5. Recurrences

The recursive definition of the Fibonacci numbers is well-known: if F,, is the n™ Fibonacci
number, then
FO = Oa Fl =1 5

Fpoo=Fp+F,, ifnx0.

We are interested in an explicit form of the numbers F), for all n natural numbers. Actually,
the problem is to solve an equation where the unknown is given recursively, in which case
the equation is called a recurrence equation. The solution can be considered as a function
over natural numbers, because F, is defined for all n. Such recurrence equations are also
known as difference equations, but could be named as discrete differential equations for
their similarities to differential equations.

Definition 5.1 A k™th order recurrence equation, (k > 1) is an equation of the form
S Xna15 -5 Xat) = 0, n>0, (5.1
where x, must be given in an explicit form.

For a unique determination of x,, k initial values must be given. Usually these values are
Xg, X1,...,X—1. These can be considered as initial conditions. In the case of the equation
for Fibonacci-numbers, which is of second order, two initial values must be given.

The sequence x, = g(n) satisfying equation (5.1) and the corresponding initial con-
ditions is called a particular solution. If all particular solutions of equation (5.1) can be
obtained from the sequence x, = h(n, Cy,Cs,. .., Cy), by adequately choosing of the cons-
tants Cy, C», ..., Cy, then this sequence x is a general solution.

Solving recurrence equations is not an easy task. In the chapter we will discuss methods
which can be used in special cases. For simplicity of writing we will use the notation x,
instead of x(n) as it appears in several books (sequences can be considered as functions over
natural numbers).

The chapter is divided into three sections. In section 5.1/ we deal with solving linear
recurrence equations, in section 5.2/ with generating functions and their use in solving re-
currence equations and in section|5.3/we focus our attention on numerical solution of recur-
rence equations.
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5.1. Linear recurrence equations
If the recurrence equation is of the form

fO(n)xn + fl(n)xn+1 +oe fk(n)xn+k = f(}’l), n= 0»

where f, fo, fi,. .., fi are functions defined over natural numbers, fy, fi # 0, and x,, must
be given explicitly, then the recurrence equation is linear. If f is the zero function, then the
equation is homogeneous, otherwise nonhomogeneous. If all the functions fy, f1,..., f; are
constant, the equation is called a linear recurrence equation with constant coefficients.

5.1.1. Linear homogeneous equations with constant coefficients

Let the equation be

AoXy + A1 Xpe1 + - + dgXpar = 0, n>k, (5.2)
where ag,ai,...,a; are real constants, ag,ay # 0, k > 1. If k initial conditions are given
(usually xp, x1, ..., x¢—1), then the general solution of this equation can be uniquely given.

To solve the equation let us consider its characteristic equation
ag+arr+-+arr  +arf =0, (5.3)

a polynomial equation with real coefficients. This equation has k roots in the field of comp-
lex numbers. It can easily be seen after a simple substitution that if ry is a real solution of
the characteristic equation, then Cory is a solution of (5.2), for arbitrary Cy.

The general solution of equation (5.2) is

Xy = Clx,(zl) + ng,(,z) +e C/(x,(zk) s

where x,(f) (i = 1,2,...,k) are the linearly independent solutions of equation (5.2). The
constants C1, Cy,. .., Cy can be determined from the initial conditions by solving a system
of k equations.

The linearly independent solutions are supplied by the roots of the characteristic equa-
tion by the following way. A fundamental solution of equation (5.2) can be associated with
each root of the characteristic equation. Let us consider the following cases.

Distinct real roots
Let ri, ra,. .., 1, be distinct real roots of the characteristic equation. Then

n 1
o, r,

are solutions of equation (5.2), and
Cirf + Cory + -+ Cpr), (54)

is also a solution, for arbitrary constants Cy, Cy, ..., Cp. If p =k, then (5.4) is the general
solution of the recurrence equation.
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Example 5.1 Solve the recurrence equation
Xns2 = Xar1 + Xy Xo =0, X = 1.

The corresponding characteristic equation is

P-r-1=0,
with the solutions
1+ 5 1-5
r = , = .
! 2 : 2

These are distinct real solutions, so the general solution of the equation is
1+ V5) 1-+5)
Xn :C1[ 2\/_) +C2[ 2\/_] .

The constants C; and C;, can be determined using the initial conditions. From xy = 0, x; = 1 the
following system of equations can be obtained.

Ci+C,

5 - V5
C|1+2\/_+C21 2\/_ I

0,

The solution of this system of equations is C; = 1/ V5, Cy = =1/ V5 . Therefore the general solution
is R ;
1 [ 1+ V5 ] 1 (1 -5 )
\5 2 \5 2 ’
which is the nth Fibonacci number F,,.

Xn =

Multiple real roots
Let r be a real root of the characteristic equation with multiplicity p. Then

Lon, nte L, P
are solutions of equation (5.2) (fundamental solutions corresponding to r), and
(Co+Cin+Con* + -+ + CpnP )" (5.5)

is also a solution, for any constants Cy, C1, ..., C,_1.If the characteristic equation has no
other solutions, then (5.5) is a general solution of the recurrence equation.

