
12. Relational Database Design

12.1. Introduction
The relational datamodel was introduced by Codd in 1970. It is the most widely used data-
model � extended with the possibilities of the World Wide Web �, because of its simplicity
and �exibility. The main idea of the relational model is that data is organised in relational
tables, where rows correspond to individual records and columns to attributes. A relational
schema consists of one or more relations and their attribute sets. In the present chapter only
schemata consisting of one relation are considered for the sake of simplicity. In contrast to
the mathematical concept of relations, in the relational schema the order of the attributes is
not important, always sets of attributes are considered instead of lists. Every attribute has an
associated domain that is a set of elementary values that the attribute can take values from.
As an example, consider the following schema.

Employee(Name,Mother's name,Social Security Number,Post,Salary)

The domain of attributes Name and Mother's name is the set of �nite character strings
(more precisely its subset containing all possible names). The domain of Social Security
Number is the set of integers satisfying certain formal and parity check requirements.
The attribute Post can take values from the set {Director,Section chief,System integra-
tor,Programmer,Receptionist,Janitor,Handyman}. An instance of a schema R is a relation r
if its columns correspond to the attributes of R and its rows contain values from the domains
of attributes at the attributes' positions. A typical row of a relation of the Employee schema
could be

(John Brown,Camille Parker,184-83-2010,Programmer,$172,000)

There can be dependencies between different data of a relation. For example, in an instance
of the Employee schema the value of Social Security Number determines all other values
of a row. Similarly, the pair (Name,Mother's name) is a unique identi�er. Naturally, it may
occur that some set of attributes do not determine all attributes of a record uniquely, just
some of its subsets.

A relational schema has several integrity constraints attached. The most important kind
of these is functional dependency. Let U and V be two sets of attributes. V functionally
depends on U, U → V in notation, means that whenever two records are identical in the
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attributes belonging to U, then they must agree in the attribute belonging to V , as well.
Throughout this chapter the attribute set {A1, A2, . . . , Ak} is denoted by A1A2 . . . Ak for the
sake of convenience.

Example 12.1 Functional dependencies Consider the schema

R(Pprofessor,Subject,Room,Student,Grade,Time).

The meaning of an individual record is that a given student got a given grade of a given subject that was
taught by a given professor at a given time slot. The following functional dependencies are satis�ed.

Su→P: One subject is taught by one professor.
PT→R: A professor teaches in one room at a time.
StT→R: A student attends a lecture in one room at a time.
StT→Su: A student attends a lecture of one subject at a time.
SuSt→G: A student receives a unique �nal grade of a subject.

In Example 12.1. the attribute set StT uniquely determines the values of all other att-
ributes, furthermore it is minimal such set with respect to containment. This kind attribute
sets are called keys. If all attributes are functionally dependent on a set of attributes X, then
X is called a superkey. It is clear that every superkey contains a key and that any set of
attributes containing a superkey is also a superkey.

12.2. Functional dependencies
Some functional dependencies valid for a given relational schema are known already in
the design phase, others are consequences of these. The StT→P dependency is implied by
the StT→Su and Su→P dependencies in Example 12.1.. Indeed, if two records agree on
attributes St and T, then they must have the same value in attribute Su. Agreeing in Su and
Su→P implies that the two records agree in P, as well, thus StT→P holds.

De�nition 12.1 Let R be a relational schema, F be a set of functional dependencies over
R. The functional dependency U → V is logically implied by F, in notation F |= U → V, if
each instance of R that satis�es all dependencies of F also satis�es U → V. The closure of
a set F of functional dependencies is the set F+ given by

F+ = {U → V : F |= U → V}.

12.2.1. Armstrong-axioms
In order to determine keys, or to understand logical implication between functional depen-
dencies, it is necessary to know the closure F+ of a set F of functional dependencies, or for
a given X → Z dependency the question whether it belongs to F+ must be decidable. For
this, inference rules are needed that tell that from a set of functional dependencies what ot-
hers follow. The Armstrong-axioms form a system of sound and complete inference rules.
A system of rules is sound if only valid functional dependencies can be derived using it. It
is complete, if every dependency X → Z that is logically implied by the set F is derivable
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from F using the inference rules.
A-

(A1) Re�exivity Y ⊆ X ⊆ R implies X → Y .
(A2) Augmentation If X → Y , then for arbitrary Z ⊆ R, XZ → YZ holds.
(A3) Transitivity If X → Y and Y → Z hold, then X → Z holds, as well.

Example 12.2 Derivation by the Armstrong-axioms Let R = ABCD and F = {A → C, B → D}, then
AB is a key:
1. A→ C is given.
2. AB→ ABC 1. is augmented by (A2) with AB.
3. B→ D is given.
4. ABC → ABCD 3. is augmented by (A2) with ABC.
5. AB→ ABCD transitivity (A3) is applied to 2. and 4..
Thus it is shown that AB is superkey. That it is really a key, follows from algorithm C(R, F, X).

There are other valid inference rules besides (A1)�(A3). The next lemma lists some, the
proof is left to the Reader (Exercise 12.2-5.).

Lemma 12.2
1. Union rule {X → Y, X → Z} |= X → YZ.
2. Pseudo transitivity {X → Y,WY → Z} |= XW → YZ.
3. Decomposition If X → Y holds and Z ⊆ Y, then X → Z holds, as well.

The soundness of system (A1)�(A3) can be proven by easy induction on the length of
the derivation. The completeness will follow from the proof of correctness of algorithm
C(R, F, X) by the following lemma. Let X+ denote the closure of the set of attributes
X ⊆ R with respect to the family of functional dependencies F, that is X+ = {A ∈ R : X →
A follows from F by the Armstrong-axioms}.
Lemma 12.3 The functional dependency X → Y follows from the family of functional
dependencies F by the Armstrong-axioms iff Y ⊆ X+.

Proof. Let Y = A1A2 . . . An where Ai's are attributes, and assume that Y ⊆ X+. X → Ai
follows by the Armstrong-axioms for all i by the de�nition of X+. Applying the union rule
of Lemma 12.2 X → Y follows. On the other hand, assume that X → Y can be derived
by the Armstrong-axioms. By the decomposition rule of Lemma 12.2 X → Ai follows by
(A1)�(A3) for all i. Thus, Y ⊆ X+.

12.2.2. Closures
Calculation of closures is important in testing equivalence or logical implication between
systems of functional dependencies. The �rst idea could be that for a given family F of
functional dependencies in order to decide whether F |= {X → Y}, it is enough to calculate
F+ and check whether {X → Y} ∈ F+ holds. However, the size of F+ could be exponential
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in the size of input. Consider the family F of functional dependencies given by

F = {A→ B1, A→ B2, . . . , A→ Bn}.

F+ consists of all functional dependencies of the form A → Y , where Y ⊆ {B1, B2, . . . , Bn},
thus |F+| = 2n. Nevertheless, the closure X+ of an attribute set X with respect to F can be de-
termined in linear time of the total length of functional dependencies in F. The following is
an algorithm that calculates the closure X+ of an attribute set X with respect to F. The input
consists of the schema R, that is a �nite set of attributes, a set F of functional dependencies
de�ned over R, and an attribute set X ⊆ R.

C(R,F,X)
1 X(0) ← X
2 i← 0
3 G ← F B Functional dependencies not used yet.
4 repeat
5 X(i+1) ← X(i)

6 for all Y → Z in G
7 do if Y ⊆ X(i)

8 then X(i+1) ← X(i+1) ∪ Z
9 G ← G \ {Y → Z}

10 i← i + 1
11 until X(i−1) = X(i)

It is easy to see that the attributes that are put into any of the X( j)'s by C(R,F,X)
really belong to X+. The harder part of the correctness proof of this algorithm is to show
that each attribute belonging to X+ will be put into some of the X( j)'s.

Theorem 12.4 C(R,F,X) correctly calculates X+.

Proof. First we prove by induction that if an attribute A is put into an X( j) during
C(R,F,X), then A really belongs to X+.
Base case: j = 0. I this case A ∈ X and by re�exivity (A1) A ∈ X+.
Induction step: Let j > 0 and assume that X( j−1) ⊆ X+. A is put into X( j), because there is
a functional dependency Y → Z in F, where Y ⊆ X( j−1) and A ∈ Z. By induction, Y ⊆ X+

holds, which implies using Lemma 12.3 that X → Y holds, as well. By transitivity (A3)
X → Y and Y → Z implies X → Z. By re�exivity (A1) and A ∈ Z, Z → A holds. Applying
transitivity again, X → A is obtained, that is A ∈ X+.

On the other hand, we show that if A ∈ X+, then A is contained in the result of
C(R,F,X). Suppose in contrary that A ∈ X+, but A < X(i), where X(i) is the result
of C(R,F,X). By the stop condition in line 9 this means X(i) = X(i+1). An instance r
of the schema R is constructed that satis�es every functional dependency of F, but X → A
does not hold in r if A < X(i). Let r be the following two-rowed relation:

Attributes of X(i) Other attributes
︷                       ︸︸                       ︷
1 1 . . . 1

︷                       ︸︸                       ︷
1 1 . . . 1

1 1 . . . 1 0 0 . . . 0
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Let us suppose that the above r violates a U → V functional dependency of F, that is
U ⊆ X(i), but V is not a subset of X(i). However, in this case C(R,F,X) could not have
stopped yet, since X(i) , X(i+1).

A ∈ X+ implies using Lemma 12.3 that X → A follows from F by the Armstrong-
axioms. (A1)�(A3) is a sound system of inference rules, hence in every instance that satis�es
F, X → A must hold. However, the only way this could happen in instance r is if A ∈ X(i).

Let us observe that the relation instance r given in the proof above provides the comp-
leteness proof for the Armstrong-axioms, as well. Indeed, the closure X+ calculated by
C(R,F,X) is the set of those attributes for which X → A follows from F by the
Armstrong-axioms. Meanwhile, for every other attribute B, there exist two rows of r that
agree on X, but differ in B, that is F |= X → B does not hold.

