
14. Computer graphics

Computer Graphics algorithms create and render virtual worlds stored in the computer me-
mory. The virtual world model may contain shapes (points, line segments, surfaces, solid
objects etc.), which are represented by digital numbers. Rendering computes the displayed
image of the virtual world from a given virtual camera. The image consists of small rec-
tangles, called pixels. A pixel has a unique colour, thus it is sufficient to solve the rendering
problem for a single point in each pixel. This point is usually the centre of the pixel. Rende-
ring �nds that shape which is visible through this point and writes its visible colour into the
pixel. In this chapter we discuss the creation of virtual worlds and the determination of the
visible shapes.

14.1. Fundamentals of analytic geometry
The base set of our examination is the Euclidean space. In computer algorithms the elements
of this space should be described by numbers. The branch of geometry describing the ele-
ments of space by numbers is the analytic geometry. The basic tools of analytic geometry
are the vector and the coordinate system.

De�nition 14.1 A vector is an oriented line segment or a translation that is de�ned by its
direction and length. A vector is denoted by ~v.

The length of the vector is also called its absolute value, and is denoted by |~v|. Vectors can
be added, resulting in a new vector that corresponds to subsequent translations. Addition is
denoted by ~v1 +~v2 = ~v. Vectors can be multiplied by scalar values, resulting also in a vector
(λ ·~v1 = ~v), which translates at the same direction as ~v1, but the length of translation is scaled
by λ.

The dot product of two vectors is a scalar that is equal to the product of the lengths of
the two vectors and the cosine of their angle:

~v1 · ~v2 = |~v1| · |~v2| · cosα, where α is the angle between ~v1 and ~v2.

Two vectors are said to be orthogonal if their dot product is zero.
On the other hand, the cross product of two vectors is a vector that is orthogonal to

the plane of the two vectors and its length is equal to the product of the lengths of the two
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vectors and the sine of their angle:

~v1 × ~v2 = ~v, where ~v is orthogonal to ~v1 and ~v2, and |~v| = |~v1| · |~v2| · sinα.

There are two possible orthogonal vectors, from which that alternative is selected where our
middle �nger of the right hand would point if our thumb were pointing to the �rst and our
fore�nger to the second vector (right hand rule). Two vectors are said to be parallel if their
cross product is zero.

14.1.1. Cartesian coordinate system
Any vector ~v of a plane can be expressed as the linear combination of two, non-parallel
vectors~i, ~j in this plane, that is

~v = x ·~i + y · ~j.

Similarly, any vector ~v in the three-dimensional space can be unambiguously de�ned by the
linear combination of three, not coplanar vectors:

~v = x ·~i + y · ~j + z · ~k.

Vectors~i, ~j,~k are called basis vectors, while scalars x, y, z are referred to as coordinates.
We shall assume that the basis vectors have unit length and they are orthogonal to each other.
Having de�ned the basis vectors any other vector can unambiguously be expressed by three
scalars, i.e. by its coordinates.

A point can be de�ned by that vector which translates the reference point, called origin,
to the given point. In this case the translating vector is the place vector of the given point.

The origin and the basis vectors constitute the Cartesian coordinate system, which is
the basic tool to describe the points of the Euclidean plane or space by numbers.

The Cartesian coordinate system is the algebraic basis of the Euclidean geometry, which
means that scalar triplets of Cartesian coordinates can be paired with the points of the space,
and having made a correspondence between algebraic and geometric concepts, the axioms
and the theorems of the Euclidean geometry can be proven by algebraic means.

Exercises
14.1-1 Prove that there is a one-to-one mapping between Cartesian coordinate triplets and
points of the three-dimensional space.
14.1-2 Prove that if the basis vectors have unit length and are orthogonal to each other, then
(x1, y1, z1) · (x2, y2, z2) = x1x2 + y1y2 + z1z2.
14.1-3 Prove that the dot product is distributive with respect to the vector addition.

14.2. Description of point sets with equations
Coordinate systems provide means to de�ne points by numbers. A set of conditions on
these numbers, on the other hand, may de�ne point sets. The set of conditions is usually an
equation. The points de�ned by the solutions of these equations form the set.
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solid f (x, y, z) implicit function
sphere of radius R R2 − x2 − y2 − z2

block of size 2a, 2b, 2c min{a − |x|, b − |y|, c − |z|}
torus of axis z, radii r (tube) and R (hole) r2 − z2 − (R −

√
x2 + y2)2

Figure 14.1. Implicit functions de�ning the sphere, the block, and the torus.

14.2.1. Solids
A solid is a subset of the three-dimensional Euclidean space. To de�ne this subset, continu-
ous function f is used which maps the coordinates of points onto the set of real numbers.
We say that a point belongs to the solid if the coordinates of the point satisfy the following
implicit inequality:

f (x, y, z) ≥ 0 .
Points satisfying inequality f (x, y, z) > 0 are the internal points, while points de�ned by
f (x, y, z) < 0 are the external points. Because of the continuity of function f , points sa-
tisfying equality f (x, y, z) = 0 are between external and internal points and are called the
boundary surface of the solid. Intuitively, function f describes the distance between a point
and the boundary surface.

We note that we usually do not consider any subset of the space as a solid, but also
require that the point set does not have lower dimensional degeneration (e.g. hanging lines
or surfaces), i.e. that arbitrarily small neighbourhoods of each point of the boundary surface
contain internal points.

Figure 14.1 de�nes the implicit functions of the sphere, the box and the torus.

14.2.2. Surfaces
Points having coordinates that satisfy equation f (x, y, z) = 0 are the boundary points of the
solid, which form a surface. Surfaces can thus be de�ned by this implicit equation. Since
points can also be given by the place vectors, the implicit equation can be formulated for
the place vectors as well:

f (~r) = 0 .
A surface may have many different equations. For example, equations f (x, y, z) = 0,
f 2(x, y, z) = 0, and 2 · f 3(x, y, z) = 0 are algebraically different, but they de�ne the same set
of points.

A plane of normal ~n and place vector ~r0 contains those points for which vector ~r − ~r0
is perpendicular to the normal, thus their dot product is zero. Based on this, the points of a
plane are de�ned by the following vector and scalar equations:

(~r − ~r0) · ~n = 0, nx · x + ny · y + nz · z + d = 0 , (14.1)

where nx, ny, nz are the coordinates of the normal and d = −~r0 · ~n. If the normal vector has
unit length, then d expresses the signed distance between the plane and the origin of the
coordinate system. Two planes are said to be parallel if their normals are parallel.

Instead of using implicit equations, surfaces can also be de�ned by parametric forms.
In this case, the Cartesian coordinates of surface points are functions of two independent
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solid x(u, v) y(u, v) z(u, v)
sphere of radius R R · cos 2πu · sin πv R · sin 2πu · sin πv R · cos πv

cylinder of radius R, axis z, and of height h R · cos 2πu R · sin 2πu h · v
cone of radius R, axis z, and of height h R · (1 − v) · cos 2πu R · (1 − v) · sin 2πu h · v

Figure 14.2. Parametric forms of the sphere, the cylinder, and the cone, where u, v ∈ [0, 1].

variables. Denoting these free parameters by u and v, the parametric equations of the surface
are:

x = x(u, v), y = y(u, v), z = z(u, v), u ∈ [umin, umax], v ∈ [vmin, vmax] .

The implicit equation of a surface can be obtained from the parametric equations by
eliminating free parameters u, v. Figure 14.2 includes the parametric forms of the sphere,
the cylinder and the cone.

Parametric forms can also be de�ned directly for the place vectors:

~r = ~r(u, v) .

A triangle is the convex combination of points ~p1, ~p2, and ~p3, that is

~r(α, β, γ) = α · ~p1 + β · ~p2 + γ · ~p3, where α, β, γ ≥ 0 and α + β + γ = 1 .

From this de�nition we can obtain the usual two-variate parametric form substituting α
by u, β by v, and γ by (1 − u − v):

~r(u, v) = u · ~p1 + v · ~p2 + (1 − u − v) · ~p3, where u, v ≥ 0 and u + v ≤ 1 .

14.2.3. Curves
By intersecting two surfaces, we obtain a curve that may be de�ned formally by the implicit
equations of the two intersecting surfaces

f1(x, y, z) = f2(x, y, z) = 0,

but this is needlessly complicated. Instead, let us consider the parametric forms of the two
surfaces, given as ~r1(u1, v1) and ~r2(u2, v2), respectively. The points of the intersection satisfy
vector equation ~r1(u1, v1) = ~r2(u2, v2), which corresponds to three scalar equations, one for
each coordinate of the three-dimensional space. Thus we can eliminate three from the four
unknowns (u1, v1, u2, v2), and obtain a one-variate parametric equation for the coordinates
of the curve points:

x = x(t), y = y(t), z = z(t), t ∈ [tmin, tmax].

Similarly, we can use the vector form:

~r = ~r(t), t ∈ [tmin, tmax].

Figure 14.3 includes the parametric equations of the ellipse, the helix, and the line segment.
Note that we can de�ne curves on a surface by �xing one of free parameters u, v. For
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test x(u, v) y(u, v) z(u, v)
ellipse of main axes 2a, 2b on plane z = 0 a · cos 2πt b · sin 2πt 0
helix of radius R, axis z, and elevation h R · cos 2πt R · sin 2πt h · t

line segment between points (x1, y1, z1) and (x2, y2, z2) x1(1 − t) + x2t y1(1 − t) + y2t z1(1 − t) + z2t

Figure 14.3. Parametric forms of the ellipse, the helix, and the line segment, where t ∈ [0, 1].

example, by �xing v the parametric form of the resulting curve is ~rv(u) = ~r(u, v). These
curves are called iso-parametric curves.

Let us select a point of a line and call the place vector of this point the place vector of
the line. Any other point of the line can be obtained by the translation of this point along
the same direction vector. Denoting the place vector by ~r0 and the direction vector by ~v, the
equation of the line is:

~r(t) = r0 + ~v · t, t ∈ (−∞,∞) . (14.2)

Two lines are said to be parallel if their direction vectors are parallel.
Instead of the complete line, we can also specify the points of a line segment if para-

meter t is restricted to an interval. For example, the equation of the line segment between
points ~r1,~r2 is:

~r(t) = ~r1 + (~r2 − ~r1) · t = ~r1 · (1 − t) + ~r2 · t, t ∈ [0, 1] . (14.3)

According to this de�nition, the points of a line segment are the convex-combinations of
the endpoints.

14.2.4. Normal vectors
In computer graphics we often need the normal vectors of the surfaces (i.e. the normal
vector of the tangent plane of the surface). Let us take an example. A mirror re�ects light
in a way that the incident direction, the normal vector, and the re�ection direction are in the
same plane, and the angle between the normal and the incident direction equals to the angle
between the normal and the re�ection direction. To carry out such and similar computations,
we need methods to obtain the normal of the surface.

The equation of the tangent plane is obtained as the �rst order Taylor approximation of
the implicit equation around point (x0, y0, z0):

f (x, y, z) = f (x0 + (x − x0), y0 + (y − y0), z0 + (z − z0)) ≈

f (x0, y0, z0) +
∂ f
∂x · (x − x0) +

∂ f
∂y · (y − y0) +

∂ f
∂z · (z − z0) .

Points (x0, y0, z0) and (x, y, z) are on the surface, thus f (x0, y0, z0) = 0 and f (x, y, z) = 0,
resulting in the following equation of the tangent plane:

∂ f
∂x · (x − x0) +

∂ f
∂y · (y − y0) +

∂ f
∂z · (z − z0) = 0 .

Comparing this equation to equation (14.1), we can realize that the normal vector of the
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tangent plane is

~n =

(
∂ f
∂x ,

∂ f
∂y ,

∂ f
∂z

)
= grad f . (14.4)

The normal vector of parametric surfaces can be obtained by examining the iso-
parametric curves. The tangent of curve ~rv(u) de�ned by �xing parameter v is obtained
by the �rst-order Taylor approximation:

~rv(u) = ~rv(u0 + (u − u0)) ≈ ~rv(u0) +
d~rv
du · (u − u0) = ~rv(u0) +

∂~r
∂u · (u − u0) .

Comparing this approximation to equation (14.2) describing a line, we conclude that the
direction vector of the tangent line is ∂~r/∂u. The tangent lines of the curves running on a
surface are in the tangent plane of the surface, making the normal vector perpendicular to
the direction vectors of these lines. In order to �nd the normal vector, both the tangent line
of curve ~rv(u) and the tangent line of curve ~ru(v) are computed, and their cross product is
evaluated since the result of the cross product is perpendicular to the multiplied vectors. The
normal of surface ~r(u, v) is then

~n =
∂~r
∂u ×

∂~r
∂v . (14.5)

14.2.5. Curve modelling
Parametric and implicit equations trace back the geometric design of the virtual world to
the solution of these equations. However, these equations are often not intuitive enough,
thus they cannot be used directly during design. It would not be reasonable to expect the
designer working on a human face or on a car to directly specify the equations of these
objects. Clearly, indirect methods are needed which require intuitive data from the designer
and de�ne these equations automatically. One category of these indirect approaches apply
control points. Another category of methods work with elementary building blocks (box,
sphere, cone, etc.) and with set operations.

Let us discuss �rst how the method based on control points can de�ne curves. Suppose
that the designer de�ned points ~r0,~r1, . . . ,~rm, and that parametric curve of equation ~r = ~r(t)
should be found which �follows� these points. For the time being, the curve is not required
to go through these control points.

We use the analogy of the centre of mass of mechanical systems to construct our curve.
Assume that we have sand of unit mass, which is distributed at the control points. If a control
point has most of the sand, then the centre of mass is close to this point. Controlling the
distribution of the sand as a function of parameter t to give the main in�uence to different
control points one after the other, the centre of mass will travel through a curve running
close to the control points.

Let us put weights B0(t), B1(t), . . . , Bm(t) at control points at parameter t. These weigh-
ting functions are also called the basis functions of the curve. Since unit weight is distribu-
ted, we require that for each t the following identity holds:

m∑

i=0
Bi(t) = 1 .
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Figure 14.4. A Bézier curve de�ned by four control points and the respective basis functions (m = 3).

For some t, the curve is the centre of mass of this mechanical system:

~r(t) =

∑m
i=0 Bi(t) · ~ri∑m

i=0 Bi(t)
=

m∑

i=0
Bi(t) · ~ri .

Note that the reason of distributing sand of unit mass is that this decision makes the deno-
minator of the fraction equal to 1. To make the analogy complete, the basis functions cannot
be negative since the mass is always non negative. The centre of mass of a point system is
always in the convex hull1 of the participating points, thus if the basis functions are non
negative, then the curve remains in the convex hull of the control points.

The properties of the curves are determined by the basis functions. Let us now discuss
two popular basis function systems, namely the basis functions of the Bézier curves and the
B-spline curves.

Bézier curve
Pierre Bézier, a designer working at Renault, proposed the Bernstein polynomials as basis
functions. Bernstein polynomials can be obtained as the expansion of 1m = (t + (1 − t))m

according to binomial theorem:

(t + (1 − t))m =

m∑

i=0

(
m
i

)
· ti · (1 − t)m−i .

The basis functions of Bézier curves are the terms of this sum (i = 0, 1, . . . ,m):

BBezier
i,m (t) =

(
m
i

)
· ti · (1 − t)m−i . (14.6)

According to the introduction of Bernstein polynomials, it is obvious that they really
meet condition ∑m

i=0 Bi(t) = 1 and Bi(t) ≥ 0 in t ∈ [0, 1], which guarantees that Bézier curves

1The convex hull of a point system is by de�nition the minimal convex set containing the point system.



624 14. Computer graphics

lineáris bázisfüggvények

másodfokú bázisfüggvények

harmadfokú bázisfüggvények

lineáris simítás

lineáris simítás

bázisfüggvény
lineáris simítás

B    (t)i,2

B    (t)i,3

B    (t)i,4

4

1

1
  

B    (t)i,11

konstans bázisfüggvények

lineáris simítás
t t t t3 5 6

t6

t3 t5

t7 t8

t7

t0 1t 2t

1t

2t

t5

t5

Figure 14.5. Construction of B-spline basis functions. A higher order basis function is obtained by blending two
consecutive basis functions on the previous level using a linearly increasing and a linearly decreasing weighting,
respectively. Here the number of control points is 5, i.e. m = 4. Arrows indicate useful interval [tk−1, tm+1] where
we can �nd m + 1 number of basis functions that add up to 1. The right side of the �gure depicts control points
with triangles and curve points corresponding to the knot values by circles.

are always in the convex hulls of their control points. The basis functions and the shape of
the Bézier curve are shown in �gure 14.4. At parameter value t = 0 the �rst basis function is
1, while the others are zero, therefore the curve starts at the �rst control point. Similarly, at
parameter value t = 1 the curve arrives at the last control point. At other parameter values,
all basis functions are positive, thus they simultaneously affect the curve. Consequently, the
curve usually does not go through the other control points.

B-spline
The basis functions of the B-spline can be constructed applying a sequence of linear blen-
ding. A B-spline weights the m + 1 number of control points by (k− 1)-degree polynomials.
Value k is called the order of the curve, which expresses the smoothness of the curve. Let
us take a non-decreasing series of m + k + 1 parameter values, called the knot vector:

t = [t0, t1, . . . , tm+k], t0 ≤ t1 ≤ · · · ≤ tm+k .

By de�nition, the ith �rst order basis function is 1 in the ith interval, and zero elsewhere
(�gure 14.5):

BBS
i,1 (t) =

{
1, if ti ≤ t < ti+1 ,
0 otherwise .

Using this de�nition, m + k number of �rst order basis functions are established, which
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are non-negative zero-degree polynomials that sum up to 1 for all t ∈ [t0, tm+k) parameters.
These basis functions have too low degree since the centre of mass is not even a curve, but
jumps from control point to control point.

The order of basis functions, as well as the smoothness of the curve, can be increased by
blending two consecutive basis functions with linear weighting (�gure 14.5). The �rst basis
function is weighted by linearly increasing factor (t − ti)/(ti+1 − ti) in domain ti ≤ t < ti+1,
where the basis function is non-zero. The next basis function, on the other hand, is scaled
by linearly decreasing factor (ti+2 − t)/(ti+2 − ti+1) in its domain ti+1 ≤ t < ti+2 where it is
non zero. The two weighted basis functions are added to obtain the tent-like second order
basis functions. Note that while a �rst order basis function is non-zero in a single interval,
the second order basis functions expand to two intervals. Since the construction makes a
new basis function from every pair of consecutive lower order basis functions, the number
of new basis functions is one less than that of the original ones. We have just m + k − 1
second order basis functions. Except for the �rst and the last �rst order basis functions, all
of them are used once with linearly increasing and once with linearly decreasing weighting,
thus with the exception of the �rst and the last intervals, i.e. in [t1, tm+k−1], the new basis
functions also sum up to 1.

The second order basis functions are �rst degree polynomials. The degree of basis func-
tions, i.e. the order of the curve, can be arbitrarily increased by the recursive application of
the presented blending method. The dependence of the next order basis functions on the
previous order ones is as follows:

BBS
i,k (t) =

(t − ti)BBS
i,k−1(t)

ti+k−1 − ti
+

(ti+k − t)BBS
i+1,k−1(t)

ti+k − ti+1
, if k > 1 .

Note that we always take two consecutive basis functions and weight them in their non-
zero domain (i.e. in the interval where they are non-zero) with linearly increasing factor
(t − ti)/(ti+k−1 − ti) and with linearly decreasing factor (ti+k − t)/(ti+k − ti+1), respectively.
The two weighted functions are summed to obtain the higher order, and therefore smoother
basis function. Repeating this operation (k− 1) times, k-order basis functions are generated,
which sum up to 1 in interval [tk−1, tm+1]. The knot vector may have elements that are the
same, thus the length of the intervals may be zero. Such intervals result in 0/0 like fractions,
which must be replaced by value 1 in the implementation of the construction.

The value of the ith k-order basis function at parameter t can be computed with the
following Cox-deBoor algorithm:
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Figure 14.6. A B-spline interpolation. Based on points ~p0, . . . , ~pm to be interpolated, control points ~c−1, . . . ,~cm+1
are computed to make the start and end points of the segments equal to the interpolated points.

B-S(i, k, t, t)
1 if k = 1 B Trivial case.
2 then if ti ≤ t < ti+1
3 then return 1
4 else return 0
5 if ti+k−1 − ti > 0
6 then b1 ← (t − ti)/(ti+k−1 − ti) B Previous with linearly increasing weight.
7 else b1 ← 1 B Here: 0/0 = 1.
8 if ti+k − ti+1 > 0
9 then b2 ← (ti+k − t)/(ti+k − ti+1) B Next with linearly decreasing weight.

