## 5. Recurrences

The recursive definition of the Fibonacci numbers is well-known: if $F_{n}$ is the $n^{\text {th }}$ Fibonacci number, then

$$
\begin{gathered}
F_{0}=0, \quad F_{1}=1 \\
F_{n+2}=F_{n+1}+F_{n}, \quad \text { if } n \geq 0 .
\end{gathered}
$$

We are interested in an explicit form of the numbers $F_{n}$ for all $n$ natural numbers. Actually, the problem is to solve an equation where the unknown is given recursively, in which case the equation is called a recurrence equation. The solution can be considered as a function over natural numbers, because $F_{n}$ is defined for all $n$. Such recurrence equations are also known as difference equations, but could be named as discrete differential equations for their similarities to differential equations.

Definition 5.1 A $\boldsymbol{k}^{\text {th }} \boldsymbol{t h}$ order recurrence equation, $(k \geq 1)$ is an equation of the form

$$
\begin{equation*}
f\left(x_{n}, x_{n+1}, \ldots, x_{n+k}\right)=0, \quad n \geq 0 \tag{5.1}
\end{equation*}
$$

where $x_{n}$ must be given in an explicit form.
For a unique determination of $x_{n}, k$ initial values must be given. Usually these values are $x_{0}, x_{1}, \ldots, x_{k-1}$. These can be considered as initial conditions. In the case of the equation for Fibonacci-numbers, which is of second order, two initial values must be given.

The sequence $x_{n}=g(n)$ satisfying equation (5.1) and the corresponding initial conditions is called a particular solution. If all particular solutions of equation (5.1) can be obtained from the sequence $x_{n}=h\left(n, C_{1}, C_{2}, \ldots, C_{k}\right)$, by adequately choosing of the constants $C_{1}, C_{2}, \ldots, C_{k}$, then this sequence $x$ is a general solution.

Solving recurrence equations is not an easy task. In the chapter we will discuss methods which can be used in special cases. For simplicity of writing we will use the notation $x_{n}$ instead of $x(n)$ as it appears in several books (sequences can be considered as functions over natural numbers).

The chapter is divided into three sections. In section 5.1 we deal with solving linear recurrence equations, in section 5.2 with generating functions and their use in solving recurrence equations and in section 5.3 we focus our attention on numerical solution of recurrence equations.

### 5.1. Linear recurrence equations

If the recurrence equation is of the form

$$
f_{0}(n) x_{n}+f_{1}(n) x_{n+1}+\cdots+f_{k}(n) x_{n+k}=f(n), \quad n \geq 0
$$

where $f, f_{0}, f_{1}, \ldots, f_{k}$ are functions defined over natural numbers, $f_{0}, f_{k} \neq 0$, and $x_{n}$ must be given explicitly, then the recurrence equation is linear. If $f$ is the zero function, then the equation is homogeneous, otherwise nonhomogeneous. If all the functions $f_{0}, f_{1}, \ldots, f_{k}$ are constant, the equation is called a linear recurrence equation with constant coefficients.

### 5.1.1. Linear homogeneous equations with constant coefficients

Let the equation be

$$
\begin{equation*}
a_{0} x_{n}+a_{1} x_{n+1}+\cdots+a_{k} x_{n+k}=0, \quad n \geq k \tag{5.2}
\end{equation*}
$$

where $a_{0}, a_{1}, \ldots, a_{k}$ are real constants, $a_{0}, a_{k} \neq 0, k \geq 1$. If $k$ initial conditions are given (usually $x_{0}, x_{1}, \ldots, x_{k-1}$ ), then the general solution of this equation can be uniquely given.

To solve the equation let us consider its characteristic equation

$$
\begin{equation*}
a_{0}+a_{1} r+\cdots+a_{k-1} r^{k-1}+a_{k} r^{k}=0 \tag{5.3}
\end{equation*}
$$

a polynomial equation with real coefficients. This equation has $k$ roots in the field of complex numbers. It can easily be seen after a simple substitution that if $r_{0}$ is a real solution of the characteristic equation, then $C_{0} r_{0}^{n}$ is a solution of (5.2), for arbitrary $C_{0}$.

The general solution of equation (5.2) is

$$
x_{n}=C_{1} x_{n}^{(1)}+C_{2} x_{n}^{(2)}+\cdots+C_{k} x_{n}^{(k)}
$$

where $x_{n}^{(i)}(i=1,2, \ldots, k)$ are the linearly independent solutions of equation (5.2). The constants $C_{1}, C_{2}, \ldots, C_{k}$ can be determined from the initial conditions by solving a system of $k$ equations.

The linearly independent solutions are supplied by the roots of the characteristic equation by the following way. A fundamental solution of equation (5.2) can be associated with each root of the characteristic equation. Let us consider the following cases.

## Distinct real roots

Let $r_{1}, r_{2}, \ldots, r_{p}$ be distinct real roots of the characteristic equation. Then

$$
r_{1}^{n}, r_{2}^{n}, \ldots, r_{p}^{n}
$$

are solutions of equation (5.2), and

$$
\begin{equation*}
C_{1} r_{1}^{n}+C_{2} r_{2}^{n}+\cdots+C_{p} r_{p}^{n} \tag{5.4}
\end{equation*}
$$

is also a solution, for arbitrary constants $C_{1}, C_{2}, \ldots, C_{p}$. If $p=k$, then (5.4) is the general solution of the recurrence equation.

Example 5.1 Solve the recurrence equation

$$
x_{n+2}=x_{n+1}+x_{n}, \quad x_{0}=0, x_{1}=1 .
$$

The corresponding characteristic equation is

$$
r^{2}-r-1=0,
$$

with the solutions

$$
r_{1}=\frac{1+\sqrt{5}}{2}, r_{2}=\frac{1-\sqrt{5}}{2}
$$

These are distinct real solutions, so the general solution of the equation is

$$
x_{n}=C_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+C_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

The constants $C_{1}$ and $C_{2}$ can be determined using the initial conditions. From $x_{0}=0, x_{1}=1$ the following system of equations can be obtained.

$$
\begin{aligned}
C_{1}+C_{2} & =0, \\
C_{1} \frac{1+\sqrt{5}}{2}+C_{2} \frac{1-\sqrt{5}}{2} & =1 .
\end{aligned}
$$

The solution of this system of equations is $C_{1}=1 / \sqrt{5}, C_{2}=-1 / \sqrt{5}$. Therefore the general solution is

$$
x_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n},
$$

which is the $n$th Fibonacci number $F_{n}$.

## Multiple real roots

Let $r$ be a real root of the characteristic equation with multiplicity $p$. Then

$$
r^{n}, n r^{n}, n^{2} r^{n}, \ldots, n^{p-1} r^{n}
$$

are solutions of equation (5.2) (fundamental solutions corresponding to $r$ ), and

$$
\begin{equation*}
\left(C_{0}+C_{1} n+C_{2} n^{2}+\cdots+C_{p-1} n^{p-1}\right) r^{n} \tag{5.5}
\end{equation*}
$$

is also a solution, for any constants $C_{0}, C_{1}, \ldots, C_{p-1}$. If the characteristic equation has no other solutions, then $(5.5)$ is a general solution of the recurrence equation.

Example 5.2 Solve the recurrence equation

$$
x_{n+2}=4 x_{n+1}-4 x_{n}, \quad x_{0}=1, x_{1}=3 .
$$

The characteristic equation is

$$
r^{2}-4 r+4=0
$$

with $r=2$ a solution with multiplicity 2 . Then

$$
x_{n}=\left(C_{0}+C_{1} n\right) 2^{n}
$$

is a general solution of the recurrence equation.

From the initial conditions we have

$$
\begin{aligned}
C_{0} & =1 \\
2 C_{0}+2 C_{1} & =3 .
\end{aligned}
$$

From this system of equations $C_{0}=1, C_{1}=1 / 2$, so the general solution is

$$
x_{n}=\left(1+\frac{1}{2} n\right) 2^{n} \quad \text { or } \quad x_{n}=(n+2) 2^{n-1}
$$

## Distinct complex roots

If the complex number $a(\cos b+i \sin b)$, written in trigonometric form, is a root of the characteristic equation, then its conjugate $a(\cos b-i \sin b)$ is also a root, because the coefficients of the characteristic equation are real numbers. Then

$$
a^{n} \cos b n \text { and } a^{n} \sin b n
$$

are solutions of equation (5.2) and

$$
\begin{equation*}
C_{1} a^{n} \cos b n+C_{2} a^{n} \sin b n \tag{5.6}
\end{equation*}
$$

is also a solution, for any constants $C_{1}$ and $C_{2}$. If these are the only solutions of the characteristic equation, then (5.6) is a general solution.

