
6. Reliable computation

Any planned computation will be subject to different kinds of unpredictable in�uences du-
ring execution. Here are some examples:
1. Loss or change of stored data during execution.
2. Random, physical errors in the computer.
3. Unexpected interactions between different parts of the system working simultaneously,

or loss of connections in a network.
4. Bugs in the program.
5. Malicious attacks.

Up to now, it does not seem that the problem of bugs can be solved just with the help
of appropriate algorithms. The discipline of software engineering addresses this problem by
studying and improving the structure of programs and the process of their creation.

Malicious attacks are addressed by the discipline of computer security. A large part of
the recommended solutions involves cryptography.

Problems of kind (3) are very important and a whole discipline, distributed computing
has been created to deal with them.

The problem of storage errors is similar to the problems of reliable communication,
studied in information theory: it can be viewed as communication from the present to the
future. In both cases, we can protect against noise with the help of error-correcting codes
(you will see some examples below).

In this chapter, we will discuss some sample problems, mainly from category (2). In
this category, distinction should also be made between permanent and transient errors. An
error is permanent when a part of the computing device is damaged physically and remains
faulty for a long time, until some outside intervention by repairmen to it. It is transient if it
happens only in a single step: the part of the device in which it happened is not damaged,
in the next step it operates correctly again. For example, if a position in memory turns from
0 to 1 by accident, but a subsequent write operation can write a 0 again then a transient
error happened. If the bit turned to 1 and the computer cannot change it to 0 again, this is a
permanent error.

Some of these problems, especially the ones for transient errors, are as old as compu-
ting. The details of any physical errors depend on the kind of computer it is implemented
on (and, of course, on the kind of computation we want to carry out). But after abstracting
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away from a lot of distracting details, we are left with some clean but challenging theoretical
formulations, and some rather pleasing solutions. There are also interesting connections to
other disciplines, like statistical physics and biology.

The computer industry has been amazingly successful over the last �ve decades in ma-
king the computer components smaller, faster, and at the same time more reliable. Among
the daily computer horror stories seen in the press, the one conspicuously missing is where
the processor wrote a 1 in place of a 0, just out of caprice. (It indisputably happens, but too
rarely to become the identi�able source of some visible malfunction.) On the other hand,
the generality of some of the results on the correction of transient errors makes them appli-
cable in several settings. Though individual physical processors are very reliable (error rate
is maybe once in every 1020 executions), when considering a whole network as performing a
computation, the problems caused by unreliable network connections or possibly malicious
network participants is not unlike the problems caused by unreliable processors.

The key idea for making a computation reliable is redundancy, which might be formu-
lated as the following two procedures:
1. Store information in such a form that losing any small part of it is not fatal: it can be

restored using the rest of the data. For example, store it in multiple copies.
2. Perform the needed computations repeatedly, to make sure that the faulty results can be

outvoted.
Our chapter will only use these methods, but there are other remarkable ideas which we
cannot follow up here. For example, method (2) seems especially costly; it is desirable to
avoid a lot of repeated computation. The following ideas target this dilemma.
1. Perform the computation directly on the information in its redundant form: then maybe

recomputations can be avoided.
2. Arrange the computation into �segments� such a way that those partial results that are

to be used later, can be cheaply checked at each �milestone� between segments. If the
checking �nds error, repeat the last segment.

6.1. Probability theory
The present chapter does not require great sophistication in probability theory but there are
some facts coming up repeatedly which I will review here. If you need additional informa-
tion, you will �nd it in any graduate probability theory text.

6.1.1. Terminology
A probability space is a triple (Ω,A,P) where Ω is the set of elementary events,A is a set
of subsets of Ω called the set of events and P : A → [0, 1] is a function. For E ∈ A, the
value P(E) is called the probability of event E. It is required that Ω ∈ A and that E ∈ A
implies Ω r E ∈ A. Further, if a (possibly in�nite) sequence of sets is in A then so is their
union. Also, it is assumed that P(Ω) = 1 and that if E1, E2, . . . ∈ A are disjoint then

P
(⋃

i
Ei

)
=

∑

i
P(Ei) .
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For P(F) > 0, the conditional probability of E given F is de�ned as

P(E | F) = P(E ∩ F)/P(F) .

Events E1, . . . , En are independent if for any sequence 1 ≤ i1 < · · · < ik ≤ n we have

P(Ei1 ∩ · · · ∩ Eik ) = P(Ei1 ) · · ·P(Eik ) .

Example 6.1 Let Ω = {1, . . . , n} where A is the set of all subsets of Ω and P(E) = |E|/n. This is an
example of a discrete probability space: one that has a countable number of elements.

More generally, a discrete probability space is given by a countable set Ω = {ω1, ω2, . . . }, and a
sequence p1, p2, . . . with pi ≥ 0, ∑i pi = 1. The set A of events is the set of all subsets of Ω, and for
an event E ⊂ Ω we de�ne P(E) =

∑
ωi∈E pi.

A random variable over a probability space Ω is a function f from Ω to the real num-
bers, with the property that every set of the form {ω : f (ω) < c } is an event: it is in A.
Frequently, random variables are denoted by capital letters X,Y,Z, possibly with indices,
and the argument ω is omitted from X(ω). The event {ω : X(ω) < c } is then also written as
[ X < c ]. This notation is freely and informally extended to more complicated events. The
distribution of a random variable X is the function F(c) = P[ X < c ]. We will frequently
only specify the distribution of our variables, and not mention the underlying probability
space, when it is clear from the context that it can be speci�ed in one way or another. We
can speak about the joint distribution of two or more random variables, but only if it is
assumed that they can be de�ned as functions on a common probability space. Random va-
riables X1, . . . , Xn with a joint distribution are independent if every n-tuple of events of the
form [ X1 < c1 ], . . . , [ Xn < cn ] is independent.

The expected value of a random variable X taking values x1, x2, . . . with probabilities
p1, p2, . . . is de�ned as

EX = p1x1 + p2x2 + · · · .
It is easy to see that the expected value is a linear function of the random variable:

E(αX + βY) = αEX + βEY ,

even if X,Y are not independent. On the other hand, if variables X,Y are independent then
the expected values can also be multiplied:

EXY = EX · EY . (6.1)

There is an important simple inequality called the Markov inequality, which says that for
an arbitrary nonnegative random variable X and any value λ > 0 we have

P[ X ≥ λ ] ≤ EX/λ . (6.2)

6.1.2. Combinatorial estimates
Stirling's formula gives an asymptotic expression of n!. It is frequently used in probability
theory since combinatorial formulas often contain n!. Rather than using Stirling's formula
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directly, let us develop two simple inequalities which should always suffice for us.
Unless stated otherwise, log x will denote logarithm base 2 of x, and ln x will denote the

natural logarithm. Notice that the function ln x is an increasing function. Therefore on the
interval [n, n + 1], the constant ln n is a lower bound to it, and ln(n + 1) is an upper bound.
It follows that

ln(n!) =

n∑

i=1
ln i <

∫ n+1

1
ln x dx <

n∑

i=1
ln(i + 1) = ln((n + 1)!) .

Hence, ∫ n

1
ln x dx < ln(n!) = ln n + ln(n − 1)! < ln n +

∫ n

1
ln x dx .

Now,
∫

ln x dx = x(ln x − 1). Hence,

n(ln n − 1) + 1 < ln(n!) < n(ln n − 1) + 1 + ln n . (6.3)

In exponential form:
e
(n

e

)n
< n! < en

(n
e

)n
.

6.1.3. The law of large numbers (with �large deviations�)
In what follows the bounds

x
1 + x ≤ ln(1 + x) ≤ x for x > −1 (6.4)

will be useful. Of these, the well-known upper bound ln(1 + x) ≤ x holds since the graph of
the function ln(1 + x) is below its tangent line drawn at the point x = 0. The lower bound is
obtained from the identity 1

1+x = 1 − x
1+x and

− ln(1 + x) = ln 1
1 + x = ln

(
1 − x

1 + x

)
≤ − x

1 + x .

Consider n independent random variables X1, . . . , Xn that are identically distributed, with

P[ Xi = 1 ] = p, P[ Xi = 0 ] = 1 − p .

Let
S n = X1 + · · · + Xn .

We want to estimate the probability P[ S n ≥ f n ] for any constant 0 < f < 1. The �law of
large numbers� says that if f > p then this probability converges fast to 0 as n → ∞ while
if f < p then it converges fast to 1. Let

D( f , p) = f ln f
p + (1 − f ) ln 1 − f

1 − p (6.5)

> f ln f
p − f = f ln f

ep , (6.6)

where the inequality (useful for small f and ep < f ) comes via 1 > 1 − p > 1 − f and
ln(1 − f ) ≥ − f

1− f from (6.4). Using the concavity of logarithm, it can be shown that D( f , p)
is always nonnegative, and is 0 only if f = p (see Exercise 6.1-1.).
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Theorem 6.1 (Large deviations for coin-toss). If f > p then

P[ S n ≥ f n ] ≤ e−nD( f ,p) .

This theorem shows that if f > p then P[ S n > f n ] converges to 0 exponentially fast.
Inequality (6.6) will allow the following simpli�cation:

P[ S n ≥ f n ] ≤ e−n f ln f
ep =

(
ep
f

)n f
, (6.7)

useful for small f and ep < f .
Proof. For a certain real number α > 1 (to be chosen later), let Yn be the random variable
that is α if Xn = 1 and 1 if Xn = 0, and let Pn = Y1 · · · Yn = αS n : then

P[ S n ≥ f n ] = P[ Pn ≥ α f n ] .

Applying the Markov inequality (6.2) and (6.1), we get

P[ Pn ≥ α f n ] ≤ EPn/α
f n = (EY1/α

f )n ,

where EY1 = pα + (1 − p) . Let us choose α =
f (1−p)
p(1− f ) , this is > 1 if p < f . Then we get

EY1 =
1−p
1− f , and hence

EY1/α
f =

p f (1 − p)1− f

f f (1 − f )1− f = e−D( f ,p) .

This theorem also yields some convenient estimates for binomial coefficients. Let

h( f ) = − f ln f − (1 − f ) ln(1 − f ) .

This is sometimes called the entropy of the probability distribution ( f , 1 − f ) (measured in
logarithms over base e instead of base 2). From inequality (6.4) we obtain the estimate

− f ln f ≤ h( f ) ≤ f ln e
f (6.8)

which is useful for small f .

Corollary 6.2 We have, for f ≤ 1/2:

n∑

i≤ f n

(
n
i

)
≤ enh( f ) ≤

(
e
f

) f n
. (6.9)

In particular, taking f = k/n with k ≤ n/2 gives
(
n
k

)
=

(
n
f n

)
≤

(
e
f

) f n
=

(ne
k

)k
. (6.10)
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Proof. Theorem 6.1 says for the case f > p = 1/2:

2−n
n∑

i≥ f n

(
n
i

)
= P[ S n ≥ f n ] ≤ e−nD( f ,p) = 2−nenh( f ) ,

n∑

i≥ f n

(
n
i

)
≤ enh( f ) .

Substituting g = 1 − f , and noting the symmetries
(n

f

)
=

(n
g

)
, h( f ) = h(g) and (6.8) gives

formula (6.9).

Remark 6.3 Inequality (6.7) also follows from the trivial estimate P[ S n ≥ f n ] ≤
( n

f n

)
p f n

combined with (6.10).

Exercises
6.1-1 Prove that the statement made in the main text that D( f , p) is always nonnegative,
and is 0 only if f = p.
6.1-2 For f = p + δ, derive from Theorem 6.1 the useful bound

P[ S n ≥ f n ] ≤ e−2δ2n .

Hint: Let F(x) = D(x, p), and use the Taylor formula: F(p + δ) = F(p) + F′(p)δ + F′′(p +

δ′)δ2/2, where 0 ≤ δ′ ≤ δ. ]
6.1-3 Prove that in Theorem 6.1, the assumption that Xi are independent and identically
distributed can be weakened: replaced by the single inequality

P[ Xi = 1 | X1, . . . , Xi−1 ] ≤ p .

6.2. Logic circuits
In a model of computation taking errors into account, the natural assumption is that errors
occur everywhere. The most familiar kind of computer, which is separated into a single pro-
cessor and memory, seems extremely vulnerable under such conditions: while the processor
is not �looking�, noise may cause irreparable damage in the memory. Let us therefore rather
consider computation models that are parallel: information is being processed everywhere
in the system, not only in some distinguished places. Then error correction can be built
into the work of every part of the system. We will concentrate on the best known parallel
computation model: Boolean circuits.

