
8. Online Scheduling

In online computation, an algorithm must make its decisions based only on past events
without secure information on future. Such algorithms are called on-line algorithms. Online
algorithms have many applications in different areas such as computer science, economics
and operations research.

The �rst results in this area appeared around 1970, and later since 1990 more and more
researchers started research on problems related to on-line algorithms. Many sub�elds were
developed and investigated. Nowadays new results of the area are presented on the most
important conferences about algorithms. It is not the goal of this chapter to give a detailed
overview about the results, this would not be possible in this framework. The goal of the
chapter is to show some of the main methods of analysing and developing on-line algorithms
by presenting some subareas in more details.

In the next section we de�ne the basic notions used in the analysis of on-line algorithms.
After giving the most important de�nitions we present one of the most known on-line prob-
lems � the on-line k-server problem � and some of the related results. Then we deal with a
new area we present on-line problems belonging to computer networks. In the next section
the on-line bin packing problem and its multidimensional generalizations are presented. Fi-
nally in the last chapter of the section we show some of the basic results concerning the area
of on-line scheduling.

8.1. Notions, definitions
Since an on-line algorithm makes its decisions by partial information without knowing the
whole instance in advance we cannot expect that it gives the optimal solution which can
be given by an algorithm having full information. An algorithms which knows the whole
instance in advance is called offline algorithm.

There are two main methods to measure the performance of on-line algorithms. One
possibility is to use average case analysis where we hypothesize some distribution on events
and we study the expected total cost.

The disadvantage of this approach is that usually we do not have any information about
the distribution of the possible inputs. In this chapter we do not use the average case analysis.

An another approach is a worst case analysis, which is called competitive analysis. In

372 8. Online Scheduling

this case we compare the objective function value of the solution produced by the on-line
algorithm to the optimal offline objective function value. Since we use this measure in this
chapter we give the related de�nitions below.

In case of on-line minimization problems an on-line algorithm is called C-competitive,
if the cost of the solution produced by the on-line algorithm is at most C times more than
the optimal offline cost for each input. The competitive ratio of an algorithm is the smallest
such C for which the algorithm is C-competitive.

For an arbitrary on-line algorithm ALG we denote the objective function value achie-
ved on input I by ALG(I). The optimal offline objective function value on I is denoted by
OPT(I). Using this notation we can de�ne the competitiveness as follows.

Algorithm ALG is C-competitive, if ALG(I) ≤ C · OPT(I) is valid for each input I.
Two further versions of the competitiveness are often used. For a minimization problem

an algorithm ALG is called weakly C-competitive, if there exists such a constant B that
ALG(I) ≤ C · OPT(I) + B is valid for each input I.

The weak competitive ratio of an algorithm is the smallest such C for which the algo-
rithm is weakly C-competitive.

A further version of the competitive ratio is the asymptotic competitive ratio. For mi-
nimization problems the asymptotic competitive ratio of algorithm ALG (R∞ALG) can be
de�ned as follows:

Rn
ALG = sup{ALG(I)

OPT(I) | OPT(I) = n} ,

R∞ALG = lim sup
n→∞

Rn
ALG .

An algorithm is called asymptotically C-competitive if its asymptotic competitive ratio
is at most C.

The main property of the asymptotic ratio that it considers the performance of the algo-
rithm under the assumption that the size of the input tends to ∞. This means that this ratio
is not effected by the behaviour of the algorithm on the small size inputs.

We de�ned the basic notions of the competitive analysis for minimization problems.
Similar de�nitions can be given for maximization problems. Then algorithm ALG is called
C-competitive, if ALG(I) ≥ C ·OPT(I) is valid for each input I, and the algorithm is weakly
C-competitive if there exists such a constant B that ALG(I) ≥ C · OPT(I) + B is valid for
each input I. The asymptotic ratio for maximization problems can be given as follows:

Rn
ALG = inf{ALG(I)

OPT(I) | OPT(I) = n} ,

R∞ALG = lim inf
n→∞

Rn
ALG .

Then the algorithm is called asymptotically C-competitive if its asymptotic ratio is at
least C.

Many scienti�c papers consider randomized on-line algorithms, in this case the objec-
tive function value achieved by the algorithm is a random variable and the expected value of
this variable is used in the de�nition of the competitive ratio. Since we consider only deter-
ministic on-line algorithms in this chapter we do not detail the notions related to randomized
on-line algorithms.

8.2. The k-server problem 373

8.2. The k-server problem
One of the most known online problems is the online k-server problem.To give the de�nition
of the general problem we need the notion of the metric space. A pair (M, d) (where M
contains the points of the space, d is the distance function de�ned on the set M × M) is
called metric space if the following properties are valid:
• d(x, y) ≥ 0 for all x, y ∈ M,
• d(x, y) = d(y, x) for all x, y ∈ M,
• d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ M,
• d(x, y) = 0 holds if and only if x = y.

In the k-server problem a metric space is given and there are k servers which can move
in the space. The decision maker has to satisfy a list of request appearing at the points of the
metric space by sending a server to the point where the request appears.

The problem is online which means that the requests arrive one by one and we must
satisfy each request without any information about the further requests. The goal is to mi-
nimize the total distance travelled by the servers. The model and its special versions have
many applications. In the remaining parts of the section the multiset which contains the po-
ints where the servers are is called the con�guration of the servers. We use multisets since
different servers can be at the same points of the space.

The �rst important results for the k-server problem were achieved by Manasse McGe-
och and Sleator. They developed the following algorithm called B, which we denote
by BAL. During the procedure the servers are in different points. The algorithm maintains
for each server the total distance travelled by the server. We denote by s1, . . . , sk the servers
and also the points in the space where the servers are located. Denote by D1, . . . ,Dk the
total distance travelled by the servers. Then after the arrival at point P of a request algo-
rithm BAL uses the server i for which the value Di + d(si, P) is minimal. This means that
the algorithm tries to balance the distances travelled by the servers. Therefore the algorithm
maintains the S = {s1, . . . , sk} server con�guration and the distances travelled by the servers
which distances have the starting values D1 = · · · = Dk = 0. Then the behaviour of the
algorithm on input I = P1, . . . , Pn can be given by the following pseudocode:

BAL(I)
1 for j← 1 to n
2 i← argmin{Di + d(si, P j)}
3 serve the request with server i
4 Di ← Di + d(si, P j)
5 si ← P j

Example 8.1 Consider the two dimension Euclidean space as the metric space. The points are two
dimensional real vectors (x, y), and the distance between (a, b) and (c, d) is

√
(a − c)2 + (b − d)2. Sup-

pose that there are two servers which are located at points (0, 0) and (1, 1) at the beginning. Thus
at the beginning D1 = D2 = 0, s1 = (0, 0), s2 = (1, 1). Suppose that the �rst request appears at
point (1, 4). Then D1 + d((0, 0), (1, 4)) =

√
17 > D2 + d((1, 1), (1, 4)) = 3, thus the second server

is used to satisfy the request and after the movement of the server D1 = 0,D2 = 3, s1 = (0, 0),

374 8. Online Scheduling

s2 = (1, 4). Suppose that the second request appears at point (2, 4), then D1 + d((0, 0), (2, 4)) =
√

20 >
D2 + d((1, 4), (2, 4)) = 3 + 1 = 4, thus again the second server is used, and after serving the request
D1 = 0,D2 = 4, s1 = (0, 0), s2 = (2, 4). Suppose that the third request appears at point (1, 4), then
D1 + d((0, 0), (1, 4)) =

√
17 < D2 + d((2, 4), (1, 4)) = 4 + 1 = 5, thus the �rst server is used and after

serving the request D1 =
√

17,D2 = 4, s1 = (1, 4), s2 = (2, 4).

The algorithm is efficient in the cases of some particular metric spaces as it is shown
by the following statement. The references where the proof of the following theorem can be
found are in the chapter notes at the end of the chapter.

Theorem 8.1 Algorithm BALANCE is weakly k-competitive for the metric spaces contai-
ning k + 1 points.

The following statement shows that there is no online algorithm which is better than
k-competitive for the general k-server problem.

Theorem 8.2 There is no such metric space containing at least k + 1 points where an
on-line algorithm exists with smaller competitive ratio than k.

Proof. Consider an arbitrary metric space containing at least k+1 points and an arbitrary on-
line algorithm, denote the algorithm by ONL. Denote the points of the starting con�guration
of ONL by P1, P2, . . . , Pk, and let Pk+1 be an another point of the metric space. Consider the
following long list of requests I = Q1, . . . ,Qn. The next request appears at the point among
P1, P2, . . . , Pk+1 where ONL has no server.

Calculate �rst the value ONL(I). The algorithm does not have server at point Q j+1 after
serving Q j, thus the request appeared at Q j is served by the server located at point Q j+1.
Therefore the cost of serving Q j is d(Q j,Q j+1), which yields that

ONL(I) =

n∑

j=1
d(Q j,Q j+1) ,

where Qn+1 denote the point from which the server sent to serve Qn. (This is the point where
the (n + 1)-th request would appear.) Now consider the cost OPT(I). Instead of calculating
the optimal offline cost we de�ne k different offline algorithms, and we use the average of
the costs resulted by these algorithms. Since the cost of each offline algorithm is at least
as much as the optimal offline cost thus the calculated average is an upper bound on the
optimal offline cost.

We de�ne the following k offline algorithms, denoted by OFF1, . . . ,OFFk. Suppose that
the servers are in the points P1, P2, . . . , P j−1, P j+1, . . . Pk+1 in the starting con�guration of
OFF j. We can move the servers into this starting con�guration using an extra constant cost
C j.

The algorithms satisfy the requests as follows. If an algorithm OFF j has a server at point
Qi, then none of the servers moves, otherwise the request is served by the server which is
located at point Qi−1. The algorithms are well-de�ned, if Qi does not contain a server then
each of the other points among P1, P2, . . . , Pk+1 contains a servers, thus there is a server
located at Qi−1. Moreover Q1 = Pk+1, thus at the beginning each algorithm has a server at
the requested point.

8.2. The k-server problem 375

We show that the servers of algorithms OFF1, . . . ,OFFk are always in different con�gu-
rations. At the beginning this property is valid by the de�nition of the algorithms. Consider
now the step where a request is served. Call the algorithms stable which do not move a ser-
ver for serving the request, and the other algorithms unstable. The server con�gurations of
the stable algorithms remain unchanged, so these con�gurations remain different from each
other. Any unstable algorithm moves a server from the point Qi−1. This point is the place
of the last request thus the stable algorithms have server in it. Therefore, an unstable algo-
rithm and a stable algorithm cannot have the same con�guration after serving the request.
Furthermore, any of the unstable algorithms moves a server from Qi−1 to Qi, thus the server
con�gurations of the unstable algorithms remain different from each other.

So at the arrival of the request at point Qi the servers of the algorithms are in different
con�guration. On the other hand each con�guration has a server at point Qi−1, therefore
there is only one con�guration where no server located at point Qi. Consequently the cost
of serving Qi is d(Qi−1,Qi) for one of the algorithms and 0 for the other algorithms.

Therefore
k∑

j=1
OFF j(I) = C +

n∑

i=2
d(Qi,Qi−1) ,

where C =
∑k

j=1 C j is an absolute constant which is independent from the input (this is the
cost of moving the servers to the starting con�guration of the de�ned algorithms).

On the other hand the optimal offline cost cannot be larger than the cost of any of the
above de�ned algorithms, thus k · OPT(I) ≤ ∑k

j=1 OFF j(I). This yields that

k · OPT(I) ≤ C +

n∑

i=2
d(Qi,Qi−1) ≤ C + ONL(I),

which inequality shows that the weak competitive ratio of ONL cannot be smaller than k,
since the value OPT(I) can be arbitrarily large as the length of the input is increasing.

Many researchers started to work on the problem and some interesting results appeared
during the next few years. For the general case the �rst constant-competitive algorithm
(O(2k)-competitive) was developed by Fiat, Rabani and Ravid. Then the researchers could
not signi�cantly decrease the gap between the lower and upper bounds for a long time. Later
Koutsoupias and Papadimitriou could analyze an algorithm based on the work function
technique and they could prove that the algorithm is (2k − 1)-competitive. They could not
determine the competitive ratio of the algorithm, but it is a widely believed hypothesis that
the algorithm is k-competitive. To determine the competitive ratio of the algorithm, or to
develop a k-competitive algorithm are still among the most important open questions in the
area of on-line algorithms. We present the work function algorithm below.

Denote by A0 the starting con�guration of the on-line servers. Then after the t-th request
the work function value belonging to the multiset X is the minimal cost which can be used
to serve the �rst t requests starting at the con�guration A0 and ending at the con�guration X.
This value is denoted by wt(X). The W F algorithm is based on the above de�ned
work function. Suppose that At−1 is the server con�guration before the arrival of the t-th
request, and denote the place of the t-th request by Rt. Then the W F algorithm
uses the server s to serve the request for which the value wt−1(At−1 \ {P} ∪ {Rt}) + d(P,Rt) is
minimal, where P denotes the point where the server is actually located.

