
5. Recurrences

The recursive de�nition of the Fibonacci numbers is well-known: if Fn is the nth Fibonacci
number, then

F0 = 0, F1 = 1 ,

Fn+2 = Fn+1 + Fn, if n ≥ 0 .

We are interested in an explicit form of the numbers Fn for all n natural numbers. Actually,
the problem is to solve an equation where the unknown is given recursively, in which case
the equation is called a recurrence equation. The solution can be considered as a function
over natural numbers, because Fn is de�ned for all n. Such recurrence equations are also
known as difference equations, but could be named as discrete differential equations for
their similarities to differential equations.

De�nition 5.1 A kthth order recurrence equation, (k ≥ 1) is an equation of the form

f (xn, xn+1, . . . , , xn+k) = 0, n ≥ 0, (5.1)

where xn must be given in an explicit form.

For a unique determination of xn, k initial values must be given. Usually these values are
x0, x1, . . . , xk−1. These can be considered as initial conditions. In the case of the equation
for Fibonacci-numbers, which is of second order, two initial values must be given.

The sequence xn = g(n) satisfying equation (5.1) and the corresponding initial con-
ditions is called a particular solution. If all particular solutions of equation (5.1) can be
obtained from the sequence xn = h(n,C1,C2, . . . ,Ck), by adequately choosing of the cons-
tants C1,C2, . . . ,Ck, then this sequence x is a general solution.

Solving recurrence equations is not an easy task. In the chapter we will discuss methods
which can be used in special cases. For simplicity of writing we will use the notation xn
instead of x(n) as it appears in several books (sequences can be considered as functions over
natural numbers).

The chapter is divided into three sections. In section 5.1 we deal with solving linear
recurrence equations, in section 5.2 with generating functions and their use in solving re-
currence equations and in section 5.3 we focus our attention on numerical solution of recur-
rence equations.
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5.1. Linear recurrence equations
If the recurrence equation is of the form

f0(n)xn + f1(n)xn+1 + · · · + fk(n)xn+k = f (n), n ≥ 0,

where f , f0, f1, . . . , fk are functions de�ned over natural numbers, f0, fk , 0, and xn must
be given explicitly, then the recurrence equation is linear. If f is the zero function, then the
equation is homogeneous, otherwise nonhomogeneous. If all the functions f0, f1, . . . , fk are
constant, the equation is called a linear recurrence equation with constant coefficients.

5.1.1. Linear homogeneous equations with constant coefficients
Let the equation be

a0xn + a1xn+1 + · · · + ak xn+k = 0, n ≥ k , (5.2)

where a0, a1, . . . , ak are real constants, a0, ak , 0, k ≥ 1. If k initial conditions are given
(usually x0, x1, . . . , xk−1), then the general solution of this equation can be uniquely given.

To solve the equation let us consider its characteristic equation

a0 + a1r + · · · + ak−1rk−1 + akrk = 0 , (5.3)

a polynomial equation with real coefficients. This equation has k roots in the �eld of comp-
lex numbers. It can easily be seen after a simple substitution that if r0 is a real solution of
the characteristic equation, then C0rn

0 is a solution of (5.2), for arbitrary C0.
The general solution of equation (5.2) is

xn = C1x(1)
n + C2x(2)

n + · · · + Ck x(k)
n ,

where x(i)
n (i = 1, 2, . . . , k) are the linearly independent solutions of equation (5.2). The

constants C1,C2, . . . ,Ck can be determined from the initial conditions by solving a system
of k equations.

The linearly independent solutions are supplied by the roots of the characteristic equa-
tion by the following way. A fundamental solution of equation (5.2) can be associated with
each root of the characteristic equation. Let us consider the following cases.

Distinct real roots
Let r1, r2, . . . , rp be distinct real roots of the characteristic equation. Then

rn
1, rn

2, . . . , rn
p

are solutions of equation (5.2), and

C1rn
1 + C2rn

2 + · · · + Cprn
p (5.4)

is also a solution, for arbitrary constants C1, C2, . . . , Cp. If p = k, then (5.4) is the general
solution of the recurrence equation.
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Example 5.1 Solve the recurrence equation

xn+2 = xn+1 + xn, x0 = 0, x1 = 1.

The corresponding characteristic equation is

r2 − r − 1 = 0 ,

with the solutions
r1 =

1 +
√

5
2 , r2 =

1 − √5
2 .

These are distinct real solutions, so the general solution of the equation is

xn = C1

1 +
√

5
2


n

+ C2

1 − √5
2


n

.

The constants C1 and C2 can be determined using the initial conditions. From x0 = 0, x1 = 1 the
following system of equations can be obtained.

C1 + C2 = 0 ,

C1
1 +
√

5
2 + C2

1 − √5
2 = 1 .

The solution of this system of equations is C1 = 1/
√

5, C2 = −1/
√

5 . Therefore the general solution
is

xn =
1√
5

1 +
√

5
2


n

− 1√
5

1 − √5
2


n

,

which is the nth Fibonacci number Fn.

Multiple real roots
Let r be a real root of the characteristic equation with multiplicity p. Then

rn, nrn, n2rn, . . . , np−1rn

are solutions of equation (5.2) (fundamental solutions corresponding to r), and
(C0 + C1n + C2n2 + · · · + Cp−1np−1)rn (5.5)

is also a solution, for any constants C0, C1, . . . , Cp−1. If the characteristic equation has no
other solutions, then (5.5) is a general solution of the recurrence equation.

Example 5.2 Solve the recurrence equation

xn+2 = 4xn+1 − 4xn, x0 = 1, x1 = 3.

