
30. Human-Computer Interaction

In the internet � within http://www.hcibib.org/ � the following de�nition is found: "Human-
computer interaction is a discipline concerned with the design, evaluation and implementa-
tion of interactive computing systems for human use and with the study of major phenomena
surrounding them. . . Some of its special concerns are:
• the joint performance of tasks by humans and machines;
• the structure of communication between human and machine;
• human capabilities to use machines (including the learnability of interfaces);
• algorithms and programming of the interface itself;
• engineering concerns that arise in designing and building interfaces;
• the process of speci�cation, design, and implementation of interfaces.
. . . Human-computer interaction thus has science, engineering, and design aspects."

Many of these topics do only marginally concern algorithms in the classical sense.
Therefore, in this chapter we concentrate on human-computer scenarii for problem solving
where the machines are forced to do lots of computation, and the humans have a role as
intellligent controllers and directors.

30.1. Multiple-choice systems
Humans are able to think, to feel, and to sense � and they adopt quickly to a new situation.
We can also compute, but not too well. In contrast, computers are giants in computing � they
crunsh bits and bytes like maniacs. However, they cannot do anything else but computing �
especially they are not very �exible. Combining the different gifts and strengths of humans
and machines in appropriate ways may lead to impressive performances.

One suitable approach for such team work is "Multiple-Choice Optimization". In a
"Multiple-Choice System" the computer gives a clear handful (for the translator � auf deut-
sch: "überschaubare Handvoll") of candidate solutions, two or three or �ve... Then a human
expert makes the �nal choice amongst these alternatives. One key advantage of a proper
multiple-choice approach is that the human is not drown by deluges of data.

Multiple-Choice Systems may be especially helpful in realtime scenarios of the fol-
lowing type: In principle there is enough time to compute a perfect solution. But certain
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parameters of the problem are unknown or fuzzy. They concretize only in a very late mo-
ment, when there is no more time for elaborate computations. Now assume that the decision
maker has used multiple-choice algorithms to generate some good candidate solutions in
beforehand. When the exact problem data show up he may select an appropriate one of
these alternatives in realtime.

An example from vehicle routing is given. A truck driver has to go from A to Z. Before
the trip he uses PC software to �nd two or three different good routes and prints them out.
During the trip radio gives information on current traffic jams or weather problems. In such
moments the printed alternatives help the driver to switch routes in realtime.

However, it is not at all easy to have the computer �nding good small samples of soluti-
ons. Naively, the most natural way seems to be the application of k-best algorithms: Given a
(discrete) optimization problem with some objective function, the k best solutions are com-
puted for a prescribed integer k. However, such k-best solutions tend to be micro mutations
of each other instead of true alternatives.

Figure 30.1 exhibits a typical pattern: In a grid graph of dimension 100 × 100 the goal
was to �nd short paths from the lower left to the upper right corner. The edge lengths are
random numbers, not indicated in the diagram. The 1000 (!) shortest paths were computed,
and their union is shown in the �gure. The similarity amongst all these paths is striking.
Watching the picture from a somewhat larger distance will even give the impression of only
a single path, drawn with a bushy pencil. (The computation of alternative short paths will
also be the most prominent example case in Section 30.2)

Often the term "multiple-choice" is used in the context of "multiple-choice tests". This
means something completely different. The difference between multiple-choice optimiza-
tion and multiple-choice tests lies in the type and quality of the candidate solutions:
• In multiple-choice tests always at least one of the answers is "correct", whereas others

may be right or wrong. Beforehand an authority (the test designer) has prepared the
question together with the candidate answers and the decision which of them are correct
ones.

• In the optimization situation nothing is clear: Perhaps all of the candidate solutions are
ok, but it may also be that they all are not appropriate. And there is typically no master
who tells the human whether his choice is good or not. Because of this uncertainty
many humans really need some initiation time to accept their role within a multiple-
choice system.

30.1.1. Examples of multiple-choice systems
(1) Short Paths
Starting in the early 1990's, PC programs for vehicle routing have become more and more
popular. In 1997 the Dutch software company AND was �rst to sell such a program which
did not only compute the "best" (= shortest or quickest) route but also one or two alter-
natives. The user had the choice to request all these candidate solutions simultaneously or
one after the other. The user was also allowed to determine some parameters for route vi-
sualization, namely different colors and thickness for best, second, third choice. Related is
work by F. Berger. She developed a method to identify linear structures (like roads, rails,
rivers, ...) in grey level satellite images. Typically, candidate structures are not unique, and
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Figure 30.1. 1000 shortest paths in a 100 × 100 grid-graph, printed in overlap

the algorithm of Berger makes several alternative proposals. The Berger method is based on
algorithms for generating short alternative paths.

(2) Travelling Salesperson Problem and the Drilling of Holes in Circuit Boards (for
the translator � in German: Leiterplatten)
In the Travelling Salesperson Problem (TSP) N locations are given and their mutual distan-
ces. The task is to �nd a shortest round trip through all N points. TSP is NP-complete. One
important application in electronic industry is the drilling of holes in circuit boards. Here
the locations are the points where the drill has to make the holes; the goal is to minimize
the time needed by the drill. In practice, however, it turns out that the length of the drilling
tour is not the only criterion for success: Depending on the drilling tour there occur small or
more severe tensions in the circuit board. Especially different tours may give different levels
of tension. Unfortunately, the degrees of tension can not easily be computed in beforehand.
So it makes sense to compute a few alternative short drilling tours and select that one which
is best with respect to the minimization of tension.

(3) Internet Search Engines
In most cases an internet search engine will �nd tons of hits, but of course a normal human
user is not able nor willing to look through all of them. So, one of the key tasks for a search
engine designer is to �nd good shortlisting mechanisms. As a rule of thumb, the �rst ten
hits in the output should be both most relevant and sufficiently spread. In this �eld and also
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in e-commerce Multiple-Choice Systems are often called "Recommender Systems".
(4) Trajectories for Interplanetary Space Missions

Space missions to distant planets, planetoids, and comets are high-tech adventures. Two
key aspects are budget restrictions and the requirement that the probes need extremely
high speeds to reach their destinations in time. "Gravity assist" maneuvers help to speed
up missiles by narrow �ybys at intermediate planets, thus saving fuel and time. In recent
years trajectories with gravity assists have become more and more complex, typically in-
volving whole sequences of several �ybys. Prominent examples are the mission Cassini to
planet Saturn with �yby sequence Venus-Venus-Earth-Jupiter, the mission Rosetta to Co-
met "67P/Churyumov-Gerasimenko" with �yby sequence Earth-Mars-Earth-Earth, and the
Messenger-mission to Mercury with �yby sequence Earth-Venus-Venus-Mercury-Mercury.
The current art of trajectory computing allows to �netune a principal route. However, �rst
of all such principal routes have been designed by human engineers with their fantasy and
creativity. Computer-generation of (alternative) principal �yby tours is still in its infancies.

