
30. Query rewriting in relational databases

In chapter �Relational database design� basic concepts of relational databases were introdu-
ced, such as relational schema, relation, instance. Databases were studied from the designer
point of view, the main question was how to avoid redundant data storage, or various ano-
malies arising during the use of the database.

In the present chapter the schema is considered to be given and focus is on fast and
efficient ways of answering user queries. First, basic (theoretical) query languages and their
connections are reviewed in Section 30.1.

In the second part of this chapter (Section 30.2) views are considered. Informally, a view
is nothing else, but result of a query. Use of views in query efficiency, providing physical
data independence and data integration is explained.

Finally, the third part of the present chapter (Section 30.3) introduces query rewriting.

30.1. Queries
Consider the database of cinemas in Budapest. Assume that the schema consists of three
relations:

CinePest = {Film,Theater,Show} . (30.1)
The schemata of individual relations are as follows:

Film = {Title,Director,Actor} ,
Theater = {Theater,Address,Phone} ,

Show = {Theater,Title,Time} .
(30.2)

Possible values of instances of each relation are shown on Figure 30.1.
Typical user queries could be:
30.1 Who is the director of �Control�?
30.2 List the names address of those theatres where Kurosawa �lms are played.
30.3 Give the names of directors who played part in some of their �lms.

These queries de�ne a mapping from the relations of database schema CinePest to some
other schema (in the present case to schemata of single relations). Formally, query and

30.1. Queries 1423

Film
Title Director Actor

Control Antal, Nimród Csányi, Sándor
Control Antal, Nimród Mucsi, Zoltán
Control Antal, Nimród Pindroch, Csaba
.
.
.

.

.

.
.
.
.

Rashomon Akira Kurosawa Toshiro Mifune
Rashomon Akira Kurosawa Machiko Kyo
Rashomon Akira Kurosawa Mori Masayuki

Theatre
Theater Address Phone

Bem II., Margit Blvd. 5/b. 316-8708
Corvin VIII., Corvin alley 1. 459-5050
Európa VII., Rákóczi st. 82. 322-5419
M�uvész VI., Teréz blvd. 30. 332-6726
.
.
.

.

.

.
.
.
.

Uránia VIII., Rákóczi st. 21. 486-3413
Vörösmarty VIII., Üll�oi st. 4. 317-4542

Show
Theater Title Time

Bem Rashomon 19:00
Bem Rashomon 21:30
Uránia Control 18:15
M�uvész Rashomon 16:30
M�uvész Control 17:00
.
.
.

.

.

.
.
.
.

Corvin Control 10:15

Figure 30.1. The database CinePest.

query mapping should be distinguished. The former is a syntactic concept, the latter is a
mapping from the set of instances over the input schema to the set of instances over the
output schema, that is determined by the query according to some semantic interpretation.
However, for both concepts the word �query� is used for the sake of convenience, which
one is meant will be clear from the context.

De�nition 30.1 Queries q1 and q2 over schema R are said to be equivalent, in notation
q1 ≡ q2, if they have the same output schema and for every instance I over schema R

1424 30. Query rewriting in relational databases

q1(I) = q2(I) holds.

In the remaining of this chapter the most important query languages are reviewed. The
expressive powers of query languages need to be compared.

De�nition 30.2 Let Q1 and Q2 be query languages (with appropriate semantics). Q2 is
dominated by Q1 (Q1 is weaker, than Q2), in notation Q1 v Q2, if for every query q1 of Q1
there exists a query q2 ∈ Q2, such that q1 ≡ q2. Q1 and Q2 are equivalent, if Q1 v Q2 and
Q1 w Q2.

Example 30.1 Query. Consider Question 30.2. As a �rst try the next solution is obtained:
if there exist in relations Film, Theater and Show tuples (xT , �Akira Kurosawa�, xA), (xTh, xAd, xP)
and (xTh, xT , xTi)
then put the tuple (Theater : xTh,Address : xA) into the output relation.

xT , xA, xTh, xAd, xP, xTi denote different variables that take their values from the domains of the cor-
responding attributes, respectively. Using the same variables implicitly marked where should stand
identical values in different tuples.

30.1.1. Conjunctive queries
Conjunctive queries are the simplest kind of queries, but they are the easiest to handle and
have the most good properties. Three equivalent forms will be studied, two of them based
on logic, the third one is of algebraic nature. The name comes from �rst order logic expres-
sions that contain only existential quantors (∃), furthermore consist of atomic expressions
connected with logical �and�, that is conjunction.

Datalog � rule based queries
The tuple (x1, x2, . . . , xm) is called free tuple if the xi's are variables or constants.
This is a generalisation of a tuple of a relational instance. For example, the tuple
(xT , �Akira Kurosawa�, xA) in Example 30.1. is a free tuple.

De�nition 30.3 Let R be a relational database schema. Rule based conjunctive query is
an expression of the following form

ans(u) ← R1(u1),R2(u2), . . . ,Rn(un) , (30.3)

where n ≥ 0, R1,R2, . . . ,Rn are relation names from R, ans is a relation name not in
R, u, u1, u2, . . . , un are free tuples. Every variable occurring in u must occur in one of
u1, u2, . . . , un, as well.

The rule based conjunctive query is also called a rule for the sake of simplicity. ans(u)
is the head of the rule, R1(u1),R2(u2), . . . ,Rn(un) is the body of the rule, Ri(ui) is called a
(relational) atom. It is assumed that each variable of the head also occurs in some atom of
the body.

A rule can be considered as some tool that tells how can we deduce newer and newer
facts, that is tuples, to include in the output relation. If the variables of the rule can be

30.1. Queries 1425

assigned such values that each atom Ri(ui) is true (that is the appropriate tuple is contained
in the relation Ri), then tuple u is added to the relation ans. Since all variables of the head
occur in some atoms of the body, one never has to consider in�nite domains, since the
variables can take values from the actual instance queried. Formally. let I be an instance
over relational schema R, furthermore let q be a the query given by rule (30.3). Let var(q)
denote the set of variables occurring in q, and let dom(I) denote the set of constants that
occur in I. The image of I under q is given by

q(I) = {ν(u)|ν : var(q) → dom(I) and ν(ui) ∈ Ri i = 1, 2, . . . , n}. (30.4)

An immediate way of calculating q(I) is to consider all possible valuations ν in some order.
There are more efficient algorithms, either by equivalent rewriting of the query, or by using
some indices.

An important difference between atoms of the body and the head is that relations
R1,R2, . . . ,Rn are considered given, (physically) stored, while relation ans is not, it is tho-
ught to be calculated by the help of the rule. This justi�es the names: Ri's are extensional
relations and ans is intensional relation.

Query q over schema R is monotone, if for instances I and J over R, I ⊆ J implies
q(I) ⊆ q(J). q is satis�able, if there exists an instance I, such that q(I) , ∅. The proof of
the next simple observation is left for the Reader (Exercise 30.1-1.).

Proposition 30.4 Rule based queries are monotone and satis�able.

Proposition 30.4 shows the limitations of rule based queries. For example, the query Which
theatres play only Kurosawa �lms? is obviously not monotone, hence cannot be expressed
by rules of form (30.3).

Tableau queries
If the difference between variables and constants is not considered, then the body of a rule
can be viewed as an instance over the schema. This leads to a tabular form of conjunctive
queries that is most similar to the visual queries (QBE: Query By Example) of database
management system Microsoft Access.

De�nition 30.5 A tableau over the schema R is a generalisation of an instance over R,
in the sense that variables may occur in the tuples besides constants. The pair (T, u) is a
tableau query if T is a tableau and u is a free tuple such that all variables of u occur in T,
as well. The free tuple u is the summary.

The summary row u of tableau query (T, u) shows which tuples form the result of the query.
The essence of the procedure is that the pattern given by tableau T is searched for in the
database, and if found then the tuple corresponding to is included in the output relation.
More precisely, the mapping ν : var(T) → dom(I) is an embedding of tableau (T, u) into
instance I, if ν(T) ⊆ I. The output relation of tableau query (T, u) consists of all tuples ν(u)
that ν is an embedding of tableau (T, u) into instance I.

1426 30. Query rewriting in relational databases

Example 30.2 Tableau query Let T be the following tableau.

Film Title Director Actor
xT �Akira Kurosawa� xA

Theater Theater Address Phone
xTh xAd xP

Show Theater Title Time
xTh xT xTi

The tableau query (T, 〈Theater : xTh,Address : xAd〉) answers question 30.2. of the introduction.

The syntax of tableau queries is similar to that of rule based queries. It will be useful
later that conditions for one query to contain another one can be easily formulated in the
language of tableau queries.

Relational algebra∗
A database consists of relations, and a relation is a set of tuples. The result of a query is
also a relation with a given attribute set. It is a natural idea that output of a query could be
expressed by algebraic and other operations on relations. The relational algebra∗ consists
of the following operations.1

Selection: It is of form either σA=c or σA=B, where A and B are attributes while c is a
constant. The operation can be applied to all such relations R that has attribute A (and
B), and its result is relation ans that has the same set of attributes as R has, and consists
of all tuples that satisfy the selection condition.
Projection: The form of the operation is πA1,A2,...,An , n ≥ 0, where Ai's are distinct attri-
butes. It can be applied to all such relations whose attribute set includes each Ai and its
result is the relation ans that has attribute set {A1, A2, . . . , An},

val = {t[A1, A2, . . . , An]|t ∈ R} ,
that is it consists of the restrictions of tuples in R to the attribute set {A1, A2, . . . , An}.
Natural join: This operation has been de�ned earlier in chapter �Relational database
design�. Its notation is Z, its input consists of two (or more) relations R1, R2, with
attribute sets V1, V2, respectively. The attribute set of the output relation is V1 ∪ V2.

R1 Z R2 = {t tuple over V1 ∪ V2|∃v ∈ R1,∃w ∈ R2, t[V1] = v és t[V2] = w} .

Renaming: Attribute renaming is nothing else, but an injective mapping from a �nite set
of attributes U into the set of all attributes. Attribute renaming f can be given by the list
of pairs (A, f (A)), where A , f (A), which is written usually in the form A1A2 . . . An →
B1B2 . . . Bn. The renaming operator δ f maps from inputs over U to outputs over f [U].
If R is a relation over U, then

δ f (R) = {v over f [U]|∃u ∈ R, v(f (A)) = u(A), ∀A ∈ U} .

1The relational algebra∗ is the monotone part of the (full) relational algebra introduced later.

30.1. Queries 1427

Relational algebra∗ queries are obtained by �nitely many applications of the operations
above from relational algebra base queries, which are

Input relation: R.
Single constant: {〈A : a〉}, where a is a constant, A is an attribute name.

Example 30.3 Relational algebra∗ query. The question 30.2. of the introduction can be expressed with
relational algebra operations as follows.

πTheater,Address ((σDirector=�Akira Kurosawa�(Film) Z Show) Z Theater) .

The mapping given by a relational algebra∗ query can be easily de�ned via induction on the
operation tree. It is easy to see (Exercise 30.1-2.) that non-satis�able queries can be given
using relational algebra∗. There exist no rule based or tableau query equivalent with such a
non-satis�able query. Nevertheless, the following is true.

Theorem 30.6 Rule based queries, tableau queries and satis�able relational algebra∗ are
equivalent query languages.

The proof of Theorem 30.6 consists of three main parts:
1. Rule based ≡ Tableau
2. Satis�able relational algebra∗ v Rule based
3. Rule based v Satis�able relational algebra∗

The �rst (easy) step is left to the Reader (Exercise 30.1-3.). For the second step, it has to
be seen �rst, that the language of rule based queries is closed under composition. More
precisely, let R = {R1,R2, . . . ,Rn} be a database, q be a query over R. If the output relation
of q is S 1, then in a subsequent query S 1 can be used in the same way as any extensional
relation of R. Thus relation S 2 can be de�ned, then with its help relation S 3 can be de�ned,
and so on. Relations S i are intensional relations. The conjunctive query program P is a list
of rules

S 1(u1) ← body1
S 2(u2) ← body2

...
S m(um) ← bodym,

(30.5)

where S i's are pairwise distinct and not contained in R. In rule body bodyi only relations
R1,R2, . . .Rn and S 1, S 2, . . . , S i−1 can occur. S m is considered to be the output relation of
P, its evaluation is is done by computing the results of the rules one-by-one in order. It is
not hard to see that with appropriate renaming the variables P can be substituted by a single
rule, as it is shown in the following example.

Example 30.4 Conjunctive query program. Let R = {Q,R}, and consider the following conjunctive
query program

S 1(x, z) ← Q(x, y),R(y, z,w)
S 2(x, y, z) ← S 1(x,w),R(w, y, v), S 1(v, z)

S 3(x, z) ← S 2(x, u, v),Q(v, z).
(30.6)

1428 30. Query rewriting in relational databases

S 2 can be written using Q and R only by the �rst two rules of (30.6)

S 2(x, y, z) ← Q(x, y1),R(y1,w,w1),R(w, y, v),Q(v, y2),R(y2, z,w2). (30.7)

It is apparent that some variables had to be renamed to avoid unwanted interaction of rule bodies.
Substituting expression (30.7) into the third rule of (30.6) in place of S 2, and appropriately renaming
the variables

S 3(x, z) ← Q(x, y1),R(y1,w,w1),R(w, u, v1),Q(v1, y2),R(y2, v,w2),Q(v, z). (30.8)

is obtained.

Thus it is enough to realise each single relational algebra∗ operation by an appropriate
rule.

P Z Q: Let −→x denote the list of variables (and constants) corresponding to the common
attributes of P and Q, let −→y denote the variables (and constants) corresponding to the
attributes occurring only in P, while −→z denotes those of corresponding to Q's own
attributes. Then rule ans(−→x ,−→y ,−→z) ← P(−→x ,−→y),Q(−→x ,−→z) gives exactly relation P Z Q.
σF(R): Assume that R = R(A1, A2, . . . , An) and the selection condition F is of form
either Ai = a or Ai = A j, where Ai, A j are attributes a is constant. Then

ans(x1, . . . , xi−1, a, xi+1, . . . , xn) ← R(x1, . . . , xi−1, a, xi+1, . . . , xn) ,

respectively,

ans(x1, . . . , xi−1, y, xi+1, . . . , x j−1, y, x j+1, . . . , xn) ←
R(x1, . . . , xi−1, y, xi+1, . . . , x j−1, y, x j+1, . . . , xn)

are the rules sought. The satis�ability of relational algebra∗ query is used here. Indeed,
during composition of operations we never obtain an expression where two distinct
constants should be equated.
πAi1 ,Ai2 ,...,Aim (R): If R = R(A1, A2, . . . , An), then

ans(xi1 , xi2 , . . . , xim) ← R(x1, x2, . . . , xn)

works.
A1A2 . . . An → B1B2 . . . Bn: The renaming operation of relational algebra∗ can be
achieved by renaming the appropriate variables, as it was shown in Example 30.4..

For the proof of the third step let us consider rule

ans(−→x) ← R1(−→x1),R2(−→x2), . . . ,Rn(−→xn) (30.9)

By renaming the attributes of relations Ri's, we may assume without loss of generality that
all attribute names are distinct. Then R = R1 Z R2 Z · · · Z Rn can be constructed that is
really a direct product, since the the attribute names are distinct. The constants and multiple
occurrences of variables of rule (30.9) can be simulated by appropriate selection operators.
The �nal result is obtained by projecting to the set of attributes corresponding to the variab-
les of relation ans.

30.1. Queries 1429

30.1.2. Extensions
Conjunctive queries are a class of query languages that has many good properties. However,
the set of expressible questions are rather narrow. Consider the following.

30.4. List those pairs where one member directed the other member in a �lm, and vice
versa, the other member also directed the �rst in a �lm.
30.5. Which theatres show �La Dolce Vita� or �Rashomon�?
30.6. Which are those �lms of Hitchcock that Hitchcock did not play a part in?
30.7. List those �lms whose every actor played in some �lm of Fellini.
30.8. Let us recall the game �Chain-of-Actors�. The �rst player names an actor/actress,
the next another one who played in some �lm together with the �rst named. This is
continued like that, always a new actor/actress has to be named who played together
with the previous one. The winner is that player who could continue the chain last time.
List those actors/actresses who could be reached by �Chain-of-Actors� starting with
�Marcello Mastroianni�.