376 8. Online Scheduling

Example 8.2 Consider the metric space which contains three points A, B and C and the distances are
d(A, B) = 1, d(B,C) = 2, d(A,C) = 3. Suppose that we have two servers and the starting con�guration
is {A, B}. Then the starting work function values are w0({A, A}) = 1, w0({A, B}) = 0, w0({A,C}) = 2,
w0({B, B}) = 1, w0({B,C}) = 3, w0({C,C}) = 4. Suppose that the �rst request appears at point C. Then
w0({A, B} \ {A} ∪ {C}) + d(A,C) = 3 + 3 = 6 and w0({A, B} \ {B} ∪ {C}) + d(B,C) = 2 + 2 = 4, thus
algorithm W F uses the server from point B to serve the request.

The following statement is valid for the algorithm.

Theorem 8.3 The W F algorithm is weakly 2k − 1-competitive.

Beside the general problem many particular cases were investigated. If the distance of
any pair of points is 1, then we obtain the on-line paging problem as the special case. An
another well investigated metric space is the line. The points of the line are considered as real
numbers, and the distance of points a and b is |a− b|. In this special case a k-competitive al-
gorithm was developed by Chrobak and Larmore, the algorithm is called D-.
A request at point P is served by the server s which is closest to P. Moreover, if there are
also servers on the opposite side of P then the closest server among them moves distance
d(s, P) into the direction of P. In the following parts we denote the D- algo-
rithm by DC. The input of the algorithm is the list of requests which is a list of points (real
numbers) denoted by I = P1, . . . , Pn and the starting con�guration of the servers denoted
by S = (s1, . . . , sk) which contains also points (real numbers). The algorithm can be de�ned
by the following pseudocode:

DC(I, S)
1 for j← 1 to n
2 do i← argminld(P j, sl)
3 if si = maxl sl or si = maxl sl
4 then the request is served by the i-th server
5 si ← P j
6 else if si ≤ P j
7 then m← argminl:sl>P j

d(sl, P j)
8 the request is served by the i-th server
9 sm ← sm − d(si, P j)

10 si ← P j
11 else if si ≥ P j
12 then n← argminl:sl<P j

d(sl, P j)
13 the request is served by the i-th server
14 sn ← sn + d(si, P j)
15 si ← P j

Example 8.3 Suppose that there are three servers s1, s2, s3 located at the points 0, 1, 2. If the next
request appears at point 4 then DC uses the closest server s3 to serve the request. The locations of the
other servers remain unchanged, the cost of serving the request is 2 and the servers are at the points
0, 1, 4. If the next request appears at point 2 then DC uses the closest server s2 to serve the request, but
there are servers on the opposite side of the request thus s3 also moves distance 1 into the direction of
2. Therefore the cost of serving the request is 2 and the servers will be at the points 0, 2, 3.

8.2. The k-server problem 377

The following statement which can be proved by the potential function technique is
valid for algorithm DC. This technique is often used in the analysis of on-line algorithms.

Theorem 8.4 If the metric space is the line then algorithm DC is weakly k-competitive.

Proof. Consider an arbitrary sequence of requests denote this input by I. During the analysis
of the procedure we suppose that one offline optimal algorithm and DC are running parallel
on the input. We also suppose that each request is served �rst by the offline algorithm and
then by the on-line algorithm. The servers of the on-line algorithm and also the positions of
the servers (which are real numbers) are denoted by s1, . . . , sk, and the servers of the optimal
offline algorithm and also the positions of the servers are denoted by x1, . . . , xk. We suppose
that for the positions s1 ≤ s2 ≤ · · · ≤ sk and x1 ≤ x2 ≤ · · · ≤ xk are always valid, this can be
achieved by changing the notations of the servers.

We prove the theorem by the potential function technique. The potential function as-
signs a value to the actual positions of the servers, the on-line and offline costs are compared
using the changes of the potential function. De�ne the following potential function

Φ = k
k∑

i=1
|xi − si| +

∑

i< j
(s j − si) .

We show that the following statements are valid for the potential function.
• While OPT serves a request the increase of the potential function is not more than k

times the distance moved by the servers of OPT.
• While DC serves a request, the decrease of Φ is at least as much as the cost of serving

the request.
If the above properties are valid then one can prove easily the theorem. In this case

Φ f − Φ0 ≤ k · OPT(I) − DC(I), where Φ f and Φ0 are the �nal and the starting values of the
potential function. Furthermore Φ is nonnegative so we obtain that DC(I) ≤ kOPT(I) + Φ0,
which yields by the de�nition that the algorithms is weakly k-competitive.

Now we prove the properties of the potential function.
First consider the case when one of the offline servers moves distance d. Then the �rst

part of the potential function increases at most kd. The second part does not change thus we
proved the �rst property of the potential function.

Consider the servers of DC. Suppose that the request appears at point P. Since the
request is �rst served by OPT, x j = P for some j. Distinguish the following two cases
depending on the positions of the on-line servers.

Suppose �rst that the on-line servers are on the same side of P. We can assume that the
positions of the servers are not smaller than P, the other case is completely similar. Then s1
is the closest server and DC sends s1 to P, the other on-line servers do not move. Therefore
the cost of DC is d(s1, P). In the �rst sum of the potential function only |x1 − s1| is changing
that decreases d(s1, P), thus the �rst part decreases kd(s1, P). The second sum is increasing
the increase is (k − 1)d(s1, P), thus the value of Φ decreases d(s1, P).

Consider the second case. Then there are servers on both sides of P, suppose that the
closest servers are si and si+1. We assume that si is closer to P, the other case is completely
similar. Then the cost of DC is 2d(si, P). Consider the �rst sum of the potential function.
The i-th and the i + 1-th part are changing. Since x j = P for some j thus one of the i-th and

378 8. Online Scheduling

the i + 1-th parts decreases d(si, P), the increase of the other one is at most d(si, P) thus the
�rst sum does not increase. The change of the second sum of Φ is

d(si, P)(− (k − i) + (i − 1) − (i) + (k − (i + 1))) = −2d(si, P) .

Therefore we proved that the second property of the potential function is also valid in this
case.

Since we investigated all of the possible cases we proved the properties of the potential
function, and the statement of the theorem follows.

Exercises
8.2-1 Suppose that (M, d) is a metric space. Prove that (M, q) is also a metric space where
q(x, y) = min{1, d(x, y)}.
8.2-2 Consider the greedy algorithm which serves each request by the server which is
closest to the place of the request. Prove that the algorithm is not constant competitive
for the line.
8.2-3 Prove that for arbitrary k-element multisets X and Z and for arbitrary t the inequality
wt(Z) ≤ wt(X) + d(X,Z) is valid, where d(X,Z) is the cost of the minimal matching of X
and Z, (the minimal cost which can be used to move the servers from con�guration X to
con�guration Z).
8.2-4 Consider the line as a metric space. Suppose that the servers of the on-line algorithm
are at the points 2, 4, 5, 7, and the servers of the offline algorithm are at the points 1, 3, 6, 9.
Calculate the value of the potential function used in the proof of theorem 8.4. How this
potential function is changed if the on-line server moves from point 7 to point 8?

8.3. Models related to computer networks
The theory of computer networks became one of the most signi�cant areas of the compu-
ter science. In the planning of computer networks many optimization problems arise and
most of these problems are actually on-line, since neither the traffic nor the changes in the
topology of a computer network cannot be precisely predicted. Recently some researchers
working at the area of on-line algorithms de�ned some on-line mathematical models for
problems related to computer networks. In this section we consider this area we present
three problems and show the basic results. First the data acknowledgement problem is con-
sidered, then we present the web caching problem, and the section is closed by the on-line
routing problem.

8.3.1. The data acknowledgement problem
In the communication of a computer network the information is sent by packets. If the com-
munication channel is not completely safe then the arrival of the packets are acknowledged.
In the data acknowledgement problem we try to determine the time of sending acknowled-
gements. One acknowledgement can acknowledge many packets but waiting for long time
can cause the resending of the packets and that results the congestion of the network. On the
other hand sending immediately an acknowledgement about the arrival of each packet wo-
uld cause again the congestion of the network. The �rst optimization model for determining

8.3. Models related to computer networks 379

the sending time of the acknowledgements was developed by Dooly, Goldman and Scott in
1998. Below we present the developed model and some of the basic results.

In the mathematical model of the data acknowledgement problem the input is the list
of the arrival times a1, . . . , an of the packets. The decision maker has to determine when to
send acknowledgements, these times are denoted by t1, . . . , tk. In the optimization model the
cost function is:

k +

k∑

j=1
ν j ,

where k is the number of the sent acknowledgements and ν j =
∑

t j−1<ai≤t j (t j − ai) is the to-
tal latency collected by the j-th acknowledgement. We consider the on-line problem which
means that at time t the decision maker only knows the arrival times of the packets already
arrived and has no information about the further packets. We denote the set of the unack-
nowledged packets at the arrival time ai by σi.

For the solution of the problem the class of the alarming algorithms was developed. An
alarming algorithm works as follows. At the arrival time a j an alarm is set for time a j + e j.
If no packet arrives before time a j + e j, then an acknowledgement is sent at time a j + e j
which acknowledges all of the unacknowledged packets. Otherwise at the arrival of the next
packet at time a j+1 the alarm is reset for time a j+1 + e j+1. Below we analyze in details an
algorithm from this class. This algorithm sets the alarm to collect total latency 1 by the
acknowledgement. The algorithm is called A. We obtain the above de�ned rule from
the general de�nition using the solution of the following equation as value e j

1 = |σ j|e j +
∑

ai∈σ j

(a j − ai) .

Example 8.4 Consider the following example. The �rst packet arrives at time 0 (a1 = 0), then A

sets an alarm with the value e1 = 1 for time 1. Suppose that the next arrival time is a2 = 1/2. This
arrival is before the alarm time thus the �rst packet is not acknowledged yet and we reset the alarm
with the value e2 = (1−1/2)/2 = 1/4 for time 1/2+1/4. Suppose that the next arrival time is a3 = 5/8.
This arrival is before the alarm time thus the �rst two packets are not acknowledged yet and we reset
the alarm with value e3 = (1− 5/8− 1/8)/3 = 1/12 for time 5/8 + 1/12. Suppose that the next arrival
time is a4 = 1. Then no packet arrived before the alarm time 5/8+1/12, thus at that time the �rst three
packets were acknowledged and the alarm is set for the new packet with the value e4 = 1 for time 2.

The following theorem is valid for the competitive ratio of the algorithm.

Theorem 8.5 Algorithm A is 2-competitive.

Proof. Suppose that algorithm A sends k acknowledgements. These acknowledge-
ments divide the time into k time intervals. The cost of the algorithm is 2k, since k is the
cost of the acknowledgements, and the alarm is set to have total latency 1 for each acknow-
ledgement.

Suppose that the optimal offline algorithm sends k∗ acknowledgements. If k∗ ≥ k,
then OPT(I) ≥ k = A(I)/2 is obviously valid, thus we have that the algorithm is
2-competitive. If k∗ < k, then at least k−k∗ among the time intervals de�ned by the acknow-
ledgements of algorithm A do not contain any of the offline acknowledgements. This

380 8. Online Scheduling

yields that the offline total latency is at most k − k∗, thus we obtain that OPT(I) ≥ k which
inequality proves that A is 2-competitive.

As the following theorem shows algorithm A has the smallest possible competitive
ratio.

Theorem 8.6 There is not such on-line algorithm for the data acknowledgement problem
which has smaller competitive ratio than 2.

Proof. Consider an arbitrary on-line algorithm denote it by ONL. Analyze the following
input. Consider a long sequence of packets where the packets always arrive immediately
after the time when ONL sends an acknowledgement. Then the on-line cost of a sequence
containing 2n packets is ONL(I2n) = 2n + t2n, since the cost resulted from the acknowledge-
ments is 2n, and the latency of the i-th acknowledgement is ti − ti−1, where the value t0 = 0
is used.

Consider the following two on-line algorithms. ODD sends the acknowledgements after
the odd numbered packets and EV sends the acknowledgements after the even numbered
packets.

Then the costs achieved by these algorithms are

EV(I2n) = n +

n−1∑

i=0
(t2i+1 − t2i) ,

and
ODD = n + 1 +

n∑

i=1
(t2i − t2i−1) .

Therefore EV(I2n) + ODD(I2n) = ONL(I2n) + 1. On the other hand none of the
costs achieved by ODD and EV is greater than the optimal offline cost thus OPT(I2n) ≤
min{EV(I2n),ODD(I2n)}, which yields that ONL(I2n)/OPT(I2n) ≥ 2 − 1/OPT(I2n). By this
inequality it follows that the competitive ratio of ONL is not smaller than 2, because using
a sufficiently long sequence of packets the value OPT(I2n) can be arbitrarily large.