The characteristic equation is
r2 − 4r + 4 = 0 ,

with r = 2 a solution with multiplicity 2. Then

xn = (C0 + C1n)2n

is a general solution of the recurrence equation.
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From the initial conditions we have

C0 = 1 ,
2C0 + 2C1 = 3 .

From this system of equations C0 = 1, C1 = 1/2, so the general solution is

xn =

(
1 +

1
2 n

)
2n or xn = (n + 2)2n−1 .

Distinct complex roots
If the complex number a(cos b + i sin b), written in trigonometric form, is a root of the cha-
racteristic equation, then its conjugate a(cos b−i sin b) is also a root, because the coefficients
of the characteristic equation are real numbers. Then

an cos bn and an sin bn

are solutions of equation (5.2) and

C1an cos bn + C2an sin bn (5.6)

is also a solution, for any constants C1 and C2. If these are the only solutions of the charac-
teristic equation, then (5.6) is a general solution.

Example 5.3 Solve the recurrence equation

xn+2 = 2xn+1 − 2xn, x0 = 0, x1 = 1.

The corresponding characteristic equation is

r2 − 2r + 2 = 0 ,

with roots 1 + i and 1− i. These can be written in trigonometric form as
√

2(cos(π/4) + i sin(π/4)) and√
2(cos(π/4) − i sin(π/4)). Therefore

xn = C1(
√

2)n cos nπ
4 + C2(

√
2)n sin nπ

4

is a general solution of the recurrence equation. From the initial conditions

C1 = 0 ,
C1
√

2 cos π4 + C2
√

2 sin π4 = 1.

Therefore C1 = 0, C2 = 1. Hence the general solution is

xn =
(√2)n sin nπ

4 .
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Multiple complex roots
If the complex number written in trigonometric form as a(cos b + i sin b) is a root of the
characteristic equation with multiplicity p, then its conjugate a(cos b − i sin b) is also a root
with multiplicity p.

Then
an cos bn, nan cos bn, . . . , np−1an cos bn

and
an sin bn, nan sin bn, . . . , np−1an sin bn

are solutions of the recurrence equation (5.2). Then

(C0 + C1n + · · · + Cp−1np−1)an cos bn + (D0 + D1n + · · · + Dp−1np−1)an sin bn

is also a solution, where C0,C1, . . . ,Cp−1,D0,D1, . . . ,Dp−1 are arbitrary constants, which
can be determined from the initial conditions. This solution is general if the characteristic
equation has no other roots.

Example 5.4 Solve the recurrence equation

xn+4 + 2xn+2 + xn = 0, x0 = 0, x1 = 1, x2 = 2, x3 = 3.

The characteristic equation is
r4 + 2r2 + 1 = 0 ,

which can be written as (r2 + 1)2 = 0. The complex numbers i and −i are double roots. The trigono-
metric form of these are

i = cos π2 + i sin π2 , and − i = cos π2 − i sin π2
respectively. Therefore the general solution is

xn = (C0 + C1n) cos nπ
2 + (D0 + D1n) sin nπ

2 .

From the initial conditions we obtain

C0 = 0 ,
(C0 + C1) cos π2 + (D0 + D1) sin π2 = 1 ,

(C0 + 2C1) cos π + (D0 + 2D1) sin π = 2 ,

(C0 + 3C1) cos 3π
2 + (D0 + 3D1) sin 3π

2 = 3 ,

that is

C0 = 0 ,
D0 + D1 = 1 ,
−2C1 = 2 ,

−D0 − 3D1 = 3 .

Solving this system of equations C0 = 0, C1 = −1, D0 = 3 and D1 = −2. Thus the general solution is

xn = (3 − 2n) sin nπ
2 − n cos nπ

2 .
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Using these four cases all linear homogeneous equations with constant coefficients can
be solved, if we can solve their characteristic equations.

Example 5.5 Solve the recurrence equation

xn+3 = 4xn+2 − 6xn+1 + 4xn, x0 = 0, x1 = 1, x2 = 1.

The characteristic equation is
r3 − 4r2 + 6r − 4 = 0 ,

with roots 2, 1 + i and 1 − i. Therefore the general solution is

xn = C12n + C2
(√2)n cos nπ

4 + C3
(√2)n sin nπ

4 .

After determining the constants we obtain

xn = −2n−1 +

(√2)n

2

(
cos nπ

4 + 3 sin nπ
4

)
.

The general solution
The characteristic equation of the kth order linear homogeneous equation (5.2) has k roots
in th �eld of complex numbers, which are not necessarily distinct. Let these roots be the
following:

r1 real, with multiplicity p1 (p1 ≥ 1) ,
r2 real, with multiplicity p2 (p2 ≥ 1) ,
. . .
rt real, with multiplicity pt (pt ≥ 1) ,
s1 = a1(cos b1 + i sin b1) complex, with multiplicity q1 (q1 ≥ 1) ,
s2 = a2(cos b2 + i sin b2) complex, with multiplicity q2 (q2 ≥ 1) ,
. . .
sm = am(cos bm + i sin bm) complex, with multiplicity qm (qm ≥ 1) .

