
18. Scientific computing

This title refers to a fast developing interdisciplinary area between mathematics, computers
and applications. The subject is also often called as Computational Science and Enginee-
ring. Its aim is the efficient use of computer algorithms to solve engineering and scienti�c
problems. One can say with a certain simpli�cation that our subject is related to numerical
mathematics, software engineering, computer graphics and applications. Here we can deal
only with some basic elements of the subject such as the fundamentals of the �oating po-
int computer arithmetic, error analysis, the basic numerical methods of linear algebra and
related mathematical software.

18.1. Floating point arithmetic and error analysis
18.1.1. Classical error analysis
Let x be the exact value and let a be an approximation of x (a ≈ x). The error of the
approximation a is de�ned by the formula ∆a = x − a (sometimes with opposite sign). The
quantity δa ≥ 0 is called an (absolute) error (bound) of approximation a, if |x − a| = |∆a| ≤
δa. For example, the error of the approximation

√
2 ≈ 1.41 is at most 0.01. In other words,

the error bound of the approximation is 0.01. The quantities x and a (and accordingly ∆a
and δa) may be vectors or matrices. In such cases the absolute value and relation operators
must be understood componentwise. We also measure the error by using matrix and vector
norms. In such cases, the quantity δa ∈ R is an error bound, if the inequality ‖∆a‖ ≤ δa
holds.

The absolute error bound can be irrelevant in many cases. For example, an approxi-
mation with error bound 0.05 has no value in estimating a quantity of order 0.001. The
goodness of an approximation is measured by the relative error δa/ |x| (δa/ ‖x‖ for vec-
tors and matrices), which compares the error bound to the approximated quantity. Since the
exact value is generally unknown, we use the approximate relative error δa/ |a| (δa/ ‖a‖).
The committed error is proportional to the quantity (δa)2, which can be neglected, if the
absolute value (norm) of x and a is much greater than (δa)2. The relative error is often
expressed in percentages.

In practice, the (absolute) error bound is used as a substitute for the generally unknown
true error.

862 18. Scienti�c computing

In the classical error analysis we assume input data with given error bounds, exact com-
putations (operations) and seek for the error bound of the �nal result. Let x and y be exact
values with approximations a and b, respectively. Assume that the absolute error bounds
of approximations a and b are δa and δb, respectively. Using the classical error analysis
approach we obtain the following error bounds for the four basic arithmetic operations:

δ (a + b) = δa + δb, δ(a + b)
|a + b| = max

{
δa
|a| ,

δb
|b|

}
(ab > 0) ,

δ (a − b) = δa + δb, δ(a − b)
|a − b| =

δa + δb
|a − b| (ab > 0) ,

δ (ab) ≈ |a| δb + |b| δa δ(ab)
|ab| ≈

δa
|a| +

δb
|b| (ab , 0) ,

δ(a/b) ≈ |a| δb + |b| δa
|b|2

δ(a/b)
|a/b| ≈

δa
|a| +

δb
|b| (ab , 0) .

We can see that the division with a number near to 0 can make the absolute error ar-
bitrarily big. Similarly, if the result of subtraction is near to 0, then its relative error can
become arbitrarily big. One has to avoid these cases. Especially the subtraction operation
can be quite dangerous.

Example 18.1 Calculate the quantity
√

1996 − √1995 with approximations
√

1996 ≈ 44.67 and√
1995 ≈ 44.66 whose common absolute and relative error bounds are 0.01 and 0.022%, respectively.

One obtains the approximate value
√

1996 − √1995 ≈ 0.01, whose relative error bound is

0.01 + 0.01
0.01 = 2,

that is 200%. The true relative error is about 10.66%. Yet it is too big, since it is approximately 5×102

times bigger than the relative error of the initial data. We can avoid the subtraction operation by using
the following trick

√
1996 −

√
1995 =

1996 − 1995√
1996 +

√
1995

=
1√

1996 +
√

1995
≈ 1

89.33 ≈ 0.01119.

Here the nominator is exact, while the absolute error of the denominator is 0.02. Hence the relative
error (bound) of the quotient is about 0.02/89.33 ≈ 0.00022 = 0.022%. The latter result is in agree-
ment with the relative error of the initial data and it is substantially smaller than the one obtained with
direct subtraction operation.

The �rst order error terms of twice differentiable functions can be obtained by their �rst
order Taylor polynomial:

δ (f (a)) ≈
∣∣∣ f ′(a)

∣∣∣ δa, f : R→ R,

δ (f (a)) ≈
n∑

i=1

∣∣∣∣∣
∂ f (a)
∂xi

∣∣∣∣∣ δai, f : Rn → R.

The numerical sensitivity of functions at a given point is characterized by the condition
number, which is the ratio of the relative errors of approximate function value and the input

18.1. Floating point arithmetic and error analysis 863

Figure 18.1. Forward and backward error.

data (the Jacobian matrix of functions F : Rn → Rm is denoted by F′(a) at the point a ∈ Rn):

c(f , a) =
| f ′(a)| |a|
| f (a)| , f : R→ R,

c(F, a) =
‖a‖ ‖F′(a)‖
‖F(a)‖ , F : Rn → Rm.

We can consider the condition number as the magni�cation number of the input rela-
tive error. Therefore the functions is considered numerically stable (or well-conditioned)
at the point a, if c (f , a) is �small�. Otherwise f is considered as numerically unstable
(ill-conditioned). The condition number depends on the point a. A function can be well-
conditioned at point a, while it is ill-conditioned at point b. The term �small� is relative. It
depends on the problem, the computer and the required precision.

The condition number of matrices can be de�ned as the upper bound of a function
condition number. Let us de�ne the mapping F : Rn → Rn by the solution of the equation
Ay = x (A ∈ Rn×n, det(A) , 0), that is, let F(x) = A−1x . Then F′ ≡ A−1 and

c(F, a) =
‖a‖

∥∥∥A−1
∥∥∥∥∥∥A−1a

∥∥∥ =
‖Ay‖

∥∥∥A−1
∥∥∥

‖y‖ ≤ ‖A‖
∥∥∥A−1∥∥∥ (Ay = a) .

The upper bound of the right side is called the condition number of the matrix A. This
bound is sharp, since there exists a vector a ∈ Rn such that c(F, a) = ‖A‖

∥∥∥A−1
∥∥∥.

18.1.2. Forward and backward errors
Let us investigate the calculation of the function value f (x). If we calculate the approxi-
mation �y instead of the exact value y = f (x), then the forward error ∆y = �y − y. If for a
value x + ∆x the equality �y = f (x + ∆x) holds, that is, �y is the exact function value of the
perturbed input data �x = x + ∆x, then ∆x is called the backward error. The connection of
the two concepts is shown on the Figure 18.1.

The continuous line shows exact value, while the dashed one indicates computed value.
The analysis of the backward error is called the backward error analysis . If there exist
more than one backward error, then the estimation of the smallest one is the most important.

An algorithm for computing the value y = f (x) is called backward stable, if for any x it
gives a computed value �y with small backward error ∆x. Again, the term �small� is relative
to the problem environment.

The connection of the forward and backward errors is described by the approximate

864 18. Scienti�c computing

thumb rule

δ�y
|y| / c (f , x) δ �x

|x| , (18.1)

which means that

relatíve forward error ≤ condition number × relative backward error.

This inequality indicates that the computed solution of an ill-conditioned problem may
have a big relative forward error. An algorithm is said to be forward stable if the forward
error is small. A forward stable method is not necessarily backward stable. If the forward
error and the condition number are small, then the algorithm is forward stable.

Example 18.2 Consider the function f (x) = log x the condition number of which is c (f , x) = c (x) =

1/
∣∣∣log x

∣∣∣. For x ≈ 1 the condition number c (f , x) is big. Therefore the relative forward error is big for
x ≈ 1.

18.1.3. Rounding errors and floating point arithmetic
The classical error analysis investigates only the effects of the input data errors and assumes
exact arithmetic operations. The digital computers however are representing the numbers
with a �nite number of digits, the arithmetic computations are carried out on the elements
of a �nite set F of such numbers and the results of operations belong to F. Hence the
computer representation of the numbers may add further errors to the input data and the
results of arithmetic operations may also be subject to further rounding. If the result of
operation belongs to F, then we have the exact result. Otherwise we have three cases:

(i) rounding to representable (nonzero) number;
(ii) under�ow (rounding to 0);
(iii) over�ow (in case of results whose moduli too large).
The most of the scienti�c-engineering calculations are done in �oating point arithmetic

whose generally accepted model is the following:

De�nition 18.1 The set of �oating point numbers is given by

F(β, t, L,U) =

=
{
±m × βe | 1

β
≤ m < 1, m = 0.d1d2 . . . dt, L ≤ e ≤ U

}
∪ {0} ,

where
- β is the base (or radix) of the number system,
- m is the mantissa in the number system with base β,
- e is the exponent,
- t is the length of mantissa (the precision of arithmetic),
- L is the smallest exponent (under�ow exponent),
- U is the biggest exponent (over�ow exponent).

The parameters of the three most often used number systems are indicated in the follo-

18.1. Floating point arithmetic and error analysis 865

wing table
Name β Machines
binary 2 most computer

decimal 10 most calculators
hexadecimal 16 IBM mainframe computers

The mantissa can be written in the form

m = 0.d1d2 . . . dt =
d1
β

+
d2
β2 + · · · + dt

βt . (18.2)

We can observe that condition 1/β ≤ m < 1 implies the inequality 1 ≤ d1 ≤ β − 1 for the
�rst digit d1. The remaining digits must satisfy 0 ≤ di ≤ β−1 (i = 2, . . . , t). Such arithmetic
systems are called normalized. The zero digit and the dot is not represented. If β = 2, then
the �rst digit is 1, which is also unrepresented. Using the representation (18.2) we can give
the set F = F(β, t, L,U) in the form

F =

{
±

(
d1
β

+
d2
β2 + · · · + dt

βt

)
βe | L ≤ e ≤ U

}
∪ {0} , (18.3)

where 0 ≤ di ≤ β − 1 (i = 1, . . . , t) and 1 ≤ d1.

Example 18.3 The set F (2, 3,−1, 2) contains 33 elements and its positive elements are given by
{

1
4 ,

5
16 ,

6
16 ,

7
16 ,

1
2 ,

5
8 ,

6
8 ,

7
8 , 1,

10
8 ,

12
8 ,

14
8 , 2, 20

8 , 3, 28
8

}
.

The elements of F are not equally distributed on the real line. The distance of two
consecutive numbers in [1/β, 1]∩ F is β−t. Since the elements of F are of the form ±m× βe,
the distance of two consecutive numbers in F is changing with the exponent. The maximum
distance of two consecutive �oating point numbers is βU−t, while the minimum distance is
βL−t.

For the mantissa we have m ∈ [1/β, 1 − 1/βt] , since

1
β
≤ m =

d1
β

+
d2
β2 + · · · + dt

βt ≤
β − 1
β

+
β − 1
β2 + · · · + β − 1

βt = 1 − 1
βt .

Using this observation we can easily prove the following result on the range of �oating
point numbers.

Theorem 18.2 If a ∈ F, a , 0, then ML ≤ |a| ≤ MU , where

ML = βL−1, MU = βU(1 − β−t).

Let a, b ∈ F and denote � any of the four arithmetic operations (+,−, ∗, /). The follo-
wing cases are possible:

(1) a�b ∈ F (exact result),
(2) |a�b| > MU (arithmetic over�ow),
(3) 0 < |a�b| < ML (arithmetic under�ow),
(4) a�b < F, ML < |a�b| < MU (not representable result).

866 18. Scienti�c computing

In the last two cases the �oating point arithmetic is rounding the result a�b to the
nearest �oating point number in F. If two consecutive �oating point numbers are equally
distant from a�b, then we generally round to the greater number. For example, in a �ve digit
decimal arithmetic, the number 2.6457513 is rounded to the number 2.6458.

Let G = [−MU , MU]. It is clear that F ⊂ G. Let x ∈ G. The f l (x) denotes an element of
F nearest to x. The mapping x→ f l (x) is called rounding. The quantity |x − f l (x)| is called
the rounding error. If f l (x) = 1, then the rounding error is at most β1−t/2. The quantity
u = β1−t/2 is called the unit roundoff . The quantity u is the relative error bound of f l (x).

Theorem 18.3 If x ∈ G, then

f l(x) = x(1 + ε), |ε| ≤ u.

Proof. Without loss of generality we can assume that x > 0. Let m1β
e, m2β

e ∈ F be two
consecutive numbers such that

m1β
e ≤ x ≤ m2β

e.

Either 1/β ≤ m1 < m2 ≤ 1− β−t or 1− β−t = m1 < m2 = 1 holds. Since m2 −m1 = β−t holds
in both cases, we have

| f l (x) − x| ≤ |m2 − m1|
2 βe =

βe−t

2
either f l (x) = m1β

e or f l (x) = m2β
e. It follows that

| f l (x) − x|
|x| ≤ | f l (x) − x|

m1βe ≤ βe−t

2m1βe =
β−t

2m1
≤ 1

2β
1−t = u.

Hence f l (x) − x = λxu, where |λ| ≤ 1. A simple arrangement yields

f l (x) = x(1 + ε) (ε = λu)

Since |ε| ≤ u, we proved the claim.
Thus we proved that the relative error of the rounding is bounded in �oating point

arithmetic and the bound is the unit roundoff u.
Another quantity used to measure the rounding errors is the so called the machine

epsilon εM = 2u = β1−t (εM = 2u). The number εM is the distance of 1 and its nearest
neighbor greater than 1. The following algorithm determines εM in the case of binary base.

M-E

1 x← 1
2 while 1 + x > 1
3 do x← x/2
4 εM ← 2x
5 return εM

In the MATLAB system εM ≈ 2.2204 × 10−16.
For the results of �oating point arithmetic operations we assume the following (standard

model):
f l(a�b) = (a�b) (1 + ε) , |ε| ≤ u (a, b ∈ F) . (18.4)

18.1. Floating point arithmetic and error analysis 867

The IEEE arithmetic standard satis�es this assumption. It is an important consequence
of the assumption that for a�b , 0 the relative error of arithmetic operations satis�es

| f l(a�b) − (a�b)|
|a�b| ≤ u.

Hence the relative error of the �oating point arithmetic operations is small.
There exist computer �oating point arithmetics that do not comply with the standard

model (18.4). The usual reason for this is that the arithmetic lacks a guard digit in subtrac-
tion. For simplicity we investigate the subtraction 1−0.111 in a three digit binary arithmetic.
In the �rst step we equate the exponents:

2 × 0 . 1 0 0
− 2 × 0 . 0 1 1 1 .

If the computation is done with four digits, the result is the following

21 × 0 . 1 0 0
− 21 × 0 . 0 1 1 1

21 × 0 . 0 0 0 1
,

from which the normalized result is 2−2 × 0.100. Observe that the subtracted number is
unnormalized. The temporary fourth digit of the mantissa is called a guard digit. Without a
guard digit the computations are the following:

21 × 0 . 1 0 0
− 21 × 0 . 0 1 1

21 × 0 . 0 0 1
.