6.2.1. Boolean functions and expressions
Let us look inside a computer, (actually inside an integrated circuit, with a microscope).
Discouraged by a lot of physical detail irrelevant to abstract notions of computation, we
will decide to look at the blueprints of the circuit designer, at the stage when it shows the
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∧ ∨ ¬

Figure 6.1. AND, OR and NOT gate.

smallest elements of the circuit still according to their computational functions. We will
see a network of lines that can be in two states (of electric potential), �high� or �low�, or in
other words �true� or �false�, or, as we will write, 1 or 0. The points connected by these lines
are the familiar logic components: at the lowest level of computation, a typical computer
processes bits. Integers, �oating-point numbers, characters are all represented as strings of
bits, and the usual arithmetical operations can be composed of bit operations.

De�nition 6.4 A Boolean vector function is a mapping f : {0, 1}n → {0, 1}m. Most of the
time, we will take m = 1 and speak of a Boolean function.

The variables in f (x1, . . . , xn) are sometimes called Boolean variables, Boolean vari-
ables or bits.

Example 6.2 Given an undirected graph G with N nodes, suppose we want to study the question
whether it has a Hamiltonian cycle (a sequence (u1, . . . , un) listing all vertices of G such that (ui, ui+1)
is an edge for each i < n and also (un, u1) is an edge). This question is described by a Boolean function
f as follows. The graph can be described with

(
N
2

)
Boolean variables xi j (1 ≤ i < j ≤ N): xi j is 1 if

and only if there is an edge between nodes i and j. We de�ne f (x12, x13, . . . , xN−1,N) = 1 if there is a
Hamiltonian cycle in G and 0 otherwise.

Example 6.3 [Boolean vector function] Let n = m = 2k, let the input be two integers u, v, written as
k-bit strings: x = (u1, . . . , uk, v1, . . . , vk). The output of the function is their product y = u · v (written
in binary): if u = 5 = (101)2, v = 6 = (110)2 then y = u · v = 30 = (11110)2.

There are only four one-variable Boolean functions: the identically 0, identically 1, the
identity and the negation: x → ¬x = 1 − x. We mention only the following two-variable
Boolean functions: the operation of conjunction (logical AND):

x ∧ y =


1 if x = y = 1 ,
0 otherwise ,

this is the same as multiplication. The operation of disjunction, or logical OR:

x ∨ y =


0 if x = y = 0 ,
1 otherwise .
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It is easy to see that x ∨ y = ¬(¬x ∧ ¬y): in other words, disjunction x ∨ y can be expressed
using the functions ¬,∧ and the operation of composition. The following two-argument
Boolean functions are also frequently used:

x→ y = ¬x ∨ y (implication),
x↔ y = (x→ y) ∧ (y→ x) (equivalence),
x ⊕ y = x + y mod 2 = ¬(x↔ y) (binary addition).

A �nite number of Boolean functions is sufficient to express all others: thus, arbitrarily
complex Boolean functions can be �computed� by �elementary� operations. In some sense,
this is what happens inside computers.

De�nition 6.1 A set of Boolean functions is a complete basis if every other Boolean func-
tion can be obtained by repeated composition from its elements.

Claim 6.5 The set {∧,∨,¬} forms a complete basis; in other words, every Boolean function
can be represented by a Boolean expression using only these connectives.

The proof can be found in all elementary introductions to propositional logic. Note that
since ∨ can be expressed using {∧,¬}, this latter set is also a complete basis (and so is
{∨,¬}).

From now on, under a Boolean expression (formula), we mean an expression built
up from elements of some given complete basis. If we do not mention the basis then the
complete basis {∧,¬} will be meant.

In general, one and the same Boolean function can be expressed in many ways as a
Boolean expression. Given such an expression, it is easy to compute the value of the func-
tion. However, most Boolean functions can still be expressed only by very large Boolean
expression (see Exercise 6.2-4.).

6.2.2. Circuits
A Boolean expression is sometimes large since when writing it, there is no possibility for
reusing partial results. (For example, in the expression

((x ∨ y ∨ z) ∧ u) ∨ (¬(x ∨ y ∨ z) ∧ v),

the part x ∨ y ∨ z occurs twice.) This de�ciency is corrected by the following more general
formalism.

A Boolean circuit is essentially an acyclic directed graph, each of whose nodes com-
putes a Boolean function (from some complete basis) of the bits coming into it on its input
edges, and sends out the result on its output edges (see Figure 6.2). Let us give a formal
de�nition.

De�nition 6.6 Let Q be a complete basis of Boolean functions. For an integer N let V =

{1, . . . ,N} be a set of nodes. A Boolean circuit over Q is given by the following tuple:

N = (V, { kv : v ∈ V }, { arg j(v) : v ∈ V; j = 1, . . . , kv }, { bv : v ∈ V }) . (6.11)
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Figure 6.2. The assignment (values on nodes, con�guration) gets propagated through all the gates. This is the
�computation�.

For every node v there is a natural number kv showing its number of inputs. The sources,
nodes v with kv = 0, are called input nodes: we will denote them, in increasing order, as

inpi (i = 1, . . . , n) .

To each non-input node v a Boolean function

bv(y1, . . . , ykv )

from the complete basis Q is assigned: it is called the gate of node v. It has as many ar-
guments as the number of entering edges. The sinks of the graph, nodes without outgoing
edges, will be called output nodes: they can be denoted by

outi (i = 1, . . . ,m) .

(Our Boolean circuits will mostly have just a single output node.) To every non-input node
v and every j = 1, . . . , kv belongs a node arg j(v) ∈ V (the node sending the value of input
variable y j of the gate of v). The circuit de�nes a graph G = (V, E) whose set of edges is

E = { (arg j(v), v) : v ∈ V, j = 1, . . . , kv } .

We require arg j(v) < v for each j, v (we identi�ed the with the natural numbers 1, . . . ,N):
this implies that the graph G is acyclic. The size |N| of the circuitN is the number of nodes.
The depth of a node v is the maximal length of directed paths leading from an input node to
v. The depth of a circuit is the maximum depth of its output nodes.

De�nition 6.7 An input assignment, or input con�guration to our circuit N is a vector
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x1 x2 x3 x4 x5 x6 x7 x8

y1,1 y1,2 y1,3 y1,4

y2,1 y2,2

y3,1

Figure 6.3. Naive parallel addition.

x = (x1, . . . , xn) with xi ∈ {0, 1} giving value xi to node inpi:

valx(v) = yv(x) = xi

for v = inpi, i = 1, . . . , n. The function yv(x) can be extended to a unique con�guration
v 7→ yv(x) on all other nodes of the circuit as follows. If gate bv has k arguments then

yv = bv(yarg1(v), . . . , yargk(v)). (6.12)

For example, if bv(x, y) = x ∧ y, and u j = arg j(v) ( j = 1, 2) are the input nodes to v then
yv = yu1 ∧ yu2 . The process of extending the con�guration by the above equation is also
called the computation of the circuit. The vector of the values youti (x) for i = 1, . . . ,m is the
result of the computation. We say that the Boolean circuit computes the vector function

x 7→ (yout1 (x), . . . , youtm (x)).

The assignment procedure can be performed in stages: in stage t, all nodes of depth t receive
their values.

We assign values to the edges as well: the value assigned to an edge is the one assigned
to its start node.

6.2.3. Fast addition by a Boolean circuit
The depth of a Boolean circuit can be viewed as the shortest time it takes to compute the
output vector from the input vector by this circuit. An example application of Boolean cir-
cuits, let us develop a circuit that computes the sum of its input bits very fast. We will need
this result later in the present chapter for error-correcting purposes.

De�nition 6.8 We will say that a Boolean circuit computes a near-majority if it outputs a
bit y with the following property: if 3/4 of all input bits is equal to b then y = b.
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The depth of our circuit is clearly Ω(lg n), since the output must have a path to the
majority of inputs. In order to compute the majority, we will also solve the task of summing
the input bits.

Theorem 6.9
1. Over the complete basis consisting of the set of all 3-argument Boolean functions, for

each n there is a Boolean circuit of input size n and depth ≤ 3 log(n + 1) whose output
vector represents the sum of the input bits as a binary number.

2. Over this same complete basis, for each n there is a Boolean circuit of input size n and
depth ≤ 2 log(n + 1) computing a near-majority.

Proof. First we prove (1). For simplicity, assume n = 2k − 1: if n is not of this form, we
may add some fake inputs. The naive approach would be proceed according to Figure 6.3:
to �rst compute y1,1 = x1 + x2, y1,2 = x3 + x4, . . . , y1,2k−1 = x2k−1 + x2k . Then, to compute
y2,1 = y1,1 + y1,2, y2,2 = y1,3 + y1,4, and so on. Then yk,1 = x1 + · · · + x2k will indeed be
computed in k stages.

It is somewhat troublesome that yi, j here is a number, not a bit, and therefore must be
represented by a bit vector, that is by group of nodes in the circuit, not just by a single node.
However, the general addition operation

yi+1, j = yi,2 j−1 + yi,2 j,

when performed in the naive way, will typically take more than a constant number of steps:
the numbers yi, j have length up to i + 1 and therefore the addition may add i to the depth,
bringing the total depth to 1 + 2 + · · · + k = Ω(k2).

The following observation helps to decrease the depth. Let a, b, c be three numbers in
binary notation: for example, a =

∑k
i=0 ai2i. There are simple parallel formulas to represent

the sum of these three numbers as the sum of two others, that is to compute a + b + c = d + e
where d, e are numbers also in binary notation:

di = ai + bi + ci mod 2,
ei+1 = b(ai + bi + ci)/2c.

(6.13)

Since both formulas are computed by a single 3-argument gate, 3 numbers can be reduced
to 2 (while preserving the sum) in a single parallel computation step. Two such steps reduce
4 numbers to 2. In 2(k − 1) steps therefore they reduce a sum of 2k terms to a sum of 2
numbers of length ≤ k. Adding these two numbers in the regular way increases the depth by
k: we found that 2k bits can be be added in 3k − 2 steps.

To prove (2), construct the circuit as in the proof of (1), but without the last addition:
the output is two k-bit numbers whose sum we are interested in. The highest-order nonzero
bit of these numbers is at some position < k. If the sum is more than 2k−1 then one these
numbers has a nonzero bit at position (k − 1) or (k − 2). We can determine this in two
applications of 3-input gates.

Exercises
6.2-1 Show that {1,⊕,∧} is a complete basis.
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∧

0 1

1

Figure 6.4. Failure at a gate.

6.2-2 Show that the function x NOR y = ¬(x ∨ y) forms a complete basis by itself.
6.2-3 Let us �x the complete basis {∧,¬}. Prove Claim 6.5 (or look up its proof in a text-
book). Use it to give an upper bound for an arbitrary Boolean function f of n variables, on:

1. the smallest size of a Boolean expression for f ;
2. the smallest size of a Boolean circuit for f ;
3. the smallest depth of a Boolean circuit for f ;

6.2-4 Show that for every n there is a Boolean function f of n variables such that every
Boolean circuit in the complete basis {∧,¬} computing f contains Ω(2n/n) nodes. Hint: for
a constant c > 0, upperbound the number of Boolean circuits with at most c2n/n nodes and
compare it with the number of Boolean functions over n variables.
6.2-5 Consider a circuitMr

3 with 3r inputs, whose single output bit is computed from the
inputs by r levels of 3-input majority gates. Show that there is an input vector x which is 1
in only n1/ lg 3 positions but with whichMr

3 outputs 1. Thus a small minority of the inputs,
when cleverly arranged, can command the result of this circuit.

6.3. Expensive fault-tolerance in Boolean circuits
LetN be a Boolean circuit as given in De�nition 6.6. When noise is allowed then the values

yv = valx(v)

will not be determined by the formula (6.12) anymore. Instead, they will be random variab-
les Yv. The random assignment (Yv : v ∈ V) will be called a random con�guration.

De�nition 6.10 At vertex v, let

Zv = bv(Yarg1(v), . . . , Yargk(v)) ⊕ Yv. (6.14)

In other words, Zv = 1 if gate Yv is not equal to the value computed by the noise-free gate
bv from its inputs Yarg j(v). (See Figure 6.4.) The set of vertices where Zv is non-zero is the set
of faults.