Example 5.2 Solve the recurrence equation
Xnio = AXp1 — 44X, X9 =1, x = 3.

The characteristic equation is
P —d4r+4=0,

with = 2 a solution with multiplicity 2. Then
Xy = (C() + Cln)2”

is a general solution of the recurrence equation.
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From the initial conditions we have

C = 1,
2C() + 2C1 = 3.

From this system of equations Cy = 1, C; = 1/2, so the general solution is

1
Xp = (1 + zn) 2" or x,=m+2)2"1.

Distinct complex roots

If the complex number a(cos b + i sin b), written in trigonometric form, is a root of the cha-
racteristic equation, then its conjugate a(cos b—i sin b) is also a root, because the coefficients
of the characteristic equation are real numbers. Then

a"cosbn and a"sinbn
are solutions of equation (5.2) and
Cid" cosbn + Crd" sinbn (5.6)

is also a solution, for any constants C; and C,. If these are the only solutions of the charac-
teristic equation, then (5.6)) is a general solution.

Example 5.3 Solve the recurrence equation
Xni2 = 2X001 — 2%, Xp =0, x3 = 1.
The corresponding characteristic equation is
2 -
rr=2r+2=0,

with roots 1+ and 1 —i. These can be written in trigonometric form as V2(cos(r/4) + i sin(r/4)) and
V2(cos(rr/4) — i sin(x/4)). Therefore

Xy = Cl(\/z)” cos ’14—” + Cz(\/z)" sin %r

is a general solution of the recurrence equation. From the initial conditions

¢, = 0,
Cl\/zcos%+C2\/§sin% =

Therefore C; = 0, C, = 1. Hence the general solution is

Xy, = (V2)"sin % .
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Multiple complex roots
If the complex number written in trigonometric form as a(cosb + isinb) is a root of the
characteristic equation with multiplicity p, then its conjugate a(cos b — i sin b) is also a root
with multiplicity p.
Then
a'cosbn, nd'cosbn, ..., n’ 'd" cosbn

and
d"sinbn, nd"sinbn, ..., n"'a"sinbn

are solutions of the recurrence equation (5.2). Then
Co+Cin+--+Cpn? Da"cosbn+ (Dy+ Din+ -+ D,_n?Hd" sinbn
P P

is also a solution, where Co, Cy,...,Cp_1, Dy, D1, ..., D, are arbitrary constants, which
can be determined from the initial conditions. This solution is general if the characteristic
equation has no other roots.

Example 5.4 Solve the recurrence equation
Xnta ¥ 2X00 + X, =0, x0=0, x; =1, xo =2, x3 =3.

The characteristic equation is
+27+1=0,

which can be written as (+> + 1)> = 0. The complex numbers i and —i are double roots. The trigono-
metric form of these are

X T T d —i T ...
i=cos— +isin=, and —i=cos= —isin—

2 2 2 2
respectively. Therefore the general solution is

n . nrw
x, = (Cy + Cin)cos % + (Do + Din)sin % .

From the initial conditions we obtain

C = 0,
w . T
(C() + Cl) COS 5 + ([)() + D) sin 5 = 1,
(Cy+2Cy)cosm+ (Dy +2Dy)sinr = 2,
3r . 3m
(C() + 3C1) COS 7 + (D() + 3[)1) sin 7 = 3,
that is
G = 0,
Dy+D; = 1,
-2C, = 2,
—1)() - 31)1 = 3 .

Solving this system of equations Cy = 0, C; = —1, Dy = 3 and D; = —2. Thus the general solution is

Xy = (3—2n)sin% —ncos% .
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Using these four cases all linear homogeneous equations with constant coefficients can
be solved, if we can solve their characteristic equations.

Example 5.5 Solve the recurrence equation
Xns3 = Ay — OXppr +4x,, X0=0, xy =1, xo = L.

The characteristic equation is
P —4r+6r-4=0,

with roots 2, 1 + 7 and 1 — i. Therefore the general solution is
X, = C12" + Co(V2)" cos r;—ﬂ +C3(V2)" sin %r .
After determining the constants we obtain

ReC

n—1
Xy = =2
2

(c0s ™ +35in )
COS4 38 4 .

The general solution
The characteristic equation of the kth order linear homogeneous equation (5.2) has k roots
in th field of complex numbers, which are not necessarily distinct. Let these roots be the
following:

ry real, with multiplicity p; (p1 > 1) ,

ry real, with multiplicity pr (p2 > 1) ,

r, real, with multiplicity p, (p, = 1) ,
s1 = ai(cos by + isin by) complex, with multiplicity ¢1 (g1 > 1) ,
§2 = ax(cos by + isin by) complex, with multiplicity g2 (g2 > 1) ,

Sm = am(cos by, + isin b,,) complex, with multiplicity g, (g, > 1) .