Example 5.3 Solve the recurrence equation

$$
x_{n+2}=2 x_{n+1}-2 x_{n}, \quad x_{0}=0, x_{1}=1 .
$$

The corresponding characteristic equation is

$$
r^{2}-2 r+2=0,
$$

with roots $1+i$ and $1-i$. These can be written in trigonometric form as $\sqrt{2}(\cos (\pi / 4)+i \sin (\pi / 4))$ and $\sqrt{2}(\cos (\pi / 4)-i \sin (\pi / 4))$. Therefore

$$
x_{n}=C_{1}(\sqrt{2})^{n} \cos \frac{n \pi}{4}+C_{2}(\sqrt{2})^{n} \sin \frac{n \pi}{4}
$$

is a general solution of the recurrence equation. From the initial conditions

$$
\begin{aligned}
C_{1} & =0, \\
C_{1} \sqrt{2} \cos \frac{\pi}{4}+C_{2} \sqrt{2} \sin \frac{\pi}{4} & =1 .
\end{aligned}
$$

Therefore $C_{1}=0, C_{2}=1$. Hence the general solution is

$$
x_{n}=(\sqrt{2})^{n} \sin \frac{n \pi}{4} .
$$

## Multiple complex roots

If the complex number written in trigonometric form as $a(\cos b+i \sin b)$ is a root of the characteristic equation with multiplicity $p$, then its conjugate $a(\cos b-i \sin b)$ is also a root with multiplicity $p$.

Then

$$
a^{n} \cos b n, n a^{n} \cos b n, \ldots, n^{p-1} a^{n} \cos b n
$$

and

$$
a^{n} \sin b n, n a^{n} \sin b n, \ldots, n^{p-1} a^{n} \sin b n
$$

are solutions of the recurrence equation (5.2). Then

$$
\left(C_{0}+C_{1} n+\cdots+C_{p-1} n^{p-1}\right) a^{n} \cos b n+\left(D_{0}+D_{1} n+\cdots+D_{p-1} n^{p-1}\right) a^{n} \sin b n
$$

is also a solution, where $C_{0}, C_{1}, \ldots, C_{p-1}, D_{0}, D_{1}, \ldots, D_{p-1}$ are arbitrary constants, which can be determined from the initial conditions. This solution is general if the characteristic equation has no other roots.

Example 5.4 Solve the recurrence equation

$$
x_{n+4}+2 x_{n+2}+x_{n}=0, \quad x_{0}=0, x_{1}=1, x_{2}=2, x_{3}=3 .
$$

The characteristic equation is

$$
r^{4}+2 r^{2}+1=0
$$

which can be written as $\left(r^{2}+1\right)^{2}=0$. The complex numbers $i$ and $-i$ are double roots. The trigonometric form of these are

$$
i=\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}, \text { and }-i=\cos \frac{\pi}{2}-i \sin \frac{\pi}{2}
$$

respectively. Therefore the general solution is

$$
x_{n}=\left(C_{0}+C_{1} n\right) \cos \frac{n \pi}{2}+\left(D_{0}+D_{1} n\right) \sin \frac{n \pi}{2} .
$$

From the initial conditions we obtain

$$
\begin{aligned}
C_{0} & =0, \\
\left(C_{0}+C_{1}\right) \cos \frac{\pi}{2}+\left(D_{0}+D_{1}\right) \sin \frac{\pi}{2} & =1, \\
\left(C_{0}+2 C_{1}\right) \cos \pi+\left(D_{0}+2 D_{1}\right) \sin \pi & =2, \\
\left(C_{0}+3 C_{1}\right) \cos \frac{3 \pi}{2}+\left(D_{0}+3 D_{1}\right) \sin \frac{3 \pi}{2} & =3,
\end{aligned}
$$

that is

$$
\begin{aligned}
C_{0} & =0, \\
D_{0}+D_{1} & =1, \\
-2 C_{1} & =2, \\
-D_{0}-3 D_{1} & =3 .
\end{aligned}
$$

Solving this system of equations $C_{0}=0, C_{1}=-1, D_{0}=3$ and $D_{1}=-2$. Thus the general solution is

$$
x_{n}=(3-2 n) \sin \frac{n \pi}{2}-n \cos \frac{n \pi}{2} .
$$

Using these four cases all linear homogeneous equations with constant coefficients can be solved, if we can solve their characteristic equations.

Example 5.5 Solve the recurrence equation

$$
x_{n+3}=4 x_{n+2}-6 x_{n+1}+4 x_{n}, \quad x_{0}=0, x_{1}=1, x_{2}=1
$$

The characteristic equation is

$$
r^{3}-4 r^{2}+6 r-4=0,
$$

with roots $2,1+i$ and $1-i$. Therefore the general solution is

$$
x_{n}=C_{1} 2^{n}+C_{2}(\sqrt{2})^{n} \cos \frac{n \pi}{4}+C_{3}(\sqrt{2})^{n} \sin \frac{n \pi}{4} .
$$

After determining the constants we obtain

$$
x_{n}=-2^{n-1}+\frac{(\sqrt{2})^{n}}{2}\left(\cos \frac{n \pi}{4}+3 \sin \frac{n \pi}{4}\right)
$$

## The general solution

The characteristic equation of the $k$ th order linear homogeneous equation (5.2) has $k$ roots in th field of complex numbers, which are not necessarily distinct. Let these roots be the following:
$r_{1}$ real, with multiplicity $p_{1}\left(p_{1} \geq 1\right)$,
$r_{2}$ real, with multiplicity $p_{2}\left(p_{2} \geq 1\right)$,
$r_{t}$ real, with multiplicity $p_{t}\left(p_{t} \geq 1\right)$,
$s_{1}=a_{1}\left(\cos b_{1}+i \sin b_{1}\right)$ complex, with multiplicity $q_{1}\left(q_{1} \geq 1\right)$,
$s_{2}=a_{2}\left(\cos b_{2}+i \sin b_{2}\right)$ complex, with multiplicity $q_{2}\left(q_{2} \geq 1\right)$,
..
$s_{m}=a_{m}\left(\cos b_{m}+i \sin b_{m}\right)$ complex, with multiplicity $q_{m}\left(q_{m} \geq 1\right)$.
Since the equation has $k$ roots, $p_{1}+p_{2}+\cdots+p_{t}+2\left(q_{1}+q_{2}+\cdots+q_{m}\right)=k$.
In this case the general solution of equation (5.2) is

$$
\begin{align*}
x_{n} & =\sum_{j=1}^{t}\left(C_{0}^{(j)}+C_{1}^{(j)} n+\cdots+C_{p_{j}-1}^{(j)} n^{p_{j}-1}\right) r_{j}^{n} \\
& +\sum_{j=1}^{m}\left(D_{0}^{(j)}+D_{1}^{(j)} n+\cdots+D_{q_{j}-1}^{(j)} n^{q_{j}-1}\right) a_{j}^{n} \cos b_{j} n \\
& +\sum_{j=1}^{m}\left(E_{0}^{(j)}+E_{1}^{(j)} n+\cdots+E_{q_{j}-1}^{(j)} n^{q_{j}-1}\right) a_{j}^{n} \sin b_{j} n, \tag{5.7}
\end{align*}
$$

where

$$
C_{0}^{(j)}, C_{1}^{(j)}, \ldots, C_{p_{j-1}}^{(j)}, j=1,2, \ldots, t
$$

$D_{0}^{(l)}, E_{0}^{(l)}, D_{1}^{(l)}, E_{1}^{(l)}, \ldots, D_{p_{l}-1}^{(l)}, E_{p_{l}-1}^{(l)}, l=1,2, \ldots, m$ are constants, which can be determined from the initial conditions.

The above statements can be summarised in the following theorem.

Theorem 5.1 Let $k \geq 1$ be an integer and $a_{0}, a_{1}, \ldots, a_{k}$ real numbers with $a_{0}, a_{k} \neq 0$. The general solution of the linear recurrence equation (5.2) can be obtained as a linear combination of the terms $n^{j} r_{i}^{n}$, where $r_{i}$ are the roots of the characteristic equation (5.3) with multiplicity $p_{i}\left(0 \leq j<p_{i}\right)$ and the coefficients of the linear combination depend on the initial conditions.