Let us call the difference valx(v) ⊕ Yv the deviation at node v.
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Let us impose conditions on the kind of noise that will be allowed. Each fault should
occur only with probability at most ε, two speci�c faults should only occur with probability
at most ε2, and so on.

De�nition 6.11 For an ε > 0, let us say that the random con�guration (Yv : v ∈ V) is
ε-admissible if
1. Yinp(i) = xi for i = 1, . . . , n.
2. For every set C of non-input nodes, we have

P[ Zv = 1 for all v ∈ C ] ≤ ε |C|. (6.15)

In other words, in an ε-admissible random con�guration, the probability of having faults
at k different speci�c gates is at most εk. This is how we require that not only is the fault
probability low but also, faults do not �conspire�. The admissibility condition is satis�ed if
faults occur independently with probability ≤ ε.

Our goal is to build a circuit that will work correctly, with high probability, despite
the ever-present noise: in other words, in which errors do not accumulate. This concept is
formalized below.

De�nition 6.12 We say that the circuit N with output node w is (ε, δ)-resilient if for all
inputs x, all ε-admissible con�gurations Y, we have P[ Yw , valx(w) ] ≤ δ.

Let us explore this concept. There is no (ε, δ)-resilient circuit with δ < ε, since even
the last gate can fail with probability ε. So, let us, a little more generously, allow δ > 2ε.
Clearly, for each circuit N and for each δ > 0 we can choose ε small enough so that N is
(ε, δ)-resilient. But this is not what we are after: hopefully, one does not need more reliable
gates every time one builds a larger circuit. So, we hope to �nd a function

F(N, δ)

and an ε0 > 0 with the property that for all ε < ε0, δ ≥ 2ε, every Boolean circuit N of size
N there is some (ε, δ)-resilient circuitN ′ of size F(N, δ) computing the same function asN .
If we achieve this then we can say that we prevented the accumulation of errors. Of course,
we want to make F(N, δ) relatively small, and ε0 large (allowing more noise). The function
F(N, δ)/N can be called the redundancy: the factor by which we need to increase the size
of the circuit to make it resilient. Note that the problem is nontrivial even with, say, δ = 1/3.
Unless the accumulation of errors is prevented we will lose gradually all information about
the desired output, and no δ < 1/2 could be guaranteed.

How can we correct errors? A simple idea is this: do �everything� 3 times and then
continue with the result obtained by majority vote.

De�nition 6.13 For odd natural number d, a d-input majority gate is a Boolean function
that outputs the value equal to the majority of its inputs.

Note that a d-input majority can be computed using O(d) gates of type AND and NOT.
Why should majority voting help? The following informal discussion helps understan-

ding the bene�ts and pitfalls. Suppose for a moment that the output is a single bit. If the
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probability of each of the three independently computed results failing is δ then the proba-
bility that at least 2 of them fails is bounded by 3δ2. Since the majority vote itself can fail
with some probability ε the total probability of failure is bounded by 3δ2 + ε. We decrease
the probability δ of failure, provided the condition 3δ2 + ε < δ holds.

We found that if δ is small, then repetition and majority vote can �make it� smaller. Of
course, in order to keep the error probability from accumulating, we would have to perform
this majority operation repeatedly. Suppose, for example, that our computation has t stages.
Our bound on the probability of faulty output after stage i is δi. We plan to perform the
majority operation after each stage i. Let us perform stage i three times. The probability of
failure is now bounded by

δi+1 = δi + 3δ2 + ε. (6.16)
Here, the error probabilities of the different stages accumulate, and even if 3δ2 + ε < δ
we only get a bound δt < (t − 1)δ. So, this strategy will not work for arbitrarily large
computations.

Here is a somewhat mad idea to avoid accumulation: repeat everything before the end
of stage i three times, not only stage i itself. In this case, the growing bound (6.16) would
be replaced with

δi+1 = 3(δi + δ)2 + ε.

Now if δi < δ and 12δ2 + ε < δ then also δi+1 < δ, so errors do not accumulate. But we
paid an enormous price: the fault-tolerant version of the computation reaching stage (i + 1)
is 3 times larger than the one reaching stage i. To make t stages fault-tolerant this way will
cost a factor of 3t in size. This way, the function F(N, δ) introduced above may become
exponential in N.

The theorem below formalises the above discussion.

Theorem 6.14 Let R be a �nite and complete basis for Boolean functions. If 2ε ≤ δ ≤ 0.01
then every function can be computed by an (ε, δ)-resilient circuit over R.

Proof. For simplicity, we will prove the result for a complete basis that contains the three-
argument majority function and contains not functions with more than three arguments. We
also assume that faults occur independently.

Let N be a noise-free circuit of depth t computing function f . We will prove that there
is an (ε, δ)-resilient circuit N ′ of depth 2t computing f . The proof is by induction on t. The
sufficient conditions on ε and δ will emerge from the proof.

The statement is certainly true for t = 1, so suppose t > 1. Let g be the output gate of
the circuitN , then f (x) = g( f1(x), f2(x), f3(x)). The subcircuitsNi computing the functions
fi have depth ≤ t − 1. By the inductive assumption, there exist (ε, δ)-resilient circuits N ′i of
depth ≤ 2t − 2 that compute fi. LetM be a new circuit containing copies of the circuits N ′i
(with the corresponding input nodes merged), with a new node in which f (x) is computed
as g is applied to the outputs ofN ′i . Then the probability of error ofM is at most 3δ+ε < 4δ
if ε < δ since each circuit N ′i can err with probability δ and the node with gate g can fail
with probability ε.

Let us now formN ′ by taking three copies ofM (with the inputs merged) and adding a
new node computing the majority of the outputs of these three copies. The error probability
of N ′ is at most 3(4δ)2 + ε = 48δ2 + ε. Indeed, error will be due to either a fault at the
majority gate or an error in at least two of the three independent copies of M. So under
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condition
48δ2 + ε ≤ δ, (6.17)

the circuit N ′ is (ε, δ)-resilient. This condition will be satis�ed by 2ε ≤ δ ≤ 0.01.
The circuit N ′ constructed in the proof above is at least 3t times larger than N . So, the

redundancy is enormous. Fortunately, we will see a much more economical solution. But
there are interesting circuits with small depth, for which the 3t factor is not extravagant.

Theorem 6.15 Over the complete basis consisting of all 3-argument Boolean functions,
for all sufficiently small ε > 0, if 2ε ≤ δ ≤ 0.01 then for each n there is an (ε, δ)-resilient
Boolean circuit of input size n, depth ≤ 4 lg(n+1) and size (n+1)7 outputting a near-majority
(as given in De�nition 6.8).

Proof. Apply Theorem 6.14 to the circuit from part (1) of Theorem 6.9: it gives a new,
4 lg(n+1)-deep (ε, δ)-resilient circuit computing a near-majority. The size of any such circuit
with 3-input gates is at most 34 lg(n+1) = (n + 1)4 lg 3 < (n + 1)7.

Exercises
6.3-1 Exercise 6.2-5. suggests that the iterated majority voteMr

3 is not safe against manipu-
lation. However, it works very well under some circumstances. Let the input toMr

3 be a vec-
tor X = (X1, . . . , Xn) of independent Boolean random variables with P[ Xi = 1 ] = p < 1/6.
Denote the (random) output bit of the circuit by Z. Assuming that our majority gates can
fail with probability ≤ ε ≤ p/2 independently, prove

P[ Z = 1 ] ≤ max{10ε, 0.3(p/0.3)2k }.

Hint: De�ne g(p) = ε + 3p2, g0(p) = p, gi+1(p) = g(gi(p)), and prove P[ Z = 1 ] ≤ gr(p). ]
6.3-2 We say that a circuit N computes the function f (x1, . . . , xn) in an (ε, δ)-input-robust
way, if the following holds: For any input vector x = (x1, . . . , xn), for any vector X =

(X1, . . . , Xn) of independent Boolean random variables �perturbing it� in the sense P[ Xi ,
xi ] ≤ ε, for the output Y of circuit N on input X we have P[ Y = f (x) ] ≥ 1 − δ. Show that
if the function x1 ⊕ · · · ⊕ xn is computable on an (ε, 1/4)-input-robust circuit then ε ≤ 1/n.

6.4. Safeguarding intermediate results
In this section, we will see ways to introduce fault-tolerance that scale up better. Namely,
we will show:

Theorem 6.16 There are constants R0, ε0 such that for

F(n, δ) = N lg(n/δ),

for all ε < ε0, δ ≥ 3ε, for every deterministic computation of size N there is an (ε, δ)-resilient
computation of size R0F(N, δ) with the same result.

Let us introduce a concept that will simplify the error analysis of our circuits, making
it independent of the input vector x.
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Figure 6.5. An executive organ.

De�nition 6.17 In a Boolean circuitN , let us call a majority gate at a node v a correcting
majority gate if for every input vector x ofN , all input wires of node v have the same value.
Consider a computation of such a circuit N . This computation will make some nodes and
wires of N tainted. We de�ne taintedness by the following rules:
1. The input nodes are untainted.
2. If a node is tainted then all of its output wires are tainted.
3. A correcting majority gate is tainted if either it fails or a majority of its inputs are

tainted.
4. Any other gate is tainted if either it fails or one of its inputs is tainted.

Clearly, if for all ε-admissible random con�gurations the output is tainted with proba-
bility ≤ δ then the circuit is (ε, δ)-resilient.

6.4.1. Cables
So far, we have only made use of redundancy idea (2) of the introduction to the present
chapter: repeating computation steps. Let us now try to use idea (1) (keeping information in
redundant form) in Boolean circuits. To protect information travelling from gate to gate, we
replace each wire of the noiseless circuit by a �cable� of k wires (where k will be chosen
appropriately). Each wire within the cable is supposed to carry the same bit of information,
and we hope that a majority will carry this bit even if some of the wires fail.

De�nition 6.18 In a Boolean circuit N ′, a certain set of edges is allowed to be called
a cable if in a noise-free computation of this circuit, each edge carries the same Boolean
value. The width of the cable is its number of elements. Let us �x an appropriate constant
threshold ϑ. Consider any possible computation of the noisy version of the circuitN ′, and a
cable of width k inN ′. This cable will be called ϑ-safe if at most ϑk of its wires are tainted.

Let us take a Boolean circuit N that we want to make resilient. As we replace wires of
N with cables ofN ′ containing k wires each, we will replace each noiseless 2-argument gate
at a node v by a module called the executive organ of k gates, which for each i = 1, . . . , k,
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Figure 6.6. A restoring organ.

passes the ith wire both incoming cables into the ith node of the organ. Each of these nodes
contains a gate of one and the same type bv. The wires emerging from these nodes form the
output cable of the executive organ.

The number of tainted wires in this output cable may become too high: indeed, if there
were ϑk tainted wires in the x cable and also in the y cable then there could be as many
as 2ϑk such wires in the g(x, y) cable (not even counting the possible new taints added by
faults in the executive organ). The crucial part of the construction is to attach to the executive
organ a so-called restoring organ: a module intended to decrease the taint in a cable.

6.4.2. Compressors
How to build a restoring organ? Keeping in mind that this organ itself must also work in
noise, one solution is to build (for an appropriate δ′) a special (ε, δ′)-resilient circuit that
computes the near-majority of its k inputs in k independent copies. Theorem 6.15 provides
a circuit of size k(k + 1)7 to do this.

It turns out that, at least asymptotically, there is a better solution. We will look for a very
simple restoring organ: one whose own noise we can analyse easily. What could be simpler
than a circuit having only one level of gates? We �x an odd positive integer constant d (for
example, d = 3). Each gate of our organ will be a d-input majority gate.

De�nition 6.19 A multigraph is a graph in which between any two vertices there may be
several edges, not just 0 or 1. Let us call a bipartite multigraph with k inputs and k outputs,
d-half-regular, if each output node has degree d. Such a graph is a (d, α, γ, k)-compressor
if it has the following property: for every set E of at most ≤ αk inputs, the number of those
output points connected to at least d/2 elements of E (with multiplicity) is at most γαk.

The compressor property is interesting generally when γ < 1. For example, in an
(5, 0.1, 0.5, k)-compressor the outputs have degree 5, and the majority operation in these
nodes decreases every error set con�ned to 10% of all input to just 5% of all outputs. A
compressor with the right parameters could serve as our restoring organ: it decreases a mi-
nority to a smaller minority and may in this way restore the safety of a cable. But, are there
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compressors?