(5) Chess with Computer Assistance
Commercial chess computers came up in the late 1970's. Their playing strength increases
steadily, and nowadays the best PC programs play on one level with the best human players.
However, teams with both human and computer members are stronger than humans alone
or computers alone. One of these authors (Althöfer) made many chess experiments with
Multiple-Choice Systems: In a setting called "3-Hirn" ("Triple Brain" in English, but the
German term 3-Hirn has been adopted internationally) two different chess programs are
running, typically on two independent PC's. Each one proposes a single candidate move,
and a human player has the �nal choice amongst these (at most) two move candidates.
In several experiments 3-Hirn showed amazing performance. The �nal data point was a
match in 1997: two computer programs with Elo rating below 2550 each and a human
amateur player (Elo 1900) beat the German No. 1 player (GM Yussupov, Elo 2640) by 5-3
in tournament play, thus achieving an event performance of higher than Elo 2700. After this
event top human professionals were no longer willing to �ght against 3-Hirn teams. The
strength of 3-Hirn is to a large extent explained by the combination of two "orthogonal"
chess strengths: chess computers propose only moves which are tactically sound and the
human player contributes his strength in long-range planning.

Today, all top human chess professionals prepare intensively for their tournament games
with the help of chess programs by analyzing openings and games in multiple-choice mode.
Even more extreme is the situation in correspondence chess, where players are officially
allowed to use computer help within their games.

(6) Travel and Holiday Information
When someone plans a journey or a holiday, he typically compares different routes or offers,
either at the railway station or in a travel agency or from home via internet. Customers
typically do not inspect thousands of offers, but only a smaller or larger handful. In real life
lots of (normal and strange) strategies can be found how companies, hotels, or airlines try
to place their products amongst the top choices. For instance, it is common (bad) policy by
many airlines to announce unrealistic short �ight times. The only intention is to become
top-placed in software (for travel agencies) which sorts all �ights from A to B by ascending
�ight times. In many cases it is not an easy task for the customer to realize such tricks for
successful "performance" in shortlisting processes.

(7) RNA-Foldings
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Computation of RNA-foldings is one of the central topics in computational biology. The
most prominent algorithms for this are based on dynamic programming. There exist online
repositories, where people get alternative solutions in realtime.

Exercises
30.1-1 Collect practice in operating a multiple-choice system by computer-aided
play of the patience game FreeCell. Download the tool BigBlackCell (BBC) from
http://www.minet.uni-jena.de/∼BigBlackCell/ and make yourself acquainted with the pro-
gram. After some practicing a normal user with the help of BBC should be able to solve in
the average more than 60 FreeCell instances per hour.

30.2. Generating multiple candidate solutions
30.2.1. Generating candidate solutionswith heuristics and repeated heuristics
Many optimization problems are really hard, for instance the NP-complete ones. Exact (but
slow) branch and bound procedures and unreliable (but quick) heuristics are two standard
ways to �nd exact or approximate solutions. When the task is to generate several alternative
solutions it is possible to make a virtue of necessity: there are normally many more good
solutions than perfect ones � and different heuristics or heuristics with random elements will
not always return the same good solution.

So, a simple strategy is to apply one or several heuristics repeatedly to the same prob-
lem, and to record the solutions generated during this process. Either, exactly as many solu-
tions as needed are generated. Or a larger preliminary set of solutions is produced, giving the
chance for improvement by shortlisting. Natural shortlisting criteria are quality and spread.
Concerning spread, distance measures on the set of admissible solutions may be a helpful
tool in conjunction with clustering algorithms.

Repeated runs of a single heuristic
The normal situation is that a heuristic contains randomness to a certain extent. Then no
additional efforts are necessary: the heuristic is simply executed in independent runs, until
enough different good solutions have been generated. Here we use the Travelling Salesper-
son Problem (TSP) for N points as an example to demonstrate the approaches. For exchange
heuristics and insertion heuristics on the TSP we give one example each, highlighting the
probabilistic elements.

In the TSP with symmetric distances d(i, j) between the points local search with 2-
exchanges is a standard exchange heuristic. In the following pseudo-code T (p) denote the
p-th component of vector T .
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L S  2-E  TSP(N, d)
1 Generate a random starting tour T = (i1, i2, . . . , iN).
2 while there exist indices p, q with 1 ≤ p < q ≤ N and q ≥ p + 2, and

d(T (p),T (p + 1)) + d(T (q),T (q + 1)) > d(T (p),T (q)) + d(T (p + 1),T (q + 1))
(For the special case q = N we take q + 1 = 1.)

3 do T ← (i1, . . . , ip, iq, iq−1, . . . , ip+1, iq+1, . . . , iN).
4 Compute the length l of tour T .
5 return T, l.

Random elements in this heuristic are the starting tour and the order in which edge
pairs are checked in step 2. Different settings will lead to different local minima. In large
problems, for instance with 1,000 random points in the unit square with Euclidean distance
it is quite normal when 100 independent runs of the 2-exchange heuristic lead to almost 100
different local minima.

The next pseudo-code describes a standard insertion heuristic.

I H  TSP(N, d)
1 Generate a random permutation (i1, i2, . . . , iN) from the elements of {1, 2, . . . ,N}.
2 T ← (i1, i2)
3 for t ← 2 to N − 1
4 do Find the minimum of d(T (r), it+1) + d(it+1,T (r + 1)) − d(T (r),T (r + 1))

for r ∈ {1, . . . , t}. (Here again r + 1 = 1 for r = t.)
Let the minimum be at r = s.

5 T ← (T (1), . . . ,T (s), it+1,T (s + 1), . . . , T (t))
6 Compute the length l of tour T .
7 return T, l.

So the elements are inserted one by one, always at the place where insertion results at
minimal new length.

The random element is the permutation of the N points. Like for the 2-exchanges, dif-
ferent settings will typically lead to different local minima. Sometimes an additional chance
for random choice occurs when for some step t the optimal insertion place is not unique.

Many modern heuristics are based on analogies to nature. In such cases the user has
even more choices: In Simulated Annealing several (good) intermediate solutions from each
single run may be taken; or from each single run of a Genetic Algorithm several solutions
may be taken, either representing different generations or multiple solutions of some selec-
ted generation.

A special technique for repeated exchange heuristics is based on the perturbation of
local optima: First make a run to �nd a local optimum. Then randomize this �rst optimum by
a sequence of random local changes. From the resulting solution start local search anew to
�nd a second local optimum. Randomize this again and so on. The degree of randomization
steers how different the local optima in the sequence will become.