The running tome of C(R,F,X) is O(n2), where n is the length of he input. Indeed,
in the repeat � until loop of lines 4�11 every not yet used dependency is checked, and the
body of the loop is executed at most |R \ X| + 1 times, since it is started again only if
X(i−1) , X(i), that is a new attribute is added to the closure of X. However, the running time
can be reduced to linear with appropriate bookkeeping.

1. For every yet unused W → Z dependency of F it is kept track of how many attributes
of W are not yet included in the closure (i[W,Z]).

2. For every attribute A those yet unused dependencies are kept in a doubly linked list LA
whose left side contains A.

3. Those not yet used dependencies W → Z are kept in a linked list J, whose left side W's
every attribute is contained in the closure already, that is for which i[W,Z] = 0.

It is assumed that the family of functional dependencies F is given as a set of attribute
pairs (W,Z), representing W → Z. The L-C(R,F,X) algorithm is a modi�cation
of C(R,F,X) using the above bookkeeping, whose running time is linear. R is the
schema, F is the given family of functional dependencies, and we are to determine the
closure of attribute set X.

Algorithm L-C(R,F,X) consists of two parts. In the initialisation phase
(lines 1�13) the lists are initialised. The loops of lines 2�5 and 6�8, respectively, take
O(∑(W,Z)∈F |W |) time. The loop in lines 9�11 means O(|F|) steps. If the length of the in-
put is denoted by n, then this is O(n) steps altogether.

During the execution of lines 14�23, every functional dependency (W,Z) is exa-
mined at most once, when it is taken off from list J. Thus, lines 15�16 and 23 take
at most |F| steps. The running time of the loops in line 17�22 can be estimated by
observing that the sum ∑ i[W,Z] is decreased by one in each execution, hence it takes
O(∑ i0[W,Z]) steps, where i0[W,Z] is the i[W,Z] value obtained in the initialisation
phase. However, ∑ i0[W,Z] ≤ ∑

(W,Z)∈F |W |, thus lines 14�23 also take O(n) time in total.
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L-(R,F,X)
1 B Initialisation phase.
2 for all (W,Z) ∈ F
3 do for all A ∈ W
4 do add (W,Z) to list LA
5 i[W,Z]← 0
6 for all A ∈ R \ X
7 do for all (W,Z) of list LA
8 do i[W,Z]← i[W,Z] + 1
9 for all (W,Z) ∈ F

10 do if i[W,Z] = 0
11 then add (W,Z) to list J
12 X+ ← X
13 B End of initialisation phase.
14 while J is nonempty
15 do (W,Z)← head(J)
16 delete (W,Z) from list J
17 for all A ∈ Z \ X+

18 do for all (W,Z) of list LA
19 do i[W,Z]← i[W,Z] − 1
20 if i[W,Z] = 0
21 then add (W,Z) to list J
22 delete (W,Z)from list LA
23 X+ ← X+ ∪ Z
24 return X+

12.2.3. Minimal cover
Algorithm L-C(R,F,X) can be used to test equivalence of systems of depen-
dencies. Let F and G be two families of functional dependencies. F and G are said to be
equivalent, if exactly the same functional dependencies follow from both, that is F+ = G+.
It is clear that it is enough to check for all functional dependencies X → Y in F whether it
belongs to G+, and vice versa, for all W → Z in G, whether it is in F+. Indeed, if some of
these is not satis�ed, say X → Y is not in G+, then surely F+ , G+. On the other hand, if all
X → Y are in G+, then a proof of a functional dependency U → V from F+ can be obtained
from dependencies in G in such a way that to the derivation of the dependencies X → Y of
F from G, the derivation of U → V from F is concatenated. In order to decide that a depen-
dency X → Y from F is in G+, it is enough to construct the closure X+(G) of attribute set X
with respect to G using L-C(R,G,X), then check whether Y ⊆ X+(G) holds. The
following special functional dependency system equivalent with F is useful.

De�nition 12.5 The system of functional dependencies G is a minimal cover of the family
of functional dependencies F iff G is equivalent with F, and
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1. functional dependencies of G are in the form X → A, where A is an attribute and A < X,
2. no functional dependency can be dropped from G, i.e., (G − {X → A})+ & G+,
3. the left sides of dependencies in G are minimal, that is X → A ∈ G, Y & X =⇒

((G − {X → A}) ∪ {Y → A})+ , G+.

Every set of functional dependencies have a minimal cover, namely algorithm M-
(R, F) constructs one.

M-(R, F)
1 G ← ∅
2 for all X → Y ∈ F
3 do for all A ∈ Y − X
4 do G ← G ∪ X → A
5 B Each right hand side consists of a single attribute.
6 for all X → A ∈ G
7 do while there exists B ∈ X : A ∈ (X − B)+(G)
8 X ← X − B
9 B Each left hand side is minimal.

10 for all X → A ∈ G
11 do if A ∈ X+(G − {X → A})
12 then G ← G − {X → A}
13 B No redundant dependency exists.

After executing the loop of lines 2�4, the right hand side of each dependency in G con-
sists of a single attribute. The equality G+ = F+ follows from the union rule of Lemma 12.2
and the re�exivity axiom. Lines 6�8 minimise the left hand sides. In line 11 it is checked
whether a given functional dependency of G can be removed without changing the closure.
X+(G − {X → A}) is the closure of attribute set X with respect to the family of functional
dependencies G − {X → A}.
Proposition 12.6 M-(R, F) calculates a minimal cover of F.

Proof. It is enough to show that during execution of the loop in lines 10�12, no functional
dependency X → A is generated whose left hand side could be decreased. Indeed, if a
X → A dependency would exist, such that for some Y & X Y → A ∈ G+ held, then
Y → A ∈ G′+ would also hold, where G′ is the set of dependencies considered when X → A
is checked in lines 6�8. G ⊆ G′, which implies G+ ⊆ G′+ (see Exercise 12.2-1.). Thus, X
should have been decreased already during execution of the loop in lines 6�8.

12.2.4. Keys
In database design it is important to identify those attribute sets that uniquely determine the
data in individual records.

De�nition 12.7 Let (R, F) be a relational schema. The set of attributes X ⊆ R is called
a superkey, if X → R ∈ F+. A superkey X is called a key, if it is minimal with respect to
containment, that is no proper subset Y & X is key.
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The question is how the keys can be determined from (R, F)? What makes this problem
hard is that the number of keys could be super exponential function of the size of (R, F).
In particular, Yu and Johnson constructed such relational schema, where |F| = k, but the
number of keys is k!. Békéssy and Demetrovics gave a beautiful and simple proof of the
fact that starting from k functional dependencies, at most k! key can be obtained. (This was
independently proved by Osborne and Tompa.)

The proof of Békéssy and Demetrovics is based on the operation ∗ they introduced,
which is de�ned for functional dependencies.

De�nition 12.8 Let e1 = U → V and e2 = X → Y be two functional dependencies. The
binary operation ∗ is de�ned by

e1 ∗ e2 = U ∪ ((R − V) ∩ X)→ V ∪ Y.

Some properties of operation ∗ is listed, the proof is left to the Reader (Exercise 12.2-3.).
Operation ∗ is associative, furthermore it is idempotent in the sense that if e = e1∗e2∗· · ·∗ek
and e′ = e ∗ ei for some 1 ≤ i ≤ k, then e′ = e.

Proposition 12.9 (Békéssy and Demetrovics). Let (R, F) be a relational schema and let
F = {e1, e2, . . . , ek} be a listing of the functional dependencies. If X is a key, then X → R =

eπ1 ∗eπ2 ∗ . . .∗eπs ∗d, where (π1, π2, . . . , πs) is an ordered subset of the index set {1, 2, . . . , k},
and d is a trivial dependency in the form D→ D.

Proposition 12.9 bounds in some sense the possible sets of attributes in the search for keys.
The next proposition gives lower and upper bounds for the keys.

Proposition 12.10 Let (R, F) be a relational schema and let F = {Ui → Vi : 1 ≤ i ≤ k}.
Let us assume without loss of generality that Ui∩Vi = ∅. LetU =

⋃k
i=1 Ui andV =

⋃k
i=1 Vi.

If K is a key in the schema (R, F), then

HL = R −V ⊆ K ⊆ (R −V) ∪U = HU .

The proof is not too hard, it is left as an exercise for the Reader (Exercise 12.2-4.). The
algorithm L-(R, F) that lists the keys of the schema (R, F) is based on the bounds of
Proposition 12.10. The running time can be bounded by O(n!), but one cannot expect any
better, since to list the output needs that much time in worst case.
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L-(R, F)
1 B LetU andV be as de�ned in Proposition 12.10
2 if U ∩V = ∅
3 then return R −V
4 B R −V is the only key.
5 if (R −V)+ = R
6 then return R −V
7 B R −V is the only key.
8 K ← ∅
9 for all permutations A1, A2, . . . Ah of the attributes ofU ∩V

10 do K ← (R −V) ∪U
11 for i← 1 to h
12 do Z ← K − Ai
13 if Z+ = R
14 then K ← Z
15 K ← K ∪ {K}
16 return K

Exercises
12.2-1 Let R be a relational schema and let F and G be families of functional dependencies
over R.Show that

a. F ⊆ F+.
b. (F+)+

= F+.
c. If F ⊆ G, then F+ ⊆ G+.

Formulate and prove similar properties of the closure X+ � with respect to F � of an attribute
set X.
12.2-2 Derive the functional dependency AB → F from the set of dependencies G =

{AB→ C, A→ D,CD→ EF} using Armstrong-axioms (A1)�(A3).
12.2-3 Show that operation ∗ is associative, furthermore if for functional dependencies
e1, e2, . . . , ek we have e = e1 ∗ e2 ∗ · · · ∗ ek and e′ = e ∗ ei for some 1 ≤ i ≤ k, then e′ = e.
12.2-4 Prove Proposition 12.10.
12.2-5 Prove the union, pseudo transitivity and decomposition rules of Lemma 12.2.