Theorem 6.20 For all γ < 1, all integers d with

1 < γ(d − 1)/2, (6.18)

there is an α such that for all integer k > 0 there is a (d, α, γ, k)-compressor.

Note that for d = 3, the theorem does not guarantee a compressor with γ < 1.
Proof. We will not give an explicit construction for the multigraph, we will just show that it
exists. We will select a d-half-regular multigraph randomly (each such multigraph with the
same probability), and show that it will be a (d, α, γ, k)-compressor with positive probability.
This proof method is called the probabilistic method. Let

s = bd/2c.
Our construction will be somewhat more general, allowing k′ , k outputs. Let us generate
a random bipartite d-half-regular multigraph with k inputs and k′ outputs in the following
way. To each output, we draw edges from d random input nodes chosen independently and
with uniform distribution over all inputs. Let A be an input set of size αk, let v be an output
node and let Ev be the event that v has s + 1 or more edges from A. Then we have

P(Ev) ≤
(

d
s + 1

)
αs+1 =

(
d
s

)
αs+1 =: p.

On the average (in expected value), the event Ev will occur for pk′ different output nodes v.
For an input set A, let FA be the event that the set of nodes v for which Ev holds has size
> γαk′. By inequality (6.7) we have

P(FA) ≤
(

ep
γα

)k′γα
.

The number M of sets A of inputs with ≤ αk elements is, using inequality (6.8),

M ≤
∑

i≤αk

(
k
i

)
≤

( e
α

)αk
.

The probability that our random graph is not a compressor is at most as large as the proba-
bility that there is at least one input set A for which event FA holds. This can be bounded
by

M · P(FA) ≤ e−αDk′

where

D = −(γs − k/k′) lnα − γ( ln (d
s) − ln γ + 1 ) − k/k′.

As we decrease α the �rst term of this expression dominates. Its coefficient is positive
according to the assumption (6.18). We will have D > 0 if

α < exp
(
−γ

( ln (d
s) − ln γ + 1 )

+ k/k′
γs − k/k′

)
.
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Example 6.4 Choosing γ = 0.4, d = 7, the value α = 10−7 will work.

We turn a (d, α, γ, k)-compressor into a restoring organ R, by placing d-input majority
gates into its outputs. If the majority elements sometimes fail then the output ofR is random.
Assume that at most αk inputs of R are tainted. Then (γ + ρ)αk outputs can only be tainted
if αρk majority gates fail. Let

pR

be the probability of this event. Assuming that the gates of R fail independently with proba-
bility ≤ ε, inequality (6.7) gives

pR ≤
(

eε
αρ

)αρk
. (6.19)

Example 6.5 Choose γ = 0.4, d = 7, α = 10−7 as in Example 6.4., further ρ = 0.14 (this will satisfy
the inequality (6.20) needed later). With ε = 10−9, we get pR ≤ e−10−8k.

The attractively small degree d = 7 led to an extremely unattractive probability bound on the
failure of the whole compressor. This bound does decrease exponentially with cable width k, but only
an extremely large k would make it small.

Example 6.6 Choosing again γ = 0.4, but d = 41 (voting in each gate of the compressor over 41 wires
instead of 7), leads to somewhat more realistic results. This choice allows α = 0.15. With ρ = 0.14,
ε = 10−9 again, we get pR ≤ e−0.32k.

These numbers look less frightening, but we will still need many scores of wires in the cable to
drive down the probability of compression failure. And although in practice our computing compo-
nents fail with frequency much less than 10−9, we may want to look at the largest ε that still can be
tolerated.

6.4.3. Propagating safety
Compressors allow us to construct a reliable Boolean circuit all of whose cables are safe.

De�nition 6.21 Given a Boolean circuit N with a single bit of output (for simplicity), a
cable width k and a Boolean circuit R with k inputs and k outputs, let

N ′ = Cab(N ,R)

be the Boolean circuit that we obtain as follows. The input nodes of N ′ are the same as
those of N . We replace each wire of N with a cable of width k, and each gate of N with
an executive organ followed by a restoring organ that is a copy of the circuit R. The new
circuit has k outputs: the outputs of the restoring organ of N ′ belonging to the last gate of
N .

In noise-free computations, on every input, the output of N ′ is the same as the output
of N , but in k identical copies.
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Figure 6.7. An executive organ followed by a restoring organ.

Lemma 6.22 There are constants d, ε0, ϑ, ρ > 0 and for every cable width k a circuit R of
size 2k and gate size ≤ d with the following property. For every Boolean circuit N of gate
size ≤ 2 and number of nodes N, for every ε < ε0, for every ε-admissible con�guration of
N ′ = Cab(N ,R), the probability that not every cable of N ′ is ϑ-safe is < 2N( eε

ϑρ
)ϑρk.

Proof. We know that there are d, α and γ < 1/2 with the property that for all k a (d, α, γ, k)-
compressor exists. Let ρ be chosen to satisfy

γ(2 + ρ) + ρ ≤ 1, (6.20)

and de�ne
ϑ = α/(2 + ρ). (6.21)

Let R be a restoring organ built from a (d, α, γ, k)-compressor. Consider a gate v of circuit
N , and the corresponding executive organ and restoring organ in N ′. Let us estimate the
probability of the event Ev that the input cables of this combined organ are ϑ-safe but its
output cable is not. Assume that the two incoming cables are safe: then at most 2ϑk of
the outputs of the executive organ are tainted due to the incoming cables: new taint can
still occur due to failures. Let Ev1 be the event that the executive organ taints at least ρϑk
more of these outputs. Then P(Ev1) ≤ ( eε

ρϑ
)ρϑk, using the estimate (6.19). The outputs of the

executive organ are the inputs of the restoring organ. If no more than (2 + ρ)ϑk = αk of
these are tainted then, in case the organ operates perfectly, it would decrease the number of
tainted wires to γ(2 + ρ)ϑk. Let Ev2 be the event that the restoring organ taints an additional
ρϑk of these wires. Then again, P(Ev2) ≤ ( eε

ρϑ
)ρϑk. If neither Ev1 nor Ev2 occur then at most

γ(2 + ρ)ϑk + ρϑk ≤ ϑk (see (6.20)) tainted wires emerge from the restoring organ, so the
outgoing cable is safe. Therefore Ev ⊂ Ev1 ∪ Ev2 and hence P(Ev) ≤ 2( eε

ρϑ
)ρϑk.
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Figure 6.8. Reliable circuit from a fault-free circuit.

Let V = {1, . . . ,N} be the nodes of the circuit N . Since the incoming cables of the
whole circuit N ′ are safe, the event that there is some cable that is not safe is contained in
E1 ∪ E2 ∪ · · · ∪ EN ; hence the probability is bounded by 2N( eε

ρϑ
)ρϑk.

6.4.4. Endgame
Proof. of Theorem 6.16 We will prove the theorem only for the case when our computation
is a Boolean circuit with a single bit of output. The generalisation with more bits of output
is straightforward. The proof of Lemma 6.22 gives us a circuit N ′ whose output cable is
safe except for an event of probability < 2N( eε

ρϑ
)ρϑk. Let us choose k in such a way that this

becomes ≤ δ/3:

k ≥ lg(6N/δ)
ρϑ log ρϑ

eε0

. (6.22)

It remains to add a little circuit to this output cable to extract from it the majority reliably.
This can be done using Theorem 6.15, adding a small extra circuit of size (k + 1)7 that can
be called the coda to N ′. Let us call the resulting circuit N ′′.

The probability that the output cable is unsafe is < δ/3. The probability that the output
cable is safe but the �coda� circuit fails is bounded by 2ε. So, the probability that N ′′ fails
is ≤ 2ε + δ/3 ≤ δ, by the assumption δ ≥ 3ε.

Let us estimate the size ofN ′′. By (6.22), we can choose cable width k = O(log(N/δ)).
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We have |N ′| ≤ 2kN, hence

|N ′′| ≤ 2kN + (k + 1)7 = O(N lg(N/δ)).

Example 6.7 Take the constants of Example 6.6., with ϑ de�ned in equation (6.21): then ε0 = 10−9,
d = 41, γ = 0.4, ρ = 0.14, α = 0.15, ϑ = 0.07, giving

1
ρϑ ln ρϑ

eε0

≈ 6.75,

so making k as small as possible (ignoring that it must be integer), we get k ≈ 6.75 ln(N/δ). With
δ = 10−8, N = 1012 this allows k = 323. In addition to this truly unpleasant cable size, the size of the
�coda� circuit is (k + 1)7 ≈ 4 · 1017, which dominates the size of the rest of N ′′ (though as N → ∞ it
becomes asymptotically negligible).

As Example 6.7. shows, the actual price in redundancy computable from the proof is
unacceptable in practice. The redundancy O(lg(N/δ)) sounds good, since it is only logarith-
mic in the size of the computation, and by choosing a rather large majority gate (41 inputs),
the factor 6.75 in the O(·) here also does not look bad; still, we do not expect the �nal price
of reliability to be this high. How much can this redundancy improved by optimisation or
other methods? Problem 6-6. shows that in a slightly more restricted error model (all faults
are independent and have the same probability), with more randomisation, better constants
can be achieved. Exercises 6.4-1., 6.4-2. and 6.4-6. are concerned with an improved const-
ruction for the �coda� circuit. Exercise 6.5-2. shows that the coda circuit can be omitted
completely. But none of these improvements bring redundancy to acceptable level. Even
aside from the discomfort caused by their random choice (this can be helped), concentrators
themselves are rather large and unwieldy. The problem is probably with using circuits as a
model for computation. There is no natural way to break up a general circuit into subunits
of non-constant size in order to deal with the reliability problem in modular style.

6.4.5. The construction of compressors
This subsection is sketchier than the preceding ones, and assumes some knowledge of linear
algebra.

We have shown that compressors exist. How expensive is it to �nd a (d, α, γ, k)-
compressor, say, with d = 41, α = 0.15, γ = 0.4, as in Example 6.6.? In a deterministic
algorithm, we could search through all the approximately dk d-half-regular bipartite graphs.
For each of these, we could check all possible input sets of size ≤ αk: as we know, their
number is ≤ (e/α)αk < 2k. The cost of checking each subset is O(k), so the total number
of operations is O(k(2d)k). Though this number is exponential in k, recall that in our error-
correcting construction, k = O(lg(N/δ)) for the size N of the noiseless circuit: therefore the
total number of operations needed to �nd a compressor is polynomial in N.

The proof of Theorem 6.20 shows that a randomly chosen d-half-regular bipartite graph
is a compressor with large probability. Therefore there is a faster, randomised algorithm for
�nding a compressor. Pick a random d-half-regular bipartite graph, check if it is a compres-
sor: if it is not, repeat. We will be done in a constant expected number of repetitions. This
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is a faster algorithm, but is still exponential in k, since each checking takes Ω(k(e/α)αk)
operations.

Is it possible to construct a compressor explicitly, avoiding any search that takes expo-
nential time in k? The answer is yes. We will show here only, however, that the compressor
property is implied by a certain property involving linear algebra, which can be checked
in polynomial time. Certain explicitly constructed graphs are known that possess this pro-
perty. These are generally sought after not so much for their compressor property as for their
expander property (see Exercise 6.4-3.).

For vectors v,w, let (v,w) denote their inner product. A d-half-regular bipartite mul-
tigraph with 2k nodes can be de�ned by an incidence matrix M = (mi j), where mi j is the
number of edges connecting input j to output i. Let e be the vector (1, 1, . . . , 1)T . Then
Me = de, so e is an eigenvector of M with eigenvalue d. Moreover, d is the largest eigen-
value of M. Indeed, denoting by |x|1 =

∑
i |xi| for any row vector x = (x1, . . . , xk), we have

|xM|1 ≤ |x|1.

Theorem 6.23 Let G be a multigraph de�ned by the matrix M. For all γ > 0, and

µ < d√γ/2, (6.23)

there is an α > 0 such that if the second largest eigenvalue of the matrix MT M is µ2 then G
is a (d, α, γ, k)-compressor.