Even in case of a deterministic heuristic there may be chances to collect more than only
one candidate solution: In tiebreak situations different choices may lead to different outco-
mes, or the heuristic may be executed with different precisions (=number of decimals) or
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with different rounding rules. In Subsection 30.2.4 penalty methods are described, with arti-
�cial modi�cation of problem parameters (for instance increased edge lengths) in repeated
runs. In anytime algorithms � like iterative deepening in game tree search � also intermedi-
ate solutions (for preliminary search depths) may be used as alternative candidates.

Collecting candidate solutions from different heuristic programs
When several heuristics for the same problem are available, each one of them may contribute
one or several candidate solutions. The 3-Hirn setting, as described in item (5) of Subsection
30.1.1, is an extreme example of a multiple-choice system with more than one computer
program: the two programs should be independent of each other, and they are running on
distinct computers. (Tournament chess is played under strict time limits at a rate of three
minutes per move. Wasting computational resources by having two programs run on a single
machine in multi-tasking mode costs 60 to 80 rating points [12]). The chess programs used
in 3-Hirn are standard of-the-shelf products, not speci�cally designed for use in a multiple-
choice setting.

Every real world software has errors. Multiple-choice systems with independent pro-
grams have a clear advantage with respect to catastrophic failures. When two independent
programs are run, each with the same probability p for catastrophic errors, then the probabi-
lity for a simultaneous failure reduces to p2. A human controller in a multiple-choice system
will typically recognize when candidate solutions have catastrophic failures. So the "mixed"
case (one normal and one catastrophic solution) with probability 2p(1 − p) will not result
in a catastrophe. Another advantage is that the programs do not need to have special k-best
or k-choice mechanisms. Coinciding computer proposals may be taken as an indication that
this solution is just really good.

However, multiple-choice systems with independent programs may also have weak
spots:
• When the programs are of clearly different strength, this may bring the human selector

in moral con�icts when he prefers a solution from the less quali�ed program.
• In multistep actions the proposals of different programs may be incompatible.
• For a human it costs extra time and mental energy to operate more than one program

simultaneously.
• Not seldom � depending on programs and operating systems � a PC will run unstably

in multi-tasking mode.
And of course it is not always guaranteed that the programs are really independent. For ins-
tance, in the late 1990's dozens of vehicle routing programs were available in Germany, all
with different names and interfaces. However, they all were based on only four independent
program kernels and data bases.

30.2.2. Penalty method with exact algorithms
A more controlled way to �nd different candidate solutions is given by the penalty method.
The main idea of this method is illustrated on the route planning example. Starting with an
optimal (or good) route R1 we are looking for an alternative solution R2 which ful�lls the
following two criteria as much as possible.

(i) R2 should be good with respect to the objective function. Otherwise it is not worthwhile
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to choose it. In our example we have the length (or needed time) of the route as �rst
objective.

(ii) R2 should have not too much in common with the original solution. Otherwise it is not
a true alternative. In case of so called micro mutations the risk is high that all these
similar candidates have the same weak spots. In our example a "measure for similarity"
may be the length of the parts shared by R1 and R2.
This means R2 should have a short length but it should also have only little in common

with R1. Therefore we use a combination of the two objective functions � the length of the
route and the length of the road sections shared by R1 and R2. This can be done by punishing
the sections used by R1 and solving the shortest path problem with this modi�ed lengths to
get the solution R2.

By the size of the penalties different weightings of criteria (i) and (ii) can be modeled.
A most natural approach is to use relative penalty factors. This means that the length

of each section belonging to R1 is multiplied by a factor 1 + ε.

P M  R P F(G, s, t, ε)
1 Find the shortest path R1 from node s to node t in the weighted graph

G = (V, E,w).
2 for all e ∈ E
3 do if e belongs to R1
4 then ŵ(e)← w(e) · (1 + ε)
5 else ŵ(e)← w(e)
6 Find the the shortest path R2 from node s to node t in the modi�ed graph

Ĝ = (V, E, ŵ).
7 Compute its unmodi�ed length w(R2).
8 return (R1,R2) and (w(R1),w(R2))

Consider the following example.

Example 30.1 Given is a graph G = (V, E) with weighted edge lengths. In Figure 30.2 on the facing
page the numbers denote the length of the according edges. The shortest path from S to T is PD via S
- A - C - D - F - T with length 23. Multiplying all edge lengths of PD by 1.1 and solving the obtained
shortest path problem gives the alternative solution PB via S - A - B - F - T with modi�ed length 25.0
and normal length 23.7. The shared parts of PD and PB are S -A and F-T with total length 13.

The size of ε has to be appropriate for the situation. In the commercial vehicle routing
program [7] all sections of a shortest (or fastest) route were multiplied by 1.2, i.e., ε = 0.2.
Then the alternative route was computed. In [9] recognition of linear structures (streets,
rivers, airport lanes) in satellite images was done by shortest path methods. Here ε = 1.0
turned out to be an appropriate choice for getting interesting alternative candidates.

Instead of relative penalty factors additive penalties might be used. That means we add
a constant term ε to all edges we want to punish. The only modi�cation of the algorithm
above is in step 4.
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Figure 30.2. The Graph for Examples 30.1., 30.2. and 30.5.

4∗ then ŵ(e)← w(e) + ε

Example 30.2 Given is the graph G = (V, E) from Example 30.1. (see Figure 30.2). The shortest path
from S to T is still PD via S - A - C - D - F - T with length 23. Adding 0.1 to all edges of PD and
solving the resulting shortest path problem gives the alternative solution PE via S - A - C - E - F - T
with modi�ed length 23.4 and normal length 23.1. PD and PE have three edges in common.

In principle this approach with additive penalties is not worse in comparison with mul-
tiplicative penalties. However, the method with multiplicative penalties has the advantage
to be immune against arti�cial splits of edges.

For a generalization of the penalty method from routing problems the following de�ni-
tion of optimization problems is helpful. Sum Type Optimization Problem
Let E be an arbitrary �nite set and S a set of subsets of E. E is called the base set and the
elements of S are feasible subsets of E. Let w : E → R be a real valued weight function on
E. For every B ∈ S we set w(B) =

∑
e∈B

w(e).
The optimization problem min

B∈S
w(B) is a Sum Type Optimization Problem or in short

"∑-type problem" .
Remarks:

1. The elements B ∈ S are also called feasible solutions.
2. By substitution of w by −w every maximization problem can be formulated as a minimi-

zation problem. Therefore we will also call maximization problems ∑-type problems.

Examples of ∑-type problems

• Shortest Path Problem
• Assignment Problem
• Travelling Salesperson Problem (TSP)
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• Knapsack Problem
• Sequence Alignment Problem

Example 30.3 Consider the Knapsack Problem. Given a set of items I = {I1, I2, . . . , In}, a weight
function w : I → R+, a value function v : I → R+, and a knapsack capacity C. What is the most
valuable collection of items whose weight sum does not exceed the knapsack capacity?

Choosing I as base set and S as the family of all subsets whose weight sum is smaller or equal to
C gives a representation as a ∑-type problem: maximize v(B) over all B ∈ S .