Equality atoms
Question 30.4. can be easily answered if equalities are also allowed rule bodies, besides
relational atoms:

ans(y1, y2) ← Film(x1, y1, z1), Film(x2, y2, z2), y1 = z2, y2 = z1. (30.10)

Allowing equalities raises two problems. First, the result of the query could become in�nite.
For example, the rule based query

ans(x, y) ← R(x), y = z (30.11)

results in an in�nite number of tuples, since variables y and z are not bounded by relation
R, thus there can be an in�nite number of evaluations that satisfy the rule body. Hence, the
concept of domain restricted query is introduced. Rule based query q is domain restricted,
if all variables that occur in the rule body also occur in some relational atom.

The second problem is that equality atoms may cause the body of a rule become unsa-
tis�able, in contrast to Proposition 30.4. For example, query

ans(x) ← R(x), x = a, x = b (30.12)

is domain restricted, however if a and b are distinct constants, then the answer will be empty.
It is easy to check whether a rule based query with equality atoms is satis�able.

S(q)
1 Compute the transitive closure of equalities of the body of q.
2 if Two distinct constants should be equal by transitivity
3 then return �Not satis�able.�
4 else return �Satis�able.�

It is also true (Exercise 30.1-4.) that if a rule based query q that contains equality atoms
is satis�able, then there exists a another rule based query q′ without equalities that is equi-
valent with q.

1430 30. Query rewriting in relational databases

Disjunction � union
The question 30.5. cannot be expressed with conjunctive queries. However, if the union ope-
rator is added to relational algebra, then 30.5. can be expressed in that extended relational
algebra:

πTheater (σTitle=�La Dolce Vita�(Show) ∪ σTitle=� Rashomon�(Show)) . (30.13)
Rule based queries are also capable of expressing question 30.5. if it is allowed that the
same relation is in the head of many distinct rules:

ans(xM) ← Show(xTh, �La Dolce Vita�, xTi) ,
ans(xM) ← Show(xTh, �Rashomon�, xTi) .

(30.14)

Non-recursive datalog program is a generalisation of this.

De�nition 30.7 A non-recursive datalog program over schema R is a set of rules

S 1(u1) ← body1
S 2(u2) ← body2

...
S m(um) ← bodym ,

(30.15)

where no relation of R occurs in a head, the same relation may occur in the head of several
rules, furthermore there exists an ordering r1, r2, . . . , rm of the rules such that the relation
in the head of ri does not occur in the body of any rule r j for j ≤ i.

The semantics of the non-recursive datalog program (30.15) is similar to the conjunctive
query program (30.5). The rules are evaluated in the order r1, r2, . . . , rm of De�nition 30.7,
and if a relation occurs in more than one head then the union of the sets of tuples given by
those rules is taken.

The union of tableau queries (Ti, u) i = 1, 2, . . . , n is denoted by ({T1,T2, . . . ,Tn}, u).
It is evaluated by individually computing the result of each tableau query (Ti, u), then the
union of them is taken. The following holds.

Theorem 30.8 The language of non-recursive datalog programs with unique output rela-
tion and the relational algebra extended with the union operator are equivalent.

The proof of Theorem 30.8 is similar to that of Theorem 30.6 and it is left to the Reader
(Exercise 30.1-5.). Let us note that the expressive power of the union of tableau queries is
weaker. This is caused by the requirement having the same summary row for each tableau.
For example, the non-recursive datalog program query

ans(a) ←
ans(b) ← (30.16)

cannot be realised as union of tableau queries.

Negation
The query 30.6. is obviously not monotone. Indeed, suppose that in relation Film there
exist tuples about Hitchcock's �lm Psycho, for example (�Psycho�,�A. Hitchcock�,�A. Per-
kins�), (�Psycho�,�A. Hitchcock�,�J. Leigh�), . . . , however, the tuple (�Psycho�,�A. Hitch-
cock�,�A. Hitchcock�) is not included. Then the tuple (�Psycho�) occurs in the output of

30.1. Queries 1431

query 30.6. With some effort one can realize however, that Hitchcock appears in the �lm
Psycho, as �a man in cowboy hat�. If the tuple (�Psycho�,�A. Hitchcock�,�A. Hitchcock�)
is added to relation Film as a consequence, then the instance of schema CinePest gets larger,
but the output of query 30.6. becomes smaller.

It is not too hard to see that the query languages discussed so far are monotone, hence
query 30.6. cannot be formulated with non-recursive datalog program or with some of its
equivalents. Nevertheless, if the difference (−)operator is also added to relation algebra, then
it becomes capable of expressing queries of type 30.6. For example,

πTitle (σDirector=�A. Hitchcock�(Film)) − πTitle (σActor=�A. Hitchcock�(Film)) (30.17)

realises exactly query 30.6. Hence, the (full) relational algebra consists of operations
{σ, π,Z, δ,∪,−}. The importance of the relational algebra is shown by the fact, that Codd
calls a query language Q relationally complete, exactly if for all relational algebra query q
there exists q′ ∈ Q, such that q ≡ q′.

If negative literals, that is atoms of the form ¬R(u) are also allowed in rule bodies, then
the obtained non-recursive datalog with negation, in notation nr-datalog¬ is relationally
complete.

De�nition 30.9 A non-recursive datalog¬ (nr-datalog¬) rule is of form

q : S (u) ← L1, L2, . . . , Ln , (30.18)

where S is a relation, u is a free tuple, Li's are literals,, that is expression of form R(v) or
¬R(v), such that v is a free tuple for i = 1, 2, . . . , n. S does not occur in the body of the
rule. The rule is domain restricted, if each variable x that occurs in the rule also occurs
in a positive literal (expression of the form R(v)) of the body. Every nr-datalog¬ rule is
considered domain restricted, unless it is speci�ed otherwise.

The semantics of rule (30.18) is as follows. Let R be a relational schema that contains all
relations occurring in the body of q, furthermore, let I be an instance over R. The image of
I under q is

q(I) = {ν(u)| ν is an valuation of the variables and for i = 1, 2, . . . , n
ν(ui) ∈ I(Ri), if Li = Ri(ui) and
ν(ui) < I(Ri), if Li = ¬Ri(ui)}.

(30.19)

A nr-datalog¬ program over schema R is a collection of nr-datalog¬ rules

S 1(u1) ← body1
S 2(u2) ← body2

...
S m(um) ← bodym ,

(30.20)

where relations of schema R do not occur in heads of rules, the same relation may appear in
more than one rule head, furthermore there exists an ordering r1, r2, . . . , rm of the rules such
that the relation of the head of rule ri does not occur in the head of any rule r j if j ≤ i.

The computation of the result of nr-datalog¬ program (30.20) applied to instance I

1432 30. Query rewriting in relational databases

over schema R can be done in the same way as the evaluation of non-recursive datalog pro-
gram (30.15), with the difference that the individual nr-datalog¬ rules should be interpreted
according to (30.19).

Example 30.5 Nr-datalog¬ program. Let us assume that all �lms that are included in relation Film
have only one director. (It is not always true in real life!) The nr-datalog¬ rule

ans(x) ← Film(x, �A. Hitchcock�, z),¬Film(x, �A. Hitchcock�, �A. Hitchcock�) (30.21)

expresses query 30.6. Query 30.7. is realised by the nr-datalog¬ program
Fellini-actor(z) ← Film(x, �F. Fellini�, z)

Not-the-answer(x) ← Film(x, y, z),¬Fellini-actor(z)
Answer(x) ← Film(x, y, z),¬Not-the-answer(x) .

(30.22)

One has to be careful in writing nr-datalog¬ programs. If the �rst two rules of program (30.22) were
to be merged like in Example 30.4.

Bad-not-ans(x) ← Film(x, y, z),¬Film(x′, �F. Fellini�, z),Film(x′, �F. Fellini�, z′)
Answer(x) ← Film(x, y, z),¬Bad-not-ans(x), (30.23)

then (30.23) answers the following query (assuming that all �lms have unique director)
30.9. List all those �lms whose every actor played in each �lm of Fellini,

instead of query 30.7.

It is easy to see that every satis�able nr-datalog¬ program that contains equality atoms
can be replaced by one without equalities. Furthermore the following proposition is true, as
well.
Proposition 30.10 The satis�able (full) relational algebra and the nr-datalog¬ programs
with single output relation are equivalent query languages.

Recursion
Query 30.8. cannot be formulated using the query languages introduced so far. Some a
priori information would be needed about how long a chain-of-actors could be formed
starting with a given actor/actress. Let us assume that the maximum length of a chain-of-
actors starting from �Marcello Mastroianni� is 117. (It would be interesting to know the
real value!) Then, the following non-recursive datalog program gives the answer.

Film-partner(z1, z2) ← Film(x, y, z1),Film(x, y, z2), z1 < z2
2

Partial-answer1(z) ← Film-partner(z, �Marcello Mastroianni�)
Partial-answer1(z) ← Film-partner(�Marcello Mastroianni�, z)
Partial-answer2(z) ← Film-partner(z, y),Partial-answer1(y)
Partial-answer2(z) ← Film-partner(y, z),Partial-answer1(y)

...
...

Partial-answer117(z) ← Film-partner(z, y),Partial-answer116(y)
Partial-answer117(z) ← Film-partner(y, z),Partial-answer116(y)

Mastroianni-chain(z) ← Partial-answer1(z)
Mastroianni-chain(z) ← Partial-answer2(z)

...
...

Mastroianni-chain(z) ← Partial-answer117(z)

(30.24)

30.1. Queries 1433

It is much easier to express query 30.8. using recursion. In fact, the transitive closure of
the graph Film-partner needs to be calculated. For the sake of simplicity the de�nition of
Film-partner is changed a little (thus approximately doubling the storage requirement).

Film-partner(z1, z2) ← Film(x, y, z1),Film(x, y, z2)
Chain-partner(x, y) ← Film-partner(x, y)
Chain-partner(x, y) ← Film-partner(x, z),Chain-partner(z, y) .

(30.25)

The datalog program (30.25) is recursive, since the de�nition of relation Chain-partner uses
the relation itself. Let us suppose for a moment that this is meaningful, then query 30.8. is
answered by rule

Mastroianni-chain(x) ← Chain-partner(x, �Marcello Mastroianni�) (30.26)

De�nition 30.11 The expression
R1(u1) ← R2(u2),R3(u3), . . . ,Rn(un) (30.27)

is a datalog rule, if n ≥ 1, the Ri's are relation names, the ui's are free tuples of appropriate
length. Every variable of u1 has to occur in one of u2, . . . un, as well. The head of the rule
is R1(u1), the body of the rule is R2(u2),R3(u3), . . . ,Rn(un). A datalog program is a �nite
collection of rules of type (30.27). Let P be a datalog program. The relation R occurring in
P is extensional if it occurs in only rule bodies, and it is intensional if it occurs in the head
of some rule.
If ν is a valuation of the variables of rule (30.27), then R1(ν(u1)) ←
R2(ν(u2)),R3(ν(u3)), . . . ,Rn(ν(un)) is a realisation of rule (30.27). The extensional (data-
base) schema of P consists of the extensional relations of P, in notation edb(P). The inten-
sional schema of P, in notation idb(P) is de�ned similarly as consisting of the intensional
relations of P. Let sch(P) = edb(P)∪ idb(P). The semantics of datalog program P is a map-
ping from the set of instances over edb(P) to the set of instances over idb(P). This can be
de�ned proof theoretically, model theoretically or as a �xpoint of some operator. This latter
one is equivalent with the �rst two, so to save space only the �xpoint theoretical de�nition
is discussed.

There are no negative literals used in De�nition 30.11. The main reason of this is that
recursion and negation together may be meaningless, or contradictory. Nevertheless, some-
times negative atoms might be necessary. In those cases the semantics of the program will
be de�ned specially.

Fixpoint semantics
Let P be a datalog program, K be an instance over sch(P). Fact A, that is a tuple consisting
of constants is an immediate consequence ofK and P, if either A ∈ K(R) for some relation
R ∈ sch(P), or A ← A1, A2, . . . , An is a realisation of a rule in P and each Ai is in K . The
immediate consequence operator TP is a mapping from the set of instances over sch(P) to
itself. TP(K) consists of all immediate consequences of K and P.

2Arbitrary comparison atoms can be used, as well, similarly to equality atoms. Here z1 < z2 makes it sure that all
pairs occur at most once in the list.

1434 30. Query rewriting in relational databases

Proposition 30.12 The immediate consequence operator TP is monotone.

Proof. Let I and J be instances over sch(P), such that I ⊆ J . Let A be a fact ofTP(I). If
A ∈ I(R) for some relation R ∈ sch(P), then A ∈ J(R) is implied by I ⊆ J . on the other
hand, if A ← A1, A2, . . . , An is a realisation of a rule in P and each Ai is in I, then Ai ∈ J
also holds.

The de�nition of TP implies that K ⊆ TP(K). Using Proposition 30.12 it follows that

K ⊆ TP(K) ⊆ TP(TP(K)) ⊆ (30.28)

Theorem 30.13 For every instance I over schema sch(P) there exists a unique minimal
instance I ⊆ K that is a �xpoint of TP, i.e. K = TP(K).

Proof. Let T i
P(I) denote the consecutive application of operator TP i-times, and let

K =

∞⋃

i=0
T i

P(I) . (30.29)

By the monotonicity of TP and (30.29) we have

TP(K) =

∞⋃

i=1
T i

P(I) ⊆
∞⋃

i=0
T i

P(I) = K ⊆ TP(K) , (30.30)

that is K is a �xpoint. It is easy to see that every �xpoint that contains I, also contains
T i

P(I) for all i = 1, 2, . . . , that is it contains K , as well.

De�nition 30.14 The result of datalog program P on instance I over edb(P) is the unique
minimal �xpoint of TP containing I, in notation P(I).

It can be seen, see Exercise 30.1-6., that the chain in (30.28) is �nite, that is there exists an
n, such that TP(T n

P(I)) = T n
P(I). The naive evaluation of the result of the datalog program

is based on this observation.

N̈-(P,I)
1 K ← I
2 while TP(K) , K
3 do K ← TP(K)
4 return K

Procedure N̈- is not optimal, of course, since every fact that becomes included
in K is calculated again and again at every further execution of the while loop.

The idea of S-- is that it tries to use only recently calculated new facts
in the while loop, as much as it is possible, thus avoiding recomputation of known facts.
Consider datalog program P with edb(P) = R, and idb(P) = T. For a rule

S (u) ← R1(v1), . . . ,Rn(vn),T1(w1), . . . , Tm(wm) (30.31)

30.1. Queries 1435

of P where Rk ∈ R and T j ∈ T, the following rules are constructed for j = 1, 2, . . . ,m and
i ≥ 1

tempi+1
S (u) ← R1(v1), . . . ,Rn(vn),

T i
1(w1), . . . , T i

j−1(w j−1),∆i
T j

(w j),T i−1
j+1(w j+1), . . . , T i−1

m (wm) . (30.32)

Relation ∆i
T j

denotes the change of T j in iteration i. The union of rules corresponding to S
in layer i is denoted by Pi

S , that is rules of form (30.32) for tempi+1
S , j = 1, 2, . . . ,m. Assume

that the list of idb relations occurring in rules de�ning the idb relation S is T1,T2, . . . , T`.
Let

Pi
S (I,T i−1

1 , . . . , T i−1
` ,T i

1, . . . , T i
`,∆

i
T1
, . . . ,∆i

T`) (30.33)

denote the set of facts (tuples) obtained by applying rules (30.32) to input instance I and to
idb relations T i−1

j ,T i
j,∆

i
T j

. The input instance I is the actual value of the edb relations of P.

S--(P,I)
1 P′ ← those rules of P whose body does not contain idb relation
2 for S ∈ idb(P)
3 do S 0 ← ∅
4 ∆1

S ← P′(I)(S)
5 i ← 1
6 repeat
7 for S ∈ idb(P)
8 B T1, . . . ,T` are the idb relations of the rules de�ning S .
9 do S i ← S i−1 ∪ ∆i

S
10 ∆i+1

S ← Pi
S (I,T i−1

1 , . . . , T i−1
` ,T i

1, . . . , T i
`,∆

i
T1
, . . . ,∆i

T`) − S i

11 i ← i + 1
12 until ∆i

S = ∅ for all S ∈ idb(P)
13 for S ∈ idb(P)
14 do S ← S i

15 return S

Theorem 30.15 Procedure S-- correctly computes the result of program P
on instance I.