Proof. The matrix MT M has largest eigenvalue d2. Since it is symmetric, it has a basis of
orthogonal eigenvectors e1, . . . , ek of unit length with corresponding nonnegative eigenva-
lues

λ2
1 ≥ · · · ≥ λ2

k

where λ1 = d and e1 = e/
√

k. Recall that in the orthonormal basis {ei}, any vector f can be
written as f =

∑
i( f , ei)ei. For an arbitrary vector f , we can estimate |M f |2 as follows.

|M f |2 = (M f , M f ) = ( f , MT M f ) =
∑

i
λ2

i ( f , ei)2

≤ d2( f , e1)2 + µ2
∑

i>1
( f , ei)2 ≤ d2( f , e1)2 + µ2( f , f )

= d2( f , e)2/k + µ2( f , f ).

Let now A ⊂ {1, . . . , k} be a set of size αk and f = ( f1, . . . , fk)T where f j = 1 for j ∈ A and
0 otherwise. Then, coordinate i of M f counts the number di of edges coming from the set
A to the node i. Also, ( f , e) = ( f , f ) = |A|, the number of elements of A. We get

∑

i
d2

i = |M f |2 ≤ d2( f , e)2/k + µ2( f , f ) = d2α2k + µ2αk,

k−1
∑

i
(di/d)2 ≤ α2 + (µ/d)2α.

Suppose that there are cαk nodes i with di > d/2, then this says

cα ≤ 4(µ/d)2α + 4α2.
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Since (6.23) implies 4(µ/d)2 < γ, it follows that M is a (d, α, γ, k, k)-compressor for small
enough α.

It is actually sufficient to look for graphs with large k and µ/d < c < 1 where d, c are
constants. To see this, let us de�ne the product of two bipartite multigraphs with 2k vertices
by the multigraph belonging to the product of the corresponding matrices.

Suppose that M is symmetric: then its second largest eigenvalue is µ and the ratio of the
two largest eigenvalues of Mr is (µ/d)r. Therefore using Mr for a sufficiently large r as our
matrix, the condition (6.23) can be satis�ed. Unfortunately, taking the power will increase
the degree d, taking us probably even farther away from practical realisability.

We found that there is a construction of a compressor with the desired parameters as
soon as we �nd multigraphs with arbitrarily large sizes 2k, with symmetric matrices Mk and
with a ratio of the two largest eigenvalues of Mk bounded by a constant c < 1 independent
of k. There are various constructions of such multigraphs (see the references in the historical
overview). The estimation of the desired eigenvalue quotient is never very simple.

Exercises
6.4-1 The proof of Theorem 6.16 uses a �coda� circuit of size (k + 1)7. Once we proved
this theorem we could, of course, apply it to the computation of the �nal majority itself: this
would reduce the size of the coda circuit to O(k lg k). Try out this approach on the numerical
examples considered above to see whether it results in a signi�cant improvement.
6.4-2 The proof of Theorem 6.20 provided also bipartite graphs with the compressor pro-
perty, with k inputs and k′ < 0.8k outputs. An idea to build a smaller �coda� circuit in the
proof of Theorem 6.16 is to concatenate several such compressors, decreasing the number
of cables in a geometric series. Explore this idea, keeping in mind, however, that as k dec-
reases, the �exponential� error estimate in inequality (6.19) becomes weaker.
6.4-3 Let us call a d-halfregular bipartite multigraph with a set A of k inputs and a set B
of k outputs a (d, α, λ, k)-expander if it has the following property: for every set E ⊂ A
with |E| ≤ αk, the number of those elements of B connected to E is at least λαk. Prove the
following theorem analogous to Theorem 6.20: For all λ < d, there is an α such that for
all k > 0 there is a (d, α, λ, k)-expander. [Hint: Analogously to the proof of Theorem 6.20,
show that a random d-half-regular multigraph is an expander with large probability. ]
6.4-4 In a noisy Boolean circuit, let Fv = 1 if the gate at vertex v fails and 0 otherwise.
Further, let Tv = 1 if v is tainted, and 0 otherwise. Suppose that the distribution of the ran-
dom variables Fv does not depend on the Boolean input vector. Show that then the joint
distribution of the random variables Tv is also independent of the input vector.
6.4-5 This exercise extends the result of Exercise 6.3-1. to random input vectors: it shows
that if a random input vector has only a small number of errors, then the iterated majority
voteMr

3 of Exercise 6.2-5. may still work for it, if we rearrange the input wires randomly.
Let k = 3r, and let j = ( j1, . . . , jk) be a vector of integers ji ∈ {1, . . . , k}. We de�ne a Bo-
olean circuit C( j) as follows. This circuit takes input vector x = (x1, . . . , xk), computes the
vector y = (y1, . . . , yk) where yi = x ji (in other words, just leads a wire from input node ji
to an �intermediate node� i) and then inputs y into the circuitMr

3.
Denote the (possibly random) output bit of C( j) by Z. For any �xed input vector x,

assuming that our majority gates can fail with probability ≤ ε ≤ α/2 independently, denote
q( j, x) := P[ Z = 1 ]. Assume that the input is a vector X = (X1, . . . , Xk) of (not necessarily
independent) Boolean random variables, with p(x) := P[ X = x ]. Denoting |X| =

∑
i Xi,
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Figure 6.9. A shift register.

assume P[ |X| > αk ] ≤ ρ < 1. Prove that there is a choice of the vector j for which
∑

x
p(x)q( j, x) ≤ ρ + max{10ε, 0.3(α/0.3)2k }.

The choice may depend on the distribution of the random vector X. [Hint: Choose the vector
j (and hence the circuit C( j)) randomly, as a random vector J = (J1, . . . , Jk) where the
variables Ji are independent and uniformly distributed over {1, . . . , k}, and denote s( j) :=
P[ J = j ]. Then prove

∑

j
s( j)

∑

x
p(x)q( j, x) ≤ ρ + max{10ε, 0.3(α/0.3)2k }.

For this, interchange the averaging over x and j. Then note that ∑
j s( j)q( j, x) is the proba-

bility of Z = 1 when the �wires� Ji are chosen randomly �on the �y� during the computation
of the circuit. ]
6.4-6 Taking the notation of Exercise 6.4-4. suppose, like there, that the random variables
Fv are independent of each other, and their distribution does not depend on the Boolean
input vector. Take the Boolean circuit Cab(N ,R) introduced in De�nition 6.21, and de�ne
the random Boolean vector T = (T1, . . . , Tk) where Ti = 1 if and only if the ith output node
is tainted. Apply Exercise 6.4-5. to show that there is a circuit C( j) that can be attached to
the output nodes to play the role of the �coda� circuit in the proof of Theorem 6.16. The
size of C( j) is only linear in k, not (k + 1)7 as for the coda circuit in the proof there. But,
we assumed a little more about the fault distribution, and also the choice of the �wiring� j
depends on the circuit Cab(N ,R).

6.5. The reliable storage problem
6.5.1. Clocked circuits
An obvious element of ordinary computations is missing from the above described Boolean
circuit model: repetition. If we want to repeat some computation steps, then we need to
introduce timing into the work of computing elements and to store the partial results between
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Figure 6.10. Part of a circuit which computes the sum of two binary numbers x, y. We feed the digits of x and y
beginning with the lowest-order ones, at the input nodes. The digits of the sum come out on the output edge. A
shift register holds the carry.

consecutive steps. Let us look at the drawings of the circuit designer again. We will see
components like in Figure 6.9, with one ingoing edge and no operation associated with
them; these will be called shift registers. The shift registers are controlled by one central
clock (invisible on the drawing). At each clock pulse, the assignment value on the incoming
edge jumps onto the outgoing edges and �stays in� the register. Figure 6.10 shows how shift
registers may be used inside a circuit.

De�nition 6.24 A clocked circuit over a complete basis Q is given by a tuple just like a
Boolean circuit in (6.11). Also, the circuit de�nes a graph G = (V, E) similarly. Recall that
we identi�ed nodes with the natural numbers 1, . . . ,N. To each non-input node v either a
gate bv is assigned as before, or a shift register: in this case kv = 1 (there is only one
argument). We do not require the graph to be acyclic, but we do require every directed cycle
(if there is any) to pass through at least one shift register.

The circuit works in a sequence t = 0, 1, 2, . . . of clock cycles. Let us denote the input
vector at clock cycle t by xt = (xt

1, . . . , xt
n), the shift register states by st = (st

1, . . . , st
k), and

the output vector by yt = (yt
1, . . . , yt

m). The part of the circuit going from the inputs and
the shift registers to the outputs and the shift registers de�nes two Boolean vector functions
λ : {0, 1}k × {0, 1}n → {0, 1}m and τ : {0, 1}k × {0, 1}n → {0, 1}k. The operation of the clocked
circuit is described by the following equations (see Figure 6.11, which does not show any
inputs and outputs).

yt = λ(st, xt), st+1 = τ(st, xt). (6.24)

Frequently, we have no inputs or outputs during the work of the circuit, so the equati-
ons (6.24) can be simpli�ed to

st+1 = τ(st). (6.25)
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clock

Figure 6.11. A �computer� consists of some memory (shift registers) and a Boolean circuit operating on it. We can
de�ne the size of computation as the size of the computer times the number of steps.

How to use a clocked circuit described by this equation for computation? We write some
initial values into the shift registers, and propagate the assignment using the gates, for the
given clock cycle. Now we send a clock pulse to the register, causing it to write new values
to their output edges (which are identical to the input edges of the circuit). After this, the
new assignment is computed, and so on.

How to compute a function f (x) with the help of such a circuit? Here is a possible
convention. We enter the input x (only in the �rst step), and then run the circuit, until it
signals at an extra output edge when desired result f (x) can be received from the other
output nodes.

Example 6.8 This example uses a convention different from the above described one: new input
bits are supplied in every step, and the output is also delivered continuously. For the binary adder of
Figure 6.10, let ut and vt be the two input bits in cycle t, let ct be the content of the carry, and wt be
the output in the same cycle. Then the equations (6.24) now have the form

wt = ut ⊕ vt ⊕ ct, ct+1 = Maj(ut, vt, ct),

where Maj is the majority operation.

6.5.2. Storage
A clocked circuit is an interesting parallel computer but let us pose now a task for it that
is trivial in the absence of failures: information storage. We would like to store a certain
amount of information in such a way that it can be recovered after some time, despite failures
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in the circuit. For this, the transition function τ introduced in (6.25) cannot be just the
identity: it will have to perform some error-correcting operations. The restoring organs
discussed earlier are natural candidates. Indeed, suppose that we use k memory cells to
store a bit of information. We can call the content of this k-tuple safe when the number of
memory cells that dissent from the correct value is under some threshold ϑk. Let the rest
of the circuit be a restoring organ built on a (d, α, γ, k)-compressor with α = 0.9ϑ. Suppose
that the input cable is safe. Then the probability that after the transition, the new output
cable (and therefore the new state) is not safe is O(e−ck) for some constant c. Suppose we
keep the circuit running for t steps. Then the probability that the state is not safe in some
of these steps is O(te−ck) which is small as long as t is signi�cantly smaller than eck. When
storing m bits of information, the probability that any of the bits loses its safety in some step
is O(mte−cm).

To make this discussion rigorous, an error model must be introduced for clocked circu-
its. Since we will only consider simple transition functions τ like the majority vote above,
with a single computation step between times t and t + 1, we will make the model also very
simple.

De�nition 6.25 Consider a clocked circuit described by equation (6.25), where at each
time instant t = 0, 1, 2, . . . , the con�guration is described by the bit vector st = (st

1, . . . , st
n).

Consider a sequence of random bit vectors Yt = (Y t
1, . . . , Y t

n) for t = 0, 1, 2, . . . . Similarly
to (6.14) we de�ne

Zi,t = τ(Yt−1) ⊕ Y t
i . (6.26)

Thus, Zi,t = 1 says that a failure occurs at the space-time point (i, t). The sequence {Yt} will
be called ε-admissible if (6.15) holds for every set C of space-time points with t > 0.

By the just described construction, it is possible to keep m bits of information for T
steps in

O(m lg(mT )) (6.27)

memory cells. More precisely, the cable YT will be safe with large probability in any admis-
sible evolution Yt (t = 0, . . . , T ).

Cannot we do better? The reliable information storage problem is related to the problem
of information transmission: given a message x, a sender wants to transmit it to a receiver
through a noisy channel. Only now sender and receiver are the same person, and the noisy
channel is just the passing of time. Below, we develop some basic concepts of reliable
information transmission, and then we will apply them to the construction of a reliable data
storage scheme that is more economical than the above seen naive, repetition-based solution.