Since the equation has kroots, py + po+ -+ p, +2(q1 + @2 + -+ gm) = k.
In this case the general solution of equation (5.2)) is

Xn

.M‘

DDy oD pm1\
(Co +C'n+ +ij_1n/ )rj
1

J

(DE)’) + D(lj)n ot D(jv)_ln"f_l)a’f cosbjn
qj J

[
Il
—_

5
X

. . G B .
(E(()f) + ng)n +eet Eq’;_ln"-/ 1)a’} sinbjn , (5.7

where
0 A~ W) P
Gy, ¢, Cp/__l, ji=12,...,¢1,
Dg), E(()I), D(ll), E;l), e, D(p’[)_l, E(p’[)_l, [ =1,2,...,m are constants, which can be
determined from the initial conditions.
The above statements can be summarised in the following theorem.
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Theorem 5.1 Let k > 1 be an integer and ay, ai, ...,a real numbers with ag, a; # 0.
The general solution of the linear recurrence equation (3.2) can be obtained as a linear
combination of the terms n/ ri, where r; are the roots of the characteristic equation (5.3))
with multiplicity p; (0 < j < p;) and the coefficients of the linear combination depend on
the initial conditions.

The proof of the theorem is left to the reader (see exercise 5.1-5.).
The algorithm for the general solution is the following.

LINEAR-HOMOGENEOUS

1 determine the characteristic equation of the recurrence equation

2 find all roots of the characteristic equation with their multiplicities

3 find the general solution (5.7) based on the roots

4 determine the constants of (5.7) using the initial conditions, if these exists.

5.1.2. Linear nonhomogeneous recurrence equations with constant coeffici-
ents

Consider the linear nonhomogeneous recurrence equation with constant coefficients
dgXn + A Xpy1 + - F QX = (1) (5.8)

where ag, a1, . .., a; are real constants, ag, ar # 0, k > 1, and f is not the zero function.
The corresponding linear homogeneous equation (5.2) can be solved using Theorem
5.1L If a particular solution of equation (5.8) is known, then equation (5.8)) can be solved.

Theorem 5.2 Let k > 1 be an integer, ay, ai, ...,a; real numbers, ay, a, # 0. Ifx,(})

is a particular solution of the linear nonhomogeneous equation (5.8) and xﬁ,o) is a general
solution of the linear homogeneous equation (5.2), then

Xy = X9 4 4D
is a general solution of the equation (5.8).
The proof of the theorem is left to the reader (see exercise 5.1-6.).

Example 5.6 Solve the recurrence equation
Xpao + Xps1 —2x, =27, x0=0, x; = 1.
First we solve the homogeneous equation
Xna2 + Xust — 2X, = 0,

and obtain the general solution
xflo) =Ci(-2)"+C,,

since the roots of the characteristic equation are —2 and 1 . It is easy to see that

X = C1(-2)" + Cy +2"2
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f) )

nPa’ (Co+Cin+---+CpnP)a"

an? sinbn (Co+Cin+---+ CpnP)a" sinbn + (Dg + Din + - - - + DpnP)a” cos bn

a'n? cosbn | (Co+Cin+---+ CpnP)a" sinbn + (Dy + Din + - -- + DynP)a" cos bn

Figure 5.1. The form of particular solutions.

is a solution of the nonhomogeneous equation. Therefore the general solution is

1 5 211_(_2)11
n=___2n+2n2 L=
X 4( ) or X 2

The constants C; and C, can be determined using the initial conditions. Thus, that is

0, if nis even ,
X, = _ e
" 271 if pis odd .

213

A particular solution can be obtained using the method of variation of constants. Ho-
wever, there are cases when there is an easier way of finding a particular solution. In figure

(1

5.1l we can see types of functions f(n), for which a particular solution x,,l can be obtained

in the given form in the table. The constants can be obtained by substitutions.

In the previous example f(n) = 2", so the first case can be used with a = 2 and p = 0.
Therefore we try to find a particular solution of the form Cy2". After substitution we obtain

Co = 1/4, thus the particular solution is
x;l) —on-2
Exercises
5.1-1 Solve the recurrence equation
H,=2H, ,+1, han>1, és Hy=0.

(Here H,, is the optimal number of moves in the problem of Towers of Hanoi.)

5.1-2 Analyse the problem of Towers of Hanoi if n discs have to be moved from stick A to

stick C in such a way that no disc can be moved directly from A to C and vice versa.

Hint. Show that if the optimal number of moves is denoted by M,,, and n > 1, then

M, =3M,_1 +2.
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5.1-3 Solve the recurrence equation

(n+ DR, =22n— DRy, han>1,é Ro=1.

5.1-4 Solve the linear nonhomogeneous recurrence equation
Xp = 2" -2+ 2x,-1, han>2, és x1 =0.
Hint. Try to find a particular solution of the form Cin2" + (5.