10 else b2 ← 1 B Here: 0/0 = 1.
11 B← b1 · B-(i, k − 1, t, t) + b2 · B-(i + 1, k − 1, t, t) B Recursion.
12 return B

In practice, we usually use fourth-order basis functions (k = 4), which are third-degree
polynomials, and de�ne curves that can be continuously differentiated twice. The reason is
that bent rods and motion paths following the Newton laws also have this property.

While the number of control points is greater than the order of the curve, the basis
functions are non-zero only in a part of the valid parameter set. This means that a control
point affects just a part of the curve. Moving this control point, the change of the curve is
local. Local control is a very important property since the designer can adjust the shape of
the curve without destroying its general form.

A fourth-order B-spline usually does not go through its control points. If we wish to
use it for interpolation, the control points should be calculated from the points to be interpo-
lated. Suppose that we need a curve which visits points ~p0, ~p1, . . . , ~pm at parameter values
t0 = 0, t1 = 1, . . . , tm = m, respectively (�gure 14.6). To �nd such a curve, control points
[~c−1,~c0,~c1, . . . ,~cm+1] should be found to meet the following interpolation criteria:

~r(t j) =

m+1∑

i=−1
~ci · BBS

i,4 (t j) = ~p j, j = 0, 1, . . . ,m .

These criteria can be formalized as m + 1 linear equations with m + 3 unknowns, thus the
solution is ambiguous. To make the solution unambiguous, two additional conditions should
be imposed. For example, we can set the derivatives (for motion paths, the speed) at the start
and end points.
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B-spline curves can be further generalized by de�ning the in�uence of the ith control
point as the product of B-spline basis function Bi(t) and additional weight wi of the control
point. The curve obtained this way is called the Non-Uniform Rational B-Spline, abbrevia-
ted as NURBS, which is very popular in commercial geometric modelling systems.

Using the mechanical analogy again, the mass put at the ith control point is wiBi(t), thus
the centre of mass is:

~r(t) =

∑m
i=0 wiBBS

i (t) · ~ri∑m
j=0 w jBBS

j (t)
=

m∑

i=0
BNURBS

i (t) · ~ri .

The correspondence between B-spline and NURBS basis functions is as follows:

BNURBS
i (t) =

wiBBS
i (t)

∑m
j=0 w jBBS

j (t)
.

Since B-spline basis functions are polynomials, NURBS basis functions are rational
functions. NURBS can describe quadratic curves (e.g. circle, ellipse, etc.) without any app-
roximation error.

14.2.6. Surface modelling
Parametric surfaces are de�ned by two variate functions ~r(u, v). Instead of specifying this
function directly, we can take �nite number of control points ~ri j which are weighted with
the basis functions to obtain the parametric function:

~r(u, v) =

n∑

i=0

m∑

j=0
~ri j · Bi j(u, v) . (14.7)

Similarly to curves, basis functions are expected to sum up to 1, i.e. ∑n
i=0

∑m
j=0 Bi j(u, v) = 1

everywhere. If this requirement is met, we can imagine that the control points have masses
Bi j(u, v) depending on parameters u, v, and the centre of mass is the surface point corres-
ponding to parameter pair u, v.

Basis functions Bi j(u, v) are similar to those of curves. Let us �x parameter v. Chan-
ging parameter u, curve ~rv(u) is obtained on the surface. This curve can be de�ned by the
discussed curve de�nition methods:

~rv(u) =

n∑

i=0
Bi(u) · ~ri , (14.8)

where Bi(u) is the basis function of the selected curve type.
Of course, �xing v differently we obtain another curve of the surface. Since a curve of

a given type is unambiguously de�ned by the control points, control points ~ri must depend
on the �xed v value. As parameter v changes, control point ~ri = ~ri(v) also runs on a curve,
which can be de�ned by control points ~ri,0,~ri,2, . . . ,~ri,m:

~ri(v) =

m∑

j=0
B j(v) · ~ri j .
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Figure 14.7. Iso-parametric curves of surface.

Substituting this into equation (14.8), the parametric equation of the surface is:

~r(u, v) = ~rv(u) =

n∑

i=0
Bi(u)


m∑

j=0
B j(v) · ~ri j

 =

n∑

i=0

m∑

j=0
Bi(u)B j(v) · ~ri j .

Unlike curves, the control points of a surface form a two-dimensional grid. The two-
dimensional basis functions are obtained as the product of one-variate basis functions para-
meterized by u and v, respectively.

14.2.7. Solid modelling with blobs
Free form solids � similarly to parametric curves and surfaces � can also be speci�ed by
�nite number of control points. For each control point ~ri, let us assign in�uence function
h(Ri), which expresses the in�uence of this control point at distance Ri = |~r − ~ri|. By de�-
nition, the solid contains those points where the total in�uence of the control points is not
smaller than threshold T (�gure 14.8):

f (~r) =

m∑

i=0
hi(Ri) − T ≥ 0, where Ri = |~r − ~ri| .

With a single control point a sphere can be modelled. Spheres of multiple control points are
combined together to result in an object having smooth surface (�gure 14.8). The in�uence
of a single point can be de�ned by an arbitrary decreasing function that converges to zero at
in�nity. For example, Blinn proposed the

hi(R) = ai · e−biR2

in�uence functions for his blob method.

14.2.8. Constructive solid geometry
Another type of solid modelling is constructive solid geometry (CSG for short), which
builds complex solids from primitive solids applying set operations (union, intersection,
difference) (�gures 14.9 and 14.10). Primitives usually include the box, the sphere, the cone,
the cylinder, the half-space, etc. whose implicit functions are known.
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Figure 14.8. The in�uence decreases with the distance. Spheres of in�uence of similar signs increase, of different
signs decrease each other.

Figure 14.9. The operations of constructive solid geometry for a cone of implicit function f and for a sphere of
implicit function g: union (max( f , g)), intersection (min( f , g)), and difference (min( f ,−g)).

The results of the set operations can be obtained from the implicit functions of the solids
taking part of this operation:
• intersection of f and g: min( f , g);
• union of f and g: max( f , g).
• complement of f : − f .
• difference of f and g: min( f ,−g).

Implicit functions also allow to morph between two solids. Suppose that two objects,
for example, a box of implicit function f1 and a sphere of implicit function f2 need to
be morphed. To de�ne a new object, which is similar to the �rst object with percentage t
and to the second object with percentage (1 − t), the two implicit equations are weighted
appropriately:

f morph(x, y, z) = t · f1(x, y, z) + (1 − t) · f2(x, y, z).

Exercises
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Figure 14.10. Constructing a complex solid by set operations. The root and the leaf of the CSG tree represents the
complex solid, and the primitives, respectively. Other nodes de�ne the set operations (U: union, \: difference).

14.2-1 Find the parametric equation of a torus.
14.2-2 Prove that the fourth-order B-spline with knot-vector [0,0,0,0,1,1,1,1] is a Bézier
curve.
14.2-3 Give the equations for the surface points and the normals of the waving �ag and
waving water disturbed in a single point.
14.2-4 Prove that the tangents of a Bézier curve at the start and the end are the lines con-
necting the �rst two and the last two control points, respectively.
14.2-5 Give the algebraic forms of the basis functions of the second, the third, and the
fourth-order B-splines.
14.2-6 Develop an algorithm computing the path length of a Bézier curve and a B-spline.
Based on the path length computation move a point along the curve with uniform speed.

14.3. Geometry processing and tessellation algorithms
In section 14.2 we met free-form surface and curve de�nition methods. During image synt-
hesis, however, line segments and triangles play important roles. In this section we present
methods that bridge the gap between these two types of representations. These methods
convert geometric models to lines and triangles, or further process line and triangle models.
Line segments connected to each other in a way that the end point of a line segment is the
start point of the next one are called polylines. Triangles connected at edges, on the other
hand, are called meshes. Vectorization methods approximate free-form curves by polylines.
A polyline is de�ned by its vertices. Tessellation algorithms, on the other hand, approxi-
mate free-form surfaces by meshes. For illumination computation, we often need the nor-
mal vector of the original surface, which is usually stored with the vertices. Consequently, a
triangle mesh contains a list of triangles, where each triangle is given by three vertices and
three normals. Methods processing triangle meshes use other topology information as well,
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(a) (b) (c)

Figure 14.11. Types of polygons. (a) simple; (b) complex, single connected; (c) multiply connected.

for example, which triangles share an edge or a vertex.

14.3.1. Polygon and polyhedron
De�nition 14.2 A polygon is a bounded part of the plane, i.e. it does not contain a line,
and is bordered by line segments. A polygon is de�ned by the vertices of the bordering
polylines.

De�nition 14.3 A polygon is single connected if its border is a single closed polyline
(�gure 14.11).

De�nition 14.4 A polygon is simple if it is single connected and the bordering polyline
does not intersect itself (�gure 14.11(a)).

For a point of the plane, we can detect whether or not this point is inside the polygon
by starting a half-line from this point and counting the number of intersections with the
boundary. If the number of intersections is an odd number, then the point is inside, otherwise
it is outside.

In the three-dimensional space we can form triangle meshes, where different triangles
are in different planes. In this case, two triangles are said to be neighbouring if they share
an edge.

De�nition 14.5 A polyhedron is a bounded part of the space, which is bordered by poly-
gons.

Similarly to polygons, a point can be tested for polyhedron inclusion by casting a half
line from this point and counting the number of intersections with the face polygons. If
the number of intersections is odd, then the point is inside the polyhedron, otherwise it is
outside.

14.3.2. Vectorization of parametric curves
Parametric functions map interval [tmin, tmax] onto the points of the curve. During vectori-
zation the parameter interval is discretized. The simplest discretization scheme generates N
evenly spaced parameter values ti = tmin + (tmax − tmin) · i/N (i = 0, 1, . . . ,N), and de�nes the
approximating polyline by the points obtained by substituting these parameter values into
parametric equation ~r(ti).
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Figure 14.12. Diagonal and ear of a polygon.

14.3.3. Tessellation of simple polygons
Let us �rst consider the conversion of simple polygons to triangles. This is easy if the poly-
gon is convex since we can select an arbitrary vertex and connect it with all other vertices,
which decomposes the polygon to triangles in linear time. Unfortunately, this approach does
not work for concave polygons since in this case the line segment connecting two vertices
may go outside the polygon, thus cannot be the edge of one decomposing triangle.

Let us start with two de�nitions:

De�nition 14.6 The diagonal of a polygon is a line segment connecting two vertices and
is completely contained by the polygon (line segment ~r0 and ~r3 of �gure 14.12).

The diagonal property can be checked for a line segment connecting two vertices by trying
to intersect the line segment with all edges and showing that intersection is possible only at
the endpoints, and additionally showing that one internal point of the candidate is inside the
polygon. For example, this test point can be midpoint of the line segment.

De�nition 14.7 A vertex of the polygon is an ear if the line segment of the previous and
the next vertices is a diagonal (vertex ~r4 of �gure 14.12).

Clearly, only those vertices may be ears where the inner angle is not greater than 180 deg-
rees. Such vertices are called convex vertices.

For simple polygons the following theorems hold:

Theorem 14.8 A simple polygon always has a diagonal.

Proof. Let the vertex standing at the left end (having the minimal x coordinate) be ~ri, and
its two neighboring vertices be ~ri−1 and ~ri+1, respectively (�gure 14.13). Since ~ri is standing
at the left end, it is surely a convex vertex. If ~ri is an ear, then line segment (~ri−1,~ri+1) is a
diagonal (left of �gure 14.13), thus the theorem is proven for this case. Since ~ri is a convex
vertex, it is not an ear only if triangle ~ri−1, ~ri, ~ri+1 contains at least one polygon vertex
(right of �gure 14.13). Let us select from the contained vertices that vertex ~p which is the
farthest from the line de�ned by points ~ri−1,~ri+1. Since there are no contained points which
are farther from line (~ri−1,~ri+1) than ~p, no edge can be between points ~p and ~ri, thus (~p,~ri)
must be a diagonal.

Theorem 14.9 A simple polygon can always be decomposed to triangles with its diago-
nals. If the number of vertices is n, then the number of triangles is n − 2.
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Figure 14.13. The proof of the existence of a diagonal for simple polygons.

Proof. This theorem is proven with induction. The theorem is obviously true when n =

3, i.e. when the polygon is a triangle. Let us assume that the statement is also true for
polygons having m (m = 3, . . . , n − 1) number of vertices, and consider a polygon with n
vertices. According to theorem 14.8, this polygon of n vertices has a diagonal, thus we can
subdivide this polygon into a polygon of n1 vertices and a polygon of n2 vertices, where
n1, n2 < n, and n1 + n2 = n + 2 since the vertices at the end of the diagonal participate
in both polygons. According to the assumption of the induction, these two polygons can
be separately decomposed to triangles. Joining the two sets of triangles, we can obtain the
triangle decomposition of the original polygon. The number of triangles is n1 − 2 + n2 − 2 =

n − 2.
The discussed proof is constructive thus it inspires a subdivision algorithm: let us �nd

a diagonal, subdivide the polygon along this diagonal, and continue the same operation for
the two new polygons.

Unfortunately the running time of such an algorithm is in Θ(n3) since the number of
diagonal candidates is Θ(n2), and the time needed by checking whether or not a line segment
is a diagonal is in Θ(n).

We also present a better algorithm, which decomposes a convex or concave polygon
de�ned by vertices ~r0,~r1, . . . ,~rn. This algorithm is called ear cutting. The algorithm looks
for ear triangles and cuts them until the polygon gets simpli�ed to a single triangle. The
algorithm starts at vertex ~r2. When a vertex is processed, it is �rst checked whether or not
the previous vertex is an ear. If it is not an ear, then the next vertex is chosen. If the previous
vertex is an ear, then the current vertex together with the two previous ones form a triangle
that can be cut, and the previous vertex is deleted. If after deletion the new previous vertex
has index 0, then the next vertex is selected as the current vertex.

The presented algorithm keeps cutting triangles until no more ears are left. The termi-
nation of the algorithm is guaranteed by the following two ears theorem:

Theorem 14.10 A simple polygon having at least four vertices always has at least two not
neighboring ears that can be cut independently.

Proof. The proof presented here has been given by Joseph O'Rourke. According to theorem
14.9, every simple polygon can be subdivided to triangles such that the edges of these tri-
angles are either the edges or the diagonals of the polygon. Let us make a correspondence
between the triangles and the nodes of a graph where two nodes are connected if and only
if the two triangles corresponding to these nodes share an edge. The resulting graph is con-
nected and cannot contain circles. Graphs of these properties are trees. The name of this
tree graph is the dual tree. Since the polygon has at least four vertices, the number of nodes
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Figure 14.14. Tessellation of parametric surfaces.

in this tree is at least two. Any tree containing at least two nodes has at least two leaves2.
Leaves of this tree, on the other hand, correspond to triangles having an ear vertex.

According to the two ears theorem, the presented algorithm �nds an ear in O(n) steps.
Cutting an ear the number of vertices is reduced by one, thus the algorithm terminates in
O(n2) steps.

14.3.4. Tessellation of parametric surfaces
Parametric forms of surfaces map parameter rectangle [umin, umax] × [vmin, vmax] onto the
points of the surface.

In order to tessellate the surface, �rst the parameter rectangle is subdivided to triang-
les. Then applying the parametric equations for the vertices of the parameter triangles, the
approximating triangle mesh can be obtained. The simplest subdivision of the parametric
rectangle decomposes the domain of parameter u to N parts, and the domain of parameter v
to M intervals, resulting in the following parameter pairs:

[ui, v j] =

[
umin + (umax − umin) i

N , vmin + (vmax − vmin) j
M

]
.

Taking these parameter pairs and substituting them into the parametric equations, point
triplets ~r(ui, v j), ~r(ui+1, v j), ~r(ui, v j+1), and point triplets ~r(ui+1, v j), ~r(ui+1, v j+1), ~r(ui, v j+1)
are used to de�ne triangles.

The tessellation process can be made adaptive as well, which uses small triangles only
where the high curvature of the surface justi�es them. Let us start with the parameter rec-
tangle and subdivide it to two triangles. In order to check the accuracy of the resulting tri-
angle mesh, surface points corresponding to the edge midpoints of the parameter triangles
are compared to the edge midpoints of the approximating triangles. Formally the following
distance is computed (�gure 14.15):

∣∣∣∣∣∣~r
(u1 + u2

2 ,
v1 + v2

2

)
− ~r(u1, v1) + ~r(u2, v2)

2

∣∣∣∣∣∣ ,

where (u1, v1) and (u2, v2) are the parameters of the two endpoints of the edge.

2a leaf is a node connected by exactly one edge
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Figure 14.15. Estimation of the tessellation error.
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Figure 14.16. T vertices and their elimination with forced subdivision.

A large distance value indicates that the triangle mesh poorly approximates the para-
metric surface, thus triangles must be subdivided further. This subdivision can be executed
by cutting the triangle to two triangles by a line connecting the midpoint of the edge of
the largest error and the opposing vertex. Alternatively, a triangle can be subdivided to four
triangles with its halving lines. The adaptive tessellation is not necessarily robust since it
can happen that the distance at the midpoint is small, but at other points is still quite large.

When the adaptive tessellation is executed, it may happen that one triangle is subdivided
while its neighbour is not, which results in a mesh where the previously shared edge is
tessellated in one of the triangles, thus has holes. Such problematic midpoints are called T
vertices (�gure 14.16).

If the subdivision criterion is based only on edge properties, then T vertices cannot show
up. However, if other properties are also taken into account, then T vertices may appear. In
such cases, T vertices can be eliminated by recursively forcing the subdivision also for those
neighbouring triangles that share subdivided edges.

14.3.5. Subdivision curves and meshes
This section presents algorithms that smooth polyline and mesh models. Smoothing means
that a polyline and a mesh are replaced by other polylines and meshes having less faceted
look.

Let us consider a polyline of vertices ~r0, . . . ,~rm. A smoother polyline is generated by
the following vertex doubling approach (�gure 14.17). Every line segment of the polyline
is halved, and midpoints ~h0, . . . ,~hm−1 are added to the polyline as new vertices. Then the
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Figure 14.17. Construction of a subdivision curve: at each step midpoints are obtained, then the original vertices
are moved to the weighted average of neighbouring midpoints and of the original vertex.
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Figure 14.18. One smoothing step of the Catmull-Clark subdivision. First the face points are obtained, then the
edge midpoints are moved, and �nally the original vertices are re�ned according to the weighted sum of its neigh-
bouring edge and face points.

old vertices are moved taking into account their old position and the positions of the two
enclosing midpoints, applying the following weighting:

~r ′i =
1
2~ri +

1
4
~hi−1 +

1
4
~hi =

3
4~ri +

1
8~ri−1 +

1
8~ri+1 .

The new polyline looks much smoother. If we should not be satis�ed with the smoothness
yet, the same procedure can be repeated recursively. As can be shown, the result of the
recursive process converges to the B-spline curve.

The polyline subdivision approach can also be extended for smoothing three-
dimensional meshes. This method is called Catmull-Clark subdivision algorithm. Let us
consider a three-dimensional quadrilateral mesh (�gure 14.18). In the �rst step the midpo-
ints of the edges are obtained, which are called edge points. Then face points are generated
as the average of the vertices of each face polygon. Connecting the edge points with the face
points, we still have the original surface, but now de�ned by four times more quadrilaterals.
The smoothing step modi�es �rst the edge points setting them to the average of the verti-
ces at the ends of the edge and of the face points of those quads that share this edge. Then
the original vertices are moved to the weighted average of the face points of those faces
that share this vertex, and of edge points of those edges that are connected to this vertex.
The weight of the original vertex is 1/2, the weights of edge and face are 1/16. Again, this
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Figure 14.19. Original mesh and its subdivision applying the smoothing step once, twice and three times, respec-
tively.
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Figure 14.20. Generation of the new edge point with butter�y subdivision.

operation may be repeated until the surface looks smooth enough (�gure 14.19).
If we do not want to smooth the mesh at an edge or around a vertex, then the averaging

operation ignores the vertices on the other side of the edge to be preserved.
The Catmull-Clark subdivision surface usually does not interpolate the original vertices.