8.3.2. The file caching problem
The �le caching problem is a generalization of the caching problem presented in the me-
mory management chapter. The world-wide-web browsers are using caches to store some
�les. This makes it possible to use the stored �les if a user wants to see some web-page
many times during a short time interval. If the cache becomes full then some �les must be
eliminated to make place for the new �le. The �le caching problem models this scenario,
the goal is to �nd good strategies for determining which �les should be eliminated. The
difference to the standard paging problem is that the �les have size and retrieval cost (the
problem is reduced to the paging if each size and each retrieval cost are 1). So the following
mathematical model describes the problem.

There is a given cache of size k, the input is a sequence of pages. Each page p has a
size denoted by s(p) and a retrieval cost denoted by c(p). The pages arrive from a list one
by one and after the arrival of a page the algorithm has to place it into the cache. If the page
is not contained in the cache and there is not enough place to put it into the cache then the
algorithm has to delete some pages from the cache to make enough place for the requested

8.3. Models related to computer networks 381

page. If the required page is in the cache then the cost of serving the request is 0 otherwise
the cost is c(p). The objective is to minimize the total cost. The problem is on-line which
means that for the decisions (which pages should be deleted from the cache) only the earlier
pages and decisions can be used, the algorithm has no information about the further pages.
We assume that the size of the cache and also the sizes of the pages are positive integers.

For the solution of the problem and for its particular cases many algorithms were de-
veloped. Here we present algorithm L which algorithm was developed by Young.

The algorithm maintains a credit value 0 ≤ cr(f) ≤ c(f) for each page f which is
contained in the actual cache. In the following part of the section the set of the pages in the
actual cache of L is denoted by LA. If L has to retrieve a page g then the
following steps are performed.

L(LA, g)
1 if g is not contained in LA
2 then while there is not enough place for g
3 ∆← min f∈LA cr(f)/s(f)
4 for each f ∈ LA let cr(f)← cr(f) − ∆ · s(f)
5 evict some pages with cr(f) = 0
6 place g into the cache LA and let cr(g)← c(g)
7 else reset cr(g) to any value between cr(g) and c(g)

Example 8.5 Suppose that k = 10 and LA contains the following three pages: g1 with s(g1) =

2, cr(g1) = 1, g2 with s(g2) = 4, cr(g2) = 3 and g3 with s(g3) = 3, cr(g3) = 3. Suppose that the next
requested page is g4, with the parameters s(g4) = 4, c(g4) = 4. Then there is not enough place for it
in the cache, so some pages must be evicted. L determines the value ∆ = 1/2 and changes
the credits as follows: cr(g1) = 0, cr(g2) = 1, cr(g3) = 3/2, thus g1 is evicted from the cache LA. Still
there is not enough place for g4 in the cache. The new ∆ value is ∆ = 1/4 and the new credits are:
cr(g2) = 0, cr(g3) = 3/4, thus g2 is evicted from the cache. Then there is enough place for g4, thus it
is placed into the cache LA with the credit value cr(g4) = 4.

L is weakly k-competitive, but a stronger statement is also true. For the web
caching problem an on-line algorithm ALG is called (C, k, h)-competitive, if there exists
such an absolute constant B, that ALGk(I) ≤ C · OPTh(I) + B is valid for each input, where
ALGk(I) is the cost of ALG using a cache of size k and OPTh(I) is the optimal offline cost
using a cache of size h. The following statement is true for algorithm L.

Theorem 8.7 If h ≤ k, then algorithm L is (k/(k − h + 1), k, h)-competitive.

Proof. Consider an arbitrary input sequence of pages, denote the input by I. We use the
potential function technique. During the analysis of the procedure we suppose that an offline
optimal algorithm with cache size h and L with cache size k are running parallel on
the input. We also suppose that each page is placed �rst by the offline algorithm into the
offline cache and then it is placed by the on-line algorithm into LA. We denote the set of the
pages contained in the actual cache of the optimal offline algorithm by OPT . Consider the
following potential function

382 8. Online Scheduling

Φ = (h − 1)
∑

f∈LA
cr(f) + k

∑

f∈OPT
(c(f) − cr(f)) .

Investigate the changes of the potential function during the retrievals of a page g.
• OPT places g into its cache.

Then OPT has cost c(g). In the potential function only the second part may change. On
the other hand cr(g) ≥ 0, thus the increase of the potential function is at most k · c(g).

• L decreases the credit value for each f ∈ LA.
In this case for each f ∈ LA the decrease of cr(f) is ∆ · s(f), thus the decrease of Φ is

∆((h − 1)s(LA) − ks(OPT ∩ LA)) ,

where s(LA) and s(OPT ∩ LA) denote the total size of the pages contained in sets LA
and OPT ∩ LA respectively. At the time when this step is performed OPT have already
placed the page g into its cache OPT , but the page is not contained in the cache LA.
Therefore s(OPT∩LA) ≤ h−s(g). On the other hand this step is performed if there is not
enough place for the page in LA thus s(LA) > k− s(g), which yields s(LA) ≥ k− s(g)+1
because the sizes are positive integers. Therefore we obtain that the decrease of Φ is at
least

∆
((h − 1)(k − s(g) + 1) − k(h − s(g))) .

Since s(g) ≥ 1 and k ≥ h, this decrease is at least ∆((h − 1)(k − 1 + 1) − k(h − 1)) = 0.
• L evicts a page f from cache LA.

Since L evicts only pages having credit 0, thus during this step Φ remains un-
changed.

• L places page g into the cache LA and sets the value cr(g) = c(g).
Then the cost of L is c(g). On the other hand g was not contained in the cache
LA before the performance of this step, thus cr(g) = 0 was valid. Furthermore �rst OPT
places the page into its cache thus g ∈ OPT is also valid. Therefore the decrease of Φ

is −(h − 1)c(g) + kc(g) = (k − h + 1)c(g).
• L resets for a page g ∈ HA the credit to a value between cr(g) and c(g).

In this case g ∈ OPT is valid, since OPT places �rst the page g into its cache. The value
cr(g) is not decreased and k > h − 1, thus Φ can not increase during this step.

We have investigated the possible steps of the algorithms and we proved the following
properties of the potential function.
• If OPT places a page into its cache, then the increase of the potential function is at most

k times more than the cost of OPT.
• If L places a page into its cache, then the decrease of Φ is (k−h+1) times more

than the cost of L.
• During the other steps Φ does not increase.

8.3. Models related to computer networks 383

By the above properties we obtain that Φ f −Φ0 ≤ k ·OPTh(I)−(k−h+1) ·Lk(I),
where Φ0 and Φ f are the starting and �nal values of the potential function. The potential
function is nonnegative, thus we obtain that (k − h + 1) · Lk(I) ≤ k · OPTh(I) + Φ0,
which proves that L is (k/(k − h + 1), k, h)-competitive.

8.3.3. On-line routing
In computer networks the congestion of the communication channels decreases the speed
of the communication and may cause loss of information. Thus congestion control is one of
the most important problems in the area of computer networks. A related important problem
is the routing of the communication where we have to determine the path in the network for
the messages. Since we have no information about the further traffic of the network thus
routing is an on-line problem. Here we present two on-line optimization models for the
routing problem.
The mathematical model

The network is given by a graph, each edge e has a maximal available bandwidth deno-
ted by u(e), the number of edges is denoted by m. The input is a sequence of requests, where
the j-th request is given by a vector (s j, t j, r j, d j, b j), and to satisfy the request bandwidth r j
must be reserved on a path from s j to t j for time duration d j, the bene�t of serving a request
is b j. In the followings we assume the assumption d j = ∞, and we omit the value of d j
from the requests. The problem is on-line which means that after the arrival of a request the
algorithm has to make the decisions without any information about the further requests. We
consider the following two models.

Load balancing model: In this model all requests must be satis�ed. The objective is to
minimize the maximum of the overload of the edges. The overload is the ratio of the sum
of the bandwidths reserved on the edge and the available bandwidth. Since each request is
served thus the bene�t is not signi�cant in this model.

Throughput model: In this model the decision maker is allowed to reject some requests.
The sum of the bandwidths reserved on an edge can not be more than the available band-
width. The goal is to maximize the sum of the bene�ts of the accepted requests. We inves-
tigate this model in details. It is important to note that this is a maximization problem thus
we use the notion of competitiveness in the form de�ned for maximization problems.

Below we de�ne the exponential algorithm. We need the following notations to de-
�ne and analyze the algorithm. Denote Pi the path which is assigned to the accepted re-
quest i. Let A denote the set of requests accepted by the on-line algorithm. Then le(j) =∑

i∈A,i< j,e∈Pi ri/u(e) is the ratio of the reserved bandwidth and the available bandwidth on e
before the arrival of request j.

The basic idea of the exponential algorithm is the following. The algorithm assigns a
cost which is exponential in le(j) to each e and chooses the path which has the minimal cost.
Below we de�ne and analyze the exponential algorithm for the throughput model. Let µ be
a constant which depends on the parameters of the problem, its value will be given later. Let
ce(j) = µle(j), for each request j and edge e. Then the exponential algorithm performs the
following steps after the arrival of a request (s j, t j, r j, b j).

384 8. Online Scheduling

EXP(s j, t j, r j, b j)
1 let U j be the set of the paths (s j, t j)
2 P j ← argminP∈U j

{∑e∈P
r j

u(e) ce(j)}
3 if C(P j) =

∑
e∈P j

r j
u(e) ce(j) ≤ 2mb j

4 then reserve the bandwidth r j on path P j
5 else reject the request

Remark. If we modify this algorithm to accept each request then we obtain an exponen-
tial algorithm for the load balancing model.

Example 8.6 Consider the network which contains the vertices A, B, C, D and the edges
(A, B), (B,D), (A,C), (C,D), where the available bandwidths of the edges are u(A, B) = 1, u(B,D) =

3/2, u(A,C) = 2, u(C,D) = 3/2. Suppose that µ = 10 and that the reserved bandwidths are: 3/4
on the path (A, B,D), 5/4 on the path (A,C,D), 1/2 on the path (B,D), 1/2 on the path (A,C). The
next request j is to reserve bandwidth 1/8 on some path between A and D. Then the values le(j) are:
l(A,B)(j) = (3/4) : 1 = 3/4, l(B,D)(j) = (3/4 + 1/2) : (3/2) = 5/6, l(A,C)(j) = (5/4 + 1/2) : 2 = 7/8,
l(C,D)(j) = (5/4) : (3/2) = 5/6. There are two paths between A and D, the costs are:

C(A, B,D) = 1/8 · 103/4 + 1/12 · 105/6 = 1.269 ,

C(A,C,D) = 1/16 · 107/8 + 1/12 · 105/6 = 1.035 .
The minimal cost belongs to the path (A,C,D). Therefore, if 2mb j = 8b j ≥ 1, 035, then the

request is accepted and the bandwidth is reserved on the path (A,C,D). Otherwise the request is
rejected.

To analyze the algorithm consider an arbitrary input sequence I. Denote A the set of the
requests accepted by EXP, and denote A∗ the set of the requests which are accepted by OPT
and rejected by EXP. Furthermore denote P j

∗ the path reserved by OPT for each request j
accepted by OPT. De�ne the value le(v) =

∑
i∈A,e∈Pi ri/u(e) for each e, this value gives the

ratio of the reserved bandwidth and the available bandwidth for e at the end of the on-line
algorithm.

Let µ = 4mPB, where B is an upper bound on the bene�ts and for each request and each
edge the inequality

1
P ≤

r(j)
u(e) ≤

1
lg µ

is valid. Then the following statements hold.

Lemma 8.8 The solution given by algorithm EXP is feasible, the sum of the reserved band-
widths is not more than the available bandwidth for each edge.

Proof. We prove the statement by contradiction. Suppose that there is an edge f where the
available bandwidth is violated. Let j be the �rst such accepted request which violates the
available bandwidth on f .

The inequality r j/u(f) ≤ 1/ lg µ is valid for j and f (it is valid for all edges and re-
quests). Furthermore after the acceptance of request j the sum of the bandwidths is greater
than the available bandwidth on edge f , thus we obtain that l f (j) > 1− 1/ lg µ. On the other
hand this yields that the inequality

8.3. Models related to computer networks 385

C(P j) =
∑

e∈P j

r j

u(e)ce(j) ≥ r j

u(f)c f (j) >
r j

u(f)µ
1−1/ lg µ

holds for the value C(P j) used in algorithm EXP. Using the assumption on P we obtain that
r j

u(e) ≥ 1
P , and µ1−1/ lg m = µ/2, thus by the above inequality we obtain that

C(P) > 1
P
µ

2 = 2mB .

On the other hand this inequality is a contradiction since EXP would reject the request.
Therefore we obtained a contradiction thus we proved the statement of the lemma.

Lemma 8.9 For the solution given by OPT the following inequality holds:
∑

j∈A∗
b j ≤ 1

2m
∑

e∈E
ce(v) .

Proof. Since EXP rejected j for each j ∈ A∗, thus b j <
1

2m
∑

e∈P j
∗

r j
u(e) ce(j) for each j ∈ A∗,

because this inequality is valid for all paths between s j and t j. Therefore
∑

j∈A∗
b j <

1
2m

∑

j∈A∗

∑

e∈P j
∗

r j

u(e)ce(j) .