5.1-5% Prove Theorem 5.1.
5.1-6 Prove Theorem 5.2.

5.2. Generating functions and recurrence equations

Generating functions can be used, among others, to solve recurrence equations, count ob-
jects (e.g. binary trees), prove identities and solve partition problems. Counting the number
of objects can be done by stating and solving recurrence equations. These equations are
usually not linear, and generating functions can help us in solving them.

5.2.1. Definition and operations

Associate a series with the infinite sequence (a,),>0 = {do, d1, a2, - - . , dy, - . .) the following
way
AR =ap+ai1z+ @z +-+apd - = Za,,z" .

n>0

This is called the generating function of the sequence (a,);>0.
For example, in the case of the Fibonacci numbers this generating function is

F(Z):ZFHZn:Z+Z2+2Z3+3Z4+5Z5+8Z6+13Z7+-~- .

n=0

Multiplying both sides of the equation by z, then by z2, we obtain

Fz) = Fo+Fiz+F+F2 +-+F 7+,
F(z) = Foz+ 12 +Fo + -+ Fyidb + o0,
ZF() = For + F12 4+ + Fpn' + - .

If we subtract the second and the third equation from the first one term by term, then use the
defining formula of the Fibonacci numbers, we get

Fo(l-z-2) =z,

that is z
Fp) = ———.
1-z

— (5.9)
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The correctness of these operations can be proved mathematically, but here we do not want
to go into details. The formulae obtained using generating functions can usually also be
proved using other methods.

Let us consider the following generating functions

Az) = Z a,z" and B(z) = Z ba7".
n=>0 n=0

The generating functions A(z) and B(z) are equal, if and only if a,, = b, for all n natural
numbers.

Now we define the following operations with the generating functions: addition, mul-
tiplication by real number, shift, multiplication, derivation and integration.

Addition and multiplication by real number

QAR) +BBE) = ) (aa, + Bb)7"

n>0

Shift
The generating function

ZkA(Z) — Z Cann+k — Z anka”

n>0 n=k

represents the sequence < 0,0,...,0,a9,a1,... >, while the generating function
——
k

1 ,, n
J(A(z) —ap-mz-wm -~ = Z a7t = Z An?’

nxk n=0

represents the sequence < dy, dgi1, G2y - - - > -

Example 5.7 Let A(z) =1 +z+ 2>+ ---. Then

law-1)=40 ad A@=——.
b4 1-z

Multiplication
If A(z) and B(z) are generating functions, then
A()B(z) = (ap+az+---+a, "+ )bo+biz+---+b7"+--)

aobo + (apb1 + albo)Z + (apby + arb; + azbo)Zz + -

o

n>0

n
where s, = Z aiby, .
k=0

Special case. If b,, = 1 for all natural numbers n, then

A(z)%Z => (Z ak]z" . (5.10)

n>0 \ k=0
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If, in addition, a,, = 1 for all n, then

1
T :Z(n+ D" (5.11)
n=0

Derivation

A(2) = ay +2az+ 3322 + -+ = Z (n+ Da,17" .

n>0

Example 5.8 After differentiating the both sides of the generating function

Az) = Zz" = IL—Z

n=0

we obtain )
A(z) = n"l= —— .
@= 2" =y
Integration
‘ 1 2 1 3 1 n
Adt = apz + a1 2"+ —ar + -+ = —ap-17° .
0 2 3 n
n>1
Example 5.9 Let .
- l+z+22++--
After integrating both sides we get
1 _ 1 2 1 3 _ 1 n
lnl—z_"+§Z +§z +.ee= nZ

Multiplying the above generating functions we obtain

1 1
1 = H,7"
-z "1-2 Z <

n>1

1 1 1
where H, = 1 + 5 + 3 +---+— (Hy=0, Hy=1) are the so-called harmonic numbers.
n

Changing the arguments
Let A(z) = 3,50 a,2" represent the sequence < ag, ai, dz, ... >, then A(cz) = X0 C"an"
represents the sequence < dy, cap, ay,...c"ay,,...>. The following statements holds

1
E(A(z) + A(—z)) =ap+ @+ an e,

1
E(A(Z) - A(_Z)) =az+ a3z e+ g T
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1
Example 5.10 LetA(z) = 1+z+22+73 +--- = T . Then
-z

1 1 1 1 1
1+2 472+ = Z(A@ +A(-2) = = + = )
ST 2( @ (=2) 2(1—z 1+z) 1-22

which can also be obtained by substituting z with z* in A(z). We can obtain the sum of the odd power
terms the same way,

z
—Z

Z+Zs+zs+_..=%(A(Z)_A(_Z))zl(liz 1 ):1 5.

2 T 14z

Using generating functions we can obtain interesting formulae. For example, let A(z) =
1/(1=2)=1+z+7>+2 +---. Then zA(z(1 + z)) = F(z), which is the generating function
of the Fibonacci numbers. From this

Al +2)=z+270+2)+ 20 +2° +* A +2° +--- .