Since the equation has k roots, p1 + p2 + · · · + pt + 2(q1 + q2 + · · · + qm) = k.
In this case the general solution of equation (5.2) is

xn =

t∑

j=1

(
C( j)

0 + C( j)
1 n + · · · + C( j)

p j−1np j−1
)
rn

j

+

m∑

j=1

(
D( j)

0 + D( j)
1 n + · · · + D( j)

q j−1nq j−1
)
an

j cos b jn

+

m∑

j=1

(
E( j)

0 + E( j)
1 n + · · · + E( j)

q j−1nq j−1
)
an

j sin b jn , (5.7)

where
C( j)

0 , C( j)
1 , . . . , C( j)

p j−1, j = 1, 2, . . . , t ,
D(l)

0 , E(l)
0 , D(l)

1 , E(l)
1 , . . . , D(l)

pl−1, E(l)
pl−1, l = 1, 2, . . . ,m are constants, which can be

determined from the initial conditions.
The above statements can be summarised in the following theorem.
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Theorem 5.1 Let k ≥ 1 be an integer and a0, a1, . . . , ak real numbers with a0, ak , 0.
The general solution of the linear recurrence equation (5.2) can be obtained as a linear
combination of the terms n jrn

i , where ri are the roots of the characteristic equation (5.3)
with multiplicity pi (0 ≤ j < pi) and the coefficients of the linear combination depend on
the initial conditions.

The proof of the theorem is left to the reader (see exercise 5.1-5.).
The algorithm for the general solution is the following.

L-

1 determine the characteristic equation of the recurrence equation
2 �nd all roots of the characteristic equation with their multiplicities
3 �nd the general solution (5.7) based on the roots
4 determine the constants of (5.7) using the initial conditions, if these exists.

5.1.2. Linear nonhomogeneous recurrence equations with constant coeffici-
ents

Consider the linear nonhomogeneous recurrence equation with constant coefficients

a0xn + a1xn+1 + · · · + ak xn+k = f (n) , (5.8)

where a0, a1, . . . , ak are real constants, a0, ak , 0, k ≥ 1, and f is not the zero function.
The corresponding linear homogeneous equation (5.2) can be solved using Theorem

5.1. If a particular solution of equation (5.8) is known, then equation (5.8) can be solved.

Theorem 5.2 Let k ≥ 1 be an integer, a0, a1, . . . , ak real numbers, a0, ak , 0. If x(1)
n

is a particular solution of the linear nonhomogeneous equation (5.8) and x(0)
n is a general

solution of the linear homogeneous equation (5.2), then

xn = x(0)
n + x(1)

n

is a general solution of the equation (5.8).

The proof of the theorem is left to the reader (see exercise 5.1-6.).

Example 5.6 Solve the recurrence equation

xn+2 + xn+1 − 2xn = 2n, x0 = 0, x1 = 1.

First we solve the homogeneous equation

xn+2 + xn+1 − 2xn = 0,

and obtain the general solution
x(0)

n = C1(−2)n + C2 ,

since the roots of the characteristic equation are −2 and 1 . It is easy to see that

xn = C1(−2)n + C2 + 2n−2
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f (n) x(1)
n

npan (C0 + C1n + · · · + Cpnp)an

annp sin bn (C0 + C1n + · · · + Cpnp)an sin bn + (D0 + D1n + · · · + Dpnp)an cos bn

annp cos bn (C0 + C1n + · · · + Cpnp)an sin bn + (D0 + D1n + · · · + Dpnp)an cos bn

Figure 5.1. The form of particular solutions.

is a solution of the nonhomogeneous equation. Therefore the general solution is

xn = −1
4 (−2)n + 2n−2 or xn =

2n − (−2)n

4 ,

The constants C1 and C2 can be determined using the initial conditions. Thus, that is

xn =

{
0, if n is even ,
2n−1, if n is odd .

A particular solution can be obtained using the method of variation of constants. Ho-
wever, there are cases when there is an easier way of �nding a particular solution. In �gure
5.1 we can see types of functions f (n), for which a particular solution x(1)

n can be obtained
in the given form in the table. The constants can be obtained by substitutions.

In the previous example f (n) = 2n, so the �rst case can be used with a = 2 and p = 0.
Therefore we try to �nd a particular solution of the form C02n. After substitution we obtain
C0 = 1/4, thus the particular solution is

x(1)
n = 2n−2 .

Exercises
5.1-1 Solve the recurrence equation

Hn = 2Hn−1 + 1, ha n ≥ 1, és H0 = 0 .

(Here Hn is the optimal number of moves in the problem of Towers of Hanoi.)

5.1-2 Analyse the problem of Towers of Hanoi if n discs have to be moved from stick A to
stick C in such a way that no disc can be moved directly from A to C and vice versa.

Hint. Show that if the optimal number of moves is denoted by Mn, and n ≥ 1, then
Mn = 3Mn−1 + 2.
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5.1-3 Solve the recurrence equation

(n + 1)Rn = 2(2n − 1)Rn−1, ha n ≥ 1, és R0 = 1.

5.1-4 Solve the linear nonhomogeneous recurrence equation

xn = 2n − 2 + 2xn−1, ha n ≥ 2, és x1 = 0.

Hint. Try to �nd a particular solution of the form C1n2n + C2.

5.1-5? Prove Theorem 5.1.
5.1-6 Prove Theorem 5.2.

5.2. Generating functions and recurrence equations
Generating functions can be used, among others, to solve recurrence equations, count ob-
jects (e.g. binary trees), prove identities and solve partition problems. Counting the number
of objects can be done by stating and solving recurrence equations. These equations are
usually not linear, and generating functions can help us in solving them.

5.2.1. Definition and operations
Associate a series with the in�nite sequence (an)n≥0 = 〈a0, a1, a2, . . . , an, . . .〉 the following
way

A(z) = a0 + a1z + a2z2 + · · · + anzn + · · · =
∑

n≥0
anzn .

This is called the generating function of the sequence (an)n≥0.
For example, in the case of the Fibonacci numbers this generating function is

F(z) =
∑

n≥0
Fnzn = z + z2 + 2z3 + 3z4 + 5z5 + 8z6 + 13z7 + · · · .