Proof. We will show by induction on i that after execution of the loop of lines 6�12 ith
times the value of S i is T i

P(I)(S), while ∆i+1
S is equal to T i+1

P (I)(S)− T i
P(I)(S) for arbitrary

S ∈ idb(P). T i
P(I)(S) is the result obtained for S starting from I and applying the immediate

consequence operator TP i-times.
For i = 0, line 4 calculates exactly TP(I)(S) for all S ∈ idb(P). In order to prove the in-

duction step, one only needs to see that Pi
S (I,T i−1

1 , . . . , T i−1
` ,T i

1, . . . , T i
`,∆

i
T1
, . . . ,∆i

T`)∪S i is
exactly equal to T i+1

P (I)(S), since in lines 9�10 procedure S-- constructs S i-t
and ∆i+1

S using that. The value of S i is T i
P(I)(S), by the induction hypothesis. Additional

new tuples are obtained only if that for some idb relation de�ning S such tuples are conside-
red that are constructed at the last application of TP, and these are in relations ∆i

T1
, . . . ,∆i

T` ,
also by the induction hypothesis.

1436 30. Query rewriting in relational databases

The halting condition of line 12 means exactly that all relations S ∈ idb(P) are unchan-
ged during the application of the immediate consequence operator TP, thus the algorithm
has found its minimal �xpoint. This latter one is exactly the result of datalog program P on
input instance I according to De�nition 30.14.

Procedure S-- eliminates a large amount of unnecessary calculations, ne-
vertheless it is not optimal on some datalog programs (Exercise gy:snaiv). However, analy-
sis of the datalog program and computation based on that can save most of the unnecessary
calculations.

De�nition 30.16 Let P be a datalog program. The precedence graph of P is the directed
graph GP de�ned as follows. Its vertex set consists of the relations of idb(P), and (R,R′)
is an arc for R,R′ ∈ idb(P) if there exists a rule in P whose head is R′ and whose body
contains R. P is recursive, if GP contains a directed cycle. Relations R and R′ are mutually
recursive if the belong to the same strongly connected component of GP.

Being mutually recursive is an equivalence relation on the set of relations idb(P). The main
idea of procedure I--- is that for a relation R ∈ idb(P) only those
relations have to be computed �simultaneously� with R that are in its equivalence class,
all other relations de�ning R can be calculated �in advance� and can be considered as edb
relations.

I---(P,I)
1 Determine the equivalence classes of idb(P) under mutual recursivity.
2 List the equivalence classes [R1], [R2], . . . , [Rn]

according to a topological order of GP.
3 B There exists no directed path from R j to Ri in GP for all i < j.
4 for i ← 1 to n
5 do Use S-- to compute relations of [Ri]

taking relations of [R j] as edb relations for j < i.

Lines 1�2 can be executed in time O(vGP + eGP) using depth �rst search, where vGP and
eGP denote the number of vertices and edges of graph GP, respectively. Proof of correctness
of the procedure is left to the Reader (Exercise 30.1-8.).

30.1.3. Complexity of query containment
In the present section we return to conjunctive queries. The costliest task in computing result
of a query is to generate the natural join of relations. In particular, if there are no indexes
available on the common attributes, hence only procedure F-- is applicable.

30.1. Queries 1437

F--(R1,R2)
1 S ← ∅
2 for all u ∈ R1
3 do for all v ∈ R2
4 do if u and v can be joined
5 then S ← S ∪ {u Z v}
6 return S

It is clear that the running time of F-- is O(|R1| × |R2|). Thus, it is
important that in what order is a query executed, since during computation natural joins of
relations of various sizes must be calculated. In case of tableau queries the Homomorphism
Theorem gives a possibility of a query rewriting that uses less joins than the original.

Let q1, q2 be queries over schema R. q2 contains q1, in notation q1 v q2, if for all
instances I over schema R q1(I) ⊆ q2(I) holds. q1 ≡ q2 according to De�nition 30.1
iff q1 v q2 and q1 w q2. A generalisation of valuations will be needed. Substitution is a
mapping from the set of variables to the union of sets of variables and sets of constants that
is extended to constants as identity. Extension of substitution to free tuples and tableaux can
be de�ned naturally.

De�nition 30.17 Let q = (T, u) and q′ = (T′, u′) be two tableau queries overs schema R.
Substitution θ is a homomorphism from q′ to q, if θ(T′) = T and θ(u′) = u.

Theorem 30.18 (Homomorphism Theorem). Let q = (T, u) and q′ = (T′, u′) be two tab-
leau queries overs schema R. q v q′ if and only if, there exists a homomorphism from q′ to
q.

Proof. Assume �rst, that θ is a homomorphism from q′ to q, and let I be an instance over
schema R. Let w ∈ q(I). This holds exactly if there exists a valuation ν that maps tableau T
into I and ν(u) = w. It is easy to see that θ ◦ ν maps tableau T′ into I and θ ◦ ν(u′) = w, that
is w ∈ q′(I). Hence, w ∈ q(I) =⇒ w ∈ q′(I), which in turn is equivalent with q v q′.

On the other hand, let us assume that q v q′. The idea of the proof is that both, q and q′
are applied to the �instance� T. The output of q is free tuple u, hence the output of q′ also
contains u, that is there exists a θ embedding of T′ into T that maps u′ to u. To formalise
this argument the instance IT isomorphic to T is constructed.

Let V be the set of variables occurring in T. For all x ∈ V let ax be constant that differs
from all constants appearing in T or T′, furthermore x , x′ =⇒ ax , ax′ . Let µ be the
valuation that maps x ∈ V to ax, furthermore let IT = µ(T). µ is a bijection from V to µ(V)
and there are no constants of T appearing in µ(V), hence µ−1 well de�ned on the constants
occurring in IT.

It is clear that µ(u) ∈ q(IT), thus using q v q′ µ(u) ∈ q′(IT) is obtained. That is, there
exists a valuation ν that embeds tableau T′ into IT, such that ν(u′) = µ(u). It is not hard to
see that ν ◦ µ−1 is a homomorphism from q′ to q.

Query optimisation by tableau minimisation
According to Theorem 30.6 tableau queries and satis�able relational algebra (without subt-
raction) are equivalent. The proof shows that the relational algebra expression equivalent
with a tableau query is of form π−→æ (σF(R1 Z R2 Z · · · Z Rk)), where k is the number of rows

1438 30. Query rewriting in relational databases

of the tableau. It implies that if the number of joins is to be minimised, then the number of
rows of an equivalent tableau must be minimised.

The tableau query (T, u) is minimal, if there exists no tableau query (S, v) that is equiva-
lent with (T, u) and |S| < |T|, that is S has fewer rows. It may be surprising, but it is true, that
a minimal tableau query equivalent with (T, u) can be obtained by simply dropping some
rows from T.

Theorem 30.19 Let q = (T, u) be a tableau query. There exists a subset T′ of T, such that
query q′ = (T′, u) is minimal and equivalent with q = (T, u).

Proof. Let (S, v) be a minimal query equivalent with q. According to the Homomorphism
Theorem there exist homomorphisms θ from q to (S, v), and λ from (S, v) to q. Let T′ =

θ◦λ(T). It is easy to check that (T′, u) ≡ q and |T′| ≤ |S|. But (S, v) is minimal, hence (T′, u)
is minimal, as well.

Example 30.6 Application of tableau minimisation Consider the relational algebra expression

q = πAB (σB=5(R)) Z πBC (πAB(R) Z πAC (σB=5(R))) (30.34)

over the schema R of attribute set {A, B,C}. The tableau query corresponding to q is the following
tableau T:

R A B C
x 5 z1
x1 5 z2
x1 5 z

u x 5 z

(30.35)

Such a homomorphism is sought that maps some rows of T to some other rows of T, thus sort of
�folding� the tableau. The �rst row cannot be eliminated, since the homomorphism is an identity on
free tuple u, thus x must be mapped to itself. The situation is similar with the third row, as the image
of z is itself under any homomorphism. However the second row can be eliminated by mapping x1 to
x and z2 to z, respectively. Thus, the minimal tableau equivalent with T consists of the �rst and third
rows of T. Transforming back to relational algebra expression,

πAB(σB=5(R)) Z πBC(σB=5(R)) (30.36)

is obtained. Query (30.36) contains one less join operator than query (30.34).

The next theorem states that the question of tableau containment and equivalence is
NP-complete, hence tableau minimisation is an NP-hard problem.

Theorem 30.20 For given tableau queries q and q′ the following decision problems are
NP-complete:

30.10. q v q′?
30.11. q ≡ q′?
30.12. Assume that q′ is obtained from q by removing some free tuples. Is it true then
that q ≡ q′?

Proof. The E  problem will be reduced to the various tableau problems. The input
of E  problem is a �nite set X = {x1, x2, . . . , xn}, and a collection of its subsets

30.1. Queries 1439

S = {S 1, S 2, . . . , S m}. It has to be determined whether there exists S′ v S, such that subsets
in S′ cover X exactly (that is, for all x ∈ X there exists exactly one S ∈ S′ such that x ∈ S).
E  is known to be an NP-complete problem.

Let E = (X,S) be an input of E . A construction is sketched that produces
a pair qE, q′E of tableau queries to E in polynomial time. This construction can be used to
prove the various NP-completeness results.

Let the schema R consist of the pairwise distinct attributes
A1, A2, . . . , An, B1, B2, . . . , Bm. qE = (TE, t) and q′E = (T′E, t) are tableau queries over schema
R such that the summary row of both of them is free tuple t = 〈A1 : a1, A2 : a2, . . . , An : an〉,
where a1, a2, . . . , an are pairwise distinct variables.

Let b1, b2, . . . , bm, c1, c2, . . . cm be another set of pairwise distinct variables. Tableau TE
consists of n rows, for each element of X corresponds one. ai stands in column of attribute
Ai in the row of xi, while b j stands in column of attribute B j for all such j that xi ∈ S j holds.
In other positions of tableau TE pairwise distinct new variables stand.

Similarly, T′E consists of m rows, one corresponding to each element of S. ai stands in
column of attribute Ai in the row of S j for all such i that xi ∈ S j, furthermore c j′ stands in
the column of attribute B j′ , for all j′ , j. In other positions of tableau T′E pairwise distinct
new variables stand.

The NP-completeness of problem 30.10. follows from that X has an exact cover using
sets of S if and only if q′E v qE holds. The proof, and the proof of the NP-completeness of
problems 30.11. and 30.12. are left to the Reader (Exercise 30.1-9.). Exercises

30.1-1 Prove Proposition 30.4, that is every rule based query q is monotone and satis�able.
Hint. For the proof of satis�ability let K be the set of constants occurring in query q, and let
a < K be another constant. For every relation schema Ri in rule (30.3) construct all tuples
(a1, a2, . . . , ar), where ai ∈ K ∪ {a}, and r is the arity of Ri. Let I be the instance obtained
so. Prove that q(I) is nonempty.
30.1-2 Give a relational schema R and a relational algebra query q over schema R, whose
result is empty to arbitrary instance over R.
30.1-3 Prove that the languages of rule based queries and tableau queries are equivalent.
30.1-4 Prove that every rule based query q with equality atoms is either equivalent with
the empty query q∅, or there exists a rule based query q′ without equality atoms such that
q ≡ q′. Give a polynomial time algorithm that determines for a rule based query q with
equality atoms whether q ≡ q∅ holds, and if not, then constructs a rule based query q′
without equality atoms, such that q ≡ q′.
30.1-5 Prove Theorem 30.8 by generalising the proof idea of Theorem 30.6.
30.1-6 Let P be a datalog program, I be an instance over edb(P), inC(P,I) be the (�nite)
set of constants occurring in I and P. Let B(P,I) be the following instance over sch(P):
1. For every relation R of edb(P) the fact R(u) is in B(P,I) iff it is in I, furthermore
2. for every relation R of idb(P) every R(u) fact constructed from constants of C(P,I) is

in B(P,I).
Prove that

I ⊆ TP(I) ⊆ T 2
P(K) ⊆ T 3

P(K) ⊆ · · · ⊆ B(P,I). (30.37)

30.1-7 Give an example of an input, that is a datalog program P and instance I over edb(P),

1440 30. Query rewriting in relational databases

3. Nézet2. Nézet1. Nézet

Logikai réteg

Fizikai réteg

Külsõ réteg

Figure 30.2. The three levels of database architecture.

such that the same tuple is produced by distinct runs of the loop of S--.
30.1-8 Prove that procedure I--- stops in �nite time for all inputs,
and gives correct result. Give an example of an input on which I---

calculates less number of rows multiple times than S--.
30.1-9
1. Prove that for tableau queries qE = (TE, t) and q′E = (T′E, t) of the proof of Theo-

rem 30.20 there exists a homomorphism from (TE, t) to (T′E, t) if and only if the E

 problem E = (X,S) has solution.
2. Prove that the decision problems 30.11. and 30.12. are NP-complete.

30.2. Views
A database system architecture has three main levels:
• physical layer;
• logical layer;
• outer (user) layer.
The goal of the separation of levels is to reach data independence and the convenience
of users. The three views on Figure 30.2 show possible user interfaces: multirelational,
universal relation and graphical interface.

The physical layer consists of the actually stored data �les and the dense and sparse
indices built over them.

30.2. Views 1441

The separation of the logical layer from the physical layer makes it possible for the user
to concentrate on the logical dependencies of the data, which approximates the image of the
reality to be modelled better. The logical layer consists of the database schema description
together with the various integrity constraints, dependencies. This the layer where the data-
base administrators work with the system. The connection between the physical layer and
the logical layer is maintained by the database engine.

The goal of the separation of the logical layer and the outer layer is that the endusers can
see the database according to their (narrow) needs and requirements. For example, a very
simple view of the outer layer of a bank database could be the automatic teller machine, or
a much more complex view could be the credit history of a client for loan approval.

30.2.1. View as a result of a query
The question is that how can the views of different layers be given. If a query given by
relational algebra expression is considered as a formula that will be applied to relational
instances, then the view is obtained. Datalog rules show the difference between views and
relations, well. The relations de�ned by rules are called intensional, because these are the
relations that do not have to exist on external storage devices, that is to exist extensionally,
in contrast to the extensional relations.

De�nition 30.21 The V expression given in some query language Q over schema R is
called a view.

Similarly to intensional relations, views can be used in de�nition of queries or other views,
as well.

Example 30.7 SQL view. Views in database manipulation language SQL can be given in the following
way. Suppose that the only interesting data for us from schema CinePest is where and when are
Kurosawa's �lm shown. The view KurosawaTimes is given by the SQL command

KT

1 create view KurosawaTimes as
2 select Theater, Time
3 from Film, Show
4 where Film.Title=Show.Title and Film.Director="Akira Kurosawa"

Written in relational algebra is as follows.

KurosawaTimes(Theater, Time) = πTheater, Time(Theater Z σDirector="Akira Kurosawa"(Film)) (30.38)

Finally, the same by datalog rule is:

KurosawaTimes(xTh, xTi) ← Theater(xTh, xT , xTi), Film(xT , "Akira Kurosawa", xA). (30.39)

Line 2 of KT marks the selection operator used, line 3 marks that which two relations are
to be joined, �nally the condition of line 4 shows that it is a natural join, not a direct product.

Having de�ned view V, it can be used in further queries or view de�nitions like any
other (extensional) relation.

1442 30. Query rewriting in relational databases

Advantages of using views

• Automatic data hiding: Such data that is not part of the view used, is not shown to
the user, thus the user cannot read or modify them without having proper access rights
to them. So by providing access to the database through views, a simple, but effective
security mechanism is created.

• Views provide simple �macro capabilities�. Using the view KurosawaTimes de�ned in
Example 30.7. it is easy to �nd those theatres where Kurosawa �lms are shown in the
morning:

KurosawaMorning(Theater) ← KurosawaTimes(Theater, xTi), xTi < 12 . (30.40)

Of course the user could include the de�nition of KurosawaTimes in the code directly,
however convenience considerations are �rst here, in close similarity with macros.

• Views make it possible that the same data could be seen in different ways by different
users at the same time.

• Views provide logical data independence. The essence of logical data independence is
that users and their programs are protected from the structural changes of the database
schema. It can be achieved by de�ning the relations of the schema before the structural
change as views in the new schema.

• Views make controlled data input possible. The with check option clause of command
create view is to do this in SQL.