The coefficient of 7**! on the left-hand side is F,.1, that is the (n + 1)th Fibonacci number,
while the coefficient of z**! on the right-hand side is

Z (Vl - k)
o\ K
after using the binomial formula in each term. Hence

=]

Fpp = Z(”;k) =3 (";k) (5.12)

k=0 k=0
Remember that the binomial formula can be generalised for all real r, namely

L+ =) (;)z :

n=0

which is the generating function of the binomial coefficients. Here ( ) is a generalisation of
n
the combinations for any real number r, that is

rr—D(r-2)...(r—n+1)

) f 0,

r\ nn—1)...1 nn>
nl 711, fin=0,
0, ifn<0.

We can obtain useful formulae using this generalisation for negative r. Let

1 o em —m\.
CEETIA ‘Z(k)( o

k=0

Since, by a simple computation, we get

—-m\ _ fm+k—1
(2o
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the following formula can be obtained

1 3 m+k\
(=g~ k[
k>0

Then ”
Z _ (n1+k)zm+k: (n1+k)zm+k:2(k)zk
(1 =gt k=0 k o\ M =0 VI
and P .,
k Z
= ——, (5.13)
kz(;(m) (1 =gyt

where m is a natural number.

5.2.2. Solving recurrence equations with generating functions

If the generating function of the general solution of a recurrence equation to be solved can
be expanded in such a way that the coefficients are in closed form, then this method is
successful.

Let the recurrence equation be

Fs Xty -y ) = 0 . (5.14)

To solve it, let us consider the generating function

X(z) = Z X2

n>0

If (5.14) can be written as G(X(z)) = 0 and can be solved for X(z), then X(z) can be expanded
into series in such a way that x,, can be written in closed form, equation (5.14) can be solved.

Now we give a general method for solving linear nonhomogeneous recurrence equati-
ons. After this we give three examples for the nonlinear case. In the first two examples the
number of elements in some sets of binary trees, while in the third example the number of
leaves of binary trees is computed. The corresponding recurrence equations (5.15), (5.17)
and (5.18) will be solved using generating functions.

Linear nonhomogeneous recurrence equations with constant coefficients
Multiply both sides of equation (5.8) by z". Then

aoXn2" + a1Xp12" + - + apxpd" = f)Z" .

Summing up both sides of the equation term by term we get

a0 Y X @ Y Xpad kb @ Y Xl = ) f)"

n=0 n=0 n=0 n=0

a 1 Ay .
ap Z xnzn + ? Z xn+lzn+ +---+ Z_k Z xr7+kzn+l\ = Z f(n)Z” .

n>0 n=0 n>0 n>0

Then
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Let
X@) =) % and F@ =) fn.
n>0 n>0

The equation can be written as
5} )% -
apX(z) + ?(X(z) - xo) +oeet Z—k(X(z) —Xo—xz— = X2 1) =F(2) .

This can be solved for X(z). If X(z) is a rational fraction, then it can be decomposed into
partial (elementary) fractions which, after expanding them into series, will give us the ge-
neral solution x, of the original recurrence equation. We can also try to use the expansion
into series in the case when the function is not a rational fraction.

Example 5.11 Solve the following equation using the above method
Xn+1 — 2)(7,, = 211+1 - 2, han>0 és Xo = 0.

After multiplying and summing we have

% an+lzn+l _ ZanZn — 22 znzn _ zzzn ,

n=0 n>0 n>0 n=0

d
an ) )

1-2z 1-z°
Since x; = 0, after decomposing the right-hand side into partial fractions'), the solution of the equation
is

(X0 - 0) - 2X0) =

2z 2 2
X(z) = + - .
D=0t T 1T-x%
After differentiating the generating function

term by term we get )
_ n_n—1
e DI

n>1

X(Z) — Z n2't + 22 7 — 22 2 = Z ((n _ 2)211 + 2)Zn ,

n>0 n>0 n>0 n>0

Thus

therefore
Xo=m=22"+2.

The number of binary trees
Let us denote by b, the number of binary trees with n vertices. Then by = 1, b, =2,b3 =5
(see figure 5.2). Let by = 1. (We will see later that this is a good choice.)

In a binary tree with n vertices, with the exception of the root, there are altogether
n — 1 vertices in the left and right subtrees. If the left subtree has k vertices and the right
subtree has n — 1 — k vertices, then there exists byb,_1—; such binary trees. Summing over

!For decomposing the fraction into partial fractions we can use the Undetermined Coefficients Method.
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ASA

n=2 n=3

Figure 5.2. Binary trees with two and three vertices.

k=0,1,...,n— 1, we obtain exactly the number of binary trees, b,. Thus for any natural
number n > 1 the recurrence equation in b, is

bn = bObn—l + blb,,_z + .-+ bn—lbO . (515)