Hence the normalized result is 2−1 × 0.100 with a relative error of 100%. Several CRAY
computers and pocket calculators lack guard digits.

Without the guard digit the �oating point arithmetic operations satisfy only the weaker
conditions

f l (x ± y) = x (1 + α) ± y (1 + β) , |α| , |β| ≤ u, (18.5)
f l (x�y) = (x�y) (1 + δ) , |δ| ≤ u, � = ∗, / . (18.6)

Assume that we have a guard digit and the arithmetic complies with standard model
(18.4). Introduce the following notations:

|z| = [|z1| , . . . , |zn|]T (z ∈ Rn) , (18.7)

|A| =
[∣∣∣ai j

∣∣∣
]m,n
i, j=1

(A ∈ Rm×n) , (18.8)

A ≤ B⇔ ai j ≤ bi j
(A, B ∈ Rm×n) . (18.9)

The following results hold:
∣∣∣∣ f l

(
xT y

)
− xT y

∣∣∣∣ ≤ 1.01nu |x|T |y| (nu ≤ 0.01) , (18.10)

868 18. Scienti�c computing

f l (αA) = αA + E (|E| ≤ u |αA|) , (18.11)

f l (A + B) = (A + B) + E (|E| ≤ u |A + B|) , (18.12)

f l (AB) = AB + E
(
|E| ≤ nu |A| |B| + O

(
u2

))
, (18.13)

where E denotes the error (matrix) of the actual operation.
The standard �oating point arithmetics have many special properties. It is an important

property that the addition is not associative because of the rounding.

Example 18.4 If a = 1, b = c = 3 × 10−16, then using MATLAB and AT386 type PC we obtain

1.000000000000000e + 000 = (a + b) + c , a + (b + c) = 1.000000000000001e + 000.

We can have a similar result on Pentium1 machine with the choice b = c = 1.15 × 10−16.

The example also indicates that for different (numerical) processors may produce diffe-
rent computational results for the same calculations. The commutativity can also be lost in
addition. Consider the computation of the sum ∑n

i=1 xi. The usual algorithm is the recursive
summation.

R-S(n, x)
1 s← 0
2 for i← 1 to n
3 do s← s + xi
4 return s

Example 18.5 Compute the sum

sn = 1 +

n∑

i=1

1
i2 + i

for n = 4999. The recursive summation algorithm (and MATLAB) gives the result

1.999800000000002e + 000.

If the summation is done in the reverse (increasing) order, then the result is

1.999800000000000e + 000.

If the two values are compared with the exact result sn = 2−1/(n + 1), then we can see that the second
summation gives better result. In this case the sum of smaller numbers gives signi�cant digits to the
�nal result unlike in the �rst case.

The last example indicates that the summation of a large number of data varying in
modulus and sign is a complicated task. The following algorithm of W. Kahan is one of the
most interesting procedures to solve the problem.

18.1. Floating point arithmetic and error analysis 869

C-S(n, x)
1 s← 0
2 e← 0
3 for i← 1 to n
4 do t ← s
5 y← xi + e
6 s← t + y
7 e← (t − s) + y
8 return s

18.1.4. The floating point arithmetic standard
The ANSI/IEEE Standard 754-1985 of a binary (β = 2) �oating point arithmetic system
was published in 1985. The standard speci�es the basic arithmetic operations, comparisons,
rounding modes, the arithmetic exceptions and their handling, and conversion between the
different arithmetic formats. The square root is included as a basic operation. The standard
does not deal with the exponential and transcendent functions. The standard de�nes two
main �oating point formats:

Type Size Mantissa e u [ML, MU] ≈
Single 32 bits 23 + 1 bits 8 bits 2−24 ≈ 5.96 × 10−8 10±38

Double 64 bits 52 + 1 bits 11 bits 2−53 ≈ 1.11 × 10−16 10±308

In both formats one bit is reserved as a sign bit. Since the �oating point numbers are norma-
lized and the �rst digit is always 1, this bit is not stored. This hidden bit is denoted by the

�+1� in the table.
The arithmetic standard contains the handling of arithmetic exceptions.

Exception type Example Default result
Invalid operation 0/0, 0 ×∞,

√−1 NaN (Not a Number)
Over�ow |x�y| > MU ±∞
Divide by zero Finite nonzero/0 ±∞
Under�ow 0 < |x�y| < ML Subnormal numbers
Inexact f l (x�y) , x�y Correctly rounded result

(The numbers of the form ±m × βL−t, 0 < m < βt−1 are called subnormal numbers.) The
IEEE arithmetic is a closed system. Every arithmetic operations has a result, whether it is
expected mathematically or not. The exceptional operations raise a signal and continue. The
arithmetic standard conforms with the standard model (18.4).

The �rst hardware implementation of the IEEE standard was the Intel 8087 mathemati-
cal coprocessor. Since then it is generally accepted and used.

Remark. In the single precision we have about 7 signi�cant digit precision in the decimal
system. For double precision we have approximately 16 digit precision in decimals. There
also exists an extended precision format of 80 bits, where t = 63 and the exponential has 15
bits.

Exercises

870 18. Scienti�c computing

18.1-1 The measured values of two resistors are R1 = 110.2 ± 0.3Ω and R2 = 65.6 ± 0.2Ω.
We connect the two resistors parallel and obtain the circuit resistance Re = R1R2/(R1 + R2).
Calculate the relative error bounds of the initial data and the approximate value of the re-
sistance Re. Evaluate the absolute and relative error bounds δRe and δRe/Re, respectively in
the following three ways:
(i) Estimate �rst δRe using only the absolute error bounds of the input data, then estimate
the relative error bound δRe/Re.
(ii) Estimate �rst the relative error bound δRe/Re using only the relative error bounds of the
input data, then estimate the absolute error bound δRe.
(iii) Consider the circuit resistance as a two variable function Re = F (R1,R2).
18.1-2 Assume that

√
2 is calculated with the absolute error bound 10−8. The following

two expressions are theoretically equal:
(i) 1/

(
1 +
√

2
)6 ;

(ii) 99 − 70
√

2.
Which expression can be calculated with less relative error and why?
18.1-3 Consider the arithmetic operations as two variable functions of the form f (x, y) =

x�y, where � ∈ {+,−, ∗, /}.
(i) Derive the error bounds of the arithmetic operations from the error formula of two vari-
able functions.
(ii) Derive the condition numbers of these functions. When are they ill-conditioned?
(iii) Derive error bounds for the power function assuming that both the base and the expo-
nent have errors. What is the result if the exponent is exact?
(iv) Let y = 16x2, x ≈ a and y ≈ b = 16a2. Determine the smallest and the greatest value of
a as a function of x such that the relative error bound of b should be at most 0.01.
18.1-4 Assume that the number C = EXP(4π2/

√
83) (= 76.1967868 . . .) is calculated in a

24 bit long mantissa and the exponential function is also calculated with 24 signi�cant bits.
Estimate the absolute error of the result. Estimate the relative error without using the actual
value of C.
18.1-5 Consider the emph�oating point number set F(β, t, L,U) and show that
(i) Every arithmetic operation can result arithmetic over�ow;
(ii) Every arithmetic operation can result arithmetic under�ow.
18.1-6 Show that the following expressions are numerically unstable for x ≈ 0:
(i) (1 − cos x)/ sin2 x;
(ii) sin(100π + x) − sin(x);
(iii) 2 − sin x − cos x − e−x.
Calculate the values of the above expressions for x = 10−3, 10−5, 10−7 and estimate the error.
Manipulate the expressions into numerically stable ones and estimate the error as well.
18.1-7 How many elements does the set F = F (β, t, L,U) have? How many subnormal
numbers can we �nd?
18.1-8 If x, y ≥ 0, then (x + y) /2 ≥ √xy and equality holds if and only if x = y. Is it true nu-
merically? Check the inequality experimentally for various data (small and large numbers,
numbers close to each other or different in magnitude).

18.2. Linear systems of equations 871

18.2. Linear systems of equations
The general form of linear algebraic systems with n unknowns and m equations is given by

a11x1 + · · · + a1 jx j + · · · + a1nxn = b1
...

ai1x1 + · · · + ai jx j + · · · + ainxn = bi
...

am1x1 + · · · + am jx j + · · · + amnxn = bm

(18.14)

This system can be written in the more compact form

Ax = b, (18.15)

where
A =

[
ai j

]m,n
i, j=1
∈ Rm×n, x ∈ Rn, b ∈ Rm.

The systems is called underdetermined if m < n. For m > n, the systems is called overde-
termined. Here we investigate only the case m = n, when the coefficient matrix A is square.
We also assume that the inverse matrix A−1 exists (or equivalently det (A) , 0). Under this
assumption the linear system Ax = b has exactly one solution: x = A−1b.

18.2.1. Direct methods for solving linear systems
Triangular linear systems

De�nition 18.4 The matrix A = [ai j]n
i, j=1 is upper triangular if ai j = 0 for all i > j. The

matrix A is lower triangular if ai j = 0 for all i < j.

For example the general form of the upper triangular matrices is the following:


∗ ∗ · · · · · · ∗
0 ∗ ...
...

. . .
. . .

...
...

. . . ∗ ∗
0 · · · · · · 0 ∗



.

We note that the diagonal matrices are both lower and upper triangular. It is easy to show that
det(A) = a11a22 . . . ann holds for the upper or lower triangular matrices. It is easy to solve
linear systems with triangular coefficient matrices. Consider the following upper triangular
linear system:

a11x1+ · · · +a1ixi+ · · · +a1nxn = b1
. . .

...
...

...
aiixi+ · · · +ainxn = bi

. . .
...

...
annxn = bn

872 18. Scienti�c computing

Figure 18.2. Gaussian elimination.

This can be solved by the so called back substitution algorithm.

B-S(A, b, n)
1 xn ← bn/ann
2 for i← n − 1 downto 1
3 do xi ← (bi −∑n

j=i+1 ai jx j)/aii
4 return x

The solution of lower triangular systems is similar.

The Gauss method
The Gauss method or Gaussian elimination (GE) consists of two phases:
I. The linear system Ax = b is transformed to an equivalent upper triangular system using
elementary operations (see Figure 18.2).
II. The obtained upper triangular system is then solved by the back substitution algorithm.

The �rst phase is often called the elimination or forward phase. The second phase of GE
is called the backward phase. The elementary operations are of the following three types:

1. Add a multiple of one equation to another equation.
2. Interchange two equations.
3. Multiply an equation by a nonzero constant.
The elimination phase of GE is based on the following observation. Multiply equation

k by γ , 0 and subtract it from equation i:

(ai1 − γak1) x1 + · · · +
(
ai j − γak j

)
x j + · · · + (ain − γakn) xn = bi − γbk.

If ak j , 0, then by choosing γ = ai j/ak j, the coefficient of x j becomes 0 in the new equivalent
equation, which replaces equation i. Thus we can eliminate variable x j (or coefficient ai j)
from equation i.

The Gauss method eliminates the coefficients (variables) under the main diagonal of
A in a systematic way. First variable x1 is eliminated from equations i = 2, . . . , n using
equation 1, then x2 is eliminated from equations i = 3, . . . , n using equation 2, and so on.

Assume that the unknowns are eliminated in the �rst (k − 1) columns under the main
diagonal and the resulting linear system has the form

18.2. Linear systems of equations 873

a11x1+ · · · · · · +a1k xk + · · · + a1nxn = b1
. . .

...
...

...
. . .

...
...

...
akk xk + · · · + aknxn = bk
...

...
...

aik xk + · · · + ainxn = bi
...

...
...

ank xk + · · · + annxn = bn

If akk , 0, then multiplying row k by γ and subtracting it from equation i we obtain

(aik − γakk)xk + (ai,k+1 − γak,k+1)xk+1 + · · · + (ain − γakn)xn = bi − γbk.

Since aik − γakk = 0 for γ = aik/akk, we eliminated the coefficient aik (variable xk) from
equation i > k. Repeating this process for i = k + 1, . . . , n we can eliminate the coefficients
under the main diagonal entry akk. Next we denote by A [i, j] the element ai j of matrix A
and by A [i, j : n] the vector

[
ai j, ai, j+1, . . . , ain

]
. The Gauss method has the following form

(where the pivoting discussed later is also included):

G-M(A, b)
1 ¤ Forward phase:
2 n← rows[A]
3 for k ← 1 to n − 1
4 do { pivoting and interchange of rows and columns}
5 for i← k + 1 to n
6 do γik ← A [i, k] /A [k, k]
7 A [i, k + 1 : n]← A [i, k + 1 : n] − γik ∗ A [k, k + 1 : n]
8 bi ← bi − γikbk
9 ¤ Backward phase: see the back substitution algorithm.

10 return x

The algorithm overwrites the original matrix A and vector b. It does not write however
the zero entries under the main diagonal since these elements are not necessary for the
second phase of the algorithm. Hence the lower triangular part of matrix A can be used to
store information for the LU decomposition of matrix A.

The above version of the Gauss method can be performed only if the elements akk
occurring in the computation are not zero. For this and numerical stability reasons we use
the Gaussian elimination with pivoting.

The Gauss method with pivoting
If akk = 0, then we can interchange row k with another row, say i, so that the new entry
(aki) at position (k, k) should be nonzero. If this is not possible, then all the coefficients
akk, ak+1,k, . . . , ank are zero and det (A) = 0. In the latter case Ax = b has no unique solution.
The element akk is called the kth pivot element. We can always select new pivot elements by

874 18. Scienti�c computing

interchanging the rows. The selection of the pivot element has a great in�uence on the relia-
bility of the computed results. The simple fact that we divide by the pivot element indicates
this in�uence. We recall that δ(a/b) is proportional to 1/ |b|2. It is considered advantageous
if the pivot element is selected so that it has the greatest possible modulus. The process
of selecting the pivot element is called pivoting. We mention the following two pivoting
processes.

Partial pivoting: At the kth step, interchange the rows of the matrix so the largest
remaining element, say aik, in the kth column is used as pivot. After the pivoting we have

|akk | = max
k≤i≤n
|aik | .

Complete pivoting: At the kth step, interchange both the rows and columns of the
matrix so that the largest element, say ai j, in the remaining matrix is used as pivot After the
pivoting we have

|akk | = max
k≤i, j≤n

∣∣∣ai j
∣∣∣ .

Note that the interchange of two columns implies the interchange of the corresponding
unknowns. The signi�cance of pivoting is well illustrated by the following

Example 18.6 The exact solution of the linear system

10−17 x + y = 1
x + y = 2

is x = 1/(1−10−17) and y = 1−10−17/(1−10−17). The MATLAB program gives the result x = 1, y = 1
and this is the best available result in standard double precision arithmetic. Solving this system with
the Gaussian elimination without pivoting (also in double precision) we obtain the catastrophic result
x = 0 and y = 1. Using partial pivoting with the Gaussian elimination we obtain the best available
numerical result x = y = 1.