This drawback is eliminated by the butter�y subdivision, which works on triangle meshes.
First the butter�y algorithm puts new edge points close to the midpoints of the original
edges, then the original triangle is replaced by four triangles de�ned by the original vertices
and the new edge points (�gure 14.20). The position of the new edge points depend on the
vertices of those two triangles incident to this edge, and on those four triangles which share
edges with these two. The arrangement of the triangles affecting the edge point resembles
a butter�y, hence the name of this algorithm. The edge point coordinates are obtained as
a weighted sum of the edge endpoints multiplied by 1/2, the third vertices of the triangles
sharing this edge using weight 1/8 + 2w, and �nally of the other vertices of the additional
triangles with weight −1/16 − w. Parameter w can control the curvature of the resulting
mesh. Setting w = −1/16, the mesh keeps its original faceted look, while w = 0 results in
strong rounding.
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Figure 14.21. Possible intersections of the per-voxel tri-linear implicit surface and the voxel edges. From the
possible 256 cases, these 15 topologically equivalent cases can be identi�ed, from which the others can be obtained
by rotations. Grid points where the implicit function has the same sign are depicted by circles.

14.3.6. Tessellation of implicit surfaces
An implicit surface can be converted to a triangle mesh by �nding points on the surface
densely, i.e. generating points satisfying f (x, y, z) ≈ 0, then assuming the close points to be
vertices of the triangles.

First implicit function f is evaluated at the grid points of the Cartesian coordinate sys-
tem and the results are stored in a three-dimensional array, called voxel array. Let us call
two grid points as neighbours if two of their coordinates are identical and the difference in
their third coordinate is 1. The function is evaluated at the grid points and is assumed to be
linear between them. The normal vectors needed for shading are obtained as the gradient of
function f (equation 14.4), which are also interpolated between the grid points.

When we work with the voxel array, original function f is replaced by its tri-linear
approximation (tri-linear means that �xing any two coordinates the function is linear with
respect to the third coordinate). Due to the linear approximation an edge connecting two
neighbouring grid points can intersect the surface at most once since linear equations may
have at most one root. The density of the grid points should re�ect this observation, we have
to de�ne them so densely not to miss roots, that is, not to change the topology of the surface.

The method approximating the surface by a triangle mesh is called marching cubes
algorithm. This algorithm �rst decides whether a grid point is inside or outside of the solid
by checking the sign of the function. If two neighbouring grid points are of different type,
the surface must go between them. The intersection of the surface and the edge between
the neighbouring points, as well as the normal vector at the intersection are determined by
linear interpolation. If one grid point is at ~r1, the other is at ~r2, and implicit function f has
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different signs at these points, then the intersection of the tri-linear surface and line segment
(~r1,~r2) is:

~ri = ~r1 · f (~r2)
f (~r2) − f (~r1) + ~r2 · f (~r1)

f (~r2) − f (~r1) ,

The normal vector here is:

~ni = grad f (~r1) · f (~r2)
f (~r2) − f (~r1) + grad f (~r2) · f (~r1)

f (~r2) − f (~r1) .

Having found the intersection points, triangles are de�ned using these points as vertices,
and the approximation surface becomes the resulting triangle mesh. When de�ning these
triangles, we have to take into account that a tri-linear surface may intersect the voxel edges
at most once. Such intersection occurs if the implicit function has different sign at the two
grid points. The number of possible variations of positive/negative signs at the 8 vertices of
a cube is 256, from which 15 topologically equivalent cases can be identi�ed (�gure 14.21).

The algorithm inspects grid points one by one and assigns the sign of the function to
them encoding negative sign by 0 and non-negative sign by 1. The resulting 8 bit code is a
number in 0�255 which identi�es the current case of intersection. If the code is 0, all voxel
vertices are outside the solid, thus no voxel surface intersection is possible. Similarly, if the
code is 255, the solid is completely inside, making the intersections impossible. To handle
other codes, a table can be built which describes where the intersections show up and how
they form triangles. Exercises

14.3-1 Prove the two ears theorem by induction.
14.3-2 Develop an adaptive curve tessellation algorithm.
14.3-3 Prove that the Catmull-Clark subdivision curve and surface converge to a B-spline
curve and surface, respectively.
14.3-4 Build a table to control the marching cubes algorithm, which describes where the
intersections show up and how they form triangles.
14.3-5 Propose a marching cubes algorithm that does not require the gradients of the imp-
licit function, but estimates these gradients from the values of the implicit function.

14.4. Containment algorithms
When geometric models are processed, we often have to determine whether or not one
object contains points belonging to the other object. If only yes/no answer is needed, we
have a containment test problem. However, if the contained part also needs to be obtained,
the applicable algorithm is called clipping.

Containment test is often called as discrete time collision detection since if one object
contains points from the other, then the two objects must have been collided before. Of
course, checking collisions just at discrete time instances may miss certain collisions. To
handle the collision problem robustly, continuous time collision detection is needed which
also computes the time of the collision. Continuous time collision detection is based on
ray tracing (subsection 14.6). In this section we only deal with the discrete time collision
detection and the clipping of simple objects.



640 14. Computer graphics

kívül

pont

belül

poliéder

kívül
belül

kívül
belül

poliéder
konvex

konkáv 1 2

Figure 14.22. Polyhedron-point containment test. A convex polyhedron contains a point if the point is on that side
of each face plane where the polyhedron is. To test a concave polyhedron, a half line is cast from the point and the
number of intersections is counted. If the result is an odd number, then the point is inside, otherwise it is outside.

14.4.1. Point containment test
A solid de�ned by implicit function f contains those (x, y, z) points which satisfy inequality
f (x, y, z) ≥ 0. It means that point containment test requires the evaluation of the implicit
function and the inspection of the sign of the result.

Half space
Based on equation (14.1), points belonging to a half space are identi�ed by inequality

(~r − ~r0) · ~n ≥ 0, nx · x + ny · y + nz · z + d ≥ 0, (14.9)

where the normal vector is supposed to point inward.

Convex polyhedron
Any convex polyhedron can be constructed as the intersection of halfspaces incident to the
faces of the polyhedron (left of �gure 14.22). The plane of each face subdivides the space
into two parts, to an inner part where the polyhedron can be found, and to an outer part.
Let us test the point against the planes of the faces. If the points are in the inner part with
respect to all planes, then the point is inside the polyhedron. However, if the point is in the
outer part with respect to at least one plane, then the point is outside of the polyhedron.

Concave polyhedron
As shown in �gure 14.22, let us cast a half line from the tested point and count the number
of intersections with the faces of the polyhedron (the calculation of these intersections is
discussed in subsection 14.6). If the result is an odd number, then the point is inside, other-
wise it is outside. Because of numerical inaccuracies we might have difficulties to count the
number of intersections when the half line is close to the edges. In such cases, the simplest
solution is to �nd another half line and carry out the test with that.

Polygon
The methods proposed to test the point in polyhedron can also be used for polygons limiting
the space to the two-dimensional plane. For example, a point is in a general polygon if the
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half line originating at this point and lying in the plane of the polygon intersects the edges
of the polygon odd times.

In addition to those methods, containment in convex polygons can be tested by adding
the angles subtended by the edges from the point. If the sum is 360 degrees, then the point
is inside, otherwise it is outside. For convex polygons, we can also test whether the point is
on the same side of the edges as the polygon itself. This algorithm is examined in details for
a particularly important special case, when the polygon is a triangle.

Triangle
Let us consider a triangle of vertices ~a, ~b and ~c, and point ~p lying in the plane of the triangle.
The point is inside the triangle if and only if it is on the same side of the boundary lines as
the third vertex. Note that cross product (~b − ~a) × (~p − ~a) has a different direction for point
~p lying on the different sides of oriented line ~ab, thus the direction of this vector can be
used to classify points (should point ~p be on line ~ab, the result of the cross product is zero).
During classi�cation the direction of (~b−~a)× (~p−~a) is compared to the direction of vector
~n = (~b − ~a) × (~c − ~a) where tested point ~p is replaced by third vertex ~c. Note that vector ~n
happens to be the normal vector of the triangle plane (�gure 14.23).

We can determine whether two vectors have the same direction (their angle is zero) or
they have opposite directions (their angle is 180 degrees) by computing their scalar product
and looking at the sign of the result. The scalar product of vectors of similar directions is
positive. Thus if scalar product ((~b − ~a) × (~p − ~a)) · ~n is positive, then point ~p is on the same
side of oriented line ~ab as ~c. On the other hand, if this scalar product is negative, then ~p and
~c are on the opposite sides. Finally, if the result is zero, then point ~p is on line ~ab. Point ~p is
inside the triangle if and only if all the following three conditions are met:

((~b − ~a) × (~p − ~a)) · ~n ≥ 0 ,
((~c − ~b) × (~p − ~b)) · ~n ≥ 0 ,
((~a − ~c) × (~p − ~c)) · ~n ≥ 0 .

(14.10)

This test is robust since it gives correct result even if � due to numerical precision
problems � point ~p is not exactly in the plane of the triangle as long as point ~p is in the
prism obtained by perpendicularly extruding the triangle from the plane.

The evaluation of the test can be speeded up if we work in the two-dimensional projec-
tions instead of the three-dimensional space. Let us project point ~p as well as the triangle
onto one of the coordinate planes. In order to increase numerical precision, that coordinate
plane should be selected on which the area of the projected triangle is maximal. Let us de-
note the Cartesian coordinates of the normal vector by (nx, ny, nz). If nz has the maximum
absolute value, then the projection of the maximum area is on coordinate plane xy. If nx or
ny had the maximum absolute value, then planes yz, or xz would be the right choice. Here
only the case of maximum nz is discussed.

First the order of vertices are changed in a way that when traveling from vertex ~a to
vertex ~b, vertex ~c is on the left side. Let us examine the equation of line ~ab:

by − ay

bx − ax
· (x − bx) + by = y .
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Figure 14.23. Point in triangle containment test. The �gure shows that case when point ~p is on the left of oriented
lines ~ab and ~bc, and on the right of line ~ca, that is, when it is not inside the triangle.
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Figure 14.24. Point in triangle containment test on coordinate plane xy. Third vertex ~c can be either on the left
or on the right side of oriented line ~ab, which can always be traced back to the case of being on the left side by
exchanging the vertices.

According to �gure 14.24 point ~c is on the left of the line if cy is above the line at x = cx:
by − ay

bx − ax
· (cx − bx) + by < cy .

Multiplying both sides by (bx − ax), we get:

(by − ay) · (cx − bx) < (cy − by) · (bx − ax) .

In the second case the denominator of the slope of the line is negative. Point ~c is on the left
of the line if cy is below the line at x = cx :

by − ay

bx − ax
· (cx − bx) + by > cy .

When the inequality is multiplied with negative denominator (bx − ax), the relation is inver-
ted:

(by − ay) · (cx − bx) < (cy − by) · (bx − ax) .
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Figure 14.25. Polyhedron-polyhedron collision detection. Only a part of collision cases can be recognized by
testing the containment of the vertices of one object with respect to the other object. Collision can also occur when
only edges meet, but vertices do not penetrate to the other object.

Note that in both cases we obtained the same condition. If this condition is not met, then
point ~c is not on the left of line ~ab, but is on the right. Exchanging vertices ~a and ~b in this
case, we can guarantee that ~c will be on the left of the new line ~ab. It is also important to
note that consequently point ~a will be on the left of line ~bc and point ~b will be on the left of
line ~ca.

In the second step the algorithm tests whether point ~p is on the left with respect to all
three boundary lines since this is the necessary and sufficient condition of being inside the
triangle:

(by − ay) · (px − bx) ≤ (py − by) · (bx − ax) ,
(cy − by) · (px − cx) ≤ (py − cy) · (cx − bx) ,
(ay − cy) · (px − ax) ≤ (py − ay) · (ax − cx) .

(14.11)

14.4.2. Polyhedron-polyhedron collision detection
Two polyhedra collide when a vertex of one of them meets a face of the other, and if they are
not bounced off, the vertex goes into the internal part of the other object (�gure 14.25). This
case can be recognized with the discussed containment test. All vertices of one polyhedron
is tested for containment against the other polyhedron. Then the roles of the two polyhedra
are exchanged.

Apart from the collision between vertices and faces, two edges may also meet without
vertex penetration (�gure 14.25). In order to recognize this case, all edges of one polyhedron
are tested against all faces of the other polyhedron. The test for an edge and a face is started
by checking whether or not the two endpoints of the edge are on opposite sides of the
plane, using inequality (14.9). If they are, then the intersection of the edge and the plane is
calculated, and �nally it is decided whether the face contains the intersection point.

Let us realize that the test of edge penetration and the containment of an arbitrary ver-
tex also include the case of vertex penetration. However, edge penetration without vertex
penetration happens less frequently, and the vertex penetration is easier to check, thus it is
still worth applying the vertex penetration test �rst.

Polyhedra collision detection tests each edge of one polyhedron against to each face of
the other polyhedron, which results in an algorithm of quadratic time complexity with res-
pect to the number of vertices of the polyhedra. Fortunately, the algorithm can be speeded
up applying bounding volumes (subsection 14.6.2). Let us assign a simple bounding object
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to each polyhedron. Popular choices are the spheres and the boxes. If the two bounding
volumes do not collide, then neither can the contained polyhedra collide. If the bounding
volumes penetrate each other, then one polyhedra is tested against the other bounding vo-
lume. If this test is also positive, then �nally the two polyhedra are tested. However, this last
test is rarely required, and most of the collision cases can be solved by bounding volumes.

14.4.3. Clipping algorithms
Clipping takes an object de�ning the clipping region and removes those points from another
other object which are outside the clipping region. Clipping may alter the type of the object,
which cannot be speci�ed by a similar equation after clipping. To avoid this, we allow only
those kinds of clipping regions and objects where the object type does not change. Let us
thus assume that the clipping region is a half space or a polyhedron, while the object to be
clipped is a point, a line segment or a polygon.

If the object to be clipped is a point, then containment can be tested with the algorithms
of the previous subsection. Based on the result of the containment test, the point is either
removed or preserved.

Clipping a line segment onto a half space
Let us consider a line segment of endpoints ~r1 and ~r2, and of equation ~r(t) = ~r1 · (1− t)+~r2 · t,
(t ∈ [0, 1]), and a half plane de�ned by the following equation derived from equation (14.1):

(~r − ~r0) · ~n ≥ 0, nx · x + ny · y + nz · z + d ≥ 0.

Three cases need to be distinguished:
1. If both endpoints of the line segment are in the half space, then all points of the line

segment are inside, thus the whole segment is preserved.
2. If both endpoints are out of the half space, then all points of the line segment are out,

thus the line segment should be completely removed.
3. If one of the endpoints is out, while the other is in, then the endpoint being out should

be replaced by the intersection point of the line segment and the boundary plane of the
half space. The intersection point can be calculated by substituting the equation of the
line segment into the equation of the boundary plane and solving the resulting equation
for the unknown parameter:

(~r1 · (1 − ti) + ~r2 · ti − ~r0) · ~n = 0, =⇒ ti =
(~r0 − ~r1) · ~n
(~r2 − ~r1) · ~n .

Substituting parameter ti into the equation of the line segment, the coordinates of the
intersection point can also be obtained.

Clipping a polygon onto a half space
This clipping algorithm tests �rst whether a vertex is inside or not. If the vertex is in, then
it is also the vertex of the resulting polygon. However, if it is out, it can be ignored. On the
other hand, the resulting polygon may have vertices other than the vertices of the original
polygon. These new vertices are the intersections of the edges and the boundary plane of
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Figure 14.26. Clipping of polygon ~p[0], . . . , ~p[5] results in polygon ~q[0], . . . , ~q[4]. The vertices of the resulting
polygon are the inner vertices of the original polygon and the intersections of the edges and the boundary plane.

the half space. Such intersection occurs when one endpoint is in, but the other is out. While
we are testing the vertices one by one, we should also check whether or not the next vertex
is on the same side as the current vertex (�gure 14.26).

Suppose that the vertices of the polygon to be clipped are given in array p =

〈~p[0], . . . , ~p[n − 1]〉, and the vertices of the clipped polygon is expected in array q =

〈~q[0], . . . , ~q[m − 1]〉. The number of the vertices of the resulting polygon is stored in va-
riable m. Note that the vertex followed by the ith vertex has usually index (i + 1), but not in
the case of the last, (n − 1)th vertex, which is followed by vertex 0. Handling the last vertex
as a special case is often inconvenient. This can be eliminated by extending input array p by
new element ~p[n] = ~p[0], which holds the element of index 0 once again.

Using these assumptions, the Sutherland-Hodgeman polygon clipping algorithm is:

S-H-P-C(p)
1 m← 0
2 for i← 0 to n − 1
3 do if ~p[i] is inside
4 then ~q[m]← ~p[i] B The ith vertex is the vertex of the resulting polygon.
5 m← m + 1
6 if ~p[i + 1] is outside
7 then ~q[m]← E--(~p[i], ~p[i + 1])
8 m← m + 1
9 else if ~p[i + 1] is inside

10 then ~q[m]← E--(~p[i], ~p[i + 1])
11 m← m + 1
12 return q

Let us apply this algorithm for such a concave polygon which is expected to fall to
several pieces during clipping (�gure 14.27). The algorithm storing the polygon in a single
array is not able to separate the pieces and introduces even number of edges at parts where
no edge could show up.

These even number of extra edges, however, pose no problems if the interior of the
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Figure 14.27. When concave polygons are clipped, the parts that should fall apart are connected by even number
of edges.

polygon is de�ned as follows: a point is inside the polygon if and only if starting a half line
from here, the boundary polyline is intersected by odd number of times.

The presented algorithm is also suitable for clipping multiple connected polygons if the
algorithm is executed separately for each closed polyline of the boundary.

Clipping line segments and polygons on a convex polyhedron
As stated, a convex polyhedron can be obtained as the intersection of the half spaces de�ned
by the planes of the polyhedron faces (left of �gure 14.22). It means that the clipping on a
convex polyhedron can be traced back to a series of clipping steps on half spaces. The result
of one clipping step on a half plane is the input of clipping on the next half space. The �nal
result is the output of the clipping on the last half space.

Clipping a line segment on an AABB
Axis aligned bounding boxes, abbreviated as AABBs, play an important role in image synt-
hesis.

De�nition 14.11 A box aligned parallel to the coordinate axes is called AABB.
An AABB is speci�ed with the minimum and maximum Cartesian coordinates:
[xmin, ymin, zmin, xmax, ymax, zmax].

Although when an object is clipped on an AABB, the general algorithms clipping on
a convex polyhedron could also be used, the importance of AABBs is acknowledged by
developing algorithms specially tuned for this case.

When a line segment is clipped to a polyhedron, the algorithm would test the line seg-
ment with the plane of each face, and calculated intersection points may turn out to be un-
necessary later. We should thus �nd an appropriate order of planes which makes the number
of unnecessary intersection calculations minimal. A simple method implementing this idea
is the Cohen-Sutherland line clipping algorithm.

Let us assign code bit 1 to a point that is outside with respect to a clipping plane, and
code bit 0 if the point is inside with respect to this plane. Since an AABB has 6 sides,
we get 6 bits forming a 6-bit code word (�gure 14.28). The interpretation of code bits
C[0], . . . ,C[5] is the following:

C[0] =

{
1, x ≤ xmin,
0 otherwise. C[1] =

{
1, x ≥ xmax,
0 otherwise. C[2] =

{
1, y ≤ ymin ,
0 otherwise .
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Figure 14.28. The 4-bit codes of the points in a plane and the 6-bit codes of the points in space.

C[3] =

{
1, y ≥ ymax,
0 otherwise. C[4] =

{
1, z ≤ zmin,
0 otherwise. C[5] =

{
1, z ≥ zmax ,
0 otherwise .

Points of code word 000000 are obviously inside, points of other code words are outside
(�gure 14.28). Let the code words of the two endpoints of the line segment be C1 and C2,
respectively. If both of them are zero, then both endpoints are inside, thus the line segment
is completely inside (trivial accept). If the two code words contain bit 1 at the same location,
then none of the endpoints are inside with respect to the plane associated with this code bit.
This means that the complete line segment is outside with respect to this plane, and can
be rejected (trivial reject). This examination can be executed by applying the bitwise AND
operation on code words C1 and C2 (with the notations of the C programming language C1
& C2), and checking whether or not the result is zero. If it is not zero, there is a bit where
both code words have value 1.

Finally, if none of the two trivial cases hold, then there must be a bit which is 0 in one
code word and 1 in the other. This means that one endpoint is inside and the other is outside
with respect to the plane corresponding to this bit. The line segment should be clipped on
this plane. Then the same procedure should be repeated starting with the evaluation of the
code bits. The procedure is terminated when the conditions of either the trivial accept or the
trivial reject are met.