The proof of the theorem is left to the reader (see exercise 5.1-5.).
The algorithm for the general solution is the following.

## Linear-homogeneous

1 determine the characteristic equation of the recurrence equation
2 find all roots of the characteristic equation with their multiplicities
3 find the general solution (5.7) based on the roots
4 determine the constants of (5.7) using the initial conditions, if these exists.

### 5.1.2. Linear nonhomogeneous recurrence equations with constant coefficients

Consider the linear nonhomogeneous recurrence equation with constant coefficients

$$
\begin{equation*}
a_{0} x_{n}+a_{1} x_{n+1}+\cdots+a_{k} x_{n+k}=f(n) \tag{5.8}
\end{equation*}
$$

where $a_{0}, a_{1}, \ldots, a_{k}$ are real constants, $a_{0}, a_{k} \neq 0, k \geq 1$, and $f$ is not the zero function.
The corresponding linear homogeneous equation (5.2) can be solved using Theorem 5.1 If a particular solution of equation (5.8) is known, then equation (5.8) can be solved.

Theorem 5.2 Let $k \geq 1$ be an integer, $a_{0}, a_{1}, \ldots, a_{k}$ real numbers, $a_{0}, a_{k} \neq 0$. If $x_{n}^{(1)}$ is a particular solution of the linear nonhomogeneous equation (5.8) and $x_{n}^{(0)}$ is a general solution of the linear homogeneous equation (5.2), then

$$
x_{n}=x_{n}^{(0)}+x_{n}^{(1)}
$$

is a general solution of the equation (5.8).
The proof of the theorem is left to the reader (see exercise 5.1-6.).
Example 5.6 Solve the recurrence equation

$$
x_{n+2}+x_{n+1}-2 x_{n}=2^{n}, \quad x_{0}=0, x_{1}=1 .
$$

First we solve the homogeneous equation

$$
x_{n+2}+x_{n+1}-2 x_{n}=0,
$$

and obtain the general solution

$$
x_{n}^{(0)}=C_{1}(-2)^{n}+C_{2},
$$

since the roots of the characteristic equation are -2 and 1 . It is easy to see that

$$
x_{n}=C_{1}(-2)^{n}+C_{2}+2^{n-2}
$$

| $f(n)$ | $x_{n}^{(1)}$ |
| :--- | :--- |
| $n^{p} a^{n}$ | $\left(C_{0}+C_{1} n+\cdots+C_{p} n^{p}\right) a^{n}$ |
|  | $\left(C_{0}+C_{1} n+\cdots+C_{p} n^{p}\right) a^{n} \sin b n+\left(D_{0}+D_{1} n+\cdots+D_{p} n^{p}\right) a^{n} \cos b n$ |
| $a^{n} n^{p} \sin b n$ | $\left(C_{0}+C_{1} n+\cdots+C_{p} n^{p}\right) a^{n} \sin b n+\left(D_{0}+D_{1} n+\cdots+D_{p} n^{p}\right) a^{n} \cos b n$ |
| $a^{n} n^{p} \cos b n$ |  |

Figure 5.1. The form of particular solutions.
is a solution of the nonhomogeneous equation. Therefore the general solution is

$$
x_{n}=-\frac{1}{4}(-2)^{n}+2^{n-2} \quad \text { or } \quad x_{n}=\frac{2^{n}-(-2)^{n}}{4},
$$

The constants $C_{1}$ and $C_{2}$ can be determined using the initial conditions. Thus, that is

$$
x_{n}= \begin{cases}0, & \text { if } n \text { is even }, \\ 2^{n-1}, & \text { if } n \text { is odd } .\end{cases}
$$

A particular solution can be obtained using the method of variation of constants. However, there are cases when there is an easier way of finding a particular solution. In figure 5.1 we can see types of functions $f(n)$, for which a particular solution $x_{n}^{(1)}$ can be obtained in the given form in the table. The constants can be obtained by substitutions.

In the previous example $f(n)=2^{n}$, so the first case can be used with $a=2$ and $p=0$. Therefore we try to find a particular solution of the form $C_{0} 2^{n}$. After substitution we obtain $C_{0}=1 / 4$, thus the particular solution is

$$
x_{n}^{(1)}=2^{n-2} .
$$

## Exercises

5.1-1 Solve the recurrence equation

$$
H_{n}=2 H_{n-1}+1, \text { ha } n \geq 1 \text {, és } H_{0}=0 .
$$

(Here $H_{n}$ is the optimal number of moves in the problem of Towers of Hanoi.)
5.1-2 Analyse the problem of Towers of Hanoi if $n$ discs have to be moved from stick $A$ to stick $C$ in such a way that no disc can be moved directly from $A$ to $C$ and vice versa.

Hint. Show that if the optimal number of moves is denoted by $M_{n}$, and $n \geq 1$, then $M_{n}=3 M_{n-1}+2$.
5.1-3 Solve the recurrence equation

$$
(n+1) R_{n}=2(2 n-1) R_{n-1}, \text { ha } n \geq 1 \text {, és } R_{0}=1 .
$$

5.1-4 Solve the linear nonhomogeneous recurrence equation

$$
x_{n}=2^{n}-2+2 x_{n-1}, \text { ha } n \geq 2, \quad \text { és } \quad x_{1}=0
$$

Hint. Try to find a particular solution of the form $C_{1} n 2^{n}+C_{2}$.
5.1-5ぇ Prove Theorem 5.1
5.1-6 Prove Theorem 5.2.

### 5.2. Generating functions and recurrence equations

Generating functions can be used, among others, to solve recurrence equations, count objects (e.g. binary trees), prove identities and solve partition problems. Counting the number of objects can be done by stating and solving recurrence equations. These equations are usually not linear, and generating functions can help us in solving them.

### 5.2.1. Definition and operations

Associate a series with the infinite sequence $\left(a_{n}\right)_{n \geq 0}=\left\langle a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots\right\rangle$ the following way

$$
A(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}+\cdots=\sum_{n \geq 0} a_{n} z^{n}
$$

This is called the generating function of the sequence $\left(a_{n}\right)_{n \geq 0}$.
For example, in the case of the Fibonacci numbers this generating function is

$$
F(z)=\sum_{n \geq 0} F_{n} z^{n}=z+z^{2}+2 z^{3}+3 z^{4}+5 z^{5}+8 z^{6}+13 z^{7}+\cdots
$$

Multiplying both sides of the equation by $z$, then by $z^{2}$, we obtain

$$
\begin{array}{rrr}
F(z) & = & F_{0}+F_{1} z+F_{2} z^{2}+F_{3} z^{3}+\cdots+F_{n} z^{n}+\cdots, \\
z F(z) & = & F_{0} z+F_{1} z^{2}+F_{2} z^{3}+\cdots+F_{n-1} z^{n}+\cdots, \\
z^{2} F(z) & = & F_{0} z^{2}+F_{1} z^{3}+\cdots+F_{n-2} z^{n}+\cdots .
\end{array}
$$

If we subtract the second and the third equation from the first one term by term, then use the defining formula of the Fibonacci numbers, we get

$$
F(z)\left(1-z-z^{2}\right)=z
$$

that is

$$
\begin{equation*}
F(z)=\frac{z}{1-z-z^{2}} \tag{5.9}
\end{equation*}
$$

The correctness of these operations can be proved mathematically, but here we do not want to go into details. The formulae obtained using generating functions can usually also be proved using other methods.

Let us consider the following generating functions

$$
A(z)=\sum_{n \geq 0} a_{n} z^{n} \text { and } B(z)=\sum_{n \geq 0} b_{n} z^{n}
$$

The generating functions $A(z)$ and $B(z)$ are equal, if and only if $a_{n}=b_{n}$ for all $n$ natural numbers.

Now we define the following operations with the generating functions: addition, multiplication by real number, shift, multiplication, derivation and integration.