Remark 18.5 Theoretically we do not need pivoting in the following cases: 1. If A is sym-
metric and positive de�nite (A ∈ Rn×n is positive de�nite⇔ xT Ax > 0, ∀x ∈ Rn, x , 0). 2.
If A is diagonally dominant in the following sense:

|aii| >
∑

j,i

∣∣∣ai j
∣∣∣ (1 ≤ i ≤ n) .

In case of symmetric and positive de�nite matrices we use the Cholesky method which is a
special version of the Gauss-type methods.

During the Gaussian elimination we obtain a sequence of equivalent linear systems

A(0)x = b(0) → A(1)x = b(1) → · · · → A(n−1)x = b(n−1),

where
A(0) = A, A(k) =

[
a(k)

i j

]n
i, j=1

.

Note that matrices A(k) are stored in the place of A = A(0). The last coefficient matrix of

18.2. Linear systems of equations 875

phase I has the form

A(n−1) =



a(0)
11 a(0)

12 · · · a(0)
1n

0 a(1)
22 · · · a(1)

2n
...

. . .
...

0 · · · · · · a(n−1)
nn


,

where a(k−1)
kk is the kth pivot element. The growth factor of pivot elements is given by

ρ = ρn = max
1≤k≤n

∣∣∣a(k−1)
kk /a(0)

11
∣∣∣ .

Wilkinson proved that the error of the computed solution is proportional to the growth factor
ρ and the bounds

ρ ≤ √n
(
2 · 3 1

2 · · · n 1
n−1

) 1
2 ∼ cn 1

2 n 1
4 log(n)

and
ρ ≤ 2n−1

hold for complete and partial pivoting, respectively. Wilkinson conjectured that ρ ≤ n for
complete pivoting. This has been proved by researchers for small values of n. Statistical
investigations on random matrices (n ≤ 1024) indicate that the average of ρ is Θ

(
n2/3

)
for

the partial pivoting and Θ
(
n1/2

)
for the complete pivoting. Hence the case ρ > n hardly

occurs in the statistical sense.
We remark that Wilkinson constructed a linear system on which ρ = 2n−1 for the partial

pivoting. Hence Wilkinson's bound for ρ is sharp in the case of partial pivoting. There
also exist examples of linear systems concerning discretizations of differential and integral
equations, where ρ is increasing exponentially if Gaussian elimination is used with partial
pivoting.

The growth factor ρ can be very large, if the Gaussian elimination is used without
pivoting. For example, ρ = ρ4 (A) = 1.23 × 105, if

A =



1.7846 −0.2760 −0.2760 −0.2760
−3.3848 0.7240 −0.3492 −0.2760
−0.2760 −0.2760 1.4311 −0.2760
−0.2760 −0.2760 −0.2760 0.7240


.

Operations counts
The Gauss method gives the solution of the linear system Ax = b (A ∈ Rn×n) in a �nite
number of steps and arithmetic operations (+,−, ∗, /). The amount of necessary arithmetic
operations is an important characteristic of the direct linear system solvers, since the CPU
time is largely proportional to the number of arithmetic operations. It was also observed
that the number of additive and multiplicative operations are nearly the same in the nume-
rical algorithms of linear algebra. For measuring the cost of such algorithms C.B. Moler
introduced the concept of �op.

De�nition 18.6 One (old) �op is the computational work necessary for the operation s =

s+ x∗y (1 addition + 1 multiplication). One (new) �op is the computational work necessary
for any of the arithmetic operations +,−, ∗, /.

876 18. Scienti�c computing

The new �op can be used if the computational time of additive and multiplicative ope-
rations are approximately the same. Two new �ops equals to one old �op. Here we use the
notion of old �op.

For the Gauss method a simple counting gives the number of additive and multiplicative
operations.

Theorem 18.7 The computational cost of the Gauss method is n3/3 + Θ(n2) �ops.

V.V. Klyuyev and N. Kokovkin-Shcherbak proved that if only elementary row and co-
lumn operations (multiplication of row or column by a number, interchange of rows or
columns, addition of a multiple of row or column to another row or column) are allowed,
then the linear system Ax = b cannot be solved in less than n3/3 + Ω(n2) �ops.

Using fast matrix inversion procedures we can solve the n × n linear system Ax = b in
O(n2.808) �ops. These theoretically interesting algorithms are not used in practice since they
are considered as numerically unstable.

The LU-decomposition
In many cases it is easier to solve a linear system if the coefficient matrix can be decomposed
into the product of two triangular matrices.

De�nition 18.8 The matrix A ∈ Rn×n has an LU-decomposition, if A = LU, where L ∈
Rn×n is lower and U ∈ Rn×n is upper triangular matrix.

The LU-decomposition is not unique. If a nonsingular matrix has an LU-
decomposition, then it has a particular LU-decomposition, where the main diagonal of a
given component matrix consists of 1's. Such triangular matrices are called unit (upper or
lower) triangular matrices. The LU decomposition is unique, if L is set to be lower unit
triangular or U is set to be unit upper triangular.

The LU-decomposition of nonsingular matrices is closely related to the Gaussian elimi-
nation method. If A = LU, where L is unit lower triangular, then lik = γik (i > k), where γik
is given by the Gauss algorithm. The matrix U is the upper triangular part of the matrix we
obtain at the end of the forward phase. The matrix L can also be derived from this matrix,
if the columns of the lower triangular part are divided by the corresponding main diagonal
elements. We remind that the �rst phase of the Gaussian elimination does not annihilate
the matrix elements under the main diagonal. It is clear that a nonsingular matrix has LU-
decomposition if and only if a(k−1)

kk , 0 holds for each pivot element for the Gauss method
without pivoting.

De�nition 18.9 A matrix P ∈ Rn×n whose every row and column has one and only one
non-zero element, that element being 1, is called a permutation matrix.

In case of partial pivoting we permute the rows of the coefficient matrix (multiply A by
a permutation matrix on the left) so that a(k−1)

kk , 0 (k = 1, . . . , n) holds for a nonsingular
matrix. Hence we have

Theorem 18.10 If A ∈ Rn×n is nonsingular then there exists a permutation matrix P such
that PA has an LU-decomposition.

18.2. Linear systems of equations 877

The the algorithm of LU-decomposition is essentially the Gaussian elimination method.
If pivoting is used then the interchange of rows must also be executed on the elements under
the main diagonal and the permutation matrix P must be recorded. A vector containing the
actual order of the original matrix rows is obviously sufficient for this purpose.

The LU- and Cholesky-methods
Let A = LU and consider the equation Ax = b. Since Ax = LUx = L(Ux) = b, we can
decompose Ax = b into the equivalent linear system Ly = b and Ux = b, where L is lower
triangular and U is upper triangular.

LU-M(A, b)
1 Determine the LU-decomposition A = LU.
2 Solve Ly = b.
3 Solve Ux = y.
4 return x

Remark. In case of partial pivoting we obtain the decomposition �A = PA = LU and we
set �b = Pb instead of b.

In the �rst phase of the Gauss method we produce decomposition A = LU and the
equivalent linear system Ux = L−1b with upper triangular coefficient matrix. The latter is
solved in the second phase. In the LU-method we decompose the �rst phase of the Gauss
method into two steps. In the �rst step we obtain only the decomposition A = LU. In the
second step we produce the vector y = L−1b. The third step of the algorithm is identical with
the second phase of the original Gauss method.

The LU-method is especially advantageous if we have to solve several linear systems
with the same coefficient matrix:

Ax = b1, Ax = b2, . . . , Ax = bk.

In such a case we determine the LU-decomposition of matrix A only once, and then we
solve the linear systems Lyi = bi, Uxi = yi (xi, yi,bi ∈ Rn, i = 1, . . . , k). The computational
cost of this process is n3/3 + kn2 + Θ (kn) �ops.

The inversion of a matrix A ∈ Rn×n can be done as follows:
1. Determine the LU-decomposition A = LU. .
2. Solve Lyi = ei, Uxi = yi (ei is the ith unit vector i = 1, . . . , n).

The inverse of A is given by A−1 = [x1, . . . , xn]. The computational cost of the algorithm is
4n3/3 + Θ

(
n2

)
�ops.

The LU-method with pointers
This implementation of the LU-method is known since the 60's. Vector P contains the in-
dices of the rows. At the start we set P [i] = i (1 ≤ i ≤ n). When exchanging rows we
exchange only those components of vector P that correspond to the rows.

878 18. Scienti�c computing

LU-M--P(A, b)
1 n← rows[A]
2 P← [1, 2, . . . , n]
3 for k ← 1 to n − 1
4 do compute index t such that |A [P [t] , k]| = maxk≤i≤n |A [P [i] , k]| .
5 if k < t
6 then exchange the components P [k] and P [t].
7 for i← k + 1 to n
8 do A [P [i] , k]← A [P [i] , k] /A [P [k] , k]
9 A [P [i] , k + 1 : n]← A [P [i] , k + 1 : n] − A [P [i] , k] ∗ A [P [k] , k + 1 : n]

10 for i← 1 to n
11 do s← 0
12 for j← 1 to i − 1
13 do s← s + A [P [i] , j] ∗ x [j]
14 x [i]← b[P[i]] − s
15 for i← n downto 1
16 do s← 0
17 for j← i + 1 to n
18 s← s + A [P [i] , j] ∗ x [j]
19 x [i]← (x [i] − s) /A [P [i] , i]
20 return x

If A ∈ Rn×n is symmetric and positive de�nite, then it can be decomposed in the
form A = LLT , where L is lower triangular matrix. The LLT -decomposition is called the
Cholesky-decomposition . In this case we can save approximately half of the storage place
for A and half of the computational cost of the LU-decomposition (LLT -decomposition).
Let

A =



a11 · · · a1n
a21 · · · a2n
...

...
an1 · · · ann


=



l11 0 · · · 0

l21 l22
. . .

...
...

...
. . . 0

ln1 ln2 · · · lnn





l11 l21 · · · ln1
0 l22 · · · ln2
...

. . .
. . .

...
0 · · · 0 lnn


.

Observing that only the �rst k elements may be nonzero in the kth column of LT we obtain
that

akk = l2k1 + l2k2 + · · · + l2k,k−1 + l2kk,

aik = li1lk1 + li2lk2 + · · · + li,k−1lk,k−1 + liklkk (i = k + 1, . . . , n) .

This gives the formulae

lkk = (akk −
k−1∑

j=1
l2k j)1/2,

lik = (aik −
k−1∑

j=1
li jlk j)/lkk (i = k + 1, . . . , n) .

18.2. Linear systems of equations 879

Using the notation ∑k
j=i s j = 0 (k < i) we can formulate the Cholesky-method as follows.

C-M(A)
1 n← rows[A]
2 for k ← 1 to n
3 do akk ← (akk −∑k−1

j=1 a2
k j)1/2

4 for i← k + 1 to n
5 do aik ← (aik −∑k−1

j=1 ai jak j)/akk
6 return A

The lower triangular part of A contains L. The computational cost of the algorithm is
n3/6 + Θ(n2) �ops and n square roots. The algorithm, which can be considered as a special
case of the Gauss-methods, does not require pivoting, at least in principle.

The LU- and Cholesky-methods on banded matrices
It often happens that linear systems have banded coefficient matrices.

De�nition 18.11 Matrix A ∈ Rn×n is banded with lower bandwidth p and upper bandwidth
q if

ai j = 0, if i > j + p or j > i + q.

The possibly non-zero elements ai j (i − p ≤ j ≤ i + q) form a band like structure.
Schematically A has the form

A =



a11 a12 · · · · · · a1,1+q 0 · · · · · · 0

a21 a22
. . .

...
...

. . .
. . .

...

a1+p,1
. . .

. . . 0

0 . . .
. . . an−q,n

...
. . .

. . .
...

...
. . .

. . .
...

...
. . .

. . . an−1,n
0 · · · · · · · · · 0 an,n−p · · · an,n−1 ann



.

The banded matrices yield very efficient algorithms if p and q are signi�cantly less than
n. If a banded matrix A with lower bandwidth p and upper bandwidth q has an LU-
decomposition, then both L and U are banded with lower bandwidth p and upper bandwidth
q, respectively.

Next we give the LU-method for banded matrices in three parts.

880 18. Scienti�c computing

T-LU-D--B-M(A, n, p, q)
1 for k ← 1 to n − 1
2 do for i← k + 1 to min {k + p, n}
3 do aik ← aik/akk
4 for j← k + 1 to min {k + q, n}
5 do ai j ← ai j − aikak j
6 return A

Entry ai j is overwritten by li j, if i > j and by ui j, if i ≤ j. The computational cost of is
c (p, q) �ops, where

c (p, q) =

{
npq − 1

2 pq2 − 1
6 p3 + pn, p ≤ q

npq − 1
2 qp2 − 1

6 q3 + qn, p > q

The following algorithm overwrites b by the solution of equation Ly = b.

S      (L, b, n, p)
1 for i← 1 to n
2 do bi ← bi −∑i−1

j=max{1,i−p} li jb j
3 return b

The total cost of the algorithm is np− p2/2 �ops. The next algorithm overwrites vector
b by the solution of Ux = b.

S--B-U-T-S(U, b, n, q)
1 for i← n downto 1
2 do bi ←

(
bi −∑min{i+q,n}

j=i+1 ui jb j
)
/uii

3 return b

The computational cost is n (q + 1) − q2/2 �ops.
Assume that A ∈ Rn×n is symmetric, positive de�nite and banded with lower bandwidth

p. The banded version of the Cholesky-methods is given by

C---B-M(A, n, p)
1 for i← 1 to n
2 do for j← max {1, i − p} to i − 1
3 do ai j ←

(
ai j −∑ j−1

k=max{1,i−p} aika jk
)
/a j j

4 aii ←
(
aii −∑i−1

k=max{1,i−p} a2
ik

)1/2

5 return A

The elements ai j are overwritten by li j (i ≥ j). The total amount of work is given by(
np2/2

)
−

(
p3/3

)
+ (3/2)

(
np − p2

)
�ops és n square roots.

Remark. If A ∈ Rn×n has lower bandwidth p and upper bandwidth q and partial pivoting
takes place, then the upper bandwidth of U increases up to �q = p + q.

18.2. Linear systems of equations 881

18.2.2. Iterative methods for linear systems
There are several iterative methods for solving linear systems of algebraic equations. The
best known iterative algorithms are the classical Jacobi-, the Gauss-Seidel- and the relaxa-
tion methods. The greatest advantage of these iterative algorithms is their easy implemen-
tation to large systems. At the same time they usually have slow convergence. However for
parallel computers the multisplitting iterative algorithms seem to be efficient.