This can also be written as
n—1
bn = Z bkbn—l—k .
k=0

Multiplying both sides by 7", then summing over all n, we obtain

n—1
Z b2 = Z [Z bkbnlk]z" . (5.16)

n>1 n=1 \ k=0

Let B(z) = Z b,7" be the generating function of the numbers b,. The left-hand side of

>0
(5.16) is exagtly B(z) — 1 (because by = 1). The right-hand side looks like a product of two
generating functions. To see which functions are in consideration, let us use the notation

A@=2B@) = ) b?™ = ) b

120 n1
Then the right-hand side of (5.16) is exactly A(z)B(z), which is zB*(z). Therefore
B(z) - 1=2B*(z), BO)=1.
Solving this equation for B(z) gives

1+ vV1-4z

B(z) = %
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We have to choose the negative sign because B(0) = 1. Thus

B(2) i(l— \/1——4z)— 21 (1_(1—41)1/2)

74

2z
1 (1 /2) ] 1 [ (1 /2) ) ]
— - 1 _ (_4Z)IZ - 1 _ (_1)’12 ’ZZ"
2z[ ; n 2z ; n
1 1/2\2°7° 1/2\22 1/2 22ngn
e ] iy ] o S B IR i A
2z 0/ 2z 1 )2z n 2z
1/2 1/2 1/2
— / P / 23Z+"'_ / (_1)n22n—lzn—1+.”
1 2 n
_ 1/2 n~2n+l_n _ 1 2n n
B Z(n+1)( b2 Z_Z‘Jn+1 nft
n>0 n>0
1 (2n
Therefore b, = ] . The numbers b,, are also called the Catalan numbers.
n

Remark. In the previous computation we used the following formula that can be proved

easily
12\ (=" (2n
n+1) 22 n+ D\n )’

The number of leaves of all binary trees of n vertices

Let us count the number of leaves (vertices with degree 1) in the set of all binary trees of n
vertices. Denote this number by f,,. We remark that the root is not considered leaf even if it
is of degree 1. It is easy to see that f, = 2, f3 = 6. Let fy = O and f; = 1, conventionally.
Later we will see that these values are good.

As in the case of numbering the binary trees, consider the binary trees of n vertices
having k vertices in the left subtree and n — k — 1 vertices in the right subtree. There are by
such left subtrees and b,_1_ right subtrees. If we consider such a left subtree and all such
right subtrees, then together there are f,,_1_; leaves in the right subtrees. So for a given k
there are b1 fr + b fu—1- leaves. After summing we have

n—1

= Z (febu-1-k + Difu-1-k) -
=0
By an easy computation we get
o =2(fobp-1 + fibyo + -+ fu_ibo), n=2. (5.17)

This is a recurrence equation, the solution of which is f,,. Let

F(z) = Z fZ" and B(z) = Z b,7" .

n=0 n=0

Multiplying both sides of (5.17) by z" and summing gives

n—1
D=2 [Z fkb,z_l_k] .

n=2 n=2 \ k=0
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Since fy =0and f; = 1,
F(z) —z2=2zF(2)B(2) .

Thus 7
F(2) = TZB(Z) >
and since
B(2) = 2i(1 -Vi-4z),
z
we have

F(z) =

Z _ _ -1/2 _ -1/2 AN
s - = B e

-z n>0

After the computations

F(Z) _ Z (Znn)zm.l — Zl (znn_—lz)zn ,

n>0

and

fn=(2”_2) or fm—(2) (n+ Dby .

n—1

The number of binary trees with n vertices and k leaves

A bit harder problem: how many binary trees are there with n vertices and k leaves? Let us
denote this number by 5. Tt is easy to see that % = 0, if k > [(n + 1)/2). By a simple
reasoning the case k = 1 can be solved. The result is b,(zl) = 21 for any natural number
n > 1. Let béo) = 1, conventionally. We will see later that this is a good choice. Let us
consider, as in the case of previous problems, the left and right subtrees. If the left subtree
has i vertices and j leaves, then the right subtree has n — i — 1 vertices and k — j leaves. The

number of these trees is bmbg‘ lj)l Summing over k and j gives
n-2 k-1
b® = 26® + b (5.18)

i=1 j=1
For solving this recurrence equation the generating function

B = Z Pz, where k > 1

n>0

will be used. Multiplying both sides of equation (5.18) by z" and summing over n = 0, 1,

2,..., we get
n—-2 k-1
Z b(l\) no_ 22 b’(11<_)1zr1 + Z[ b j)b;(zk_zj)l]

n>1 n>1 n>1 \i=1 j=1

Changing the order of summation gives

S 2y Sy [z OB ]

n>1 n>1 Jj=1 n>1
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Thus X
1
B(k)(z) — ZZB(k)(Z) + Z(Z B(j)(Z)B(kj)(Z)]
=1
or

k-1
BP () = 1—;21 [Z B(j)(z)B(k_j)(z)] ) (5.19)
j=1

Step by step, we can write the following:
2
BO() = —*__(BD
@ =1—5.(8"@)

27 :
BY() = ﬁ(m)(z))g ’