Materialised view
Some view could be used in several different queries. It could be useful in these cases that
if the tuples of the relation(s) de�ned by the view need not be calculated again and again,
but the output of the query de�ning the view is stored, and only read in at further uses. Such
stored output is called a materialised view. Exercises

30.2-1 Consider the following schema:

FilmStar(Name,Address,Gender,BirthDate)
FilmMogul(Name,Address,Certi�cate#,Assets)
Studio(Name,Address,PresidentCert#) .

Relation FilmMogul contains data of the big people in �lm business (studio presidents,
producers, etc.). The attribute names speak for themselves, Certi�cate# is the number of the
certi�cate of the �lmmogul, PresidentCert#) is the certi�cate number of the president of
the studio. Give the de�nitions of the following views using datalog rules, relational algebra
expressions, furthermore SQL:
1. RichMogul: Lists the names, addresses,certi�cate numbers and assets of those �lmmo-

guls, whose asset value is over 1 million dollars.
2. StudioPresident: Lists the names, addresses and certi�cate numbers of those �lmmo-

guls, who are studio presidents, as well.

30.3. Query rewriting 1443

3. MogulStar: Lists the names, addresses,certi�cate numbers and assets of those people
who are �lmstars and �lmmoguls at the same time.

30.2-2 Give the de�nitions of the following views over schema CinePest using datalog
rules, relational algebra expressions, furthermore SQL:
1. Marilyn(Title): Lists the titles of Marilyn Monroe's �lms.
2. CorvinInfo(Title,Time,Phone): List the titles and show times of �lms shown in theatre

Corvin, together with the phone number of the theatre.

30.3. Query rewriting
Answering queries using views, in other words query rewriting using views has become a
problem attracting much attention and interest recently. The reason is its applicability in
a wide range of data manipulation problems: query optimisation, providing physical data
independence, data and information integration, furthermore planning data warehouses.

The problem is the following. Assume that query Q is given over schema R, together
with views V1,V2, . . . ,Vn. Can one answer Q using only the results of views V1,V2, . . . ,Vn?
Or, which is the largest set of tuples that can be determined knowing the views? If the views
and the relations of the base schema can be accessed both, what is the cheapest way to
compute the result of Q?

30.3.1. Motivation
Before query rewriting algorithms are studied in detail, some motivating examples of app-
lications are given. The following university database is used throughout this section.

University = {Professor,Course,Teach,Registered,Major,Affiliation,Supervisor} . (30.41)

The schemata of the individual relations are as follows:

Professor = {PName,Area}
Course = {C-Number,Title}

Teaches = {PName,C-Number,Semester,Evaluation}
Registered = {Student,C-Number,Semester}

Major = {Student,Department}
Affiliation = {PName,Department}

Advisor = {PName,Student} .

(30.42)

It is supposed that professors, students and departments are uniquely identi�ed by their
names. Tuples of relation Registered show that which student took which course in what
semester, while Major shows which department a student choose in majoring (for the sake
of convenience it is assumed that one department has one subject as possible major).

Query optimisation
If the computation necessary to answer a query was performed in advance and the results

1444 30. Query rewriting in relational databases

are stored in some materialised view, then it can be used to speed up the query answering.
Consider the query that looks for pairs (Student,Title), where the student registered for

the given Ph.D.-level course, the course is taught by a professor of the Database area (the
C-number of graduate courses is at least 400, and the Ph.D.-level courses are those with
C-number at least 500).

val(xS , xT) ← Teach(xP, xC , xS e, y1),Professor(xP, �database�),
Registered(xS , xC , xS e),Course(xC , xT), xC ≥ 500 . (30.43)

Suppose that the following materialised view is available that contains the registration data
of graduate courses.

Graduate(xS , xT , xC , xS e) ← Registered(xS , xC , xS e),Course(xX , xT), xC ≥ 400. (30.44)

View Graduate can be used to answer query (30.43).

val(xS , xT) ← Teaches(xP, xC , xS e, y1),Professor(xP, �database�),
(xS , xT , xC , xS e), xC ≥ 500 . (30.45)

It will be faster to compute (30.45) than to compute (30.43), because the natural join of re-
lations Registered and Course has already be done by view Graduate, furthermore it shelled
off the undergraduate courses (that make up for the bulk of registration data at most univer-
sities). It worth noting that view Graduate could be used eventhough syntactically did not
agree with any part of query (30.43).

On the other hand, it may happen that the the original query can be answered faster. If
relations Registered and Course have an index on attribute C-Number, but there exists no
index built for Graduate, then it could be faster to answer query (30.43) directly from the
database relations. Thus, the real challenge is not only that to decide about a materialised
view whether it could be used to answer some query logically, but a thorough cost analysis
must be done when is it worth using the existing views.

Physical data independence
One of the principles underlying modern database systems is the separation between the lo-
gical view of data and the physical view of data. With the exception of horizontal or vertical
partitioning of relations into multiple �les, relational database systems are still largely based
on a one-to-one correspondence between relations in the schema and the �les in which they
are stored. In object-oriented systems, maintaining the separation is necessary because the
logical schema contains signi�cant redundancy, and does not correspond to a good physi-
cal layout. Maintaining physical data independence becomes more crucial in applications
where the logical model is introduced as an intermediate level after the physical represen-
tation has already been determined. This is common in storage of XML data in relational
databases, and in data integration. In fact, the Stored System stores XML documents in a
relational database, and uses views to describe the mapping from XML into relations in the
database.

To maintain physical data independence, a widely accepted method is to use views over
the logical schema as mechanism for describing the physical storage of data. In particular,
Tsatalos, Solomon and Ioannidis use GMAPs (Generalised Multi-level Access Paths) to
describe data storage.

30.3. Query rewriting 1445

def.gmap G1 as b+-tree by
given Student.name
select Department
where Student major Department

def.gmap G2 as b+-tree by
given Student.name
select Course.c-number
where Student registered Course

def.gmap G3 as b+-tree by
given Course.c-number
select Department
where Student registered Course and Student major Department

Figure 30.3. GMAPs for the university domain.

A GMAP describes the physical organisation and the indexes of the storage structure.
The �rst clause of the GMAP (as) describes the actual data structure used to store a set of
tuples (e.g., a B+-tree, hash index, etc.) The remaining clauses describe the content of the
structure, much like a view de�nition. The given and select clauses describe the available
attributes, where the given clause describes the attributes on which the structure is indexed.
The de�nition of the view, given in the where clause uses in�x notation over the conceptual
model.

In the example shown in Figure 30.3, the GMAP G1 stores a set of pairs containing
students and the departments in which they major, and these pairs are indexed by a B+-
tree on attribute Student.name. The GMAP G2 stores an index from names of students to
the numbers of courses in which they are registered. The GMAP G3 stores an index from
course numbers to departments whose majors are enrolled in the course.

Given that the data is stored in structures described by the GMAPs, the question that
arises is how to use these structures to answer queries. Since the logical content of the
GMAPs are described by views, answering a query amounts to �nding a way of rewriting
the query using these views. If there are multiple ways of answering the query using the
views, we would like to �nd the cheapest one. Note that in contrast to the query optimisation
context, we must use the views to answer the given query, because all the data is stored in
the GMAPs.

Consider the following query, which asks for names of students registered for Ph.D.-
level courses and the departments in which these students are majoring.

ans(Student,Department)← Registered(Student,C-number,y),
Major(Student,Department),
C-number ≥ 500.

(30.46)

The query can be answered in two ways. First, since Student.name uniquely identi-
�es a student, we can take the join of G! and G2, and then apply selection operator
Course.c-number ≥ 500, �nally a projection eliminates the unnecessary attributes. The ot-

1446 30. Query rewriting in relational databases

her execution plan could be to join G3 with G2 and select Course.c-number ≥ 500. In fact,
this solution may even be more efficient because G3 has an index on the course number and
therefore the intermediate joins may be much smaller.

Data integration
A data integration system (also known as mediator system) provides a uniform query in-
terface to a multitude of autonomous heterogeneous data sources. Prime examples of data
integration applications include enterprise integration, querying multiple sources on the
World-Wide Web, and integration of data from distributed scienti�c experiments.

To provide a uniform interface, a data integration system exposes to the user a mediated
schema. A mediated schema is a set of virtual relations, in the sense that they are not sto-
red anywhere. The mediated schema is designed manually for a particular data integration
application. To be able to answer queries, the system must also contain a set of source desc-
riptions. A description of a data source speci�es the contents of the source, the attributes
that can be found in the source, and the (integrity) constraints on the content of the source.
A widely adopted approach for specifying source descriptions is to describe the contents of
a data source as a view over the mediated schema. This approach facilitates the addition of
new data sources and the speci�cation of constraints on the contents of sources.

In order to answer a query, a data integration system needs to translate a query formula-
ted on the mediated schema into one that refers directly to the schemata of the data sources.
Since the contents of the data sources are described as views, the translation problem amo-
unts �nding a way to answer a query using a set of views.

Consider as an example the case where the mediated schema exposed to the user is
schema University, except that the relations Teaches and Course have an additional attribute
identifying the university at which the course is being taught:

Course = {C-number,Title,Univ}
Teaches = {PName,C-number,Semester,Evaluation,Univ} (30.47)

Suppose we have the following two data sources. The �rst source provides a listing of all
the courses entitled "Database Systems" taught anywhere and their instructors. This source
can be described by the following view de�nition:

DBcourse(Title,PName,C-number,Univ)← Course(C-number,Title,Univ),
Teaches(PName,C-number,Semester,

Evaluation,Univ),
Title = �Database Systems� .

(30.48)

The second source lists Ph.D.-level courses being taught at The Ohio State University
(OSU), and is described by the following view de�nition:

OS UPhD(Title,PName,C-number,Univ)← Course(C-number,Title,Univ),
Teaches(PName,C-number,Semester,

Evaluation,Univ),
Univ = �OSU�,C-number ≥ 500.

(30.49)

If we were to ask the data integration system who teaches courses titled "Database Systems"
at OSU, it would be able to answer the query by applying a selection on the source DB-
courses:

ans(PName) ← DBcourse(Title,PName,C-number,Univ),Univ = "OSU" . (30.50)

30.3. Query rewriting 1447

On the other hand, suppose we ask for all the graduate-level courses (not just in databases)
being offered at OSU. Given that only these two sources are available, the data integration
system cannot �nd all tuples in the answer to the query. Instead, the system can attempt to
�nd the maximal set of tuples in the answer available from the sources. In particular, the
system can obtain graduate database courses at OSU from the DB-course source, and the
Ph.D.-level courses at OSU from the OSUPhD source. Hence, the following non-recursive
datalog program gives the maximal set of answers that can be obtained from the two sour-
ces:

ans(Title,C-number)← DBcourse(Title,PName,C-number,Univ),
Univ = "OSU",C-number ≥ 400

ans(Title,C-number)← OS UPhD(Title,PName,C-number,Univ) .
(30.51)

Note that courses that are not PH.D.-level courses or database courses will not be returned
as answers. Whereas in the contexts of query optimisation and maintaining physical data
independence the focus is on �nding a query expression that is equivalent with the original
query, here �nding a query expression that provides the maximal answers from the views
is attempted.

Semantic data caching
If the database is accessed via client-server architecture, the data cached at the client can
be semantically modelled as results of certain queries, rather than at the physical level as a
set of data pages or tuples. Hence, deciding which data needs to be shipped from the server
in order to answer a given query requires an analysis of which parts of the query can be
answered by the cached views.

30.3.2. Complexity problems of query rewriting
In this section the theoretical complexity of query rewriting is studied. Mostly conjunctive
queries are considered. Minimal, and complete rewriting will be distinguished. It will be
shown that if the query is conjunctive, furthermore the materialised views are also given
as results of conjunctive queries, then the rewriting problem is NP-complete, assuming that
neither the query nor the view de�nitions contain comparison atoms. Conjunctive queries
will be considered in rule-based form for the sake of convenience.

Assume that query Q is given over schema R.
De�nition 30.22 The conjunctive query Q′ is a rewriting of query Q using views V =

V1,V2, . . . ,Vm, if
• Q and Q′ are equivalent, and
• Q′ contains one or more literals fromV.
Q′ is said to be locally minimal if no literal can be removed from Q′ without violating the
equivalence. The rewriting is globally minimal, if there exists no rewriting using a smaller
number of literals. (The comparison atoms =,,,≤, < are not counted in the number of
literals.)

Example 30.8 Query rewriting. Consider the following query Q and view V .
Q : q(X,U) ← p(X,Y), p0(Y,Z), p1(X,W), p2(W,U)
V : v(A, B) ← p(A,C), p0(C, B), p1(A,D) (30.52)

1448 30. Query rewriting in relational databases

Q can be rewritten using V:

Q′ : q(X,U) ← v(X,Z), p1(X,W), p2(W,U) . (30.53)

View V replaces the �rst two literals of query Q. Note that the view certainly satis�es the third literal
of the query, as well. However, it cannot be removed from the rewriting, since variable D does not
occur in the head of V , thus if literal p1 were to be removed, too, then the natural join of p1 and p2
would not be enforced anymore.

Since in some of the applications the database relations are inaccessible, only the views
can be accessed, for example in case of data integration or data warehouses, the concept of
complete rewriting is introduced.

De�nition 30.23 A rewriting Q′ of query Q using views V = V1,V2, . . . ,Vm is called a
complete rewriting, if Q′ contains only literals ofV and comparison atoms.

Example 30.9 Complete rewriting. Assume that besides view V of Example 30.8. the following view
is given, as well:

V2 : v2(A, B) ← p1(A,C), p2(C, B), p0(D, E) (30.54)
A complete rewriting of query Q is:

Q′′ : q(X,U) ← v(X,Z), v2(X,U) . (30.55)

It is important to see that this rewriting cannot be obtained step-by-step, �rst using only V , then trying
to incorporate V2, (or just in the opposite order) since relation p0 of V2 does not occur in Q′. Thus,
in order to �nd the complete rewriting, use of the two view must be considered parallel, at the same
time.

There is a close connection between �nding a rewriting and the problem of query conta-
inment. This latter one was discussed for tableau queries in section 30.1.3. Homomorphism
between tableau queries can be de�ned for rule based queries, as well. The only difference
is that it is not required in this section that a homomorphism maps the head of one rule to
the head of the other. (The head of a rule corresponds to the summary row of a tableau.)
According to Theorem 30.20 it is NP-complete to decide whether conjunctive query Q1
contains another conjunctive query Q2. This remains true in the case when Q2 may contain
comparison atoms, as well. However, if both, Q1 and Q2 may contain comparison atoms,
then the existence of a homomorphism from Q1 to Q2 is only a sufficient but not necessary
condition for the containment of queries, which is a Π

p
2 -complete problem in that case. The

discussion of this latter complexity class is beyond the scope of this chapter, thus it is omit-
ted. The next proposition gives a necessary and sufficient condition whether there exists a
rewriting of query Q using view V .

Proposition 30.24 Let Q and V be conjunctive queries that may contain comparison
atoms. There exists a a rewriting of query Q using view V if and only if π∅(Q) ⊆ π∅(V),
that is the projection of V to the empty attribute set contains that of Q.

Proof. Observe that π∅(Q) ⊆ π∅(V) is equivalent with the following proposition: If the
output of V is empty for some instance, then the same holds for the output of Q, as well.

Assume �rst that there exists a rewriting, that is a rule equivalent with Q that contains

30.3. Query rewriting 1449

V in its body. If r is such an instance, that the result of V is empty on it, then every rule that
includes V in its body results in empty set over r, too.

In order to prove the other direction, assume that if the output of V is empty for some
instance, then the same holds for the output of Q, as well. Let

Q : q(�x) ← q1(�x), q2(�x), . . . , qm(�x)
V : v(�a) ← v1(�a), v2(�a), . . . , vn(�a) . (30.56)

Let �y be a list of variables disjoint from variables of �x. Then the query Q′ de�ned by

Q′ : q′(�x) ← q1(�x), q2(�x), . . . , qm(�x), v1(�y), v2(�y), . . . , vn(�y) (30.57)

satis�es Q ≡ Q′. It is clear that Q′ ⊆ Q. On the other hand, if there exists a valuation of the
variables of �y that satis�es the body of V over some instance r, then �xing it, for arbitrary
valuation of variables in �x a tuple is obtained in the output of Q, whenever a tuple is obtained
in the output of Q′ together with the previously �xed valuation of variables of �y.