Consider the iteration

xi = Gxi−1 + b (i = 1, 2, . . .)

where G ∈ Rn×n és x0, b ∈ Rn. It is known that {xi}∞i=0 converges for all x0, b ∈ Rn if and only
if the spectral radius of G satis�es ρ (G) < 1 (ρ (G) = max |λ| | λ is an eigenvalue of G). In
case of convergence xi → x∗ = (I −G)−1 b, that is we obtain the solution of the equation
(I −G) x = b. The speed of convergence depends on the spectral radius ρ (G). Smaller the
spectral radiusρ (G), faster the convergence.

Consider now the linear system
Ax = b,

where A ∈ Rn×n is nonsingular. The matrices Ml,Nl, El ∈ Rn×n form a multisplitting of A if
(i) A = Mi − Ni, i = 1, 2, . . . , L,
(ii) Mi is nonsingular, i = 1, 2, . . . , L,
(iii) Ei is non-negative diagonal matrix, i = 1, 2, . . . , L,
(iv) ∑L

i=1 Ei = I.
Let x0 ∈ Rn be a given initial vector. The multisplitting iterative method is the following.

M-I(x0, b, L, Ml,Nl, El, l = 1, . . . , L)
1 i← 0
2 while exit condition=

3 do i← i + 1
4 for l← 1 to L
5 do Mlyl ← Nlxi−1 + b
6 xi ← ∑L

l=1 Elyl
7 return xi

It is easy to show that yl = M−1
l Nlxi−1 + M−1

l b and

xi =

L∑

l=1
Elyl =

L∑

l=1
ElM−1

l Nlxi−1 +

L∑

l=1
ElM−1

l b

= Hxi−1 + c.

Thus the condition of convergence is ρ (H) < 1. The multisplitting iteration is a true parallel
algorithm because we can solve L linear systems parallel in each iteration (synchronized
parallelism). The bottleneck of the algorithm is the computation of iterate xi.

The selection of matrices Mi and Ei is such that the solution of the linear system Miy = c
should be cheap. Let S 1, S 2, . . . , S L be a partition of {1, . . . , n}, that is S i , ∅, S i ∩ S j = ∅
(i , j) and ∪L

i=1S i = {1, . . . , n}. Furthermore let S i ⊆ Ti ⊆ {1, . . . , n} (i = 1, . . . , L) be such

882 18. Scienti�c computing

that S l , Tl for at least one l.
The non-overlapping block Jacobi splitting of A is given by

Ml =
[
M(l)

i j

]n
i, j=1

, M(l)
i j =


ai j, if i, j ∈ S l
aii, if i = j
0, otherwise

,

Nl = Ml − A,

El =
[
E(l)

i j

]n
i, j=1

, E(l)
i j =

{
1, if i = j ∈ S l
0, otherwise

for l = 1, . . . , L.
De�ne now the simple splitting

A = M − N,

where M is nonsingular,

M =
[
Mi j

]n
i, j=1

, Mi j =

{
ai j, if i, j ∈ S l for some l ∈ {1, . . . , n}
0, otherwise .

It can be shown that
H =

L∑

l=1
ElM−1

l Nl = M−1N

holds for the non-overlapping block Jacobi multisplitting.
The overlapping block Jacobi multisplitting of A is de�ned by

M̃l =
[
M̃(l)

i j

]n
i, j=1

, M̃(l)
i j =


ai j, if i, j ∈ Tl
aii, if i = j
0, otherwise

,

Ñl = M̃l − A,

ẽl =
[
ẽ(l)

i j

]n
i, j=1

, E(l)
ii = 0, if i < Tl

for l = 1, . . . , L.
A nonsingular matrix A ∈ Rn×n is called an M-matrix, if ai j ≤ 0 (i , j) and all the

elements of A−1 are nonnegative.

Theorem 18.12 Assume that A ∈ Rn×n is nonsingular M-matrix, {Mi,Ni, Ei}Li=1 is a non-
overlapping,

{
M̃i, Ñi, Ei

}L
i=1 is an overlapping block Jacobi multisplitting of A, where the

weighting matrices Ei are the same. The we have

ρ
(
H̃

)
≤ ρ (H) < 1,

where H =
∑L

l=1 ElM−1
l Nl and H̃ =

∑L
l=1 ElM̃−1

l Ñl .

18.2. Linear systems of equations 883

We can observe that both iteration procedures are convergent and the convergence of
the overlapping multisplitting is not slower than that of the non-overlapping procedure.
The theorem remains true if we use block Gauss-Seidel multisplittings instead of the block
Jacobi multisplittings. In this case we replace the above de�ned matrices Mi and M̃i with
their lower triangular parts.

The multisplitting algorithm has multi-stage and asynchronous variants as well.

18.2.3. Error analysis of linear algebraic systems
We analyze the direct and inverse errors. We use the following notations and concepts. The
exact (theoretical) solution of Ax = b is denoted by x, while any approximate solution is
denoted by �x. The direct error of the approximate solution is given by ∆x = �x − x. The
quantity r = r (y) = Ay − b is called the residual error. For the exact solution r (x) = 0,
while for the approximate solution

r (�x) = A �x − b = A (�x − x) = A∆x.

We use various models to estimate the inverse error. In the most general case we assume
that the computed solution �x satis�es the linear system �A �x = �b, where �A = A + ∆A and
�b = b + ∆b. The quantities ∆A and ∆b are called the inverse errors.

One has to distinguish between the sensitivity of the problem and the stability of the
solution algorithm. By sensitivity of a problem we mean the sensitivity of the solution to
changes in the input parameters (data). By the stability (or sensitivity) of an algorithm we
mean the in�uence of computational errors on the computed solution. We measure the sensi-
tivity of a problem or algorithm in various ways. One such characterization is the condition
number�condition number�, which compares the relative errors of the input and output va-
lues.

The following general principles are used when applying any algorithm:
- We use only stable or well-conditioned algorithms.
- We cannot solve an unstable (ill-posed or ill-conditioned) problem with a general

purpose algorithm, in general.

Sensitivity analysis
Assume that we solve the perturbed equation

A �x = b + ∆b (18.16)

instead of the original Ax = b. Let x̂ = x + ∆x and investigate the differene of the two
solutions.

Theorem 18.13 If A is nonsingular and b , 0, then
‖∆x‖
‖x‖ ≤ cond(A)‖∆b‖

‖b‖ = cond(A)‖r (�x)‖
‖b‖ , (18.17)

where cond(A) = ‖A‖
∥∥∥A−1

∥∥∥ is the condition number of A.

Here we can see that the condition number of A may strongly in�uence the relative
error of the perturbed solution x̂. A linear algebraic system is said to be well-conditioned

884 18. Scienti�c computing

if cond(A) is small, and ill-conditioned, if cond(A) is big. It is clear that the terms �small�
and �big� are relative and the condition number depends on the norm chosen. We identify
the applied norm if it is essential for some reason. For example cond∞ (A) = ‖A‖∞

∥∥∥A−1
∥∥∥∞.

The next example gives possible geometric characterization of the condition number.

Example 18.7 The linear system

1000x1 + 999x2 = b1
999x1 + 998x2 = b2

is ill-conditioned (cond∞(A) = 3.99 × 106). The two lines, whose meshpoint de�nes the system, are
almost parallel. Therefore if we perturb the right hand side, the new meshpoint of the two lines will
be far from the previous meshpoint.

The inverse error is ∆b in the sensitivity model under investigation. Theorem 18.13
gives an estimate of the direct error which conforms with the thumb rule. It follows that we
can expect a small relative error of the perturbed solution x̂, if the condition number of A is
small.

Example 18.8 Consider the linear system Ax = b with

A =

[
1 + ε 1

1 1

]
, b =

[
1
1

]
, x =

[
0
1

]
.

Let �x =

[
2
−1

]
. Then r =

[
2ε
0

]
and ‖r‖∞ / ‖b‖∞ = 2ε, but ‖ �x − x‖∞ / ‖x‖∞ = 2.

Consider now the perturbed linear system

(A + ∆A) �x = b (18.18)

instead of Ax = b. It can be proved that for this perturbation model there exist more than
one inverse errors�inverse error� among which ∆A = −r (x̂) x̂T /x̂T x̂ is the inverse error with
minimal spectral norm, provided that x̂, r (x̂) , 0.

The following theorem establish that for small relative residual error the relative inverse
error is also small.

Theorem 18.14 Assume that �x , 0 is the approximate solution of Ax = b, det (A) , 0 and
b , 0. If ‖r (�x)‖2 / ‖b‖2 = α < 1, the the matrix ∆A = −r (�x) �xT/ �xT �x satis�es (A + ∆A) �x = b
and ‖∆A‖2 / ‖A‖2 ≤ α/ (1 − α).

If the relative inverse error and the condition number of A are small, then the relative
residual error is small.

Theorem 18.15 If r (�x)=A �x − b, (A + ∆A) �x=b, A , 0, b , 0 and cond (A) ‖∆A‖
‖A‖ <1, then

‖r (�x)‖
‖b‖ ≤

cond(A) ‖∆A‖
‖A‖

1 − cond(A) ‖∆A‖
‖A‖

. (18.19)

18.2. Linear systems of equations 885

If A is ill-conditioned, then Theorem 18.15 is not true.

Example 18.9 Let A =

[
1 + ε 1

1 1 − ε
]
, ∆A =

[
0 0
0 ε2

]
and b =

[
1
−1

]
, (0 < ε � 1). Then

cond∞ (A) = (2 + ε)2 /ε2 ≈ 4/ε2 and ‖∆A‖∞ / ‖A‖∞ = ε2/ (2 + ε) ≈ ε2/2. Let

�x = (A + ∆A)−1 b =
1
ε3

[
2 − ε + ε2

−2 − ε
]
≈

[
2/ε3

−2/ε3

]
.

Then r (�x) = A �x − b =

[
0

2/ε + 1

]
and ‖r (�x)‖∞ / ‖b‖∞ = 2/ε + 1, which is not small.

In the most general case we solve the perturbed equation

(A + ∆A) �x = b + ∆b (18.20)

instead of Ax = b. The following general result holds.

Theorem 18.16 If A is nonsingular, cond (A) ‖∆A‖
‖A‖ < 1 and b , 0, then

‖∆x‖
‖x‖ ≤

cond(A)
(‖∆A‖
‖A‖ +

‖∆b‖
‖b‖

)

1 − cond(A) ‖∆A‖
‖A‖

. (18.21)

This theorem implies the following �thumb rule�.
Thumb rule. Assume that Ax = b. If the entries of A and b are accurate to about s decimal
places and cond(A) ∼ 10t, where t < s, then the entries of the computed solution are
accurate to about s − t decimal places.

The assumption cond(A) ‖∆A‖ / ‖A‖ < 1 of Theorem 18.16 guarantees that that matrix
A + ∆A is nonsingular. The inequality cond(A) ‖∆A‖ / ‖A‖ < 1 is equaivalent with the
inequality ‖∆A‖ < 1

‖A−1‖ and the distance of A from the nearest singular matrix is just
1/

∥∥∥A−1
∥∥∥. Thus we can give a new characterization of the condition number:

1
cond (A) = min

A+∆A is singular

‖∆A‖
‖A‖ . (18.22)

Thus if a matrix is ill-conditioned, then it is close to a singular matrix. Earlier we de�ned
the condition numbers of matrices as the condition number of the mapping F (x) = A−1x.

Let us introduce the following de�nition.

De�nition 18.17 A linear system solver is said to be weakly stable on a matrix class H, if
for all well-conditioned A ∈ H and for all b, the computed solution x̂ of the linear system
Ax = b has small relative error ‖ �x − x‖ / ‖x‖.

Putting together Theorems 18.13�18.16 we obtain the following.

Theorem 18.18 (Bunch). A linear system solver is weakly stable on a matrix class H, if
for all well-conditioned A ∈ H and for all b, the computed solution x̂ of the linear system
Ax = b satis�es any of the following conditions:
(1) ‖ �x − x‖ / ‖x‖ is small;
(2) ‖r (�x)‖ / ‖b‖ is small;
(3) There exists ∆A such that (A + ∆A) �x = b and ‖∆A‖ / ‖A‖ are small.

886 18. Scienti�c computing

The estimate of Theorem 18.16 can be used in practice if we know estimates of ∆b,∆A
and cond(A). If no estimates are available, then we can only make a posteriori error estima-
tes.

In the following we study the componentwise error estimates. We �rst give an estimate
for the absolute error of the approximate solution using the components of the inverse error.

Theorem 18.19 (Bauer, Skeel). Let A ∈ Rn be nonsingular and assume that the approxi-
mate solution x̂ of Ax = b satis�es the linear system (A + E) x̂ = b + e. If S ∈ Rn×n , s ∈ Rn

and ε > 0 are such that S ≥ 0, s ≥ 0, |E| ≤ εS , |e| ≤ εs and ε
∥∥∥∣∣∣A−1

∣∣∣ S
∥∥∥∞ < 1, then

∥∥∥x̂ − x
∥∥∥∞ ≤

ε
∥∥∥∣∣∣A−1

∣∣∣ (S |x| + s)
∥∥∥∞

1 − ε
∥∥∥∣∣∣A−1

∣∣∣ S
∥∥∥∞

. (18.23)

If e = 0 (s = 0), S = |A| and

kr (A) =
∥∥∥∣∣∣A−1∣∣∣ |A|

∥∥∥∞ < 1, (18.24)

then we obtain the estimate ∥∥∥x̂ − x
∥∥∥∞ ≤

εkr (A)
1 − εkr (A) . (18.25)

The quantity kr (A) is said to be Skeel-norm , although it is not a norm in the earlier de�ned
sense. The Skeel-norm satis�es the inequality

kr (A) ≤ cond∞ (A) = ‖A‖∞
∥∥∥A−1∥∥∥∞ . (18.26)

Therefore the above estimate is not worse than the traditional one that uses the standard
condition number.

The inverse error can be estimated componentwise by the following result of Oettli and
Prager. Let A, δA ∈ Rn×n and b, δb ∈ Rn. Assume that δA ≥ 0 and δb ≥ 0. Furthermore let

D =
{
∆A ∈ Rn×n : |∆A| ≤ δA}

, G = {∆b ∈ Rn : |∆b| ≤ δb} .

Theorem 18.20 (Oettli, Prager). The computed solution �x satis�es a perturbed equation
(A + ∆A) �x = b + ∆b with ∆A ∈ D and ∆b ∈ G, if

|r (�x)| = |A �x − b| ≤ δA | �x| + δb. (18.27)

We do not need the condition number to apply this theorem. In practice the entries δA
and δb are proportional to the machine epsilon.

Theorem 18.21 (Wilkinson). The approximate solution x̂ of Ax = b obtained by the Gauss
method in �oating point arithmetic satis�es the perturbed linear equation

(A + ∆A) x̂ = b (18.28)

with
‖∆A‖∞ ≤ 8n3ρn ‖A‖∞ u + O(u2), (18.29)

where ρn denotes the groth factor of the pivot elements and u is the unit roundoff.

18.2. Linear systems of equations 887

Since ρn is small in practice, the realtive error

‖∆A‖∞
‖A‖∞

≤ 8n3ρnu + O(u2)

is also small. Therefore Theorem18.18 implies that the Gauss method is weakly stable both
for full and partial pivoting.