The Cohen-Sutherland line clipping algorithm returns the endpoints of the clipped line
by modifying the original vertices and indicates with �true� return value if the line is not
completely rejected:
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C-S-L-C(~r1,~r2)
1 C1 ← codeword of ~r1 B Code bits by checking the inequalities.
2 C2 ← codeword of ~r2
3 while 

4 do if C1 = 0 AND C2 = 0
5 then return  B Trivial accept: inner line segment exists.
6 if C1 & C2 , 0
7 then return  B Trivial reject: no inner line segment exists.
8 f ← index of the �rst bit where C1 and C2 differ
9 ~ri ← intersection of line segment (~r1, ~r2) and the plane of index f

10 Ci ← codeword of ~ri
11 if C1[ f ] = 1
12 then ~r1 ← ~ri
13 C1 ← Ci B ~r1 is outside w.r.t. plane f .
14 else ~r2 ← ~ri
15 C2 ← Ci B ~r2 is outside w.r.t. plane f .

Exercises
14.4-1 Propose approaches to reduce the quadratic complexity of polyhedron-polyhedron
collision detection.
14.4-2 Develop a containment test to check whether a point is in a CSG-tree .
14.4-3 Develop an algorithm clipping one polygon onto a concave polygon.
14.4-4 Find an algorithm computing the bounding sphere and the bounding AABB of a
polyhedron.
14.4-5 Develop an algorithm that tests the collision of two triangles in the plane.
14.4-6 Generalize the Cohen-Sutherland line clipping algorithm to convex polyhedron clip-
ping region.
14.4-7 Propose a method for clipping a line segment on a sphere.

14.5. Translation, distortion, geometric transformations
Objects in the virtual world may move, get distorted, grow or shrink, that is, their equations
may also depend on time. To describe dynamic geometry, we usually apply two functions.
The �rst function selects those points of space, which belong to the object in its reference
state. The second function maps these points onto points de�ning the object in an arbitrary
time instance. Functions mapping the space onto itself are called transformations. A trans-
formation maps point ~r to point ~r ′ = T (~r). If the transformation is invertible, we can also
�nd the original for some transformed point ~r ′ using inverse transformation T −1(~r ′).

If the object is de�ned in its reference state by implicit equation f (~r) ≥ 0, then the
equation of the transformed object is

{~r ′ : f (T −1(~r ′)) ≥ 0} , (14.12)

since the originals belong to the set of points of the reference state.



14.5. Translation, distortion, geometric transformations 649

Parametric equations de�ne the Cartesian coordinates of the points directly. Thus the
transformation of parametric surface ~r = ~r(u, v) requires the transformations of its points

~r ′(u, v) = T (~r(u, v)) . (14.13)

Similarly, the transformation of curve ~r = ~r(t) is:

~r ′(t) = T (~r(t)) . (14.14)

Transformation T may change the type of object in the general case. It can happen,
for example, that a simple triangle or a sphere becomes a complicated shape, which are
hard to describe and handle. Thus it is worth limiting the set of allowed transformations.
Transformations mapping planes onto planes, lines onto lines and points onto points are
particularly important. In the next subsection we consider the class of homogenous linear
transformations, which meet this requirement.

14.5.1. Projective geometry and homogeneous coordinates
So far the construction of the virtual world has been discussed using the means of the Eucli-
dean geometry, which gave us many important concepts such as distance, parallelism, angle,
etc. However, when the transformations are discussed in details, many of these concepts are
unimportant, and can cause confusion. For example, parallelism is a relationship of two lines
which can lead to singularities when the intersection of two lines is considered. Therefore,
transformations are discussed in the context of another framework, the projective geometry.

The axioms of projective geometry turn around the problem of parallel lines by igno-
ring the concept of parallelism altogether, and state that two different lines always have an
intersection. To cope with this requirement, every line is extended by a �point in in�nity�
such that two lines have the same extra point if and only if the two lines are parallel. The
extra point is called the ideal point. The projective space contains the points of the Eucli-
dean space (these are the so called affine points) and the ideal points. An ideal point �glues�
the �ends� of an Euclidean line, making it topologically similar to a circle. Projective geo-
metry preserves that axiom of the Euclidean geometry which states that two points de�ne a
line. In order to make it valid for ideal points as well, the set of lines of the Euclidean space
is extended by a new line containing the ideal points. This new line is called the ideal line.
Since the ideal points of two lines are the same if and only if the two lines are parallel, the
ideal lines of two planes are the same if and only if the two planes are parallel. Ideal lines
are on the ideal plane, which is added to the set of planes of the Euclidean space. Having
made these extensions, no distinction is needed between the affine and ideal points. They
are equal members of the projective space.

Introducing analytic geometry we noted that everything should be described by num-
bers in computer graphics. Cartesian coordinates used so far are in one to one relationship
with the points of Euclidean space, thus they are inappropriate to describe the points of the
projective space. For the projective plane and space, we need a different algebraic base.

Projective plane
Let us consider �rst the projective plane and �nd a method to describe its points by numbers.
To start, a Cartesian coordinate system x, y is set up in this plane. Simultaneously, another
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Figure 14.29. The embedded model of the projective plane: the projective plane is embedded into a three-
dimensional Euclidean space, and a correspondence is established between points of the projective plane and
lines of the embedding three-dimensional Euclidean space by �tting the line to the origin of the three-dimensional
space and the given point.

Cartesian system Xh,Yh, h is established in the three-dimensional space embedding the plane
in a way that axes Xh,Yh are parallel to axes x, y, the plane is perpendicular to axis h, the
origin of the Cartesian system of the plane is in point (0, 0, 1) of the three-dimensional space,
and the points of the plane satisfy equation h = 1. The projective plane is thus embedded
into a three-dimensional Euclidean space where points are de�ned by Descartes-coordinates
(�gure 14.29). To describe a point of the projective plane by numbers, a correspondence is
found between the points of the projective plane and the points of the embedding Euclidean
space. An appropriate correspondence assigns that line of the Euclidean space to either
affine or ideal point P of the projective plane which is de�ned by the origin of the coordinate
system of the space and point P.

Points of a line in the Euclidean space can be given by parametric equation [t · Xh, t ·
Yh, t · h] where t is a free real parameter. If point P is an affine point of the projective plane,
then the corresponding line is not parallel with plane h = 1 (i.e. h is not constant zero).
Such line intersects the plane of equation h = 1 at point [Xh/h,Yh/h, 1], thus the Cartesian
coordinates of point P in planar coordinate system x, y are (Xh/h,Yh/h). On the other hand,
if point P is ideal, then the corresponding line is parallel to the plane of equation h = 1 (i.e.
h = 0). The direction of the ideal point is given by vector (Xh,Yh).

The presented approach assigns three dimensional lines and eventually [Xh,Yh, h] trip-
lets to both the affine and the ideal points of the projective plane. These triplets are called
the homogenous coordinates of a point in the projective plane. Homogeneous coordinates
are enclosed by brackets to distinguish them from Cartesian coordinates.

A three-dimensional line crossing the origin and describing a point of the projective
plane can be de�ned by its arbitrary point except from the origin. Consequently, all three
homogeneous coordinates cannot be simultaneously zero, and homogeneous coordinates
can be freely multiplied by the same non-zero scalar without changing the described point.
This property justi�es the name �homogenous�.

It is often convenient to select that triplet from the homogeneous coordinates of an
affine point, where the third homogeneous coordinate is 1 since in this case the �rst two
homogeneous coordinates are identical to the Cartesian coordinates:

Xh = x, Yh = y, h = 1 . (14.15)

From another point of view, Cartesian coordinates of an affine point can be converted to
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homogenous coordinates by extending the pair by a third element of value 1.
The embedded model also provides means to de�ne the equations of the lines and

line segments of the projective space. Let us select two different points on the projective
plane and specify their homogeneous coordinates. The two points are different if homoge-
neous coordinates [X1

h ,Y1
h , h1] of the �rst point cannot be obtained as a scalar multiple of

homogeneous coordinates [X2
h ,Y2

h , h2] of the other point. In the embedding space, triplet
[Xh,Yh, h] can be regarded as Cartesian coordinates, thus the equation of the line �tted to
points [X1

h ,Y1
h , h1] and [X2

h ,Y2
h , h2] is:

Xh(t) = X1
h · (1 − t) + X2

h · t ,
Yh(t) = Y1

h · (1 − t) + Y2
h · t , (14.16)

h(t) = h1 · (1 − t) + h2 · t .
If h(t) , 0, then the affine points of the projective plane can be obtained by projecting
the three-dimensional space onto the plane of equation h = 1. Requiring the two points be
different, we excluded the case when the line would be projected to a single point. Hence
projection maps lines to lines. Thus the presented equation really identi�es the homogene-
ous coordinates de�ning the points of the line. If h(t) = 0, then the equation expresses the
ideal point of the line.

If parameter t has an arbitrary real value, then the points of a line are de�ned. If para-
meter t is restricted to interval [0, 1], then we obtain the line segment de�ned by the two
endpoints.

Projective space
We could apply the same method to introduce homogeneous coordinates of the projective
space as we used to de�ne the homogeneous coordinates of the projective plane, but this
approach would require the embedding of the three-dimensional projective space into a
four-dimensional Euclidean space, which is not intuitive. We would rather discuss another
construction, which works in arbitrary dimensions. In this construction, a point is described
as the centre of mass of a mechanical system. To identify a point, let us place weight Xh
at reference point ~p1, weight Yh at reference point ~p2, weight Zh at reference point ~p3, and
weight w at reference point ~p4. The centre of mass of this mechanical system is:

~r =
Xh · ~p1 + Yh · ~p2 + Zh · ~p3 + w · ~p4

Xh + Yh + Zh + w .

Let us denote the total weight by h = Xh + Yh + Zh + w. By de�nition, elements of quadruple
[Xh,Yh,Zh, h] are the homogeneous coordinates of the centre of mass.

To �nd the correspondence between homogeneous and Cartesian coordinates, the rela-
tionship of the two coordinate systems (the relationship of the basis vectors and the origin
of the Cartesian coordinate system and of the reference points of the homogeneous coordi-
nate system) must be established. Let us assume, for example, that the reference points of
the homogenous coordinate system are in points (1,0,0), (0,1,0), (0,0,1), and (0,0,0) of the
Cartesian coordinate system. The centre of mass (assuming that total weight h is not zero)
is expressed in Cartesian coordinates as follows:

~r[Xh,Yh,Zh, h] =
1
h · (Xh · (1, 0, 0) + Yh · (0, 1, 0) + Zh · (0, 0, 1) + w · (0, 0, 0)) =

(Xh
h ,

Yh
h ,

Zh
h

)
.
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Hence the correspondence between homogeneous coordinates [Xh,Yh,Zh, h] and Cartesian
coordinates (x, y, z) is (h , 0):

x =
Xh
h , y =

Yh
h , z =

Zh
h . (14.17)

The equations of lines in the projective space can be obtained either deriving them
from the embedding four-dimensional Cartesian space, or using the centre of mass analogy:

Xh(t) = X1
h · (1 − t) + X2

h · t ,
Yh(t) = Y1

h · (1 − t) + Y2
h · t ,

Zh(t) = Z1
h · (1 − t) + Z2

h · t , (14.18)
h(t) = h1 · (1 − t) + h2 · t .

If parameter t is restricted to interval [0, 1], then we obtain the equation of the projective
line segment.

To �nd the equation of the projective plane, the equation of the Euclidean plane is
considered (equation 14.1). The Cartesian coordinates of the points on a plane satisfy the
following implicit equation

nx · x + ny · y + nz · z + d = 0 .

Using the correspondence between the Cartesian and homogenous coordinates (equation
14.17) we still describe the points of the Euclidean plane but now with homogenous coor-
dinates:

nx · Xh
h + ny · Yh

h + nz · Zh
h + d = 0 .

Let us multiply both sides of this equation by h, and add those points to the plane which have
h = 0 coordinate and satisfy this equation. With this step the set of points of the Euclidean
plane is extended with the ideal points, that is, we obtained the set of points belonging to
the projective plane. Hence the equation of the projective plane is a homogenous linear
equation:

nx · Xh + ny · Yh + nz · Zh + d · h = 0 , (14.19)
or in matrix form:

[Xh,Yh,Zh, h] ·



nx
ny
nz
d


= 0 . (14.20)

Note that points and planes are described by row and column vectors, respectively. Both the
quadruples of points and the quadruples of planes have the homogeneous property, that is,
they can be multiplied by non-zero scalars without altering the solutions of the equation.

14.5.2. Homogenous linear transformations
Transformations de�ned as the multiplication of the homogenous coordinate vector of a
point by a constant 4 × 4 T matrix are called homogeneous linear transformations:

[X′h,Y ′h,Z′h, h′] = [Xh,Yh,Zh, h] · T . (14.21)
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Theorem 14.12 Homogeneous linear transformations map points to points.

Proof. A point can be de�ned by homogeneous coordinates in form λ · [Xh,Yh,Zh, h], where
λ is an arbitrary, non-zero constant. The transformation results in λ · [X′h,Y ′h,Z′h, h′] = λ ·
[Xh,Yh,Zh, h] ·T when a point is transformed, which are the λ-multiples of the same vector,
thus the result is a single point in homogeneous coordinates.

Note that due to the homogeneous property, homogeneous transformation matrix T is
not unambiguous, but can be freely multiplied by non-zero scalars without modifying the
realized mapping.

Theorem 14.13 Invertible homogeneous linear transformations map lines to lines.

Proof. Let us consider the parametric equation of a line:

[Xh(t),Yh(t),Zh(t), h(t)] = [X1
h ,Y1

h ,Z1
h , h1] · (1 − t) + [X2

h ,Y2
h ,Z2

h , h2] · t, t = (−∞,∞) ,

and transform the points of this line by multiplying the quadruples with the transformation
matrix:

[X′h(t),Y ′h(t),Z′h(t), h′(t)] = [Xh(t),Yh(t),Zh(t), h(t)] · T

= [X1
h ,Y1

h ,Z1
h , h1] · T · (1 − t) + [X2

h ,Y2
h ,Z2

h , h2] · T · t

= [X1
h
′
,Y1

h
′
,Z1

h
′
, h1′] · (1 − t) + [X2

h
′
,Y2

h
′
,Z2

h
′
, h2′] · t ,

where [X1
h
′
,Y1

h
′
,Z1

h
′
, h1′] and [X2

h
′
,Y2

h
′
,Z2

h
′
, h2′] are the transformations of [X1

h ,Y1
h ,Z1

h , h1]
and [X2

h ,Y2
h ,Z2

h , h2], respectively. Since the transformation is invertible, the two points are
different. The resulting equation is the equation of a line �tted to the transformed points.

We note that if we had not required the invertibility of the the transformation, then it
could have happened that the transformation would have mapped the two points to the same
point, thus the line would have degenerated to single point.

If parameter t is limited to interval [0, 1], then we obtain the equation of the projective
line segment, thus we can also state that a homogeneous linear transformation maps a line
segment to a line segment. Even more generally, a homogeneous linear transformation maps
convex combinations to convex combinations. For example, triangles of the projective plane
are mapped to triangles.

However, we have to be careful when we try to apply this theorem in the Euclidean
plane or space. Let us consider a line segment as an example. If coordinate h has different
sign at the two endpoints, then the line segment contains an ideal point. Such projective
line segment can be intuitively imagined as two half lines and an ideal point sticking the
�endpoints� of these half lines at in�nity, that is, such line segment is the complement of the
line segment we are accustomed to. It may happen that before the transformation coordinates
h of the endpoints have similar sign, that is, the line segment meets our intuitive image about
Euclidean line segments, but after the transformation, coordinates h of the endpoints will
have different sign. Thus the transformation wraps around our line segment.

Theorem 14.14 Invertible linear transformations map planes to planes.
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Proof. The originals of transformed points [X′h,Y ′h,Z′h, h′] de�ned by [Xh,Yh,Zh, h] =

[X′h,Y ′h,Z′h, h′] · T−1 are on a plane, thus satisfy the original equation of the plane:

[Xh,Yh,Zh, h] ·



nx
ny
nz
d


= [X′h,Y ′h,Z′h, h′] · T−1 ·



nx
ny
nz
d


= 0 .

Due to the associativity of matrix multiplication, the transformed points also satisfy equation

[X′h,Y ′h,Z′h, h′] ·



n′x
n′y
n′z
d′


= 0 ,

which is also a plane equation, where


n′x
n′y
n′z
d′


= T−1 ·



nx
ny
nz
d


.

This result can be used to obtain the normal vector of a transformed plane.
An important subclass of homogeneous linear transformations is the set of affine trans-

formations, where the Cartesian coordinates of the transformed point are linear functions
of the original Cartesian coordinates:

[x′, y′, z′] = [x, y, z] · A + [px, py, pz] , (14.22)

where vector ~p describes translation, A is a matrix of size 3 × 3 and expresses rotation,
scaling, mirroring, etc., and their arbitrary combination. For example, the rotation around
axis (tx, ty, tz), (|(tx, ty, tz)| = 1) by angle φ is given by the following matrix

A =


(1 − t2

x) cos φ + t2
x txty(1 − cos φ) + tz sin φ txtz(1 − cos φ) − ty sin φ

tytx(1 − cos φ) − tz sin φ (1 − t2
y ) cos φ + t2

y txtz(1 − cos φ) + tx sin φ
tztx(1 − cos φ) + ty sin φ tzty(1 − cos φ) − tx sin φ (1 − t2

z ) cos φ + t2
z

 .

This expression is known as the Rodrigues formula.
Affine transformations map the Euclidean space onto itself, and transform parallel lines

to parallel lines. Affine transformations are also homogeneous linear transformations since
equation (14.22) can also be given as a 4×4 matrix operation, having changed the Cartesian
coordinates to homogeneous coordinates by adding a fourth coordinate of value 1:

[x′, y′, z′, 1] = [x, y, z, 1] ·



A11 A12 A13 0
A21 A22 A23 0
A31 A32 A33 0
px py pz 1


= [x, y, z, 1] · T . (14.23)

A further specialization of affine transformations is the set of congruence transforma-
tions (isometries) which are distance and angle preserving.
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Theorem 14.15 In a congruence transformation the rows of matrix A have unit length and
are orthogonal to each other.

Proof. Let us use the property that a congruence is distance and angle preserving for the
case when the origin and the basis vectors of the Cartesian system are transformed. The
transformation assigns point (px, py, pz) to the origin and points (A11 + px, A12 + py, A13 +

pz), (A21 + px, A22 + py, A23 + pz), and (A31 + px, A32 + py, A33 + pz) to points (1, 0, 0),
(0, 1, 0), and (0, 0, 1), respectively. Because the distance is preserved, the distances between
the new points and the new origin are still 1, thus |A11, A12, A13| = 1, |A21, A22, A23| = 1,
and |A31, A32, A33| = 1. On the other hand, because the angle is also preserved, vectors
(A11, A12, A13), (A21, A22, A23), and (A31, A32, A33) are also perpendicular to each other.

Exercises
14.5-1 Using the Cartesian coordinate system as an algebraic basis, prove the axioms of the
Euclidean geometry, for example, that two points de�ne a line, and that two different lines
may intersect each other at most at one point.
14.5-2 Using the homogenous coordinates as an algebraic basis, prove an axiom of the pro-
jective geometry stating that two different lines intersect each other in exactly one point.
14.5-3 Prove that homogeneous linear transformations map line segments to line segments
using the centre of mass analogy.
14.5-4 How does an affine transformation modify the volume of an object?
14.5-5 Give the matrix of that homogeneous linear transformation which translates by vec-
tor ~p.
14.5-6 Prove the Rodrigues formula.
14.5-7 A solid de�ned by equation f (~r) ≥ 0 in time t = 0 moves with uniform constant
velocity ~v. Let us �nd the equation of the solid at an arbitrary time instance t.
14.5-8 Prove that if the rows of matrix A are of unit length and are perpendicular to each
other, then the affine transformation is a congruence. Show that for such matrices A−1 = AT .

14.5-9 Give that homogeneous linear transformation which projects the space from point ~c
onto a plane of normal ~n and place vector ~r0.
14.5-10 Show that �ve point correspondences unambiguously identify a homogeneous li-
near transformation if no four points are co-planar.

14.6. Rendering with ray tracing
When a virtual world is rendered, we have to identify the surfaces visible in different direc-
tions from the virtual eye. The set of possible directions is de�ned by a rectangle shaped
window which is decomposed to a grid corresponding to the pixels of the screen (�gure
14.30). Since a pixel has a unique colour, it is enough to solve the visibility problem in a
single point of each pixel, for example, in the points corresponding to pixel centres.