6.5.3. Error-correcting codes
Error detection
To protect information, we can use redundancy in a way more efficient than repetition. We
might even add only a single redundant bit to our message. Let x = (x1, . . . , x6), (xi ∈ {0, 1})
be the word we want to protect. Let us create the error check bit

x7 = x1 ⊕ · · · ⊕ x6.
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For example, x = 110010, x′ = 1100101. Our codeword x′ = (x1, . . . , x7) will be subject to
noise and it turns into a new word, y. If y differs from x′ in a single changed (not deleted or
added) bit then we will detect this, since then y violates the error check relation

y1 ⊕ · · · ⊕ y7 = 0.

We will not be able to correct the error, since we do not know which bit was corrupted.

Correcting a single error
To also correct corrupted bits, we need to add more error check bits. We may try to add two
more bits:

x8 = x1 ⊕ x3 ⊕ x5,

x9 = x1 ⊕ x2 ⊕ x5 ⊕ x6.

Then an uncorrupted word y must satisfy the error check relations

y1 ⊕ · · · ⊕ y7 = 0,
y1 ⊕ y3 ⊕ y5 ⊕ y8 = 0,

y1 ⊕ y2 ⊕ y5 ⊕ y6 ⊕ y9 = 0,

or, in matrix notation Hy mod 2 = 0, where

H =


1 1 1 1 1 1 1 0 0
1 0 1 0 1 0 0 1 0
1 1 0 0 1 1 0 0 1

 = (h1, . . . , h9).

Note h1 = h5. The matrix H is called the error check matrix, or parity check matrix.
Another way to write the error check relations is

y1h1 ⊕ · · · ⊕ y5h5 ⊕ · · · ⊕ y9h9 = 0.

Now if y is corrupted, even if only in a single position, unfortunately we still cannot correct
it: since h1 = h5, the error could be in position 1 or 5 and we could not tell the difference.
If we choose our error-check matrix H in such a way that the column vectors h1, h2, . . . are
all different (of course also from 0), then we can always correct an error, provided there is
only one. Indeed, if the error was in position 3 then

Hy mod 2 = h3.

Since all vectors h1, h2, . . . are different, if we see the vector h3 we can imply that the bit
y3 is corrupted. This code is called the Hamming code. For example, the following error
check matrix de�nes the Hamming code of size 7:

H =


1 1 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

 = (h1, . . . , h7). (6.28)

In general, if we have s error check bits then our code can have size 2s−1, hence the number
of bits left to store information, the information bits is k = 2s − s − 1. So, to protect m bits
of information from a single error, the Hamming code adds ≈ log m error check bits. This is
much better than repeating every bit 3 times.
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encoding noise (channel) decoding

Figure 6.12. Transmission through a noisy channel.

Codes
Let us summarise the error-correction scenario in general terms. In order to �ght noise, the
sender encodes the message x by an encoding function φ∗ into a longer string φ∗(x) which,
for simplicity, we also assume to be binary. This codeword will be changed by noise into a
string y. The receiver gets y and applies to it a decoding function φ∗.

De�nition 6.26 The pair of functions φ∗ : {0, 1}m → {0, 1}n and φ∗ : {0, 1}n → {0, 1}m is
called a code if φ∗(φ∗(x)) = x holds for all x ∈ {0, 1}m. The strings x ∈ {0, 1}m are called
messages, words of the form y = φ∗(x) ∈ {0, 1}n are called codewords. (Sometimes the
set of all codewords by itself is also called a code.) For every message x, the set of words
Cx = { y : φ∗(y) = x } is called the decoding set of x. (Of course, different decoding sets are
disjoint.) The number

R = m/n
is called the rate of the code.

We say that our code that corrects t errors if for all possible messages x ∈ {0, 1}m, if
the received word y ∈ {0, 1}n differs from the codeword φ∗(x) in at most t positions, then
φ∗(y) = x.

If the rate is R then the n-bit codewords carry Rn bits of useful information. In terms of
decoding sets, a code corrects t errors if each decoding set Cx contains all words that differ
from φ∗(x) in at most t symbols (the set of these words is a kind of �ball� of radius t).

The Hamming code corrects a single error, and its rate is close to 1. One of the important
questions connected with error-correcting codes is how much do we have to lower the rate
in order to correct more errors.

Having a notion of codes, we can formulate the main result of this section about infor-
mation storage.

Theorem 6.27 (Network information storage). There are constants ε, c1, c2,R > 0 with
the following property. For all sufficiently large m, there is a code (φ∗, φ∗) with message
length m and codeword length n ≤ m/R, and a Boolean clocked circuitN of size O(n) with n
inputs and n outputs, such that the following holds. Suppose that at time 0, the memory cells
of the circuit contain string Y0 = φ∗(x). Suppose further that the evolution Y1,Y2, . . . ,Yt of
the circuit has ε-admissible failures. Then we have

P[ φ∗(Yt) , x ] < t(c1ε)−c2n.

This theorem shows that it is possible to store m bits information for time t, in a clocked
circuit of size

O(max(lg t,m)).
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As long as the storage time t is below the exponential bound ecm for a certain constant c, this
circuit size is only a constant times larger than the amount m of information it stores. (In
contrast, in (6.27) we needed an extra factor lg m when we used a separate restoring organ
for each bit.)

The theorem says nothing about how difficult it is to compute the codeword φ∗(x) at the
beginning and how difficult it is to carry out the decoding φ∗(Yt) at the end. Moreover, it is
desirable to perform these two operations also in a noise-tolerant fashion. We will return to
the problem of decoding later.

Linear algebra
Since we will be dealing more with bit matrices, it is convenient to introduce the algebraic
structure

F2 = ({0, 1},+, ·),
which is a two-element �eld. Addition and multiplication in F2 are de�ned modulo 2 (of
course, for multiplication this is no change). It is also convenient to vest the set {0, 1}n of
binary strings with the structure Fn

2 of an n-dimensional vector space over the �eld F2. Most
theorems and algorithms of basic linear algebra apply to arbitrary �elds: in particular, one
can de�ne the row rank of a matrix as the maximum number of linearly independent rows,
and similarly the column rank. Then it is a theorem that the row rank is equal to the column
rank. From now on, in algebraic operations over bits or bit vectors, we will write + in place
of ⊕ unless this leads to confusion. To save space, we will frequently write column vectors
horizontally: we write 

x1
...

xn

 = (x1, . . . , xn)T ,

where AT denotes the transpose of matrix A. We will write

Ir

for the identity matrix over the vector space Fr
2.

Linear codes
Let us generalise the idea of the Hamming code.

De�nition 6.28 A code (φ∗, φ∗) with message length m and codeword length n is linear
if, when viewing the message and code vectors as vectors over the �eld F2, the encoding
function can be computed according to the formula

φ∗(x) = Gx,

with an m× n matrix G called the generator matrix of the code. The number m is called the
the number of information bits in the code, the number

k = n − m

the number of error-check bits.
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Example 6.9 The matrix H in (6.28) can be written as H = (K, I3), with

K =


1 1 1 0
1 0 1 1
1 1 0 1

 .

Then the error check relation can be written as

y =

(
I4
−K

)


y1
...

y4.


.

This shows that the bits y1, . . . , y4 can be taken to be the message bits, or �information bits�, of the
code, making the Hamming code a linear code with the generator matrix (I4,−K)T . (Of course, −K =

K over the �eld F2.)

The following statement is proved using standard linear algebra, and it generalises the
relation between error check matrix and generator matrix seen in Example 6.9..

Claim 6.29 Let k,m > 0 be given with n = m + k.
1. For every n ×m matrix G of rank m over F2 there is a k × n matrix H of rank k with the

property
{Gx : x ∈ Fm

2 } = { y ∈ Fn
2 : Hy = 0 }. (6.29)

2. For every k × n matrix H of rank k over F2 there is an n × m matrix G of rank m with
property (6.29).

De�nition 6.30 For a vector x, let |x| denote the number of its nonzero elements: we will
also call it the weight of x.

In what follows it will be convenient to de�ne a code starting from an error-check matrix
H. If the matrix has rank k then the code has rate

R = 1 − k/n.

We can �x any subset S of k linearly independent columns, and call the indices i ∈ S
error check bits and the indices i < S the information bits. (In Example 6.9., we chose
S = {5, 6, 7}.) Important operations can performed over a code, however, without �xing any
separation into error-check bits and information bits.

6.5.4. Refreshers
Correcting a single error was not too difficult; �nding a similar scheme to correct 2 errors
is much harder. However, in storing n bits, typically εn (much more than 2) of those bits
will be corrupted in every step. There are ingenious and quite efficient codes of positive rate
(independent of n) correcting even this many errors. When applied to information storage,
however, the error-correction mechanism itself must also work in noise, so we are looking
for a particularly simple one. It works in our favour, however, that not all errors need to be
corrected: it is sufficient to cut down their number, similarly to the restoring organ in reliable
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Boolean circuits above.
For simplicity, as gates of our circuit we will allow certain Boolean functions with a

large, but constant, number of arguments. On the other hand, our Boolean circuit will have
just depth 1, similarly to a restoring organ of Section 6.4. The output of each gate is the
input of a memory cell (shift register). For simplicity, we identify the gate and the memory
cell and call it a cell. At each clock tick, a cell reads its inputs from other cells, computes
a Boolean function on them, and stores the result (till the next clock tick). But now, instead
of majority vote among the input values cells, the Boolean function computed by each cell
will be slightly more complicated.

Our particular restoring operations will be de�ned, with the help of a certain k×n parity
check matrix H = (hi j). Let x = (x1, . . . , xn)T be a vector of bits. For some j = 1, . . . , n, let
V j (from �vertical�) be the set of those indices i with hi j = 1. For integer i = 1, . . . , k, let Hi
(from �horizontal�) be the set of those indices j with hi j = 1. Then the condition Hx = 0
can also be expressed by saying that for all i, we have ∑

j∈Hi x j ≡ 0 (mod 2). The sets Hi
are called the parity check sets belonging to the matrix H. From now on, the indices i will
be called checks, and the indices j locations.

De�nition 6.31 A linear code H is a low-density parity-check code with bounds K,N > 0
if the following conditions are satis�ed:
1. For each j we have |V j| ≤ K;
2. For each i we have |Hi| ≤ N.
In other words, the weight of each row is at most N and the weight of each column is at
most K.

In our constructions, we will keep the bounds K,N constant while the length n of co-
dewords grows. Consider a situation when x is a codeword corrupted by some errors. To
check whether bit x j is incorrect we may check all the sums

si =
∑

j∈Hi

x j

for all i ∈ V j. If all these sums are 0 then we would not suspect x j to be in error. If only one
of these is nonzero, we will know that x has some errors but we may still think that the error
is not in bit x j. But if a signi�cant number of these sums is nonzero then we may suspect
that x j is a culprit and may want to change it. This idea suggests the following de�nition.

De�nition 6.32 For a low-density parity-check code H with bounds K,N, the refreshing
operation associated with the code is the following, to be performed simultaneously for all
locations j:

Find out whether more than bK/2c of the sums si are nonzero among the
ones for i ∈ V j. If this is the case, �ip x j.

Let xH denote the vector obtained from x by this operation. For parameters 0 < ϑ, γ < 1, let
us call H a (ϑ, γ,K,N, k, n)-refresher if for each vector x of length n with weight |x| ≤ ϑn
the weight of the resulting vector decreases thus: |xH | ≤ γϑn.
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Figure 6.13. Using a refresher.

Notice the similarity of refreshers to compressors. The following lemma shows the use
of refreshers, and is an example of the advantages of linear codes.

Lemma 6.33 For an (ϑ, γ,K,N, k, n)-refresher H, let x be an n-vector and y a codeword
of length n with |x − y| ≤ ϑn. Then |xH − y| ≤ γϑn.

Proof. Since y is a codeword, Hy = 0, implying H(x − y) = Hx. Therefore the error
correction �ips the same bits in x − y as in x: (x − y)H − (x − y) = xH − x, giving xH − y =

(x − y)H. So, if |x − y| ≤ ϑn, then |xH − y| = |(x − y)H | ≤ γϑn.

Theorem 6.34 There is a parameter ϑ > 0 and integers K > N > 0 such that for all
sufficiently large code length n and k = Nn/K there is a (ϑ, 1/2,K,N, k, n)-refresher with at
least n − k = 1 − N/K information bits.

