
7. Game Theory

In many situations in engineering and economy there are cases when the con�icting interests
of several decision makers have to be taken into account simultaneously, and the outcome
of the situation depends on the actions of these decision makers. One of the most popular
methodology and modeling is based on game theory.

Let N denote the number of decision makers (who will be called players), and for
each k = 1, 2, . . . ,N let S k be the set of all feasible actions of player Pk. The elements
sk ∈ S k are called strategies of player Pk, S k is the strategy set of this player. In any
realization of the game each player selects a strategy, then the vector s = (s1, s2, . . . , sN)
(sk ∈ S k, k = 1, 2, . . . ,N) is called a simultaneous strategy vector of the players. For each
s ∈ S = S 1 × S 2 × · · · × S N each player has an outcome which is assumed to be a real
value. This value can be imagined as the utility function value of the particular outcome,
in which this function represents how player Pk evaluates the outcomes of the game. If
fk(s1, . . . , sN) denotes this value, then fk : S → R is called the payoff function of player
Pk. The value fk(s) is called the payoff of player Pk and ( f1(s), . . . , fN(s)) is called the
payoff vector. The number N of players, the sets S k of strategies and the payoff functions fk
(k = 1, 2, . . . ,N) completely determine and de�ne the N-person game. We will also use the
notation G = {N; S 1, S 2, . . . , S N ; f1, f2, . . . , fN} for this game.

The solution of game G is the Nash-equilibrium, which is a simultaneous strategy
vector s? = (s?1 , . . . , s?N) such that for all k,

1. s?k ∈ S k;

2. for all sk ∈ S k,

fk(s?1 , s?2 , . . . , s?k−1, sk, s?k+1, . . . , s?N) ≤ fk(s?1 , s?2 , . . . , s?k−1, s?k , s?k+1, . . . , s?N) . (7.1)

Condition 1 means that the k-th component of the equilibrium is a feasible strategy of player
Pk, and condition 2 shows that none of the players can increase its payoff by unilaterally
changing its strategy. In other words, it is the interest of all players to keep the equilibrium
since if any player departs from the equilibrium, its payoff does not increase.
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Figure 7.1. Prisoner's dilemma.

7.1. Finite Games
Game G is called �nite if the number of players is �nite and all strategy sets S k contain
�nitely many strategies. The most famous two-person �nite game is the prisoner's dilemma,
which is the following.

Example 7.1 The players are two prisoners who committed a serious crime, but the prosecutor has
only insufficient evidence to prosecute them. The prisoners are held in separate cells and cannot com-
municate, and the prosecutor wants them to cooperate with the authorities in order to get the needed
additional information. So N = 2, and the strategy sets for both players have two elements: coope-
rating (C), or not cooperating (N). It is told to both prisoners privately that if he is the only one to
confess, then he will get only a light sentence of 1 year, while the other will go to prison for a period
of 10 years. If both confess, then their reward will be a 5 year prison sentence each, and if none of
them confesses, then they will be convicted to a less severe crime with sentence of 2 years each. The
objective of both players are to minimize the time spent in prison, or equivalently to maximize its
negative. Figure 7.1 shows the payoff values, where the rows correspond to the strategies of player P1,
the columns show the strategies of player P2, and for each strategy pair the �rst number is the payoff

of player P1, and the second number is the payoff of player P2. Comparing the payoff values, it is
clear that only (C,C) can be equilibrium, since

f2(N,N) = −2 < f2(N,C) = −1,
f1(N,C) = −10 < f1(C,C) = −5,
f2(C,N) = −10 < f2(C,C) = −5.

The strategy pair (C,C) is really an equilibrium, since

f1(C,C) = −5 > f1(N,C) = −10,
f2(C,C) = −5 > f2(C,N) = −10.

In this case we have a unique equilibrium.

The existence of an equilibrium is not guaranteed in general, and if equilibrium exists,
it might not be unique.

Example 7.2 Modify the payoff values of Figure 7.1 as shown in Figure 7.2. It is easy to see that no
equilibrium exists:

f1(N,N) = 1 < f1(C,N) = 2,
f2(C,N) = 4 < f2(C,C) = 5,
f1(C,C) = 0 < f1(N,C) = 2,
f2(N,C) = 1 < f2(N,N) = 2.
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Figure 7.2. Game with no equilibrium.