The surface visible at a direction from the eye can be identi�ed by casting a half line,
called ray, from the eye at that direction and identifying its intersection closest to the eye
position. This operation is called ray tracing.

Ray tracing has many applications. For example, shadow computation tests whether or
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Figure 14.30. Ray tracing

not a point is occluded from the light source, which requires a ray to be sent from the point
at the direction of the light source and the determination whether this ray intersects any
surface closer than the light source. Ray tracing is also used by collision detection since a
point moving with constant and uniform speed collides that surface which is �rst intersected
by the ray describing the motion of the point.

A ray is de�ned by the following equation:

~ray(t) = ~s + ~v · t, (t > 0) , (14.24)

where ~s is the place vector of the ray origin, ~v is the direction of the ray, and ray parameter
t characterizes the distance from the origin. Let us suppose that direction vector ~v has unit
length. In this case parameter t is the real distance, otherwise it would only be proportional to
the distance3. If parameter t is negative, then the point is behind the eye and is obviously not
visible. The identi�cation of the closest intersection with the ray means the determination
of the intersection point having the smallest, positive ray parameter. In order to �nd the
closest intersection, the intersection calculation is tried with each surface, and the closest is
retained. This algorithm is presented in the followings:

3In collision detection ~v is not a unit vector, but the velocity of the moving point since this makes ray parameter t
express the collision time.



14.6. Rendering with ray tracing 657

R-F-I(~s,~v)
1 t ← tmax B initialization to the maximum size in the virtual world.
2 for each object o
3 do to ←R-S-I(~s,~v) B negative if no intersection exists.
4 if 0 ≤ to < t B is the new intersection closer?
5 then t ← to B ray parameter of the closest intersection so far.
6 ovisible ← o B closest object so far.
7 if t < tmax then B has been intersection at all?
8 then ~x← ~s + ~v · t B intersection point using the ray equation.
9 return t, ~x, ovisible

10 else return �no intersection� B no intersection.

This algorithm inputs the ray de�ned by origin ~s and direction ~v, and outputs the ray
parameter of the intersection in variable t, the intersection point in ~x, and the visible object
in ovisible. The algorithm calls function R-- for each object, which de-
termines the intersection of the ray and the given object, and indicates with a negative return
value if no intersection exists. Function R-- should be implemented
separately for each surface type.

14.6.1. Ray-surface intersection calculation
The identi�cation of the intersection between a ray and a surface requires the solution of an
equation. The intersection point is both on the ray and on the surface, thus it can be obtai-
ned by inserting the ray equation into the equation of the surface and solving the resulting
equation for the unknown ray parameter.

Intersection calculation for implicit surfaces
For implicit surfaces of equation f (~r) = 0, the intersection can be calculated by solving the
following scalar equation for t: f (~s + ~v · t) = 0 .

Let us take the example of quadrics that include the sphere, the ellipsoid, the cylinder,
the cone, the paraboloid, etc. The implicit equation of a general quadric contains a quadratic
form:

[x, y, z, 1] ·Q ·



x
y
z
1


= 0 ,

where Q is a 4× 4 matrix. Substituting the ray equation into the equation of the surface, we
obtain

[sx + vx · t, sy + vy · t, sz + vz · t, 1] ·Q ·



sx + vx · t
sy + vy · t
sz + vz · t

1


= 0 .

Rearranging the terms, we get a second order equation for unknown parameter t:

t2 · (v ·Q · vT ) + t · (s ·Q · vT + v ·Q · sT ) + (s ·Q · sT ) = 0 ,
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where v = [vx, vy, vz, 0] and s = [sx, sy, sz, 1].
This equation can be solved using the solution formula of second order equations. Now

we are interested in only the real and positive roots. If two such roots exist, then the smaller
one corresponds to the intersection closer to the origin of the ray.

Intersection calculation for parametric surfaces
The intersection of parametric surface ~r = ~r(u, v) and the ray is calculated by �rst solving
the following equation for unknown parameters u, v, t

~r(u, v) = ~s + t · ~v ,

then checking whether or not t is positive and parameters u, v are inside the allowed para-
meter range of the surface.

Roots of non-linear equations are usually found by numeric methods. On the other
hand, the surface can also be approximated by a triangle mesh, which is intersected by the
ray. Having obtained the intersection on the coarse mesh, the mesh around this point is
re�ned, and the intersection calculation is repeated with the re�ned mesh.

Intersection calculation for a triangle
To compute the ray intersection for a triangle of vertices ~a, ~b, and ~c, �rst the ray intersection
with the plane of the triangle is found. Then it is decided whether or not the intersection
point with the plane is inside the triangle. The normal and a place vector of the triangle
plane are ~n = (~b − ~a) × (~c − ~a), and ~a, respectively, thus points ~r of the plane satisfy the
following equation:

~n · (~r − ~a) = 0 . (14.25)

The intersection of the ray and this plane is obtained by substituting the ray equation
(equation (14.24)) into this plane equation, and solving it for unknown parameter t. If root t∗
is positive, then it is inserted into the ray equation to get the intersection point with the plane.
However, if the root is negative, then the intersection is behind the origin of the ray, thus
is invalid. Having a valid intersection with the plane of the triangle, we check whether this
point is inside the triangle. This is a containment problem, which is discussed in subsection
14.4.1.

Intersection calculation for an AABB
The surface of an AABB, that is an axis aligned block, can be subdivided to 6 rectangular
faces, or alternatively to 12 triangles, thus its intersection can be solved by the algorithms
discussed in the previous subsections. However, realizing that in this special case the three
coordinates can be handled separately, we can develop more efficient approaches. In fact, an
AABB is the intersection of an x-stratum de�ned by inequality xmin ≤ x ≤ xmax, a y-stratum
de�ned by ymin ≤ y ≤ ymax and a z-stratum of inequality zmin ≤ z ≤ zmax. For example, the
ray parameter of the intersection with the x-stratum is:

t1
x =

xmin − sx
vx

, t2
x =

xmax − sx
vx

.

The smaller of the two parameter values corresponds to the entry at the stratum, while the
greater to the exit. Let us denote the ray parameter of the entry by tin, and the ray parameter
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of the exit by tout. The ray is inside the x-stratum while the ray parameter is in [tin, tout].
Repeating the same calculation for the y and z-strata as well, three ray parameter intervals
are obtained. The intersection of these intervals determine when the ray is inside the AABB.
If parameter tout obtained as the result of intersecting the strata is negative, then the AABB
is behind the eye, thus no ray�AABB intersection is possible. If only tin is negative, then the
ray starts at an internal point of the AABB, and the �rst intersection is at tout. Finally, if tin
is positive, then the ray enters the AABB from outside at parameter tin.

The computation of the unnecessary intersection points can be reduced by applying the
Cohen � Sutherland line clipping algorithm (subsection 14.4.3). First, the ray is replaced by
a line segment where one endpoint is the origin of the ray, and the other endpoint is an
arbitrary point on the ray which is farther from the origin than any object of the virtual
world.

14.6.2. Speeding up the intersection calculation
A naive ray tracing algorithm tests each object for a ray to �nd the closest intersection.
If there are N objects in the space, the running time of the algorithm is Θ(N) both in the
average and in the worst case. The storage requirement is also linear in terms of the number
of objects.

The method would be speeded up if we could exclude certain objects from the intersec-
tion test without testing them one by one. The reasons of such exclusion include that these
objects are �behind� the ray or �not in the direction of the ray�. Additionally, the speed
is also expected to improve if we can terminate the search having found an intersection
supposing that even if other intersections exist, they are surely farther than the just found
intersection point. To make such decisions safely, we need to know the arrangement of ob-
jects in the virtual world. This information is gathered during the pre-processing phase. Of
course, pre-processing has its own computational cost, which is worth spending if we have
to trace a lot of rays.

Bounding volumes
One of the simplest ray tracing acceleration technique uses bounding volumes. The boun-
ding volume is a shape of simple geometry, typically a sphere or an AABB, which comp-
letely contains a complex object. When a ray is traced, �rst the bounding volume is tried
to be intersected. If there is no intersection with the bounding volume, then neither can the
contained object be intersected, thus the computation time of the ray intersection with the
complex object is saved. The bounding volume should be selected in a way that the ray
intersection is computationally cheap, and it is a tight container of the complex object.

The application of bounding volumes does not alter the linear time complexity of the
naive ray tracing. However, it can increase the speed by a scalar factor.

On the other hand, bounding volumes can also be organized in a hierarchy putting
bounding volumes inside bigger bounding volumes recursively. In this case the ray tracing
algorithm traverses this hierarchy, which is possible in sub-linear time.

Space subdivision with uniform grids
Let us �nd the AABB of the complete virtual world and subdivide it by an axis aligned
uniform grid of cell sizes (cx, cy, cz) (�gure 14.31).
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Figure 14.31. Partitioning the virtual world by a uniform grid. The intersections of the ray and the coordinate
planes of the grid are at regular distances cx/vx,cy/vy, and cz/vz, respectively.

In the preprocessing phase, for each cell we identify those objects that are at least par-
tially contained by the cell. The test of an object against a cell can be performed using a
clipping algorithm (subsection 14.4.3), or simply checking whether the cell and the AABB
of the object overlap.

U-G-C()
1 Compute the minimum corner of the AABB (xmin, ymin, zmin) and cell sizes (cx, cy, cz)
2 for each cell c
3 do object list of cell c← empty
4 for each object o B register objects overlapping with this cell.
5 do if cell c and the AABB of object o overlap
6 then add object o to object list of cell c

During ray tracing, cells intersected by the ray are visited in the order of their distance
from the ray origin. When a cell is processed, only those objects need to be tested for
intersection which overlap with this cell, that is, which are registered in this cell. On the
other hand, if an intersection is found in the cell, then intersections belonging to other cells
cannot be closer to the ray origin than the found intersection. Thus the cell marching can be
terminated. Note that when an object registered in a cell is intersected by the ray, we should
also check whether the intersection point is also in this cell.

We might meet an object again in other cells. The number of ray�surface intersection
can be reduced if the results of ray�surface intersections are stored with the objects and are
reused when needed again.

As long as no ray�surface intersection is found, the algorithm traverses those cells
which are intersected by the ray. Indices X,Y,Z of the �rst cell are computed from ray
origin ~s, minimum corner (xmin, ymin, zmin) of the grid, and sizes (cx, cy, cz) of the cells:



14.6. Rendering with ray tracing 661

U-G-E-C(~s)
1 X ← I((sx − xmin)/cx)
2 Y ← I((sy − ymin)/cy)
3 Z ← I((sz − zmin)/cz)
4 return X,Y,Z

The presented algorithm assumes that the origin of the ray is inside the subspace cove-
red by the grid. Should this condition not be met, then the intersection of the ray and the
scene AABB is computed, and the ray origin is moved to this point.

The initial values of ray parameters tx, ty, tz are computed as the intersection of the ray
and the coordinate planes by the U---- algorithm:

U-G-R-P-I(~s,~v, X,Y,Z)
1 if vx > 0
2 then tx ← (xmin + (X + 1) · cx − sx)/vx
3 else if vx < 0
4 then tx ← (xmin + X · cx − sx)/vx
5 else tx ← tmax B The maximum distance.
6 if vy > 0
7 then ty ← (ymin + (Y + 1) · cy − sy)/vy
8 else if vy < 0
9 then ty ← (ymin + Y · cy − sy)/vy

10 else ty ← tmax
11 if vz > 0
12 then tz ← (zmin + (Z + 1) · cz − sz)/vz
13 else if vz < 0
14 then tz ← (zmin + Z · cz − sz)/vz
15 else tz ← tmax
16 return tx, ty, tz

The next cell of the sequence of the visited cells is determined by the 3D line drawing
algorithm (3DDDA algorithm). This algorithm exploits the fact that the ray parameters of
the intersection points with planes perpendicular to axis x (and similarly to axes y and z) are
regularly placed at distance cx/vx (cy/vy, and cz/vz, respectively), thus the ray parameter of
the next intersection can be obtained with a single addition (�gure 14.31). Ray parameters tx,
ty, and tz are stored in global variables, and are incremented by constant values. The smallest
from the three ray parameters of the coordinate planes identi�es the next intersection with
the cell.

The following algorithm computes indices X,Y,Z of the next intersected cell, and up-
dates ray parameters tx, ty, tz:
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U-G-N-C(X,Y,Z, tx, ty, tz)
1 if tx = min(tx, ty, tz) B Next intersection is on the plane perpendicular to axis x.
2 then X ← X + sgn(vx) B function sgn(x) returns the sign.
3 tx ← tx + cx/|vx|
4 else if ty = min(tx, ty, tz) B Next intersection is on the plane perpendicular to axis y.
5 then Y ← Y + sgn(vy)
6 ty ← ty + cy/|vy|
7 else if tz = min(tx, ty, tz) B Next intersection is on the plane perpendicular to axis z.
8 then Z ← Z + sgn(vz)
9 tz ← tz + cz/|vz|

To summarize, a complete ray tracing algorithm is presented, which exploits the uni-
form grid generated during preprocessing and computes the ray�surface intersection closest
to the ray origin. The minimum of ray parameters assigned to the coordinate planes, vari-
able tout, determines the distance as far as the ray is inside the cell. This parameter is used
to decide whether or not a ray-surface intersection is really inside the cell.

R-F-I--U-G(~s,~v)
1 (X,Y,Z)← U-G-E-C(~s)
2 (tx, ty, tz)← U-G-R-P-I(~s,~v, X,Y,Z)
3 while X,Y,Z are inside the grid
4 do tout ← min(tx, ty, tz) B Here is the exit from the cell.
5 t ← tout B Initialization: no intersection yet.
6 for each object o registered in cell (X,Y,Z)
7 do to ←R--(~s,~v, o) B Negative: no intersection.
8 if 0 ≤ to < t B Is the new intersection closer?
9 then t ← to B The ray parameter of the closest intersection so far.

10 ovisible ← o B The �rst intersected object.
11 if t < tout BWas intersection in the cell?
12 then ~x← ~s + ~v · t B The position of the intersection.
13 return t, ~x, ovisible B Termination.
14 U---(X,Y,Z, tx, ty, tz) B 3DDDA.
15 return �no intersection�

Time and storage complexity of the uniform grid algorithm
The preprocessing phase of the uniform grid algorithm tests each object with each cell, thus
runs in Θ(N · C) time where N and C are the numbers of objects and cells, respectively.
In practice, the resolution of the grid is set to make C proportional to N since in this case,
the average number of objects per cell becomes independent of the total number of objects.
Such resolution makes the preprocessing time quadratic, that is Θ(N2). We note that sorting
objects before testing them against cells may reduce this complexity, but this optimization
is not crucial since not the preprocessing but the ray tracing time is critical. Since in the
worst case all objects may overlap with each cell, the storage space is also in O(N2).
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The ray tracing time can be expressed by the following equation:

T = To + NI · TI + NS · TS , (14.26)

where To is the time needed to identify the cell containing the origin of the ray, NI is the
number of ray�surface intersection tests until the �rst intersection is found, TI is the time
required by a single ray�surface intersection test, NS is the number of visited cells, and TS
is the time needed to step onto the next cell.

To �nd the �rst cell, the coordinates of the ray origin should be divided by the cell sizes,
and the cell indices are obtained by rounding the results. This step thus runs in constant
time. A single ray�surface intersection test also requires constant time. The next cell is
determined by the 3DDDA algorithm in constant time as well. Thus the complexity of the
algorithm depends only on the number of intersection tests and the number of the visited
cells.

Considering a worst case scenario, a cell may contain all objects, requiring O(N) in-
tersection test with N objects. In the worst case the ray tracing has linear complexity. This
means that the uniform grid algorithm needs quadratic preprocessing time and storage, but
solves the ray tracing problem still in linear time as the naive algorithm, which is quite
disappointing. However, uniform grids are still worth using since worst case scenarios are
very unlikely. The fact is that classic complexity measures describing the worst case charac-
teristics are not appropriate to compare the naive algorithm and the uniform grid based ray
tracing. For a reasonable comparison, the probabilistic analysis of the algorithms is needed.

Probabilistic model of the virtual world
To carry out the average case analysis, the scene model, i.e. the probability distribution of
the possible virtual world models must be known. In practical situations, this probability
distribution is not available, therefore it must be estimated. If the model of the virtual world
were too complicated, we would not be able to analytically determine the average, i.e. the
expected running time of the ray tracing algorithm. A simple, but also justi�able model is
the following: Objects are spheres of the same radius r, and sphere centres are uniformly
distributed in space.

Since we are interested in the asymptotic behavior when the number of objects is really
high, uniform distribution in a �nite space would not be feasible. On the other hand, the
boundary of the space would pose problems. Thus, instead of dealing with a �nite object
space, the space should also be expanded as the number of objects grows to sustain constant
average spatial object density. This is a classical method in probability theory, and its known
result is the Poisson point process.

De�nition 14.16 A Poisson point process N(A) counts the number of points in subset A of
space in a way that
• N(A) is a Poisson distribution of parameter ρV(A), where ρ is a positive constant called

�intensity� and V(A) is the volume of A, thus the probability that A contains exactly k
points is

Pr {N(A) = k} =
(ρV(A))k

k! · e−ρV(A) ,

and the expected number of points in volume V(A) is ρV(A);
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Figure 14.32. Encapsulation of the intersection space by the cells of the data structure in a uniform subdivision
scheme. The intersection space is a cylinder of radius r. The candidate space is the union of those spheres that may
overlap a cell intersected by the ray.

• for disjoint A1, A2, . . . , An sets random variables N(A1),N(A2), . . . ,N(An) are indepen-
dent.

Using the Poisson point process, the probabilistic model of the virtual world is:
1. The object space consists of spheres of the same radius r.
2. The sphere centres are the realizations of a Poisson point process of intensity ρ.

Having constructed a probabilistic virtual world model, we can start the analysis of the
candidate algorithms assuming that the rays are uniformly distributed in space.

Calculation of the expected number of intersections
Looking at �gure 14.32 we can see a ray that passes through certain cells of the space
partitioning data structure. The collection of those sphere centres where the sphere would
have an intersection with a cell is called the candidate space associated with this cell.

Only those spheres of radius r can have intersection with the ray whose centres are in
a cylinder of radius r around the ray. This cylinder is called the intersection space (�gure
14.32). More precisely, the intersection space also includes two half spheres at the bottom
and at the top of the cylinder, but these will be ignored.

As the ray tracing algorithm traverses the data structure, it examines each cell that is
intersected by the ray. If the cell is empty, then the algorithm does nothing. If the cell is
not empty, then it contains, at least partially, a sphere which is tried to be intersected. This
intersection succeeds if the centre of the sphere is inside the intersection space and fails if it
is outside.

The algorithm should try to intersect objects that are in the candidate space, but this
intersection will be successful only if the object is also contained by the intersection space.
The probability of the success s is the ratio of the projected areas of the intersection space
and the candidate space associated with this cell.

From the probability of the successful intersection in a non-empty cell, the probability
that the intersection is found in the �rst, second, etc. cells can also be computed. Assuming
statistical independence, the probabilities that the �rst, second, third, etc. intersection is the
�rst successful intersection are s, (1 − s)s, (1 − s)2s, etc., respectively. This is a geometric
distribution with expected value 1/s. Consequently, the expected number of the ray�object
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intersection tests is:
E[NI] =

1
s . (14.27)

If the ray is parallel to one of the sides, then the projected size of the candidate space is
c2 + 4cr + r2π where c is the edge size of a cell and r is the radius of the spheres. The other
extreme case happens when the ray is parallel to the diagonal of the cubic cell, where the
projection is a rounded hexagon having area

√
3c2 + 6cr + r2π. The success probability is

then:
r2π√

3c2 + 6cr + r2π
≤ s ≤ r2π

c2 + 4cr + r2π
.

According to equation (14.27), the average number of intersection calculations is the recip-
rocal of this probability:

1
π

(c
r

)2
+

4
π

c
r + 1 ≤ E [NI] ≤

√
3
π

(c
r

)2
+

6
π

c
r + 1 . (14.28)

Note that if the size of the cell is equal to the diameter of the sphere (c = 2r), then

3.54 < E [NI] < 7.03 .

This result has been obtained assuming that the number of objects converges to in�nity. The
expected number of intersection tests, however, remains �nite and relatively small.