Multiplying both sides of the equation by z, then by z2, we obtain

F(z) = F0 + F1z + F2z2 + F3z3 + · · · + Fnzn + · · · ,
zF(z) = F0z + F1z2 + F2z3 + · · · + Fn−1zn + · · · ,

z2F(z) = F0z2 + F1z3 + · · · + Fn−2zn + · · · .

If we subtract the second and the third equation from the �rst one term by term, then use the
de�ning formula of the Fibonacci numbers, we get

F(z)(1 − z − z2) = z ,

that is
F(z) =

z
1 − z − z2 . (5.9)
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The correctness of these operations can be proved mathematically, but here we do not want
to go into details. The formulae obtained using generating functions can usually also be
proved using other methods.

Let us consider the following generating functions

A(z) =
∑

n≥0
anzn and B(z) =

∑

n≥0
bnzn.

The generating functions A(z) and B(z) are equal, if and only if an = bn for all n natural
numbers.

Now we de�ne the following operations with the generating functions: addition, mul-
tiplication by real number, shift, multiplication, derivation and integration.

Addition and multiplication by real number

αA(z) + βB(z) =
∑

n≥0
(αan + βbn)zn .

Shift
The generating function

zkA(z) =
∑

n≥0
anzn+k =

∑

n≥k
an−kzn

represents the sequence < 0, 0, . . . , 0︸      ︷︷      ︸
k

, a0, a1, . . . > , while the generating function

1
zk (A(z) − a0 − a1z − a2z2 − · · · − ak−1zk−1) =

∑

n≥k
anzn−k =

∑

n≥0
ak+nzn

represents the sequence < ak, ak+1, ak+2, . . . > .

Example 5.7 Let A(z) = 1 + z + z2 + · · · . Then
1
z
(
A(z) − 1

)
= A(z) and A(z) =

1
1 − z .

Multiplication
If A(z) and B(z) are generating functions, then

A(z)B(z) = (a0 + a1z + · · · + anzn + · · · )(b0 + b1z + · · · + bnzn + · · · )
= a0b0 + (a0b1 + a1b0)z + (a0b2 + a1b1 + a2b0)z2 + · · ·
=

∑

n≥0
snzn,

where sn =

n∑

k=0
akbn−k.

Special case. If bn = 1 for all natural numbers n, then

A(z) 1
1 − z =

∑

n≥0


n∑

k=0
ak

 zn . (5.10)
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If, in addition, an = 1 for all n, then

1
(1 − z)2 =

∑

n≥0
(n + 1)zn . (5.11)

Derivation

A′(z) = a1 + 2a2z + 3a3z2 + · · · =
∑

n≥0
(n + 1)an+1zn .

Example 5.8 After differentiating the both sides of the generating function

A(z) =
∑

n≥0
zn =

1
1 − z ,

we obtain
A′(z) =

∑

n≥1
nzn−1 =

1
(1 − z)2 .

Integration
∫ z

0
A(t)dt = a0z +

1
2a1z2 +

1
3a2z3 + · · · =

∑

n≥1

1
nan−1zn .

Example 5.9 Let
1

1 − z = 1 + z + z2 + z3 + · · ·
After integrating both sides we get

ln 1
1 − z = z +

1
2 z2 +

1
3 z3 + · · · =

∑

n≥1

1
n zn .

Multiplying the above generating functions we obtain

1
1 − z ln 1

1 − z =
∑

n≥1
Hnzn ,

where Hn = 1 +
1
2 +

1
3 + · · · + 1

n (H0 = 0, H1 = 1) are the so-called harmonic numbers.

Changing the arguments
Let A(z) =

∑
n≥0 anzn represent the sequence < a0, a1, a2, . . . >, then A(cz) =

∑
n≥0 cnanzn

represents the sequence < a0, ca1, c2a2, . . . cnan, . . . >. The following statements holds

1
2
(
A(z) + A(−z)

)
= a0 + a2z2 + · · · + a2nz2n + · · · ,

1
2
(
A(z) − A(−z)

)
= a1z + a3z3 + · · · + a2n−1z2n−1 + · · · .
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Example 5.10 Let A(z) = 1 + z + z2 + z3 + · · · = 1
1 − z . Then

1 + z2 + z4 + · · · = 1
2
(A(z) + A(−z)) =

1
2

(
1

1 − z +
1

1 + z

)
=

1
1 − z2 ,

which can also be obtained by substituting z with z2 in A(z). We can obtain the sum of the odd power
terms the same way,

z + z3 + z5 + · · · = 1
2
(A(z) − A(−z)) =

1
2

(
1

1 − z −
1

1 + z

)
=

z
1 − z2 .

Using generating functions we can obtain interesting formulae. For example, let A(z) =

1/(1 − z) = 1 + z + z2 + z3 + · · · . Then zA(z(1 + z)) = F(z), which is the generating function
of the Fibonacci numbers. From this

zA(z(1 + z)) = z + z2(1 + z) + z3(1 + z)2 + z4(1 + z)3 + · · · .
The coefficient of zn+1 on the left-hand side is Fn+1, that is the (n + 1)th Fibonacci number,
while the coefficient of zn+1 on the right-hand side is

∑

k≥0

(
n − k

k

)
,

after using the binomial formula in each term. Hence

Fn+1 =
∑

k≥0

(
n − k

k

)
=

b n+1
2 c∑

k=0

(
n − k

k

)
. (5.12)

Remember that the binomial formula can be generalised for all real r, namely

(1 + z)r =
∑

n≥0

(
r
n

)
zn ,

which is the generating function of the binomial coefficients. Here
(
r
n

)
is a generalisation of

the combinations for any real number r, that is

(
r
n

)
=



r(r − 1)(r − 2) . . . (r − n + 1)
n(n − 1) . . . 1 , if n > 0 ,

1, � n = 0 ,
0, if n < 0 .