52 4
D) = (1)
BY(9) = (1_2z)3(8 @) .
Let us try to find the solution in the form
k-1
0y = _ CKE M)
BY@) = - 2Z),(_1(19 @)

where ¢; = 1, ¢3 = 2, ¢4 = 5. Substituting in (5.19) gives a recursion for the numbers ¢y

We solve this equation using the generating function method. If k = 2, then ¢, = ¢i¢1, and
socy = 1.Letcy = 1. If C(z) = 3,50 cuZ" is the generating function of the numbers ¢,, then,
using the formula of multiplication of the generating functions we obtain

CQ-1-z=(C@@-1)® o CH)-3CQx)+z+2=0,
thus
3-vV1-4z

2
Since C(0) = 1, only the negative sign can be chosen. After expanding the generating

function we get
31 -1 (2n),
2 222;1—1(;1)Z
n=0

3 1 2 12
2 42@n-D\n £4202n-1)\n

_ 1 2n -
T 2en-n\n) "7

C(z) =

1]
|
|
|
—~
—
|
~
2N
—
.
—
)
|

C(@

From this
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Since b = 2771 for n > 1, it can be proved easily that B = z/(1 — 27). Thus

Wy L (2K 2
Y@ = skl & a2t -

Using the formula

1 n+m-1\,
(1_Z)m=2( n )Z’

n>0
therefore
1 2k 2k+n-2
RO _ o, 2k+n-1
© 2<2k—1)(k)n>0( ) ¢
_ 1 (2k) ( n—1 )2n—2k+1 o

2Qk—- D\ k WS n—2k+1
Thus L o |

po— - =1 )52k

" 2k—1(k)(2k—2
or

5.2.3. The Z+transform method

When solving linear nonhomogeneous equations using generating functions, the solution is
usually done by the expansion of a rational fraction. The Z-transform method can help us in
expanding such a function. Let P(z)/Q(z) be a rational fraction, where the degree of P(z) is
less than the degree of Q(z). If the roots of the denominator are known, the rational fraction
can be expanded into partial fractions using the Undetermined Coefficient Method.

Let us first consider the case when the denominator has distinct roots a1, as, ..., ;.
Then P(2) A A N
_Z — 1 e 4 ! + .o 4 k .
0@ z-a - -
It is easy to see that
. P() .
Ai—zll_)rgi(z—a,)@, l—1,2,...,k.
But
A _ A; _ ~ABi
I—a; ( 1 ) 1-Biz°
—q; - —z
a;
where §; = 1/a;. Now, by expanding this partial fraction, we get
—A.B:
—AB =-ABi(1+Biz+--+B"+--).
1-piz
Denote the coefficient of 2" by C;(n), then Ci(n) = =A;B!*!, so
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or
) _ _pn+loq; w
Ci(m) = =" lim 0()

After the transformation z — 1/z and using 8; = 1/@; we obtain

Cz(i’l) = th};l ((Z _ﬂi)zn—I&) ’

q(2)
where @ _ P(1/2)
q(z) Q[
Thus in the expansion of X(z) = % the coeflicient of 7" is

Ci(n) + Co(n) +---+ Cr(n) .

If @ is a root of the polynomial Q(z), then 8 = 1/ is a root of ¢(z). E.g. if

P(z) 2z p@) 2
= , then —=————
0z (1-2(1-22) gz (@Z-D(z-2)

If the root is multiple, e.g. if 8; has multiplicity p, then its corresponding in the solution is

1@)
@)

p—1

Cl(n) = (p _ 1)’ :11_)1}'311 dzp—l

((z =B

AP
Here o7 f(2) is the derivative of order p of the function f(z).

All these can be summarised in the following algorithm. Let us consider that the co-
efficients of the equation are in array A, and the constants of the solution are in array C.

LINEAR-NONHOMOGENEOUS(A, k, f)

1 letapx, + a1xp+1 + -+ + arXyek = f(n) be the equation, where f(n) is a rational fraction;
multiply both sides by z”, and sum over all n
2 transform the equation into the form X(z) = P(z)/Q(z), where X(2) = 2,50 Xn2",
P(z) and Q(z) are polynomials
3 use the transformation 7 — 1/z, and let the result be
p(2)/q(2), where p(z) are g(z) are polynomials
4 denote the roots of ¢g(z) by
1, with multiplicity p1, p1 > 1,
B>, with multiplicity p;, p» > 1,

B, with multiplicity pg, pr > 1;
then the general solution of the original equation is
X, = Ci(n) + Ca(n) + - -+ + Cr(n), where
. g T .
Cilm) = 1/((pi = DY lim,p, = (2 = B2 (p@)/9(2)) , i=1,2,....k
5 return C
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If we substitute z by 1/z in the generating function, the result is the so-called Z-
transform, for which similar operations can be defined as for the generating functions. The
residue theorem for the Z-transform gives the same result. The name of the method is deri-
ved from this observation.