Calculation of the expected number of cell steps
In the following analysis the conditional expected value theorem will be used. An appropri-
ate condition is the length of the ray segment between its origin and the closest intersection.
Using its probability density pt∗(t) as a condition, the expected number of visited cells NS
can be written in the following form:

E[NS ] =

∞∫

0

E[NS |t∗ = t] · pt∗(t) dt ,

where t∗ is the length of the ray and pt∗ is its probability density.
Since the intersection space is a cylinder if we ignore the half spheres around the be-

ginning and the end, its total volume is r2πt. Thus the probability that intersection occurs
before t is:

Pr {t∗ < t} = 1 − e−ρr2πt .

Note that this function is the cumulative probability distribution function of t∗. The proba-
bility density can be computed as its derivative, thus we obtain:

pt∗(t) = ρr2π · e−ρr2πt .

The expected length of the ray is then:

E[t∗] =

∞∫

0

t · ρr2π · e−ρr2πt dt =
1

ρr2π
. (14.29)
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In order to simplify the analysis, we shall assume that the ray is parallel to one of the
coordinate axes. Since all cells have the same edge size c, the number of cells intersected
by a ray of length t can be estimated as E[NS |t∗ = t] ≈ t/c + 1. This estimation is quite
accurate. If the the ray is parallel to one of the coordinate axes, then the error is at most 1.
In other cases the real value can be at most

√
3 times the given estimation. The estimated

expected number of visited cells is then:

E [NS ] ≈
∞∫

0

( t
c + 1

)
· ρr2π · e−ρr2πt dt =

1
cρr2π

+ 1 . (14.30)

For example, if the cell size is similar to the object size (c = 2r), and the expected number
of sphere centres in a cell is 0.1, then E [NS ] ≈ 14. Note that the expected number of visited
cells is also constant even for in�nite number of objects.

Expected running time and storage space
We concluded that the expected numbers of required intersection tests and visited cells are
asymptotically constant, thus the expected time complexity of the uniform grid based ray
tracing algorithm is constant after quadratic preprocessing time. The value of the running
time can be controlled by cell size c according to equations (14.28) and (14.30). Smaller
cell sizes reduce the average number of intersection tests, but increase the number of visited
cells.

According to the probabilistic model, the average number of objects overlapping with a
cell is also constant, thus the storage is proportional to the number of cells. Since the number
of cells is set proportional to the number of objects, the expected storage complexity is also
linear unlike the quadratic worst-case complexity.

The expected constant running time means that asymptotically the running time is inde-
pendent of the number of objects, which explains the popularity of the uniform grid based
ray tracing algorithm, and also the popularity of the algorithms presented in the next sub-
sections.

Octree
Uniform grids require many unnecessary cell steps. For example, the empty spaces are not
worth partitioning into cells, and two cells are worth separating only if they contain different
objects. Adaptive space partitioning schemes are based on these recognitions. The space can
be partitioned adaptively following a recursive approach. This results in a hierarchical data
structure, which is usually a tree. The type of this tree is the base of the classi�cation of
such algorithms.

The adaptive scheme discussed in this subsection uses an octal tree (octree for short),
where non-empty nodes have 8 children. An octree is constructed by the following algo-
rithm:
• For each object, an AABB is found, and object AABBs are enclosed by a scene AABB.

The scene AABB is the cell corresponding to the root of the octree.
• If the number of objects overlapping with the current cell exceeds a prede�ned thres-

hold, then the cell is subdivided to 8 cells of the same size by halving the original cell
along each coordinate axis. The 8 new cells are the children of the node corresponding
to the original cell. The algorithm is recursively repeated for the child cells.
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Figure 14.33. A quadtree partitioning the plane, whose three-dimensional version is the octree. The tree is const-
ructed by halving the cells along all coordinate axes until a cell contains �just a few� objects, or the cell sizes gets
smaller than a threshold. Objects are registered in the leaves of the tree.

• The recursive tree building procedure terminates if the depth of the tree becomes to big,
or when the number of objects overlapping with a cell is smaller than the threshold.

The result of this construction is an octree (�gure 14.33). Overlapping objects are re-
gistered in the leaves of this tree.

When a ray is traced, those leaves of the tree should be traversed which are intersected
by the ray, and ray�surface intersection test should be executed for objects registered in
these leaves:

R-F-I--O(~s,~v)
1 ~q← intersection of the ray and the scene AABB
2 while ~q is inside of the scene AABB B Traversal of the tree.
3 cell← O-C-S(octree root, ~q)
4 tout ← ray parameter of the intersection of the cell and the ray
5 t ← tout B Initialization: no ray-surface intersection yet.
6 for each object o registered in cell
7 do to ←R-S-I(~s,~v) B Negative if no intersection exists.
8 if 0 ≤ to < t B Is the new intersection closer?
9 then t ← to B Ray parameter of the closest intersection so far.

10 ovisible ← o B First intersected object so far.
11 if t < tout B Has been intersection at all ?
12 then ~x← ~s + ~v · t B Position of the intersection.
13 return t, ~x, ovisible
14 ~q← ~s + ~v · (tout + ε) B A point in the next cell.
15 return �no intersection�

The identi�cation of the next cell intersected by the ray is more complicated for octrees
than for uniform grids. The O-C-S algorithm determines that leaf cell which
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contains a given point. At each level of the tree, the coordinates of the point are compared to
the coordinates of the centre of the cell. The results of these comparisons determine which
child contains the point. Repeating this test recursively, we arrive at a leaf sooner or later.

In order to identify the next cell intersected by the ray, the intersection point of the
ray and the current cell is computed. Then, ray parameter tout of this intersection point is
increased �a little� (this little value is denoted by ε in algorithm R-F-I-
-O). The increased ray parameter is substituted into the ray equation, resulting in
point ~q that is already in the next cell. The cell containing this point can be identi�ed with
O--.

Cells of the octree may be larger than the allowed minimal cell, therefore the octree
algorithm requires less number of cell steps than the uniform grid algorithm working on
the minimal cells. However, larger cells reduce the probability of the successful intersection
tests since in a large cell it is less likely that a random ray intersecting the cell also intersects
a contained object. Smaller successful intersection probability, on the other hand, results in
greater expected number of intersection tests, which affects the performance negatively. It
also means that non-empty octree cells are worth subdividing until the minimum cell size
is reached even if the cell contains just a single object. Following this strategy, the size of
the non-empty cells are similar, thus the results of the complexity analysis made for the
uniform grid remain to be applicable to the octree as well. Since the probability of the
successful intersection depends on the size of the non-empty cells, the expected number of
needed intersection tests is still given by inequality (14.28). It also means that when the
minimal cell size of an octree equals to the cell size of a uniform grid, then the expected
number of intersection tests is equal in the two algorithms.

The advantage of the ocree is the ability to skip empty spaces, which reduces the number
of cell steps. Its disadvantage is, however, that the time of the next cell identi�cation is not
constant. This identi�cation requires the traversal of the tree. If the tree construction is
terminated when a cell contains small number of objects, then the number of leaf cells is
proportional to the number of objects. The depth of the tree is in O(lg N), so is the time
needed to step onto the next cell.

kd-tree
An octree adapts to the distribution of the objects. However, the partitioning strategy of
octrees always halves the cells without taking into account where the objects are, thus the
adaptation is not perfect. Let us consider a partitioning scheme which splits a cell into two
cells to make the tree balanced. Such method builds a binary tree which is called binary
space partitioning tree,, abbreviated as BSP-tree. If the separating plane is always perpen-
dicular to one of the coordinate axes, then the tree is called kd-tree.

The separating plane of a kd-tree node can be placed in many different ways:
• the spatial median method subdivides the cell into two similar cells.

• the object median method �nds the separation plane to have the same number of objects
in the two child cells.

• the cost driven method estimates the average computation time needed when a cell is
processed during ray tracing, and minimizes this value by placing the separation plane.
An appropriate cost model suggests to separate the cell to make the probabilities of the
ray�surface intersection of the two cells similar.
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Figure 14.34. A kd-tree. A cell containing �many� objects are recursively subdivided to two cells with a plane that
is perpendicular to one of the coordinate axes.

The probability of the ray-surface intersection can be computed using a fundamental
theorem of the integral geometry:

Theorem 14.17 If convex solid A contains another convex solid B, then the probability that
a uniformly distributed line intersects solid B provided that the line intersected A equals to
the ratio of the surface areas of objects B and A.

According to this theorem the cost driven method �nds the separation plane to equalize
the surface areas in the two children.

Let us now present a general kd-tree construction algorithm. Parameter cell identi�es
the current cell, depth is the current depth of recursion, and coordinate stores the orienta-
tion of the current separating plane. A cell is associated with its two children (cell.right and
cell.left), and its left-lower-closer and right-upper-farther corners (cell.min and cell.max).
Cells also store the list of those objects which overlap with the cell. The orientation of the
separation plane is determined by a round-robin scheme implemented by function R-
 providing a sequence like (x, y, z, x, y, z, x, . . .). When the following recursive algo-
rithm is called �rst, it gets the scene AABB in variable cell and the value of variable depth
is zero:
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K-T-C(cell, depth, coordinate)
1 if the number of objects overlapping with cell is small or depth is large
2 then return
3 AABB of cell.left and AABB of cell.right← AABB of cell
4 if coordinate = x
5 then cell.right.min.x← x perpendicular separating plane of cell
6 cell.left.max.x← x perpendicular separating plane of cell
7 else if coordinate = y
8 then cell.right.min.y← y perpendicular separating plane of cell
9 cell.left.max.y← y perpendicular separating plane of cell

10 else if coordinate = z
11 then cell.right.min.z← z perpendicular separating plane of cell
12 cell.left.max.z← z perpendicular separating plane of cell
13 for each object o of cell
14 do if object o is in the AABB of cell.left
15 then assign object o to the list of cell.left
16 if object o is in the AABB of cell.right
17 then assign object o to the list of cell.right
18 K-T-C(cell.left, depth + 1,R-R(coordinate))
19 K-T-C(cell.right, depth + 1,R-R(coordinate))

Now we discuss an algorithm that traverses the constructed kd-tree and �nds the visible
object. First we have to test whether the origin of the ray is inside the scene AABB. If
it is not, the intersection of the ray and the scene AABB is computed, and the origin of
the ray is moved there. The identi�cation of the cell containing the ray origin requires the
traversal of the tree. During the traversal the coordinates of the point are compared to the
coordinates of the separating plane. This comparison determines which child should be
processed recursively until a leaf node is reached. If the leaf cell is not empty, then objects
overlapping with the cell are intersected with the ray, and the intersection closest the origin
is retained. The closest intersection is tested to see whether or not it is inside the cell (since
an object may overlap in more than one cells, it can also happen that the intersection is
in another cell). If the intersection is in the current cell, then the needed intersection has
been found, and the algorithm can be terminated. If the cell is empty, or no intersection
is found in the cell, then the algorithm should proceed with the next cell. To identify the
next cell, the ray is intersected with the current cell identifying the ray parameter of the
exit point. Then the ray parameter is increased �a little� to make sure that the increased ray
parameter corresponds to a point in the next cell. The algorithm keeps repeating these steps
as it process the cells of the tree.

This method has the disadvantage that the cell search always starts at the root, which
results in the repetitive traversals of the same nodes of the tree.

This disadvantage can be eliminated by putting the cells to be visited into a stack, and
backtracking only to the point where a new branch should be followed. When the ray arrives
at a node having two children, the algorithm decides the order of processing the two child
nodes. Child nodes are classi�ed as �near� and �far� depending on whether or not the child
cell is on the same side of the separating plane as the origin of the ray. If the ray intersects
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only the �near� child, then the algorithm processes only that subtree which originates at this
child. If the ray intersects both children, then the algorithm pushes the �far� node onto the
stack and starts processing the �near� node. If no intersection exists in the �near� node, then
the stack is popped to obtain the next node to be processed.

The notations of the ray tracing algorithm based on kd-tree traversal are shown by �gure
14.35. The algorithm is the following:

R-F-I---T(root, ~s,~v)
1 (tin, tout)← R-AABB-I(~s,~v, root) B Intersection with the scene AABB.
2 if no intersection
3 then return �no intersection�
4 P(root, tin, tout)
5 while the stack is not empty B Visit all nodes.
6 do P(cell, tin, tout)
7 while cell is not a leaf
8 do coordinate← orientation of the separating plane of the cell
9 d ← cell.right.min[coordinate] − ~s[coordinate]

10 t ← d/~v[coordinate] B Ray parameter of the separating plane.
11 if d > 0 B Is ~s on the left side of the separating plane?
12 then (near, far)← (cell.left, cell.right) B Left.
13 else (near, far)← (cell.right, cell.left) B Right.
14 if t > tout or t < 0
15 then cell← near B The ray intersects only the near cell.
16 else if t < tin
17 then cell← far B The ray intersects only the far cell.
18 else P(far, t, tout) B The ray intersects both cells.
19 cell← near B First near is intersected.
20 tout ← t B The ray exists at t from the near cell.

B If the current cell is a leaf.
21 t ← tout BMaximum ray parameter in this cell.
22 for each object o of cell
23 do to ←R-S-I(~s,~v) B Negative if no intersection exists.
24 if tin ≤ to < t B Is the new intersection closer to the ray origin?
25 then t ← to B The ray parameter of the closest intersection so far.
26 ovisible ← o B The object intersected closest to the ray origin.
27 if t < tout B Has been intersection at all in the cell?
28 then ~x← ~s + ~v · t B The intersection point.
29 return t, ~x, ovisible B Intersection has been found.
30 return �no intersection� B No intersection.

Similarly to the octree algorithm, the likelihood of successful intersections can be inc-
reased by continuing the tree building process until all empty spaces are cut (�gure 14.36).

Our probabilistic world model contains spheres of same radius r, thus the non-empty
cells are cubes of edge size c = 2r. Unlike in uniform grids or octrees, the separating planes
of kd-trees are not independent of the objects. Kd-tree splitting planes are rather tangents
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Figure 14.35. Notations and cases of algorithm R-F-I---T. tin, tout, and t are the ray
parameters of the entry, exit and the separation plane, respectively. d is the signed distance between the ray origin
and the separation plane.

Figure 14.36. Kd-tree based space partitioning with empty space cutting.

of the objects. This means that we do not have to be concerned with partially overlapping
spheres since a sphere is completely contained by a cell in a kd-tree. The probability of the
successful intersection is obtained applying theorem 14.17. In the current case, the contai-
ning convex solid is a cube of edge size 2r, the contained solid is a sphere of radius r, thus
the intersection probability is:

s =
4r2π

6a2 =
π

6 .

The expected number of intersection tests is then:

E [NI] =
6
π
≈ 1.91 .

We can conclude that the kd-tree algorithm requires the smallest number of ray�surface
intersection tests according to the probabilistic model.

Exercises
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14.6-1 Prove that the expected number of intersection tests is constant in all those ray tra-
cing algorithms which process objects in the order of their distance from the ray origin.
14.6-2 Propose a ray intersection algorithm for subdivision surfaces.
14.6-3 Develop a ray intersection method for B-spline surfaces.
14.6-4 Develop a ray intersection algorithm for CSG models assuming that the ray�
primitive intersection tests are already available.
14.6-5 Propose a ray intersection algorithm for transformed objects assuming that the al-
gorithm computing the intersection with the non-transformed objects is available (hints:
transform the ray).

14.7. Incremental rendering
Rendering requires the identi�cation of those surface points that are visible through the pi-
xels of the virtual camera. Ray tracing solves this visibility problem for each pixel indepen-
dently, thus it does not reuse visibility information gathered at other pixels. The algorithms
of this section, however, exploit such information using the following simple techniques:

1. They simultaneously attack the visibility problem for all pixels, and handle larger parts
of the scene at once.

2. Where feasible, they exploit the incremental concept which is based on the recognition
that the visibility problem becomes simpler to solve if the solution at the neighbouring
pixel is taken into account.

3. They solve each task in that coordinate system which makes the solution easier. The
scene is transformed from one coordinate system to the other by homogeneous linear
transformations.

4. They minimize unnecessary computations, therefore remove those objects by clipping
in an early stage of rendering which cannot be projected onto the window of the camera.
Homogeneous linear transformations and clipping may change the type of the surface

except for points, line segments and polygons 4. Therefore, before rendering is started, each
shape is approximated by points, line segments, and meshes (subsection 14.3).

Steps of incremental rendering are shown in �gure 14.37. Objects are de�ned in their
reference state, approximated by meshes, and are transformed to the virtual world. The time
dependence of this transformation is responsible for object animation. The image is taken
from the camera taken about the virtual world, which requires the identi�cation of those
surface points that are visible from the camera, and their projection onto the window plane.
The visibility and projection problems could be solved in the virtual world as happens in
ray tracing, but this would require the intersection calculations of general lines and poly-
gons. Visibility and projection algorithms can be simpli�ed if the scene is transformed to
a coordinate system, where the X,Y coordinates of a point equal to the coordinates of that
pixel onto which this point is projected, and the Z coordinate can be used to decide which
point is closer if more than one surfaces are projected onto the same pixel. Such coordinate
system is called the screen coordinate system. In screen coordinates the units of axes X and

4Although Bézier and B-Spline curves and surfaces are invariant to affine transformations, and NURBS is invariant
even to homogeneous linear transformations, but clipping changes these object types as well.
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(a) Modelling (b) Tessellation

(c) Modelling transform (d) Camera transform

(e) Perspective transform (f) Clipping

(g) Hidden surface elimination (h) Projection and shading

Figure 14.37. Steps of incremental rendering. (a) Modelling de�nes objects in their reference state. (b) Shapes
are tessellated to prepare for further processing. (c) Modelling transform places the object in the world coordinate
system. (d) Camera transform translates and rotates the scene to get the eye to be at the origin and to look parallel
with axis −z. (e) Perspective transform converts projection lines meeting at the origin to parallel lines, that is, it
maps the eye position onto an ideal point. (f) Clipping removes those shapes and shape parts, which cannot be
projected onto the window. (g) Hidden surface elimination removes those surface parts that are occluded by other
shapes. (h) Finally, the visible polygons are projected and their projections are �lled with their visible colours.



14.7. Incremental rendering 675

lookat

x

y

z

uv

w

b

f

eye
p

p

up

fov

Figure 14.38. Parameters of the virtual camera: eye position ~eye, target ~lookat, and vertical direction ~up, from
which camera basis vectors ~u,~v, ~w are obtained, front fp and back bp clipping planes, and vertical �eld of view fov
(the horizontal �eld of view is computed from aspect ratio aspect).

Y are equal to the pixel size. Since it is usually not worth computing the image on higher
accuracy than the pixel size, coordinates X,Y are integers. Because of performance reasons,
coordinate Z is also often integer. Screen coordinates are denoted by capital letters.

The transformation taking to the screen coordinate system is de�ned by a sequence of
transformations, and the elements of this sequence are discussed separately. However, this
transformation is executed as a single multiplication with a 4 × 4 transformation matrix
obtained as the product of elementary transformation matrices.

14.7.1. Camera transform
Rendering is expected to generate an image from a camera de�ned by eye position ( ~eye)
(the focal point of the camera), looking target ( ~lookat) where the camera looks at, and by
vertical direction ~up (�gure 14.38).

Camera parameter fov de�nes the vertical �eld of view, aspect is the ratio of the width
and the height of the window, fp and bp are the distances of the front and back clipping
planes from the eye, respectively. These clipping planes allow to remove those objects that
are behind, too close to, or too far from the eye.

We assign a coordinate system, i.e. three orthogonal unit basis vectors to the camera.
Horizontal basis vector ~u = (ux, uy, uz), vertical basis vector ~v = (vx, vy, vz), and basis vector
~w = (wx, wy, wz) pointing to the looking direction are obtained as follows:

~w =
~eye − ~lookat
| ~eye − ~lookat|

, ~u =
~up × ~w
| ~up × ~w| , ~v = ~w × ~u .

The camera transform translates and rotates the space of the virtual world in order
to get the camera to move to the origin, to look at direction axis −z, and to have vertical
direction parallel to axis y, that is, this transformation maps unit vectors ~u,~v, ~w to the basis
vectors of the coordinate system. Transformation matrix Tcamera can be expressed as the
product of a matrix translating the eye to the origin and a matrix rotating basis vectors
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Figure 14.39. The normalizing transform sets the �eld of view to 90 degrees.

~u,~v, ~w of the camera to the basis vectors of the coordinate system:

[x′, y′, z′, 1] = [x, y, z, 1] · Tcamera = [x, y, z, 1] · Ttranslation · Trotation , (14.31)

where

Ttranslation =



1 0 0 0
0 1 0 0
0 0 1 0
−eyex −eyey −eyez 1


, Trotation =



ux vx wx 0
uy vy wy 0
uz vz wz 0
0 0 0 1


.