Wilkinson's theorem implies that

cond∞(A)‖∆A‖∞
‖A‖∞

≤ 8n3ρncond∞ (A) u + O
(
u2

)
.

For a small condition number we can assume that 1−cond∞(A) ‖∆A‖∞ / ‖A‖∞ ≈ 1. Using
Theorems 18.21 and 18.16 (case ∆b = 0) we obtain the following estimate of the direct
error: ‖∆x‖∞

‖x‖∞
≤ 8n3ρncond∞ (A) u. (18.30)

The obtained result supports the thumb rule in the case of the Gauss method.

Example 18.10 Consider the following linear system whose coefficients can be represented exactly:

888445x1 + 887112x2 = 1,
887112x1 + 885781x2 = 0.

Here cond(A)∞ is big, but cond∞(A)‖∆A‖∞/‖A‖∞ is negligible. The exact solution of the problem
is x1 = 885781, x2 = −887112. The MATLAB gives the approximate solution �x1 = 885827.23,
�x2 = −887158.30 with the relative error

‖x − �x‖∞
‖x‖∞

= 5.22 × 10−5.

Since s ≈ 16 and cond (A)∞ ≈ 3.15×1012, the result essentially corresponds to the Wilkinson theorem
or the thumb rule. The Wilkinson theorem gives the bound

‖∆A‖∞ ≤ 1.26 × 10−8

for the inverse error. If we use the Oettli-Prager theorem with the choice δA = εM |A| and δb = εM |b|,
then we obtain the estimate |r (�x)| ≤ δA | �x| + δb. Since ‖|δA|‖∞ = 3.94 × 10−10, this estimate is better
than that of Wilkinson.

Scaling and preconditioning
Several matrices that occur in applications are ill-conditioned if their order n is large. For
example the famous Hilbert-matrix

Hn =

[
1

i + j − 1

]n

i, j=1
(18.31)

has cond2 (Hn) ≈ e3.5n, if n→ ∞. There exist 2n × 2n matrices with integer entries that can
be represented exactly in standard IEEE754 �oating point arithmetic while their condition
number is approximately 4 × 1032n.

We have two main techniques to solve linear systems with large condition numbers.

888 18. Scienti�c computing

Either we use multiple precision arithmetic or decrease the condition number. There are
two known forms of decreasing the condition number.

1. Scaling We replace the linear system Ax = b with the equation

(RAC) y = (Rb) , (18.32)

where R and C are diagonal matrices.
We apply the Gauss method to this scaled system and get the solution y. The quantity

x = Cy de�nes the requested solution. If the condition number of the matrix RAC is smaller
then we expect a smaller error in y and consequently in x. Various strategies are given to
choose the scaling matrices R and C. One of the best known strategies is the balancing
which forces every column and row of RAC to have approximately the same norm. For
example, if

�D = diag


1∥∥∥aT
1
∥∥∥2
, . . . ,

1∥∥∥aT
n
∥∥∥2



where aT
i is the ith row vector of A, the Euclidean norms of the rows of �DA will be 1 and the

estimate
cond2

(
�DA

)
≤ √n min

D∈D+

cond2 (DA)

holds with D+ =
{diag (d1, . . . , dn) | d1, . . . , dn > 0}. This means that �D optimally scales the

rows of A in an approximate sense.
The next example shows that the scaling may lead to bad results.

Example 18.11 Consider the matrix

A =


ε/2 1 1
1 1 1
1 1 2



for 0 < ε � 1. It is easy to show that cond∞ (A) = 12. Let

R = C =


2/
√
ε 0 0

0
√
ε/2 0

0 0
√
ε/2

 .

Then the scaled matrix

RAR =


2 1 1
1 ε/4 ε/4
1 ε/4 ε/2

 ,

has the condition number cond∞ (RAR) = 32/ε, which a very large value for small ε.

2. Preconditioning The preconditioning is very close to scaling. We rewrite the linear
system Ax = b with the equivalent form

Ãx = (MA) x = Mb = �b, (18.33)

where matrix M is such that cond
(
M−1A

)
is smaller and Mz = y is easily solvable.

The preconditioning is often used with iterative methods on linear systems with sym-
metric and positive de�nite matrices.

18.2. Linear systems of equations 889

A posteriori error estimates
The a posteriori estimate of the error of an approximate solution is necessary to get some
information on the reliability of the obtained result. There are plenty of such estimates. Here
we show three estimates whose computational cost is Θ

(
n2

)
�ops. This cost is acceptable

when comparing to the cost of direct or iterative methods (Θ
(
n3

)
or Θ

(
n2

)
per iteration

step).

The estimate of the direct error with the residual error

Theorem 18.22 (Auchmuty). Let x̂ be the approximate solution of Ax = b. Then

‖x − �x‖2 =
c ‖r(�x)‖22∥∥∥AT r(�x)

∥∥∥2
,

where c ≥ 1.

The error constant c depends on A and the direction of error vector �x − x. Furthermore

1
2cond2 (A) ≈ C2 (A) =

1
2

(
cond2 (A) +

1
cond2 (A)

)
≤ cond2 (A) .

The error constant c takes the upper value C2 (A) only in exceptional cases. The com-
putational experiments indicate that the average value of c grows slowly with the order of
A and it depends more strongly on n than the condition number of A. The following experi-
mental estimate ∥∥∥x − x̂

∥∥∥2 / 0.5 dim (A)
∥∥∥r (x̂)

∥∥∥2
2 /

∥∥∥AT r (x̂)
∥∥∥2 (18.34)

seems to hold with a high degree of probability.

The LINPACK estimate of
∥∥∥A−1

∥∥∥
The famous LINPACK program package uses the following process to estimate

∥∥∥A−1
∥∥∥.

We solve the linear systems AT y = d and Aw = y. Then the estimate of
∥∥∥A−1

∥∥∥ is given by
∥∥∥A−1∥∥∥ ≈ ‖w‖‖y‖

(
≤

∥∥∥A−1∥∥∥
)
. (18.35)

Since
‖w‖
‖y‖ =

∥∥∥∥A−1
(
A−T d

)∥∥∥∥∥∥∥A−T d
∥∥∥ ,

we can interpret the process as an application of the power method of the eigenvalue prob-
lem. The estimate can be used with the 1−, 2− and∞-norms. The entries of vector d are ±1
possibly with random signs.

If the linear system Ax = b is solved by the LU-method, then the solution of further
linear systems costs Θ(n2) �ops per system. Thus the total cost of the LINPACK estimate
remains small. Having the estimate

∥∥∥A−1
∥∥∥ we can easily estimate cond(A) and the error of

the approximate solution (cf. Theorem 18.16 or the thumb rule). We remark that several
similar processes are known in the literature.

890 18. Scienti�c computing

The Oettli-Prager estimate of the inverse error
We use the Oettli-Prager theorem in the following form. Let r (�x) = A �x−b be the residual

error, E ∈ Rn×n and f ∈ Rn are given such that E ≥ 0 and f ≥ 0. Let

ω = max
i

|r (�x)i|
(E | �x| + f)i

,

where 0/0 is set to 0-nak, ρ/0 is set to ∞, if ρ , 0. Symbol (y)i denotes the ith component
of the vector y. If ω , ∞, then there exist a matrix ∆A and a vector ∆b for which

|∆A| ≤ ωE, |∆b| ≤ ω f

holds and
(A + ∆A) �x = b + ∆b.

Moreover ω is the smallest number for which ∆A and ∆b exist with the above properties.
The quantity ω measures the relative inverse error in terms of E and f . If for a given E, f
and �x, the quantity ω is small, then the perturbed problem (and its solution) are close to the
original problem (and its solution). In practice, the choice E = |A| and f = |b| is preferred

Iterative re�nement
Denote by �x the approximate solution of Ax = b and let r(y) = Ay−b be the residual error at
the point y. The precision of the approximate solution �x can be improved with the following
method.

I-R(A, b, �x, tol)
1 k ← 1
2 x1 ← �x
3 �d ← inf
4 while =

∥∥∥ �d
∥∥∥ / ‖xk‖ > tol

5 do r ← Axk − b
6 Compute the approximate solution �d of Ad = r with the LU-method.
7 xk+1 ← xk − �d
8 k ← k + 1
9 return xk

There are other variants of this process. We can use other linear solvers instead of the
LU-method.

Let η be the smallest bound of relative inverse error with

(A + ∆A) �x = b + ∆b, |∆A| ≤ η |A| , |∆b| ≤ η |b| .
Furthermore let

σ (A, x) = max
k

(|A| |x|)k /min
k

(|A| |x|)k , min
k

(|A| |x|)k > 0.

Theorem 18.23 (Skeel). If kr
(
A−1

)
σ (A, x) ≤ c1 < 1/εM , then for sufficiently large k we

have
(A + ∆A) xk = b + ∆b, |∆A| ≤ 4ηεM |A| , |∆b| ≤ 4ηεM |b| . (18.36)

18.2. Linear systems of equations 891

This result often holds after the �rst iteration, i.e. for k = 2. Jankowski and Woznia-
kowski investigated the iterative re�nement for any method φ which produces an approxi-
mate solution x̂ with relative error less than 1. They showed that the iterative re�nement
improves the precision of the approximate solution even in single precision arithmetic and
makes method φ to be weakly stable.

Exercises
18.2-1 Prove Theorem 18.7.
18.2-2 Consider the linear systems Ax = b and Bx = b, where

A =

[
1 1/2

1/2 1/3

]
, B =

[
1 −1/2

1/2 1/3

]

and b ∈ R2. Which equation is more sensitive to the perturbation of b? What should be
the relative error of b in the more sensitive equation in order to get the solutions of both
equations with the same precision?
18.2-3 Let χ = 3/229, ζ = 214 and

A =


χζ −ζ ζ
ζ−1 ζ−1 0
ζ−1 −χζ−1 ζ−1

 , b =


1

1 + ε
1

 .

Solve the linear systems Ax = b for ε = 10−1, 10−3, 10−5, 10−7, 10−10. Explain the results.
18.2-4 Let A be a 10 × 10 matrix and choose the band matrix consisting of the main and
the neighboring two subdiagonals of A as a preconditioning matrix. How much does the
condition number of A improves if (i) A is a random matrix; (ii) A is a Hilbert matrix?
18.2-5 Let

A =


1/2 1/3 1/4
1/3 1/4 1/5
1/4 1/5 1/6

 ,

and assume that ε is the common error bound of every component of b ∈ R3. Give the
sharpest possible error bounds for the solution [x1, x2, x3]T of the equation Ax = b and for
the sum (x1 + x2 + x3).
18.2-6 Consider the linear system Ax = b with the approximate solution �x.
(i) Give an error bound for �x, if (A + E) �x = b holds exactly and both A and A + E is
nonsingular.
(ii) Let

A =


10 7 8

7 5 6
8 6 10

 , b =


25
18
24



and consider the solution of Ax = b. Give (if possible) a relative error bound for the entries
of A such that the integer part of every solution component remains constant within the
range of this relative error bound.

892 18. Scienti�c computing

18.3. Eigenvalue problems
The set of complex n-vectors will be denoted by Cn. Similarly, Cm×n denotes the set of
complex m × n matrices.

De�nition 18.24 Let A ∈ Cn×n be an arbitrary matrix. The number λ ∈ C is the eigenvalue
of A if there is vector x ∈ Cn (x , 0) such that

Ax = λx. (18.37)

Vector x is called the (right) eigenvector of A that belongs to the eigenvalue λ.

Equation Ax = λx can be written in the equivalent form (A−λI)x = 0, where I is the unit
matrix of appropriate size. The latter homogeneous linear system has a nonzero solution x
if and only if

φ(λ) = det(A − λI) = det





a11 − λ a12 . . . a1n
a21 a22 − λ . . . a2n
...

...
. . .

...
an1 an2 . . . ann − λ




= 0 . (18.38)

Equation (18.38) is called the characteristic equation of matrix A. The roots of this equation
are the eigenvalues of matrix A. Expanding det (A − λI) we obtain a polynomial of degree
n:

φ(λ) = (−1)n(λn − p1λ
n−1 − . . . − pn−1λ − pn).

This polynomial called the characteristic polynomial of A. It follows from the fundamental
theorem of algebra that any matrix A ∈ Cn×n has exactly n eigenvalues with multiplicities.
The eigenvalues may be complex or real. Therefore one needs to use complex arithme-
tic for eigenvalue calculations. If the matrix is real and the computations are done in real
arithmetic, the complex eigenvalues and eigenvectors can be determined only with special
techniques.

If x , 0 is an eigenvector, t ∈ C (t , 0), then tx is also eigenvector. The number
of linearly independent eigenvectors that belong to an eigenvalue λk does not exceed the
multiplicity of λk in the characteristic equation (18.38). The eigenvectors that belong to
different eigenvalues are linearly independent.

The following results give estimates for the size and location of the eigenvalues.

Theorem 18.25 Let λ be any eigenvalue of matrix A. The upper estimate |λ| ≤ ‖A‖ holds
in any induced matrix norm.

Theorem 18.26 (Gersgorin). Let A ∈ Cn×n,

ri =

n∑

j=1, j,i

∣∣∣ai j
∣∣∣ (i = 1, . . . , n)

and
Di = {z ∈ C| |z − aii| ≤ ri} (i = 1, . . . , n) .

Then for any eigenvalue λ of A we have λ ∈ ∪n
i=1Di.

18.3. Eigenvalue problems 893

For certain matrices the solution of the characteristic equation (18.38) is very easy. For
example, if A is a triangular matrix, then its eigenvalues are entries of the main diagonal. In
most cases however the computation of all eigenvalues and eigenvectors is a very difficult
task. Those transformations of matrices that keeps the eigenvalues unchanged have practi-
cal signi�cance for this problem. Later we see that the eigenvalue problem of transformed
matrices is simpler.

De�nition 18.27 The matrices A, B ∈ Cn×n are similar if there is a matrix T such that
B = T−1AT. The mapping A→ T−1AT is said to be similarity transformation of A.

Theorem 18.28 Assume that det(T) , 0. Then the eigenvalues of A and B = T−1AT are
the same. If x is the eigenvector of A, then y = T−1x is the eigenvector of B.

Similar matrices have the same eigenvalues.
The difficulty of the eigenvalue problem also stems from the fact that the eigenvalues

and eigenvectors are very sensitive (unstable) to changes in the matrix entries. The eigenva-
lues of A and the perturbed matrix A + δA may differ from each other signi�cantly. Besides
the multiplicity of the eigenvalues may also change under perturbation. The following the-
orems and examples show the very sensitivity of the eigenvalue problem.

Theorem 18.29 (Ostrowski, Elsner). For every eigenvalue λi of matrix A ∈ Cn×n there
exists an eigenvalue µk of the perturbed matrix A + δA such that

|λi − µk | ≤ (2n − 1) (‖A‖2 + ‖A + δA‖2)1− 1
n ‖δA‖

1
n
2 .