12.3. Decomposition of relational schemata
A decomposition of a relational schema R = {A1, A2, . . . , An} is a collection ρ =

{R1,R2, . . . ,Rk} of subsets of R such that

R = R1 ∪ R2 ∪ · · · ∪ Rk.

The Ri's need not be disjoint, in fact in most application they must not be. One important
motivation of decompositions is to avoid anomalies.

Example 12.3 Anomalies Consider the following schema
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SUPPLIER-INFO(SNAME,ADDRESS,ITEM,PRICE)

This schema encompasses the following problems:
1. Redundancy. The address of a supplier is recorded with every item it supplies.
2. Possible inconsistency (update anomaly). As a consequence of redundancy, the address of a

supplier might be updated in some records and might not be in some others, hence the supplier
would not have a unique address, even though it is expected to have.

3. Insertion anomaly. The address of a supplier cannot be recorded if it does not supply anything
at the moment. One could try to use NULL values in attributes ITEM and PRICE, but would it
be remembered that it must be deleted, when a supplied item is entered for that supplier? More
serious problem that SNAME and ITEM together form a key of the schema, and the NULL values
could make it impossible to search by an index based on that key.

4. Deletion anomaly This is the opposite of the above. If all items supplied by a supplier are deleted,
then as a side effect the address of the supplier is also lost.

All problems mentioned above are eliminated if schema SUPPLIER-INFO is replaced by two sub-
schemata:

SUPPLIER(SNAME,ADDRESS),
SUPPLIES(SNAME,ITEM,PRICE).

In this case each suppliers address is recorded only once, and it is not necessary that the supplier
supplies a item in order its address to be recorded. For the sake of convenience the attributes are
denoted by single characters S (SNAME), A (ADDRESS), I (ITEM), P (PRICE).

Question is that is it correct to replace the schema S AIP by S A and S IP? Let r be
and instance of schema S AIP. It is natural to require that if S A and S IP is used, then the
relations belonging to them are obtained projecting r to S A and S IP, respectively, that is
rS A = πS A(r) and rS IP = πS IP(r). rS A and rS IP contains the same information as r, if r can
be reconstructed using only rS A and rS IP. The calculation of r from rS A and rS IP can bone
by the natural join operator.

De�nition 12.11 The natural join of relations ri of schemata Ri (i = 1, 2, . . . n) is the
relation s belonging to the schema ∪n

i=1Ri, which consists of all rows µ that for all i there
exists a row νi of relation ri such that µ[Ri] = νi[Ri]. In notation s =Zn

i=1ri.

Example 12.4 Let R1 = AB, R2 = BC, r1 = {ab, a′b′, ab′′} and r2{bc, bc′, b′c′′}. The natural join of r1
and r2 belongs to the schema R = ABC, and it is the relation r1 Z r2 = {abc, abc′, a′b′c′′}.

If s is the natural join of rS A and rS IP, that is s = rS A Z rS IP, then πS A(s) = rS A és
πS IP(s) = rS IP by Lemma 12.12. If r , s, then the original relation could not be reconstruc-
ted knowing only rS A and rS IP.

12.3.1. Lossless join
Let ρ = {R1,R2, . . . ,Rk} be a decomposition of schema R, furthermore let F be a family of
functional dependencies over R. The decomposition ρ is said to have lossless join property
(with respect to F), if every instance r of R that satis�es F also satis�es

r = πR1 (r) Z πR2 (r) Z · · · Z πRk (r).
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That is, relation r is the natural join of its projections to attribute sets Ri, i = 1, 2, . . . , k.
For a decomposition ρ = {R1,R2, . . . ,Rk}, let mρ denote the the mapping which assigns to
relation r the relation mρ(r) =Zk

i=1 πRi (r). Thus, the lossless join property with respect to a
family of functional dependencies means that r = mρ(r) for all instances r that satisfy F.

Lemma 12.12 Let ρ = {R1,R2, . . . ,Rk} be a decomposition of schema R, and let r be an
arbitrary instance of R. Furthermore, let ri = πRi (r). Then

1. r ⊆ mρ(r).

2. If s = mρ(r), then πRi (s) = ri.

3. mρ(mρ(r)) = mρ(r).

The proof is left to the Reader (Exercise 12.3-7.).

12.3.2. Checking the lossless join property
It is relatively not hard to check that a decomposition ρ = {R1,R2, . . . ,Rk} of schema R has
the lossless join property. The essence of algorithm J-(R,F,ρ) is the following.
A k × n array T is constructed, whose column j corresponds to attribute A j, while row i
corresponds to schema Ri. T [i, j] = 0 if A j ∈ Ri, otherwise T [i, j] = i.

The following step is repeated until there is no more possible change in the array. Con-
sider a functional dependency X → Y from F. If a pair of rows i and j agree in all attributes
of X, then their values in attributes of Y are made equal. More precisely, if one of the values
in an attribute of Y is 0, then the other one is set to 0, as well, otherwise it is arbitrary which
of the two values is set to be equal to the other one. If a symbol is changed, then each of its
occurrences in that column must be changed accordingly. If at the end of this process there
is an all 0 row in T , then the decomposition has the lossless join property, otherwise, it is
lossy.
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J-(R,F,ρ)
1 B Initialisation phase.
2 for i← 1 to |ρ|
3 do for j← 1 to |R|
4 do if A j ∈ Ri
5 then T [i, j]← 0
6 else T [i, j]← i
7 B End of initialisation phase.
8 S ← T
9 repeat

10 T ← S
11 for all {X → Y} ∈ F
12 do for i← 1 to |ρ| − 1
13 do for j← i + 1 to |R|
14 do if for all Ah in X (S [i, h] = S [ j, h])
15 then E(i, j, S ,Y)
16 until S = T
17 if there exist an all 0 row in S
18 then return �Lossless join�
19 else return �Lossy join�

Procedure E(i, j, S ,Y) makes the appropriate symbols equal.

E(i, j, S ,Y)
1 for Al ∈ Y
2 do if S [i, l] · S [ j, l] = 0
3 then
4 for d ← 1 to k
5 do if S [d, l] = S [i, l] ∨ S [d, l] = S [ j, l]
6 then S [d, l]← 0
7 else
8 for d ← 1 to k
9 do if S [d, l] = S [ j, l]

10 then S [d, l]← S [i, l]

Example 12.5 Checking lossless join property Let R = ABCDE, R1 = AD, R2 = AB, R3 = BE,
R4 = CDE, R5 = AE, furthermore let the functional dependencies be {A→ C, B→ C,C → D,DE →
C,CE → A}. The initial array is shown on Figure 12.1(a). Using A → C values 1,2,5 in column
C can be equated to 1. Then applying B → C value 3 of column C again can be changed to 1. The
result is shown on Figure 12.1(b). Now C → D can be used to change values 2,3,5 of column D to
0. Then applying DE → C (the only nonzero) value 1 of column C can be set to 0. Finally, CE → A
makes it possible to change values 3 and 4 in column A to be changed to 0. The �nal result is shown
on Figure 12.1(c). The third row consists of only zeroes, thus the decomposition has the lossless join
property.

It is clear that the running time of algorithm J-(R,F,ρ) is polynomial in the length
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A B C D E
0 1 1 0 1
0 0 2 2 2
3 0 3 3 0
4 4 0 0 0
0 5 5 5 0

(a)
A B C D E
0 1 1 0 1
0 0 1 2 2
3 0 1 3 0
4 4 0 0 0
0 5 1 5 0

(b)
A B C D E
0 1 0 0 1
0 0 0 2 2
0 0 0 0 0
0 4 0 0 0
0 5 0 0 0

(c)

Figure 12.1. Application of J-(R,F,ρ).

of the input. The important thing is that it uses only the schema, not the instance r belonging
to the schema. Since the size of an instance is larger than the size of the schema by many
orders of magnitude, the running time of an algorithm using the schema only is negligible
with respect to the time required by an algorithm processing the data stored.
Theorem 12.13 Procedure J-(R,F,ρ) correctly determines whether a given decom-
position has the lossless join property.
Proof. Let us assume �rst that the resulting array T contains no all zero row. T itself can be
considered as a relational instance over the schema R. This relation satis�es all functional
dependencies from F, because the algorithm �nished since there was no more change in the
table during checking the functional dependencies. It is true for the starting table that its
projections to every Ri's contain an all zero row, and this property does not change during
the running of the algorithm, since a 0 is never changed to another symbol. It follows, that
the natural join mρ(T ) contains the all zero row, that is T , mρ(T ). Thus the decomposition
is lossy. The proof of the other direction is only sketched.

Logic, domain calculus is used. The necessary de�nitions can be found in the books of
Abiteboul, Hull and Vianu, or Ullman, respectively. Imagine that variable a j is written in
place of zeroes, and bi j is written in place of i's in column j, and J-(R,F,ρ) is run in
this setting. The resulting table contains row a1a2 . . . an, which corresponds to the all zero
row. Every table can be viewed as a shorthand notation for the following domain calculus
expression

{a1a2 . . . an | (∃b11) . . . (∃bkn) (R(w1) ∧ · · · ∧ R(wk))} , (12.1)



12.3. Decomposition of relational schemata 503

where wi is the ith row of T . If T is the starting table, then formula (12.1) de�nes mρ exactly.
As a justi�cation note that for a relation r, mρ(r) contains the row a1a2 . . . an iff r contains
for all i a row whose jth coordinate is a j if A j is an attribute of Ri, and arbitrary values
represented by variables bil in the other attributes.

Consider an arbitrary relation r belonging to schema R that satis�es the dependencies
of F. The modi�cations (equating symbols) of the table done by J-(R,F,ρ) do not
change the set of rows obtained from r by (12.1), if the modi�cations are done in the for-
mula, as well. Intuitively it can be seen from the fact that only such symbols are equated in
(12.1), that can only take equal values in a relation satisfying functional dependencies of F.
The exact proof is omitted, since it is quiet tedious.