As a corollary of Theorem 30.20 and Proposition 30.24 the following theorem is obtai-
ned.

Theorem 30.25 Let Q be a conjunctive query that may contain comparison atoms, and let
V be a set of views. If the views in V are given by conjunctive queries that do not contain
comparison atoms, then it is NP-complete to decide whether there exists a rewriting of Q
usingV.

The proof of Theorem 30.25 is left for the Reader (Exercise 30.3-1.).
The proof of Proposition 30.24 uses new variables. However, according to the next

lemma, this is not necessary. Another important observation is that it is enough to consider
a subset of database relations occurring in the original query when locally minimal rewriting
is sought, new database relations need not be introduced.

Lemma 30.26 Let Q be a conjunctive query that does not contain comparison atoms

Q : q(�X) ← p1(�U1), p2(�U2), . . . , pn(�Un) , (30.58)

furthermore letV be a set of views that do not contain comparison atoms either.
1. If Q′ is a locally minimal rewriting of Q usingV, then the set of database literals in Q′

is isomorphic to a subset of database literals occurring in Q.
2. If

q(�X) ← p1(�U1), p2(�U2), . . . , pn(�Un), v1(�Y1), v2(�Y2), . . . vk(�Yk) (30.59)
is a rewriting of Q using the views, then there exists a rewriting

q(�X) ← p1(�U1), p2(�U2), . . . , pn(�Un), v1(�Y ′1), v2(�Y ′2), . . . vk(�Y ′k) (30.60)

such that { �Y ′1 ∪ · · · ∪ �Y ′k} ⊆ { �U1 ∪ · · · ∪ �Un}, that is the rewriting does not introduce
new variables.

The details of the proof of Lemma 30.26 are left for the Reader (Exercise 30.3-2.). The next
lemma is of fundamental importance: A minimal rewriting of Q using V cannot increase
the number of literals.

1450 30. Query rewriting in relational databases

Lemma 30.27 Let Q be conjunctive query,V be set of views given by conjunctive queries,
both without comparison atoms. If the body of Q contains p literals and Q′ is a locally
minimal rewriting of Q usingV, then Q′ contains at most p literals.

Proof. Replacing the view literals of Q′ by their de�nitions query Q′′ is obtained. Let ϕ be
a homomorphism from the body of Q to Q′′. The existence of ϕ follows from Q ≡ Q′′ by
the Homomorphism Theorem (Theorem 30.18). Each of the literals l1, l2, . . . , lp of the body
of Q is mapped to at most one literal obtained from the expansion of view de�nitions. If Q′
contains more than p view literals, then the expansion of some view literals in the body of
Q′′ is disjoint from the image of ϕ. These view literals can be removed from the body of Q′
without changing the equivalence.
Based on Lemma 30.27 the following theorem can be stated about complexity of minimal
rewritings.

Theorem 30.28 Let Q be conjunctive query, V be set of views given by conjunctive que-
ries, both without comparison atoms. Let the body of Q contain p literals.
1. It is NP-complete to decide whether there exists a rewriting Q′ of Q using V that uses

at most k (≤ p) literals.
2. It is NP-complete to decide whether there exists a rewriting Q′ of Q using V that uses

at most k (≤ p) database literals.
3. It is NP-complete to decide whether there exists a complete rewriting of Q usingV.

Proof. The �rst statement is proved, the proof of the other two is similar. According to
Lemmas 30.27 and 30.26, only such rewritings need to be considered that have at most as
many literals as the query itself, contain a subset of the literals of the query and do not
introduce new variables. Such a rewriting and the homomorphisms proving the equivalence
can be tested in polynomial time, hence the problem is in NP. In order to prove that it is
NP-hard, Theorem 30.25 is used. For a given query Q and view V let V ′ be the view, whose
head is same as the head of V , but whose body is the conjunction of the bodies of Q and V .
It is easy to see that there exists a rewriting using V ′ with a single literal if and only if there
exists a rewriting (with no restriction) using V .

30.3.3. Practical algorithms
In this section only complete rewritings are studied. This does not mean real restriction,
since if database relations are also to be used, then views mirroring the database relations
one-to-one can be introduced. The concept of equivalent rewriting introduced in De�ni-
tion 30.22 is appropriate if the goal of the rewriting is query optimisation or providing
physical data independence. However, in the context of data integration on data warehou-
ses equivalent rewritings cannot be sought, since all necessary data may not be available.
Thus, the concept of maximally contained rewriting is introduced that depends on the query
language used, in contrast to equivalent rewritings.

De�nition 30.29 Let Q be a query, V be a set of views, L be a query language. Q′ is a
maximally contained rewriting of Q with respect to L, if
1. Q′ is a query of language L using only views fromV,

30.3. Query rewriting 1451

2. Q contains Q′,
3. if query Q1 ∈ L satis�es Q′ v Q1 v Q, then Q′ ≡ Q1.

Query optimisation using materialised views
Before discussing how can a traditional optimiser be modi�ed in order to use materiali-
sed views instead of database relations, it is necessary to survey when can view be used to
answer a given query. Essentially, view V can be used to answer query Q, if the intersec-
tion of the sets of database relations in the body of V and in the body of Q is non-empty,
furthermore some of the attributes are selected by V are also selected by Q. Besides this,
in case of equivalent rewriting, if V contains comparison atoms for such attributes that are
also occurring in Q, then the view must apply logically equivalent, or weaker condition,
than the query. If logically stronger condition is applied in the view, then it can be part of
a (maximally) contained rewriting. This can be shown best via an example. Consider the
query Q over schema University that list those professor, student, semester triplets, where
the advisor of the student is the professor and in the given semester the student registered
for some course taught by the professor.

Q : q(Pname,Student,Semester)← Registered(Student,C-number,Semester),
Advisor(Pname,Student),
Teaches(Pname, C-number,Semester, xE),
Semester ≥ �Fall2000� .

(30.61)

View V1 below can be used to answer Q, since it uses the same join condition for relations
Registered and Teaches as Q, as it is shown by variables of the same name. Furthermore,
V1 selects attributes Student, PName, Semester, that are necessary in order to properly join
with relation Advisor, and for select clause of the query. Finally, the predicate Semester >
�Fall1999� is weaker than the predicate Semester ≥ �Fall2000� of the query.

V1 : v1(Student,PName,Semester)← Teaches(PName,C-number,Semester, xE),
Registered(Student,C-number,Semester),
Semester > �Fall1999� .

(30.62)

The following four views illustrate how minor modi�cations to V1 change the usability in
answering the query.

V2 : v2(Student,Semester)← Teaches(xP,C-number,Semester, xE),
Registered(Student,C-number,Semester),
Semester > �Fall1999� .

(30.63)

V3 : v3(Student,PName,Semester)← Teaches(PName, C-number, xS , xE),
Registered(Student,C-number,Semester),
Semester > �Fall1999� .

(30.64)

V4 : v4(Student,PName,Semester)← Teaches(PName, C-number,Semester, xE),
Adviser(PName, xS t),Professor(PName, xA),
Registered(Student,C-number,Semester),
Semester > �Fall1999� .

(30.65)

1452 30. Query rewriting in relational databases

V5 : v5(Student,PName,Semester)← Teaches(PName, C-number,Semester, xE),
Registered(Student,C-number,Semester),
Semester > �Fall2001� .

(30.66)

View V2 is similar to V1, except that it does not select the attribute PName from relation
Teaches, which is needed for the join with the relation Adviser and for the selection of the
query. Hence, to use V2 in the rewriting, it has to be joined with relation Teaches again.
Still, if the join of relations Registered and Teaches is very selective, then employing V2
may actually result in a more efficient query execution plan.

In view V3 the join of relations Registered and Teaches is over only attribute C-number,
the equality of variables Semester and xS is not required. Since attribute xS is not selected
by V3, the join predicate cannot be applied in the rewriting, and therefore there is little gain
by using V3.

View V4 considers only the professors who have at least one area of research. Hence,
the view applies an additional condition that does not exists in the query, and cannot be used
in an equivalent rewriting unless union and negation are allowed in the rewriting language.
However, if there is an integrity constraint stating that every professor has at least one area
of research, then an optimiser should be able to realise that V4 is usable.

Finally, view V5 applies a stronger predicate than the query, and is therefore usable for
a contained rewriting, but not for an equivalent rewriting of the query.

System-R style optimisation
Before discussing the changes to traditional optimisation, �rst the principles underlying

the System-R style optimiser is recalled brie�y. System-R takes a bottom-up approach to
building query execution plans. In the �rst phase, it concentrates of plans of size 1, i.e.,
chooses the best access paths to every table mentioned in the query. In phase n, the algorithm
considers plans of size n, by combining plans obtained in the previous phases (sizes of k and
n − k). The algorithm terminates after constructing plans that cover all the relations in the
query. The efficiency of System-R stems from the fact that it partitions query execution plans
into equivalence classes, and only considers a single execution plan for every equivalence
class. Two plans are in the same equivalence class if they
• cover the same set of relations in the query (and therefore are also of the same size),

and
• produce the answer in the same interesting order.
In our context, the query optimiser builds query execution plans by accessing a set of views,
rather than a set of database relations. Hence, in addition to the meta-data that the query op-
timiser has about the materialised views (e.g., statistics, indexes) the optimiser is also given
as input the query expressions de�ning the views. Th additional issues that the optimiser
needs to consider in the presence of materialised views are as follows.

A. In the �rst iteration the algorithm needs to decide which views are relevant to the
query according to the conditions illustrated above. The corresponding step is trivial in
a traditional optimiser: a relation is relevant to the query if it is in the body of the query
expression.
B. Since the query execution plans involve joins over views, rather than joins over
database relations, plans can no longer be neatly partitioned into equivalence classes

30.3. Query rewriting 1453

which can be explored in increasing size. This observation implies several changes to
the traditional algorithm:

1. Termination testing: the algorithm needs to distinguish partial query execution
plans of the query from complete query execution plans. The enumeration of the
possible join orders terminates when there are no more unexplored partial plans.
In contrast, in the traditional setting the algorithm terminates after considering the
equivalence classes that include all the relations of the query.

2. Pruning of plans: a traditional optimiser compares between pairs of plans within
one equivalence class and saves only the cheapest one for each class. I our context,
the query optimiser needs to compare between any pair of plans generated thus far.
A plan p is pruned if there is another plan p′ that

(a) is cheaper than p, and
(b) has greater or equal contribution to the query than p. Informally, a plan p′

contributes more to the query than plan p if it covers more of the relations in
the query and selects more of the necessary attributes.

3. Combining partial plans: in the traditional setting, when two partial plans are com-
bined, the join predicates that involve both plans are explicit in the query, and the
enumeration algorithm need only consider the most efficient way to apply these pre-
dicates. However, in our case, it may not be obvious a priori which join predicate
will yield a correct rewriting of the query, since views are joined rather than data-
base relations directly. Hence, the enumeration algorithm needs to consider several
alternative join predicates. Fortunately, in practice, the number of join predicates
that need to be considered can be signi�cantly pruned using meta-data about the
schema. For example, there is no point in trying to join a string attribute with a
numeric one. Furthermore, in some cases knowledge of integrity constraints and
the structure of the query can be used to reduce the number of join predicates to be
considered. Finally, after considering all the possible join predicates, the optimiser
also needs to check whether the resulting plan is still a partial solution to the query.

The following table summarises the comparison of the traditional optimiser versus one that
exploits materialised views.

1454 30. Query rewriting in relational databases

Conventional optimiser Optimiser using views
Iteration 1 Iteration 1
a) Find all possible access paths. a1)Find all views that are relevant to the query.

a2) Distinguish between partial and complete soluti-
ons to the query.

b) Compare their cost and keep the least expensive. b) Compare all pairs of views. If one has neither grea-
ter contribution nor a lower cost than the other, prune
it.

c) If the query has one relation, stop. c) If there are no partial solutions, stop.
Iteration 2 Iteration 2
For each query join:
a) Consider joining the relevant access paths found in
the previous iteration using all possible join methods.

a1) Consider joining all partial solutions found in the
previous iteration using all possible equi-join methods
and trying all possible subsets of join predicates.
a2) Distinguish between partial and complete soluti-
ons to the query.

b) Compare the cost of the resulting join plans and
keep the least expensive.

b) If any newly generated solution is either not rele-
vant to the query, or dominated by another, prune it.

c) If the query has two relations, stop. c) If there are no partial solutions, stop.
Iteration 3 Iteration 3

.

.

.
.
.
.

Another method of equivalent rewriting is using transformation rules. The common theme
in the works of that area is that replacing some part of the query with a view is considered as
another transformation available to the optimiser. These methods are not discussed in detail
here.

The query optimisers discussed above were designed to handle cases where the number
of views is relatively small (i.e., comparable to the size of the database schema), and cases
where equivalent rewriting is required. In contrast, the context of data integration requires
consideration of large number of views, since each data source is being described by one or
more views. In addition, the view de�nitions may contain many complex predicates, whose
goal is to express �ne-grained distinction between the contents of different data sources.
Furthermore, in the context of data integration it is often assumed that the views are not
complete, i.e., they may only contain a subset of the tuples satisfying their de�nition. In
the foregoing, some algorithms for answering queries using views are described that were
developed speci�cally for the context of data integration.

The Bucket Algorithm
The goal of the Bucket Algorithm is to reformulate a user query that is posed on a mediated
(virtual) schema into a query that refers directly to the available sources. Both the query
and the sources are described by conjunctive queries that may include atoms of arithmetic
comparison predicates. The set of comparison atoms of query Q is denoted by C(Q).

Since the number of possible rewritings may be exponential in the size of the query, the
main idea underlying the bucket algorithm is that the number of query rewritings that need
to be considered can be drastically reduced if we �rst consider each subgoal � the relational
atoms of the query � is considered in isolation, and determine which views may be relevant
to each subgoal.

The algorithm proceeds as follows. First, a bucket is created for each subgoal in the

30.3. Query rewriting 1455

query Q that is not in C(Q), containing the views that are relevant to answering the parti-
cular subgoal. In the second step, all such conjunctive query rewritings are considered that
include one conjunct (view) from each bucket. For each rewriting V obtained it is checked
that whether it is semantically correct, that is V v Q holds, or whether it can be made se-
mantically correct by adding comparison atoms. Finally the remaining plans are minimised
by pruning redundant subgoals. Algorithm C- executes the �rst step described
above. Its input is a set of source descriptionsV and a conjunctive query Q in the form

Q : Q(�X) ← R1(�X1),R2(�X2), . . . ,Rm(�Xm),C(Q) . (30.67)

C-(Q,V)
1 for i ← 1 to m
2 do Bucket[i] ← ∅
3 for all V ∈ V
4 B V is of form V : V(�Y) ← S 1(�Y1), . . . S n(�Yn),C(V).
5 do for j ← 1 to n
6 if Ri = S j
7 then Let φ be a mapping de�ned on the variables of V as follows:
8 if y is the kth variable of �Y j and y ∈ �Y
9 then φ(y) = xk, where xk is the kth variable of �Xi

10 else φ(y) is a new variable that does not appear in Q or V .
11 Q′() ← R1(�X1),Rm(�Xm),C(Q), S 1(φ(�Y1)), . . . , S n(φ(�Yn)), φ(C(V))
12 if S≥(Q′)
13 then add φ(V) to Bucket[i].
14 return Bucket

Procedure S≥ is the extension of S described in section 30.1.2 to the
case when comparison atoms may occur besides equality atoms. The necessary change is
only that for all variable y occurring in comparison atoms it must be checked whether all
predicates involving y are satis�able simultaneously.

C- running time is polynomial function of the sizes of Q and V. Indeed,
the kernel of the nested loops of lines 3 and 5 runs n ∑

V∈V |V | times. The commands of lines
6�13 require constant time, except for line 12. The condition of of command if in line 12
can be checked in polynomial time.

In order to prove the correctness of procedure C-, one should check under
what condition is a view V put in Bucket[i]. In line 6 it is checked whether relation Ri appears
as a subgoal in V . If not, then obviously V cannot give usable information for subgoal Ri
of Q. If Ri is a subgoal of V , then in lines 9�10 a mapping is constructed that applied to
the variables allows the correspondence between subgoals S j and Ri, in accordance with
relations occurring in the heads of Q and V, respectively. Finally, in line 12 it is checked
whether the comparison atoms contradict with the correspondence constructed.