We can obtain useful formulae using this generalisation for negative r. Let

1
(1 − z)m = (1 − z)−m =

∑

k≥0

(−m
k

)
(−z)k .

Since, by a simple computation, we get
(−m

k

)
= (−1)k

(
m + k − 1

k

)
,
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the following formula can be obtained

1
(1 − z)m+1 =

∑

k≥0

(
m + k

k

)
zk .

Then
zm

(1 − z)m+1 =
∑

k≥0

(
m + k

k

)
zm+k =

∑

k≥0

(
m + k

m

)
zm+k =

∑

k≥0

(
k
m

)
zk ,

and ∑

k≥0

(
k
m

)
zk =

zm

(1 − z)m+1 , (5.13)

where m is a natural number.

5.2.2. Solving recurrence equations with generating functions
If the generating function of the general solution of a recurrence equation to be solved can
be expanded in such a way that the coefficients are in closed form, then this method is
successful.

Let the recurrence equation be

F(xn, xn−1, . . . , xn−k) = 0 . (5.14)

To solve it, let us consider the generating function

X(z) =
∑

n≥0
xnzn.

If (5.14) can be written as G(X(z)) = 0 and can be solved for X(z), then X(z) can be expanded
into series in such a way that xn can be written in closed form, equation (5.14) can be solved.

Now we give a general method for solving linear nonhomogeneous recurrence equati-
ons. After this we give three examples for the nonlinear case. In the �rst two examples the
number of elements in some sets of binary trees, while in the third example the number of
leaves of binary trees is computed. The corresponding recurrence equations (5.15), (5.17)
and (5.18) will be solved using generating functions.

Linear nonhomogeneous recurrence equations with constant coefficients
Multiply both sides of equation (5.8) by zn. Then

a0xnzn + a1xn+1zn + · · · + ak xn+kzn = f (n)zn .

Summing up both sides of the equation term by term we get

a0
∑

n≥0
xnzn + a1

∑

n≥0
xn+1zn + · · · + ak

∑

n≥0
xn+kzn =

∑

n≥0
f (n)zn .

Then
a0

∑

n≥0
xnzn +

a1
z

∑

n≥0
xn+1zn+1 + · · · + ak

zk

∑

n≥0
xn+kzn+k =

∑

n≥0
f (n)zn .
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Let
X(z) =

∑

n≥0
xnzn and F(z) =

∑

n≥0
f (n)zn .

The equation can be written as

a0X(z) +
a1
z

(
X(z) − x0

)
+ · · · + ak

zk

(
X(z) − x0 − x1z − · · · − xk−1zk−1

)
= F(z) .

This can be solved for X(z). If X(z) is a rational fraction, then it can be decomposed into
partial (elementary) fractions which, after expanding them into series, will give us the ge-
neral solution xn of the original recurrence equation. We can also try to use the expansion
into series in the case when the function is not a rational fraction.

Example 5.11 Solve the following equation using the above method

xn+1 − 2xn = 2n+1 − 2, ha n ≥ 0 és x0 = 0 .

After multiplying and summing we have
1
z
∑

n≥0
xn+1zn+1 − 2

∑

n≥0
xnzn = 2

∑

n≥0
2nzn − 2

∑

n≥0
zn ,

and 1
z
(
X(z) − x0

)
− 2X(z) =

2
1 − 2z −

2
1 − z .

Since x0 = 0, after decomposing the right-hand side into partial fractions1), the solution of the equation
is

X(z) =
2z

(1 − 2z)2 +
2

1 − z −
2

1 − 2z .

After differentiating the generating function
1

1 − 2z =
∑

n≥0
2nzn

term by term we get
2

(1 − 2z)2 =
∑

n≥1
n2nzn−1 .

Thus
X(z) =

∑

n≥0
n2nzn + 2

∑

n≥0
zn − 2

∑

n≥0
2nzn =

∑

n≥0

(
(n − 2)2n + 2

)
zn ,

therefore
xn = (n − 2)2n + 2 .

The number of binary trees
Let us denote by bn the number of binary trees with n vertices. Then b1 = 1, b2 = 2, b3 = 5
(see �gure 5.2). Let b0 = 1. (We will see later that this is a good choice.)

In a binary tree with n vertices, with the exception of the root, there are altogether
n − 1 vertices in the left and right subtrees. If the left subtree has k vertices and the right
subtree has n − 1 − k vertices, then there exists bkbn−1−k such binary trees. Summing over

1For decomposing the fraction into partial fractions we can use the Undetermined Coefficients Method.
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n = 2 n = 3

Figure 5.2. Binary trees with two and three vertices.

k = 0, 1, . . . , n − 1, we obtain exactly the number of binary trees, bn. Thus for any natural
number n ≥ 1 the recurrence equation in bn is

bn = b0bn−1 + b1bn−2 + · · · + bn−1b0 . (5.15)

This can also be written as

bn =

n−1∑

k=0
bkbn−1−k .

Multiplying both sides by zn, then summing over all n, we obtain

∑

n≥1
bnzn =

∑

n≥1


n−1∑

k=0
bkbn−1−k

 zn . (5.16)

Let B(z) =
∑

n≥0
bnzn be the generating function of the numbers bn. The left-hand side of

(5.16) is exactly B(z) − 1 (because b0 = 1). The right-hand side looks like a product of two
generating functions. To see which functions are in consideration, let us use the notation

A(z) = zB(z) =
∑

n≥0
bnzn+1 =

∑

n≥1
bn−1zn .

Then the right-hand side of (5.16) is exactly A(z)B(z), which is zB2(z). Therefore

B(z) − 1 = zB2(z), B(0) = 1 .