## Addition and multiplication by real number

$$
\alpha A(z)+\beta B(z)=\sum_{n \geq 0}\left(\alpha a_{n}+\beta b_{n}\right) z^{n}
$$

## Shift

The generating function

$$
z^{k} A(z)=\sum_{n \geq 0} a_{n} z^{n+k}=\sum_{n \geq k} a_{n-k} z^{n}
$$

represents the sequence $<\underbrace{0,0, \ldots, 0}_{k}, a_{0}, a_{1}, \ldots>$, while the generating function

$$
\frac{1}{z^{k}}\left(A(z)-a_{0}-a_{1} z-a_{2} z^{2}-\cdots-a_{k-1} z^{k-1}\right)=\sum_{n \geq k} a_{n} z^{n-k}=\sum_{n \geq 0} a_{k+n} z^{n}
$$

represents the sequence $\left\langle a_{k}, a_{k+1}, a_{k+2}, \ldots\right\rangle$.
Example 5.7 Let $A(z)=1+z+z^{2}+\cdots$. Then

$$
\frac{1}{z}(A(z)-1)=A(z) \quad \text { and } \quad A(z)=\frac{1}{1-z}
$$

## Multiplication

If $A(z)$ and $B(z)$ are generating functions, then

$$
\begin{aligned}
A(z) B(z) & =\left(a_{0}+a_{1} z+\cdots+a_{n} z^{n}+\cdots\right)\left(b_{0}+b_{1} z+\cdots+b_{n} z^{n}+\cdots\right) \\
& =a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) z+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) z^{2}+\cdots \\
& =\sum_{n \geq 0} s_{n} z^{n}
\end{aligned}
$$

where $s_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$.
Special case. If $b_{n}=1$ for all natural numbers $n$, then

$$
\begin{equation*}
A(z) \frac{1}{1-z}=\sum_{n \geq 0}\left(\sum_{k=0}^{n} a_{k}\right) z^{n} \tag{5.10}
\end{equation*}
$$

If, in addition, $a_{n}=1$ for all $n$, then

$$
\begin{equation*}
\frac{1}{(1-z)^{2}}=\sum_{n \geq 0}(n+1) z^{n} \tag{5.11}
\end{equation*}
$$

## Derivation

$$
A^{\prime}(z)=a_{1}+2 a_{2} z+3 a_{3} z^{2}+\cdots=\sum_{n \geq 0}(n+1) a_{n+1} z^{n}
$$

Example 5.8 After differentiating the both sides of the generating function

$$
A(z)=\sum_{n \geq 0} z^{n}=\frac{1}{1-z},
$$

we obtain

$$
A^{\prime}(z)=\sum_{n \geq 1} n z^{n-1}=\frac{1}{(1-z)^{2}} .
$$

## Integration

$$
\int_{0}^{z} A(t) d t=a_{0} z+\frac{1}{2} a_{1} z^{2}+\frac{1}{3} a_{2} z^{3}+\cdots=\sum_{n \geq 1} \frac{1}{n} a_{n-1} z^{n}
$$

Example 5.9 Let

$$
\frac{1}{1-z}=1+z+z^{2}+z^{3}+\cdots
$$

After integrating both sides we get

$$
\ln \frac{1}{1-z}=z+\frac{1}{2} z^{2}+\frac{1}{3} z^{3}+\cdots=\sum_{n \geq 1} \frac{1}{n} z^{n}
$$

Multiplying the above generating functions we obtain

$$
\frac{1}{1-z} \ln \frac{1}{1-z}=\sum_{n \geq 1} H_{n} z^{n},
$$

where $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \quad\left(H_{0}=0, H_{1}=1\right)$ are the so-called harmonic numbers.

## Changing the arguments

Let $A(z)=\sum_{n \geq 0} a_{n} z^{n}$ represent the sequence $<a_{0}, a_{1}, a_{2}, \ldots>$, then $A(c z)=\sum_{n \geq 0} c^{n} a_{n} z^{n}$ represents the sequence $<a_{0}, c a_{1}, c^{2} a_{2}, \ldots c^{n} a_{n}, \ldots>$. The following statements holds

$$
\begin{gathered}
\frac{1}{2}(A(z)+A(-z))=a_{0}+a_{2} z^{2}+\cdots+a_{2 n} z^{2 n}+\cdots \\
\frac{1}{2}(A(z)-A(-z))=a_{1} z+a_{3} z^{3}+\cdots+a_{2 n-1} z^{2 n-1}+\cdots
\end{gathered}
$$

Example 5.10 Let $A(z)=1+z+z^{2}+z^{3}+\cdots=\frac{1}{1-z}$. Then

$$
1+z^{2}+z^{4}+\cdots=\frac{1}{2}(A(z)+A(-z))=\frac{1}{2}\left(\frac{1}{1-z}+\frac{1}{1+z}\right)=\frac{1}{1-z^{2}},
$$

which can also be obtained by substituting $z$ with $z^{2}$ in $A(z)$. We can obtain the sum of the odd power terms the same way,

$$
z+z^{3}+z^{5}+\cdots=\frac{1}{2}(A(z)-A(-z))=\frac{1}{2}\left(\frac{1}{1-z}-\frac{1}{1+z}\right)=\frac{z}{1-z^{2}} .
$$

Using generating functions we can obtain interesting formulae. For example, let $A(z)=$ $1 /(1-z)=1+z+z^{2}+z^{3}+\cdots$. Then $z A(z(1+z))=F(z)$, which is the generating function of the Fibonacci numbers. From this

$$
z A(z(1+z))=z+z^{2}(1+z)+z^{3}(1+z)^{2}+z^{4}(1+z)^{3}+\cdots
$$

The coefficient of $z^{n+1}$ on the left-hand side is $F_{n+1}$, that is the $(n+1)$ th Fibonacci number, while the coefficient of $z^{n+1}$ on the right-hand side is

$$
\sum_{k \geq 0}\binom{n-k}{k}
$$

after using the binomial formula in each term. Hence

$$
\begin{equation*}
F_{n+1}=\sum_{k \geq 0}\binom{n-k}{k}=\sum_{k=0}^{\left\lfloor\frac{n+1}{2}\right\rfloor}\binom{n-k}{k} . \tag{5.12}
\end{equation*}
$$

Remember that the binomial formula can be generalised for all real $r$, namely

$$
(1+z)^{r}=\sum_{n \geq 0}\binom{r}{n} z^{n}
$$

which is the generating function of the binomial coefficients. Here $\binom{r}{n}$ is a generalisation of the combinations for any real number $r$, that is

$$
\binom{r}{n}= \begin{cases}\frac{r(r-1)(r-2) \ldots(r-n+1)}{n(n-1) \ldots 1}, & \text { if } n>0 \\ 1, & \text { fi } n=0 \\ 0, & \text { if } n<0\end{cases}
$$

We can obtain useful formulae using this generalisation for negative $r$. Let

$$
\frac{1}{(1-z)^{m}}=(1-z)^{-m}=\sum_{k \geq 0}\binom{-m}{k}(-z)^{k}
$$

Since, by a simple computation, we get

$$
\binom{-m}{k}=(-1)^{k}\binom{m+k-1}{k}
$$

the following formula can be obtained

$$
\frac{1}{(1-z)^{m+1}}=\sum_{k \geq 0}\binom{m+k}{k} z^{k}
$$

Then

$$
\frac{z^{m}}{(1-z)^{m+1}}=\sum_{k \geq 0}\binom{m+k}{k} z^{m+k}=\sum_{k \geq 0}\binom{m+k}{m} z^{m+k}=\sum_{k \geq 0}\binom{k}{m} z^{k}
$$

and

$$
\begin{equation*}
\sum_{k \geq 0}\binom{k}{m} z^{k}=\frac{z^{m}}{(1-z)^{m+1}} \tag{5.13}
\end{equation*}
$$

where $m$ is a natural number.

### 5.2.2. Solving recurrence equations with generating functions

If the generating function of the general solution of a recurrence equation to be solved can be expanded in such a way that the coefficients are in closed form, then this method is successful.

Let the recurrence equation be

$$
\begin{equation*}
F\left(x_{n}, x_{n-1}, \ldots, x_{n-k}\right)=0 \tag{5.14}
\end{equation*}
$$

To solve it, let us consider the generating function

$$
X(z)=\sum_{n \geq 0} x_{n} z^{n}
$$

If (5.14) can be written as $G(X(z))=0$ and can be solved for $X(z)$, then $X(z)$ can be expanded into series in such a way that $x_{n}$ can be written in closed form, equation (5.14) can be solved.

Now we give a general method for solving linear nonhomogeneous recurrence equations. After this we give three examples for the nonlinear case. In the first two examples the number of elements in some sets of binary trees, while in the third example the number of leaves of binary trees is computed. The corresponding recurrence equations (5.15), (5.17) and (5.18) will be solved using generating functions.