Abstract formulation of the penalty method for ∑-type problems
Penalty Method
Let E be an arbitrary set and S the set of feasible subsets of E. Let w : E → R be a
real-valued and p : E → R≥0 a non-negative real-valued function on E.

For every ε > 0, let Bε be one of the optimal solutions of the problem

min
B∈S

fε(B),

with fε(B) := w(B) + ε · p(B) .

With an algorithm which is able to solve the unpunished problem min
B∈S

w(B) we can also �nd
the solutions Bε. We just have to modify the function w by replacing w(e) by w(e) + ε · p(e)
for all e ∈ E. Bε is called an ε−ε−ε−penalty solution or an ε−ε−ε−alternative.

Additionally we de�ne the solution B∞ of the problem

lex min
B∈S

(p(B),w(B)) (minimization with respect to the lexicographical order),

which has a minimal value p(B) and among all such solutions a minimal value w(B).
Remark: If both w and p are positive real-valued functions, there is a symmetry in the

optimal solutions: B∗ is an ε−penalty solution (0 < ε < ∞) for the function pair (w, p), if
and only if B∗ is a 1

ε
−penalty solution for the pair (p,w).

To preserve this symmetry it makes sense to de�ne B0 as an optimal solution of the
problem

lex min
B∈S

(w(B), p(B)) .

That means B0 is not only an optimal solution for the objective function w, but among all
such solutions it has also a minimal p-value.

Example 30.2.1 We formulate the concrete Example 30.1. from page 3008 in this abstract∑-type formulation. We know the shortest path PD from S to T and search for a "good"
alternative solution. The penalty function p is de�ned by

p(e) =


w(e) if e is an edge of the shortest path PD,

0 else.
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Finding penalty solutions for all parameters ε ≥ 0
Often it is a priori not clear which choice of the penalty parameter ε produces good and
interesting alternative solutions. With a "divide-and-conquer" algorithm one is able to �nd
all solutions which can be produced by any parameter ε.

For �nite sets S we give an efficient algorithm which generates a "small" set B ⊆ S of
solutions with the following properties.
• For each element B ∈ B there exists an ε ∈ R+ ∪ {∞} such that B is an optimal solution

for the penalty parameter ε.

• For each ε ∈ R+ ∪ {∞} there exists an element B ∈ B such that B is optimal for the
penalty parameter ε.

• B has a minimal number of elements among all systems of sets which have the two
properties above.

We call a solution B which is optimal for at least one penalty parameter penalty-optimal.
The following algorithm on this page �nds a set of penalty-optimal solutions which covers
all ε ∈ R+ ∪ {∞}.

For easier identi�cation we arrange the elements of the set B in a �xed order
(Bε(1), Bε(2), . . . , Bε(k)), with 0 = ε(1) < ε(2) < · · · < ε(k) = ∞.
The algorithm has to check that for ε(i) < ε(i + 1) there is no ε with ε(i) < ε < ε(i + 1)
such that for this penalty parameter ε neither Bε(i) nor Bε(i+1) is optimal. Otherwise it has
to identify such an ε and an ε-penalty solution Bε. In step 11 of the pseudo code below the
variable Border(i) is set to 1 if it turns out that such an intermediate ε does not exist.

We present the pseudo code and give some remarks.

Algorithm for �nding a sequence B of penalty-optimal solutions covering all ε ≥ 0 for
the problem

min
B∈S

fε(B)
with fε(B) = w(B) + ε · p(B).



3012 30. Human-Computer Interaction

D  (w, p)
1 Compute B0, which minimizes w(B) and has a p(B)-value as small as possible.
2 Compute B∞, which minimizes p(B) and has a w(B)-value as small as possible.
3 if p(B0) = p(B∞)
4 then B ← {B0}; E ← (0); Border← ∅

(B0 minimizes the functions w and p and is optimal for all ε.)
5 else k ← 2; E = (ε(1), ε(2))← (0,∞); Border(1)← 0; B ← (B0, B∞).
6 while There is an i ∈ {1, 2, . . . , k − 1} with Border(i) = 0.
7 do ε← w(Bε(i+1))−w(Bε(i))

p(Bε(i))−p(Bε(i+1))
8 Find an optimal solution Bε for the parameter ε.
9 if fε(Bε) = fε(Bε(i)) = fε(Bε(i+1))

10 then Border(i)← 1
11 else B ← (Bε(1), . . . , Bε(i), Bε, Bε(i+1), . . . , Bε(k))
12 E ← (ε(1), . . . , ε(i), ε, ε(i + 1), . . . , ε(k))
13 Border← (Border(1), . . . , Border(i), 0,Border(i + 1),. . . ,

Border(k − 1))
14 k ← k + 1
15 return B,E, Border

At the end B is a sequence of different penalty-optimal solutions and the vector E inc-
ludes consecutive epsilons.

This algorithm is based on the following properties:
(1) If B is an ε-optimal solution then there exists an interval IB = [εl, εh], εl, εh ∈ R ∪ {∞},

such that B is optimal for all penalty parameters ε ∈ IB and for no other parameters.

(2) For two different solutions B and B′ with nonempty optimality intervals IB and IB′ , only
three cases are possible.

∗ IB = IB′ . This happens iff w(B) = w(B′) and p(B) = p(B′).
∗ IB and IB′ are disjoint.
∗ IB ∩ IB′ = {ε}, this means the intersection contains only a single epsilon. This

happens if IB and IB′ are neighboring intervals.

By �niteness of E there are only �nitely many feasible solutions B ∈ S . So, there can be
only �nitely many optimality intervals. Hence, (1) and (2) show that the interval [0,∞]
can be decomposed into a set of intervals {[0 = ε1, ε2], [ε2, ε3], . . . , [εk, εk+1 = ∞]}. For
each interval we have a different solution B which is optimal for all ε in this interval.
We call such a solution an interval representative.

(3) The aim of the algorithm is to �nd the borders of such optimality intervals and for each
interval a representing solution. In every iteration step an interval representative of a
new interval or a new border between two different intervals will be found (in steps
7�13). When there are k optimality intervals with k ≥ 2 it is sufficient to solve 2k − 1
problems of the type min

B∈S
w(B) + ε · p(B) to detect all of them and to �nd representing

solutions.
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Unimodality property of the ε-alternatives
When only one ε-alternative shall be computed the question comes up which penalty pa-
rameter should be used to produce a "best possible" alternative solution. If the penalty pa-
rameter is too small the optimal and the alternative solution are too similar and offer no
real choice. If the parameter is too large the alternative solution becomes too poor. The best
choice is to take some "medium" ε.

We illustrate this effect in the following route planning example.

Example 30.4 Assume that we have to plan a route from a given starting point to a given target. We
know the standard travel times of all road sections and are allowed to plan for two different routes. In
last minute we learn about the real travel times and can choose the fastest of our two candidate routes.