Solving this equation for B(z) gives

B(z) =
1 ± √1 − 4z

2z .
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We have to choose the negative sign because B(0) = 1. Thus

B(z) =
1
2z

(
1 − √1 − 4z

)
=

1
2z

(
1 − (1 − 4z)1/2

)

=
1
2z

1 −
∑

n≥0

(
1/2
n

)
(−4z)n

 =
1
2z

1 −
∑

n≥0

(
1/2
n

)
(−1)n22nzn



=
1
2z −

(
1/2
0

)
20z0

2z +

(
1/2
1

)
22z
2z − · · · −

(
1/2
n

)
(−1)n 22nzn

2z + · · ·

=

(
1/2
1

)
2 −

(
1/2
2

)
23z + · · · −

(
1/2
n

)
(−1)n22n−1zn−1 + · · ·

=
∑

n≥0

(
1/2

n + 1

)
(−1)n22n+1zn =

∑

n≥0

1
n + 1

(
2n
n

)
zn .

Therefore bn =
1

n + 1

(
2n
n

)
. The numbers bn are also called the Catalan numbers.

Remark. In the previous computation we used the following formula that can be proved
easily (

1/2
n + 1

)
=

(−1)n

22n+1(n + 1)

(
2n
n

)
.

The number of leaves of all binary trees of n vertices
Let us count the number of leaves (vertices with degree 1) in the set of all binary trees of n
vertices. Denote this number by fn. We remark that the root is not considered leaf even if it
is of degree 1. It is easy to see that f2 = 2, f3 = 6. Let f0 = 0 and f1 = 1, conventionally.
Later we will see that these values are good.

As in the case of numbering the binary trees, consider the binary trees of n vertices
having k vertices in the left subtree and n − k − 1 vertices in the right subtree. There are bk
such left subtrees and bn−1−k right subtrees. If we consider such a left subtree and all such
right subtrees, then together there are fn−1−k leaves in the right subtrees. So for a given k
there are bn−1−k fk + bk fn−1−k leaves. After summing we have

fn =

n−1∑

k=0
( fkbn−1−k + bk fn−1−k) .

By an easy computation we get

fn = 2( f0bn−1 + f1bn−2 + · · · + fn−1b0), n ≥ 2 . (5.17)

This is a recurrence equation, the solution of which is fn. Let

F(z) =
∑

n≥0
fnzn and B(z) =

∑

n≥0
bnzn .

Multiplying both sides of (5.17) by zn and summing gives

∑

n≥2
fnzn = 2

∑

n≥2


n−1∑

k=0
fkbn−1−k

 zn .



222 5. Recurrences

Since f0 = 0 and f1 = 1,
F(z) − z = 2zF(z)B(z) .

Thus
F(z) =

z
1 − 2zB(z) ,

and since
B(z) =

1
2z

(
1 − √1 − 4z

)
,

we have
F(z) =

z√
1 − 4z

= z(1 − 4z)−1/2 = z
∑

n≥0

(−1/2
n

)
(−4z)n .

After the computations

F(z) =
∑

n≥0

(
2n
n

)
zn+1 =

∑

n≥1

(
2n − 2
n − 1

)
zn ,

and
fn =

(
2n − 2
n − 1

)
or fn+1 =

(
2n
n

)
= (n + 1)bn .

The number of binary trees with n vertices and k leaves
A bit harder problem: how many binary trees are there with n vertices and k leaves? Let us
denote this number by b(k)

n . It is easy to see that b(k)
n = 0, if k > b(n + 1)/2c. By a simple

reasoning the case k = 1 can be solved. The result is b(1)
n = 2n−1 for any natural number

n ≥ 1. Let b(0)
0 = 1, conventionally. We will see later that this is a good choice. Let us

consider, as in the case of previous problems, the left and right subtrees. If the left subtree
has i vertices and j leaves, then the right subtree has n − i − 1 vertices and k − j leaves. The
number of these trees is b( j)

i b(k− j)
n−i−1. Summing over k and j gives

b(k)
n = 2b(k)

n−1 +

n−2∑

i=1

k−1∑

j=1
b( j)

i b(k− j)
n−i−1 . (5.18)

For solving this recurrence equation the generating function

B(k)(z) =
∑

n≥0
b(k)

n zn, where k ≥ 1

will be used. Multiplying both sides of equation (5.18) by zn and summing over n = 0, 1,
2, . . ., we get

∑

n≥1
b(k)

n zn = 2
∑

n≥1
b(k)

n−1zn +
∑

n≥1


n−2∑

i=1

k−1∑

j=1
b( j)

i b(k− j)
n−i−1

 zn .

Changing the order of summation gives

∑

n≥1
b(k)

n zn = 2
∑

n≥1
b(k)

n−1zn +

k−1∑

j=1

∑

n≥1


n−2∑

i=1
b( j)

i b(k− j)
n−i−1

zn .
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Thus

B(k)(z) = 2zB(k)(z) + z


k−1∑

j=1
B( j)(z)B(k− j)(z)



or

B(k)(z) =
z

1 − 2z


k−1∑

j=1
B( j)(z)B(k− j)(z)

 . (5.19)

Step by step, we can write the following:

B(2)(z) =
z

1 − 2z
(
B(1)(z)

)2
,

B(3)(z) =
2z2

(1 − 2z)2

(
B(1)(z)

)3
,

B(4)(z) =
5z3

(1 − 2z)3

(
B(1)(z)

)4
.

Let us try to �nd the solution in the form

B(k)(z) =
ckzk−1

(1 − 2z)k−1

(
B(1)(z)

)k
,

where c2 = 1, c3 = 2, c4 = 5. Substituting in (5.19) gives a recursion for the numbers ck

ck =

k−1∑

i=1
cick−i .