Since in the result table of J-(R,F,ρ) the all a's row occurs, the domain calculus
formula that belongs to this table is of the following form:

{a1a2 . . . an | (∃b11) . . . (∃bkn) (R(a1a2 . . . an) ∧ · · · )} . (12.2)

It is obvious that if (12.2) is applied to relation r belonging to schema R, then the result will
be a subset of r. However, if r satis�es the dependencies of F, then (12.2) calculates mρ(r).
According to Lemma 12.12, r ⊆ mρ(r) holds, thus if r satis�es F, then (12.2) gives back r
exactly, so r = mρ(r), that is the decomposition has the lossless join property.
Procedure J-(R,F,ρ) can be used independently of the number of parts occurring in
the decomposition. The price of this generality is paid in the running time requirement.
However, if R is to be decomposed only into two parts, then C(R,F,X) or L-
(R,F,X) can be used to obtain the same result faster, according to the next theorem.

Theorem 12.14 Let ρ = (R1,R2) be a decomposition of R, furthermore let F be a set of
functional dependencies. Decomposition ρ has the lossless join property with respect to F
iff

(R1 ∩ R2)→ (R1 − R2) or (R1 ∩ R2)→ (R2 − R1) .
These dependencies need not be in F, it is enough if they are in F+.

Proof. The starting table in procedure J-(R,F,ρ) is the following:

R1 ∩ R2 R1 − R2 R2 − R1
row of R1 00 . . . 0 00 . . . 0 11 . . . 1
row of R2 00 . . . 0 22 . . . 2 00 . . . 0

(12.3)

It is not hard to see using induction on the number of steps done by J-(R,F,ρ) that if
the algorithm changes both values of the column of an attribute A to 0, then A ∈ (R1 ∩ R2)+.
This is obviously true at the start. If at some time values of column A must be equated, then
by lines 11�14 of the algorithm, there exists {X → Y} ∈ F, such that the two rows of the
table agree on X, and A ∈ Y . By the induction assumption X ⊆ (R1 ∩ R2)+ holds. Applying
Armstrong-axioms (transitivity and re�exivity), A ∈ (R1 ∩ R2)+ follows.

On the other hand, let us assume that A ∈ (R1 ∩ R2)+, that is (R1 ∩ R2) → A. Then
this functional dependency can be derived from F using Armstrong-axioms. By induction
on the length of this derivation it can be seen that procedure J-(R,F,ρ) will equate
the two values of column A, that is set them to 0. Thus, the row of R1 will be all 0 iff
(R1 ∩ R2)→ (R2 − R1), similarly, the row of R2 will be all 0 iff (R1 ∩ R2)→ (R1 − R2).
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12.3.3. Dependency preserving decompositions
The lossless join property is important so that a relation can be recovered from its projecti-
ons. In practice, usually not the relation r belonging to the underlying schema R is stored,
but relations ri = r[Ri] for an appropriate decomposition ρ = (R1,R2, . . . ,Rk), in order to
avoid anomalies. The functional dependencies F of schema R are integrity constraints of
the database, relation r is consistent if it satis�es all prescribed functional dependencies.
When during the life time of the database updates are executed, that is rows are inserted
into or deleted from the projection relations, then it may happen that the natural join of the
new projections does not satisfy the functional dependencies of F. It would be too costly
to join the projected relations � and then project them again � after each update to check
the integrity constraints. However, the projection of the family of functional dependencies
F to an attribute set Z can be de�ned: πZ(F) consists of those functional dependencies
{X → Y} ∈ F+, where XY ⊆ Z. After an update, if relation ri is changed, then it is relati-
vely easy to check whether πRi (F) still holds. Thus, it would be desired if family F would
be logical implication of the families of functional dependencies πRi (F) i = 1, 2, . . . , k. Let
πρ(F) =

⋃k
i=1 πRi (F).

De�nition 12.15 The decomposition ρ is said to be dependency preserving, if

πρ(F)+ = F+.

Note that πρ(F) ⊆ F+, hence πρ(F)+ ⊆ F+ always holds. Consider the following example.

Example 12.6 Let R = (City,Street,Zip code) be the underlying schema, furthermore let F = {CS →
Z, Z → C} be the functional dependencies. Let the decomposition ρ be ρ = (CZ, S Z). This has the
lossless join property by Theorem 12.14. πρ(F) consists of Z → C besides the trivial dependencies.
Let R1 = CZ and R2 = S Z. Two rows are inserted into each of the projections belonging to schemata
R1 and R2, respectively, so that functional dependencies of the projections are satis�ed:

R1 C Z
Fort Wayne 46805
Fort Wayne 46815

R2 S Z
Coliseum Blvd 46805
Coliseum Blvd 46815

In this case R1 and R2 satisfy the dependencies prescribed for them separately, however in R1 Z R2
the dependency CS → Z does not hold.

It is true as well, that none of the decompositions of this schema preserves the dependency CS →
Z. Indeed, this is the only dependency that contains Z on the right hand side, thus if it is to be preserved,
then there has to be a subschema that contains C, S ,Z, but then the decomposition would not be proper.
This will be considered again when decomposition into normal forms is treated.

Note that it may happen that decomposition ρ preserves functional dependencies, but
does not have the lossless join property. Indeed, let R = ABCD, F = {A → B,C → D}, and
let the decomposition be ρ = (AB,CD).

Theoretically it is very simple to check whether a decomposition ρ = (R1,R2, . . .Rk) is
dependency preserving. Just F+ needs to be calculated, then projections need to be taken,
�nally one should check whether the union of the projections is equivalent with F. The main
problem with this approach is that even calculating F+ may need exponential time.

Nevertheless, the problem can be solved without explicitly determining F+. Let G =

πρ(F). G will not be calculated, only its equivalence with F will be checked. For this end,
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it needs to be decidable for all functional dependencies {X → Y} ∈ F that if X+ is taken
with respect to G, whether it contains Y . The trick is that X+ is determined without full
knowledge of G by repeatedly taking the effect to the closure of the projections of F onto
the individual Ri's. That is, the concept of S -operation on an attribute set Z is introduced,
where S is another set of attributes: Z is replaced by Z∪((Z ∩ S )+ ∩ S ), where the closure is
taken with respect to F. Thus, the closure of the part of Z that lies in S is taken with respect
to F, then from the resulting attributes those are added to Z, which also belong to S .

It is clear that the running time of algorithm P(ρ, F) is polynomial in the length
of the input. More precisely, the outermost for loop is executed at most once for each depen-
dency in F (it may happen that it turns out earlier that some dependency is not preserved).
The body of the repeat�until loop in lines 3�7. requires linear number of steps, it is exe-
cuted at most |R| times. Thus, the body of the for loop needs quadratic time, so the total
running time can be bounded by the cube of the input length.

P(ρ, F)
1 for all (X → Y) ∈ F
2 do Z ← X
3 repeat
4 W ← Z
5 for i← 1 to k
6 do Z ← Z ∪ (L-(R, F,Z ∩ Ri) ∩ Ri)
7 until Z = W
8 if Y * Z
9 then return �Not dependency preserving�

10 return �Dependency preserving�

Example 12.7 Consider the schema R = ABCD, let the decomposition be ρ = {AB, BC,CD}, and
dependencies be F = {A→ B, B→ C,C → D,D→ A}. That is, by the visible cycle of the dependen-
cies, every attribute determines all others. Since D and A do not occur together in the decomposition
one might think that the dependency D → A is not preserved, however this intuition is wrong. The
reason is that during the projection to AB, not only the dependency A→ B is obtained, but B→ A, as
well, since not F, but F+ is projected. Similarly, C → B and D→ C are obtained, as well, but D→ A
is a logical implication of these by the transitivity of the Armstrong axioms. Thus it is expected that
P(ρ, F) claims that D→ A is preserved.

Start from the attribute set Y = {D}. There are three possible operations, the AB-operation, the
BC-operation and the CD-operation. The �rst two obviously does not add anything to {D}+, since
{D} ∩ {A, B} = {D} ∩ {B,C} = ∅, that is the closure of the empty set should be taken, which is empty
(in the present example). However, using the CD-operation:

Z = {D} ∪ (({D} ∩ {C,D})+ ∩ {C,D})

= {D} ∪ ({D}+ ∩ {C,D})

= {D} ∪ ({A, B,C,D} ∩ {C,D})
= {C,D}.

In the next round using the BC-operation the actual Z = {C,D} is changed to Z = {B,C,D}, �nally
applying the AB-operation on this, Z = {A, B,C,D} is obtained. This cannot change, so procedure
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P(ρ, F) stops. Thus, with respect to the family of functional dependencies

G = πAB(F) ∪ πBC(F) ∪ πCD(F),

{D}+ = {A, B,C,D} holds, that is G |= D→ A. It can be checked similarly that the other dependencies
of F are in G+ (as a fact in G).

Theorem 12.16 The procedure P(ρ, F) determines correctly whether the decom-
position ρ is dependency preserving.

Proof. It is enough to check for a single functional dependency X → Y whether whether the
procedure decides correctly if it is in G+. When an attribute is added to Z in lines 3�7, then
Functional dependencies from G are used, thus by the soundness of the Armstrong-axioms
if P(ρ, F) claims that X → Y ∈ G+, then it is indeed so.

On the other hand, if X → Y ∈ G+, then L-(R, F, X) (run by G as input)
adds the attributes of Y one-by-one to X. In every step when an attribute is added, some
functional dependency U → V of G is used. This dependency is in one of πRi (F)'s, since
G is the union of these. An easy induction on the number of functional dependencies used
in procedure L-(R, F, X) shows that sooner or later Z becomes a subset of U,
then applying the Ri-operation all attributes of V are added to Z.

12.3.4. Normal forms
The goal of transforming (decomposing) relational schemata into normal forms is to avoid
the anomalies described in the previous section. Normal forms of many different strengths
were introduced in the course of evolution of database theory, here only the Boyce�Codd
normal formát (BCNF) and the third, furthermore fourth normal form (3NF and 4NF) are
treated in detail, since these are the most important ones from practical point of view.