Let the �rst route be the route with the smallest standard travel time and the second one a route
found by the penalty method. Question: Which penalty parameter should we use to minimize the real
travel time of the fastest route?

Concretely, consider randomly generated instances of the shortest path problem in a weighted
directed grid graph G = (V, E,w) of dimension 25 × 25. The weights of the arcs are independently
uniformly distributed in the unit interval [0, 1]. We compute P0, a path from the lower left corner to the
upper right with minimal weight. Afterwards we punish the edges of path P0 by multiplying by 1 + ε

and calculate a whole set of ε-penalty solutions Pε1 , Pε2 , . . . , Pε30 for ε = 0.025, 0.050, . . . , 0.750.
We get 30 solution pairs {S 0, S ε1 }, {S 0, S ε2 }, . . . , {S 0, S ε30 } and can compare these.

The weight w(e) of an arc e is the standard travel time without time lags, i.e. the minimal needed
travel time on a free road without any traffic jam. The real travel time �w(e) of this arc may differ from
w(e) as follows:

�w(e) =


λc(e) · w(e) : with probability p

w(e) : with probability 1 − p
independently for all edges e. Here the λc(e) are independent random numbers, uniformly distributed
in the interval [1, c]. The parameter 0 ≤ p ≤ 1 is called failure probability and the parameter c ≥ 1 is
called failure width.

For every pair {S 0, S εi } we calculate the minimum of the two function values �w(S 0) and �w(S εi ).
To get a direct impression of the bene�t of having two solutions instead of one we scale with respect
to the real value of the optimal solution S 0.

φεi =
min{ �w(S 0), �w(S εi )}

�w(S 0) for i = 1, . . . , 30.

We computed the values φεi for 100,000 randomly generated 25 × 25 grid graphs with failure
probability p = 0.1 and failure width c = 8. Figure 30.3 shows the averages φεi for ε1 = 0.025, ε2 =

0.050, . . . , ε30 = 0.750.
As seen in Figure 30.3, the expected quality φε of the solution pairs is unimodal in ε. That mean

that φε �rst decreases and then increases for growing ε. In this example ε∗ ≈ 0.175 is the optimal
penalty parameter.

In further experiments it was observed that the optimal parameter ε∗ is decreasing in the problem
size (e.g. ε∗ ≈ 0.6 for shortest paths in 5×5-grids, ε∗ ≈ 0.175 for 25×25 and ε∗ ≈ 0.065 for 100×100
grid graphs).

Monotonicity properties of the penalty solutions
Independently whether all ε-penalty solutions (like on page 3011) are generated or only
a single one (like on page 3012), the following structural properties are provable: With
increasing penalty factor ε we get solutions Bε where
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Figure 30.3. φεi for ε1 = 0.025, ε2 = 0.050, . . . , ε30 = 0.750 on 25 × 25 grids

• the penalty part p of the objective function is �tted monotonically better (the solution
contains less punished parts),

• the original objective function w is getting monotonically worse, in compensation for
the improvement with respect to the penalty part.

These facts are formalized in the following theorem.

Theorem 30.1
Let w : E → R be a real-valued function and p : E → R+ a positive real-valued

function on E. Let Bε be de�ned for ε ∈ R+ according to De�nition ?? on page ??. The
following four statements hold:

(i) p(Bε) is weakly monotonically decreasing in ε.

(ii) w(Bε) is weakly monotonically increasing in ε.

(iii) The difference w(Bε) − p(Bε) is weakly monotonically increasing in ε.

(iv) w(Bε) + ε · p(Bε) is weakly monotonically increasing in ε.

Proof. Let δ and ε be two arbitrary nonnegative real numbers with 0 ≤ δ < ε.

file:??.dvi#??�
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Because of the de�nition of Bδ and Bε the following inequations hold.

(i) In case ε < ∞ we have
w(Bε) + ε · p(Bε) ≤ w(Bδ) + ε · p(Bδ), (30.1)
w(Bε) + δ · p(Bε) ≥ w(Bδ) + δ · p(Bδ). (30.2)

Subtracting (30.2) from (30.1) we get
(ε − δ) · p(Bε) ≤ (ε − δ) · p(Bδ) | : (ε − δ) > 0

⇔ p(Bε) ≤ p(Bδ). (30.3)
In case ε = ∞ inequality (30.3) follows directly from the de�nition of B∞.

(ii) Subtracting (30.3) multiplied with δ from (30.2) we get
w(Bε) ≥ w(Bδ). (30.4)

(iii) Subtracting (30.3) from (30.4) we get
w(Bε) − p(Bε) ≥ w(Bδ) − p(Bδ).

(iv) With (30.2) and ε > δ ≥ 0 we have
w(Bδ) + δ · p(Bδ) ≤ w(Bε) + δ · p(Bε) ≤ w(Bε) + ε · p(Bε)
⇒ w(Bε) + ε · p(Bε) ≥ w(Bδ) + δ · p(Bδ). �

Generating more than one alternative solution for the same penalty parameter ε
If we have a solution S 0 and want to get more than one alternative solution we can use
the penalty method several times by punishing S 0 with different penalty parameters ε1 <
· · · < εm, getting alternative solutions S ε1 , S ε2 , . . . , S εm . This method has a big disadvantage,
because only the shared parts of the main solution S 0 and each alternative solution are
controlled by the values εi. But there is no direct control of the parts shared by two different
alternative solutions. So, S εi and S ε j may be rather similar for some i 6, j.

To avoid this effect the penalty method may be used iteratively for the same ε.

I P M(w, p, k, ε)
1 Solve the original problem min w(B) and �nd the optimal solution S 0.
2 De�ne the penalty function as p1(B)← ε · w(B ∩ S 0).
3 Solve the modi�ed problem min w(B) + ε · p1(B) and �nd the solution S 1.
4 for j← 2 to k
5 do p j(B)← ε · w(B ∩ S 0) + ε · w(B ∩ S 1) + · · · + ε · w(B ∩ S j−1)
6 Solve the modi�ed problem min w(B) + ε · p j(B) and �nd the solution S j.
7 return (S 0, S 1, . . . , S k)

Step 5 may be replaced by the variant 5∗

5∗ do p j(B)← ε · w(B ∩ (S 0 ∪ S 1 ∪ · · · ∪ S j−1))
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In the �rst case (5) a part of a solution belonging to r of the j solutions S 0, S 1, . . . and
S j−1 is punished by the factor r · ε. In the second case (5∗) a part of a solution is punished
with multiplicity one if it belongs to at least one of S 0, S 1, . . . or S j−1.

The differences in performance are marginal. However, in shortest path problems with
three solutions S 0, S 1 and S 2 setting (5) seemed to give slightly better results.