On the other hand ce(j) ≤ ce(v) holds for each e, thus we obtain that
∑

j∈A∗
b j <

1
2m

∑

e∈E
ce(v)

(∑

j∈A∗:e∈P j
∗

r j

u(e)
)
.

The sum of the bandwidths reserved by OPT is at most the available bandwidth u(e) for
each e, thus ∑

j∈A∗:e∈P∗(j)
r j

u(e) ≤ 1.
Consequently

∑

j∈A∗
b j ≤ 1

2m
∑

e∈E
ce(v)

which inequality is the one which we wanted to prove.

Lemma 8.10 For the solution given by algorithm EXP the following inequality holds

1
2m

∑

e∈E
ce(v) ≤ (1 + lg µ)

∑

j∈A
b j .

Proof. To prove the lemma it is enough to show that the inequality ∑
e∈P j (ce(j+1)−ce(j)) ≤

2mb j log2 µ is valid for each request j ∈ A. On the other hand

ce(j + 1) − ce(j) = µle(j)+ r j
u(e) − µle(j) = µle(j)(2log2 µ

r j
u(e) − 1) .

Since 2x − 1 < x, if 0 ≤ x ≤ 1, and by the assumptions 0 ≤ log2 µ
r j

u(e) ≤ 1, thus we
obtain that

ce(j + 1) − ce(j) ≤ µle(j) log2 µ
r j

u(e) .

386 8. Online Scheduling

Summarizing the bounds given above we obtain that
∑

e∈P j

(ce(j + 1) − ce(j)) ≤ log2 µ
∑

e∈P j

µle(j) r j

u(e) = log2 µ ·C(P j) .

Since EXP accepts the requests with the property C(P j) ≤ 2mb j, thus the above inequality
proves the required statement.

By the above lemmas we can prove the following theorem.

Theorem 8.11 Algorithm EXP is 1/O(lg µ)-competitive, if µ = 4mPB, where B is an upper
bound on the bene�ts, and for all edges and requests

1
P ≤

r(j)
u(e) ≤

1
lg µ .

Proof. By lemma 8.8 it follows that the algorithm results in a feasible solution where the
available bandwidths are not violated. Using the notations de�ned before the lemmas we
obtain that the bene�t of algorithm EXP on the input I is EXP(I) =

∑
j∈A b j, and the bene�t

of OPT is at most ∑ j∈A∪A∗ b j. Therefore by lemma 8.9 and lemma 8.10 it follows that

OPT(I) ≤
∑

j∈A∪A∗
b j ≤ (2 + log2 µ)

∑

j∈A
b j ≤ (2 + log2 µ)EXP(I) ,

which inequality proves the theorem.

Exercises
8.3-1 Consider the modi�ed version of the data acknowledgement problem with the ob-
jective function k +

∑k
j=1 µ j, where k is the number of acknowledgements and µ j =

maxt j−1<ai≤t j {t j − ai} is the maximal latency of the j-th acknowledgement. Prove that al-
gorithm A is also 2-competitive in this modi�ed model.
8.3-2 Represent the special case of the web caching problem, where s(g) = c(g) = 1 for
each page g as a special case of the k-server problem. De�ne the metric space which can be
used.
8.3-3 In the web caching problem the cache LA of size 8 contains three pages a, b, c with the
following sizes and credits: s(a) = 3, s(b) = 2, s(c) = 3, cr(a) = 2, cr(b) = 1/2, cr(c) = 2.
We want to retrieve a page d of size 3, and retrieval cost 4. The optimal offline algorithm
OPT with cache of size 6 already placed the page into its cache, its cache contains the pages
d and c. Which pages are evicted by L to place d? What kind of changes the poten-
tial function de�ned in the proof of theorem 8.7 has?
8.3-4 Prove that if in the throughput model no bounds are given for the ratios r(j)/u(e) then
there is not constant-competitive on-line algorithm.

8.4. On-line bin packing models
In this section we consider the on-line bin packing problem and its multidimensional gene-
ralizations. First we present the classical on-line bin packing problem and some fundamental
results of the area. Then we de�ne the multidimensional generalizations and present some
details from the area of on-line strip packing.

8.4. On-line bin packing models 387

8.4.1. On-line bin packing
In the bin packing problem the input is a list of items, where the i-th item is given by its
size ai ∈ (0, 1]. The goal is to pack the items into unit size bins and minimize the number
of the used bins. In a more formal way we can say that we have to divide the items into
groups where each group has the property that the total size of the items is at most 1 and the
goal is to minimize the number of groups. This problem also appears in the area of memory
management.

In this section we investigate the on-line problem which means that the decision maker
has to make decisions about the packing of the i-th item based on the values a1, . . . , ai
without any information about the further items.

NF algorithm, bounded space algorithms
First we consider the model where the number of the open bins is limited. The k-

bounded space model means that if the number of open bins reaches the bound k then the
algorithm can open a new bin only after closing some of the bins, and the closed bins cannot
be used for packing further items. If only one bin can be open then the natural algorithm
packs the item into the open bin if it �ts otherwise it closes the bin, opens a new one and
put the item into it. We call this algorithm NF (Next Fit) algorithm. We do not present the
pseudocode of the algorithm it can be found in this book in the chapter about memory ma-
nagement. The asymptotic competitive ratio of algorithm NF is determined by the following
theorem.

Theorem 8.12 The asymptotic competitive ratio of NF is 2.

Proof. Consider an arbitrary sequence of items, denote it by σ. Denote n the number of bins
used by OPT and denote m the number of bins used by NF. Furthermore let S i, i = 1, . . . ,m
the total size of the items packed into the i-th bin by NF.

Then S i + S i+1 > 1, since in the opposite case the �rst item of the (i + 1)-th bin �ts into
the i-th bin which contradicts to the de�nition of the algorithm. Therefore the total size of
the items is more than bm/2c.

On the other hand the optimal offline algorithm cannot put items with total size more
than 1 into the same bin, thus we obtain that n > bm/2c. This yields that m ≤ 2n − 1, thus

NF(σ)
OPT(σ) ≤

2n − 1
n = 2 − 1/n .

Consequently we proved that the algorithm is asymptotically 2-competitive.
Now we prove that the bound is tight. Consider for each n the following sequence

denoted by σn. The sequence contains 4n − 2 items, the size of the 2i − 1-th item is 1/2,
the size of the 2i-th item is 1/4n, i = 1, . . . , 2n. Then algorithm NF puts the (2i − 1)-th and
the 2i-th items into the i-th bin for each bin, thus NF(σn) = 2n − 1. The optimal offline
algorithm puts pairs of 1/2 size items into the �rst n − 1 bins and it puts one 1/2 size item
and the small items into the n-th bin, thus OPT(σn) = n. Since NF(σn)/OPT(σn) = 2 − 1/n
and this function tends to 2 as n tends to∞, thus we proved that the asymptotic competitive
ratio of the algorithm is at least 2.

If k > 1 then better algorithms than NF are known for the k-bounded space model. The
best known bounded space on-line algorithms belong to the family of harmonic algorithms,
where the basic idea is that the interval (0, 1] is divided into subintervals and each item has

388 8. Online Scheduling

a type which is the subinterval of its size. The items of the different types are packed into
different bins. The algorithm uses parallel versions of NF to pack the items belonging to the
same type.
Algorithm FF and the weight function technique

In this part we present a method which is often used in the analysis of the bin packing
algorithms. We show the method by analyzing algorithm FF (First Fit).

Algorithm FF can be used if the number of open bins is not bounded. The algorithm
puts the item into the earliest opened bin where it �ts. If the item does not �t into any of
the bins then a new bin is opened and the algorithm puts the item into it. The pseudocode
of the algorithm is also presented in the chapter of memory management. The asymptotic
competitive ratio of the algorithm is bounded above by the following theorem.

Theorem 8.13 FF is asymptotically 1.7-competitive.

Proof. In the proof we use the weight function technique where the idea is that a weight
is assigned to each item which measures in some way that how difficult can be to pack the
item. Then the weight function and the total size of the items are used to bound the offline
and on-line objective function values. De�ne the following weight function:

w(x) =



6x/5, ha 0 ≤ x ≤ 1/6
9x/5 − 1/10, ha 1/6 ≤ x ≤ 1/3
6x/5 + 1/10, ha 1/3 ≤ x ≤ 1/2
6x/5 + 2/5, ha 1/2 < x .

Let w(H) =
∑

i∈H w(ai) for any set H of items. Then the following statements are valid
for the weight function. Both lemmas can be proven by case disjunction based on the sizes
of the possible items. The proofs are long and contain many technical details, therefore here
we omit them.

Lemma 8.14 If ∑i∈H ai ≤ 1 is valid for a set H of items, then w(H) ≤ 17/10 also holds.

Lemma 8.15 For an arbitrary list L of items w(L) ≥ FF(L) − 2.

Using these lemmas we can prove easily that the algorithm is asymptotically 1.7-
competitive. Consider an arbitrary list L of items. The optimal offline algorithm can pack
the items of the list into OPT(L) bins. The algorithm packs items with total size at most 1
into each bin, thus by Lemma 8.14 it follows that w(L) ≤ 1.7OPT(L). On the other hand by
Lemma 8.15 we obtain that FF(L) − 2 ≤ w(L) which yields that FF(L) ≤ 1.7OPT(L) + 2,
and that inequality proves that the algorithm is asymptotically 1.7-competitive.

It is important to note that the above bound is tight, it is also true that the asymptotic
competitive ratio of FF is 1.7.

Many algorithms were developed with smaller asymptotic competitive ratio than 17/10,
the best known algorithm is asymptotically 1.5888-competitive.
Lower bounds

In this part we consider the techniques for proving lower bounds on the possible asymp-
totic competitive ratio. First we present a simple lower bound and then we show how the
idea of the proof can be extended into a general method.

8.4. On-line bin packing models 389

Theorem 8.16 No on-line algorithm for the bin packing problem can have smaller asymp-
totic competitive ratio than 4/3.

Proof. Let A be an arbitrary on-line algorithm. Consider the following sequence of items.
Let ε < 1/12 and L1 be a list of n items of size 1/3 + ε, and L2 be a list of n items of
size 1/2 + ε. The input is started by L1. Then A packs two items or one item into the bins.
Denote by k the number of bins containing two items. Then the cost of the algorithm is
A(L1) = k + n − 2k = n − k. On the other hand the optimal offline algorithm can pack pairs
of items into the bins thus OPT (L1) = n/2.

Now suppose that the input is the combined list L1L2. The algorithm is an on-line
algorithm it does not know at the beginning that it is the input L1 or L1L2, thus it also
uses k bins for packing two items from the part L1. Therefore among the items of size
1/2 + ε only n− 2k can be paired with earlier items the other ones need their own bin. Thus
A(L1L2) ≥ n− k + (n− (n− 2k)) = n + k. On the other hand the optimal offline algorithm can
pack one smaller (size 1/3 + ε) item and one larger (size 1/2 + ε) item into each bin, thus
OPT (L1L2) = n.

So we obtained that there is a list for algorithm A where

A(L)/OPT (L) ≥ max
{

n − k
n/2 ,

n + k
n

}
≥ 4/3 .

Moreover in the constructed lists OPT (L) is at least n/2 which can be arbitrarily large.
This yields that the above inequality proves that the asymptotic competitive ratio of A is at
least 4/3, and this is what we wanted to prove.

The fundamental idea of the above proof is that a long sequence is considered (in this
proof L1L2) and depending on the behaviour of the algorithm such pre�x of the sequence is
selected as input where the ratio of the costs is maximal. It is a natural extension to consider
more difficult sequences. Many lower bounds were proven based on different sequences. On
the other hand the computations which are necessary to analyze the sequence became more
and more difficult. Below we show how the analysis of such sequences can be interpreted as
mixed integer programming problem, which makes it possible to use computers to develop
lower bounds.

Consider the following sequence of items. Let L = L1L2 . . . Lk, where Li contains
ni = αin identical items of size ai. If algorithm A is asymptotically C-competitive then
the inequality

C ≥ lim sup
n→∞

A(L1 . . . L j)
OPT(L1 . . . L j)

is valid for each j. It is enough to consider such algorithm for which the technique can
achieve the minimal lower bound, thus or goal is to determine the value

R = minAmax j=1,...,k lim sup
n→∞

A(L1 . . . L j)
OPT(L1 . . . L j)

,

which value gives a lower bound on the possible asymptotic competitive ratio. We can deter-
mine this value as an optimal solution of a mixed integer programming problem. To de�ne
this programming problem we need the following de�nitions.

The contain of a bin can be described by the packing pattern of the bin, which gives

390 8. Online Scheduling

how many elements are contained in the bin from the subsequences. Formally a packing
pattern is a k-dimensional vector (p1, . . . , pk), where the coordinate p j is the number of
elements contained in the bin from subsequence L j. For the packing patterns the constraint∑k

j=1 a j p j ≤ 1 must hold. (This constraint ensures that the items described by the packing
pattern �t into the bin.)