Boyce�Codd normal form

De�nition 12.17 Let R be relational schema, F be a family of functional dependencies
over R. (R, F) is said to be in Boyce�Codd normal form if X → A ∈ F+ and A * X implies
that A is a superkey.

The most important property of BCNF is that it eliminates redundancy. This is based on the
following theorem whose proof is left to the Reader as an exercise (Exercise 12.3-8.).

Theorem 12.18 Schema (R, F) is in BCNF iff for arbitrary attribute A ∈ R and key X ⊂ R
there exists no Y ⊆ R, for which X → Y ∈ F+; Y → X < F+; Y → A ∈ F+ and A < Y.

In other words, Theorem 12.18 states that �BCNF ⇐⇒ There is no transitive dependence
on keys�. Let us assume that a given schema is not in BCNF, for example C → B and
B → A hold, but B → C does not, then the same B value could occur besides many dif-
ferent C values, but at each occasion the same A value would be stored with it, which is
redundant. Formulating somewhat differently, the meaning of BCNF is that (only) using
functional dependencies an attribute value in a row cannot be predicted from other attribute
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values. Indeed, assume that there exists a schema R, in which the value of an attribute can be
determined using a functional dependency by comparison of two rows. That is, there exists
two rows that agree on an attribute set X, differ on the set Y and the value of the remaining
(unique) attribute A can be determined in one of the rows from the value taken in the other
row.

X Y A
x y1 a
x y2 ?

If the value ? can be determined by a functional dependency, then this value can only be a,
the dependency is Z → A, where Z is an appropriate subset of X. However, Z cannot be a
superkey, since the two rows are distinct, thus R is not in BCNF.

3NF
Although BCNF helps eliminating anomalies, it is not true that every schema can be de-
composed into subschemata in BCNF so that the decomposition is dependency preserving.
As it was shown in Example 12.6., no proper decomposition of schema CS Z preserves the
CS → Z dependency. At the same time, the schema is clearly not in BCNF, because of the
Z → C dependency.

Since dependency preserving is important because of consistency checking of a data-
base, it is practical to introduce a normal form that every schema has dependency preserving
decomposition into that form, and it allows minimum possible redundancy. An attribute is
called prime attribute, if it occurs in a key.

De�nition 12.19 The schema (R, F) is in third normal form, if whenever X → A ∈ F+,
then either X is a superkey, or A is a prime attribute.

The schema S AIP of Example 12.3. with the dependencies S I → P and S → A is not in
3NF, since S I is the only key and so A is not a prime attribute. Thus, functional dependency
S → A violates the 3NF property.

3NF is clearly weaker condition than BCNF, since �or A is a prime attribute� occurs in
the de�nition. The schema CS Z in Example 12.6. is trivially in 3NF, because every attribute
is prime, but it was already shown that it is not in BCNF.

Testing normal forms
Theoretically every functional dependency in F+ should be checked whether it violates the
conditions of BCNF or 3NF, and it is known that F+ can be exponentially large in the size of
F. Nevertheless, it can be shown that if the functional dependencies in F are of the form that
the right hand side is a single attribute always, then it is enough to check violation of BCNF,
or 3NF respectively, for dependencies of F. Indeed, let X → A ∈ F+ be a dependency
that violates the appropriate condition, that is X is not a superkey and in case of 3NF, A is
not prime. X → A ∈ F+ ⇐⇒ A ∈ X+. In the step when C(R,F,X) puts A into
X+ (line 8) it uses a functional dependency Y → A from F that Y ⊂ X+ and A < Y . This
dependency is non-trivial and A is (still) not prime. Furthermore, if Y were a superkey, than
by R = Y+ ⊆ (X+)+ = X+, X would also be a superkey. Thus, the functional dependency
Y → A from F violates the condition of the normal form. The functional dependencies
easily can be checked in polynomial time, since it is enough to calculate the closure of the
left hand side of each dependency. This �nishes checking for BCNF, because if the closure
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of each left hand side is R, then the schema is in BCNF, otherwise a dependency is found that
violates the condition. In order to test 3NF it may be necessary to decide about an attribute
whether it is prime or not. However this problem is NP-complete, see Problem 12-4..

Lossless join decomposition into BCNF
Let (R, F) be a relational schema (where F is the set of functional dependencies). The
schema is to be decomposed into union of subschemata R1,R2, . . . ,Rk, such that the de-
composition has the lossless join property, furthermore each Ri endowed with the set of
functional dependencies πRi (F) is in BCNF. The basic idea of the decomposition is simple:

• If (R, F) is in BCNF, then ready.
• If not, it is decomposed into two proper parts (R1,R2), whose join is lossless.
• Repeat the above for R1 and R2.
In order to see that this works one has to show two things:
• If (R, F) is not in BCNF, then it has a lossless join decomposition into smaller parts.
• If a part of a lossless join decomposition is further decomposed, then the new decom-

position has the lossless join property, as well.

Lemma 12.20 Let (R, F) be a relational schema (where F is the set of functional de-
pendencies), ρ = (R1,R2, . . . ,Rk) be a lossless join decomposition of R. Furthermore,
let σ = (S 1, S 2) be a lossless join decomposition of R1 with respect to πR1 (F). Then
(S 1, S 2,R2, . . . ,Rk) is a lossless join decomposition of R.

The proof of Lemma 12.20 is based on the associativity of natural join. The details are left
to the Reader (Exercise 12.3-9.).

This can be applied for a simple, but unfortunately exponential time algorithm that
decomposes a schema into subschemata of BCNF property. The projections in lines 4�
5 of N̈-BCNF(S ,G) may be of exponential size in the length of the input. In order to
decompose schema (R, F), the procedure must be called with parameters R, F. Procedure
N̈-BCNF(S ,G) is recursive, S is the actual schema with set of functional dependencies
G. It is assumed that the dependencies in G are of the form X → A, where A is a single
attribute.

N̈-BCNF(S ,G)
1 while there exists {X → A} ∈ G, that violates BCNF
2 do S 1 ← {XA}
3 S 2 ← S − A
4 G1 ← πS 1 (G)
5 G2 ← πS 2 (G)
6 return (N̈-BCNF(S 1,G1),N̈-BCNF(S 2,G2))
7 return S

However, if the algorithm is allowed overdoing things, that is to decompose a schema
even if it is already in BCNF, then there is no need for projecting the dependencies. The
procedure is based on the following two lemmae.



12.3. Decomposition of relational schemata 509

Lemma 12.21

1. A schema of only two attributes is in BCNF.

2. If R is not in BCNF, then there exists two attributes A and B in R, such that (R−AB)→ A
holds.

Proof. If the schema consists of two attributes, R = AB, then there are at most two possible
non-trivial dependencies, A → B and B → A. It is clear, that if some of them holds, then
the left hand side of the dependency is a key, so the dependency does not violate the BCNF
property. However, if none of the two holds, then BCNF is trivially satis�ed.

On the other hand, let us assume that the dependency X → A violates the BCNF pro-
perty. Then there must exists an attribute B ∈ R − (XA), since otherwise X would be a
superkey. For this B, (R − AB)→ A holds.

Let us note, that the converse of the second statement of Lemma 12.21 is not true. It
may happen that a schema R is in BCNF, but there are still two attributes {A, B} that satisfy
(R − AB) → A. Indeed, let R = ABC, F = {C → A,C → B}. This schema is obviously in
BCNF, nevertheless (R − AB) = C → A.

The main contribution of Lemma 12.21 is that the projections of functional dependen-
cies need not be calculated in order to check whether a schema obtained during the proce-
dure is in BCNF. It is enough to calculate (R− AB)+ for pairs {A, B} of attributes, which can
be done by L-(R, F, X) in linear time, so the whole checking is polynomial (cu-
bic) time. However, this requires a way of calculating (R−AB)+ without actually projecting
down the dependencies. The next lemma is useful for this task.

Lemma 12.22 Let R2 ⊂ R1 ⊂ R and let F be the set of functional dependencies of scheme
R. Then

πR2 (πR1 (F)) = πR2 (F).

The proof is left for the Reader (Exercise 12.3-10.). The method of lossless join BCNF
decomposition is as follows. Schema R is decomposed into two subschemata. One is XA that
is in BCNF, satisfying X → A. The other subschema is R − A, hence by Theorem 12.14 the
decomposition has the lossless join property. This is applied recursively to R− A, until such
a schema is obtained that satis�es property 2 of Lemma 12.21. The lossless join property of
this recursively generated decomposition is guaranteed by Lemma 12.20.
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P-BCNF(R, F)
1 Z ← R
2 B Z is the schema that is not known to be in BCNF during the procedure.
3 ρ← ∅
4 while there exist A, B in Z, such that A ∈ (Z − AB)+ and |Z| > 2
5 do Let A and B be such a pair
6 E ← A
7 Y ← Z − B
8 while there exist C,D in Y , such that C ∈ (Z −CD)+

9 do Y ← Y − D
10 E ← C
11 ρ← ρ ∪ {Y}
12 Z ← Z − E
13 ρ← ρ ∪ {Z}
14 return ρ

The running time of P-BCNF(R, F) is polynomial, in fact it can be bounded
by O(n5), as follows. During each execution of the loop in lines 4�12 the size of Z is decre-
ased by at least one, so the loop body is executed at most n times. (Z − AB)+ is calculated
in line 4 for at most O(n2) pairs that can be done in linear time using L- that
results in O(n3) steps for each execution of the loop body. In lines 8�10 the size of Y is dec-
reased in each iteration, so during each execution of lines 3�12, they give at most n iteration.
The condition of the command while of line 8 is checked for O(n2) pairs of attributes, each
checking is done in linear time. The running time of the algorithm is dominated by the time
required by lines 8�10 that take n · n · O(n2) · O(n) = O(n5) steps altogether.

Dependency preserving decomposition into 3NF
We have seen already that its is not always possible to decompose a schema into subsche-
mata in BCNF so that the decomposition is dependency preserving. Nevertheless, if only
3NF is required then a decomposition can be given using M-(R, F). Let R be a
relational schema and F be the set of functional dependencies. Using M-(R, F)
a minimal cover G of F is constructed. Let G = {X1 → A1, X2 → A2, . . . , Xk → Ak}.
Theorem 12.23 The decomposition ρ = (X1A1, X2A2, . . . , XkAk) is dependency preserving
decomposition of R into subschemata in 3NF.