We can observe that the eigenvalues are changing continuously and the size of change
is proportional to the nth root of ‖δA‖2.

Example 18.12 Consider the following perturbed Jordan matrix of the size r × r:


µ 1 0 . . . 0

0 µ 1
. . .

...
...

. . .
. . .

. . . 0

0
. . . µ 1

ε 0 . . . 0 µ



.

The characteristic equation is (λ − µ)r = ε, which gives the r different eigenvalues

λs = µ + ε1/r (cos (2sπ/r) + i sin (2sπ/r)) (s = 0, . . . , r − 1)

instead of the original eigenvalue µ with multiplicity r. The size of change is ε1/r, which corresponds
to Theorem (18.29). If |µ| ≈ 1, r = 16 and ε = εM ≈ 2.2204 × 10−16, then the perturbation size of the
eigenvalues is ≈ 0.1051. This is a signi�cant change relative to the input perturbation ε.

For special matrices and perturbations we may have much better perturbation bounds.

Theorem 18.30 (Bauer, Fike). Assume that A ∈ Cn×n is diagonalizable , that is a matrix X
exists such that X−1AX = diag(λ1, . . . , λn). Denote µ an eigenvalue of A + δA. Then

min
1≤i≤n

|λi − µ| ≤ cond2(X) ‖δA‖2 . (18.39)

894 18. Scienti�c computing

This result is better than that of Ostrowski and Elsner. Nevertheless cond2 (X), which
is generally unknown, can be very big.

The eigenvalues are continuous functions of the matrix entries. This is also true for the
normalized eigenvectors if the eigenvalues are simple. The following example shows that
this property does not hold for multiple eigenvalues.

Example 18.13 Let

A (t) =

[
1 + t cos (2/t) −t sin (2/t)
−t sin (2/t) 1 − t cos (2/t)

]
(t , 0) .

The eigenvalues of A (t) are λ1 = 1 + t and λ2 = 1 − t. Vector [sin (1/t) , cos (1/t)]T is the eigenvector
belonging to λ1. Vector [cos (1/t) ,− sin (1/t)]T is the eigenvector belonging to λ2. If t → 0, then

A (t)→ I =

[
1 0
0 1

]
, λ1, λ2 → 1,

while the eigenvectors do not have limit.

We study the numerical solution of the eigenvalue problem in the next section. Unfor-
tunately it is very difficult to estimate the goodness of numerical approximations. From the
fact that Ax − λx = 0 holds with a certain error we cannot conclude anything in general.

Example 18.14 Consider the matrix

A (ε) =

[
1 1
ε 1

]
,

where ε ≈ 0 is small. The eigenvalues of A (ε) are 1 ± √ε, while the corresponding eigenvectors are
[1,±√ε]T . Let µ = 1 be an approximation of the eigenvalues and let x = [1, 0]T be the approximate
eigenvector. Then

‖Ax − µx‖2 =

∥∥∥∥∥∥
[

0
ε

]∥∥∥∥∥∥2
= ε.

If ε = 10−10, then the residual error under estimate the true error 10−5 by �ve order.

Remark 18.31 We can de�ne the condition number of eigenvalues for simple eigenva-
lues:

ν (λ1) ≈ ‖x‖2 ‖y‖2∣∣∣xHy
∣∣∣ ,

where x and y are the right and left eigenvectors, respectively. For multiple eigenvalues the
condition number is not �nite.

18.3.1. Iterative solutions of the eigenvalue problem
We investigate only the real eigenvalues and eigenvectors of real matrices. The methods
under consideration can be extended to the complex case with appropriate modi�cations.

18.3. Eigenvalue problems 895

The power method
This method is due to von Mieses. Assume that A ∈ Rn×n has exactly n different real eigenva-
lues. Then the eigenvectors x1, . . . , xn belonging to the corresponding eigenvalues λ1, . . . , λn
are linearly independent. Assume that the eigenvalues satisfy the condition

|λ1| > |λ2| ≥ . . . ≥ |λn|

and let v(0) ∈ Rn be a given vector. This vector is a unique linear combination of the ei-
genvectors, that is v(0) = α1x1 + α2x2 + . . . + αnxn. Assume that α1 , 0 and compute the
sequence v(k) = Av(k−1) = Akv(0) (k = 1, 2, . . .). The initial assumptions imply that

v(k) = Av(k−1) = A(α1λ
k−1
1 x1 + α2λ

k−1
2 x2 + . . . + αnλ

k−1
n xn)

= α1λ
k
1x1 + α2λ

k
2x2 + . . . + αnλ

k
nxn

= λk
1

(
α1x1 + α2

(
λ2
λ1

)k
x2 + . . . + αn

(
λn
λ1

)k
xn

)
.

Let y ∈ Rn be an arbitrary vector such that yT x1 , 0. Then

yT Av(k)

yT v(k) =
yT v(k+1)

yT v(k) =

λk+1
1

(
α1yT x1 +

∑n
i=2 αi

(
λi
λ1

)k+1
yT xi

)

λk
1

(
α1yT x1 +

∑n
i=2 αi

(
λi
λ1

)k
yT xi

) → λ1 .

Given the initial vector v(0) ∈ Rn, the power method has the following form.

P-M(A, v(0))
1 k ← 0
2 while exit condition = 

3 do k ← k + 1
4 z(k) ← Av(k−1)

5 Select vector y such that yT v(k−1) , 0
6 γk ← yT z(k)/yT v(k−1)

7 v(k) ← z(k)/
∥∥∥z(k)

∥∥∥∞
8 return γk, v(k)

It is clear that
v(k) → x1, γk → λ1.

The convergence v(k) → x1 here means that
(
v(k), x1

)
]
→ 0, that is the action line of v(k) tends

to the action line of x1. There are various strategies to select y. We can select y = ei, where
i is de�ned by

∣∣∣v(k)
i

∣∣∣ =
∥∥∥v(k)

∥∥∥∞. If we select y = v(k−1), then γk = v(k−1)T Av(k−1)/
(
v(k−1)T v(k−1)

)

will be identical with the Rayleigh quotient R
(
v(k−1)

)
. This choice gives an approximation

of λ1 that have the minimal residual norm (Example 18.14. shows that this choice is not
necessarily the best option).

The speed of convergence depends on the quotient |λ2/λ1|. The method is very sensitive
to the choice of the initial vector v(0). If α1 = 0, then the process does not converge to
the dominant eigenvalue λ1. For certain matrix classes the power method converges with
probability 1 if the initial vector v(0) is randomly chosen. In case of complex eigenvalues or
multiple λ1 we have to use modi�cations of the algorithm. The speed of convergence can be

896 18. Scienti�c computing

accelerated if the method is applied to the shifted matrix A−σI, where σ is an appropriately
chosen number. The shifted matrix A−σI has the eigenvalues λ1−σ, λ2−σ, . . . , λn−σ and
the corresponding convergence factor |λ2 − σ| / |λ1 − σ|. The latter quotient can be made
smaller than |λ2/λ1| with the proper selection of σ.

The usual exit condition of the power method is

‖Ek‖2 =
‖rk‖2∥∥∥v(k)

∥∥∥2
=

∥∥∥Av(k) − γkv(k)
∥∥∥2∥∥∥v(k)

∥∥∥2
≤ ε.

If we simultaneously apply the power method to the transposed matrix AT and wk =(
AT

)k
w0, then the quantity

ν (λ1) ≈
∥∥∥w(k)

∥∥∥2

∥∥∥v(k)
∥∥∥2∣∣∣wT

k vk
∣∣∣

gives an estimate for the condition number of λ1 (see Remark 18.31). In such a case we use
the exit condition

ν (λ1) ‖Ek‖2 ≤ ε.
The power method is very useful for large sparse matrices. It is often used to determine

the largest and the smallest eigenvalue. We can approximate the smallest eigenvalue as fol-
lows. The eigenvalues of A−1 are 1/λ1, . . . , 1/λn. The eigenvalue 1/λn will be the eigenvalue
with the largest modulus. We can approximate this value by applying the power method to
A−1. This requires only a small modi�cation of the algorithm. We replace line 4. with the
following:

Solve equation Az(k) = v(k−1) for z(k)

The modi�ed algorithm is called the inverse power method. It is clear that γk → 1/λn
and v(k) ⇀ xn hold under appropriate conditions. If we use the LU-method to solve Az(k) =

v(k−1), we can avoid the inversion of A.
If the inverse power method is applied to the shifted matrix A−µI, then the eigenvalues

of (A − µI)−1 are (λi − µ)−1. If µ approaches, say, to λt, then λi − µ → λi − λt. Hence the
inequality

|λt − µ|−1 > |λi − µ|−1 (i , t)

holds for the eigenvalues of the shifted matrix. The speed of convergence is determined by
the quotient

q = |λt − µ| / {max |λi − µ|} .
If µ is close enough to λt, then q is very small and the inverse power iteration converges
very fast. This property can be exploited in the calculation of approximate eigenvectors if
an approximate eigenvalue, say µ, is known. Assuming that det (A − µI) , 0, we apply the
inverse power method to the shifted matrix A − µI. In spite of the fact that matrix A − µI
is nearly singular and the linear equation (A − µI) z(k) = v(k) cannot be solved with high
precision, the algorithm gives very often good approximations of the eigenvectors.

Finally we note that in principle the von Mieses method can be modi�ed to determine
all eigenvalues and eigenvectors.

18.3. Eigenvalue problems 897

Orthogonalization processes
We need the following de�nition and theorem.

De�nition 18.32 The matrix Q ∈ Rn×n is said to be orthogonal if QT Q = I.

Theorem 18.33 (QR-decomposition). Every matrix A ∈ Rn×m having linearly independent
column vectors can be decomposed in the product form A = QR, where Q is orthogonal and
R is upper triangular matrix.

We note that the QR-decomposition can be applied for solving linear systems of equa-
tions, similarly to the LU-decomposition. If the QR-decomposition of A is known, then the
equation Ax = QRx = b can be written in the equivalent form Rx = QT b. Thus we have to
solve only an upper triangular linear system.

There are several methods to determine the QR-decomposition of a matrix. In practice
the Givens-, the Householder- and the MGS-methods are used.

The MGS (Modi�ed Gram-Schmidt) method is a stabilized, but algebraically equiva-
lent version of the classical Gram-Schmidt orthogonalization algorithm. The basic problem
is the following: We seek for an orthonormal basis

{
q j

}m
j=1

of the subspace

L {a1, . . . , am} =


m∑

j=1
λ ja j | λ j ∈ R, j = 1, . . . ,m

 ,

where a1, . . . , am ∈ Rn (m ≤ n) are linearly independent vectors. That is we determine the
linearly independent vectors q1, . . . , qm such that

qT
i q j = 0 (i , j) , ‖qi‖2 = 1 (i = 1, . . . ,m)

and
L {a1, . . . , am} = L {q1, . . . , qm} .

The basic idea of the classical Gram-Schmidt method is the following:
Let r11 = ‖a1‖2 and q1 = a1/r11. Assume that vectors q1, . . . , qk−1 are already computed

and orthonormal. Assume that vector �qk = ak −∑k−1
j=1 r jkq j is such that �qk ⊥ qi, that is �qT

k qi =

aT
k qi−∑k−1

j=1 r jkqT
j qi = 0 holds for i = 1, . . . , k−1. Since q1, . . . , qk−1 are orthonormal, qT

j qi =

0 (i , j) and rik = aT
k qi (i = 1, . . . , k − 1). After normalization we obtain qk = �qk/ ‖ �qk‖2.

The algorithm is formalized as follows.

CGS-(m, a1, . . . , am)
1 for k ← 1 to m
2 do for i← 1 to k − 1
3 do rik ← aT

k ai
4 ak ← ak − rikai
5 rkk ← ‖ak‖2
6 ak ← ak/rkk
7 return a1, . . . , am

898 18. Scienti�c computing

The algorithm overwrites vectors ai by the orthonormal vectors qi. The connection with
the QR-decomposition follows from the relation ak =

∑k−1
j=1 r jkq j + rkkqk. Since

a1 = q1r11,
a2 = q1r12 + q2r22,
a3 = q1r13 + q2r23 + q3r33,

...
am = q1r1m + q2r2m + . . . + qmrmm,

we can write that

A = [a1, . . . , am] =
[q1, . . . , qm

]
︸ ︷︷ ︸

Q



r11 r12 r13 . . . r1m
0 r22 r23 . . . r2m
0 0 r33 . . . r3m
...

...
...

. . .
...

0 0 0 . . . rmm


︸ ︷︷ ︸

R

= QR .

The numerically stable MGS method is given in the following form

MGS-(m, a1, . . . , am)
1 for k ← 1 to m
2 do rkk ← ‖ak‖2
3 ak ← ak/rkk
4 for j← k + 1 to m
5 do rk j ← aT

j ak
6 a j ← a j − rk jak
7 return a1, . . . , am

The algorithm overwrites vectors ai by the orthonormal vectors qi. The MGS method is
more stable than the CGS algorithm. Björck proved that for m = n the computed matrix �Q
satis�es

�QT �Q = I + E, ‖E‖2 � cond (A) u,

where u is the unit roundoff.

The QR-method
Today the QR-method is the most important numerical algorithm to compute all eigenvalues
of a general matrix. It can be shown that the QR-method is a generalization of the power
method. The basic idea of the method is the following: Starting from A1 = A we compute the
sequence Ak+1 = Q−1

k AkQk = QT
k AkQk, where Qk is orthogonal, Ak+1 is orthogonally similar

to Ak (A) and the lower triangular part of Ak tends to a diagonal matrix, whose entries will be
the eigenvalues of A. Here Qk is the orthogonal factor of the QR-decomposition Ak = QkRk.
Therefore Ak+1 = QT

k (QkRk)Qk = RkQk. The basic algorithm is given in the following form.

18.3. Eigenvalue problems 899

QR-M(A)
1 k ← 1
2 A1 ← A
3 while exit condition=

4 do Compute the QR-decomposition Ak = QkRk
5 Ak+1 ← RkQk
6 k ← k + 1
7 return Ak

The following result holds.
Theorem 18.34 (Parlett). If the matrix A is diagonalizable, X−1AX =diag(λ1, λ2, . . . , λn),
the eigenvalues satisfy

|λ1| > |λ2| > . . . > |λn| > 0
and X has an LU-decomposition, then the lower triangular part of Ak converges to a dia-
gonal matrix whose entries are the eigenvalues of A.

In general, matrices Ak do not necessarily converge to a given matrix. If A has p eigen-
values of the same modulus, the form of matrices Ak converge to the form



× ×
0 . . .

×
0 0 ∗ · · · ∗

...
...

∗ · · · ∗
0 0 ×

. . .