In the second step, having constructed the buckets using C-, the bucket al-
gorithm �nds a set of conjunctive query rewritings, each of them being a conjunctive query
that includes one conjunct from every bucket. Each of these conjunctive query rewritings
represents one way of obtaining part of the answer to Q from the views. The result of the
bucket algorithm is de�ned to be the union of the conjunctive query rewritings (since each

1456 30. Query rewriting in relational databases

of the rewritings may contribute different tuples). A given conjunctive query Q′ is a con-
junctive query rewriting, if
1. Q′ v Q, or
2. Q′ can be extended with comparison atoms, so that the previous property holds.

Example 30.10 Bucket algorithm. Consider the following query Q that lists those articles x that there
exists another article y of the same area such that x and y mutually cites each other. There are three
views (sources) available, V1,V2,V3.

Q(x) ← cite(x, y), cite(y, x), sameArea(x, y)
V1(a) ← cite(a, b), cite(b, a)
V2(c, d) ← sameArea(c, d)
V3(f , h) ← cite(f , g), cite(g, h), sameArea(f , g) .

(30.68)

In the �rst step, applying C-, the following buckets are constructed.

cite(x, y) cite(y, x) sameArea(x, y)
V1(x) V1(x) V2(x)
V3(x) V3(x) V3(x)

(30.69)

In the second step the algorithm constructs a conjunctive query Q′ from each element of the Cartesian
product of the buckets, and checks whether Q′ is contained in Q. If yes, it is given to the answer.

In our case, it tries to match V1 with the other views, however no correct answer is obtained so.
The reason is that b does not appear in the head of V1, hence the join condition of Q � variables x and y
occur in relation sameArea, as well � cannot be applied. Then rewritings containing V3 are considered,
recognising that equating the variables in the head of V3 a contained rewriting is obtained. Finally, the
algorithm �nds that combining V3 and V2 rewriting is obtained, as well. This latter is redundant, as it
is obtained by simple checking, that is V2 can be pruned. Thus, the result of the bucket algorithm for
query (30.68) is the following (actually equivalent) rewriting

Q′(x) ← V3(x, x) . (30.70)

The strength of the bucket algorithm is that it exploits the predicates in the query to
prune signi�cantly the number of candidate conjunctive rewritings that need to be conside-
red. Checking whether a view should belong to a bucket can be done in time polynomial
in the size of the query and view de�nition when the predicates involved are arithmetic
comparisons. Hence, if the data sources (i.e., the views) are indeed distinguished by having
different comparison predicates, then the resulting buckets will be relatively small.

The main disadvantage of the bucket algorithm is that the Cartesian product of the
buckets may still be large. Furthermore, the second step of the algorithm needs to perform a
query containment test for every candidate rewriting, which is NP-complete even when no
comparison predicates are involved.

Inverse-rules Algorithm
The Inverse-rules Algorithm is a procedure that can be applied more generally than the
Bucket Algorithm. It �nds a maximally contained rewriting for any query given by arbitrary
recursive datalog program that does not contain negation, in polynomial time.

The �rst question is that for given datalog program P and set of conjunctive queries

30.3. Query rewriting 1457

V, whether there exists a datalog program Pv equivalent with P, whose edb relations are
relations v1, v2, . . . , vn ofV. Unfortunately, this is algorithmically undecidable. Surprisingly,
the best, maximally contained rewriting can be constructed. In the case, when there exists a
datalog programPv equivalent withP, the algorithm �nds that, since a maximally contained
rewriting contains Pv, as well. This seemingly contradicts to the fact that the existence of
equivalent rewriting is algorithmically undecidable, however it is undecidable about the
result of the Inverse-rules Algorithm, whether it is really equivalent to the original query.

Example 30.11 Equivalent rewriting. Consider the following datalog program P, where edb relations
edge and black contain the edges and vertices coloured black of a graph G.

P : q(X, Y) ← edge(X,Z), edge(Z, Y), black(Z)
q(X, Y) ← edge(X,Z), black(Z), q(Z,Y) . (30.71)

It is easy to check that P lists the endpoints of such paths (more precisely walks) of graph G whose
inner points are all black. Assume that only the following two views can be accessed.

v1(X,Y) ← edge(X,Y), black(X)
v2(X,Y) ← edge(X,Y), black(Y) (30.72)

v1 stores edges whose tail is black, while v2 stores those, whose head is black. There exists an equiva-
lent rewriting Pv of datalog program P that uses only views v1 and v2 as edb relations:

Pv : q(X, Y) ← v2(X, Z), v1(Z,Y)
q(X, Y) ← v2(X, Z), q(Z,Y) (30.73)

However, if only v1, or v2 is accessible alone, then equivalent rewriting is not possible, since only such
paths are obtainable whose starting, or respectively, ending vertex is black.

In order to describe the Inverse-rules Algorithm, it is necessary to introduce the Horn
rule, which is a generalisation of datalog program, and datalog rule. If function symbols
are also allowed in the free tuple ui of rule (30.27) in De�nition 30.11, besides variables and
constants, then Horn rule is obtained. A logic program is a collection of Horn rules. In this
sense a logic program without function symbols is a datalog program. The concepts of edb
and idb can be de�ned for logic programs in the same way as for datalog programs.

The Inverse-rules Algorithm consists of two steps. First, a logic program is constructed
that may contain function symbols. However, these will not occur in recursive rules, thus
in the second step they can be eliminated and the logic program can be transformed into a
datalog program.

De�nition 30.30 The inverse v−1 of view v given by

v(X1, . . . , Xm) ← v1(�Y1), . . . , vn(�Yn) (30.74)

is the following collection of Horn rules. A rule corresponds to every subgoal vi(�Yi), whose
body is the literal v(X1, . . . , Xm). The head of the rule is vi(�Zi), where �Zi is obtained from
�Yi by preserving variables appearing in the head of rule (30.74), while function symbol
fY (X1, . . . , Xm) is written in place of every variable Y not appearing the head. Distinct func-
tion symbols correspond to distinct variables. The inverse of a set V of views is the set
{v−1 : v ∈ V}, where distinct function symbols occur in the inverses of distinct rules.

1458 30. Query rewriting in relational databases

The idea of the de�nition of inverses is that if a tuple (x1, . . . xm) appears in a view v, for
some constants x1, . . . xm, then there is a valuation of every variable y appearing in the head
that makes the body of the rule true. This �unknown� valuation is denoted by the function
symbol fY (X1, . . . , Xm).

Example 30.12 Inverse of views. LetV be the following collection of views.

v1(X,Y) ← edge(X, Z), edge(Z,W), edge(W,Y)
v2(X)) ← edge(X, Z) . (30.75)

ThenV−1 consists of the following rules.

edge(X, f1,Z(X, Y)) ← v1(X,Y)
edge(f1,Z(X,Y), f1,W (X, Y)) ← v1(X,Y)
edge(f1,W (X,Y), Y) ← v1(X,Y)
edge(X, f2,Z(X)) ← v2(X) .

(30.76)

Now, the maximally contained rewriting of datalog programP using viewsV can easily
be constructed for given P andV.

First, those rules are deleted from P that contain such edb relation that do not appear
in the de�nition any view from V. The rules of V−1 are added the datalog program P−
obtained so, thus forming logic program (P−,V−1). Note, that the remaining edb relations
of P are idb relations in logic program (P−,V−1), since they appear in the heads of the
rules ofV−1. The names of idb relations are arbitrary, so they can be renamed so that their
names do not coincide with the names of edb relations of P. However, this is not done in
the following example, for the sake of better understanding.

Example 30.13 Logic program. Consider the following datalog program that calculates the transitive
closure of relation edge.

P : q(X,Y) ← edge(X,Y)
q(X,Y) ← edge(X,Z), q(Z, Y) (30.77)

Assume that only the following materialised view is accessible, that stores the endpoints of paths of
length two. If only this view is usable, then the most that can be expected is listing the endpoints of
paths of even length. Since the unique edb relation of datalog program P is edge, that also appears in
the de�nition of v, the logic program (P−,V−1) is obtained by adding the rules ofV−1 to P.

(P−,V−1) : q(X, Y) ← edge(X,Y)
q(X, Y) ← edge(X,Z), q(Z,Y)
edge(X, f (X, Y)) ← v(X, Y)
edge(f (X, Y),Y) ← v(X, Y) .

(30.78)

Let the instance of the edb relation edge of datalog program P be the graph G shown on Figure 30.4.
Then (P−,V−1) introduces three new constants, f (a, c), f (b, d) és f (c, e). The idb relation edge of
logic programV−1 is graph G′ shown on Figure 30.5. P− computes the transitive closure of graph G′.
Note that those pairs in th transitive closure that do not contain any of the new constants are exactly
the endpoints of even paths of G.

The result of logic program (P−,V−1) in Example 30.13. can be calculated by proce-
dure N̈-, for example. However, it is not true for logic programs in general, that

30.3. Query rewriting 1459

a b c d e

Figure 30.4. The graph G.

f(a,c) f(b,d) f(c,e)

a b c ed

Figure 30.5. The graph G′.

the algorithm terminates. Indeed, consider the logic program

q(X) ← p(X)
q(f (X)) ← q(X) . (30.79)

If the edb relation p contains the constant a, then the output of the program is the in�nite
sequence a, f (a), f (f (a)), f (f (f (a))), In contrary to this, the output of the logic program
(P−,V−1) given by the Inverse-rules Algorithm is guaranteed to be �nite, thus the compu-
tation terminates in �nite time.

Theorem 30.31 For arbitrary datalog program P and set of conjunctive views V, and
for �nite instances of the views, there exist a unique minimal �xpoint of the logic program
(P−,V−1), furthermore procedures N̈- and S-- give this minimal
�xpoint as output.

The essence of the proof of Theorem 30.31 is that function symbols are only introduced by
inverse rules, that are in turn not recursive, thus terms containing nested functions symbols
are not produced. The details of the proof are left for the Reader (Exercise 30.3-3.).

Even if started from the edb relations of a database, the output of a logic program may
contain tuples that have function symbols. Thus, a �lter is introduced that eliminates the
unnecessary tuples. Let database D be the instance of the edbrelations of datalog program
P. P(D)↓ denotes the set of those tuples from P(D) that do not contain function symbols.
Let P↓ denote that program, which computes P(D)↓ for a given instance D. The proof of
the following theorem, exceeds the limitations of the present chapter.

Theorem 30.32 For arbitrary datalog program P and set of conjunctive views V, the
logic program (P−,V−1)↓ is a maximally contained rewriting of P using V. Furthermore,
(P−,V−1) can be constructed in polynomial time of the sizes of P andV.

The meaning of Theorem 30.32 is that the simple procedure of adding the inverses of view
de�nitions to a datalog program results in a logic program that uses the views as much as
possible. It is easy to see that (P−,V−1) can be constructed in polynomial time of the sizes

1460 30. Query rewriting in relational databases

of P andV, since for every subgoal vi ∈ V a unique inverse rule must be constructed.
In order to completely solve the rewriting problem however, a datalog program needs

to be produced that is equivalent with the logic program (P−,V−1) ↓. The key to this is
the observation that (P−,V−1)↓ contains only �nitely many function symbols, furthermore
during a bottom-up evaluation like N̈- and its versions, nested function symbols
are not produced. With proper book keeping the appearance of function symbols can be kept
track, without actually producing those tuples that contain them.

The transformation is done bottom-up like in procedure N̈-. The function
symbol f (X1, . . . , Xk) appearing in the idb relation ofV−1 is replaced by the list of variables
X1, . . . , Xk. At same time the name of the idb relation needs to be marked, to remember
that the list X1, . . . , Xk belongs to function symbol f (X1, . . . , Xk). Thus, new �temporary�
relation names are introduced. Consider the the rule

edge(X, f (X,Y)) ← v(X,Y) (30.80)

of the logic program (30.78) in Example 30.13.. It is replaced by rule

edge〈1, f (2,3)〉(X, X,Y) ← v(X,Y) (30.81)

Notation 〈1, f (2, 3)〉 means that the �rst argument of edge〈1, f (2,3)〉 is the same as the �rst
argument of edge, while the second and third arguments of edge〈1, f (2,3)〉 together with func-
tion symbol f give the second argument of edge. If a function symbol would become an
argument of an idb relation of P− during the bottom-up evaluation of (P−,V−1), then a new
rule is added to the program with appropriately marked relation names.

Example 30.14 Transformation of logic program into datalog program. The logic program
Example 30.13. is transformed to the following datalog program by the procedure sketched above.
The different phases of the bottom-up execution of N̈- are separated by lines.

edge〈1, f (2,3)〉(X, X,Y) ← v(X, Y)
edge〈 f (1,2),3〉(X, Y, Y) ← v(X, Y)
q〈1, f (2,3)〉(X, Y1,Y2) ← edge〈1, f (2,3)〉(X,Y1, Y2)
q〈 f (1,2),3〉(X1, X2,Y) ← edge〈 f (1,2),3〉(X1, X2, Y)
q(X, Y) ← edge〈1, f (2,3)〉(X,Z1, Z2), q〈 f (1,2),3〉(Z1, Z2,Y)
q〈 f (1,2), f (3,4)〉(X1, X2,Y1, Y2) ← edge〈 f (1,2),3〉(X1, X2, Z), q〈1, f (2,3)〉(Z, Y1,Y2)
q〈 f (1,2),3〉(X1, X2,Y) ← edge〈 f (1,2),3〉(X1, X2, Z), q(Z,Y)
q〈1, f (2,3)〉(X, Y1,Y2) ← edge〈1, f (2,3)〉(X,Z1, Z2), q〈 f (1,2), f (3,4)〉(Z1, Z2,Y1, Y2)

(30.82)

The datalog program obtained shows clearly that which arguments could involve func-
tion symbols in the original logic program. However, some rows containing function sym-
bols never give tuples not containing function symbols during the evaluation of the output
of the program.

Relation p is called signi�cant, if in the precedence graph of De�nition 30.163 there
exists oriented path from p to the output relation of q. If p is not signi�cant, then the tuples
of p are not needed to compute the output of the program, thus p can be eliminated from
the program.

3Here the de�nition of precedence graph needs to be extended for the edb relations of the datalog program, as well.

30.3. Query rewriting 1461

Example 30.15 Eliminating non-signi�cant relations. There exists no directed path in the precedence
graph of the datalog program obtained in Example 30.14., from relations q〈1, f (2,3)〉 and q〈 f (1,2), f (3,4)〉 to
the output relation q of the program, thus they are not signi�cant, i.e., they can be eliminated together
with the rules that involve them. The following datalog program is obtained:

edge〈1, f (2,3)〉(X, X, Y) ← v(X, Y)
edge〈 f (1,2),3〉(X, Y, Y) ← v(X, Y)
q〈 f (1,2),3〉(X1, X2,Y) ← edge〈 f (1,2),3〉(X1, X2, Y)
q〈 f (1,2),3〉(X1, X2,Y) ← edge〈 f (1,2),3〉(X1, X2, Z), q(Z,Y)
q(X, Y) ← edge〈1, f (2,3)〉(X,Z1, Z2), q〈 f (1,2),3〉(Z1, Z2,Y) .

(30.83)

One more simpli�cation step can be performed, which does not decrease the number
of necessary derivations during computation of the output, however avoids redundant data
copying. If p is such a relation in the datalog program that is de�ned by a single rule, which
in turn contains a single relation in its body, then p can be removed from the program and
replaced by the relation of the body of the rule de�ning p, having equated the variables
accordingly.

Example 30.16 Avoiding unnecessary data copying. In Example 30.14. the relations edge〈1, f (2,3)〉 and
edge〈 f (1,2),3〉 are de�ned by a single rule, respectively, furthermore these two rules both have a single
relation in their bodies. Hence, program (30.83) can be simpli�ed further.

q〈 f (1,2),3〉(X, Y,Y) ← v(X, Y)
q〈 f (1,2),3〉(X, Z,Y) ← v(X, Z), q(Z,Y)
q(X,Y) ← v(X, Z), q〈 f (1,2),3〉(X,Z, Y) .

(30.84)

The datalog program obtained in the two simpli�cation steps above is denoted by
(P−,V−1)datalog. It is clear that there exists a one-to-one correspondence between the
bottom-up evaluations of (P−,V−1) and (P−,V−1)datalog. Since the function symbols in
(P−,V−1)datalog are kept track, it is sure that the output instance obtained is in fact the subset
of tuples of the output of (P−,V−1) that do not contain function symbols.