Proof. Since G+ = F+ and the functional dependency Xi → Ai is in πRi (F), the decomposi-
tion preserves every dependency of F. Let us suppose indirectly, that the schema Ri = XiAi
is not in 3NF, that is there exists a dependency U → B that violates the conditions of 3NF.
This means that the dependency is non-trivial and U is not a superkey in Ri and B is not
a prime attribute of Ri. There are two cases possible. If B = Ai, then using that U is not a
superkey U & Xi follows. In this case the functional dependency U → Ai contradicts to that
Xi → Ai was a member of minimal cover, since its left hand side could be decreased. In the
case when B , Ai, B ∈ Xi holds. B is not prime in Ri, thus Xi is not a key, only a superkey.
However, then Xi would contain a key Y such that Y & Xi. Furthermore, Y → Ai would hold,
as well, that contradicts to the minimality of G since the left hand side of Xi → Ai could be
decreased. If the decomposition needs to have the
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lossless join property besides being dependency preserving, then ρ given in Theorem 12.23
is to be extended by a key X of R. Although it was seen before that it is not possible to list
all keys in polynomial time, one can be obtained in a simple greedy way, the details are left
to the Reader (Exercise 12.3-11.).

Theorem 12.24 Let (R, F) be a relational schema, and let G = {X1 → A1, X2 →
A2, . . . , Xk → Ak} be a minimal cover of F. Furthermore, let X be a key in (R, F). Then
the decomposition τ = (X, X1A1, X2A2, . . . , XkAk) is a lossless join and dependency preser-
ving decomposition of R into subschemata in 3NF.

Proof. It was shown during the proof of Theorem 12.23 that the subschemata Ri = XiAi
are in 3NF for i = 1, 2, . . . , k. There cannot be a non-trivial dependency in the subschema
R0 = X, because if it were, then X would not be a key, only a superkey.

The lossless join property of τ is shown by the use of J-(R,G, ρ) procedure.
Note that it is enough to consider the minimal cover G of F. More precisely, we show that
the row corresponding to X in the table will be all 0 after running J-(R,G, ρ). Let
A1, A2, . . . , Am be the order of the attributes of R − X as C(R,G,X) inserts them into
X+. Since X is a key, every attribute of R − X is taken during C(R,G,X). It will be
shown by induction on i that the element in row of X and column of Ai is 0 after running
J-(R,G, ρ).

The base case of i = 0 is obvious. Let us suppose that the statement is true for i−
and consider when and why Ai is inserted into X+. In lines 6�8 of C(R,G,X) such a
functional dependency Y → Ai is used where Y ⊆ X ∪ {A1, A2, . . . , Ai−1}. Then Y → Ai ∈ G,
YAi = R j for some j. The rows corresponding to X and YAi = R j agree in columns of X
(all 0 by the induction hypothesis), thus the entries in column of Ai are equated by J-
(R,G, ρ). This value is 0 in the row corresponding to YAi = R j, thus it becomes 0 in the
row of X, as well.

It is interesting to note that although an arbitrary schema can be decomposed into sub-
schemata in 3NF in polynomial time, nevertheless it is NP-complete to decide whether a
given schema (R, F) is in 3NF, see Problem 12-4.. However, the BCNF property can be de-
cided in polynomial time. This difference is caused by that in order to decide 3NF property
one needs to decide about an attribute whether it is prime. This latter problem requires the
listing of all keys of a schema.

12.3.5. Multivalued dependencies

Example 12.8 Besides functional dependencies, some other dependencies hold in Example 12.1., as
well. There can be several lectures of a subject in different times and rooms. Part of an instance of the
schema could be the following.

Professor Subject Room Student Grade Time
Caroline Doubt�re Analysis MA223 John Smith A− Monday 8�10
Caroline Doubt�re Analysis CS456 John Smith A− Wednesday 12�2
Caroline Doubt�re Analysis MA223 Ching Lee A+ Monday 8�10
Caroline Doubt�re Analysis CS456 Ching Lee A+ Wednesday 12�2

A set of values of Time and Room attributes, respectively, belong to each given value of Subject, and
all other attribute values are repeated with these. Sets of attributes SR and StG are independent, that
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is their values occur in each combination.

The set of attributes Y is said to be multivalued dependent on set of attributes X, in
notation X � Y , if for every value on X, there exists a set of values on Y that is not dependent
in any way on the values taken in R − X − Y . The precise de�nition is as follows.

De�nition 12.25 The relational schema R satis�es the multivalued dependency X � Y,
if for every relation r of schema R and arbitrary tuples t1, t2 of r that satisfy t1[X] = t2[X],
there exists tuples t3, t4 ∈ r such that
• t3[XY] = t1[XY]
• t3[R − XY] = t2[R − XY]
• t4[XY] = t2[XY]
• t4[R − XY] = t1[R − XY]
holds.1

In Example 12.8. S�TR holds.

Remark 12.26 Functional dependency is equality generating dependency, that is from the
equality of two objects it deduces the equality of other other two objects. On the other hand,
multivalued dependency is tuple generating dependency, that is the existence of two rows
that agree somewhere implies the existence of some other rows.

There exists a sound and complete axiomatisation of multivalued dependencies similar to
the Armstrong-axioms of functional dependencies. Logical implication and inference can
be de�ned analogously. The multivalued dependency X � Y is logically implied by the set
M of multivalued dependencies, in notation M |= X � Y , if every relation that satis�es all
dependencies of M also satis�es X � Y .

Note, that X → Y implies X � Y . The rows t3 and t4 of De�nition 12.25 can be
chosen as t3 = t2 and t4 = t1, respectively. Thus, functional dependencies and multivalued
dependencies admit a common axiomatisation. Besides Armstrong-axioms (A1)�(A3), �ve
other are needed. Let R be a relational schema.

(A4) Complementation: {X � Y} |= X � (R − X − Y).
(A5) Extension: If X � Y holds, and V ⊆ W, then WX � VY .
(A6) Transitivity: {X � Y,Y � Z} |= X � (Z − Y).
(A7) {X → Y} |= X � Y .
(A8) If X � Y holds, Z ⊆ Y , furthermore for some W disjoint from Y W → Z holds,
then X → Z is true, as well.

Beeri, Fagin and Howard proved that (A1)�(A8) is sound and complete system of axioms for
functional and Multivalued dependencies together. Proof of soundness is left for the Reader
(Exercise 12.3-12.), the proof of the completeness exceeds the level of this book. The rules
of Lemma 12.2 are valid in exactly the same way as when only functional dependencies
were considered. Some further rules are listed in the next Proposition.

1It would be enough to require the existence of t3, since the existence of t4 would follow. However, the symmetry
of multivalued dependency is more apparent in this way.
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Proposition 12.27 The followings are true for multivalued dependencies.
1. Union rule: {X � Y, X � Z} |= X � YZ.
2. Pseudotransitivity: {X � Y,WY � Z} |= WX � (Z −WY).
3. Mixed pseudotransitivity: {X � Y, XY → Z} |= X → (Z − Y).
4. Decomposition rule for multivalued dependencies: ha X � Y and X � Z holds, then

X � (Y ∩ Z), X � (Y − Z) and X � (Z − Y) holds, as well.

Th proof of Proposition 12.27 is left for the Reader (Exercise 12.3-13.).

Dependency basis
Important difference between functional dependencies and multivalued dependencies is that
X → Y immediately implies X → A for all A in Y , however X � A is deduced by the
decomposition rule for multivalued dependencies from X � Y only if there exists a set of
attributes Z such that X � Z and Z ∩ Y = A, or Y − Z = A. Nevertheless, the following
theorem is true.

Theorem 12.28 Let R be a relational schema, X ⊂ R be a set of attributes. Then there
exists a partition Y1,Y2, . . . ,Yk of the set of attributes R − X such that for Z ⊆ R − X the
multivalued dependency X � Z holds if and only if Z is the union of some Yi's.

Proof. We start from the one-element partition W1 = R−X. This will be re�ned successively,
while the property that X � Wi holds for all Wi in the actual decomposition, is kept. If
X � Z and Z is not a union of some of the Wi's, then replace every Wi such that neither
Wi ∩ Z nor Wi − Z is empty by Wi ∩ Z and Wi − Z. According to the decomposition rule
of Proposition 12.27, both X � (Wi ∩ Z) and X � (Wi − Z) hold. Since R − X is �nite,
the re�nement process terminates after a �nite number of steps, that is for all Z such that
X � Z holds, Z is the union of some blocks of the partition. In order to complete the proof
one needs to observe only that by the union rule of Proposition 12.27, the union of some
blocks of the partition depends on X in multivalued way.

De�nition 12.29 The partition Y1,Y2, . . . , Yk constructed in Theorem 12.28 from a set D of
functional and multivalued dependencies is called the dependency basis of X (with respect
to D).

Example 12.9 Consider the familiar schema

R(Professor,Subject,Room,Student,Grade,Time)

of Examples 12.1. and 12.8.. Su�RT was shown in Example 12.8.. By the complementation rule
Su�PStG follows. Su→P is also known. This implies by axiom (A7) that Su�P. By the decompo-
sition rule Su�Stg follows. It is easy to see that no other one-element attribute set is determined by
Su via multivalued dependency. Thus, the dependency basis of Su is the partition{P,RT,StG}.

We would like to compute the set D+ of logical consequences of a given set D of functional
and multivalued dependencies. One possibility is to apply axioms (A1)�(A8) to extend the
set of dependencies repeatedly, until no more extension is possible. However, this could
be an exponential time process in the size of D. One cannot expect any better, since it



514 12. Relational Database Design

was shown before that even D+ can be exponentially larger than D. Nevertheless, in many
applications it is not needed to compute the whole set D+, one only needs to decide whether
a given functional dependency X → Y or multivalued dependency X � Y belongs to D+

or not. In order to decide about a multivalued dependency X � Y , it is enough to compute
the dependency basis of X, then to check whether Z − X can be written as a union of some
blocks of the partition. The following is true.