Let us note that the columns of the rotation matrix are vectors ~u,~v, ~w. Since these vectors
are orthogonal, it is easy to see that this rotation maps them to coordinate axes x, y, z. For
example, the rotation of vector ~u is:

[ux, uy, uz, 1] · Trotation = [~u · ~u, ~u · ~v, ~u · ~w, 1] = [1, 0, 0, 1] .

14.7.2. Normalizing transform
In the next step the viewing pyramid containing those points which can be projected onto
the window is normalized making the �eld of view equal to 90 degrees (�gure 14.39).

Normalization is a simple scaling transform:

Tnorm =



1/(tan(fov/2) · aspect) 0 0 0
0 1/ tan(fov/2) 0 0
0 0 1 0
0 0 0 1


.

14.7.3. Perspective transform
The perspective transform distorts the virtual world to allow the replacement of the pers-
pective projection by parallel projection during rendering.

After the normalizing transform, the points potentially participating in rendering are in-
side a symmetrical �nite frustum of pyramid (�gure 14.39). The perspective transform maps
this frustum onto a cube, converting projection lines crossing the origin to lines parallel to
axis z (�gure 14.40).
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Figure 14.40. The perspective transform maps the �nite frustum of pyramid de�ned by the front and back clipping
planes, and the edges of the window onto an axis aligned, origin centred cube of edge size 2.

Perspective transform is expected to map point to point, line to line, but to map the
eye position to in�nity. It means that perspective transform cannot be a linear transform of
Cartesian coordinates. Fortunately, homogenous linear transforms also map point to point,
line to line, and are able to handle points at in�nity with �nite coordinates. Let us thus try
to �nd the perspective transform in the form of a homogeneous linear transform de�ned by
a 4 × 4 matrix:

Tpersp =



t11 t12 t13 t14
t21 t22 t23 t24
t31 t32 t33 t34
t41 t42 t43 t44


.

Figure 14.40 shows a line (projection ray) and its transform. Let mx and my be the x/z
and the y/z slopes of the line, respectively. This line is de�ned by equation [−mx ·z,−my ·z, z]
in the normalized camera space. The perspective transform maps this line to a �horizontal�
line crossing point [mx,my, 0] and being parallel to axis z. Let us examine the intersection
points of this line with the front and back clipping planes, that is, let us substitute (− fp) and
(−bp) into parameter z of the line equation. The transformation should map these points to
[mx,my,−1] and [mx,my, 1], respectively.

The perspective transformation of the point on the �rst clipping plane is:
[
mx · fp,my · fp,− fp, 1

]
· Tpersp =

[
mx,my,−1, 1

]
· λ ,

where λ is an arbitrary, non-zero scalar since the point de�ned by homogeneous coordinates
does not change if the homogenous coordinates are simultaneously multiplied by a non-zero
scalar. Setting λ to fp, we get:

[
mx · fp,my · fp,− fp, 1

]
· Tpersp =

[
mx · fp,my · fp,− fp, fp

]
. (14.32)

Note that the �rst coordinate of the transformed point equals to the �rst coordinate of
the original point on the clipping plane for arbitrary mx, my, and fp values. This is possible
only if the �rst column of matrix Tpersp is [1, 0, 0, 0]T . Using the same argument for the
second coordinate, we can conclude that the second column of the matrix is [0, 1, 0, 0]T .
Furthermore, in equation (14.32) the third and the fourth homogeneous coordinates of the
transformed point are not affected by the �rst and the second coordinates of the original
point, requiring t13 = t14 = t23 = t24 = 0. The conditions on the third and the fourth
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homogeneous coordinates can be formalized by the following equations:

− fp · t33 + t43 = − fp, − fp · t34 + t44 = fp .

Applying the same procedure for the intersection point of the projection line and the
back clipping plane, we can obtain other two equations:

−bp · t33 + t43 = bp, −bp · t34 + t44 = bp .

Solving this system of linear equations, the matrix of the perspective transform can be exp-
ressed as:

Tpersp =



1 0 0 0
0 1 0 0
0 0 −( fp + bp)/(bp − fp) −1
0 0 −2 · fp · bp/(bp − fp) 0


.

Since perspective transform is not affine, the fourth homogeneous coordinate of the
transformed point is usually not 1. If we wish to express the coordinates of the transformed
point in Cartesian coordinates, the �rst three homogeneous coordinates should be divided
by the fourth coordinate. Homogeneous linear transforms map line segment to line segment
and triangle to triangle, but it may happen that the resulting line segment or triangle con-
tains ideal points (subsection 14.5.2). The intuition behind the homogeneous division is a
traveling from the projective space to the Euclidean space, which converts a line segment
containing an ideal point to two half lines. If just the two endpoints of the line segment
is transformed, then it is not unambiguous whether the two transformed points need to be
connected by a line segment or the complement of this line segment should be considered
as the result of the transformation. This ambiguity is called the wrap around problem.

The wrap around problem does not occur if we can somehow make sure that the original
shape does not contain points that might be mapped onto ideal points. Examining the matrix
of the perspective transform we can conclude that the fourth homogeneous coordinate of the
transformed point will be equal to the −z coordinate of the original point. Ideal points having
zero fourth homogeneous coordinate (h = 0) may thus be obtained transforming the points
of plane z = 0, i.e. the plane crossing the origin and parallel to the window. However, if the
shapes are clipped onto a �rst clipping plane being in front of the eye, then these points are
removed. Thus the solution of the wrap around problem is the execution of the clipping step
before the homogeneous division.

14.7.4. Clipping in homogeneous coordinates
The purpose of clipping is to remove all shapes that either cannot be projected onto the
window or are not between the front and back clipping planes. To solve the wrap around
problem, clipping should be executed before the homogeneous division. The clipping boun-
daries in homogeneous coordinates can be obtained by transforming the screen coordinate
AABB back to homogeneous coordinates. In screen coordinates, i.e. after homogeneous
division, the points to be preserved by clipping meet the following inequalities:

− 1 ≤ X = Xh/h ≤ 1, −1 ≤ Y = Yh/h ≤ 1, −1 ≤ Z = Zh/h ≤ 1 . (14.33)

On the other hand, points that are in front of the eye after camera transform have nega-
tive z coordinates, and the perspective transform makes the fourth homogeneous coordinate
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h equal to −z in normalized camera space. Thus the fourth homogeneous coordinate of
points in front of the eye is always positive. Let us thus add condition h > 0 to the set of
conditions of inequalities (14.33). If h is positive, then inequalities (14.33) can be multiplied
by h, resulting in the de�nition of the clipping region in homogeneous coordinates:

− h ≤ Xh ≤ h, −h ≤ Yh ≤ h, −h ≤ Zh ≤ h . (14.34)

Points can be clipped easily, since we should only test whether or not the conditions
of inequalities (14.34) are met. Clipping line segments and polygons, on the other hand,
requires the computation of the intersection points with the faces of the clipping boundary,
and only those parts should be preserved which meet inequalities (14.34).

Clipping algorithms using Cartesian coordinates were discussed in subsection 14.4.3.
Those methods can also be applied in homogeneous coordinates with two exceptions.
Firstly, for homogeneous coordinates, inequalities (14.34) de�ne whether a point is in or
out. Secondly, intersections should be computed using the homogeneous coordinate equati-
ons of the line segments and the planes.

Let us consider a line segment with endpoints [X1
h ,Y1

h ,Z1
h , h1] and [X2

h ,Y2
h ,Z2

h , h2]. This
line segment can be an independent shape or an edge of a polygon. Here we discuss the
clipping on half space of equation Xh ≤ h (clipping methods on other half spaces are very
similar). Three cases need to be distinguished:
1. If both endpoints of the line segment are inside, that is X1

h ≤ h1 and X2
h ≤ h2, then the

complete line segment is in, thus is preserved.
2. If both endpoints are outside, that is X1

h > h1 and X2
h > h2, then all points of the line

segment are out, thus it is completely eliminated by clipping.
3. If one endpoint is outside, while the other is in, then the intersection of the line segment

and the clipping plane should be obtained. Then the endpoint being out is replaced by
the intersection point. Since the points of a line segment satisfy equation (14.19), while
the points of the clipping plane satisfy equation Xh = h, parameter ti of the intersection
point is computed as:

Xh(ti) = h(ti) =⇒ X1
h ·(1−ti)+X2

h ·ti = h1·(1−ti)+h2·ti =⇒ ti =
X1

h − h1

X1
h − X2

h + h2 − h1 .

Substituting parameter ti into the equation of the line segment, homogeneous coordina-
tes [Xi

h,Y i
h,Zi

h, hi] of the intersection point are obtained.
Clipping may introduce new vertices. When the vertices have some additional features,

for example, the surface colour or normal vector at these vertices, then these additional
features should be calculated for the new vertices as well. We can use linear interpolation.
If the values of a feature at the two endpoints are I1 and I2, then the feature value at new
vertex [Xh(ti),Yh(ti),Zh(ti), h(ti)] generated by clipping is I1 · (1 − ti) + I2 · ti.

14.7.5. Viewport transform
Having executed the perspective transform, the Cartesian coordinates of the visible points
are in [−1, 1]. These normalized device coordinates should be further scaled and translated
according to the resolution of the screen and the position of the viewport where the image is
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expected. Denoting the left-bottom corner pixel of the screen viewport by (Xmin,Ymin), the
right-top corner by (Xmax,Ymax), and Z coordinates expressing the distance from the eye are
expected in (Zmin,Zmax), the matrix of the viewport transform is:

Tviewport =



(Xmax − Xmin)/2 0 0 0
0 (Ymax − Ymin)/2 0 0
0 0 (Zmax − Zmin)/2 0

(Xmax + Xmin)/2 (Ymax + Ymin)/2 (Zmax + Zmin)/2 1


.

Coordinate systems after the perspective transform are left handed, unlike the coor-
dinate systems of the virtual world and the camera, which are right handed. Left handed
coordinate systems seem to be unusual, but they meet our natural expectation that the sc-
reen X coordinates grow from left to right, the Y coordinates from bottom to top and, the Z
coordinates grow with the distance from the virtual observer.

14.7.6. Rasterization algorithms
After clipping, homogeneous division, and viewport transform, shapes are in the screen
coordinate system where a point of coordinates (X,Y,Z) can be assigned to a pixel by ext-
racting the �rst two Cartesian coordinates (X,Y).

Rasterization works in the screen coordinate system and identi�es those pixels which
have to be coloured to approximate the projected shape. Since even simple shapes can cover
many pixels, rasterization algorithms should be very fast, and should be appropriate for
hardware implementation.

Line drawing
Let the endpoints of a line segment be (X1,Y1) and (X2,Y2) in screen coordinates. Let us
further assume that while we are going from the �rst endpoint toward the second, both
coordinates are growing, and X is the faster changing coordinate, that is,

∆X = X2 − X1 ≥ ∆Y = Y2 − Y1 ≥ 0 .

In this case the line segment is moderately ascending. We discuss only this case, other cases
can be handled by exchanging the X,Y coordinates and replacing additions by substractions.

Line drawing algorithms are expected to �nd pixels that approximate a line in a way that
there are no holes and the approximation is not fatter than necessary. In case of moderately
ascending line segments this means that in each pixel column exactly one pixel should be
�lled with the colour of the line. This coloured pixel is the one closest to the line in this
column. Using the following equation of the line

y = m · X + b, where m =
Y2 − Y1
X2 − X1

, and b = Y1 − X1 · Y2 − Y1
X2 − X1

, (14.35)

in pixel column of coordinate X the pixel closest to the line has Y coordinate that is equal
to the rounding of m · x + b. Unfortunately, the determination of Y requires a �oating point
multiplication, addition, and a rounding operation, which are too slow.

In order to speed up line drawing, we apply a fundamental trick of computer graphics,
the incremental concept. The incremental concept is based on the recognition that it is
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usually simpler to evaluate a function y(X + 1) using value y(X) than computing it from
X. Since during line drawing the columns are visited one by one, when column (X + 1) is
processed, value y(X) is already available. In case of a line segment we can write:

y(X + 1) = m · (X + 1) + b = m · X + b + m = y(X) + m .

Note that the evaluation of this formula requires just a single �oating point addition (m
is less than 1). This fact is exploited in digital differential analyzator algorithms (DDA-
algorithms). The DDA line drawing algorithm is then:

DDA-L-D(X1,Y1, X2,Y2, colour)
1 m← (Y2 − Y1)/(X2 − X1)
2 y← Y1
3 for X ← X1 to X2
4 do Y ← R(y)
5 P-W(X,Y, colour)
6 y← y + m

Further speedups can be obtained using �xed point number representation. This me-
ans that the product of the number and 2T is stored in an integer variable, where T is the
number of fractional bits. The number of fractional bits should be set to exclude cases when
the rounding errors accumulate to an incorrect result during long iteration sequences. If the
longest line segment covers L columns, then the minimum number of fractional bits gua-
ranteeing that the accumulated error is less than 1 is log2 L. Thanks to clipping only lines
�tting to the screen are rasterized, thus L is equal to the maximum screen resolution.

The performance and simplicity of the DDA line drawing algorithm can still be imp-
roved. On the one hand, the software implementation of the DDA algorithm requires shift
operations to realize truncation and rounding operations. On the other hand�once for every
line segment�the computation of slope m involves a division which is computationally ex-
pensive. Both problems are solved in the Bresenham line drawing algorithm.

Let us denote the vertical, signed distance of the line segment and the closest pixel
centre by s, and the vertical distance of the line segment and the pixel centre just above the
closest pixel by t (�gure 14.41). As the algorithm steps onto the next pixel column, values
s and t change and should be recomputed. While the new s and t values satisfy inequality
s < t, that is, while the lower pixel is still closer to the line segment, the shaded pixel of the
next column is in the same row as in the previous column. Introducing error variable e = s−t,
the row of the shaded pixel remains the same until this error variable is negative (e < 0). As
the pixel column is incremented, variables s, t, e are updated using the incremental formulae
(∆X = X2 − X1, ∆Y = Y2 − Y1):

s(X + 1) = s(X) +
∆Y
∆X , t(X + 1) = t(X) − ∆Y

∆X =⇒ e(X + 1) = e(X) + 2 ∆Y
∆X .

These formulae are valid if the closest pixel in column (X + 1) is in the same row as in
column X. If stepping to the next column, the upper pixel gets closer to the line segment
(error variable e becomes positive), then variables s, t, e should be recomputed for the new
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Figure 14.41. Notations of the Bresenham algorithm: s is the signed distance between the closest pixel centre and
the line segment along axis Y , which is positive if the line segment is above the pixel centre. t is the distance along
axis Y between the pixel centre just above the closest pixel and the line segment.

closest row and for the pixel just above it. The formulae describing this case are as follows:

s(X + 1) = s(X) +
∆Y
∆X − 1, t(X + 1) = t(X) − ∆Y

∆X + 1 =⇒ e(X + 1) = e(X) + 2
(
∆Y
∆X − 1

)
.

Note that s is a signed distance which is negative if the line segment is below the closest
pixel centre, and positive otherwise. We can assume that the line starts at a pixel centre, thus
the initial values of the control variables are:

s(X1) = 0, t(X1) = 1 =⇒ e(X1) = s(X1) − t(X1) = −1 .

This algorithm keeps updating error variable e and steps onto the next pixel row when
the error variable becomes positive. In this case, the error variable is decreased to have a
negative value again. The update of the error variable requires a non-integer addition and
the computation of its increment involves a division, similarly to the DDA algorithm. It
seems that this approach is not better than the DDA.

Let us note, however, that the sign changes of the error variable can also be recognized
if we examine the product of the error variable and a positive number. Multiplying the error
variable by ∆X we obtain decision variable E = e·∆X. In case of moderately ascending lines
the decision and error variables change their sign simultaneously. The incremental update
formulae of the decision variable can be obtained by multiplying the update formulae of
error variable by ∆X:

E(X + 1) =


E(X) + 2∆Y , if Y is not incremented ,

E(X) + 2(∆Y − ∆X), if Y needs to be incremented .

The initial value of the decision variable is E(X1) = e(X1) · ∆X = −∆X.
The decision variable starts at an integer value and is incremented by integers in each

step, thus it remains to be an integer and does not require fractional numbers at all. The com-
putation of the increments need only integer additions or subtractions and multiplications
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Figure 14.42. Polygon �ll. Pixels inside the polygon are identi�ed scan line by scan line.

by 2.
The complete Bresenham line drawing algorithm is:

B-L-D(X1,Y1, X2,Y2, colour)
1 ∆X ← X2 − X1
2 ∆Y ← Y2 − Y1
3 (dE+, dE−)← (2(∆Y − ∆X), 2∆Y)
4 E ← −∆X
5 Y ← Y1
6 for X ← X1 to X2
7 do if E ≤ 0
8 then E ← E + dE− B The line stays in the current pixel row.
9 else E ← E + dE+ B The line steps onto the next pixel row.

10 Y ← Y + 1
11 P-W(X,Y, colour)

The fundamental idea of the Bresenham algorithm was the replacement of the fractional
error variable by an integer decision variable in a way that the conditions used by the algo-
rithm remained equivalent. This approach is also called the method of invariants, which is
useful in many rasterization algorithms.

Polygon �ll
The input of an algorithm �lling single connected polygons is the array of vertices
~q[0], . . . , ~q[m − 1] (this array is usually the output of the polygon clipping algorithm). Edge
e of the polygon connects vertices ~q[e] and ~q[e + 1]. The last vertex needs not be treated
in a special way if the �rst vertex is put again after the last vertex in the array. Multiply
connected polygons are de�ned by more than one closed polylines, thus are speci�ed by
more than one vertex arrays.

The �lling is executed by processing a horizontal pixel row called scan line at a time.
For a single scan line, the pixels belonging to the interior of the polygon can be found by the
following steps. First the intersections of the polygon edges and the scan line are calculated.
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Figure 14.43. Incremental computation of the intersections between the scan lines and the edges. Coordinate X
always increases with the reciprocal of the slope of the line.
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Figure 14.44. The structure of the active edge table.

Then the intersection points are sorted in the ascending order of their X coordinates. Finally,
pixels between the �rst and the second intersection points, and between the third and the
fourth intersection points, or generally between the (2i + 1)th and the (2i + 2)th intersection
points are set to the colour of the polygon (�gure 14.42). This algorithm �lls those pixels
which can be reached from in�nity by crossing the polygon boundary odd number of times.

The computation of the intersections between scan lines and polygon edges can be
speeded up using the following observations:
1. An edge and a scan line can have intersection only if coordinate Y of the scan line is

between the minimum and maximum Y coordinates of the edge. Such edges are the
active edges. When implementing this idea, an active edge table (AET for short) is
needed which stores the currently active edges.

2. The computation of the intersection point of a line segment and the scan line requires
�oating point multiplication, division, and addition, thus it is time consuming. Applying
the incremental concept, however, we can also obtain the intersection point of the edge
and a scan line from the intersection point with the previous scan line using a single,
�xed-point addition (�gure 14.43).
When the incremental concept is exploited, we realize that coordinate X of the intersec-

tion with an edge always increases by the same amount when scan line Y is incremented.
If the edge endpoint having the larger Y coordinate is (Xmax,Ymax) and the endpoint having
the smaller Y coordinate is (Xmin,Ymin), then the increment of the X coordinate of the in-
tersection is ∆X/∆Y , where ∆X = Xmax − Xmin and ∆Y = Ymax − Ymin. This increment is
usually not an integer, hence increment ∆X/∆Y and intersection coordinate X should be
stored in non-integer, preferably �xed-point variables. An active edge is thus represented
by a �xed-point increment ∆X/∆Y , the �xed-point coordinate value of intersection X, and
the maximum vertical coordinate of the edge (Ymax). The maximum vertical coordinate is
needed to recognize when the edge becomes inactive.

Scan lines are processed one after the other. First, the algorithm determines which edges
become active for this scan line, that is, which edges have minimum Y coordinate being
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equal to the scan line coordinate. These edges are inserted into the active edge table. The
active edge table is also traversed and those edges whose maximum Y coordinate equals
to the scan line coordinate are removed (note that this way the lower end of an edge is
supposed to belong to the edge, but the upper edge is not). Then the active edge table is
sorted according to the X coordinates of the edges, and the pixels between each pair of
edges are �lled. Finally, the X coordinates of the intersections in the edges of the active
edge table are prepared for the next scan line by incrementing them by the reciprocal of the
slope ∆X/∆Y .