Classify the set T of the possible packing patterns. For each j let T j be the set of the
patterns for which the �rst positive coordinate is the j-th. (The pattern p belongs to class T j
if pi = 0 for i < j and p j > 0.)

Consider the packing produced by A. Each bin is packed by some packing pattern the-
refore the packing can be described by the packing patterns. For each p ∈ T denote by
n(p) the number of bins which are packed by the pattern p. The packing produced by the
algorithm is given by the variables n(p).

Observe that the bins which are packed by a pattern from class T j receive their �rst
element from the subsequence L j. Therefore we obtain that the number of bins opened by A
to pack the elements of subsequence L1 . . . L j can be given by the variables n(p) as follows:

A(L1 . . . L j) =

j∑

i=1

∑

p∈Ti

n(p).

Consequently for a given n the required value R can be determined by the solution of
the following mixed integer programming problem.

Min R
∑

p∈T p jn(p) = n j, 1 ≤ j ≤ k
∑ j

i=1
∑

p∈Ti np ≤ R · OPT (L1 . . . L j), 1 ≤ j ≤ k
n(p) ∈ {0, 1, . . . }, p ∈ T

The �rst k constraints describe that the algorithm has to pack all items. The second k
constraints describe that R is at least as large as the ratio of the on-line and offline costs for
the subsequences considered.

By the list L1L2 . . . Lk the set T of the possible packing patterns and also the optimal
solutions OPT (L1 . . . L j) can be determined.

In this programming problem the number and the value of the variables can be large,
thus instead of the problem its linear programming relaxation is considered. Moreover we
are interested in the solution under the assumption that n tends to ∞ and it can be proven
that the integer programming and the linear programming relaxation give the same bound
in this case.

The best currently known bound was proven by this method and it states that no on-line
algorithm can have smaller asymptotic competitive ratio than 1.5401.

8.4.2. Multidimensional models
The bin packing problem has three different multidimensional generalizations the vector
packing, the box packing and the strip packing models. We only consider in details the strip
packing problem. For the other generalizations we just give the model. In the vector packing
problem the input is a list of d-dimensional vectors, and the algorithm has to pack these

8.4. On-line bin packing models 391

vectors into the minimal number of bins. A packing is legal for a bin if for each coordinate
the sum of the values of the elements packed into the bin is at most 1. In the on-line version
the vectors are coming one by one and the algorithm has to assign the vectors to the bins
without any information about the further vectors. In the box packing problem the input is
a list of d-dimensional boxes and the goal is to pack the items into the minimal number of
d-dimensional unit cube without overlapping. In the on-line version the items are coming
one by one and the algorithm has to pack them into the cubes without any information about
the further items.

On-line strip packing
In the strip packing problem there is a set of two dimensional rectangles, de�ned by

their widths and heights, and the task is to pack them without rotation into a vertical strip
of width w by minimizing the total height of the strip. We assume that the width of the
rectangles is at most w and the height of the rectangles is at most 1. This problem appears
in many situations. Usually, scheduling of tasks with shared resource involves two dimen-
sions, the resource and the time. We can consider the widths as the resource and the heights
as the time. Our goal is to minimize the total amount of time used. Some applications can
be found in computer scheduling problems. We consider the on-line version where the rec-
tangles arrive from a list one by one and we have to pack the rectangle into the vertical strip
without any information about the further items. Most of the algorithms developed for the
strip packing problem belong to the class of shelf algorithms. We consider this family of
algorithms below.

S algorithms
One basic way of packing into the strip is to de�ne shelves and pack the rectangles into

the shelves. By shelf we mean a rectangular part of the strip. Shelf packing algorithms place
each rectangle into one of the shelves. If the algorithm decides which shelf will contain the
rectangle, then the rectangle is placed into the shelf as much to the left as it is possible
without overlapping the other rectangles placed earlier into the shelf considered. Therefore,
after the arrival of a rectangle, the algorithm has to make two decisions. The �rst decision is
whether to create a new shelf or not. If the algorithm creates a new shelf it also has to decide
the height of the new shelf. The created shelves always start from the top of the previous
shelf. The �rst shelf is placed to the bottom of the strip. The algorithm also has to choose the
shelf to which it puts the rectangle. In what follows, we will say that it is possible to pack
a rectangle into a shelf, if there is enough room for the rectangle in the shelf. It is obvious
that if a rectangle is higher than a shelf we cannot place it into the shelf.

We consider only one algorithm in details. This algorithm was developed and analyzed
by Baker and Schwarz in 1983 and it is called NFSr algorithm. The algorithm depends on
a parameter r < 1. For each j there is at most one active shelf with height r j. We give the
behaviour of the algorithm below.

After the arrival of a rectangle pi = (wi, hi) choose a value for k which satis�es rk+1 <
hi ≤ rk. If there is an active shelf with height rk and it is possible to pack the rectangle into
it, then pack it there. If there is no active shelf with height rk, or it is not possible to pack the
rectangle into the active shelf with height rk, then create a new shelf with height rk, put the
rectangle into it, and let this new shelf be the active shelf with height rk (if we had earlier
an active shelf with height rk then we close it).

392 8. Online Scheduling

Example 8.7 Let r = 1/2. Suppose that the size of the �rst item is (w/2, 3/4). Then it is assigned to
a shelf of height 1. We de�ne a shelf of height 1 at the bottom of the strip, this shelf will be the active
shelf with height 1 and we place the item into the left corner of this shelf. Suppose that the size of the
next item is (3w/4, 1/4). Then it is placed into a shelf of height 1/4. There is no active shelf with this
height so we de�ne a new shelf of height 1/4 on the top of the previous shelf. This will be the active
shelf of height 1/4 and the item is placed into its left corner. Suppose that the size of the next item is
(3w/4, 5/8). Then this item is placed into a shelf of height 1. It is not possible to pack it into the active
shelf thus we close the active shelf and we de�ne a new shelf of height 1 on the top of the previous
shelf. This will be the active shelf of height 1 and the item is placed into its left corner. Suppose that
the size of the next item is (w/8, 3/16). Then this item is placed into a shelf of height 1/4. We can
pack it into the active shelf of height 1/4 thus we pack it into that shelf as left as it is possible.

For the competitive ratio of NFSr the following statements are valid.

Theorem 8.17 Algorithm NFSr is (2
r + 1

r(1−r)
)-competitive. Algorithm NFSr is asymptoti-

cally 2/r-competitive.

Proof. First we prove that the algorithm is (2
r + 1

r(1−r)
)-competitive. Consider an arbitrary list

of rectangles denote it by L. Let HA denote the sum of the heights of the shelves which are
active at the end of the packing, and let HC be the sum of the heights of the other shelves. Let
h be the height of the highest active shelf, and let H be the height of the highest rectangle.
Since the algorithm created a shelf with height h, we have H > rh. As there is at most 1
active shelf for each height

HA ≤ h
∞∑

i=0
ri =

h
1 − r ≤

H
r(1 − r) .

Consider the shelves which are not active at the end. Consider the shelves of height hri

for each i, denote the number of the closed shelves by ni. Let S be one of these shelves with
height hri. The next shelf S ′ with height hri contains one rectangle which would not �t into
S . Therefore, the total width of the rectangles is at least w. Furthermore the height of these
rectangles is at least hri+1, thus the total area of the rectangles packed into S and S ′ is at
least hwri+1. If we pair the shelves of height hrk for each i in this way, using the active shelf
if the number of the shelves of the considered height is odd, we obtain that the total area of
the rectangles assigned to shelves of height hri is at least wnihri+1/2. Thus the total area of
the rectangles is at least ∑∞

i=0 wnihri+1/2, and this yields that OPT(L) ≥ ∑∞
i=0 nihri+1/2. On

the other hand the total height of the closed shelves is HZ =
∑∞

i=0 nihri, and we obtain that
HZ ≤ 2OPT(L)/r.

Since OPT(L) ≥ H is valid we proved the required inequality

NFSr(L) ≤ OPT(L)(2/r + 1/r(1 − r) .

Since the heights of the rectangles are bounded by 1, thus H and HA are bounded by a
constant so we obtain immediately the result about the asymptotic competitive ratio.

Besides this algorithm some other shelf algorithms were investigated for the solution of
the problem. We can interpret the basic idea of NFSr as follows. We de�ne classes of items
belonging to types of shelves and the rectangles assigned to the classes are packed by the

8.5. On-line scheduling 393

classical bin packing algorithm NF. It is a straightforward idea to use other bin packing al-
gorithms. The best known shelf algorithm was developed by Csirik and Woeginger in 1997,
that algorithm uses the harmonic bin packing algorithm to pack the rectangles assigned to
the classes.

Exercises
8.4-1 Suppose that the size of the items is bounded above by 1/3. Prove that under this
assumption the asymptotic competitive ratio of NF is 3/2.
8.4-2 Suppose that the size of the items is bounded above by 1/3. Prove Lemma 8.15 under
this assumption.
8.4-3 Suppose that the sequence of items is given by a list L1L2L3, where L1 contains n
items of size 1/2, L2 contains n items of size 1/3, L3 contains n items of size 1/4. Which
packing patterns can be used? Which patterns belong to the class T2?
8.4-4 Consider the version of the strip packing problem where one can lengthen the rectang-
les keeping the area �xed. Consider the extension of NFSr which lengthen the rectangles
before the packing to have the same height as the shelf which is chosen to pack it. Prove
that this algorithm is 2 + 1

r(1−r) -competitive.

8.5. On-line scheduling
The area of scheduling theory has a huge literature. The �rst result in on-line scheduling
belongs to Graham, who analyzed in 1966 the L scheduling algorithm. We can say that
despite the fact that Graham did not use the terminology which was developed in the area
of the on-line algorithms, and he did not consider the algorithm as an on-line algorithm, he
analyzed it as an approximation algorithm.

From the area of scheduling we only recall the de�nitions which are used in this chapter.
In a scheduling problem we have to �nd an optimal schedule of jobs. In the most fun-

damental model each job has a known processing time and to schedule the job we have to
assign it to a machine and we have to give its starting time and a completion time, where
the difference between the completion time and the starting time is the processing time. No
machine may simultaneously run two jobs.

Concerning the machine environment three different models are considered. If the pro-
cessing time of a job is the same for each machine then we call the machines identical
machines. If each machine has a speed si, the jobs has a processing weight p j and the pro-
cessing time of job j on the i-th machine is p j/si, then we call the machines related machi-
nes. If the processing time of job j is given by an arbitrary positive P j = (p j(1), . . . , p j(m))
vector, where the processing time of the job on the i-th machine is p j(i), then we call the
machines unrelated machines.

Many objective functions are considered for scheduling problems, here we only consi-
der such models where the goal is the minimization of the makespan (the maximal comple-
tion time).

In the next subsection we de�ne the two most fundamental on-line scheduling models,
and in the following two subsections we consider these models in details.

394 8. Online Scheduling

8.5.1. On-line scheduling models
Probably the following models are the most fundamental examples of online machine sche-
duling problems.

LIST model
In this model we have a �xed number of machines denoted by M1, M2, . . . , Mm and the

jobs arrive from a list. This means that the jobs and their processing times are revealed to the
online algorithm one by one. When a job is revealed the online algorithm must irrevocably
assign the job to a machine with a starting time and a completion time.

By the load of a machine, we mean the sum of the processing times of all jobs assigned
to the machine. Since the objective function is to minimize the maximal completion time, it
is enough to consider the schedules where the jobs are scheduled on the machines without
idle time. For these schedules the maximal completion time is the load for each machine.
Therefore this scheduling problem is reduced to a load balancing problem, the algorithm has
to assign the jobs to the machines minimizing the maximum load, which is the makespan in
this case.

Example 8.8 Consider the LIST model and two identical machines. Consider the following sequence
of jobs where the jobs are given by their processing time: I = {(j1 = 4, j2 = 3, j3 = 2, j4 = 5)}. Then
the on-line algorithm �rst receives job j1 from the list, the algorithm has to assign this job to one of
the machines. Suppose that the job is assigned to machine M1. Next the on-line algorithm receives
job j2 from the list, the algorithm has to assign this job to one of the machines. Suppose that the job
is assigned to machine M2. Next the on-line algorithm receives job j3 from the list, the algorithm has
to assign this job to one of the machines. Suppose that the job is assigned to machine M2. Finally
the on-line algorithm receives job j4 from the list, the algorithm has to assign this job to one of the
machines, suppose that the job is assigned to machine M1. Then the loads on the machines are 4 + 5
and 3 + 2, and we can give a schedule where the maximal completion times on the machines are the
loads: we can schedule the jobs on the �rst machine in the time intervals (0, 4) and (4, 9), and we can
schedule the jobs on the second machine in the time intervals (0, 3) and (3, 5).

TIME model
In this model again there are a �xed number of machines. Each job has a processing

time and a release time. A job is revealed to the online algorithm at its release time. For
each job the online algorithm must choose which machine it will run on and assign a start
time. No machine may simultaneously run two jobs. Note that the algorithm is not required
to immediately assign a job at its release time. However, if the online algorithm assigns a
job at time t then it cannot use information about jobs released after time t and it cannot
start the job before time t. The objective is to minimize the makespan.