## Linear nonhomogeneous recurrence equations with constant coefficients

Multiply both sides of equation (5.8) by $z^{n}$. Then

$$
a_{0} x_{n} z^{n}+a_{1} x_{n+1} z^{n}+\cdots+a_{k} x_{n+k} z^{n}=f(n) z^{n} .
$$

Summing up both sides of the equation term by term we get

$$
a_{0} \sum_{n \geq 0} x_{n} z^{n}+a_{1} \sum_{n \geq 0} x_{n+1} z^{n}+\cdots+a_{k} \sum_{n \geq 0} x_{n+k} z^{n}=\sum_{n \geq 0} f(n) z^{n} .
$$

Then

$$
a_{0} \sum_{n \geq 0} x_{n} z^{n}+\frac{a_{1}}{z} \sum_{n \geq 0} x_{n+1} z^{n+1}+\cdots+\frac{a_{k}}{z^{k}} \sum_{n \geq 0} x_{n+1} z^{n+k}=\sum_{n \geq 0} f(n) z^{n}
$$

Let

$$
X(z)=\sum_{n \geq 0} x_{n} z^{n} \quad \text { and } \quad F(z)=\sum_{n \geq 0} f(n) z^{n}
$$

The equation can be written as

$$
a_{0} X(z)+\frac{a_{1}}{z}\left(X(z)-x_{0}\right)+\cdots+\frac{a_{k}}{z^{k}}\left(X(z)-x_{0}-x_{1} z-\cdots-x_{k-1} z^{k-1}\right)=F(z) .
$$

This can be solved for $X(z)$. If $X(z)$ is a rational fraction, then it can be decomposed into partial (elementary) fractions which, after expanding them into series, will give us the general solution $x_{n}$ of the original recurrence equation. We can also try to use the expansion into series in the case when the function is not a rational fraction.

Example 5.11 Solve the following equation using the above method

$$
x_{n+1}-2 x_{n}=2^{n+1}-2, \text { ha } n \geq 0 \quad \text { és } x_{0}=0 .
$$

After multiplying and summing we have

$$
\frac{1}{z} \sum_{n \geq 0} x_{n+1} z^{n+1}-2 \sum_{n \geq 0} x_{n} z^{n}=2 \sum_{n \geq 0} 2^{n} z^{n}-2 \sum_{n \geq 0} z^{n}
$$

and

$$
\frac{1}{z}\left(X(z)-x_{0}\right)-2 X(z)=\frac{2}{1-2 z}-\frac{2}{1-z}
$$

Since $x_{0}=0$, after decomposing the right-hand side into partial fraction $s^{11}$ ), the solution of the equation is

$$
X(z)=\frac{2 z}{(1-2 z)^{2}}+\frac{2}{1-z}-\frac{2}{1-2 z} .
$$

After differentiating the generating function

$$
\frac{1}{1-2 z}=\sum_{n \geq 0} 2^{n} z^{n}
$$

term by term we get

$$
\frac{2}{(1-2 z)^{2}}=\sum_{n \geq 1} n 2^{n} z^{n-1}
$$

Thus

$$
X(z)=\sum_{n \geq 0} n 2^{n} z^{n}+2 \sum_{n \geq 0} z^{n}-2 \sum_{n \geq 0} 2^{n} z^{n}=\sum_{n \geq 0}\left((n-2) 2^{n}+2\right) z^{n},
$$

therefore

$$
x_{n}=(n-2) 2^{n}+2 .
$$

## The number of binary trees

Let us denote by $b_{n}$ the number of binary trees with $n$ vertices. Then $b_{1}=1, b_{2}=2, b_{3}=5$ (see figure 5.2). Let $b_{0}=1$. (We will see later that this is a good choice.)

In a binary tree with $n$ vertices, with the exception of the root, there are altogether $n-1$ vertices in the left and right subtrees. If the left subtree has $k$ vertices and the right subtree has $n-1-k$ vertices, then there exists $b_{k} b_{n-1-k}$ such binary trees. Summing over

[^0]

Figure 5.2. Binary trees with two and three vertices.
$k=0,1, \ldots, n-1$, we obtain exactly the number of binary trees, $b_{n}$. Thus for any natural number $n \geq 1$ the recurrence equation in $b_{n}$ is

$$
\begin{equation*}
b_{n}=b_{0} b_{n-1}+b_{1} b_{n-2}+\cdots+b_{n-1} b_{0} \tag{5.15}
\end{equation*}
$$

This can also be written as

$$
b_{n}=\sum_{k=0}^{n-1} b_{k} b_{n-1-k}
$$

Multiplying both sides by $z^{n}$, then summing over all $n$, we obtain

$$
\begin{equation*}
\sum_{n \geq 1} b_{n} z^{n}=\sum_{n \geq 1}\left(\sum_{k=0}^{n-1} b_{k} b_{n-1-k}\right) z^{n} \tag{5.16}
\end{equation*}
$$

Let $B(z)=\sum_{n \geq 0} b_{n} z^{n}$ be the generating function of the numbers $b_{n}$. The left-hand side of (5.16) is exactly $B(z)-1$ (because $b_{0}=1$ ). The right-hand side looks like a product of two generating functions. To see which functions are in consideration, let us use the notation

$$
A(z)=z B(z)=\sum_{n \geq 0} b_{n} z^{n+1}=\sum_{n \geq 1} b_{n-1} z^{n}
$$

Then the right-hand side of (5.16) is exactly $A(z) B(z)$, which is $z B^{2}(z)$. Therefore

$$
B(z)-1=z B^{2}(z), \quad B(0)=1 .
$$

Solving this equation for $B(z)$ gives

$$
B(z)=\frac{1 \pm \sqrt{1-4 z}}{2 z}
$$

We have to choose the negative sign because $B(0)=1$. Thus

$$
\begin{aligned}
B(z) & =\frac{1}{2 z}(1-\sqrt{1-4 z})=\frac{1}{2 z}\left(1-(1-4 z)^{1 / 2}\right) \\
& =\frac{1}{2 z}\left(1-\sum_{n \geq 0}\binom{1 / 2}{n}(-4 z)^{n}\right)=\frac{1}{2 z}\left(1-\sum_{n \geq 0}\binom{1 / 2}{n}(-1)^{n} 2^{2 n} z^{n}\right) \\
& =\frac{1}{2 z}-\binom{1 / 2}{0} \frac{2^{0} z^{0}}{2 z}+\binom{1 / 2}{1} \frac{2^{2} z}{2 z}-\cdots-\binom{1 / 2}{n}(-1)^{2^{2}} \frac{2^{2 n} z^{n}}{2 z}+\cdots \\
& =\binom{1 / 2}{1} 2-\binom{1 / 2}{2} 2^{3} z+\cdots-\binom{1 / 2}{n}(-1)^{n} 2^{2 n-1} z^{n-1}+\cdots \\
& =\sum_{n \geq 0}\binom{1 / 2}{n+1}(-1)^{n} 2^{2 n+1} z^{n}=\sum_{n \geq 0} \frac{1}{n+1}\binom{2 n}{n} z^{n}
\end{aligned}
$$

Therefore $b_{n}=\frac{1}{n+1}\binom{2 n}{n}$. The numbers $b_{n}$ are also called the Catalan numbers.
Remark. In the previous computation we used the following formula that can be proved easily

$$
\binom{1 / 2}{n+1}=\frac{(-1)^{n}}{2^{2 n+1}(n+1)}\binom{2 n}{n} .
$$

## The number of leaves of all binary trees of $\boldsymbol{n}$ vertices

Let us count the number of leaves (vertices with degree 1) in the set of all binary trees of $n$ vertices. Denote this number by $f_{n}$. We remark that the root is not considered leaf even if it is of degree 1 . It is easy to see that $f_{2}=2, f_{3}=6$. Let $f_{0}=0$ and $f_{1}=1$, conventionally. Later we will see that these values are good.