P-F(polygon, colour)
1 for Y ← 0 to Ymax
2 do for each edge of polygon B Put activated edges into the AET.
3 do if edge.ymin = Y
4 then P-AET(edge)
5 for each edge of the AET B Remove deactivated edges from the AET.
6 do if edge.ymax ≤ Y
7 then D--AET(edge)
8 S-AET B Sort according to X.
9 for each pair of edges (edge1, edge2) of the AET

10 do for X ← R(edge1.x) to R(edge2.x)
11 do P-W(X,Y, colour)
11 for each edge in the AET B Incremental concept.
12 do edge.x← edge.x + edge.∆X/∆Y

The algorithm works scan line by scan line and �rst puts the activated edges
(edge.ymin = Y) to the active edge table. The active edge table is maintained by three
operations. Operation P-AET(edge) computes variables (Ymax,∆X/∆Y, X) of an edge and
inserts this structure into the table. Operation D--AET removes an item from the
table when the edge is not active any more (edge.ymax ≤ Y). Operation S-AET sorts the
table in the ascending order of the X value of the items. Having sorted the lists, every two
consecutive items form a pair, and the pixels between the endpoints of each of these pairs
are �lled. Finally, the X coordinates of the items are updated according to the incremental
concept.

14.7.7. Incremental visibility algorithms
The three-dimensional visibility problem is solved in the screen coordinate system. We can
assume that the surfaces are given as triangle meshes.

Z-buffer algorithm
The z-buffer algorithm �nds that surface for each pixel, where the Z coordinate of the visible
point is minimal. For each pixel we allocate a memory to store the minimum Z coordinate
of those surfaces which have been processed so far. This memory is called the z-buffer or
the depth-buffer.

When a triangle of the surface is rendered, all those pixels are identi�ed which fall into
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the interior of the projection of the triangle by a triangle �lling algorithm. As the �lling
algorithm process a pixel, the Z coordinate of the triangle point visible in this pixel is obtai-
ned. If this Z value is larger than the value already stored in the z-buffer, then there exists an
already processed triangle that is closer than the current triangle in this given pixel. Thus the
current triangle is occluded in this pixel and its colour should not be written into the raster
memory. However, if the new Z value is smaller than the value stored in the z-buffer, then
the current triangle is the closest so far, and its colour and Z coordinate should be written
into the pixel and the z-buffer, respectively.

The z-buffer algorithm is then:

Z-()
1 for each pixel p B Clear screen.
2 do P-W(p, background-colour)
3 z-buffer[p]← maximum value after clipping
4 for each triangle o B Rendering.
5 do for each pixel p of triangle o
6 do Z ← coordinate Z of that point o which projects onto pixel p
7 if Z < z-buffer[p]
8 then P-W(p, colour of triangle o in this point)
9 z-buffer[p]← Z

When the triangle is �lled, the general polygon �lling algorithm of the previous section
could be used. However, it is worth exploiting the special features of the triangle. Let us sort
the triangle vertices according to their Y coordinates and assign index 1 to the vertex of the
smallest Y coordinate and index 3 to the vertex of the largest Y coordinate. The third vertex
gets index 2. Then let us cut the triangle into two pieces with scan line Y2. After cutting we
obtain a �lower� triangle and an �upper� triangle. Let us realize that in such triangles the �rst
(left) and the second (right) intersections of the scan lines are always on the same edges, thus
the administration of the polygon �lling algorithm can be signi�cantly simpli�ed. In fact,
the active edge table management is not needed anymore, only the incremental intersection
calculation should be implemented. The classi�cation of left and right intersections depend
on whether (X2,Y2) is on the right or on the left side of the oriented line segment from
(X1,Y1) to (X3,Y3). If (X2,Y2) is on the left side, the projected triangle is called left oriented,
and right oriented otherwise.

When the details of the algorithm is introduced, we assume that the already re-indexed
triangle vertices are

~r1 = [X1,Y1,Z1], ~r2 = [X2,Y2,Z2], ~r3 = [X3,Y3,Z3].

The rasterization algorithm is expected to �ll the projection of this triangle and also to
compute the Z coordinate of the triangle in every pixel (�gure 14.45).

The Z coordinate of the triangle point visible in pixel X,Y is computed using the equa-
tion of the plane of the triangle (equation (14.1)):

nX ·X +nY ·Y +nZ ·Z +d = 0, where ~n = (~r2−~r1)× (~r3−~r1) and d = −~n ·~r1 . (14.36)

Whether the triangle is left oriented or right oriented depends on the sign of the Z coordinate
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Figure 14.45. A triangle in the screen coordinate system. Pixels inside the projection of the triangle on plane XY
need to be found. The Z coordinates of the triangle in these pixels are computed using the equation of the plane of
the triangle.
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Figure 14.46. Incremental Z coordinate computation for a left oriented triangle.

of the normal vector of the plane. If nZ is negative, then the triangle is left oriented. If it is
negative, then the triangle is right oriented. Finally, when nZ is zero, then the projections
maps the triangle onto a line segment, which can be ignored during �lling.

Using the equation of the plane, function Z(X,Y) expressing the Z coordinate corres-
ponding to pixel X,Y is:

Z(X,Y) = −nX · X + nY · Y + d
nZ

. (14.37)

According to the incremental concept, the evaluation the Z coordinate can take advantage
of the value of the previous pixel:

Z(X + 1,Y) = Z(X,Y) − nX
nZ

= Z(X,Y) + δZX . (14.38)

Since increment δZX is constant for the whole triangle, it needs to be computed only
once. Thus the calculation of the Z coordinate in a scan line requires just a single addition
per pixel. The Z coordinate values along the edges can also be obtained incrementally from
the respective values at the previous scan line (�gure 14.46). The complete incremental
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Figure 14.47. Polygon�window relations:: (a) distinct; (b) surrounding ; (c) intersecting; (d) contained.

algorithm which renders a lower left oriented triangle is (the other cases are very similar):

Z-B-L-T(X1,Y1,Z1, X2,Y2,Z2, X3,Y3,Z3, colour)
1 ~n← ((X2,Y2,Z2) − (X1,Y1,Z1)) × ((X3,Y3,Z3) − (X1,Y1,Z1)) B Normal vector.
2 δZX ← −nX/nZ B Z increment.
3 (δXs

Y , δZ s
Y , δXe

Y )← ((X2 − X1)/(Y2 − Y1), (Z2 − Z1)/(Y2 − Y1), (X3 − X1)/(Y3 − Y1))
4 (Xleft, Xright,Zleft)← (X1, X1,Z1)
5 for Y ← Y1 to Y2
6 do Z ← Zleft
7 for X ← R(Xleft) to R(Xright) B One scan line.
8 if Z < z-buffer[X,Y] B Visibility test.
9 then P-W(X,Y, colour)

10 z-buffer[X,Y]← Z
11 Z ← Z + δZX
12 (Xleft, Xright,Zleft)← (Xleft + δXs

Y , Xright + δXe
Y ,Zleft + δZ s

Y ) B next scan line.

This algorithm simultaneously identi�es the pixels to be �lled and computes the Z co-
ordinates with linear interpolation. Linear interpolation requires just a single addition when
a pixel is processed. This idea can also be used for other features as well. For example, if
the colour of the triangle vertices are available, the colour of the internal points can be set to
provide smooth transitions applying linear interpolation. Note also that the addition to com-
pute the feature value can also be implemented by a special purpose hardware. Graphics
cards have a great number of such interpolation units.

The z-buffer algorithm �lls triangles one by one, thus requires Θ(N · P) time, where N
is the number of triangles and P is the number of pixels on screen. In practice, however, the
algorithm is since if there are more triangles in the virtual world due to higher tessellation
levels, then their projected sizes are smaller, making the running time Θ(P).

Warnock algorithm
If a pixel of the image corresponds to a given object, then its neighbours usually correspond
to the same object, that is, visible parts of objects appear as connected territories on the
screen. This is a consequence of object coherence and is called image coherence.

If the situation is so fortunate � from a labor saving point of view � that a polygon in the
object scene obscures all the others and its projection onto the image plane covers the image
window completely, then we have to do no more than simply �ll the image with the colour
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of the polygon. If no polygon edge falls into the window, then either there is no visible
polygon, or some polygon covers it completely. The window is �lled with the background
colour in the �rst case, and with the colour of the closest polygon in the second case. If at
least one polygon edge falls into the window, then the solution is not so simple. In this case,
using a divide-and-conquer approach, the window is subdivided into four quarters, and each
subwindow is searched recursively for a simple solution.

The basic form of the algorithm called Warnock algorithm rendering a rectangular
window with screen coordinates X1,Y1 (lower left corner) and X2,Y2 (upper right corner) is
this:

W(X1,Y1, X2,Y2)
1 if X1 , X2 or Y1 , Y2 B Is the window larger than a pixel?
2 then if at least one edge projects onto the window B Subdivision and recursion.
3 then W(X1,Y1, (X1 + X2)/2, (Y1 + Y2)/2)
4 W(X1, (Y1 + Y2)/2, (X1 + X2)/2,Y2)
5 W((X1 + X2)/2,Y1, X2, (Y1 + Y2)/2)
6 W((X1 + X2)/2, (Y1 + Y2)/2, X2,Y2)
7 return
B Trivial case: window (X1,Y1, X2,Y2) is homogeneous.

8 polygon← the polygon visible in pixel ((X1 + X2)/2, (Y1 + Y2)/2)
9 if no visible polygon

10 then �ll rectangle (X1,Y1, X2,Y2) with the background colour
11 else �ll rectangle (X1,Y1, X2,Y2) with the colour of polygon

Note that the algorithm can handle non-intersecting polygons only. The algorithm can
be accelerated by �ltering out those distinct polygons which can de�nitely not be seen in
a given subwindow at a given step. Furthermore, if a surrounding polygon appears at a
given stage, then all the others behind it can be discarded, that is all those which fall onto
the opposite side of it from the eye. Finally, if there is only one contained or intersecting
polygon, then the window does not have to be subdivided further, but the polygon (or rather
the clipped part of it) is simply drawn. The price of saving further recurrence is the use of a
scan-conversion algorithm to �ll the polygon.

Painter's algorithm
If we simply scan convert polygons into pixels and draw the pixels onto the screen without
any examination of distances from the eye, then each pixel will contain the colour of the
last polygon falling onto that pixel. If the polygons were ordered by their distance from the
eye, and we took the farthest one �rst and the closest one last, then the �nal picture would
be correct. Closer polygons would obscure farther ones � just as if they were painted an
opaque colour. This method, is really known as the painter's algorithm.

The only problem is that the order of the polygons necessary for performing the pain-
ter's algorithm is not always simple to compute. We say that a polygon P does not obscure
another polygon Q if none of the points of Q is obscured by P. To have this relation, one of
the following conditions should hold
1. Polygons P and Q do not overlap in Z range, and the minimum Z coordinate of polygon
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P is greater than the maximum Z coordinate of polygon Q.

2. The bounding rectangle of P on the XY plane does not overlap with that of Q.

3. Each vertex of P is farther from the viewpoint than the plane containing Q.

4. Each vertex of Q is closer to the viewpoint than the plane containing P.

5. The projections of P and Q do not overlap on the XY plane.

All these conditions are sufficient. The difficulty of their test increases, thus it is worth
testing the conditions in the above order until one of them proves to be true. The �rst step is
the calculation of an initial depth order. This is done by sorting the polygons according to
their maximal Z value into a list. Let us �rst take the polygon P which is the last item on the
resulting list. If the Z range of P does not overlap with any of the preceding polygons, then P
is correctly positioned, and the polygon preceding P can be taken instead of P for a similar
examination. Otherwise P overlaps a set {Q1, . . . ,Qm} of polygons. The next step is to try
to check whether P does not obscure any of the polygons in {Q1, . . . ,Qm}, that is, that P is
at its right position despite the overlapping. If it turns out that P obscures Q for a polygon
in the set {Q1, . . . ,Qm}, then Q has to be moved behind P in the list, and the algorithm
continues stepping back to Q. Unfortunately, this algorithm can run into an in�nite loop in
case of cyclic overlapping. Cycles can also be resolved by cutting. In order to accomplish
this, whenever a polygon is moved to another position in the list, we mark it. If a marked
polygon Q is about to be moved again, then � assuming that Q is a part of a cycle � Q is
cut into two pieces Q1,Q2, so that Q1 does not obscure P and P does not obscure Q2, and
only Q1 is moved behind P.

BSP-tree
Binary space partitioning divides �rst the space into two halfspaces, the second plane di-
vides the �rst halfspace, the third plane divides the second halfspace, further planes split
the resulting volumes, etc. The subdivision can well be represented by a binary tree, the
so-called BSP-tree illustrated in �gure 14.48. The kd-tree discussed in subsection 14.6.2 is
also a special version of BSP-trees where the splitting planes are parallel with the coordinate
planes. The BSP-tree of this subsection, however, uses general planes.

The �rst splitting plane is associated with the root node of the BSP-tree, the second and
third planes are associated with the two children of the root, etc. For our application, not
so much the planes, but rather the polygons de�ning them, will be assigned to the nodes
of the tree, and the set of polygons contained by the volume is also necessarily associated
with each node. Each leaf node will then contain either no polygon or one polygon in the
associated set.

The BSP-- algorithm for creating the BSP-tree for a set S of polygons
uses the following notations. A node of the binary tree is denoted by node, the polygon asso-
ciated with the node by node.polygon, and the two child nodes by node.left and node.right,
respectively. Let us consider a splitting plane of normal ~n and place vector ~r0. Point ~r be-
longs to the positive (right) subspace of this plane if the sign of scalar product ~n · (~r − ~r0) is
positive, otherwise it is in the negative (left) subspace. The BSP construction algorithm is:
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P3 P1

P2 P3
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Figure 14.48. A BSP-tree. The space is subdivided by the planes of the contained polygons.

BSP-T-C(S )
1 Create a new node
2 if S is empty or contains just a single polygon
3 then node.polygon← S
4 node.left← null
5 node.right← null
6 else node.polygon← one polygon from list S
7 Remove polygon node.polygon from list S
8 S + ← polygons of S which overlap with the positive subspace of node.polygon
9 S − ← polygons of S which overlap with the negative subspace of node.polygon

10 node.right← BSP-Tree-Construction(S +)
11 node.left← BSP-Tree-Construction(S −)
12 return node

The size of the BSP-tree, i.e. the number of polygons stored in it, is on the one hand
highly dependent on the nature of the object scene, and on the other hand on the �choice
strategy� used when one polygon from list S is selected.

Having constructed the BSP-tree the visibility problem can be solved by traversing the
tree in the order that if a polygon obscures another than it is processed later. During such
a traversal, we determine whether the eye is at the left or right subspace at each node, and
continue the traversal in the child not containing the eye. Having processed the child not
containing the eye, the polygon of the node is drawn and �nally the child containing the eye
is traversed recursively.

Exercises
14.7-1 Implement the complete Bresenham algorithm that can handle not only moderately
ascending but arbitrary line segments.
14.7-2 The presented polygon �lling algorithm tests each edges at a scan line whether it
becomes active here. Modify the algorithm in a way that such tests are not executed at each
scan line, but only once.
14.7-3 Implement the complete z-buffer algorithm that renders left/righ oriented, up-
per/lower triangles.
14.7-4 Improve the presented Warnock algorithm and eliminate further recursions when
only one edge is projected onto the subwindow.
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14.7-5 Apply the BSP-tree for discrete time collision detection.
14.7-6 Apply the BSP-tree as a space partitioning structure for ray tracing.

Problems

14-1. Ray tracing renderer
Implement a rendering system applying the ray tracing algorithm. Objects are de�ned by
triangle meshes and quadratic surfaces, and are associated with diffuse re�ectivities. The
virtual world also contains point light sources. The visible colour of a point is proportional
to the diffuse re�ectivity, the intensity of the light source, the cosine of the angle between the
surface normal and the illumination direction (Lambert's law), and inversely proportional
with the distance of the point and the light source. To detect whether or not a light source is
not occluded from a point, use the ray tracing algorithm as well.
14-2. Continuous time collision detection with ray tracing
Using ray tracing develop a continuous time collision detection algorithm which computes
the time of collision between a moving and rotating polyhedron and a still half space. App-
roximate the motion of a polygon vertex by a uniform, constant velocity motion in small
intervals dt.
14-3. Incremental rendering system
Implement a three-dimensional renderer based on incremental rendering. The modelling and
camera transforms can be set by the user. The objects are given as triangle meshes, where
each vertex has colour information as well. Having transformed and clipped the objects, the
z-buffer algorithm should be used for hidden surface removal. The colour at the internal
points is obtained by linear interpolation from the vertex colors.

Chapter notes
The elements of Euclidean, analytic and projective geometry are discussed in the books
of Maxwell [22, 23] and Coxeter [6]. The application of projective geometry in computer
graphics is presented in Herman's dissertation [17] and Krammer's paper [20]. Curve and
surface modelling is the main focus of computer aided geometric design (CAD, CAGD),
which is discussed by Gerald Farin [10], and Rogers and Adams [27]. Geometric models
can also be obtained measuring real objects, as proposed by reverse engineering methods
[38]. Implicit surfaces can be studied by reading Bloomenthal's work [2]. Solid modelling
with implicit equations is also booming thanks to the emergence of functional representa-
tion methods (F-Rep), which are surveyed at http://cis.k.hosei.ac.jp/�F-rep. Blobs have been
�rst proposed by Blinn [1]. Later the exponential in�uence function has been replaced by
polynomials [40], which are more appropriate when roots have to be found in ray tracing.

Geometric algorithms give solutions to geometric problems such as the creation of con-
vex hulls, clipping, containment test, tessellation, point location, etc. This �eld is discussed
in the books of Preparata and Shamos [26] and of Marc de Berg [7, 8]. The triangulation of
general polygons is still a difficult topic despite to a lot of research efforts. Practical triangu-
lation algorithms run in O(n lg n) [8, 29, 41], but Chazelle [5] proposed an optimal algorithm
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having linear time complexity. The presented proof of the two ears theorem has originally
been given by Joseph O'Rourke [25]. Subdivision surfaces have been proposed and dis-
cussed by Catmull and Clark [4], Warren and Heimer [39], and by Brian Sharp [31, 30].
The butter�y subdivision approach has been published by Dyn et al. [9]. The Sutherland-
Hodgeman polygon clipping algorithm is taken from [32].

Collision detection is one of the most critical problems in computer games [35] since it
prevents objects to �y through walls and it is used to decide whether a bullet hits an enemy
or not. Collision detection algorithms are reviewed by Jiménez, Thomas and Torras [18].

Glassner's book [15] presents many aspects of ray tracing algorithms. The 3D DDA
algorithm has been proposed by Fujimoto et al. [14]. Many papers examined the complexity
of ray tracing algorithms. It has been proven that for N objects, ray tracing can be solved
in O(lg N) time [7, 36], but this is theoretical rather than practical result since it requires
Ω(N4) memory and preprocessing time, which is practically unacceptable. In practice, the
discussed heuristic schemes are preferred, which are better than the naive approach only in
the average case. Heuristic methods have been analyzed by probabilistic tools by Márton
[36] , who also proposed the probabilistic scene model used in this chapter as well. We can
read about heuristic algorithms, especially about the efficient implementation of the kd-tree
based ray tracing in Havran's dissertation [16]. A particularly efficient solution is given in
Szécsi's paper [34].

The probabilistic tools, such as the Poisson point process can be found in the books of
Karlin and Taylor [19] and Lamperti [21]. The cited fundamental law of integral geometry
can be found in the book of Santaló [28].

The geoinformatics application of quadtrees and octrees are also discussed in chapter
16 of this book.

The algorithms of incremental image synthesis are discussed in many computer grap-
hics textbooks [12]. Visibility algorithms have been compared in [33, 37]. The painter's
algorithm has been proposed by Newell et al. [24]. Fuchs examined the construction of
minimal depth BSP-trees [13]. The source of the Bresenham algorithm is [3].

Graphics cards implement the algorithms of incremental image synthesis, including
transformations, clipping, z-buffer algorithm, which are accessible through graphics libra-
ries (OpenGL, DirectX). Current graphics hardware includes two programmable processors,
which enables the user to modify the basic rendering pipeline. Furthermore, this �exibility
allows non graphics problems to be solved on the graphics hardware. The reason of using
the graphics hardware for non graphics problems is that graphics cards have much higher
computational power than CPUs. We can read about such algorithms in the ShaderX or in
the GPU Gems [11] series or visiting the http://www.gpgpu.org web page.
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