If all payoff values are identical, then we have multiple equilibria: any strategy pair is
an equilibrium.

7.1.1. Enumeration
Let N denote the number of players, and for the sake of notational convenience let
s(1)

k , . . . , s(nk)
k denote the feasible strategies of player Pk. That is, S k = {s(1)

k , . . . , s(nk)
k }. A

strategy vector s? = (s(i1)
1 , . . . , s(iN )

N ) is an equilibrium if and only if for all k = 1, 2, . . . ,N
and j ∈ {1, 2, . . . , nk} \ ik,

fk(s(i1)
1 , . . . , s(ik−1)

k−1 , s( j)
k , s(ik+1)

k+1 , . . . , s(iN )
N ) ≤ fk(s(i1)

1 , . . . , s(ik−1)
k−1 , s(ik)

k , s(ik+1)
k+1 , . . . , s(iN )

N ). (7.2)

Notice that in the case of �nite games inequality (7.1) reduces to (7.2).
In applying the enumeration method, inequality (7.2) is checked for all possible strategy

N-tuples s? = (s(i1)
1 , . . . , s(iN )

N ) to see if (7.2) holds for all k and j. If it does, then s? is an
equilibrium, otherwise not. If during the process of checking for a particular s? we �nd a
k and j such that (7.2) is violated, then s? is not an equilibrium and we can omit checking
further values of k and j. This algorithm is very simple, it consists of N + 2 imbedded loops
with variables i1, i2, . . . , iN , k and j.

The maximum number of comparisons needed equals


N∏

k=1
nk




N∑

k=1
(nk − 1)

 ,

however in practical cases it might be much lower, since if (7.2) is violated with some j,
then the comparison must stop for the same strategy vector.

The algorithm can formally be given as follows:
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1 for i1 ← 1 to n1
2 do for i2 ← 1 to n2

3 . . .

4 do for iN ← 1 to nN
5 do key← 0
6 for k ← 1 to N
7 do for j← 1 to nk
8 do if (7.2) fails
9 then key← 1 and go to 10

10 if key = 0
11 then (s(i1)

1 , . . . , s(iN )
N ) is equilibrium

12 and give message accordingly

Consider next the two-person case, N=2, and introduce the n1×n2 real matrixes A(1) and
A(2) with (i, j) elements f1(i, j) and f2(i, j) respectively. Matrixes A(1) and A(2) are called the
payoff matrixes of the two players. A strategy vector

(
s(i1)

1 , s(i2)
2

)
is an equilibrium if and only

if the (i1, i2) element in matrix A(1) is the largest in its column, and in matrix A(2) it is the
largest in its row. In the case when f2 = − f1, the game is called zero-sum, and A(2) = −A(1),
so the game can be completely described by the payoff matrix A(1) of the �rst player. In this
special case a strategy vector (s(i1)

1 , s(i2)
2 ) is an equilibrium if and only if the element (i1, i2) is

the largest in its column and smallest in its row. In the zero-sum cases the equilibria are also
called the saddle points of the games. Clearly, the enumeration method to �nd equilibria
becomes more simple since we have to deal with a single matrix only.

The simpli�ed algorithm is as follows:

1 for i1 ← 1 to n1
2 do for i2 ← 1 to n2
3 do key← 0
4 for j← 1 to n1
5 do if a(1)

ji2 > a(1)
i1i2

6 then key← 1
7 and go to 12
8 for j← 1 to n2
9 do if a(2)

i1 j > a(2)
i1i2

10 then key← 1
11 and go to 12
12 if key = 0
13 then give message that (s(1)

i1 , s
(2)
i2 ) is equilibrium
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7.1.2. Games Represented by Finite Trees
Many �nite games have the common feature that they can be represented by a �nite directed
tree with the following properties:
1. there is a unique root of the tree (which is not the endpoint of any arc), and the game

starts at this node;
2. to each node of the tree a player is assigned and if the game reaches this node at any

time, then this player will decide on the continuation of the game by selecting an arc
originating from this node. Then the game moves to the endpoint of the chosen arc;