As in the case of numbering the binary trees, consider the binary trees of $n$ vertices having $k$ vertices in the left subtree and $n-k-1$ vertices in the right subtree. There are $b_{k}$ such left subtrees and $b_{n-1-k}$ right subtrees. If we consider such a left subtree and all such right subtrees, then together there are $f_{n-1-k}$ leaves in the right subtrees. So for a given $k$ there are $b_{n-1-k} f_{k}+b_{k} f_{n-1-k}$ leaves. After summing we have

$$
f_{n}=\sum_{k=0}^{n-1}\left(f_{k} b_{n-1-k}+b_{k} f_{n-1-k}\right)
$$

By an easy computation we get

$$
\begin{equation*}
f_{n}=2\left(f_{0} b_{n-1}+f_{1} b_{n-2}+\cdots+f_{n-1} b_{0}\right), \quad n \geq 2 . \tag{5.17}
\end{equation*}
$$

This is a recurrence equation, the solution of which is $f_{n}$. Let

$$
F(z)=\sum_{n \geq 0} f_{n} z^{n} \quad \text { and } \quad B(z)=\sum_{n \geq 0} b_{n} z^{n}
$$

Multiplying both sides of (5.17) by $z^{n}$ and summing gives

$$
\sum_{n \geq 2} f_{n} z^{n}=2 \sum_{n \geq 2}\left(\sum_{k=0}^{n-1} f_{k} b_{n-1-k}\right) z^{n}
$$

Since $f_{0}=0$ and $f_{1}=1$,

$$
F(z)-z=2 z F(z) B(z)
$$

Thus

$$
F(z)=\frac{z}{1-2 z B(z)}
$$

and since

$$
B(z)=\frac{1}{2 z}(1-\sqrt{1-4 z})
$$

we have

$$
F(z)=\frac{z}{\sqrt{1-4 z}}=z(1-4 z)^{-1 / 2}=z \sum_{n \geq 0}\binom{-1 / 2}{n}(-4 z)^{n}
$$

After the computations

$$
F(z)=\sum_{n \geq 0}\binom{2 n}{n} z^{n+1}=\sum_{n \geq 1}\binom{2 n-2}{n-1} z^{n},
$$

and

$$
f_{n}=\binom{2 n-2}{n-1} \quad \text { or } \quad f_{n+1}=\binom{2 n}{n}=(n+1) b_{n}
$$

## The number of binary trees with $\boldsymbol{n}$ vertices and $\boldsymbol{k}$ leaves

A bit harder problem: how many binary trees are there with $n$ vertices and $k$ leaves? Let us denote this number by $b_{n}^{(k)}$. It is easy to see that $b_{n}^{(k)}=0$, if $k>\lfloor(n+1) / 2\rfloor$. By a simple reasoning the case $k=1$ can be solved. The result is $b_{n}^{(1)}=2^{n-1}$ for any natural number $n \geq 1$. Let $b_{0}^{(0)}=1$, conventionally. We will see later that this is a good choice. Let us consider, as in the case of previous problems, the left and right subtrees. If the left subtree has $i$ vertices and $j$ leaves, then the right subtree has $n-i-1$ vertices and $k-j$ leaves. The number of these trees is $b_{i}^{(j)} b_{n-i-1}^{(k-j)}$. Summing over $k$ and $j$ gives

$$
\begin{equation*}
b_{n}^{(k)}=2 b_{n-1}^{(k)}+\sum_{i=1}^{n-2} \sum_{j=1}^{k-1} b_{i}^{(j)} b_{n-i-1}^{(k-j)} . \tag{5.18}
\end{equation*}
$$

For solving this recurrence equation the generating function

$$
B^{(k)}(z)=\sum_{n \geq 0} b_{n}^{(k)} z^{n}, \quad \text { where } k \geq 1
$$

will be used. Multiplying both sides of equation (5.18) by $z^{n}$ and summing over $n=0,1$, $2, \ldots$, we get

$$
\sum_{n \geq 1} b_{n}^{(k)} z^{n}=2 \sum_{n \geq 1} b_{n-1}^{(k)} z^{n}+\sum_{n \geq 1}\left(\sum_{i=1}^{n-2} \sum_{j=1}^{k-1} b_{i}^{(j)} b_{n-i-1}^{(k-j)}\right) z^{n}
$$

Changing the order of summation gives

$$
\sum_{n \geq 1} b_{n}^{(k)} z^{n}=2 \sum_{n \geq 1} b_{n-1}^{(k)} z^{n}+\sum_{j=1}^{k-1} \sum_{n \geq 1}\left(\sum_{i=1}^{n-2} b_{i}^{(j)} b_{n-i-1}^{(k-j)}\right) z^{n}
$$

Thus

$$
B^{(k)}(z)=2 z B^{(k)}(z)+z\left(\sum_{j=1}^{k-1} B^{(j)}(z) B^{(k-j)}(z)\right)
$$

or

$$
\begin{equation*}
B^{(k)}(z)=\frac{z}{1-2 z}\left(\sum_{j=1}^{k-1} B^{(j)}(z) B^{(k-j)}(z)\right) \tag{5.19}
\end{equation*}
$$

Step by step, we can write the following:

$$
\begin{aligned}
B^{(2)}(z) & =\frac{z}{1-2 z}\left(B^{(1)}(z)\right)^{2} \\
B^{(3)}(z) & =\frac{2 z^{2}}{(1-2 z)^{2}}\left(B^{(1)}(z)\right)^{3} \\
B^{(4)}(z) & =\frac{5 z^{3}}{(1-2 z)^{3}}\left(B^{(1)}(z)\right)^{4} .
\end{aligned}
$$

Let us try to find the solution in the form

$$
B^{(k)}(z)=\frac{c_{k} z^{k-1}}{(1-2 z)^{k-1}}\left(B^{(1)}(z)\right)^{k}
$$

where $c_{2}=1, c_{3}=2, c_{4}=5$. Substituting in (5.19) gives a recursion for the numbers $c_{k}$

$$
c_{k}=\sum_{i=1}^{k-1} c_{i} c_{k-i}
$$

We solve this equation using the generating function method. If $k=2$, then $c_{2}=c_{1} c_{1}$, and so $c_{1}=1$. Let $c_{0}=1$. If $C(z)=\sum_{n \geq 0} c_{n} z^{n}$ is the generating function of the numbers $c_{n}$, then, using the formula of multiplication of the generating functions we obtain

$$
C(z)-1-z=(C(z)-1)^{2} \quad \text { or } \quad C^{2}(z)-3 C(z)+z+2=0
$$

thus

$$
C(z)=\frac{3-\sqrt{1-4 z}}{2}
$$

Since $C(0)=1$, only the negative sign can be chosen. After expanding the generating function we get

$$
\begin{aligned}
C(z) & =\frac{3}{2}-\frac{1}{2}(1-4 z)^{1 / 2}=\frac{3}{2}-\frac{1}{2} \sum_{n \geq 0} \frac{-1}{2 n-1}\binom{2 n}{n} z^{n} \\
& =\frac{3}{2}+\sum_{n \geq 0} \frac{1}{2(2 n-1)}\binom{2 n}{n} z^{n}=1+\sum_{n \geq 1} \frac{1}{2(2 n-1)}\binom{2 n}{n} z^{n} .
\end{aligned}
$$

From this

$$
c_{n}=\frac{1}{2(2 n-1)}\binom{2 n}{n}, n \geq 1
$$

Since $b_{n}^{(1)}=2^{n-1}$ for $n \geq 1$, it can be proved easily that $B^{(1)}=z /(1-2 z)$. Thus

$$
B^{(k)}(z)=\frac{1}{2(2 k-1)}\binom{2 k}{k} \frac{z^{2 k-1}}{(1-2 z)^{2 k-1}} .
$$

Using the formula

$$
\frac{1}{(1-z)^{m}}=\sum_{n \geq 0}\binom{n+m-1}{n} z^{n}
$$

therefore

$$
\begin{aligned}
B^{(k)}(z) & =\frac{1}{2(2 k-1)}\binom{2 k}{k} \sum_{n \geq 0}\binom{2 k+n-2}{n} 2^{n} z^{2 k+n-1} \\
& =\frac{1}{2(2 k-1)}\binom{2 k}{k} \sum_{n \geq 2 k-1}\binom{n-1}{n-2 k+1} 2^{n-2 k+1} z^{n}
\end{aligned}
$$

Thus

$$
b_{n}^{(k)}=\frac{1}{2 k-1}\binom{2 k}{k}\binom{n-1}{2 k-2} 2^{n-2 k}
$$

or

$$
b_{n}^{(k)}=\frac{1}{n}\binom{2 k}{k}\binom{n}{2 k-1} 2^{n-2 k}
$$

### 5.2.3. The Z-transform method

When solving linear nonhomogeneous equations using generating functions, the solution is usually done by the expansion of a rational fraction. The Z-transform method can help us in expanding such a function. Let $P(z) / Q(z)$ be a rational fraction, where the degree of $P(z)$ is less than the degree of $Q(z)$. If the roots of the denominator are known, the rational fraction can be expanded into partial fractions using the Undetermined Coefficient Method.