Example 30.5 Take the graph G = (V, E) from Figure 30.2 on page 3009. For penalty parameter
ε = 0.1 we want to �nd three solutions. The shortest path from S to T is PD via S - A - C - D - F -
T with length 23. Multiplying all edges of PD by 1.1 and solving the obtained shortest path problem
gives the alternative solution PB via S - A - B - F - T .

Applying setting (5) we have to multiply the edge lengths of (A,C), (C,D), (D, F), (A, B) and
(B, F) by penalty factor 1.1. The edges (S , A) and (F, T ) have to be multiplied by factor 1.2 (double
penalty). The optimal solution is path PH via S - G - H - T .

Applying setting (5∗) we have to multiply the edge lengths (S , A), (A,C), (C,D), (D, F), (F,T ),
(A, B) and (B, F) by penalty factor 1.1. The optimal solution of this modi�ed problem is path PE via
S - A - C - E - F - T .

30.2.3. The linear programming - penalty method
It is well known that shortest path problems as well as many other network �ow problems
can be solved with Linear Programming. Linear Programming may also be used to gene-
rate alternative solutions. We start with the description of Linear Programming for the basic
shortest path problem.

The shortest path problem formulated as a linear program
Consider a directed graph G = (V, E) and a function w : E → R+ assigning a length to every
arc of the graph. Let s and t be two distinguished nodes of G.

Which is the shortest simple path from s to t in G?
For every arc e = (i, j) ∈ E we introduce a variable xe. Here xe shall be 1 if e is part of

the shortest path and xe shall be 0 otherwise.
With S (i) = { j ∈ V : (i, j) ∈ E} ⊆ V we denote the set of the successors of node i and

with P(i) = { j ∈ V : ( j, i) ∈ E} ⊆ V we denote the set of the predecessors of node i. The
linear program LPS hortestPath is formulated as follows:

min
∑

e∈E
w(e) · xe

s.t.
∑

j∈S (s)
x(s, j) −

∑

j∈P(s)
x( j,s) = 1 �ow-out condition for the starting node s

∑

j∈S (t)
x(t, j) −

∑

j∈P(t)
x( j,t) = −1 �ow-in condition for the target node t

∑

j∈S (i)
x(i, j) −

∑

j∈P(i)
x( j,i) = 0 for all nodes i ∈ V\{s, t}

K conditions for all interior nodes
0 ≤ xe ≤ 1 for all e ∈ E.
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By the starting and target conditions node s is a source and node t is a sink. Because of
the K conditions there are no other sources or sinks. Therefore there must be a
"connection" from s to t.

It is not obvious that this connection is a simple path. The variables xe might have non-
integer values or there could be circles anywhere. But there is a basic theorem for network
�ow problems [1, p.318] that the linear program LPS hortestPath has an optimal solution where
all xe > 0 have the value 1. The according arcs with xe = 1 represent a simple path from s
to t.

Example 30.6 Consider the graph in Figure 30.4. The linear program for the shortest path prob-
lem in this graph contains six equality constraints (one for each node) and seven pairs of inequality
constraints (one pair for each arc).

1 1 1
1 1.1

1.2 1S T
B

C

A

D

Figure 30.4. Example graph for the LP-penalty method

min(xS A + xS B + xBC + xCT + xDT ) · 1 + xAC · 1.1 + xBD · 1.2
s.t. xS A + xS B = 1,

xCT + xDT = 1,
xS A − xAC = 0,
xS B − xBC − xBD = 0,
xAC + xBC − xCT = 0,
xBD − xDT = 0,
0 ≤ xS A, xS B, xAC , xBC , xBD, xCT , xDT ≤ 1.

The optimal solution has xS B = xBC = xCT = 1.

A linear program which gives two alternative paths from s to t
Here we give an LP-representation for the task to �nd two alternative routes from s to t.

For every arc e = (i, j) ∈ E we introduce two variables xe and ye. If the arc e is used
in both routes, then both xe and ye shall have the value 1. If e is a part of only one route, xe
shall be 1 and ye shall be 0. Otherwise xe and ye shall both be 0. ε > 0 is a penalty parameter
to punish arcs used by both routes.
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With this in mind we can formulate the linear program LP2−S hortPaths

min f (x, y) :=
∑

e∈E
w(e) · xe + (1 + ε) · w(e) · ye

s.t.
∑

j∈S (s)
x(s, j) + y(s, j) −

∑

j∈P(s)
x( j,s) + y( j,s) = 2 condition for the starting node s

∑

j∈S (t)
x(t, j) + y(t, j) −

∑

j∈P(t)
x( j,t) + y( j,t) = −2 condition for the target node t

∑

j∈S (i)
x(i, j) + y(i, j) −

∑

j∈P(i)
x( j,i) + y( j,i) = 0 K conditions

for all i ∈ V\{s, t}

0 ≤ xe, ye ≤ 1 for all e ∈ E.

Example 30.7 Consider again the graph in Figure 30.4 on the preceding page. The linear program for
the 2-alternative-paths problem in this graph contains six equality constraints (one for each node) and
2 · 7 = 14 pairs of inequality constraints.

min (xS A + xS B + xBC + xCT + xDT ) · 1 + xAC · 1.1 + xBD · 1.2
+
[(yS A + yS B + yBC + yCT + yDT ) · 1 + yAC · 1.1 + yBD · 1.2] · (1 + ε)

s.t. xS A + yS A + xS B + yS B = 2,
xCT + yCT + xDT + yDT = 2,
xS A + yS A − xAC − yAC = 0,
xS B + yS B − xBC − yBC − xBD − yBD = 0,
xAC + yAC + xBC + yBC − xCT − yCT = 0,
xBD + yBD − xDT − yDT = 0,
0 ≤ xS A, xS B, xAC , xBC , xBD, xCT , xDT , yS A, yS B, yAC , yBC , yBD, yCT , yDT ≤ 1.

This linear program can be interpreted as a minimal cost �ow problem.
Where is the connection between the linear program and the problem to �nd two can-

didate routes from s to t?

Theorem 30.2 If the linear program LP2−S hortPaths has an optimal solution then it has also
an optimal solution (x, y) with the following properties.
There are disjoint sets E1, E2, E3 ⊆ E with

(i) E1 ∩ E2 = ∅, E1 ∩ E3 = ∅ and E2 ∩ E3 = ∅,
(ii) xe = 1, ye = 0 for all e ∈ E1 ∪ E2,

(iii) xe = 1, ye = 1 for all e ∈ E3,
(iv) xe = 0, ye = 0 for all e < E1 ∪ E2 ∪ E3.
(v) E1 ∪ E3 represents a path P1 from s to t and E2 ∪ E3 represents a path P2 from s to t.

E3 is the set of arcs used by both paths.
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(vi) No other pair (Q1,Q2) of paths is better than (P1, P2), i.e.,

w(P1) + w(P2) + ε · w(P1 ∩ P2) ≤w(Q1) + w(Q2) + ε · w(Q1 ∩ Q2),
for all pairs (Q1,Q2).