In particular, we can choose N = 100, K = 120, ϑ = 1.31 · 10−4.

We postpone the proof of this theorem, and apply it �rst.
Proof. of Theorem 6.27 Theorem 6.34 provides us with a device for information storage.
Indeed, we can implement the operation x→ xH using a single gate g j of at most KN inputs
for each bit j of x. Now as long as the inequality |x− y| ≤ ϑn holds for some codeword y, the
inequality |xH−y| ≤ γϑn follows with γ = 1/2. Of course, some gates will fail and introduce
new deviations resulting in some x′ rather than xH. Let eε < ϑ/2 and ρ = 1 − γ(= 1/2).
Then just as earlier, the probability that there are more than ρϑn failures is bounded by the
exponentially decreasing expression (eε/ρϑ)ρϑn. With fewer than ρϑn new deviations, we
will still have |x′ − y| < (γ + ρ)ϑn < ϑn. The probability that at any time ≤ t the number of
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failures is more than ρϑn is bounded by

t(eε/ρϑ)ρϑn < t(6ε/ϑ)(1/2)ϑn.

Example 6.10 Let ε = 10−9. Using the sample values in Theorem 6.34 we can take N = 100, K = 120,
so the information rate is 1 − N/K = 1/6. With the corresponding values of ϑ, and γ = ρ = 1/2, we
have ρϑ = 6.57 · 10−5. The probability that there are more than ρϑn failures is bounded by

(eε/ρϑ)ρϑn = (10−4e/6.57)6.57·10−5n ≈ e−6.63·10−4n.

This is exponentially decreasing with n, albeit initially very slowly: it is not really small until n = 104.
Still, for n = 106, it gives e−663 ≈ 1.16 · 10−288.

Decoding?
In order to use a refresher for information storage, �rst we need to enter the encoded in-
formation into it, and at the end, we need to decode the information from it. How can this
be done in a noisy environment? We have nothing particularly smart to say here about en-
coding besides the reference to the general reliable computation scheme discussed earlier.
On the other hand, it turns out that if ε is sufficiently small then decoding can be avoided
altogether.

Recall that in our codes, it is possible to designate certain symbols as information sym-
bols. So, in principle it is sufficient to read out these symbols. The question is only how
likely it is that any one of these symbols will be corrupted. The following theorem upper-
bounds the probability for any symbol to be corrupted, at any time.

Theorem 6.35 For parameters ϑ, γ > 0, integers K > N > 0, code length n, with k =

Nn/K, consider a (ϑ, 1/2,K,N, k, n)-refresher. Build a Boolean clocked circuit N of size
O(n) with n inputs and n outputs based on this refresher, just as in the proof of Theorem 6.27.
Suppose that at time 0, the memory cells of the circuit contain string Y0 = φ∗(x). Suppose
further that the evolution Y1,Y2, . . . ,Yt of the circuit has ε-admissible failures. Let Yt =

(Yt(1), . . . , Yt(n)) be the bits stored at time t. Then ε < (2.1KN)−10 implies

P[ Yt( j) , Y0( j) ] ≤ cε + t(6ε/ϑ)(1/2)ϑn

for some c depending on N,K.

Remark 6.36 What we are bounding is only the probability of a corrupt symbol in the
particular position j. Some of the symbols will certainly be corrupt, but any one symbol one
points to will be corrupt only with probability ≤ cε.

The upper bound on ε required in the condition of the theorem is very severe, unders-
coring the theoretical character of this result.

Proof. As usual, it is sufficient to assume Y0 = 0. Let Dt = { j : Yt( j) = 1 }, and let Et be
the set of circuit elements j which fail at time t. Let us de�ne the following sequence of
integers:

b0 = 1, bu+1 = d(4/3)bue, cu = d(1/3)bue.
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It is easy to see from here by induction

b0 + · · · + bu−1 ≤ 3bu ≤ 9cu. (6.30)

The �rst members of the sequence bu are 1,2,3,4,6,8,11,15,18,24,32, and for cu they are
1,1,1,2,2,3,4,5,6,8,11.

Claim 6.37 Suppose that Yt( j0) , 0. Then either there is a time t′ < t at which ≥ (1/2)ϑn
circuit elements failed, or there is a sequence of sets Bu ⊆ Dt−u for 0 ≤ u < v and C ⊆ Et−v
with the following properties.
1. For u > 0, every element of Bu shares some error-check with some element of Bu−1. Also

every element of C shares some error-check with some element of Bv−1.
2. We have |Et−u ∩ Bu| < |Bu|/3 for u < v, on the other hand C ⊆ Et−v.
3. We have B0 = { j0}, |Bu| = bu, for all u < v, and |C| = cv.

Proof. We will de�ne the sequence Bu recursively, and will say when to stop. If j0 ∈ Et then
we set v = 0, C = {0}, and stop. Suppose that Bu is already de�ned. Let us de�ne Bu+1 (or C
if v = u + 1). Let B′u+1 be the set of those j which share some error-check with an element of
Bu, and let B′′u+1 = B′u+1 ∩ Dt−u−1. The refresher property implies that either |B′′u+1| > ϑn or

|Bu r Et−u| ≤ (1/2)|B′′u+1|.

In the former case, there must have been some time t′ < t−u with |Et′ | > (1/2)ϑn, otherwise
Dt−u−1 could never become larger than ϑn. In the latter case, the property |Et−u ∩ Bu| <
(1/3)|Bu| implies

(2/3)|Bu| < |Bu r Et−u| ≤ (1/2)|B′′u+1|,
(4/3)bu < |B′′u+1|.

Now if |Et−u−1 ∩ B′′u+1| < (1/3)|B′′u+1| then let Bu+1 be any subset of B′′u+1 with size bu+1
(there is one), else let v = u + 1 and C ⊆ Et−u−1 ∩ B′′u+1 a set of size cv (there is one). This
construction has the required properties.

For a given Bu, the number of different choices for Bu+1 is bounded by
(|B′u+1|

bu+1

)
≤

(
KNbu
bu+1

)
≤

(
eKNbu

bu+1

)bu+1

≤ ((3/4)eKN)bu+1 ≤ (2.1KN)bu+1 ,

where we used (6.10). Similarly, the number of different choices for C is bounded by
(
KNbv−1

cv

)
≤ µcv with µ = 2.1KN.

It follows that the number of choices for the whole sequence B1, . . . , Bv−1,C is bounded by

µb1+···+bv−1+cv .

On the other hand, the probability for a �xed C to have C ⊆ Ev is ≤ εcv . This way, we can
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bound the probability that the sequence ends exactly at v by

pv ≤ εcvµb1+···+bv−1+cv ≤ εcvµ10cv ,

where we used (6.30). For small v this gives

p0 ≤ ε, p1 ≤ εµ, p2 ≤ εµ3, p3 ≤ ε2µ6, p4 ≤ ε2µ10, p5 ≤ ε3µ16.

Therefore
∞∑

v=0
pv ≤

5∑

v=0
pv +

∞∑

v=6
(µ10ε)cv ≤ ε(1 + µ + µ3) + ε2(µ6 + µ10) +

ε3µ16

1 − εµ10 ,

where we used εµ10 < 1 and the property cv+1 > cv for v ≥ 5. We can bound the last
expression by cε with an appropriate constant c.

We found that the event Yt( j) , Y0( j) happens either if there is a time t′ < t at which
≥ (1/2)ϑn circuit elements failed (this has probability bound t(2eε/ϑ)(1/2)ϑn) or an event of
probability ≤ cε occurs.

Expanders
We will construct our refreshers from bipartite multigraphs with a property similar to comp-
ressors: expanders (see Exercise 6.4-3.).

De�nition 6.38 Here, we will distinguish the two parts of the bipartite (multi) graphs not
as inputs and outputs but as left nodes and right nodes. A bipartite multigraph B is (N,K)-
regular if the points of the left set have degree N and the points in the right set have degree
K. Consider such a graph, with the left set having n nodes (then the right set has nN/K
nodes). For a subset E of the left set of B, let Nb(E) consist of the points connected by some
edge to some element of E. We say that the graph B expands E by a factor λ if we have
|Nb(E)| ≥ λ|E|. For α, λ > 0, our graph B is an (N,K, α, λ, n)-expander if B expands every
subset E of size ≤ αn of the left set by a factor λ.

De�nition 6.39 Given an (N,K)-regular bipartite multigraph B, with left set {u1, . . . , un}
and right set {v1, . . . , vk}, we assign to it a low-density parity-check code H(B) as follows:
hi j = 1 if vi is connected to u j, and 0 otherwise.

We will create our low-density parity-check code H(B) with the help of an expander
graph B. Now for every possible error set E, the set Nb(E) describes the set of parity check
that the elements of E participate in. Under some conditions, the lower bound on the size of
Nb(E) guarantees that a sufficient number of errors will be corrected.

Theorem 6.40 Let B be an (N,K, α, (7/8)N, n)-expander with integer αn. Let k = Nn/K.
Then H(B) is a ((3/4)α, 1/2,K,N, k, n)-refresher.

Proof. More generally, for any ε > 0, let B be an (N,K, α, (3/4 + ε)N, n)-expander with
integer αn. We will prove that H(B) is a (α(1 + 4ε)/2, (1 − 4ε),K,N, k, n)-refresher. For an
n-dimensional bit vector x with A = { j : x j = 1 }, a = |A| = |x|, assume

a ≤ nα(1 + 4ε)/2. (6.31)
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Figure 6.14. A regular expander.

Our goal is to show |xH | ≤ a(1− 4ε): in other words, that in the corrected vector the number
of 1's decreases at least by a factor of (1 − 4ε).

Let F be the set of bits in A that the error correction operation fails to �ip, with f = |F|,
and G the set of of bits that were 0 but the operation turns them to 1, with g = |G|. Our goal
is to bound |F ∪ G| = f + g. The key observation is that each element of G shares at least
half of its neighbours with elements of A, and similarly, each element of F shares at least
half of its neighbours with other elements of A. Therefore both F and G contribute relatively
weakly to the expansion of A∪G. Since this expansion is assumed strong, the size of |F∪G|
must be limited.

Let
δ = |Nb(A)|/(Na).

By expansion, δ ≥ 3/4 + ε.
First we show |A∪G| ≤ αn. Assume namely that, on the contrary, |A∪G| > αn, and let

G′ be a subset of G such that |A ∪G′| = αn =: p (an integer, according to the assumptions
of the theorem). By expansion,

(3/4 + ε)N p ≤ Nb(A ∪G′).

Each bit in G has at most N/2 neighbours that are not neighbours of A; so,

|Nb(A ∪G′)| ≤ δNa + N(p − a)/2.

Combining these:

δa + (p − a)/2 ≥ (3/4 + ε)p,
a ≥ p(1 + 4ε)/(4δ − 2) ≥ αn(1 + 4ε)/2,
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since δ ≤ 1. This contradiction with (6.31) shows |A ∪G| ≤ αn.
Now |A ∪ G| ≤ αn implies (recalling that each element of G contributes at most N/2

new neighbours):

(3/4 + ε)N(a + g) ≤ |Nb(A ∪G)| ≤ δNa + (N/2)g,
(3/4 + ε)(a + g) ≤ δa + g/2,

(3/4 + ε)a + (1/4 + ε)g ≤ δa. (6.32)

Each j ∈ F must share at least half of its neighbours with others in A. Therefore j contri-
butes at most N/2 neighbours on its own; the contribution of the other N/2 must be divided
by 2, so the the total contribution of j to the neighbours of A is at most (3/4)N:

δNa = Nb(A) ≤ N(a − f ) + (3/4)N f = N(a − f /4),
δa ≤ a − f /4.

Combining with (6.32):

(3/4 + ε)a + (1/4 + ε)g ≤ a − f /4,
(1 − 4ε)a ≥ f + (1 + 4ε)g ≥ f + g.

Random expanders
Are there expanders good enough for Theorem 6.40? The maximum expansion factor is the
degree N and we require a factor of (7/8)N. It turns out that random choice works here, too,
similarly to the one used in the construction of compressors.