Example 5.12 Solve the recurrence equation
Xn+l — 2)6,1 = 2’”1 - 2, ha n> 0, Xo = 0.

Multiplying both sides by 7" and summing we obtain

Z X,1+1Zn _ 22 XnZn — Z 211+lzn _ Z 2Zn ,

n>0 n>0 n=0 n>0
or

1 2 2 \
SXQ-2X@) = 15 7o WhereX(@) = PR

n>0

Thus
272

X =T a2

After the transformation z — 1/z we get

9@ (@-D@E-272"

where the roots of the denominator are 1 with multiplicity 1 and 2 with multiplicity 2. Thus

2 le

C]:}”l_l;l'llmzz and
. d (2 . o 'z-D-7"

Therefore the general solution is

X, =2"n-2)+2, n=0.

Example 5.13 Solve the recurrence equation
Xppo = 2Xpe1 — 2%, if n>0, x3=0, x5 =1

Multiplying by 7" and summing gives

1 2
2 1
) Z xn+22n+ = ; Z xn+lZn+ -2 Z X2,

~ om0 © >0 n>0
SO
1 2
5(F@-2) = ZF@) - 2F @),
2 z
that is . |
F(z)(—2 - - +2) =——.
Z Z Z
Then

-z

o=



5.3. Numerical solution 227

The roots of the denominator are 1 + i and 1 — i. Let us compute C;(n) and C;(n):

n+1 : N\
. -z i1+
Gm=lm —G—5 =2
. _Zn+l —l(l _l-)n
=1 =
Gl = Iim —77% 2
Since x x x x
1+i=\/§(cosz+isinz), l—izﬁ(cosz—isinz),

raising to the nth power gives

(140" =(\/§)"(cos%+isin%), (1=0)" =(\/§)"(cos%—i5in%) ,

%o = Ci(m) + Con) = (V2)' sin % .

Exercises
5.2-1 How many binary trees are there with n vertices and no empty left and right subtrees?

5.2-2 How many binary trees are there with n vertices, in which each vertex which is not a
leaf, has exactly two descendants?

5.2-3 Solve the following recurrent equation using generating functions.
H,=2H,,+1, Hy=0.

(H, is the number of moves in the problem of the Towers of Hanoi.)

5.2-4 Solve the following recurrent equation using the Z-transform method.

Fopo=F,1+F,+1,han>0, és Fy=0,F=1.

5.2-5 Solve the following system of recurrence equations:

Up = Vp1+iuyo,

Vn Up + Up-1

where ug = 1,u1 = 2,v9 = 1.

5.3. Numerical solution

Using the following function we can solve the linear recurrent equations numerically. The
equation is given in the form

ApXy + A1 Xp41 + -0+ Xy = f()



228 5. Recurrences

where ag, a; # 0,k > 1. The coefficients agp, ay, ..., a; are kept in array A, the initial values
X0, X1, . .., Xp—1 in array X. To find x,, we will compute step by step the values xi, Xpi1, ..., X,
keeping in the previous k values of the sequence in the first k positions of X (i.e. in the
positions with indices 0, 1,...,k— 1).

RECURRENCE(A, X, k, 1, f)

1 for j—kton

2 do v « A[0] - X[0]

3 fori—1ltok—1

4 dov « v+ A[i] - X[{]

5 v (f(j — k)~ v)/AlK]

6 ifjn

7 thenfori — Otok -2

8 do X[i] « X[i+ 1]
9 Xlk=1] «v

10 returnv

Lines 2-5 compute the values x; (j = k,k + 1,...,n) (using the previous k values),
denoted by v in the algorithm. In lines 7-9, if n is not yet reached, we copy the last k values
in the first k£ positions of X. In line 10 x, is obtained. It is easy to see that the computation
time is ®(kn), if we do not count the time to compute the value of the function.

Exercises
5.3-1 How many additions, subtractions, multiplications and divisions are required using
the algorithm REcURRENCE, while it computes xj000 using the data given in Example 5.4?

Problems

5-1. Existence of a solution of homogeneous equation using generating function
Prove that a linear homogeneous equation cannot be solved using generating functions (be-
cause X(z) = 0 is obtained) if and only if x,, = O for all n.

5-2. Complex roots in the case of Z-transform
What happens if the roots of the denominator are complex when applying the Z-transform
method? The solution of the recurrence equation must be real. Does the method ensure this?

Chapter notes

The recurrence equations are discussed in detail by Elaydi [1], Flajolet and Sedgewick [8]],
Greene and Knuth [3], Mickens [7].

Knuth [4] and Graham, Knuth and Patashnik [2] deal with generating functions. In the
book of Vilenkin [9] there are a lot of simple and interesting problems about recurrences
and generating functions.
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In [6] Lovdsz also presents problems on generating function.
Counting the binary trees is from Knuth [4], counting the leaves in the set of all binary
trees and counting the binary trees with n vertices and & leaves are from Z. Késa [5].
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