Let us first consider the case when the denominator has distinct roots $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$. Then

$$
\frac{P(z)}{Q(z)}=\frac{A_{1}}{z-\alpha_{1}}+\cdots+\frac{A_{i}}{z-\alpha_{i}}+\cdots+\frac{A_{k}}{z-\alpha_{k}} .
$$

It is easy to see that

$$
A_{i}=\lim _{z \rightarrow \alpha_{i}}\left(z-\alpha_{i}\right) \frac{P(z)}{Q(z)}, \quad i=1,2, \ldots, k
$$

But

$$
\frac{A_{i}}{z-\alpha_{i}}=\frac{A_{i}}{-\alpha_{i}\left(1-\frac{1}{\alpha_{i}} z\right)}=\frac{-A_{i} \beta_{i}}{1-\beta_{i} z}
$$

where $\beta_{i}=1 / \alpha_{i}$. Now, by expanding this partial fraction, we get

$$
\frac{-A_{i} \beta_{i}}{1-\beta_{i} z}=-A_{i} \beta_{i}\left(1+\beta_{i} z+\cdots+\beta_{i}^{n} z^{n}+\cdots\right)
$$

Denote the coefficient of $z^{n}$ by $C_{i}(n)$, then $C_{i}(n)=-A_{i} \beta_{i}^{n+1}$, so

$$
C_{i}(n)=-A_{i} \beta_{i}^{n+1}=-\beta_{i}^{n+1} \lim _{z \rightarrow \alpha_{i}}\left(z-\alpha_{i}\right) \frac{P(z)}{Q(z)}
$$

or

$$
C_{i}(n)=-\beta_{i}^{n+1} \lim _{z \rightarrow \alpha_{i}} \frac{\left(z-\alpha_{i}\right) P(z)}{Q(z)}
$$

After the transformation $z \rightarrow 1 / z$ and using $\beta_{i}=1 / \alpha_{i}$ we obtain

$$
C_{i}(n)=\lim _{z \rightarrow \beta_{i}}\left(\left(z-\beta_{i}\right) z^{n-1} \frac{p(z)}{q(z)}\right)
$$

where

$$
\frac{p(z)}{q(z)}=\frac{P(1 / z)}{Q(1 / z)}
$$

Thus in the expansion of $X(z)=\frac{P(z)}{Q(z)}$ the coefficient of $z^{n}$ is

$$
C_{1}(n)+C_{2}(n)+\cdots+C_{k}(n)
$$

If $\alpha$ is a root of the polynomial $Q(z)$, then $\beta=1 / \alpha$ is a root of $q(z)$. E.g. if

$$
\frac{P(z)}{Q(z)}=\frac{2 z^{z}}{(1-z)(1-2 z)}, \text { then } \frac{p(z)}{q(z)}=\frac{2}{(z-1)(z-2)}
$$

If the root is multiple, e.g. if $\beta_{i}$ has multiplicity $p$, then its corresponding in the solution is

$$
C_{i}(n)=\frac{1}{(p-1)!} \lim _{z \rightarrow \beta_{i}} \frac{d^{p-1}}{d z^{p-1}}\left(\left(z-\beta_{i}\right)^{p} z^{n-1} \frac{p(z)}{q(z)}\right)
$$

Here $\frac{d^{p}}{d z^{p}} f(z)$ is the derivative of order $p$ of the function $f(z)$.
All these can be summarised in the following algorithm. Let us consider that the coefficients of the equation are in array $A$, and the constants of the solution are in array $C$.

## Linear-nonhomogeneous $(A, k, f)$

1 let $a_{0} x_{n}+a_{1} x_{n+1}+\cdots+a_{k} x_{n+k}=f(n)$ be the equation, where $f(n)$ is a rational fraction; multiply both sides by $z^{n}$, and sum over all $n$
2 transform the equation into the form $X(z)=P(z) / Q(z)$, where $X(z)=\sum_{n \geq 0} x_{n} z^{n}$, $P(z)$ and $Q(z)$ are polynomials
3 use the transformation $z \rightarrow 1 / z$, and let the result be $p(z) / q(z)$, where $p(z)$ are $q(z)$ are polynomials
4 denote the roots of $q(z)$ by
$\beta_{1}$, with multiplicity $p_{1}, p_{1} \geq 1$,
$\beta_{2}$, with multiplicity $p_{2}, p_{2} \geq 1$,
$\beta_{k}$, with multiplicity $p_{k}, p_{k} \geq 1 ;$
then the general solution of the original equation is
$x_{n}=C_{1}(n)+C_{2}(n)+\cdots+C_{k}(n)$, where
$C_{i}(n)=1 /\left(\left(p_{i}-1\right)!\right) \lim _{z \rightarrow \beta_{i}} \frac{d^{p_{i}-1}}{d_{z_{i}-1}}\left(\left(z-\beta_{i}\right)^{p_{i}} z^{n-1}(p(z) / q(z))\right), \quad i=1,2, \ldots, k$.
5 return $C$

If we substitute $z$ by $1 / z$ in the generating function, the result is the so-called Ztransform, for which similar operations can be defined as for the generating functions. The residue theorem for the Z-transform gives the same result. The name of the method is derived from this observation.

Example 5.12 Solve the recurrence equation

$$
x_{n+1}-2 x_{n}=2^{n+1}-2, \quad \text { ha } n \geq 0, \quad x_{0}=0 .
$$

Multiplying both sides by $z^{n}$ and summing we obtain

$$
\sum_{n \geq 0} x_{n+1} z^{n}-2 \sum_{n \geq 0} x_{n} z^{n}=\sum_{n \geq 0} 2^{n+1} z^{n}-\sum_{n \geq 0} 2 z^{n},
$$

or

$$
\frac{1}{z} X(z)-2 X(z)=\frac{2}{1-2 z}-\frac{2}{1-z}, \quad \text { where } X(z)=\sum_{n \geq 0} x_{n} z^{n} .
$$

Thus

$$
X(z)=\frac{2 z^{2}}{(1-z)(1-2 z)^{2}} .
$$

After the transformation $z \rightarrow 1 / z$ we get

$$
\frac{p(z)}{q(z)}=\frac{2 z}{(z-1)(z-2)^{2}},
$$

where the roots of the denominator are 1 with multiplicity 1 and 2 with multiplicity 2 . Thus

$$
\begin{gathered}
C_{1}=\lim _{z \rightarrow 1} \frac{2 z^{n}}{(z-2)^{2}}=2 \quad \text { and } \\
C_{2}=\lim _{z \rightarrow 2} \frac{d}{d z}\left(\frac{2 z^{n}}{z-1}\right)=2 \lim _{z \rightarrow 2} \frac{n z^{n-1}(z-1)-z^{n}}{(z-1)^{2}}=2^{n}(n-2) .
\end{gathered}
$$

Therefore the general solution is

$$
x_{n}=2^{n}(n-2)+2, \quad n \geq 0 .
$$

Example 5.13 Solve the recurrence equation

$$
x_{n+2}=2 x_{n+1}-2 x_{n}, \quad \text { if } \quad n \geq 0, \quad x_{0}=0, \quad x_{1}=1
$$

Multiplying by $z^{n}$ and summing gives

$$
\frac{1}{z^{2}} \sum_{n \geq 0} x_{n+2} z^{n+2}=\frac{2}{z} \sum_{n \geq 0} x_{n+1} z^{n+1}-2 \sum_{n \geq 0} x_{n} z^{n},
$$

so

$$
\frac{1}{z^{2}}(F(z)-z)=\frac{2}{z} F(z)-2 F(z)
$$

that is

$$
F(z)\left(\frac{1}{z^{2}}-\frac{2}{z}+2\right)=-\frac{1}{z} .
$$

Then

$$
F(1 / z)=\frac{-z}{z^{2}-2 z+2} .
$$

The roots of the denominator are $1+i$ and $1-i$. Let us compute $C_{1}(n)$ and $C_{2}(n)$ :

$$
\begin{aligned}
& C_{1}(n)=\lim _{z \rightarrow 1+i} \frac{-z^{n+1}}{z-(1-i)}=\frac{i(1+i)^{n}}{2} \text { and } \\
& C_{2}(n)=\lim _{z \rightarrow 1-i} \frac{-z^{n+1}}{z-(1+i)}=\frac{-i(1-i)^{n}}{2} .
\end{aligned}
$$