Theorem 30.33 For arbitrary datalog program P that does not contain negations, and
set of conjunctive views V, the logic program (P−,V−1)↓ is equivalent with the datalog
program (P−,V−1)datalog.

MiniCon
The main disadvantage of the Bucket Algorithm is that it considers each of the subgoals in
isolation, therefore does not observe the most of the interactions between the subgoals of
the views. Thus, the buckets may contain many unusable views, and the second phase of the
algorithm may become very expensive.

The advantage of the Inverse-rules Algorithm is its conceptual simplicity and modula-
rity. The inverses of the views must be computed only once, then they can be applied to
arbitrary queries given by datalog programs. On the other hand, much of the computational
advantage of exploiting the materialised views can be lost. Using the resulting rewriting
produced by the algorithm for actually evaluating queries from the views has signi�cant
drawback, since it insists on recomputing the extensions of the database relations.

The MC algorithm addresses the limitations of the previous two algorithms. The

1462 30. Query rewriting in relational databases

key idea underlying the algorithm is a change of perspective: instead of building rewritings
for each of the query subgoals, it is considered how each of the variables in the query can
interact with the available views. The result is that the second phase of MC needs to
consider drastically fewer combinations of views. In the following we return to conjunctive
queries, and for the sake of easier understanding only such views are considered that do not
contain constants.

The MC algorithm starts out like the Bucket Algorithm, considering which views
contain subgoals that correspond to subgoals in the query. However, once the algorithm
�nds a partial variable mapping from a subgoal g in the query to a subgoal g1 in a view
V , it changes perspective and looks at the variables in the query. The algorithm considers
the join predicates in the query � which are speci�ed by multiple occurrences of the same
variable � and �nds the minimal additional set of subgoals that must be mapped to subgoals
in V , given that g will be mapped to g1. This set of subgoals and mapping information
is called a MiniCon Description (MCD). In the second phase the MCDs are combined to
produce query rewritings. The construction of the MCDs makes the most expensive part of
the Bucket Algorithm obsolete, that is the checking of containment between the rewritings
and the query, because the generating rule of MCDs makes it sure that their join gives correct
result.

For a given mapping τ : Var(Q) −→ Var(V) subgoal g1 of view V is said to cover
a subgoal g of query Q, if τ(g) = g1. Var(Q), and respectively Var(V) denotes the set of
variables of the query, respectively of that of the view. In order to prove that a rewriting gives
only tuples that belong to the output of the query, a homomorphism must be exhibited from
the query onto the rewriting. An MCD can be considered as a part of such a homomorphism,
hence, these parts will be put together easily.

The rewriting of query Q is a union of conjunctive queries using the views. Some of the
variables may be equated in the heads of some of the views as in the equivalent rewriting
(30.70) of Example 30.10.. Thus, it is useful to introduce the concept of head homomorp-
hism. The mapping h : Var(V) −→ Var(V) is a head homomorphism, if it is an identity on
variables that do not occur in the head of V , but it can equate variables of the head. For every
variable x of the head of V , h(x) also appear in the head of V , furthermore h(x) = h(h(x)).
Now, the exact de�nition of MCD can be given.

De�nition 30.34 The quadruple C = (hC ,V(�Y)C , ϕC ,GC) is a MiniCon Description
(MCD) for query Q over view V, where
• hC is a head homomorphism over V,
• V(�Y)C is obtained from V by applying hC , that is �Y = hC(�A), where �A is the set of

variables appearing in the head of V,
• ϕC is a partial mapping from Var(Q) to hC(Var(V)),
• GC is a set of subgoals of Q that are covered by some subgoal of HC(V) using the

mapping ϕC (note: not all such subgoals are necessarily included in GC).

The procedure constructing MCDs is based on the following proposition.

Proposition 30.35 Let C be a MiniCon Description over view V for query Q. C can be
used for a non-redundant rewriting of Q if the following conditions hold

30.3. Query rewriting 1463

C1. for every variable x that is in the head of Q and is in the domain of ϕC , as well,
ϕC(x) appears in the head of hC(V), furthermore
C2. if ϕC(y) does not appear in the head of hC(V), then for all such subgoals of Q that
contain y holds that

1. every variable of g appears in the domain of ϕC and
2. ϕC(g) ∈ hC(V).

Clause C1 is the same as in the Bucket Algorithm. Clause C2 means that if a variable x is
part of a join predicate which is not enforced by the view, then x must be in the head of the
view so the join predicate can be applied by another subgoal in the rewriting. The procedure
F-MCD gives the usable MiniCon Descriptions for a conjunctive query Q and set of
conjunctive viewsV.

F-MCD(Q,V)
1 C ← ∅
2 for each subgoal g of Q
3 do for V ∈ V
4 do for every subgoal v ∈ V
5 do Let h be the least restrictive head homomorphism on V ,

such that there exists a mapping ϕ with ϕ(g) = h(v).
6 if ϕ and h exist
7 then Add to C any new MCD C, that can be constructed where:
8 (a) ϕC (respectively, hC) is an extension of ϕ (respectively, h),
9 (b) GC is the minimal subset of subgoals of Q such that

GC , ϕC and hC satisfy Proposition 30.35, and
10 (c) It is not possible to extend ϕ and h to ϕ′C and h′C such that

(b) is satis�ed, and G′C as de�ned in (b), is a subset of GC .
11 return C

Consider again query (30.68) and the views of Example 30.10.. Procedure F-MCD

considers subgoal cite(x, y) of the query �rst. It does not create an MCD for view V1, because
clause C2 of Proposition 30.35 would be violated. Indeed, the condition would require that
subgoal sameArea(x, y) be also covered by V1 using the mapping ϕ(x) = a, ϕ(y) = b, since
is not in the head of V1.4 For the same reason, no MCD will be created for V1 even when the
other subgoals of the query are considered. In a sense, the MiniCon Algorithm shifts some
of the work done by the combination step of the Bucket Algorithm to the phase of creating
the MCDs by using F-MCD. The following table shows the output of procedure F-
MCD.

V(�Y) h ϕ G
V2(c, d) c→ c, d → d x→ c, y→ d 3
V3(f , f) f → f , h→ f x→ f , y→ f 1, 2, 3

(30.85)

Procedure F-MCD includes in GC only the minimal set of subgoals that are necessary
in order to satisfy Proposition 30.35. This makes it possible that in the second phase of

4The case of ϕ(x) = b, ϕ(y) = a is similar.

1464 30. Query rewriting in relational databases

the MiniCon Algorithm needs only to consider combinations of MCDs that cover pairwise
disjoint subsets of subgoals of the query.
Proposition 30.36 Given a query Q, a set of views V, and the set of MCDs C for Q over
the viewsV, the only combinations of MCDs that can result in non-redundant rewritings of
Q are of the form C1, . . .Cl, where

C3. GC1 ∪ · · · ∪GCl contains all the subgoals of Q, and
C4. for every i , j GCi ∩GC j = ∅.

The fact that only such sets of MCDs need to be considered that provide partitions of the
subgoals in the query reduces the search space of the algorithm drastically. In order to for-
mulate procedure C-MCD, another notation needs to be introduced. The ϕC mapping
of MCD C may map a set of variables of Q onto the same variable of hC(V). One arbitra-
rily chosen representative of this set is chosen, with the only restriction that if there exists
variables in this set from the head of Q, then one of those is the chosen one. Let ECϕC (x)
denote the representative variable of the set containing x. The MiniCon Description C is
considered extended with ECϕC (x) in he following as a quintet (hC ,V(�Y), ϕC ,GC , ECϕC). If
the MCDs C1, . . . ,Ck are to be combined, and for some i , j ECϕCi

(x) = ECϕCi
(y) and

ECϕC j
(y) = ECϕC j

(z) holds, then in the conjunctive rewriting obtained by the join x, y and
z will be mapped to the same variable. Let S C denote the equivalence relation determined
on the variables of Q by two variables being equivalent if they are mapped onto the same
variable by ϕC , that is, xS Cy ⇐⇒ ECϕC (x) = ECϕC (y). Let C be the set of MCDs obtained
as the output of F-MCD.

C-MCD(C)
1 Answer← ∅
2 for {C1, . . . ,Cn} ⊆ C such that GC1 , . . . ,GCn is a partition of the subgoals of Q
3 do De�ne a mapping Ψi on �Yi as follows:
4 if there exists a variable x in Q such that ϕi(x) = y
5 then Ψi(y) = x
6 else Ψi(y) is a fresh copy of y
7 Let S be the transitive closure of S C1 ∪ · · · ∪ S Cn

8 B S is an equivalence relation of variables of Q.
9 Choose a representative for each equivalence class of S .

10 De�ne mapping EC as follows:
11 if x ∈ Var(Q)
12 then EC(x) is the representative of the equivalence class of x under S
13 else EC(x) = x
14 Let Q′ be given as Q′(EC(�X)) ← VC1 (EC(Ψ1(�Y1))), . . . ,VCn (EC(Ψn(�Yn)))
15 Answer← Answer ∪ {Q′}
16 return Answer

The following theorem summarises the properties of the MiniCon Algorithm.
Theorem 30.37 Given a conjunctive query Q and conjunctive viewsV, both without com-
parison predicates and constants, the MiniCon Algorithm produces the union of conjunctive
queries that is a maximally contained rewriting of Q usingV.

30. Problems 1465

The complete proof of Theorem 30.37 exceeds the limitations of the present chapter. Ho-
wever, in Problem 30-1. the reader is asked to prove that union of the conjunctive queries
obtained as output of C-MCD is contained in Q.

It must be noted that the running times of the Bucket Algorithm, the Inverse-rules Al-
gorithm and the MiniCon Algorithm are the same in the worst case: O(nmMn), where n is
the number of subgoals in the query, m is the maximal number of subgoals in a view, and
M is the number of views. However, practical test runs show that in case of large number
of views (3�400 views) the MiniCon Algorithm is signi�cantly faster than the other two.
Exercises

30.3-1 Prove Theorem 30.25 using Proposition 30.24 and Theorem 30.20.
30.3-2 Prove the two statements of Lemma 30.26. Hint. For the �rst statement, write in
their de�nitions in place of views vi(�Yi) into Q′. Minimise the obtained query Q′′ using
Theorem 30.19. For the second statement use Proposition 30.24 to prove that there exists a
homomorphism hi from the body of the conjunctive query de�ning view vi(�Yi) to the body
of Q. Show that �Y ′i = hi(�Yi) is a good choice.
30.3-3 Prove Theorem 30.31 using that datalog programs have unique minimal �xpoint.

Problems
30-1. MiniCon is correct

Prove that the output of the MiniCon Algorithm is correct. Hint. It is enough to show that
for each conjunctive query Q′ given in line 14 of C-MCD Q′ v Q holds. For the
latter, construct a homomorphism from Q to Q′.
30-2. (P−,V−1)↓ is correct

Prove that each tuple produced by logic program (P−,V−1)↓ is contained in the output of P
(part of the proof of Theorem 30.32). Hint. Let t be a tuple in the output of (P−,V−1) that
does not contain function symbols. Consider the derivation tree of t. Its leaves are literals,
since they are extensional relations of program (P−,V−1). If these leaves are removed from
the tree, then the leaves of the remaining tree are edb relations of P. Prove that the tree
obtained is the derivation tree of t in datalog program P.
30-3. Datalog views

This problem tries to justify why only conjunctive views were considered. LetV be a set of
views, Q be a query. For a given instance I of the views the tuple t is a certain answer of
query Q, if for any database instanceD such that I ⊆ V(D), t ∈ Q(D) holds, as well.
a. Prove that if the views ofV are given by datalog programs, query Q is conjunctive and

may contain non-equality (,) predicates, then the question whether for a given instance
I of the views tuple t is a certain answer of Q is algorithmically undecidable. Hint.
Reduce to this question the Post Correspondence Problem, which is the following: Gi-
ven two sets of words {w1,w2, . . . ,wn} and {w′1,w′2, . . . ,w′n} over the alphabet {a, b}. The
question is whether there exists a sequence of indices i1, i2, . . . , ik (repetition allowed)
such that

wi1 wi2 · · ·wik = w′i1 w′i2 · · ·w′ik . (30.86)
The Post Correspondence Problem is well known algorithmically undecidable problem.

1466 30. Query rewriting in relational databases

Lekérdezés megválaszolási
algoritmusok (teljes, ill.
részleges források)

Lekérdezések megválaszolása nézetek használatával

(lekérdezés optimalizálás és adatfüggetlenség)
Költség−alapú átírás Logikai átírás

(adategyesítés)

System−R stílus Transzformációs megközelítés Átírási algoritmusok

Figure 30.6. A taxonomy of work on answering queries using views.

Let the view V be given by the following datalog program:

V(0, 0) ← S (e, e, e)
V(X,Y) ← V(X0,Y0), S (X0, X1, α1), . . . , S (Xg−1,Y, αg),

S (Y0,Y1, β1), . . . , S (Yh−1,Y, βh)
where wi = α1 . . . αg and w′i = β1 . . . βh
is a rule for all i ∈ {1, 2, . . . , n}

S (X,Y,Z) ← P(X, X,Y), P(X,Y,Z) .

(30.87)

Furthermore, let Q be the following conjunctive query.

Q(c) ← P(X,Y,Z), P(X,Y,Z′),Z , Z′ . (30.88)

Show that for the instance I of V that is given by I(V) = {〈e, e〉} and I(S) = {}, the
tuple 〈c〉 is a certain answer of query Q if and only if the Post Correspondence Problem
with sets {w1,w2, . . . ,wn} and {w′1,w′2, . . . ,w′n} has no solution.

b. In contrast to the undecidability result of a., if V is a set of conjunctive views and
query Q is given by datalog program P, then it is easy to decide about an arbitrary tuple
t whether it is a certain answer of Q for a given view instance I. Prove that the datalog
program (P−,V−1)datalog gives exactly the tuples of the certain answer of Q as output.

Chapter notes
There are several dimensions along which the treatments of the problem �answering queries
using views� can be classi�ed. Figure 30.6 shows the taxonomy of the work.

The most signi�cant distinction between the different work s is whether their goal is
data integration or whether it is query optimisation and maintenance of physical data inde-
pendence. The key difference between these two classes of works is the output of the the
algorithm for answering queries using views. In the former case, given a query Q and a set
of views V, the goal of the algorithm is to produce an expression Q′ that references the
views and is either equivalent to or contained in Q. In the latter case, the algorithm must go
further and produce a (hopefully optimal) query execution plan for answering Q using the

30. Megjegyzések a fejezethez 1467

views (and possibly the database relations). Here the rewriting must be an equivalent to Q
in order to ensure the correctness of the plan.

The similarity between these two bodies of work is that they are concerned with the core
issue of whether a rewriting of a query is equivalent or contained in the query. However,
while logical correctness suffices for the data integration context, it does not in the query
optimisation context where we also need to �nd the cheapest plan using the views. The
complication arises because the optimisation algorithms need to consider views that do not
contribute to the logical correctness of the rewriting, but do reduce the cost of the resulting
plan. Hence, while the reasoning underlying the algorithms in the data integration context is
mostly logical, in the query optimisation case it is both logical and cost-based. On the other
hand, an aspect stressed in data integration context is the importance of dealing with a large
number of views, which correspond to data sources. In the context of query optimisation it
is generally assumed (not always!) that the number of views is roughly comparable to the
size of the schema.

The works on query optimisation can be classi�ed further into System-R style opti-
misers and transformational optimisers. Examples of the former are works of Chaudhuri,
Krishnamurty, Potomianos and Shim [6]; Tsatalos, Solomon, and Ioannidis [26]. Papers
of Florescu, Raschid, and Valduriez [12]; Bello et. al. [3]; Deutsch, Popa and Tannen [8],
Zaharioudakis et. al. [30], furthermore Goldstein és Larson[15] belong to the latter.

Rewriting algorithms in the data integration context are studied in works of Yang and
Larson [28]; Levy, Mendelzon, Sagiv and Srivastava [20]; Qian [25]; furthermore Lamb-
recht, Kambhampati and Gnanaprakasam [22]. The Bucket Algorithm was introduced by
Levy, Rajaraman and Ordille [17]. The Inverse-rules Algorithm is invented by Duschka
and Genesereth [9, 10]. The MiniCon Algorithm was developed by Pottinger and Halevy
[24, 23].