That means the sum of the lengths of P1 and P2 plus a penalty for arcs used twice is
minimal.

We conclude with some remarks.
• For each arc e there are two variables xe and ye. This can be interpreted as a street with a

normal lane and an additional passing lane. Using the passing lane is more expensive
than using the normal lane. If a solution uses an arc only once, it takes the cheaper
normal lane. But if a solution uses an arc twice, it has to take both the normal and the
passing lane.

• The decomposition of the solution (x, y) into two paths from the starting node to the
target node is in most cases not unique. With the arcs a, b, . . . , g, h in Figure 30.5 we
can build two different pairs of paths from S to T , namely (a− c− e− g, b− d − f − h)
and (a − c − f − h, b − d − e − g). Both pairs are equi-optimal in the sense of Theorem
30.2. So the user has the chance to choose between them according to other criteria.

a

b

c

d

e

f

g

hS T

Figure 30.5. An example for a non-unique decomposition in two paths

• The penalty method and the LP-penalty method generally lead to different results. The
penalty method computes the best single solution and a suitable alternative. The LP-
penalty method computes a pair of good solutions with relatively small overlap. Fi-
gure 30.4 on page 3017 shows that this pair not necessarily contains the best single
solution. The shortest path from S to T is P1 = S �B�C�T with length 3. For all ε > 0.1
the ε-penalty solution is P2 = S �A�C�T . The path pair (P1, P2) has a total lengths of
6.1 and a shared length of 1.0. But for ε > 0.2 the LP-Penalty method produces the pair
(P2, P3) = (S �A�C�T, S �B�D�T ) with a total length of 6.3 and a shared length of zero.

• Finding k candidate routes for some larger number k > 2 is possible, if we introduce k
variables x0

e , x1
e , . . . , xk−1

e for each arc e and set the supply of s and the demand of t to k.
As objective function we can use for instance

min f (x0, . . . , xk−1) :=
∑

e∈E

k−1∑

j=0
(1 + j · ε) · w(e) · x j

e

or

min f (x0, . . . , xk−1) :=
∑

e∈E

k−1∑

j=0
(1 + ε) j · w(e) · x j

e
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• The LP-penalty method does not only work for shortest path problems. It can be gene-
ralized to arbitrary problems solvable by linear programming.

• Furthermore an analogous method � the Integer Linear Programming Penalty Method
� can be applied to problems solvable by integer linear programming.

30.2.4. Penalty method with heuristics
In Subsection 30.2.2 we discussed the penalty method in combination with exact solving
algorithms (e.g. Dijkstra-algorithm or dynamic programming for the shortest path problem).
But also in case of heuristics (instead of exact algorithms) the penalty method can be used
to �nd multiple candidate solutions.

Example 30.8 A well known heuristic for the TSP-problem is local search with 2-exchange steps (cp.
Subsection 30.2.1 on page 3005).

P M   TSP-P  2-E H

1 Apply the 2-exchange heuristic to the unpunished problem getting a locally (but
not necessarily globally) optimal solution T .

2 Punish the edges belonging to T by multiplying their lengths with 1 + ε.
3 Apply the 2-exchange heuristic to the punished problem getting an alternative

solution Tε.
4 Compute the unmodi�ed length of Tε.
5 The pair (T, Tε) is the output.

Question: Which penalty parameter ε ≥ 0 should be used to minimize the travel time of the fastest
route?

An experiment analogous to the one described in Example 30.4. on page 3013 was executed for
TSP instances with 25 random cities in the unit square. Figure 30.6 shows the scaled averages for
ε0 = 0.000, ε1 = 0.025, . . . , ε30 = 0.750. So, the expected quality φε of the solution pairs is (again)
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Figure 30.6. φεi for ε0 = 0, ε1 = 0.025, . . . , ε30 = 0.750 on 25 × 25 grids
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unimodal in the penalty factor ε. That means that φε �rst decreases and then increases for growing ε.
In this example ε∗ ≈ 0.175 is the optimal penalty parameter.

In further experiments it was observed that the optimal penalty parameter ε∗ is decreasing in the
problem size.

Exercises
30.2-1 The following programming exercise on the Travelling Salesperson Problem helps
to get a feeling for the great variety of local optima. Generate 200 random points in the 2-
dimensional unit-square. Compute distances with respect to the Euclidean metric. Make 100
runs of local search with random starting tours and 2-exchanges. Count how many different
local minima have been found.
30.2-2 Enter the same key words into different internet search engines. Compare the hit
lists and their diversities.
30.2-3 Formulate the Travelling Salesperson Problem as a ∑-type problem.
30.2-4 Proof the assertion of the remark on page 3010.
30.2-5 How does the penalty function p(e) look like in case of additive penalties like in
Example 30.2.?
30.2-6 Prove the properties (1) and (2) on page 3012.
30.2-7 Apply the D   algorithm (page 3011) to the shortest path problem in
Figure 30.2 on page 3009 with starting node S and target node T . Set w(e) = length of e for
each road section, and p(e) = length of e for the road sections belonging to the shortest path
PD via S - A - C - D - F - T and p(e) = 0 for all other sections. So, the penalty value of a
whole path is the length of this part shared with PD.
30.2-8 Find a penalty parameter ε > 0 for Example 30.5. on page 3016 such that the �rst
setting (5) produces three different paths but the second setting (5∗) only two different paths
for k = 3.

30.3. More algorithms for interactive problem solving
There are many other settings where a human controller has access to computer-generated
candidate solutions. This section lists four important cases and concludes with a discussion
of miscellaneous stuff.

30.3.1. Anytime algorithms
In an anytime-setting the computer starts to work on a problem, and almost from the very
�rst moment on candidate solutions (the best ones found so far) are shown on the monitor.
Of course, the early outputs in such a process are often only preliminary and approximate
solutions � without guarantee of optimality and far from perfect.

An example: Iterative deepening performs multiple depth-limited searches � gradually
increasing the depth limit on each iteration of the search. Assume that the task is to seek
good solutions in a large rooted tree T = (V, E). Let f : V → R be the function which is to
be maximized. Let Vd be the set of all nodes in the tree at distance d from root.
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I-D-T-S(T, f )
1 Opt← f (root)
2 d ← 1
3 while d < ∞
4 do Determine maximum Maxd of f on Vd
5 if Maxd > Opt
6 then Opt←Maxd
7 d ← d + 1

All the time the currently best solution (Opt) is shown on the monitor. The operator may
stop at any moment.

Iterative deepening is not only interesting for HCI but has also many applications in
fully automatic computing. A prominent example is game tree search: In tournament chess
a program has a �xed amount of time for 40 moves, and iterative deepening is the key
instrument to �nd a balanced distribution of time on the single alpha-beta searches.