We solve this equation using the generating function method. If k = 2, then c2 = c1c1, and
so c1 = 1. Let c0 = 1. If C(z) =

∑
n≥0 cnzn is the generating function of the numbers cn, then,

using the formula of multiplication of the generating functions we obtain

C(z) − 1 − z = (C(z) − 1)2 or C2(z) − 3C(z) + z + 2 = 0 ,

thus
C(z) =

3 − √1 − 4z
2 .

Since C(0) = 1, only the negative sign can be chosen. After expanding the generating
function we get

C(z) =
3
2 −

1
2(1 − 4z)1/2 =

3
2 −

1
2

∑

n≥0

−1
2n − 1

(
2n
n

)
zn

=
3
2 +

∑

n≥0

1
2(2n − 1)

(
2n
n

)
zn = 1 +

∑

n≥1

1
2(2n − 1)

(
2n
n

)
zn .

From this
cn =

1
2(2n − 1)

(
2n
n

)
, n ≥ 1 .
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Since b(1)
n = 2n−1 for n ≥ 1, it can be proved easily that B(1) = z/(1 − 2z). Thus

B(k)(z) =
1

2(2k − 1)

(
2k
k

)
z2k−1

(1 − 2z)2k−1 .

Using the formula
1

(1 − z)m =
∑

n≥0

(
n + m − 1

n

)
zn ,

therefore

B(k)(z) =
1

2(2k − 1)

(
2k
k

)∑

n≥0

(
2k + n − 2

n

)
2nz2k+n−1

=
1

2(2k − 1)

(
2k
k

) ∑

n≥2k−1

(
n − 1

n − 2k + 1

)
2n−2k+1zn .

Thus
b(k)

n =
1

2k − 1

(
2k
k

)(
n − 1
2k − 2

)
2n−2k

or
b(k)

n =
1
n

(
2k
k

)(
n

2k − 1

)
2n−2k .

5.2.3. The Z-transform method
When solving linear nonhomogeneous equations using generating functions, the solution is
usually done by the expansion of a rational fraction. The Z-transform method can help us in
expanding such a function. Let P(z)/Q(z) be a rational fraction, where the degree of P(z) is
less than the degree of Q(z). If the roots of the denominator are known, the rational fraction
can be expanded into partial fractions using the Undetermined Coefficient Method.

Let us �rst consider the case when the denominator has distinct roots α1, α2, . . . , αk.
Then P(z)

Q(z) =
A1

z − α1
+ · · · + Ai

z − αi
+ · · · + Ak

z − αk
.

It is easy to see that

Ai = lim
z→αi

(z − αi)
P(z)
Q(z) , i = 1, 2, . . . , k .

But Ai
z − αi

=
Ai

−αi

(
1 − 1

αi
z
) =

−Aiβi
1 − βiz

,

where βi = 1/αi. Now, by expanding this partial fraction, we get
−Aiβi
1 − βiz

= −Aiβi
(1 + βiz + · · · + βn

i zn + · · · ) .

Denote the coefficient of zn by Ci(n), then Ci(n) = −Aiβ
n+1
i , so

Ci(n) = −Aiβ
n+1
i = −βn+1

i lim
z→αi

(z − αi)
P(z)
Q(z) ,
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or
Ci(n) = −βn+1

i lim
z→αi

(z − αi)P(z)
Q(z) .

After the transformation z→ 1/z and using βi = 1/αi we obtain

Ci(n) = lim
z→βi

(
(z − βi)zn−1 p(z)

q(z)

)
,

where p(z)
q(z) =

P(1/z)
Q(1/z) .

Thus in the expansion of X(z) =
P(z)
Q(z) the coefficient of zn is

C1(n) + C2(n) + · · · + Ck(n) .

If α is a root of the polynomial Q(z), then β = 1/α is a root of q(z). E.g. if

P(z)
Q(z) =

2zz

(1 − z)(1 − 2z) , then p(z)
q(z) =

2
(z − 1)(z − 2) .

If the root is multiple, e.g. if βi has multiplicity p, then its corresponding in the solution is

Ci(n) =
1

(p − 1)! lim
z→βi

dp−1

dzp−1

(
(z − βi)pzn−1 p(z)

q(z)

)
.

Here dp

dzp f (z) is the derivative of order p of the function f (z).
All these can be summarised in the following algorithm. Let us consider that the co-

efficients of the equation are in array A, and the constants of the solution are in array C.

L-(A, k, f )
1 let a0xn + a1xn+1 + · · · + ak xn+k = f (n) be the equation, where f (n) is a rational fraction;

multiply both sides by zn, and sum over all n
2 transform the equation into the form X(z) = P(z)/Q(z), where X(z) =

∑
n≥0 xnzn,

P(z) and Q(z) are polynomials
3 use the transformation z→ 1/z, and let the result be

p(z)/q(z), where p(z) are q(z) are polynomials
4 denote the roots of q(z) by

β1, with multiplicity p1, p1 ≥ 1,
β2, with multiplicity p2, p2 ≥ 1,
. . .
βk, with multiplicity pk, pk ≥ 1;

then the general solution of the original equation is
xn = C1(n) + C2(n) + · · · + Ck(n), where
Ci(n) = 1/((pi − 1)!) limz→βi

dpi−1

dzpi−1

(
(z − βi)pi zn−1(p(z)/q(z))

)
, i = 1, 2, . . . , k.

5 return C
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If we substitute z by 1/z in the generating function, the result is the so-called Z-
transform, for which similar operations can be de�ned as for the generating functions. The
residue theorem for the Z-transform gives the same result. The name of the method is deri-
ved from this observation.