Example 8.9 Consider the TIME model with two related machines. Let the �rst machine be M1
with speed 1, and the second machine be M2 with speed 2. Consider the following input I = { j1 =

(1, 0), j2 = (1, 1), j3 = (1, 1), j4 = (1, 1)}, where the jobs are given by the (processing time, release
time) pairs. Thus a job arrives at time 0 with processing time 1, the algorithm can start to process it
on one of the machines or it can wait for jobs with larger processing time. Suppose that the algorithm
waits till time 1/2 and then it starts to process the job on machine M1. The completion time of the
job is 3/2. At time 1 three further jobs arrive, at that time only M2 can be used. Suppose that the

8.5. On-line scheduling 395

algorithm starts to process job j2 on this machine. At time 3/2 both jobs are completed, suppose
that the remaining jobs are started on machines M1 and M2 the completion times are 5/2 and 2, thus
the makespan achieved by the algorithm is 5/2. Observe that an algorithm which starts the �rst job
immediately at time 0 can make a better schedule with makespan 2. But it is important to note that in
some cases it can be useful to wait for larger jobs before starting a job.

8.5.2. LIST model
The �rst algorithm in this model was developed by Graham. Algorithm LIST assigns each
job to the machine where the actual load is minimal, if there are more machines with this
property it uses the machine with the smallest index. This means that the algorithm tries to
balance the loads on the machines. The competitive ratio of this algorithm is determined by
the following theorem.

Theorem 8.18 The competitive ratio of algorithm LIST is 2−1/m in the identical machines
case.

Proof. First we prove that the algorithm is 2− 1/m-competitive. Consider an arbitrary input
sequence denote it by σ = { j1, . . . , jn}, denote the processing times by p1, . . . , pn. Consider
the schedule produced by LIST. Let jl be a job with maximal completion time. Investigate
the starting time S l of this job. Since LIST chooses the machine with minimal load thus the
load was at least S l on each of the machines when jl was scheduled. Therefore we obtain
that

S l ≤ 1
m

n∑
j=1
j,l

p j =
1
m (

n∑

j=1
p j − pl) =

1
m (

n∑

j=1
p j) − 1

m pl .

This yields that

LIS T (σ) = S l + pl ≤ 1
m (

n∑

j=1
p j) +

m − 1
m pl .

On the other hand OPT also processes all of the jobs thus we obtain that OPT (σ) ≥
1
m (∑n

j=1 p j). Furthermore pl is scheduled on one of the machines of OPT thus OPT (σ) ≥ pl.
By these bounds we obtain that

LIS T (σ) ≤ (1 +
m − 1

m)OPT (σ),

which inequality proves that LIST is 2 − 1/m-competitive.
Now we prove that the bound is tight. Consider the following input. It contains m(m−1)

jobs with processing time 1/m and one job with processing time 1. Then LIST assigns m−1
small jobs to each machine and the last large job is assigned to M1. Therefore its makespan
is 1 + (m−1)/m. On the other hand the optimal algorithm schedules the large job on M1 and
m small jobs on the other machines, and its makespan is 1. Thus the ratio of the makespans
is 2 − 1/m which shows that the competitive ratio of LIST is at least 2 − 1/m.

It is hard to imagine any other algorithm for the on-line case, but many other algorithms
were developed. The competitive ratios of the better algorithms tend to smaller number than

396 8. Online Scheduling

2 as the number of machines tends to∞. Most of these algorithms are based on the following
idea. The jobs are scheduled keeping the load uniformly on most of the machines but in
contrast with LIST the loads are kept low on some of the machines, keeping the possibility
to use these machines for scheduling large jobs which may arrive later.

Below we consider the more general cases where the machines are not identical. LIST
may perform very badly, the processing time of a job can be very large on the machine
where the actual load is minimal. But we can easily change the greedy idea of LIST as
follows. The extended algorithm is called GREEDY and it assigns the job to the machine
where the load with the processing time of the job is minimal. If there are more machines
which has minimal value then the algorithm chooses among them the machine where the
processing time of the job is minimal, if there are more machines with this property the
algorithm chooses among them the one with the smallest index.

Example 8.10 Consider the case of related machines where there are 3 machines M1, M2,M3 and the
speeds are s1 = s2 = 1, s2 = 3. Suppose that the input is I = { j1 = 2, j2 = 1, j3 = 1, j4 = 3, j5 = 2)},
where the jobs are de�ned by their processing weight. Then the load after the �rst job is 2/3 on
machine M3 and 2 on the other machines, thus j1 is assigned to M3. The load after job j2 is 1 on all
of the machines, its processing time is minimal on machine M3, thus GREEDY assigns it to M3. The
load after job j3 is 1 on M1 and M2, and 4/3 on M3, thus the job is assigned to M1. The load after job
j4 is 4 on M1, 3 on M2, and 2 on M3, thus the job is assigned to M3. Finally the load after job j5 is 3
on M1, 2 on and M2, and 8/3 on M3, thus the job is assigned to M2.

Example 8.11 Consider the unrelated machines case with two machines and the following input
I = { j1 = (1, 2), j2 = (1, 2), j3 = (1, 3), j4 = (1, 3)}, where the jobs are de�ned by the vectors of
processing times. The load after job j1 is 1 on M1 and 2 on M2, thus the job is assigned to M1. The
load after job j2 is 2 on M1 and also on M2, thus the job is assigned to M1 because it has smaller
processing time there. The load after job j3 is 3 on M1 and M2, thus the job is assigned to M1 because
it has smaller processing time there. Finally the load after job j4 is 4 on M1 and 3 on M2, thus the job
is assigned to M2.

The competitive ratio of the algorithm is determined by the following theorems.
Theorem 8.19 The competitive ratio of algorithm GREEDY is m in the unrelated machi-
nes case.
Proof. First we prove that the competitive ratio of the algorithm is at least m. Consider the
following input sequence. Let ε > 0 be a small number. The sequence contains m jobs. The
processing time of job j1 is 1 on machine M1, 1 + ε on machine Mm, and ∞ on the other
machines, (p1(1) = 1, p1(i) = ∞, i = 2, . . . ,m − 1, p1(m) = 1 + ε). For job ji, i = 2, . . . ,m
the processing time is i on machine Mi, 1 +ε on machine Mi−1 and∞ on the other machines
(p j(j − 1) = 1 + ε, p j(j) = j, p j(i) = ∞, if i , j − 1 and i , j).

Then job ji is scheduled on Mi by GREEDY and the makespan is m. On the other hand
the optimal offline algorithm schedules j1 on Mm and ji is scheduled on Mi−1 for the other
jobs thus the optimal makespan is 1 + ε. The ratio of the makespans is m/(1 + ε). This ratio
tends to m, as ε tends to 0, and this proves that the competitive ratio of the algorithm is at
least m.

Now we prove that the algorithm is m-competitive. Consider an arbitrary input se-
quence, denote the makespan in the optimal offline schedule by L∗ and let L(k) denote the

8.5. On-line scheduling 397

maximal load in the schedule produced by GREEDY after scheduling the �rst k jobs. Since
the processing time of the i-th job is at least min j pi(j), and the load is at most L∗ on the
machines in the offline optimal schedule, thus we obtain that mL∗ ≥ ∑n

i=1 min j pi(j).
We prove by induction that the inequality L(k) ≤ ∑k

i=1 min j pi(j) is valid. Since the �rst
job is assigned to the machine where its processing time is minimal, thus the statement is
obviously true for k = 1. Let 1 ≤ k < n be arbitrary and suppose that the statement is true
for k. Consider the k + 1-th job. Let Ml be the machine where the processing time of this job
is minimal. If we assign the job to Ml then we obtain by the induction hypothesis that the
load on this machines is at most L(k) + pk+1(l) ≤ ∑k+1

i=1 min j pi(j).
On the other hand the maximal load in the schedule produced by GREEDY can not be

more than the maximal load in the case when the job is assigned to Ml, thus L(k + 1) ≤∑k+1
i=1 min j pi(j), which means that we proved the inequality for k + 1.

Therefore we obtained that mL∗ ≥ ∑n
i=1 min j pi(j) ≥ L(n), which yields that the algo-

rithm is m-competitive.
To investigate the related machines case consider an arbitrary input. Let L and L∗ denote

the makespans achieved by GREEDY and OPT respectively. The analysis of the algorithm
is based on the following lemmas which give bounds on the loads of the machines.

Lemma 8.20 The load on the fastest machine is at least L − L∗.

Proof. Consider the schedule produced by GREEDY. Consider a job J which causes the
makespan (its completion time is maximal). If this job is scheduled on the fastest machine
then the lemma immediately follows, the load on the fastest machine is L. Suppose that J is
not scheduled on the fastest machine. The optimal maximal load is L∗, thus the processing
time of J on the fastest machine is at most L∗. On the other hand the completion time of J is
L, thus at the time when the job was scheduled the load was at least (L − L∗) on the fastest
machine, otherwise GREEDY would assign J to the fastest machine.

Lemma 8.21 If the loads are at least l on all machines having speed at least v then the
loads are at least l − 4L∗ on all machines having speed at least v/2.

Proof. If l < 4L∗, then the statement is obviously valid. Suppose that l ≥ 4L∗. Consider the
jobs which are scheduled by GREEDY on the machines having speed at least v in the time
interval [l − 2L∗, l]. The total processing weight of these jobs is at least 2L∗ times the total
speed of the machines having speed at least v. This yields that there exists such job among
them which is assigned by OPT to a machine having speed smaller than v (otherwise the
optimal offline makespan would be larger than L∗). Let J be such a job.

Since OPT schedules J on a machine having speed smaller than v, thus the processing
weight of J is at most vL∗. This yields that the processing time of J is at most 2L∗ on the
machines having speed at least v/2. On the other hand GREEDY produces a schedule where
the completion time of J is at least l − 2L∗, thus at the time when the job was scheduled the
loads were at least l − 4L∗ on the machines having speed at most v/2 (otherwise GREEDY
would assign J to one of these machines).

Now we can prove the following statement.

Theorem 8.22 The competitive ratio of algorithm GREEDY is Θ(log m) in the related
machines case.

398 8. Online Scheduling

Proof. First we prove that GREEDY is O(lg m)-competitive. Consider an arbitrary input.
Let L and L∗ denote the makespans achieved by GREEDY and OPT respectively.

Let vmax be the speed of the fastest machine. Then by Lemma 8.20 the load on this
machine is at least L − L∗. Then using Lemma 8.21 we obtain that the loads are at least
L − L∗ − 4iL∗ on the machines having speed at least vmax2−i. Therefore the loads are at least
L − (1 + 4dlg me)L∗ on the machines having speed at least vmax/m. Denote I the set of the
machines having speed at most vmax/m.

Denote W the sum of the processing weights of the jobs. OPT can �nd a schedule of
the jobs which has maximal load L∗, and there are at most m machines having smaller speed
than vmax/m thus

W ≤ L∗
m∑

i=1
vi ≤ mL∗vmax/m + L∗

∑

i<I
vi ≤ 2L∗

∑

i<I
vi .

On the other hand GREEDY schedules the same jobs thus the load on some machine
not included in I is smaller than 2L∗ in the schedule produced by GREEDY (otherwise we
would obtain that the sum of the processing weights is greater than W).

Therefore we obtain that

L − (1 + 4dlg me)L∗ ≤ 2L∗ ,

which yields that L ≤ 3 + 4dlg me)L∗, which proves that GREEDY is O(lg m)-competitive.

Now we prove that the competitive ratio of the algorithm is at least Ω(lg m). Consider
the following set of machines. G0 contains one machine with speed 1, G1 contains 2 machi-
nes with speed 1/2. For each i = 1, 2, . . . , k, Gi contains machines with speed 2−i, and Gi
contains |Gi| = ∑i−1

j=0 |G j|2i− j machines. Observe that the number of jobs of size 2−i which
can be scheduled during time 1 is the same on the machines of Gi and on the machines of
G0 ∪ G1 . . . ,∪Gi−1. It is easy to calculate that |Gi| = 22i−1, if i ≥ 1, thus the number of
machines is 1 + 2

3 (4k − 1).
Consider the following input sequence. In the �rst phase |Gk | jobs arrive having proces-

sing weight 2−k, in the second phase |Gk−1| jobs arrive having processing weight 2−(k−1), in
the i-th phase |Gi| jobs arrive with processing weight 2−i, and the sequence ends with the
k + 1-th phase, which contains one job with processing weight 1. An offline algorithm can
schedule the jobs of the i-th phase on the machines of set Gk+1−i achieving maximal load 1,
thus the optimal offline cost is at most 1.