Query answering algorithms and the complexity of the problem is studied in papers
of Abiteboul and Duschka [2]; Grahne and Mendelzon [16]; furthermore Calvanese, De
Giacomo, Lenzerini and Vardi [5].

The STORED system was developed by Deutsch, Fernandez and Suciu [7]. Seman-
tic caching is discussed in the paper of Yang, Karlapalem and Li [29]. Extensions of the
rewriting problem are studied in [4, 13, 14, 21, 29].

Surveys of the area can be found in works of Abiteboul [1], Florescu, Levy and Men-
delzon [11], Halevy [18, 19], furthermore Ullman[27].

Research of the authors was (partially) supported by Hungarian National research Fund
(OTKA) grants Nos. T034702, T037846T and T042706.

Bibliography

[1] S. Abiteboul. Querying semi-structured data. In F. Afrati, P. Kolaitis (szerkeszt�ok), Proceedings of ICDT'97,
Lecture Notes in Computer Science 1186. kötete, 1�18. o. Springer-Verlag, 1997. 1467

[2] S. Abiteboul, O. Duschka. Complexity of answering queries using materialized views. In Proceedings of the
Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, 254�263. o.
ACM-Press, 1998. 1467

[3] R. Bello, K. Dias, A. Downing, J. Freenan, T. Finnerty, W. D. Norcott, H. Sun, A. Witkowski, M. Ziauddin.
Materialized views in Oracle. In Proceedings of Very Large Data Bases'98, 659�664. o., 1998. 1467

[4] P. Buneman. Semistructured data. In Proceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems, 117�121. o. ACM-Press, 1997. 1467

[5] D. Calvanese, D. De Giacomo, M. Lenzerini, M. Varni. Answering regular path queries using views. In
Proceedings of the Sixteenth International Conference on Data Engineering, 190�200. o., 2000. 1467

[6] S. Chaudhury, R. Krishnamurty, S. Potomianos, K. Shim. Optimizing queries with materialized views. In
Proceedings of the Eleventh International Conference on Data Engineering, 190�200. o., 1995. 1467

[7] A. Deutsch, M. Fernandez, D. Suciu. Storing semistructured data with stored. In Proceedings of SIG-
MOD'99, 431�442. o., 1999. 1467

[8] A. Deutsch, L. Popa, D. Tannen. Physical data independence, constraints and optimization with universal
plans. In Proceedings of VLDB'99, 459�470. o., 1999. 1467

[9] O. Duschka, M. Genesereth. Answering recursive queries using views. In Proceedings of the Sixteenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, 109�116. o. ACM-Press, 1997.
1467

[10] O. Duschka, M. Genesereth. Query planning in infomaster. In Proceedings of ACM Symposium on Applied
Computing, 109�111. o. ACM-Press, 1997. 1467

[11] D. Florescu, A. Halevy, A. O. Mendelzon. Database techniques for the world-wide web: a survey. SIGMOD
Record, 27(3):59�74, 1998. 1467

[12] D. Florescu, L. Raschid, P. Valduriez. Answering queries using oql view expressions. In Workshop on Mate-
rialized views, in cooperation with ACM SIGMOD, 627�638. o., 1996. 1467

[13] D. D. Florescu. Search spaces for object-oriented query optimization. PhD thesis, University of Paris VI,
1996. 1467

[14] M. Friedman, D. S. Weld. Efficient execution of information gathering plans. In Proceedings International
Joint Conference on Arti�cial Intelligence, 785�791. o., 1997. 1467

[15] J. Goldstein, P. A. Larson. Optimizing queries using materialized views: a practical, scalable solution. In
Optimizing queries using materialized views: a practical, scalable solution, 331�342. o., 2001. 1467

[16] G. Grahne, A. Mendelzon. Tableau techniques for querying information sources through global schemas.
In Proceedings of ICDT'99, Lecture Notes in Computer Science 1540. kötete, 332�347. o. Springer-Verlag,
1999. 1467

[17] A. Halevy, A. Rajaraman, J. J. Ordille, D. Srivastava. Querying heterogeneous information sources using
source descriptions. In Proceedings of Very Large Data Bases, 251�262. o., 1996. 1467

[18] A. Halevy. Logic based techniques in data integration. In J. Minker (szerkeszt�o), Logic-based Arti�cial
Intelligence, 575�595. o. Kluwer Academic Publishers, 2000. 1467

[19] A. Halevy. Answering queries using views: A survey. The VLDB Journal, 10:270�294, 2001. 1467

http://www-rocq.inria.fr/~abitebou/�
http://www.softlab.ntua.gr/facilities/public/AD/foto/�
http://www.soe.ucsc.edu/people/faculty/kolaitis.html�
http://www.link.springer.de/link/service/series/0558/index.htm�
http://www.springer.de/�
http://www-rocq.inria.fr/~abitebou/�
http://isbndb.com/d/publisher/acm_press.html�
http://www.cis.upenn.edu/~peter/�
http://isbndb.com/d/publisher/acm_press.html�
http://www.inf.unibz.it/~calvanese/�
http://www.cs.iastate.edu/~chaudhur/homepage.html�
http://www.cs.washington.edu/homes/suciu/�
http://logic.stanford.edu/people/duschka/�
http://isbndb.com/d/publisher/acm_press.html�
http://logic.stanford.edu/people/duschka/�
http://isbndb.com/d/publisher/acm_press.html�
http://www-caravel.inria.fr/Fmembre_dana.html�
http://www.cs.washington.edu/homes/alon/�
http://www-caravel.inria.fr/Fmembre_dana.html�
http://www.sciences.univ-nantes.fr/info/perso/permanents/valduriez/�
http://www-caravel.inria.fr/Fmembre_dana.html�
http://www.jussieu.fr/�
http://www.cs.concordia.ca/~grahne/�
http://www.cs.toronto.edu/~mendel/�
http://www.link.springer.de/link/service/series/0558/index.htm�
http://www.springer.de/�
http://www.cs.washington.edu/homes/alon/�
file:www.wkap.nl/.dvi�
http://www.cs.washington.edu/homes/alon/�
http://springerlink.metapress.com/app/home/journal.asp?wasp=b5cryjywql0qv16pxgfy&referrer=parent&backto=linkingpublicationresults,1:100392,1�

Bibliography 1469

[20] A. Halevy, A. Mendelzon, Y. Sagiv, D. Srivastava. Answering queries using views. In Proceedings of the
Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, 95�104. o.
ACM-Press, 1995. 1467

[21] C. T. Kwok, D. Weld. Planning to gather information. In Proceedings of AAAI 13th National Conference on
Arti�cial Intelligence, 32�39. o., 1996. 1467

[22] E. T. Lambrecht, S. Kambhampati, S. Gnanaprakasam. Optimizing recursive information gathering plans. In
Proceedings of 16th International Joint Conference on Arti�cial Intelligence, 1204�1211. o., 1999. 1467

[23] R. Pottinger. MinCon: A scalable algorithm for answering queries using views. The VLDB Journal,
10(2):182�198, 2001. 1467

[24] R. Pottinger, A. Halevy. A scalable algorithm for answering queries using views. In Proceedings of Very
Large Data Bases'00, 484�495. o., 2000. 1467

[25] X. Qian. Query folding. In Proceedings of International Conference on Data Engineering, 48�55. o., 1996.
1467

[26] O. G. Tsatalos, M. C. Solomon, Y. Ioannidis. The GMAP: a versatile tool for physical data independence.
The VLDB Journal, 5(2):101�118, 1996. 1467

[27] J. D. Ullman. Information integration using logical views. In Proceedings of ICDT'97, Lecture Notes in
Computer Science 1186. kötete, 19�40. o. Springer-Verlag, 1997. 1467

[28] H. Z. Yang, P. A. Larson. Query transformation for PSJ-queries. In Proceedings of Very Large Data Bases'87,
245�254. o., 1987. 1467

[29] J. Yang, K., Karlapalem, Q. Li. Algorithms for materialized view design in data warehousing environment.
In Proceedings of Very Large Data Bases'97, 136�145. o., 1997. 1467

[30] M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh, M. Urata. Answering complex SQL queries using
automatic summary tables. In Proceedings of SIGMOD'00, 105�116. o., 2000. 1467

http://www.cs.washington.edu/homes/alon/�
http://isbndb.com/d/publisher/acm_press.html�
http://springerlink.metapress.com/app/home/journal.asp?wasp=b5cryjywql0qv16pxgfy&referrer=parent&backto=linkingpublicationresults,1:100392,1�
http://www.cs.ubc.ca/~rap/�
http://www.cs.washington.edu/homes/alon/�
http://springerlink.metapress.com/app/home/journal.asp?wasp=b5cryjywql0qv16pxgfy&referrer=parent&backto=linkingpublicationresults,1:100392,1�
http://www-db.stanford.edu/~ullman/�
http://www.link.springer.de/link/service/series/0558/index.htm�
http://www.springer.de/ �

Name index

A, Á
Abiteboul, Serge, 1467, 1468
Afrati, Foto N., 1468

B
Bello, Randall G., 1467, 1468
Buneman, Peter, 1467, 1468

C
Calvanese, Diego, 1467, 1468
Chaudhuri, Surajit, 1467, 1468
Cochrane, Roberta, 1467, 1469
Codd, Edgar F. (1923�2003), 1431

D
De Giacomo, Giuseppe, 1467, 1468
Deutsch, Alin, 1467, 1468
Dias, Karl, 1467, 1468
Downing, Alan, 1467, 1468
Duschka, Oliver M., 1467, 1468

F
Feenan, James J., 1467
Fernandez, Mary, 1467, 1468
Finnerty, James L., 1467
Finnerty, T., 1468
Florescu, Daniela D., 1467, 1468
Freenan, J., 1468
Friedman, Marc, 1467, 1468

G
Genesereth, Michael R., 1467, 1468
Gnanaprakasam, Senthil, 1467, 1469
Goldstein, Jonathan, 1467, 1468
Grahne, Gösta, 1467, 1468

H
Halevy, Alon Y., 1467�1469

I, Í
Ioannidis, Yannis E., 1444, 1467, 1469

K
Kambhampati, Subbarao, 1467, 1469
Karlapalem, Kamalakar, 1467, 1469
Kolaitis, Phokion G., 1468
Krishnamurty, Ravi, 1467, 1468
Kwok, Cody T., 1467, 1469

L
Lambrecht, Eric, 1467, 1469
Lapis, George, 1467, 1469
Larson, Per�Åke, 1467�1469
Lenzerini, Maurizio, 1467, 1468
Levy, Alon Y., 1467
Li, Qing, 1467, 1469

M
Mendelzon, Alberto O., 1467�1469
Minker, J., 1468

N
Norcott, William D., 1467, 1468

O, Ó
Ordille, Joann J., 1467, 1468

P
Pirahesh, Hamid, 1467, 1469
Popa, Lucian, 1467, 1468
Potomianos, Spyros, 1467, 1468
Pottinger, Rachel, 1467, 1469

Q
Qian, Xiaolei, 1467, 1469

R
Rajaraman, Anand, 1467, 1468
Raschid, Louiqa, 1467, 1468

Name index 1471

S
Sagiv, Yehoshua, 1467, 1469
Shim, Kyuseok, 1467, 1468
Solomon, Marvin H., 1444, 1467, 1469
Srivastava, Divesh, 1467�1469
Suciu, Dan, 1467, 1468
Sun, Harry, 1467, 1468

T
Tannen, Val, 1467, 1468
Tsatalos, Odysseas G., 1444, 1467, 1469

U, Ú
Ullman, Jeffrey David, 1467, 1469
Urata, Monica, 1467, 1469

V
Valduriez, Patrick, 1467, 1468
Vardi, Moshe Y., 1467, 1468

W
Weld, Daniel S., 1467�1469
Witkowski, Andrew, 1467, 1468

Y
Yang, H. Z., 1467, 1469
Yang, Jian, 1467, 1469

Z
Zaharioudakis, Markos, 1467, 1469
Ziauddin, Mohamed, 1467, 1468

Subject Index

A, Á
atom

relational, 1424

B
bucket, 1454
Bucket Algorithm, 1454, 1461

C
certain answer, 1465fe
C-MCD, 1464
C-, 1455

D
database architecture

layer
logical, 1441
outer, 1441
physical, 1440

data independence
logical, 1442

data integration system, 1446
datalog

non-recursive, 1430
with negation, 1431

program, 1433, 1457
precedence graph, 1436
recursive, 1436

rule, 1433, 1457
depth �rst search, 1436
domain restricted, 1429

E, É
E , 1438

F
fact, 1433
�xpoint, 1434
F-MCD, 1463
free tuple, 1424, 1431
F--, 1437

G
Generalised Multi-level Access Path, 1444
GMAP, 1444

H
head homomorphism, 1462
homomorphism theorem, 1437
Horn rule, 1457

I, Í
image under a query, 1425
immediate consequence, 1433

operator, 1433
I---, 1436
I---, 1440gy
instance, 1422
integrity constraint, 1441
Inverse-rules Algorithm, 1456, 1461

J
join

natural, 1426

L
literal, 1431

negative, 1431
positive, 1431

logic program, 1457

M
MCD, 1462
mediator system, 1446
Microsoft

Access, 1425
MiniCon Description, 1462
MiniCon Description (MCD), 1462

N
N -, 1459
N -, 1434
natural join, 1426

Subject Index 1473

nr-datalog¬ program, 1431

P
Post Correspondence Problem, 1465fe
precedence graph, 1436, 1460
projection, 1426

Q
QBE, 1425
query, 1422

conjunctive, 1436
domain restricted, 1429
program, 1427
rule based, 1424
subgoal, 1454

empty, 1439gy
equivalent, 1423
homomorphism, 1437, 1448
language, 1422

equivalent, 1424
mapping, 1423
monotone, 1425, 1439gy
relational algebra, 1439gy
rewriting, 1447

complete, 1447, 1448
conjunctive, 1456
equivalent, 1447, 1450
globally minimal, 1447
locally minimal, 1447
maximally contained, 1450
minimal, 1447

rule based, 1439gy
satis�able, 1425, 1439gy
subgoal, 1462
tableau, 1425, 1439gy

minimal, 1438
summary, 1425

variables of, 1462
query language

relationally complete, 1431

R
recursion, 1433
relation, 1422

extensional, 1425, 1433, 1441
instance, 1422, 1423áb
intensional, 1425, 1427, 1433, 1441
mutually recursive, 1436
virtual, 1446

relational algebra∗, 1426
relational schema, 1422
renaming, 1426
rule, 1424

body, 1424
domain restricted, 1431
head, 1424
realisation, 1433

S
S, 1429
schema

extensional, 1433
intensional, 1433
mediated, 1446

selection, 1426
condition, 1426

S--, 1435, 1440gy, 1459
source description, 1446
SQL, 1441
strongly connected component, 1436
subgoal, 1454
substitution, 1437
System-R style optimiser, 1452

T
transitive closure, 1433
tuple

free, 1424

V
view, 1422, 1441

inverse, 1457
materialised, 1442

X
XML, 1444

Contents

30. Query rewriting in relational databases (János Demetrovics and Attila Sali) . 1422
30.1. Queries . 1422

30.1.1. Conjunctive queries . 1424
Datalog � rule based queries . 1424
Tableau queries . 1425
Relational algebra∗ . 1426

30.1.2. Extensions . 1429
Equality atoms . 1429
Disjunction � union . 1430
Negation . 1430
Recursion . 1432
Fixpoint semantics . 1433

30.1.3. Complexity of query containment 1436
Query optimisation by tableau minimisation 1437

30.2. Views . 1440
30.2.1. View as a result of a query . 1441

Advantages of using views . 1442
Materialised view . 1442

30.3. Query rewriting . 1443
30.3.1. Motivation . 1443

Query optimisation . 1443
Physical data independence . 1444
Data integration . 1446
Semantic data caching . 1447

30.3.2. Complexity problems of query rewriting 1447
30.3.3. Practical algorithms . 1450

Query optimisation using materialised views 1451
System-R style optimisation 1452

The Bucket Algorithm . 1454
Inverse-rules Algorithm . 1456
MiniCon . 1461

Bibliography . 1468
Name index . 1470

Contents 1475

Subject Index . 1472