Example 5.12 Solve the recurrence equation

xn+1 − 2xn = 2n+1 − 2, ha n ≥ 0, x0 = 0.

Multiplying both sides by zn and summing we obtain
∑

n≥0
xn+1zn − 2

∑

n≥0
xnzn =

∑

n≥0
2n+1zn −

∑

n≥0
2zn ,

or 1
z X(z) − 2X(z) =

2
1 − 2z −

2
1 − z , where X(z) =

∑

n≥0
xnzn .

Thus
X(z) =

2z2

(1 − z)(1 − 2z)2 .

After the transformation z→ 1/z we get
p(z)
q(z) =

2z
(z − 1)(z − 2)2 ,

where the roots of the denominator are 1 with multiplicity 1 and 2 with multiplicity 2. Thus

C1 = lim
z→1

2zn

(z − 2)2 = 2 and

C2 = lim
z→2

d
dz

(
2zn

z − 1

)
= 2 lim

z→2

nzn−1(z − 1) − zn

(z − 1)2 = 2n(n − 2) .

Therefore the general solution is

xn = 2n(n − 2) + 2, n ≥ 0 .

Example 5.13 Solve the recurrence equation

xn+2 = 2xn+1 − 2xn, if n ≥ 0, x0 = 0, x1 = 1.

Multiplying by zn and summing gives
1
z2

∑

n≥0
xn+2zn+2 =

2
z
∑

n≥0
xn+1zn+1 − 2

∑

n≥0
xnzn ,

so 1
z2

(
F(z) − z

)
=

2
z F(z) − 2F(z) ,

that is
F(z)

(
1
z2 −

2
z + 2

)
= −1

z .

Then
F(1/z) =

−z
z2 − 2z + 2 .
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The roots of the denominator are 1 + i and 1 − i. Let us compute C1(n) and C2(n):

C1(n) = lim
z→1+i

−zn+1

z − (1 − i) =
i(1 + i)n

2 and

C2(n) = lim
z→1−i

−zn+1

z − (1 + i) =
−i(1 − i)n

2 .

Since
1 + i =

√
2
(
cos π4 + i sin π4

)
, 1 − i =

√
2
(
cos π4 − i sin π4

)
,

raising to the nth power gives

(1 + i)n =
(√2)n

(
cos nπ

4 + i sin nπ
4

)
, (1 − i)n =

(√2)n
(
cos nπ

4 − i sin nπ
4

)
,

xn = C1(n) + C2(n) =
(√

2
)n

sin nπ
4 .

Exercises
5.2-1 How many binary trees are there with n vertices and no empty left and right subtrees?

5.2-2 How many binary trees are there with n vertices, in which each vertex which is not a
leaf, has exactly two descendants?

5.2-3 Solve the following recurrent equation using generating functions.

Hn = 2Hn−1 + 1, H0 = 0 .

(Hn is the number of moves in the problem of the Towers of Hanoi.)

5.2-4 Solve the following recurrent equation using the Z-transform method.

Fn+2 = Fn+1 + Fn + 1, ha n ≥ 0, és F0 = 0, F1 = 1 .

5.2-5 Solve the following system of recurrence equations:

un = vn−1 + un−2 ,

vn = un + un−1 ,

where u0 = 1, u1 = 2, v0 = 1.

5.3. Numerical solution
Using the following function we can solve the linear recurrent equations numerically. The
equation is given in the form

a0xn + a1xn+1 + · · · + ak xn+k = f (n) ,
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where a0, ak , 0, k ≥ 1. The coefficients a0, a1, . . . , ak are kept in array A, the initial values
x0, x1, . . . , xk−1 in array X. To �nd xn we will compute step by step the values xk, xk+1, . . . , xn,
keeping in the previous k values of the sequence in the �rst k positions of X (i.e. in the
positions with indices 0, 1, . . . , k − 1).

R(A, X, k, n, f )
1 for j← k to n
2 do v← A[0] · X[0]
3 for i← 1 to k − 1
4 do v← v + A[i] · X[i]
5 v← ( f ( j − k) − v)/A[k]
6 if j , n
7 then for i← 0 to k − 2
8 do X[i]← X[i + 1]
9 X[k − 1]← v

10 return v

Lines 2�5 compute the values x j ( j = k, k + 1, . . . , n) (using the previous k values),
denoted by v in the algorithm. In lines 7�9, if n is not yet reached, we copy the last k values
in the �rst k positions of X. In line 10 xn is obtained. It is easy to see that the computation
time is Θ(kn), if we do not count the time to compute the value of the function.

Exercises
5.3-1 How many additions, subtractions, multiplications and divisions are required using
the algorithm R, while it computes x1000 using the data given in Example 5.4?

Problems

5-1. Existence of a solution of homogeneous equation using generating function
Prove that a linear homogeneous equation cannot be solved using generating functions (be-
cause X(z) = 0 is obtained) if and only if xn = 0 for all n.
5-2. Complex roots in the case of Z-transform
What happens if the roots of the denominator are complex when applying the Z-transform
method? The solution of the recurrence equation must be real. Does the method ensure this?

Chapter notes
The recurrence equations are discussed in detail by Elaydi [1], Flajolet and Sedgewick [8],
Greene and Knuth [3], Mickens [7].

Knuth [4] and Graham, Knuth and Patashnik [2] deal with generating functions. In the
book of Vilenkin [9] there are a lot of simple and interesting problems about recurrences
and generating functions.
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In [6] Lovász also presents problems on generating function.
Counting the binary trees is from Knuth [4], counting the leaves in the set of all binary

trees and counting the binary trees with n vertices and k leaves are from Z. Kása [5].
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