Theorem 12.30 (Beeri). In order to compute the dependency basis of a set of attributes
X with respect to a set of dependencies D, it is enough to consider the following set M of
multivalued dependencies:
1. All multivalued dependencies of D and
2. for every X → Y in D the set of multivalued dependencies X � A1, X � A2, . . . , X �

Ak, where Y = A1A2 . . . Ak, and the Ai's are single attributes.

The only thing left is to decide about functional dependencies based on the dependency
basis. C(R,F,X) works correctly only if multivalued dependencies are not considered.
The next theorem helps in this case.

Theorem 12.31 (Beeri). Let us assume that A < X and the dependency basis of X with
respect to the set M of multivalued dependencies obtained in Theorem 12.30 is known.
X → A holds if and only if
1. A forms a single element block in the partition of the dependency basis, and
2. There exists a set Y of attributes that does not contain A, Y → Z is an element of the

originally given set of dependencies D, furthermore A ∈ Z.

Based on the observations above, the following polynomial time algorithm can be given to
compute the dependency basis of a set of attributes X.

D-(R,M, X)
1 S ← {R − X} B The collection of sets in the dependency basis is S.
2 repeat
3 for all V � W ∈ M
4 do if there exists Y ∈ S such that Y ∩W , ∅ ∧ Y ∩ V = ∅
5 then S ← S − {{Y}} ∪ {{Y ∩W}, {Y −W}}
6 until S does not change
7 return S

It is immediate that if S changes in lines 3�5. of D-(R, M, X), then some
block of the partition is cut by the algorithm. This implies that the running time is a poly-
nomial function of the sizes of M and R. In particular, by careful implementation one can
make this polynomial to O(|M| · |R|3), see Problem 12-5..

Fourth normal form 4NF
The Boyce�Codd normal form can be generalised to the case where multivalued dependen-
cies are also considered besides functional dependencies, and one needs to get rid of the
redundancy caused by them.
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De�nition 12.32 Let R be a relational schema, D be a set of functional and multivalued
dependencies over R. R is in fourth normal form (4NF), if for arbitrary multivalued depen-
dency X � Y ∈ D+ for which Y * X and R , XY, holds that X is superkey in R.

Observe that 4NF=⇒BCNF. Indeed, if X → A violated the BCNF condition, then A < X,
furthermore XA could not contain all attributes of R, because that would imply that X is a
superkey. However, X → A implies X � A by (A8), which in turn would violate the 4NF
condition.

Schema R together with set of functional and multivalued dependencies D can be de-
composed into ρ = (R1,R2, . . . ,Rk), where each Ri is in 4NF and the decomposition has the
lossless join property. The method follows the same idea as the decomposition into BCNF
subschemata. If schema S is not in 4NF, then there exists a multivalued dependency X � Y
in the projection of D onto S that violates the 4NF condition. That is, X is not a superkey in
S , Y neither is empty, nor is a subset of X, furthermore the union of X and Y is not S . It can
be assumed without loss of generality that X and Y are disjoint, since X � (Y−X) is implied
by X � Y using (A1), (A7) and the decomposition rule. In this case S can be replaced by
subschemata S 1 = XY and S 2 = S − Y , each having a smaller number of attributes than S
itself, thus the process terminates in �nite time.

Two things has to be dealt with in order to see that the process above is correct.
• Decomposition S 1, S 2 has the lossless join property.
• How can the projected dependency set πS (D) be computed?
The �rst problem is answered by the following theorem.

Theorem 12.33 The decomposition ρ = (R1,R2) of schema R has the lossless join property
with respect to a set of functional and multivalued dependencies D iff

(R1 ∩ R2)� (R1 − R2).

Proof. The decomposition ρ = (R1,R2) of schema R has the lossless join property iff for any
relation r over the schema R that satis�es all dependencies from D holds that if µ and ν are
two tuples of r, then there exists a tuple ϕ satisfying ϕ[R1] = µ[R1] and ϕ[R2] = ν[R2], then
it is contained in r. More precisely, ϕ is the natural join of the projections of µ on R1 and of
ν on R2, respectively, which exist iff µ[R1 ∩ R2] = ν[R1 ∩ R2]. Thus the fact that ϕ is always
contained in r is equivalent with that (R1 ∩ R2)� (R1 − R2).

To compute the projection πS (D) of the dependency set D one can use the following
theorem of Aho, Beeri and Ullman. πS (D) is the set of multivalued dependencies that are
logical implications of D and use attributes of S only.

Theorem 12.34 (Aho, Beeri és Ullman). πS (D) consists of the following dependencies:
• For all X → Y ∈ D+, if X ⊆ S , then X → (Y ∩ S ) ∈ πS (D).
• For all X � Y ∈ D+, if X ⊆ S , then X � (Y ∩ S ) ∈ πS (D).
Other dependencies cannot be derived from the fact that D holds in R.

Unfortunately this theorem does not help in computing the projected dependencies in poly-
nomial time, since even computing D+ could take exponential time. Thus, the algorithm of
4NF decomposition is not polynomial either, because the 4NF condition must be checked
with respect to the projected dependencies in the subschemata. This is in deep contrast with
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the case of BCNF decomposition. The reason is, that to check BCNF condition one does
not need to compute the projected dependencies, only closures of attribute sets need to be
considered according to Lemma 12.21. Exercises

12.3-1 Are the following inference rules sound?
a. If XW → Y and XY → Z, then X → (Z −W).
b. If X � Y and Y � Z, then X � Z.
c. If X � Y and XY → Z, then X → Z.

12.3-2 Prove Theorem 12.30, that is show the following. Let D be a set of functional and
multivalued dependencies, and let m(D) = {X � Y : X � Y ∈ D} ∪ {X � A : A ∈
Y for some X → Y ∈ D}. Then

a. D |= X → Y =⇒ m(D) |= X � Y , and
b. D |= X � Y ⇐⇒ m(D) |= X � Y .

Hint. Use induction on the inference rules to prove b.
12.3-3 Consider the database of an investment �rm, whose attributes are as follows: B
(stockbroker), O (office of stockbroker), I (investor), S (stock), A (amount of stocks of
the investor), D (dividend of the stock). The following functional dependencies are valid:
S → D, I → B, IS → A, B→ O.

a. Determine a key of schema R = BOIS AD.
b. How many keys are in schema R?
c. Give a lossless join decomposition of R into subschemata in BCNF.
d. Give a dependency preserving and lossless join decomposition of R into subschemata
in 3NF.

12.3-4 The schema R of Exercise 12.3-3. is decomposed into subschemata S D, IB, IS A
and BO. Does this decomposition have the lossless join property?
12.3-5 Assume that schema R of Exercise 12.3-3. is represented by IS A, IB, S D and
IS O subschemata. Give a minimal cover of the projections of dependencies given in Exer-
cise 12.3-3.. Exhibit a minimal cover for the union of the sets of projected dependencies. Is
this decomposition dependency preserving?
12.3-6 Let the functional dependency S → D of Exercise 12.3-3. be replaced by the multi-
valued dependency S � D. That is , D represents the stock's dividend �history�.

a. Compute the dependency basis of I.
b. Compute the dependency basis of BS .
c. Give a decomposition of R into subschemata in 4NF.

12.3-7 Consider the decomposition ρ = {R1,R2, . . . ,Rk} of schema R. Let ri = πRi (r),
furthermore mρ(r) =Zk

i=1πRi (r). Prove:
a. r ⊆ mρ(r).
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b. If s = mρ(r), then πRi (s) = ri.
c. mρ(mρ(r)) = mρ(r).

12.3-8 Prove that schema (R, F) is in BCNF iff for arbitrary A ∈ R and key X ⊂ R, it holds
that there exists no Y ⊆ R, for which X → Y ∈ F+; Y → X < F+; Y → A ∈ F+ and A < Y .
12.3-9 Prove Lemma 12.20.
12.3-10 Let us assume that R2 ⊂ R1 ⊂ R and the set of functional dependencies of schema
R is F. Prove that πR2 (πR1 (F)) = πR2 (F).
12.3-11 Give a O(n2) running time algorithm to �nd a key of the relational schema (R, F).
Hint. Use that R is superkey and each superkey contains a key. Try to drop attributes from
R one-by-one and check whether the remaining set is still a key.
12.3-12 Prove that axioms (A1)�(A8) are sound for functional and multivalued dependen-
cies.
12.3-13 Derive the four inference rules of Proposition 12.27 from axioms (A1)�(A8).

12.4. Generalised dependencies
Two such dependencies will be discussed in this section that are generalizations of the pre-
vious ones, however cannot be axiomatised with axioms similar to (A1)�(A8).

12.4.1. Join dependencies
Theorem 12.33 states that multivalued dependency is equivalent with that some decompo-
sition the schema into two parts has the lossless join property. Its generalisation is the join
dependency.
De�nition 12.35 Let R be a relational schema and let R =

⋃k
i=1 Xi. The relation r belon-

ging to R is said to satisfy the join dependency

Z[X1, X2, . . . , Xk]

if
r =Zk

i=1πXi (r).
In this setting r satis�es multivalued dependency X � Y iff it satis�es the join dependency
Z[XY, X(R − Y)]. The join dependency Z[X1, X2, . . . , Xk] expresses that the decomposition
ρ = (X1, X2, . . . , Xk) has the lossless join property. One can de�ne the �fth normal form,
5NF.
De�nition 12.36 The relational schema R is in �fth normal form, if it is in 4NF and has
no non-trivial join dependency.
The �fth normal form has theoretical signi�cance primarily. The schemata used in practice
usually have primary keys. Using that the schema could be decomposed into subschemata
of two attributes each, where one of the attributes is a superkey in every subschema.

