22] V. Vianu. A Web Odyssey: from Codd to XML. In Proceedings of the 20th Symposium on Principles of

Database Systems, 2001, pp. 1�5. 947
[23] K. Yi, H. He, I. Stanoi, J. Yang. Incremental maintenance of XML structural indexes. In Proceedings of the

2004 ACM SIGMOD International Conference on Management of Data, 2004, pp. 491�502. 947

http://www.geocities.com/stockmeyer@sbcglobal.net/�
http://theory.lcs.mit.edu/~meyer/�
http://isbndb.com/d/publisher/acm_press.html�
http://www.bowdoin.edu/~allen/�
http://www.chapmanhall.com/�
http://www.crcpress.com/�
http://www-cse.ucsd.edu/users/vianu/�
http://www.cs.duke.edu/~yike/�
http://www.cs.duke.edu/~haohe/�
http://www.research.ibm.com/people/i/irs/�
http://www.cs.duke.edu/~junyang/�

Subject Index

A, Á
A(k)-index, 929, 940, 945
A(k)-I-E, 930
ancestor-stable, 939

B
backward label sequence, 938
basic partition, 918
bisimilar, 920, 941
bisimulation, 920, 942
branching query, 937, 938

D
D(k)-index, 931, 932
D(k)-I-C, 933
depth of the tree, 939
descendant-stable, 939
DTD, 916
D(k)-I-C, 932

E, É
E-1-I, 944
E-FB-I, 945
E-M-S, 915
E-PT, 927
exact, 919

F
F+B+F+B-index, 940
F+B-index, 940
FB(f , b, d)-index, 938, 940
FB(f , b, d)-I-C, 940
FB-index, 938, 939, 944
FB-I-C, 940
forward label sequence, 938
frequent regular queries, 933

G
grammar, 938
G-1-I, 942
G-A(k)-I, 945
G-FB-I, 944

I, Í
I-M-S, 914
index, 918
I-E, 920
indexing, 916
index of an index, 941
index refresh, 941

K
k-bisimilar, 929
k-bisimulation, 928

L
label sequence, 916
lazy method, 942
lower bound, 913

M
M(k)-index, 935
M(k)-I-C, 935
M∗(k)-index, 935
M∗(k)-I- N-E, 936
M∗(k)-I-P-E, 937
main query, 938
M∗(k)-I-E-T--B, 937

N
N-A, 929
N-E, 917
naive index, 918
N-I-E, 919
N-M-S, 913
N-PT, 923

O, Ó
1-index, 920, 941
1-I-E, 921

P
PT, 924

952 Subject Index

PT-, 921

Q
query language, 916

R
R, 934
R-I-N, 934
regular expression, 916

S
safe, 919
simple expression, 916
simulation, 912
split, 922
splitter, 923

stable, 922

T
T, 917

U, Ú
upper bound, 913

W
W-C, 931, 932, 937gy
W-I, 933

X
XML, 910

Name index

A, Á
Arenas, Marcelo, 947, 949

B
Bates, Chris, 949
Bohannon, Philip, 947, 949
Bradley, Neil, 949
Buneman, Peter, 947, 949

C
Chen, Qun, 947, 949
Corneil, Derek G., 947, 949

F
Fernandez, Mary, 947, 949

G
Garey, Michael R., 947, 949
Garofalakis, Minos, 948, 949
Gotlieb, Calvin C., 947, 949
Gottlob, Georg, 947, 949
Gudes, Ehud, 947, 949

H
He, Hao, 936, 946, 947, 949, 950
Henzinger, Monika Rauch, 947, 949
Henzinger, Thomas A., 947, 949

J
Johnson, D., 947

K
Kaushik, Raghav, 947, 949
Khosrow-Pour, Mehdi, 948, 949
Koch, Christoph, 947, 949
Kopke, Peter W., 947, 949
Korth, Henry F., 947, 949
Krishnamurthy, Rajasekar, 948, 949

L

Libkin, Leonid, 947, 949
Lim, Andrew, 947, 949

M
McLaughlin, Brett, 949
Meyer, A. R., 919, 947
Meyer, Albert R., 950
Milo, Tova, 921, 947, 949

N
Naughton, Jeffrey F., 947, 949

O, Ó
Ong, Kian Win, 947, 949

P
Paige, Robert, 922, 947, 949
Pichler, Reinhard, 947, 949
Polyzotis, Neoklis, 948, 949

R
Ramakrishnan, Raghu, 948, 949

S
Shenoy, Pradeep, 947, 949
Stanoi, Ioana, 946, 947, 950
Stockmeyer, Larry J., 919, 947, 950
Suciu, Dan, 921, 947, 949

T
Tarjan, Robert Endre, 922, 947, 949
Tucker, Alan B., 948
Tucker, Allen B., 950

V
Vianu, Victor, 947, 950

Y
Yang, Jun, 936, 946, 947, 949, 950

954 Name index

Yi, Ke, 946, 947, 950

Contents

19. Semi-structured databases (Attila Kiss) . 909
19.1. Semi-structured data and XML . 909
19.2. Schemas and simulations . 911
19.3. Queries and indexes . 916
19.4. Stable partitions and the PT-algorithm . 922
19.5. A(k)-indexes . 928
19.6. D(k)- and M(k)-indexes . 930
19.7. Branching queries . 937
19.8. Index refresh . 941

Bibliography . 949
Subject Index . 951
Name index . 953