Since

$$
1+i=\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right), \quad 1-i=\sqrt{2}\left(\cos \frac{\pi}{4}-i \sin \frac{\pi}{4}\right)
$$

raising to the $n$th power gives

$$
\begin{gathered}
(1+i)^{n}=(\sqrt{2})^{n}\left(\cos \frac{n \pi}{4}+i \sin \frac{n \pi}{4}\right), \quad(1-i)^{n}=(\sqrt{2})^{n}\left(\cos \frac{n \pi}{4}-i \sin \frac{n \pi}{4}\right), \\
x_{n}=C_{1}(n)+C_{2}(n)=(\sqrt{2})^{n} \sin \frac{n \pi}{4} .
\end{gathered}
$$

## Exercises

5.2-1 How many binary trees are there with $n$ vertices and no empty left and right subtrees?
5.2-2 How many binary trees are there with $n$ vertices, in which each vertex which is not a leaf, has exactly two descendants?
5.2-3 Solve the following recurrent equation using generating functions.

$$
H_{n}=2 H_{n-1}+1, \quad H_{0}=0 .
$$

( $H_{n}$ is the number of moves in the problem of the Towers of Hanoi.)
5.2-4 Solve the following recurrent equation using the Z-transform method.

$$
F_{n+2}=F_{n+1}+F_{n}+1, \text { ha } n \geq 0, \text { és } F_{0}=0, F_{1}=1 .
$$

5.2-5 Solve the following system of recurrence equations:

$$
\begin{aligned}
& u_{n}=v_{n-1}+u_{n-2} \\
& v_{n}=u_{n}+u_{n-1}
\end{aligned}
$$

where $u_{0}=1, u_{1}=2, v_{0}=1$.

### 5.3. Numerical solution

Using the following function we can solve the linear recurrent equations numerically. The equation is given in the form

$$
a_{0} x_{n}+a_{1} x_{n+1}+\cdots+a_{k} x_{n+k}=f(n)
$$

where $a_{0}, a_{k} \neq 0, k \geq 1$. The coefficients $a_{0}, a_{1}, \ldots, a_{k}$ are kept in array $A$, the initial values $x_{0}, x_{1}, \ldots, x_{k-1}$ in array $X$. To find $x_{n}$ we will compute step by step the values $x_{k}, x_{k+1}, \ldots, x_{n}$, keeping in the previous $k$ values of the sequence in the first $k$ positions of $X$ (i.e. in the positions with indices $0,1, \ldots, k-1$ ).
$\operatorname{Recurrence}(A, X, k, n, f)$
for $j \leftarrow k$ to $n$ do $v \leftarrow A[0] \cdot X[0]$ for $i \leftarrow 1$ to $k-1$
do $v \leftarrow v+A[i] \cdot X[i]$
$v \leftarrow(f(j-k)-v) / A[k]$
if $j \neq n$
$\begin{array}{lr}7 & \text { then for } i \leftarrow 0 \text { to } k-2 \\ 8 & \text { do } X[i] \leftarrow X[i+1]\end{array}$
$9 \quad X[k-1] \leftarrow v$
10 return $v$

Lines $2-5$ compute the values $x_{j}(j=k, k+1, \ldots, n)$ (using the previous $k$ values), denoted by $v$ in the algorithm. In lines $7-9$, if $n$ is not yet reached, we copy the last $k$ values in the first $k$ positions of $X$. In line $10 x_{n}$ is obtained. It is easy to see that the computation time is $\Theta(k n)$, if we do not count the time to compute the value of the function.

## Exercises

5.3-1 How many additions, subtractions, multiplications and divisions are required using the algorithm Recurrence, while it computes $x_{1000}$ using the data given in Example 5.4?

## Problems

## 5-1. Existence of a solution of homogeneous equation using generating function

Prove that a linear homogeneous equation cannot be solved using generating functions (because $X(z)=0$ is obtained) if and only if $x_{n}=0$ for all $n$.

## 5-2. Complex roots in the case of Z-transform

What happens if the roots of the denominator are complex when applying the Z-transform method? The solution of the recurrence equation must be real. Does the method ensure this?

## Chapter notes

The recurrence equations are discussed in detail by Elaydi [1], Flajolet and Sedgewick [8], Greene and Knuth [3], Mickens [7].

Knuth [4] and Graham, Knuth and Patashnik [2] deal with generating functions. In the book of Vilenkin [9] there are a lot of simple and interesting problems about recurrences and generating functions.

In [6] Lovász also presents problems on generating function.
Counting the binary trees is from Knuth [4], counting the leaves in the set of all binary trees and counting the binary trees with $n$ vertices and $k$ leaves are from Z. Kása [5].

## Bibliography

[1] S. N. Elaydi. An Introduction to Difference Equations. Springer. Verlag, 1999 (2. edition). 228
[2] R. L. Graham. D. E. Knuth, O. Patashnik. Concrete Mathematics. Addison.Wesley, 1994 (2. edition). 228
[3] D. H. Greene, D. E. Knuth. Mathematics for the Analysis of Algorithms. Birkhäuser 1990 (3. edition). 228
[4] D. E. Knuth Fundamental Algorithms, The Art of Computer Programming 1. kötete. Addison Wesley, 1968 (3. updated edition). 228 229
[5] Z. Kása Combinatorică cu aplicaţii (Combinatorics with Applications). Presa Universitară Clujeană, 2003. 229
[6] L. Lovász Combinatorial Problems and Exercises. Akadémiai Kiadó, 1979. 229
[7] R. E. Mickens. Difference Equations. Theory and Applications. Van Nostrand Reinhold, 1990. 228
[8] R. Sedgewick P. Flajolet. An Introduction to the Analysis of Algorithms. Addison.Wesley, 1996. 228
[9] N. J. Vilenkin. Combinatorial Mathematics for Recreation. Mir 1972. 228

## Subject Index

## B

binary trees counting, 219
binomial formula generalisation of the, 217

## C

characteristic equation, 207

## F

Fibonacci number, 214
fundamental solution, 207

G
general solution, 206
generating function, 214
generating functions
counting binary trees, 219
operations, 215

## H

harmonic numbers, 216

## I, Í

initial condition, 206

L
Linear-homogeneous, 212
Linear-nonhomogeneous, $\underline{225}$

M
method of variation of constants, 213
$\mathbf{P}$
particular solution, 206

R
Recurrence, 228
recurrence equation, 206
linear, 207 212 218, 224
linear homogeneous, 207, |212
linear nonhomogeneous, $212,224,225$
solving with generating functions, 218
residue theorem, 226

T
Towers of Hanoi, 213, sy
$\mathbf{Z}$
Z-transform method, 224

## Name index

$\mathbf{E}, \mathbf{E}$
Elaydi, Saber N., 228, 230

F
Fibonacci, Leonardo Pisano (1170-1250), 206 208 $214 \mid 217$
Flajolet, Philippe, 228 230

G
Graham, Ronald Lewis, 228230
Greene, Daniel H., 22823

K
Kása, Zoltán, $229 \mid 230$
Knuth, Donald Ervin, 228, 230
$\mathbf{L}$
Lovász, László, 229230

## M

Mickens, Ronald Elbert, 22823

P
Patashnik, Oren, 228230

S
Sedgewick, Robert, 228230

V
Vilenkin, Naum Yakovlevich (1920-1992), 228, 230

## Contents

5. Recurrences (Zoltán Kása) ..... 206
5.1. Linear recurrence equations ..... 207
5.1.1. Linear homogeneous equations with constant coefficients ..... 207
5.1.2. Linear nonhomogeneous recurrence equations with constant coeffi- cients ..... 212
5.2. Generating functions and recurrence equations ..... 214
5.2.1. Definition and operations ..... 214
5.2.2. Solving recurrence equations with generating functions ..... 218
Linear nonhomogeneous recurrence equations with constant coeffi- cients. ..... 218
The number of binary trees ..... 219
The number of leaves of all binary trees of $n$ vertices ..... 221
The number of binary trees with $n$ vertices and $k$ leaves ..... 222
5.2.3. The Z-transform method ..... 224
5.3. Numerical solution ..... 227
Bibliography ..... 230
Subject Index ..... 231
Name index ..... 232

[^0]:    ${ }^{1}$ For decomposing the fraction into partial fractions we can use the Undetermined Coefficients Method.