0 0 ×



, (18.40)

where the entries of the submatrix denoted by ∗ do not converge. However the eigenvalues
of this submatrix will converge. This submatrix can be identi�ed and properly handled.
A real matrix may have real and complex eigenvalues. If there is a complex eigenvalues,
than there is a corresponding conjugate eigenvalue as well. For pairs of complex conjugated
eigenvalues p is at least 2. Hence the sequence Ak will show this phenomenon .

The QR-decomposition is very expensive. Its cost is Θ(n3) �ops for general n × n mat-
rices. If A has upper Hessenberg form, the cost of QR-decomposition is Θ(n2) �ops.
De�nition 18.35 The matrix A ∈ Rn×n has upper Hessenberg form, , if

A =



a11 . . . a1n
a21

0 a32
...

... 0 . . .

. . . an−1,n−2 an−1,n−1 an−1,n
0 . . . 0 an,n−1 ann



.

900 18. Scienti�c computing

The following theorem guarantees that if A has upper Hessenberg form, then every Ak
of the QR-method has also upper Hessenberg form.

Theorem 18.36 If A has upper Hessenberg form and A = QR, then RQ has also upper
Hessenberg form.

We can transform a matrix A to a similar matrix of upper Hessenberg form in many
ways. One of the cheapest ways, that costs about 5/6n3 �ops, is based on the Gauss eli-
mination method. Considering the advantages of the upper Hessenberg form the efficient
implementation of the QR-method requires �rst the similarity transformation of A to upper
Hessenberg form.

The convergence of the QR-method, similarly to the power method, depends on the
quotients |λi+1/λi|. The eigenvalues of the shifted matrix A−σI are λ1−σ, λ2−σ, . . . , λn−σ.
The corresponding eigenvalue ratios are |(λi+1 − σ) / (λi − σ)|. A proper selection of σ can
fasten the convergence.

The usual form of the QR-method includes the transformation to upper Hessenberg
form and the shifting.

SQR-M(A)
1 H1 ← U−1AU (H1 is of upper Hessenberg form)
2 k ← 1
3 while exit condition=

4 do Compute the QR-decomposition Hk − σkI = QkRk
5 Hk+1 ← RkQk + σkI
6 k ← k + 1
7 return Hk

In practice the QR-method is used in shifted form. There are various strategies to select
σi. The most often used selection is given by σk = h(k)

nn

(
Hk =

[
h(k)

i j

]n
i, j=1

)
.

The eigenvectors of A can also be determined by the QR-method. For this we refer to
the literature.

Exercises
18.3-1 Apply the power method to the matrix A =

[
1 1
0 2

]
with the initial vector

v(0) =

[
1
1

]
. What is the result of the 20th step?

18.3-2 Apply the power method, the inverse power method and the QR-method to the mat-
rix 

−4 −3 −7
2 3 2
4 2 7

 .

18.3-3 Apply the shifted QR-method to the matrix of the previous exercise with the choice
σi = σ (σ is �xed).

18.4. Numerical program libraries and software tools 901

18.4. Numerical program libraries and software tools
We have plenty of devices and tools that support efficient coding and implementation of nu-
merical algorithms. One aim of such developments is to free the programmers from writing
the programs of frequently occurring problems. This is usually done by writing safe, reli-
able and standardized routines that can be downloaded from (public) program libraries. We
just mention the LINPACK, EISPACK, LAPACK, VISUAL NUMERICS (former IMSL)
and NAG libraries. Another way of developments is to produce software that work as a pro-
gramming language and makes the programming very easy. Such software systems are the
MATLAB and the SciLab.

18.4.1. Standard linear algebra subroutines
The main purpose of the BLAS (Basic Linear Algebra Subprograms) programs is the stan-
dardization and efficient implementation the most frequent matrix-vector operations. Alt-
hough the BLAS routines were published in FORTRAN they can be accessed in optimized
machine code form as well. The BLAS routines have three levels:

- BLAS 1 (1979),
- BLAS 2 (1988),
- BLAS 3 (1989).
These levels corresponds to the computation cost of the implemented matrix operati-

ons. The BLAS routines are considered as the best implementations of the given matrix
operations. The selection of the levels and individual BLAS routines strongly in�uence the
efficiency of the program. A sparse version of BLAS also exists.

We note that the BLAS 3 routines were developed mainly for block parallel algorithms.
The standard linear algebra packages LINPACK, EISPACK and LAPACK are built from
BLAS routines. The parallel versions can be found in the SCALAPACK package. These
programs can be found in the public NETLIB library:

http:/www.netlib.org/index.html

BLAS 1 routines
Let α ∈ R, x, y ∈ Rn. The BLAS 1 routines are the programs of the most important vector
operations (z = αx, z = x+y, dot = xT y), the computation of ‖x‖2, the swapping of variables,
rotations and the saxpy operation which is de�ned by

z = αx + y.
The word saxpy means that �scalar alpha x plus y�. The saxpy operation is implemented in
the following way.

S(α, x, y)
1 n← elements [x]
2 for i← 1 to n
3 do z [i] = αx [i] + y [i]
4 return z

The saxpy is a software driven operation. The cost of BLAS 1 routines is Θ (n) �ops.

902 18. Scienti�c computing

BLAS 2 routines
The matrix-vector operations of BLAS 2 requires Θ

(
n2

)
�ops. These operations are y =

αAx + βy, y = Ax, y = A−1x, y = AT x, A ← A + xyT and their variants. Certain operations
work only with triangular matrices. We analyze two operations in detail. The �outer or
dyadic product� update

A← A + xyT (A ∈ Rm×n, x ∈ Rm, y ∈ Rn)

can be implemented in two ways.
The rowwise or �i j� variant:

O-P-U-V �� (A, x, y)
1 m← rows[A]
2 for i← 1 to m
3 do A [i, :]← A [i, :] + x [i] yT

4 return A

The notation �:� denotes all allowed indices. In our case this means the indices 1 ≤ j ≤
n. Thus A [i, :] denotes the ith row of matrix A.

The columnwise or � ji� variant:

O-P-U-V ��(A, x, y)
1 n← columns[A]
2 for j← 1 to n
3 do A [:, j]← A [:, j] + y [j] x
4 return A

Here A [:, j] denotes the jth column of matrix A. Observe that both variants are based
on the saxpy operation.

The gaxpy operation is de�ned by

z = y + Ax (x ∈ Rn, y ∈ Rm, A ∈ Rm×n) .
The word gaxpy means that �general A x plus y�. The gaxpy operation is also software
driven and implemented in the following way:

G(A, x, y)
1 n← columns[A]
2 z← y
3 for j← 1 to n
4 do z← z + x [j] A [:, j]
5 return z

Observe that the computation is done columnwise and the gaxpy operation is essentially
a generalized saxpy.

BLAS 3 routines
These routines are the implementations of Θ

(
n3

)
matrix-matrix and matrix-vector operati-

18.4. Numerical program libraries and software tools 903

ons such as the operations C ← αAB + βC, C ← αABT + βC, B ← αT−1B (T is upper
triangular) and their variants. BLAS 3 operations can be implemented in several forms.
For example, the matrix product C = AB can be implemented at least in three ways. Let
A ∈ Rm×r, B ∈ Rr×n.

M-P-D-V(A, B)
1 m← rows[A]
2 r ← columns[A]
3 n← columns[B]
4 C [1 : m, 1 : n]← 0
5 for i← 1 to m
6 do for j← 1 to n
7 do for k ← 1 to r
8 do C [i, j]← C [i, j] + A [i, k] B [k, j]
9 return C

This algorithm computes ci j as the dot (inner) product of the ith row of A and the jth
column of B. This corresponds to the original de�nition of matrix products.

Now let A, B and C be partitioned columnwise as follows

A = [a1, . . . , ar] (ai ∈ Rm) ,
B = [b1, . . . , bn] (bi ∈ Rr) ,
C = [c1, . . . , cn] (ci ∈ Rm) .

Then we can write c j as the linear combination of the columns of A, that is

c j =

r∑

k=1
bk jak (j = 1, . . . , n) .

Hence the product can be implemented with saxpy operations.

M-P-G-V(A, B)
1 m← rows[A]
2 r ← columns[A]
3 n← columns[B]
4 C [1 : m, 1 : n]← 0
5 for j← 1 to n
6 do for k ← 1 to r
7 do for i← 1 to m
8 do C [i, j]← C [i, j] + A [i, k] B [k, j]
9 return C

The following equivalent form of the � jki�-algorithm shows that it is indeed a gaxpy
based process.

904 18. Scienti�c computing

M-P--G-C(A, B)
1 m← rows[A]
2 n← columns[B]
3 C [1 : m, 1 : n]← 0
4 for j← 1 to n
5 do C [:, j] = gaxpy (A, B [:, j] ,C [:, j])
6 return C

Consider now the partitions A = [a1, . . . , ar] (ai ∈ Rm) and

B =



bT
1
...

bT
r

 (bi ∈ Rn) .

Then C = AB =
∑r

k=1 akbT
k .

M-P-O-P-V(A, B)
1 m← rows[A]
2 r ← columns[A]
3 n← columns[B]
4 C [1 : m, 1 : n] = 0
5 for k ← 1 to r
6 do for j← 1 to n
7 do for i← 1 to m
8 C [i, j]← C [i, j] + A [i, k] B [k, j]
9 return C

The inner loop realizes a saxpy operation: it gives the multiple of ak to the jth column
of matrix C.

18.4.2. Mathematical software
These are those programming tools that help easy programming in concise (possibly mat-
hematical) form within an integrated program development system. Such systems were de-
veloped primarily for solving mathematical problems. By now they have been extended so
that they can be applied in many other �elds. For example, Nokia uses MATLAB in the tes-
ting and quality control of mobile phones. We give a short review on MATLAB in the next
section. We also mention the widely used MAPLE, DERIVE and MATEMATICA systems.

The MATLAB system
The MATLAB software was named after the expression MATrix LABoratory. The name
indicates that the matrix operations are very easy to make. The initial versions of MATLAB
had only one data type: the complex matrix. In the later versions high dimension arrays,
cells, records and objects also appeared. The MATLAB can be learned quite easily and even
a beginner can write programs for relatively complicated problems.

The coding of matrix operations is similar to their standard mathematical form. For

18. Problems 905

example if A and B are two matrices of the same size, then their sum is given by the com-
mand C = A + B. As a programming language the MATLAB contains only four control
structures known from other programing languages:

� the simple statement Z =expression,
� the if statement of the form

if expression, commands {else/elseif commands} end,
� the for loop of the form

for the values of the loop variable, commands end
� the while loop of the form

while expression, commands end.
The MATLAB has an extremely large number of built in functions that help efficient pro-
gramming. We mention the following ones as a sample.

� max(A) selects the maximum element in every column of A,
� [v, s] =eig(A) returns the approximate eigenvalues and eigenvectors of A,
� The command A\b returns the numerical solution of the linear system Ax = b.
The entrywise operations and partitioning of matrices can be done very efficiently in

MATLAB. For example, the statement

A([2, 3], :) = 1./A([3, 2], :)

exchange the second and third rows of A while it takes the reciprocal of each element.
The above examples only illustrate the possibilities and easy programming of MAT-

LAB. These examples require much more programming effort in other languages, say e.g.
in PASCAL. The built in functions of MATLAB can be easily supplemented by other pro-
grams.

The higher number versions of MATLAB include more and more functions and special
libraries (tool boxes) to solve special problems such as optimization, statistics and so on.

There is a built in automatic technique to store and handle sparse matrices that makes
the MATLAB competitive in solving large computational problems. The recent versions of
MATLAB offer very rich graphic capabilities as well. There is an extra interval arithmetic
package that can be downloaded from the WEB site

http:/www.ti3.tu-harburg.de\%7Erump\intlab

There is a possibility to build certain C and FORTRAN programs into MATLAB. Finally
we mention that the system has an extremely well written help system.

Problems

18-1. Without over�ow
Write a MATLAB program that computes the norm ‖x‖2 =

(∑n
i=1 x2

i

)1/2 without over�ow in
all cases when the result does not make over�ow. It is also required that the error of the �nal
result can not be greater than that of the original formula.
18-2. Estimate

Equation x3 − 3.330000x2 + 3.686300x − 1.356531 = 0 has the solution x1 = 1.01. The

906 18. Scienti�c computing

perturbed equation x3 − 3.3300x2 + 3.6863x− 1.3565 = 0 has the solutions y1, y2, y3. Give
an estimate for the perturbation mini |x1 − yi|.
18-3. Double word length
Consider an arithmetic system that has double word length such that every number repre-
sented with 2t digits are stored in two t digit word. Assume that the computer can only add
numbers with t digits. Furthermore assume that the machine can recognize over�ow.
(i) Find an algorithm that add two positive numbers of 2t digit length.
(ii) If the representation of numbers requires the sign digit for all numbers, then modify
algorithm (i) so that it can add negative and positive numbers both of the same sign. We can
assume that the sum does not over�ow.
18-4. Auchmuty theorem
Write a MATLAB program for the Auchmuty error estimate (see Theorem 18.22) and per-
form the following numerical testing.
(i) Solve the linear systems Ax = bi, where A ∈ Rn×n is a given matrix, bi = Ayi, yi ∈ Rn

(i = 1, . . . ,N) are random vectors such that ‖yi‖∞ ≤ β. Compare the true errors ‖x̃i − yi‖,
(i = 1, . . . ,N) and the estimated errors ES Ti = ‖r(x̃i)‖22 /

∥∥∥AT r(x̃i)
∥∥∥2, where x̃i is the appro-

ximate solution of Ax = bi. What is the minimum, maximum and average of numbers ci?
Use graphic for the presentation of the results. Suggested values are n ≤ 200, β = 200 and
N = 40.
(ii) Analyze the effect of condition number and size.
(iii) Repeat problems (i) and (ii) using LINPACK and BLAS.
18-5. Hilbert matrix
Consider the linear system Ax = b, where b = [1, 1, 1, 1]T and A is the fourth order Hilbert
matrix, that is ai, j = 1/(i + j). A is ill-conditioned. The inverse of A is approximated by

B =



202 −1212 2121 −1131
−1212 8181 −15271 8484

2121 −15271 29694 −16968
−1131 8484 −16968 9898


.

Thus an x0 approximation of the true solution x is given by x0 = Bb. Although the true
solution is also integer x0 is not an acceptable approximation. Apply the iterative re�nement
with B instead of A−1 to �nd an acceptable integer solution.
18-6. Consistent norm
Let ‖A‖ be a consistent norm and consider the linear system Ax = b
(i) Prove that if A + ∆A is singular, then cond(A) ≥ ‖A‖ / ‖∆A‖.
(ii) Show that for the 2-norm equality holds in (i), if ∆A = −bxT /(bt x) and

∥∥∥A−1
∥∥∥2 ‖b‖2 =∥∥∥A−1b

∥∥∥2.
(iii) Using the result of (i) give a lower bound to cond∞(A), if

A =


1 −1 1
−1 ε ε

1 ε ε

 .