Another frequent anytime scenario is repeated application of a heuristic. Let f : A→ R
be some complicated function for which elements with large function values are searched.
Let H be a probabilistic heuristic that returns a candidate solution for this maximization
problem (A, f ). For instance, H may be local search or some other sort of hill-climbing pro-
cedure. H is applied again and again in independent runs, and all the time the best solution
found so far is shown.

A third anytime application is in Monte Carlo simulations, for instance in Monte Carlo
integration. A static approach would take objective values at a prescribed number of random
points (1,000 or so) and give the average value in the output. However, already the interme-
diate average values (after 1, 2, 3 etc. data points � or after each block of 10 or 50 points)
may give early indications in which region the �nal result might fall and whether it really
makes sense to execute all the many runs. Additional display of variances and frequencies
of outliers gives further information for the decision when best to stop the Monte Carlo run.

In human-computer systems anytime algorithms help also in the following way: during
the ongoing process of computing the human may already evaluate and compare preliminary
candidate solutions.

30.3.2. Interactive evolution and generative design
Genetic Algorithms are search algorithms based on the mechanics of natural selection and
natural genetics. Instead of single solutions whole populations of solutions are manipula-
ted. Genetic Algorithms are often applied to large and difficult problems where traditional
optimization techniques fall short.

Interactive evolution is an evolutionary algorithm that needs human interaction. In inter-
active evolution, the user selects one or more individual(s) of the current population which
survive(s) and reproduce(s) (with mutations) to constitute the new generation. So, in inter-
active evolution the user plays the role of an objective function and thus has a rather active
role in the search process.

In �elds like art, architecture, and photo processing (including the design of phantom
photos) Generative Design is used as a special form of interactive evolution. In Generative
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Design all solutions of the current generation are shown simultaneously on the screen. Here
typically "all" means some small number N between 4 and 20. Think of photo processing
as an example, where the user selects modi�ed contrast, brightness, colour intensities, and
sharpness. The user inspects the current candidate realizations, and by a single mouse click
marks the one which he likes most. All other solutions are deleted, and N mutants of the
marked one are generated. The process is repeated (open end) until the user is happy with
the outcome. For people without practical experience in generative design it may sound
unbelievable, but even from poor starting solutions it takes the process often only a few
iterations to come to acceptable outcomes.

30.3.3. Successive fixing
Many problems are high-dimensional, having lots of parameters to adjust. If sets of good
solutions in such a problem are generated by repeated probabilistic heuristics, the following
interactive multi-stage procedure may be applied: First of all several heuristic solutions
are generated and inspected by a human expert. This human especially looks for "typical"
pattern in the solutions and "�xes" them. Then more heuristic solutions are generated under
the side condition that they all contain the �xed parts. The human inspects again and �xes
more parts. The process is repeated until �nally everything is �x, resulting in one speci�c
(and hopefully good) solution.

30.3.4. Interactive multicriteria decision making
In multicriteria decision making not only one but two or more objective functions are given.
The task is to �nd admissible solutions which are as good as possible with respect to all these
objectives. Typically, the objectives are more or less contradictory, excluding the existence
of a unanimous optimum. Helpful is the concept of "efficient solutions", with the following
de�nition: For an efficient solution there exists no other solution which is better with respect
to at least one objective and not worse with respect to all the others.

A standard �rst step in multicriteria decision making is to compute the set of all efficient
solutions. In the bicriteria case the "efficient frontier" can be visualized in a 2-dimensional
diagram, giving the human controller a good overview of what is possible.

30.3.5. Miscellaneous
• Graphical Visualization of Computer Solutions

It is not enough that a computer generates good candidate solutions. The results also
have to be visualized in appropriate ways. In case of a single solution important parts
and features have to be highlighted. And, even more important, in case of concurring
solutions their differences and specialities have to be stressed.

• Permanent Computer Runs with Short Intermediate Human Control
A nickname for this is "1+23h mode", coming from the following picture: Each day
the human sits in front of the computer for one hour only. In this hour he looks at the
computer results from the previous 23 hours, interacts with the machine and also briefs
the computer what to do in the next 23 hours. So, the human invests only a small portion
of his time while the computer is running permanently.
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An impressive example comes from correspondence chess. Computer help is officially
permitted. Most top players have one or several machines running all around the clock,
analyzing the most critical positions and lines of play. The human players collect these
computer results and analyze only shortly per day.

• Unexpected Errors and Numerical Instabilities
"Every software has errors!" This rule of thumb is often forgotten. People too often
simply believe what the monitor or the description of a software product promises.
However, running independent programs for the very same task (with a unique optimal
solution) will result in different outputs unexpectedly often. Also numerical stability
is not for free. Different programs for the same problem may lead to different results,
due to rounding errors. Such problems may be recognized by applying independent
programs.
Of course, also hardware has (physical) errors, especially in times of ongoing minia-
turization. So, in crucial situations it is a good strategy to run an identical program on
fully independent machines - best of all operated by independent human operators.

Exercises
30.3-1 For a Travelling Salesperson Problem with 200 random points (xi, yi) in the unit
square [0, 1] × [0, 1] and Euclidean distances, generate 100 locally optimal solutions (with
2-exchanges, see Subsection 30.2.1 on page 3005) and count which edges occur how often
in these 100 solutions. De�ne some threshold K (for instance K = 30) and �x all edges
which are in at least K of the solutions. Generate another 100 local optima, without allowing
the �xed edges to be exchanged. Repeat until convergence and compare the �nal result with
typical local optima from the �rst series.

Chapter notes
In the technical report [14] lots of experiments on the penalty method for various sum type
problems, dimensions, failure widths and probabilities are described and analyzed. The
proof of Theorem 30.1 was originally given in [5]) . In e-commerce multiple-choice sys-
tems are often called "Recommender Systems" [13], having in mind customers for whom
interesting products have to be listed. Understandably, commercial search engines and e-
companies keep their shortlisting strategies secret.

A good class book on Genetic Algorithms is [11]. Interactive Evolution and Generative
Design are described in [8]. There is a lot of literature on multicriteria decision making, one
of the standard books being [10].

In the book [2] the story of 3-Hirn and its successes in tournament chess
is told. The �nal match between "3-Hirn" and GM Yussupov is described in [3].
[4] gives more general information on improved game play by multiple computer hints. In
[6] several good k-best realizations of iterative deepening in game tree search are exhibited
and discussed. Screenshots of these realizations can be inspected at http://www.minet.uni-
jena.de/www/fakultaet/iam/personen/k-best.html. [12] describes the technical background
of advanced programs for playing chess and other games.

There is a nice online repository, run by M. Zuker and D.H. Turner at
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http://www.bioinfo.rpi.edu/applications/mfold/. The user may enter for instance RNA-
strings, and in realtime alternative foldings for these strings are generated. Amongst other
data the user may enter parameters for "maximum number of computed foldings" (default
= 50) and "percent suboptimality number" (default = 5 %).
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