Example 12.10 Consider the database of clients of a bank (Client-
number,Name,Address,accountBalance). Here C is unique identi�er, thus the schema could be
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decomposed into (CN,CA,CB), which has the lossless join property. However, it is not worth doing
so, since no storage place can be saved, furthermore no anomalies are avoided with it.

There exists an axiomatisation of a dependency system if there is a �nite set of infe-
rence rules that is sound and complete, i.e. logical implication coincides with being deri-
vable by using the inference rules. For example, the Armstrong-axioms give an axiomatisa-
tion of functional dependencies, while the set of rules (A1)�(A8) is the same for functional
and multivalued dependencies considered together. Unfortunately, the following negative
result is true.

Theorem 12.37 The family of join dependencies has no �nite axiomatisation.

In contrary to the above, Abiteboul, Hull and Vianu show in their book that the logical
implication problem can be decided by an algorithm for the family of functional and join
dependencies taken together. The complexity of the problem is as follows.

Theorem 12.38

• It is NP-complete to decide whether a given join dependency is implied by another given
join dependency and a functional dependency.

• It is NP-hard to decide whether a given join dependency is implied by given set of
multivalued dependencies.

12.4.2. Branching dependencies
A generalisation of functional dependencies is the family of branching dependencies. Let
us assume that A, B ⊂ R and there exists no q + 1 rows in relation r over schema R, such
that they contain at most p distinct values in columns of A, but all q + 1 values are pairwise
distinct in some column of B. Then B is said to be (p, q)-dependent on A, in notation A

p,q−−→
B. In particular, A 1,1−−→ B holds if and only if functional dependency A→ B holds.

Example 12.11
Consider the database of the trips of an international transport truck.

• One trip: four distinct countries.
• One country has at most �ve neighbours.
• There are 30 countries to be considered.
Let x1, x2, x3, x4 be the attributes of the countries reached in a trip. In this case xi

1,1−−→ xi+1 does not
hold, however another dependency is valid:

xi
1,5−−→ xi+1.

The storage space requirement of the database can be signi�cantly reduced using these dependencies.
The range of each element of the original table consists of 30 values, names of countries or some
codes of them (5 bits each, at least). Let us store a little table (30 × 5 × 5 = 750 bits) that contains a
numbering of the neighbours of each country, which assigns to them the numbers 0,1,2,3,4 in some
order. Now we can replace attribute x2 by these numbers (x∗2), because the value of x1 gives the starting
country and the value of x∗2 determines the second country with the help of the little table. The same
holds for the attribute x3, but we can decrease the number of possible values even further, if we give
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a table of numbering the possible third countries for each x1, x2 pair. In this case, the attribute x∗3 can
take only 4 different values. The same holds for x4, too. That is, while each element of the original
table could be encoded by 5 bits, now for the cost of two little auxiliary tables we could decrease the
length of the elements in the second column to 3 bits, and that of the elements in the third and fourth
columns to 2 bits.

The (p, q)-closure of an attribute set X ⊂ R can be de�ned:

Cp,q(X) = {A ∈ R : X
p,q−−→ A}.

In particular, C1,1(X) = X+. In case of branching dependencies even such basic questions
are hard as whether there exists an Armstrong-relation for a given family of dependencies.
De�nition 12.39 Let R be a relational schema, F be a set of dependencies of some depen-
dency family F de�ned on R. A relation r over schema R is Armstrong-relation for F, if the
set of dependencies from F that r satis�es is exactly F, that is F = {σ ∈ F : r |= σ}.
Armstrong proved that for an arbitrary set of functional dependencies F there exists
Armstrong-relation for F+. The proof is based on the three properties of closures of att-
ributes sets with respect to F, listed in Exercise 12.2-1. For branching dependencies only
the �rst two holds in general.
Lemma 12.40 Let 0 < p ≤ q, furthermore let R be a relational schema. For X,Y ⊆ R one
has
1. X ⊆ Cp,q(X) and
2. X ⊆ Y =⇒ Cp,q(X) ⊆ Cp,q(Y).

There exists such C : 2R → 2R mapping and natural numbers p, q that there exists no
Armstrong-relation for C in the family if (p, q)-dependencies.

Grant Minker investigated numerical dependencies that are similar to branching de-
pendencies. For attribute sets X,Y ⊆ R the dependency X k−→ Y holds in a relation r over
schema R if for every tuple value taken on the set of attributes X, there exists at most k dis-
tinct tuple values taken on Y . This condition is stronger than that of X 1,k−−→ Y , since the latter
only requires that in each column of Y there are at most k values, independently of each
other. That allows k|Y−X| different Y projections. Numerical dependencies were axiomatised
in some special cases, based on that Katona showed that branching dependencies have no
�nite axiomatisation. It is still an open problem whether logical implication is algorithmi-
cally decidable amongst branching dependencies. Exercises

12.4-1 Prove Theorem 12.38.
12.4-2 Prove Lemma 12.40.
12.4-3 Prove that if p = q, then Cp,p

(
Cp,p(X)

)
= Cp,p(X) holds besides the two properties

of Lemma 12.40.
12.4-4 A C : 2R → 2R mapping is called a closure, if it satis�es the two properties of
Lemma 12.40 and and the third one of Exercise 12.4-3.. Prove that if C : 2R → 2R is a clo-
sure, and F is the family of dependencies de�ned by X → Y ⇐⇒ Y ⊆ C(X), then there
exists an Armstrong-relation for F in the family of (1, 1)-dependencies (functional depen-
dencies) and in the family of (2, 2)-dependencies, respectively.
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12.4-5 Let C be the closure de�ned by

C(X) =

{
X, if |X| < 2
R otherwise.

Prove that there exists no Armstrong-relation for C in the family of (n, n)-dependencies, if
n > 2.

Problems

12-1. External attributes
Maier calls attribute A an external attribute in the functional dependency X → Y with
respect to the family of dependencies F over schema R, if the following two conditions
hold:
1. (F − {X → Y}) ∪ {X → (Y − A)} |= X → Y , or
2. (F − {X → Y}) ∪ {(X − A)→ Y} |= X → Y .
Design an O(n2) running time algorithm, whose input is schema (R, F) and output is a set
of dependencies G equivalent with F that has no external attributes.
12-2. The order of the elimination steps in the construction of minimal cover is important
In the procedure M-(R, F) the set of functional dependencies was changed in
two ways: either by dropping redundant dependencies, or by dropping redundant attributes
from the left hand sides of the dependencies. If the latter method is used �rst, until there
is no more attribute that can be dropped from some left hand side, then the �rst method,
this way a minimal cover is obtained really, according to Proposition 12.6. Prove that if the
�rst method applied �rst and then the second, until there is no more possible applications,
respectively, then the obtained set of dependencies is not necessarily a minimal cover of F.

12-3. BCNF subschema
Prove that the following problem is coNP-complete: Given a relational schema R with set
of functional dependencies F, furthermore S ⊂ R, decide whether (S , πS (F)) is in BCNF.
12-4. 3NF is hard to recognise
Let (R, F) be a relational schema, where F is the system of functional dependencies.
The k size key problem is the following: given a natural number k, determine whether there
exists a key of size at most k.
The prime attribute problem is the following: for a given A ∈ R, determine whether it is a
prime attribute.
a. Prove that the k size key problem is NP-complete. Hint. Reduce the vertex cover prob-

lem to the prime attribute problem.
b. Prove that the prime attribute problem is NP-complete by reducing the k size key prob-

lem to it.
c. Prove that determining whether the relational schema (R, F) is in 3NF is NP-complete.

Hint. Reduce the prime attribute problem to it.
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12-5. Running time of D-

Give an implementation of procedure D-, whose running time is O(|M| · |R|3).

Chapter notes
The relational data model was introduced by Codd [9] in 1970. Functional dependencies
were treated in his paper of 1972 [13], their axiomatisation was completed by Armstrong
[3]. The logical implication problem for functional dependencies were investigated by Be-
eri and Bernstein [5], furthermore Maier [24]. Maier also treats the possible de�nitions of
minimal covers, their connections and the complexity of their computations in that paper.
Maier, Mendelzon and Sagiv found method to decide logical implications among general
dependencies [25]. Beeri, Fagin and Howard proved that axiom system (A1)�(A8) is so-
und and complete for functional and multivalued dependencies taken together [7]. Yu and
Johnson [31] constructed such relational schema, where |F| = k and the number of keys
is k!. Békéssy and Demetrovics [8] gave a simple and beautiful proof for the statement,
that from k functional dependencies at most k! keys can be obtained, thus Yu and Johnson's
construction is extremal.

Armstrong-relations were introduced and studied by Fagin [19, 20], furthermore by
Beeri, Fagin, Dowd and Statman [6].

Multivalued dependencies were independently discovered by Zaniolo [32], Fagin [18]
and Delobel [14].

The necessity of normal forms was recognised by Codd while studying update anoma-
lies [11, 12]. The Boyce�Codd normal form was introduced in [10]. The de�nition of the
third normal form used in this chapter was given by Zaniolo [33]. Complexity of decompo-
sition into subschemata in certain normal forms was studied by Lucchesi and Osborne [23],
Beeri and Bernstein [5], furthermore Tsou and Fischer [29].

Theorems 12.30 and 12.31 are results of Beeri [4]. Theorem 12.34 is from a paper of
Aho, Beeri és Ullman [2].

Theorems 12.37 and 12.38 are from the book of Abiteboul, Hull and Vianu [1], the
non-existence of �nite axiomatisation of join dependencies is Petrov's result [26].

Branching dependencies were introduced by Demetrovics, Katona and Sali, they
studied existence of Armstrong-relations and the size of minimal Armstrong-relations
[15, 16, 17, 27]. Katona showed that there exists no �nite axiomatisation of branching de-
pendencies in (ICDT'92 Berlin, invited talk) but never published.

Possibilities of axiomatisation of numerical dependencies were investigated by Grant
and Minker [21, 22].

Good introduction of the concepts of this chapter can be found in the books of Abite-
boul, Hull and Vianu [1], Ullman [30] furthermore Thalheim [28], respectively.
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