Investigate the behaviour of algorithm GREEDY on this input. The jobs of the �rst
phase can be scheduled on the machines of G0, . . . ,Gk−1 during time 1, and it takes also
time 1 to schedule these jobs on the machines of Gk. Thus GREEDY schedules these jobs
on the machines of G0, . . . ,Gk−1, and the loads are 1 on these machines after the �rst phase.
Then the jobs of the second phase are scheduled on the machines of G0, . . . ,Gk−2, the jobs
of the third phase are scheduled on the machines of G0, . . . ,Gk−3 and so on. Finally the jobs
of the k-th and k + 1-th phase are scheduled on the machine of set G0. Thus the cost of
GREEDY is k + 1, (this is the load on the machine of set G0). Since k = Ω(lg m), thus we
proved the required statement.

8.5. On-line scheduling 399

8.5.3. TIME model
In this model we only investigate one algorithm. The basic idea is to divide the jobs into
groups by the release time and to use an optimal offline algorithm to schedule the jobs from
the groups. This algorithm is called interval scheduling algorithm and we denote it by
INTV. Let t0 be the release time of the �rst job, and i = 0. Then the algorithm is de�ned by
the following pseudocode:

INTV(I)
1 while not end of sequence
2 let Hi be the set of the unscheduled jobs released till ti
3 let OFFi be an optimal offline schedule of the jobs of Hi
4 schedule the jobs as it is determined by OFFi starting the schedule at ti
5 let qi be the maximal completion time
6 if new job is released in time interval (ti, qi] or the sequence is ended
7 then ti+1 ← qi
7 else let ti+1 be the release time of the next job
8 i← i + 1

Example 8.12 Consider two identical machines. Suppose that the sequence of jobs is I = { j1 =

(1, 0), j2 = (1/2, 0), j3 = (1/2, 0), j4 = (1, 3/2), j5 = (1, 3/2), j6 = (2, 2)}, where the jobs are de�ned
by the (processing time, release time) pairs. In the �rst iteration j1, j2, j3 are scheduled, an optimal
offline algorithm schedules j1 on machine M1 and j2, j3 on machine M2, the jobs are completed at
time 1. Then no new job released in the time interval (0, 1] thus the algorithm waits for new job till
time 3/2. Then the second iteration starts j4 and j5 are scheduled on M1 and M2 respectively in the
time interval [3/2, 5/2). During this time interval j6 released thus at time 5/2 the next iteration starts
and INTV schedules j6 on M1 in the time interval [5/2, 9/2].

The following statement holds for the competitive ratio of algorithm INTV.

Theorem 8.23 In the TIME model algorithm INTV is 2-competitive.

Proof. Consider an arbitrary input and the schedule produced by INTV. Denote the number
of iterations by i. Let T3 = ti+1 − ti, T2 = ti − ti−1, T1 = ti−1 and let TOPT denote the optimal
offline cost. Then T2 ≤ TOPT . This inequality is obvious if ti+1 , qi. If ti+1 = qi, then the
inequality holds because the optimal offline algorithm also has to schedule the jobs which
are scheduled in the i-th iteration by INTV and INTV uses an optimal offline schedule in
each iteration. On the other hand T1 + T3 ≤ TOPT . To prove this inequality �rst observe that
the release time is at least T1 = ti−1 for the jobs scheduled in the i-th iteration (otherwise the
algorithm would schedule them in the i − 1-th iteration). Therefore the optimal algorithm
also must schedule these jobs after time T1. On the the other hand it takes at least time T3
to process these jobs because INTV uses optimal offline algorithm in the iterations. The
makespan of the schedule produced by INTV is T1 + T2 + T3, and we have shown that
T1 + T2 + T3 ≤ 2TOPT thus we proved that the algorithm is 2-competitive.

Some other algorithms are also developed in the TIME model. Vestjens proved that the
on-line LPT algorithm is 3/2-competitive. This algorithm schedules the longest unschedu-
led, released job at any time when some machine is available. The following lower bound

400 8. Online Scheduling

for the possible competitive ratios of the on-line algorithms is also given by Vestjens.

Theorem 8.24 The competitive ratio of any on-line algorithm is at least 1.3473 in the
TIME model for minimizing the makespan.

Proof. Let α = 0.3473 be the solution of the equation α3 − 3α + 1 = 0 which belongs
to the interval [1/3, 1/2]. We prove that no on-line algorithm can have smaller competitive
ratio than 1 + α. Consider an arbitrary on-line algorithm, denote it by ALG. Investigate the
following input sequence.

At time 0 one job arrives with processing time 1. Let S 1 be the time when the algorithm
starts to process the job on one of the machines. If S 1 > α, then the sequence is ended and
ALG(I)/OPT(I) > 1 + α, which proves the statement. So we can suppose that S 1 ≤ α.

The release time of the next job is S 1 and its processing time is α/(1 − α). Denote its
starting time by S 2. If S 2 ≤ S 1 + 1 − α/(1 − α), then we end the sequence with m − 1 jobs
having release time S 2, and processing time 1 + α/(1 − α) − S 2. Then an optimal offline
algorithm schedules the �rst two jobs on the same machine and the last m − 1 jobs on the
other machines starting them at time S 2, thus its cost is 1 +α/(1−α). On the other hand the
on-line algorithm must schedule one of the last m−1 jobs after the completion of the �rst or
the second job thus ALG(I) ≥ 1 + 2α/(1− α) in this case, which yields that the competitive
ratio of the algorithm is at least 1+α. Therefore we can suppose that S 2 > S 1 +1−α/(1−α).

Then at time S 1 +1−α/(1−α) further m−2 jobs arrive having processing time α/(1−α)
and one job having processing time 1−α/(1−α). The optimal offline algorithm schedules the
second and the last jobs on the same machine the other jobs are scheduled alone on the other
machines and the makespan of the schedule is 1 + S 1. Since before time S 1 + 1 − α/(1 − α)
none of the last m jobs is started by ALG thus after this time ALG must schedule at least two
jobs on one of the machines and the maximal completion time is at least S 1 + 2−α/(1−α).
Since S 1 ≤ α, thus the ratio OPT(I)/ALG(I) is minimal if S 1 = α and in this case the ratio
is 1 + α, which proves the theorem.

Exercises
8.5-1 Prove that the competitive ratio is at least 3/2 for any on-line algorithm in the case of
two identical machines.
8.5-2 Prove that LIST is not constant competitive in the unrelated machines case.
8.5-3 Prove that the modi�cation of INTV which uses a c-approximation schedule (a sche-
dule with at most c times more cost than the optimal cost) in each step instead of the optimal
offline schedule is 2c-competitive.

Problems

8-1. Paging problem
Consider the special case of the k-server problem where the distance between each pair
of points is 1. (This problem is equivalent with the on-line paging problem.) Analyze the
algorithm which serves the requests not having server on their place by the server which
was used least recently. (This algorithm is equivalent with the LRU paging strategy.) Prove
that the algorithm is k-competitive.

8. Megjegyzések a fejezethez 401

8-2. ALARM2 algorithm
Consider the following alarming algorithm for the data acknowledgement problem.
ALARM2 is obtained from the general de�nition with the values e j = 1/|σ j|. Prove that
the algorithm is not constant-competitive.
8-3. Bin packing lower bound

Prove, that no on-line algorithm can have smaller competitive ratio than 3/2 using a se-
quence which contains items of size 1/7 + ε, 1/3 + ε, 1/2 + ε, where ε is a small positive
number.
8-4. Strip packing with modi�able rectangles

Consider the following version of the strip packing problem. In the new model the al-
gorithms are allowed to lengthen the rectangles keeping the area �xed. Develop a 4-
competitive algorithm for the solution of the problem.
8-5. On-line LPT algorithm

Consider the algorithm in the TIME model which starts the longest unscheduled released
job at any time when a machine is available. This algorithm is called on-line LPT. Prove
that the algorithm is 3/2-competitive.

Chapter notes
More details about the results on on-line algorithms can be found in the books [6, 16].

The �rst results about the k-server problem (Theorems 8.1 and 8.2) are published by
Manasse, McGeoch and Sleator in [27]. The presented algorithm for the line (Theorem 8.3)
was developed by Chrobak, Karloff, Payne and Viswanathan (see [10]). Later Chrobak and
Larmore in [8] extended the algorithm for trees. The �rst constant-competitive algorithm for
the general problem was developed by Fiat, Rabani and Ravid (see [15]). The best known
algorithm is based on the work function technique. The �rst work function algorithm for
the problem was developed in [9] by Chrobak and Larmore. Koutsoupias and Papadimitriou
proved in [25] that the work function algorithm is 2k − 1-competitive.

The �rst mathematical model for the data acknowledgement problem and the �rst re-
sults (Theorems 8.5 and 8.6) are presented in [13] by Dooly, Goldman, and Scott. Albers and
Bals considered a different objective function in [1]. Karlin Kenyon and Randall investiga-
ted randomized algorithms for the data acknowledgement problem in [24]. The L

algorithm was developed in [33] by Young. The detailed description of the results in the
area of on-line routing can be found in the survey [26] written by Leonardi. The exponential
algorithm for the load balancing model is investigated by Aspnes, Azar, Fiat, Plotkin and
Waarts in [2]. The exponential algorithm for the throughput objective function is applied by
Awerbuch, Azar and Plotkin in [3].

A detailed survey about the theory of on-line bin packing is written by Csirik and Wo-
eginger (see [11]). The algorithms NF and FF are analyzed with competitive analysis by
Johnson, Demers, Ullman, Garey and Graham in [22, 23], further results can be found in
the PhD thesis of Johnson ([21]). Van Vliet applied the packing patterns to prove lower bo-
unds for the possible competitive ratios in [31, 34]. For the on-line strip packing problem
algorithm NFSr was developed and analyzed by Baker and Schwarz in [5]. Later further
shelf packing algorithms were developed, the best shelf packing algorithm for the strip pac-

402 8. Online Scheduling

king problem was developed by Csirik and Woeginger in [12].
A detailed survey about the results in the area of on-line scheduling was written by

Sgall [28]. The �rst on-line result is the analysis of algorithm LIST, it was published in
[18] by Graham. Many further algorithms were developed and analyzed for the identical
machines case, the algorithm with smallest competitive ratio (tends to 1.9201 as the number
of machines tends to ∞) was developed by Fleischer and Wahl in [17]. The lower bound
for the competitive ratio of GREEDY in the related machines model was proven by Cho
and Sahni in [7]. The upper bound, the related machines case and a more sophisticated
exponential function based algorithm were presented by Aspnes, Azar, Fiat, Plotkin and
Waarts in [2]. A summary of the further results about the applications of the exponential
function technique in the area of on-line scheduling can be found in the paper of Azar ([4]).
The interval algorithm presented in the TIME model and Theorem 8.23 are based on the
results of Shmoys, Wein and Williamson (see [29]). A detailed description of the further
results (on-line LPT, lower bounds) in the area TIME model can be found in the PhD thesis
of Vestjens [35]. We only presented the most fundamental on-line scheduling models in the
chapter, recently an interesting model was developed where the number of the machines is
not �xed the algorithm is allowed to purchase machines, the model is investigated in the
papers [20] and [14].

Problem 8-1. is based on [30], Problem 8-2. is based on [13], Problem 8-3. is based on
[32], Problem 8-4. is based on [19] and Problem 8-5. is based on [35].