18-7. Cholesky-method

18. Megjegyzések a fejezethez 907

Use the Cholesky-method to solve the linear system Ax = b, where

A =



5.5 0 0 0 0 3.5
0 5.5 0 0 0 1.5
0 0 6.25 0 3.75 0
0 0 0 5.5 0 0.5
0 0 3.75 0 6.25 0

3.5 1.5 0 0.5 0 5.5



, b =



1
1
1
1
1
1



.

Also give the exact Cholesky-decomposition A = LLT and the true solution of Ax = b.
The approximate Cholesky-factor L̃ satis�es the relation �L �LT = A + F. It can proved that
in a �oating point arithmetic with t-digit mantissa and base β the entries of F satisfy the
inequality

∣∣∣ fi, j
∣∣∣ ≤ ei, j, where

E = β1−t



11 0 0 0 0 3.5
0 11 0 0 0 1.5
0 0 0 0 0 0
0 0 0 11 0 0.5
0 0 0 0 0 0

3.5 1.5 0 0.5 0 11



.

Give a bound for the relative error of the approximate solution �x, if β = 16 and t = 14
(IBM3033).
18-8. Bauer-Fike theorem
Let

A =



10 10
9 10

8 10
. . .

. . .

2 10
ε 1



(i) Analyze the perturbation of the eigenvalues for ε = 10−5, 10−6, 10−7, 0.
(ii) Compare the estimate of Bauer-Fike theorem to the matrix A = A(0).
18-9. Eigenvalues

Using the MATLAB eig routine compute the eigenvalues of B = AAT for various (random)
matrices A ∈ Rn×n and order n. Also compute the eigenvalues of the perturbed matrices
B + Ri, where Ri are random matrices with entries from the interval

[
−10−5, 10−5

]
(i =

1, . . . ,N). What is the maximum perturbation of the eigenvalues? How precise is the Bauer-
Fike estimate? Suggested values are N = 10 and 5 ≤ n ≤ 200. How do the results depend on
the condition number and the order n? Display the maximum perturbations and the Bauer-
Fike estimates graphically.

Chapter notes
The a posteriori error estimates of linear algebraic systems are not completely reliable.
Demmel, Diament és Malajovich [13] showed that for the Θ

(
n2

)
number estimators there

908 18. Scienti�c computing

are always cases when the estimate is unreliable (the error of the estimate exceeds a given
order). The �rst appearance of the iterative improvement is due to Fox, Goodwin, Turing
and Wilkinson (1946). The experiences show that the decrease of the residual error is not
monotone.

Young [1], Hageman and Young [2] give an excellent survey of the theory and appli-
cation of iterative methods. Barett, Berry et al. [3] give a software oriented survey of the
subject. Frommer [4] concentrates on the parallel computations.

The convergence of the QR-method is a delicate matter. It is analyzed in great depth and
much better results than Theorem 18.34 exist in the literature. There are QR-like methods
that involve double shifting. Batterson [33] showed that there exists a 3×3 Hessenberg mat-
rix with complex eigenvalues such that convergence cannot be achieved even with multiple
shifting.

Several other methods are known for solving the eigenvalue problems (see, e.g. [8],
[30]). The LR-method is one of the best known ones. It is very effective on positive de�nite
Hermitian matrices. The LR-method computes the Cholesky-decomposition Ak = LL∗ and
sets Ak+1 = L∗L.

Bibliography

[1] R. Barett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozzo, C. Romine, H. van
der Vorst. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, 1994.
908

[2] S. Batterson. Convergence of the shifted QR algorithm on 3 × 3 normal matrices. , 58, 1990. 908
[3] J. Demmel, D. Malajovich. On the complexity of computing error bounds. Foundations of Computational

Mathematics, 1:101�125, 2001. 907
[4] A. Frommer. Lösung linearer Gleichungssysteme auf Parallelrechnern. Vieweg Verlag, 1990. 908
[5] D. Watkins. Bulge exchanges in algorithms of QR type. SIAM Journal on Matrix Analysis and Application,

19(4):1074�1096, 1998. 908
[6] J. Wilkinson. Convergence of the LR, QR, and related algorithms. The Computer Journal, 8(1):77�84, 1965.

908
[7] D. M. Young. Iterative Solution of Large Linear Systems. Academic Press, 1971. 908

http://www.siam.org/�
file:www.vieweg.de/.dvi�
http://www3.oup.co.uk/computer_journal/�
http://www.cs.utexas.edu/users/young/�
file:www.academicpress.com/.dvi�

Subject Index

A, Á
absolute error, 870gy
arithmetic over�ow, 870gy
arithmetic under�ow, 870gy

B
B-S, 872
backward error, 863
backward error analysis, 863
backward stable, 863
balancing, 888
banded matrix, 879

C
CGS�, 897
characteristic equation, 892, 893
characteristic polynomial, 892
Cholesky-decomposition, 878, 907fe
C-D--B-M, 880
C-M, 879
classical error analysis, 862
classical Gram-Schmidt method, 897
C-S, 869
condition number, 862, 870gy, 891gy, 906fe
condition number of eigenvalues, 894
condition number of the matrix, 863
consistent norm, 906fe

D
diagonalizable, 893

E, É
eigenvalue, 892, 907fe
error bound, 861, 870gy

F
�oating point arithmetic, 864, 866, 868, 907fe
�oating point arithmetic system, 869
�oating point number set, 870gy
forward stable, 864

G
G-M, 873
G, 902
growth factor of pivot elements, 875

I, Í
ill-conditioned, 863
inverse power method, 896, 900gy
inversion of a matrix, 877
iterative re�nement, 906fe
I-R, 890

L
LU-decomposition, 876
LU-M, 877
LU-M--P, 877

M
machine epsilon, 866
M-E, 866
M-P-D-V, 903
M-P-G-V, 903
M-P-O-P-V, 904
M-P--G-C, 904
MGS-, 898
M-I, 881

N
non-overlapping block Jacobi splitting, 882
normalized, 865
numerically stable, 863, 870gy
numerically stable MGS method, 898
numerically unstable, 863, 870gy

O, Ó
One (new), 875
One (old) �op, 875
orthogonal, 897
O-P-U-V �� , 902
O-P-U-V ��, 902
over�ow, 905fe
overlapping block Jacobi multisplitting, 882

Subject Index 911

P
permutation matrix, 876
pivot element, 873
power method, 900gy
P-M, 895

Q
QR-method, 898, 900gy
QR-M, 899

R
Rayleigh quotient, 895
R-S, 868
relative error, 861, 870gy, 891gy
relative error bound, 866, 870gy
residual error, 883

S
S, 901
sensitivity of a problem, 883
shifted QR-method, 900gy
SQR-M(A), 900
similarity transformation, 893
Skeel-norm, 886

S      ,
880

S--B-U-T-S,
880

stability (or sensitivity) of an algorithm, 883
subnormal number, 869, 870gy

T
T-LU-D--B-M, 880
thumb rule, 885

U, Ú
unit (upper or lower) triangular, 876
unit roundoff, 866
upper Hessenberg form, 899

V
von Mieses method , 896

W
weakly stable, 885
well-conditioned, 863

Name index

A, Á
Auchmuty, Giles, 889, 906

B
Barett, R., 908, 909
Batterson, Steve, 908, 909
Bauer, F. L., 886, 893, 907
Berry, M., 908, 909
Björck, Ake, 898
Bunch, James R., 885

C
Chan, T. F., 909
Cholesky, André Louis, 874, 877�880, 907, 908

D
Demmel, J., 909
Diament, B., 907
Donato, J., 909
Dongarra, Jack, 909

E, É
Eijkhout, V., 909
Elsner, Ludwig, 893, 894

F
Fox, L., 908
Frommer, Andreas, 908, 909

G
Gauss, Johann Karl Friedrich (1777�1855), 872,

873, 875�877, 879, 881, 900
Gersgorin, S. A., 892
Givens, Wallace J., 897
Goodwin, E. T., 908
Gram, Jorgen Pedersen, 897, 898

H
Hageman, L. A., 908
Hessenberg, Gerhard, 899, 900, 908
Hilbert, David, 887, 891, 906

Householder, Alston Scott, 897

I, Í
IeC Ðemel, J., 907

J
Jacobi, Carl Gustav Jacob (1804�1851), 881, 882
Jankowski, T., 891
Jordan, Camille, 893

K
Kahan, W., 868
Klyuyev, v. v., 876
Kokovkin-Shcherbak, N., 876

M
Malajovich, Diement G., 907, 909
Moler, Cleve B., 875

O, Ó
Oettli, W., 886, 890
Ostrowski, Alexander R., 893, 894

P
Parlett, Beresford, 899
Pozzo, R., 909
Prager, W., 886, 890

R
Rayleigh, John William Strutt, 895
Romine, C., 909

S
Schmidt, Erhard, 897, 898
Seidel, Philipp Ludwig, von (1821�1896), 881
Skeel, Robert D., 886, 890

T
Taylor, Brook, 862

Name index 913

Turing, Alan, 908

V
von Mieses, Richard, 895, 896
Vorst, H., van der, 909

W

Watkins, D. S., 909
Wilkinson, James H., 875, 886, 887, 908, 909
Wozniakowski, T., 891

Y
Young, David M., 909
Young, L. A., 908

Contents

18. Scienti�c Computations (Aurél Galántai, András Jeney) 861
18.1. Floating point arithmetic and error analysis 861

18.1.1. Classical error analysis . 861
18.1.2. Forward and backward errors . 863
18.1.3. Rounding errors and �oating point arithmetic 864
18.1.4. The �oating point arithmetic standard 869

18.2. Linear systems of equations . 871
18.2.1. Direct methods for solving linear systems 871

Triangular linear systems . 871
The Gauss method . 872
The Gauss method with pivoting 873
Operations counts . 875
The LU-decomposition . 876
The LU- and Cholesky-methods 877
The LU-method with pointers . 877
The LU- and Cholesky-methods on banded matrices 879

18.2.2. Iterative methods for linear systems 881
18.2.3. Error analysis of linear algebraic systems 883

Sensitivity analysis . 883
Scaling and preconditioning . 887
A posteriori error estimates . 889

The estimate of the direct error with the residual error . . . 889
The LINPACK estimate of

∥∥∥A−1
∥∥∥ 889

The Oettli-Prager estimate of the inverse error 890
Iterative re�nement . 890

18.3. Eigenvalue problems . 892
18.3.1. Iterative solutions of the eigenvalue problem 894

The power method . 895
Orthogonalization processes . 897
The QR-method . 898

18.4. Numerical program libraries and software tools 901
18.4.1. Standard linear algebra subroutines 901

BLAS 1 routines . 901

Contents 915

BLAS 2 routines . 902
BLAS 3 routines . 902

18.4.2. Mathematical software . 904
The MATLAB system . 904

Bibliography . 909
Subject Index . 910
Name index . 912
Bibliography . 916

Bibliography

[1] D.M. Young: Iterative Solution of Large Linear Systems, Academic Press, 1971 908
[2] L.A. Hageman, D.M. Young: Applied Iterative methods, Academic Press, 1981 908
[3] R. Barett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H.

van der Vorst: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994 908

[4] A. Frommer: Lösung linearer Gleichungssysteme auf Parallelrechnern, Vieweg, Braunschweig, 1990 908
[5] A. Frommer, B. Pohl: Comparison results for splittings based on overlapping blocks, in: J.G. Lewis (ed.)

Proceedings of the Fifth SIAM Conference on Applied Linear Algebra, SIAM, 1994, 29-33
[6] A. Galántai: A Study of Auchmuty's Error Estimate, Computers and Mathematics with Applications, 42,

2001, 1093�1102
[7] J.H. Wilkinson: Rounding Errors in Algebraic Processes, Dover, 1994
[8] J.H. Wilkinson: Convergence of the LR, QR, and related algorithms, The Computer Journal, Vol. 8, No. 1,

April 1965 908
[9] F. Chaitin-Chatelin, V. Frayssé: Lectures on Finite Precision Computations, SIAM, 1996

[10] N.J. Higham: Accuracy and Stability of Numerical Algorithms, SIAM, 1996
[11] G. Golub, J.M. Ortega: Scienti�c Computing: An Introduction with Parallel Computing, Academic Press,

1993
[12] M.L. Overton: Numerical Computing with IEEE Floating Point Arithmetic, SIAM, 2001
[13] J. Demmel, B. Diament, G. Malajovich: On the complexity of computing error bounds, Foundations of Com-

putational Mathematics, 1, 2001, 101-125 907
[14] Anderson, E., Bai, Z., et.al: LAPACK Users' Guide, SIAM, Philadelphia, 1992
[15] Coleman, T.F., Van Loan, C.: Handbook for Matrix Computations, SIAM, Philadelphia, 1988
[16] Forsythe, G.E., Malcolm, M.A., Moler, C.B.: Computer Methods for Mathematical Computations, Prentice-

Hall, Inc., Englewood Cliffs, N.J., 1977
[17] Forsythe, G.E., Moler, C.B.: Computer Solution of Linear Algebraic Systems, Prentice-Hall, Inc., Englewood

Cliffs, New Jersey, 1967
[18] Jennings, A., McKeown, J.J.: Matrix Computation, (second edition), John Wiley & Sons, 1992
[19] Móricz, F.: Numerical Methods in Algebra and Analysis, in Hungarian, Polygon, 1997
[20] Popper Gy., Csizmás F.: Numerical Methods for Engineers, in Hungarian, Akadémiai Kiadó, Typotex, 1993
[21] Ralston, A.: A First Course in Numerical Analysis, McGraw-Hill, 1965
[22] Rice, J.E.: Numerical Methods, Software, and Analysis, McGraw-Hill, 1983
[23] Rice, J.E.: Matrix Computations and Mathematical Software, McGraw-Hill, 1983
[24] Rivlin, T.J.: An Introduction to the Approximation of Functions, Dover,1981
[25] Rózsa P.: Linear algebra and its applications, in Hungarian, M�uszaki Könyvkiadó, 1974
[26] Stoyan, G., Takó G.: Numerical Methods 1-3, in Hungarian, ELTE-Typotex, 1993, 1995, 1997
[27] Szamarszkij, A.A.: Introduction to Numerical Methods, in Russian, Nauka, Moscow, 1982
[28] Ueberhuber, C.W.: Numerical Computation 1-2 (Methods, Software, and Analysis), Springer, 1997

Bibliography 917

[29] Watkins, D.S.: Fundamentals of Matrix Computations, John Wiley & Sons, 1991
[30] Watkins, D.S.: Bulge exchanges in algorithms of QR type, SIAM J. Matrix Anal. Appl., Vol. 19, No, 4, pp.

1074-1096, October 1998 908
[31] Galántai A., Jeney A.: Numerical Methods, in Hungarian, Miskolci Egyetemi Kiadó, Miskolc, 2002
[32] Stoyan G. (szerk.): MATLAB Version 4 and 5, in Hungarian, Typotex, 1999
[33] Batterson, S.: Convergence of the shifted QR algorithm on 3 x 3 normal matrices, Numerische Mathematik

58, 341-352 (1990)

908