The choice has to be done in a way that the result is an (N,K)-regular bipartite mul-
tigraph of left size n. We will start with Nn left nodes u1, . . . , uNn and Nn right nodes
v1, . . . , vNn. Now we choose a random matching, that is a set of Nn edges with the pro-
perty that every left node is connected by an edge to exactly one right node. Let us call the
resulting graph M. We obtain B now as follows: we collapse each group of N left nodes
into a single node: u1, . . . , uN into one node, uN+1, . . . , u2N into another node, and so on.
Similarly, we collapse each group of K right nodes into a single node: v1, . . . , vK into one
node, vK+1, . . . , v2K into another node, and so on. The edges between any pair of nodes in B
are inherited from the ancestors of these nodes in M. This results in a graph B with n left
nodes of degree N and nN/K right nodes of degree K. The process may give multiple edges
between nodes of B, this is why B is called a multigraph. Two nodes of M will be called
cluster neighbours if they are collapsed to the same node of B.

Theorem 6.41 Suppose
0 < α ≤ e −1

N/8−1 · (22K) −1
1−8/N .

Then the above random choice gives an (N,K, α, (7/8)N, n)-expander with positive proba-
bility.

Example 6.11 If N = 48, K = 60 then the inequality in the condition of the theorem becomes

α ≤ 1/6785.
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Proof. Let E be a set of size αn in the left set of B. We will estimate the probability that
E has too few neighbours. In the above choice of the graph B we might as well start with
assigning edges to the nodes of E, in some �xed order of the N|E| nodes of the preimage of
E in M. There are N|E| edges to assign. Let us call a node of the right set of M occupied if
it has a cluster neighbour already reached by an earlier edge. Let Xi be a random variable
that is 1 if the ith edge goes to an occupied node and 0 otherwise. There are

Nn − i + 1 ≥ Nn − Nαn = Nn(1 − α)

choices for the ith edge and at most KN |E| of these are occupied. Therefore

P[ Xi = 1 | X1, . . . , Xi−1 ] ≤ KN |E|
Nn(1 − α) =

Kα
1 − α =: p.

Using the large deviations theorem in the generalisation given in Exercise 6.1-3., we have,
for f > 0:

P[
Nαn∑

i=1
Xi ≥ f Nαn ] ≤ e−NαnD( f ,p) ≤

(
ep
f

) f Nαn
.

Now, the number of different neighbours of E is Nαn −∑
i Xi, hence

P[ N(E) ≤ Nαn(1 − f ) ] ≤
(

ep
f

) f Nαn
=

(
eKα

f (1 − α)

) f Nαn
.

Let us now multiply this with the number
∑

i≤αn

(
n
αn

)
≤ (e/α)αn

of sets E of size ≤ αn:
( e
α

)αn( eKα
f (1 − α)

) f Nαn
=

α f N−1e
(

eK
f (1 − α)

) f N
αn

≤
α f N−1e

(
eK

0.99 f

) f N
αn

,

where in the last step we assumed α ≤ 0.01. This is < 1 if

α ≤ e
−1

f N−1

(
eK

0.99 f

) −1
1−1/( f N)

.

Substituting f = 1/8 gives the formula of the theorem.
Proof. of Theorem 6.34 Theorem 6.40 shows how to get a refresher from an expander, and
Theorem 6.41 shows the existence of expanders. Example 6.11. shows that expander with
the needed sample parameters exists.

Exercises
6.5-1 Prove Proposition 6.29.
6.5-2 Apply the ideas of the proof of Theorem 6.35 to the proof of Theorem 6.16, showing
that the �coda� circuit is not needed: each wire of the output cable carries the correct value
with high probability.
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Problems

6-1. Critical value
Consider a circuitMk like in Exercise 6.2-5., assuming that each gate fails with probability
≤ ε independently of all the others and of the input. Assume that the input vector is all 0, and
let pk(ε) be the probability that the circuit outputs a 1. Show that there is a value ε0 < 1/2
with the property that for all ε < ε0 we have limk→∞ pk(ε) = 0, and for ε0 < ε ≤ 1/2, we
have have limk→∞ pk(ε) = 1/2. Estimate also the speed of convergence in both cases.
6-2. Regular compressor

We de�ned a compressor as a d-halfregular bipartite multigraph. Let us call a compressor
regular if it is a d-regular multigraph (the input nodes also have degree d). Prove a theorem
similar to Theorem 6.20: for each γ < 1 there is an integer d > 1 and an α > 0 such that for
all integer k > 0 there is a regular (d, α, γ, k)-compressor. Hint: Choose a random d-regular
bipartite multigraph by the following process: (1. Replace each vertex by a group of d
vertices. 2. Choose a random complete matching between the new input and output vertices.
3. Merge each group of d vertices into one vertex again.) Prove that the probability, over
this choice, that a d-regular multigraph is a not a compressor is small. For this, express the
probability with the help of factorials and estimate the factorials using Stirling's formula.
6-3. Two-way expander

Recall the de�nition of expanders from Exercise 6.4-3.. Call a (d, α, λ, k)-expander regular
if it is a d-regular multigraph (the input nodes also have degree d). We will call this multig-
raph a two-way expander if it is an expander in both directions: from A to B and from B to
A. Prove a theorem similar to the one in Problem 6-2.: for all λ < d there is an α > 0 such
that for all integers k > 0 there is a two-way regular (d, α, λ, k)-expander.
6-4. Restoring organ from 3-way voting

The proof of Theorem 6.20 did not guarantee a (d, α, γ, k)-compressor with any γ < 1/2,
d < 7. If we only want to use 3-way majority gates, consider the following construction.
First create a 3-halfregular bipartite graph G with inputs u1, . . . , uk and outputs v1, . . . , v3k,
with a 3-input majority gate in each vi. Then create new nodes w1, . . . ,wk, with a 3-input
majority gate in each w j. The gate of w1 computes the majority of v1, v2, v3, the gate of
w2 computes the majority of v4, v5, v6, and so on. Calculate whether a random choice of the
graph G will turn the circuit with inputs (u1, . . . , uk) and outputs (w1, . . . ,wk) into a restoring
organ. Then consider three stages instead of two, where G has 9k outputs and see what is
gained.
6-5. Restoring organ from NOR gates

The majority gate is not the only gate capable of strengthening the majority. Recall the
NOR gate introduced in Exercise 6.2-2., and form NOR2(x1, x2, x3, x4) = (x1 NOR x2) NOR
(x3 NOR x4). Show that a construction similar to Problem 6-4. can be carried out with NOR2
used in place of 3-way majority gates.
6-6. More randomness, smaller restoring organs

Taking the notation of Exercise 6.4-4., suppose like there, that the random variables Fv are
independent of each other, and their distribution does not depend on the Boolean input vec-
tor. Apply the idea of Exercise 6.4-6. to the construction of each restoring organ. Namely,
construct a different restoring organ for each position: the choice depends on the circuit
preceding this position. Show that in this case, our error estimates can be signi�cantly imp-
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roved. The improvement comes, just as in Exercise 6.4-6., since now we do not have to
multiply the error probability by the number of all possible sets of size ≤ αk of tainted
wires. Since we know the distribution of this set, we can average over it.
6-7. Near-sorting with expanders
In this problem, we show that expanders can be used for �near-sorting�. Let G be a regular
two-way (d, α, λ, k)-expander, whose two parts of size k are A and B. According to a theorem
of K�onig, (the edge-set of) every d-regular bipartite multigraph is the disjoint union of (the
edge-sets of) d complete matchings M1, . . . , Md. To such an expander, we assign a Boolean
circuit of depth d as follows. The circuit's nodes are subdivide into levels i = 0, 1, . . . , d. On
level i we have two disjoint sets Ai, Bi of size k of nodes ai j, bi j ( j = 1, . . . , k). The Boolean
value on ai j, bi j will be xi j and yi j respectively. Denote the vector of 2k values at stage i by
zi = (xi1, . . . , yik). If (p, q) is an edge in the matching Mi, then we put an ∧ gate into aip, and
a ∨ gate into biq:

xip = x(i−1)p ∧ y(i−1)q, yiq = x(i−1)p ∨ y(i−1)q.

This network is trying to �sort� the 0's to Ai and the 1's to Bi in d stages. More generally, the
values in the vectors zi could be arbitrary numbers. Then if x ∧ y still means min(x, y) and
x∨ y means max(x, y) then each vector zi is a permutation of the vector z0. Let β = (1 +λ)α.
Prove that zd is β-sorted in the sense that for all m, at least βm among the m smallest values
of zd is in its left half and at least βm among the m largest values are in its right half.
6-8. Restoring organ from near-sorters
Develop a new restoring organ using expanders, as follows. First, split each wire of the input
cable A, to get two sets A′0, B′0. Attach the β-sorter of Problem 6-7., getting outputs A′d, B′d.
Now split the wires of B′d into two sets A′′0 , B′′0 . Attach the β-sorter again, getting outputs
A′′d , B′′d . Keep only B = A′′d for the output cable. Show that the Boolean vector circuit leading
from A to B can be used as a restoring organ.

Chapter notes
The large deviation theorem (Theorem 6.1), or theorems similar to it, are sometimes attribu-
ted to Chernoff or Bernstein. One of its frequently used variants is given in Exercise 6.1-2..

The problem of reliable computation with unreliable components was addressed by
John von Neumann in [14] on the model of logic circuits. A complete proof of the result of
that paper (with a different restoring organ) appear �rst in the paper [5] of R. L. Dobrushin
and S. I. Ortyukov. Our presentation relied on parts of the paper [18] of N. Pippenger.

The lower-bound result of Dobrushin and Ortyukov in the paper [4] (corrected in [16],
[19] and [8]), shows that redundancy of log n is unavoidable for a general reliable computa-
tion whose complexity is n. However, this lower bound only shows the necessity of putting
the input into a redundantly encoded form (otherwise critical information may be lost in
the �rst step). As shown in [18], for many important function classes, linear redundancy is
achievable.

It seems natural to separate the cost of the initial encoding: it might be possible to
perform the rest of the computation with much less redundancy. An important step in this
direction has been made by D. Spielman in the paper [22] in (essentially) the clocked-
circuit model. Spielman takes a parallel computation with time t running on w elementary
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components and makes it reliable using only (log w)c times more processors and running
it (log w)c times longer. The failure probability will be texp(−w1/4). This is small as long
as t is not much larger than exp(w1/4). So, the redundancy is bounded by some power of
the logarithm of the space requirement; the time requirement does not enter explicitly. In
Boolean circuits no time- and space- complexity is de�ned separately. The size of the circuit
is analogous to the quantity obtained in other models by taking the product of space and time
complexity.

Questions more complex than Problem 6-1. have been studied in [17]. The method of
Problem 6-2., for generating random d-regular multigraphs is analysed for example in [2].
It is much harder to generate simple regular graphs (not multigraphs) uniformly. See for
example [10].

The result of Exercise 6.2-4. is due to C. Shannon, see [20]. The asymptotically best
circuit size for the worst functions was found by Lupanov in [12]. Exercise 6.3-1. is based
on [5], and Exercise 6.3-2. is based on [4] (and its corrections).

Problem 6-7. is based on the starting idea of the lg n depth sorting networks in [1].
For storage in Boolean circuits we partly relied on A. V. Kuznietsov's paper [11] (the

main theorem, on the existence of refreshers is from M. Pinsker). Low density parity check
codes were introduced by R. G. Gallager in the book [6], and their use in reliable storage
was �rst suggested by M. G. Taylor in the paper [24]. New, constructive versions of these
codes were developed by M. Sipser and D. Spielman in the paper [23], with superfast coding
and decoding.

Expanders, invented by Pinsker in [15] and introduced here in Exercise 6.4-3. have
been used extensively in theoretical computer science: see for example [13] for some more
detail. This book also gives references on the construction of graphs with large eigenvalue-
gap. Exercise 6.4-5. and Problem 6-6. are based on [5].

The use of expanders in the role of refreshers was suggested by Pippenger (private
communication): our exposition follows Sipser and Spielman in [21]. Random expanders
were found for example by Pinsker. The needed expansion rate (> 3/4 times the left degree)
is larger than what can be implied from the size of the eigenvalue gap. As shown in [15]
(see the proof in Theorem 6.41) random expanders have the needed expansion rate. Lately,
constructive expanders with nearly maximal expansion rate were announced by Capalbo,
Reingold, Vadhan and Wigderson in [3].

Reliable computation is also possible in a model of parallel computation that is much
more regular than logic circuits: in cellular automata. We cannot present those results here:
see for example the papers [9] and [7].
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