Bibliography

[1] S. Albers, H. Bals. Dynamic TCP acknowledgement, penalizing long delays. In Proceedings of the 25th
ACM-SIAM Symposium on Discrete Algorithms, pp. 47�55, 2003. 401

[2] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, O. Waarts. On-line load balancing with applications to machine sche-
duling and virtual circuit routing. Journal of the ACM, 44:486�504, 1997. 401, 402

[3] B. Awerbuch, Y. Azar S. Plotkin. Throughput-competitive online routing. In Proceedings of the 34th Annual
Symposium on Foundations of Computer Science, pp. 32�40, 1993. 401

[4] Y. Azar. On-line load balancing. Lecture Notes in Computer Science, Vol. 1442. Springer-Verlag, pp. 178�
195, 1998. 402

[5] B. S. Baker, J. S. Schwartz. Shelf algorithms for two dimensional packing problems. SIAM Journal on
Computing, 12:508�525, 1983. 401

[6] A. Borodin R. El-Yaniv. Online computation and competitive analysis. Cambridge University Press, 1998.
401

[7] Y. Cho, S. Sahni. Bounds for list schedules on uniform processors. SIAM Journal on Computing, 9(1):91�
103, 1980. 402

[8] M. Chrobak, L. Larmore. An optimal algorithm for k-servers on trees. SIAM Journal on Computing, 20:144�
148, 1991. 401

[9] M. Chrobak, L. Larmore. The server problem and on-line games. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, Vol. 7, pp. 11-64. American Mathematical Society, 1992. 401

[10] M. Chrobak, H. J. Karloff, T. Payne, S. Vishwanathan. New results on the server problem. SIAM Journal on
Discrete Mathematics, 4:172�181, 1991. 401

[11] J. Csirik, G. Woeginger. On-line packing and covering problems. Lecture Notes in Computer Science, Vol.
1442, pp. 147�177. Springer-Verlag, 1998. 401

[12] J. Csirik, G. J. Woeginger. Shelf algorithms for on-line strip packing. Information Processing Letters,
63:171�175, 1997. 402

[13] D. R. Dooly, S. A. Goldman, S. D. Scott. On-line analysis of the TCP acknowledgement delay problem.
Journal of the ACM, 48:243�273, 2001. 401, 402

[14] Gy. Dósa, Y. He. Better online algorithms for scheduling with machine cost. SIAM Journal on Computing,
33(5):1035�1051, 2004. 402

[15] A. Fiat, Y. Rabani, Y. Ravid. Competitive k-server algorithms. Journal of Computer and System Sciences,
48:410�428, 1994. 401

[16] A. Fiat, G. Woeginger (szerkeszt�ok). Online Algorithms. The State of Art. Springer-Verlag, 1998. 401
[17] R. Fleischer, M. Wahl. On-line scheduling revisited. Journal of Scheduling, 3(6):343�353, 2000. 402
[18] R. L. Graham. Bounds for certain multiprocessor anomalies. The Bell System Technical Journal, 45:1563�

1581, 1966. 402
[19] Cs. Imreh. Online strip packing with modi�able boxes. Operations Research Letters, 66:79�86, 2001. 402
[20] Cs. Imreh, J. Noga. Scheduling with machine cost. In Proceedings of APPROX'99, Lecture Notes in

Computer Science, Vol. 1540, pp. 168�176, 1999. 402
[21] D. S. Johnson. Near-Optimal Bin Packing Algorithms. PhD thesis. 401

http://www.informatik.uni-freiburg.de/~salbers/�
http://www.cs.yale.edu/homes/aspnes/�
http://www.math.tau.ac.il/~azar/�
http://www.math.tau.ac.il/~fiat/�
http://troll-w.stanford.edu/plotkin/�
http://www.acm.org�
http://www.cs.jhu.edu/~baruch/�
http://www.math.tau.ac.il/~azar/�
http://troll-w.stanford.edu/plotkin/�
http://www.math.tau.ac.il/~azar/�
http://www.link.springer.de/link/service/series/0558/index.htm�
http://www.springer.de/ �
http://cm.bell-labs.com/who/bsb/�
http://epubs.siam.org/sam-bin/dbq/toclist/SICOMP�
http://www.cs.toronto.edu/~bor/�
http://www.cs.technion.ac.il/~rani/�
http://uk.cambridge.org/�
http://ssrnet.snu.ac.kr/~cho/�
http://www.cise.ufl.edu/~sahni/�
http://epubs.siam.org/sam-bin/dbq/toclist/SICOMP�
http://www.cs.ucr.edu/~marek/�
http://www.egr.unlv.edu/~larmore/�
http://epubs.siam.org/sam-bin/dbq/toclist/SICOMP�
http://www.cs.ucr.edu/~marek/�
http://www.egr.unlv.edu/~larmore/�
http://dimacs.rutgers.edu/Volumes/index.html�
http://www.ams.org/�
http://www.cs.ucr.edu/~marek/�
http://www.cs.ucr.edu/~thp/�
http://www.cse.iitb.ac.in/~sundar/�
http://epubs.siam.org/sam-bin/dbq/toclist/SIDMA�
http://www.inf.u-szeged.hu/~csirik�
http://www.win.tue.nl/~gwoegi/�
http://www.link.springer.de/link/service/series/0558/index.htm�
http://www.springer.de/�
http://www.inf.u-szeged.hu/~csirik�
http://www.win.tue.nl/~gwoegi/�
http://www.cs.wustl.edu/~drd1/�
http://www.cs.wustl.edu/~sg/�
http://www.cse.unl.edu/~sscott/�
http://www.acm.org�
http://epubs.siam.org/sam-bin/dbq/toclist/SICOMP�
http://www.math.tau.ac.il/~fiat/�
http://www.cs.technion.ac.il/~rabani/�
http://www.sciencedirect.com/science/journal/00220000/�
http://www.math.tau.ac.il/~fiat/�
http://www.win.tue.nl/~gwoegi/�
http://www.springer.de/�
http://www.cs.ust.hk/~rudolf/�
http://www3.interscience.wiley.com/cgi-bin/jhome/6265�
http://math.ucsd.edu/~fan/ron�
http://www.lucent.com/minds/techjournal/�
http://www.inf.u-szeged.hu/~cimreh�
 http://www.sciencedirect.com/science/journal/01676377�
http://www.inf.u-szeged.hu/~cimreh/�
http://www.cs.ucr.edu/~jnoga/�
http://www.link.springer.de/link/service/series/0558/index.htm�
http://www.research.att.com/~dsj/�

404 Bibliography

[22] D. S. Johnson. Fast algorithms for bin packing. Journal of Computer and System Sciences, 8:272�314, 1974.
401

[23] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, R. L. Graham. Worst-case performance-bounds for
simple one-dimensional bin packing algorithms. SIAM Journal on Computing, 3:299�325, 1974. 401

[24] A. R. Karlin, C. Kenyon, D. Randall. Dynamic TCP acknowledgement and other stories about e/(e − 1). In
Proceedings of the 31st Annual ACM Symposium on Theory of Computing, 502�509. o., 2001. 401

[25] E. Koutsoupias, C. Papadimitriou. On the k-server conjecture. Journal of the ACM, 42:971�983, 1995. 401
[26] S. Leonardi. On-line network routing. Lecture Notes in Computer Science, Vol. 1442, pp. 242�267. Springer-

Verlag, 1998. 401
[27] M. Manasse, L. McGeoch, D. Sleator. Competitive algorithms for server problems. Journal of Algorithms,

11:208�230, 1990. 401
[28] J. Sgall. On-line scheduling. Lecture Notes in Computer Science, Vol. 1442, pp. 196�231. Springer-Verlag,

1998. 402
[29] D. B. Shmoys, J. Wein, D. P. Williamson. Scheduling parallel machines online. SIAM Journal on Computing,

24:1313�1331, 1995. 402
[30] D. Sleator R. E. Tarjan. Amortized efficiency of list update and paging rules. Communications of the ACM,

28:202�208, 1985. 402
[31] A. van Vliet. An improved lower bound for on-line bin packing algorithms. Information Processing Letters,

43:277�284, 1992. 401
[32] A. C. C. Yao. New algorithms for bin packing. Journal of the ACM, 27:207�227, 1980. 402
[33] N. Young. On-line �le caching. Algorithmica, 33:371�383, 2002. 401
[34] A. van Vliet. Lower and upper bounds for on-line bin packing and scheduling heuristics. PhD thesis,

Erasmus University, Rotterdam, 1995. 401
[35] A. Vestjens. On-line machine scheduling. PhD thesis, Eindhoven University of Technology, 1997. 402

http://www.research.att.com/~dsj�
http://www.sciencedirect.com/science/journal/00220000/�
http://www.research.att.com/~dsj/�
http://www.cs.cornell.edu/annual_report/00-01/bios.htm#demers�
http://www-db.stanford.edu/~ullman/�
http://cm.bell-labs.com/cm/ms/former/mrg/�
http://math.ucsd.edu/~fan/ron�
http://epubs.siam.org/sam-bin/dbq/toclist/SICOMP�
http://www.cs.washington.edu/homes/karlin/�
http://www.lix.polytechnique.fr/~kenyon/�
http://www.math.gatech.edu/~randall/�
http://cgi.di.uoa.gr/~elias/�
http://www.cs.berkeley.edu/~christos/�
http://www.acm.org�
http://www.dis.uniroma1.it/~leon/�
http://www.link.springer.de/link/service/series/0558/index.htm�
http://www.springer.de/�
http://research.microsoft.com/users/manasse/�
http://www.cs.amherst.edu/lam/�
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/user/sleator/www/�
file:www.academicpress.com/jalgor.dvi�
http://www.math.cas.cz/~sgall/�
http://www.link.springer.de/link/service/series/0558/index.htm�
http://www.springer.de/�
http://www.orie.cornell.edu/~shmoys/�
http://ebbets.poly.edu/PDC-lab/wein.html�
http://www.almaden.ibm.com/cs/people/dpw/�
http://epubs.siam.org/sam-bin/dbq/toclist/SICOMP�
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/user/sleator/www/�
http://www.cs.princeton.edu/~ret/�
http://portal.acm.org/browse_dl.cfm?linked=1&part=magazine&idx=J79&coll=portal&dl=ACM&CFID=10136019&CFTOKEN=486195�
http://www.elsevier.nl/inca/publications/store/5/0/5/6/1/2/�
http://www.cs.princeton.edu/~yao/�
http://www.acm.org�
http://www.cs.ucr.edu/~neal/�
http://link.springer.de/link/service/journals/00453/�
http://www.eur.nl/�
http://w3.tue.nl/en/�

Subject Index

A, Á
A , 379
alarming algorithms, 379
algorithm FF, 388
asymptotically C-competitive, 372
asymptotic competitive ratio, 372
average case analysis, 371

B
BAL, see BALANCE
BALANCE, 373
box packing problem, 391

C
C-competitive, 372
C-(k, h)-competitive, 381
competitive analysis, 371
competitive ratio, 372
con�guration of the servers, 373

D
data acknowledgement problem, 378
DC algorithm, 376
D- , 376

E, É
EXP algorithm, 384

F
�le caching problem, 380

H
harmonic algorithms, 387

I, Í
interval scheduling algorithm, 399

L
L, 381

LIST on-line scheduling model, 394
load, 394
load balancing routing model, 383

N
NFSr algorithm, 391

O, Ó
offline algorithm, 371
on-line algorithms, 371
on-line LPT, 399

P
packing pattern, 389

R
randomized on-line algorithms, 372
release time, 394
retrieval cost, 380

S
S algorithms, 391
size, 380
strip packing problem, 391

T
the mathematical model of routing, 383
Throughput routing model, 383
TIME on-line scheduling model, 394

V
vector packing problem, 390

W
weak competitive ratio, 372
weakly C-competitive, 372
work function, 375
W F , 375

Name index

A, Á
Albers, Susanne, 401, 403
Aspnes, James, 401�403
Awerbuch, Baruch, 401, 403
Azar, Yossi, 401�403

B
Baker, S. Brenda, 391, 401, 403
Bals, Helge, 401, 403
Borodin, Allan, 403

C
Cho, Yookun, 402, 403
Chrobak, Marek, 376, 401, 403

CS
Csirik, János, 393, 401�403

D
Demers, Alan, 401, 404
Dooly, R. Dan, 379, 401, 403
Dósa, György, 403

E, É
El-Yaniv, Ran, 403

F
Fiat, Amos, 375, 401�403
Fleischer, Rudolf, 402, 403

G
Garey, Michael R., 401, 404
Goldman, A. Sally, 379, 401, 403
Graham, Ronald Lewis, 393, 401�404

H
He, Yong, 403

I, Í

Imreh, Csanád, 403

J
Johnson, David S., 401, 403, 404

K
Karlin, Anna R., 401, 404
Karloff, J. Howard, 401, 403
Kenyon, Claire, 401, 404
Koutsoupias, Elias, 375, 401, 404

L
Larmore, Lawrence, 376, 401, 403
Leonardi, Stefano, 401, 404

M
Manasse, Mark, 373, 401, 404
McGeoch, Lyle, 373, 401, 404

N
Noga, John, 403

P
Papadimitriou, Christos H., 375, 401, 404
Payne, Tom, 401, 403
Plotkin, Serge, 401�403

R
Rabani, Yuval, 375, 401, 403
Randall, Dana, 401, 404
Ravid, Yiftach, 375, 401, 403

S
Sahni, Sartaj, 402, 403
Schwarz, S. Jerald, 391, 401, 403
Scott, D. Stephen, 379, 401, 403
Sgall, Jirí, 402, 404
Shmoys, David B., 402, 404
Sleator, Daniel, 373, 401, 404

Name index 407

T
Tarjan, Robert Endre, 404

U, Ú
Ullman, Jeffrey David, 401, 404

V
van Vliet, André, 401, 404
Vestjens, Arjen, 399, 402, 404
Vishwanathan, Sundar, 401, 403

W
Waarts, Orli, 401�403
Wahl, Michaela, 402, 403
Wein, Joel, 402, 404
Williamson, David P., 402, 404
Woeginger, J. Gerhard, 393, 401�403

Y
Yao, C. C. Andrew, 404
Young, Neal, 381, 401, 404

Contents

8. Online Scheduling (Imreh Csanád) . 371
8.1. Notions, de�nitions . 371
8.2. The k-server problem . 373
8.3. Models related to computer networks . 378

8.3.1. The data acknowledgement problem 378
8.3.2. The �le caching problem . 380
8.3.3. On-line routing . 383

8.4. On-line bin packing models . 386
8.4.1. On-line bin packing . 387
8.4.2. Multidimensional models . 390

8.5. On-line scheduling . 393
8.5.1. On-line scheduling models . 394
8.5.2. LIST model . 395
8.5.3. TIME model . 399

Bibliography . 403
Subject Index . 405
Name index . 406