3. to each terminal node (in which no arc originates) an N-dimensional real vector is
assigned which gives the payoff values for the players if the game terminates at this
node;

4. each player knows the tree, the nodes he is assigned to, and all payoff values at the
terminal nodes.
For example, the chess-game satis�es the above properties in which N = 2, the nodes of

the tree are all possible con�gurations on the chessboard twice: once with the white player
and once with the black player assigned to it. The arcs represent all possible moves of the
assigned player from the originating con�gurations. The endpoints are those con�gurations
in which the game terminates. The payoff values are from the set {1, 0,−1} where 1 means
win, −1 represents loss, and 0 shows that the game ends with a tie.

Theorem 7.1 All games represented by �nite trees have at least one equilibrium.

Proof. We present the proof of this result here, since it suggests a practical algorithm to �nd
equilibria. The proof goes by induction with respect to the number of nodes of the game
tree. If the game has only one node, then clearly it is the only equilibrium.

Assume next that the theorem holds for any tree with less than n nodes (n ≥ 2), and
consider a game T0 with n nodes. Let R be the root of the tree and let r1, r2, . . . , rm (m < n)
be the nodes connected to R by an arc. If T1,T2, . . . , Tm denote the disjoint subtrees of T0
with roots r1, r2, . . . , rm, then each subtree has less than n nodes, so each of them has an
equilibrium. Assume that player Pk is assigned to R. Let e1, e2, . . . , em be the equilibrium
payoffs of player Pk on the subtrees T1,T2, . . . , Tm and let e j = max{e1, e2, . . . , em}. Then
player Pk will move to node r j from the root, and then the equilibrium continues with the
equilibrium obtained on the subtree T j. We note that not all equilibria can be obtained by
this method, however the payoff vectors of all equilibria, which can obtained by this method,
are identical.

We note that not all equilibria can be obtained by this method, however the payoff

vectors of all equilibria, which can be obtained by this method, are identical.
The proof of the theorem suggests a dynamic programming-type algorithm which is

called backward induction. It can be extended to the more general case when the tree has
chance nodes from which the continuations of the game are random according to given
discrete distributions.

The solution algorithm can be formally presented as follows. Assume that the nodes are
numbered so each arc connects nodes i and j only for i < j. The root has to get the smallest
number 1, and the largest number n is given to one of the terminal nodes. For each node i
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Figure 7.3. Finite tree of Example 10.3.

let J(i) denote the set of all nodes j such that there is an arc from i to j. For each terminal
node i, J(i) is empty, and let p(i) = (p(i)

1 , . . . , p(i)
N ) denote the payoff vector associated to this

node. And �nally we will denote player assigned to node i by Ki for all i. The algorithm
starts at the last node n and moves backward in the order n, n − 1, n − 2, . . . , 2 and 1. Node
n is an endpoint, so vector p(n) has been already assigned. If in the process the next node
i is an endpoint, then p(i) is already given, otherwise we �nd the largest among the values
p( j)

Ki
, j ∈ J(i). Assume that the maximal value occurs at node ji, then we assign p(i) = p( ji)

to node i, and move to node i − 1. After all payoff vectors p(n), p(n−1), . . . , p(2) and p(1)

are determined, then vector p(1) gives the equilibrium payoffs and the equilibrium path is
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obtained by nodes:
1→ i1 = j1 → i2 = ji1 → i3 = ji2 → . . . ,

until an endpoint is reached, when the equilibrium path terminates.
At each node the number of comparisons equals the number of arcs starting at that node

minus 1. Therefore the total number of comparisons in the algorithm is the total number of
arcs minus the number of nodes.

This algorithm can be formally given as follows:

1 for i← n to 1
2 do p( ji)

Ki
← max{p(l)

Ki
, l ∈ J(i)}

3 p(i) ← p( ji)

4 print sequence 1, i1(= j1), i2(= ji1 ), i3(= ji2 ), . . .
until an endpoint is reached

Example 7.3 Figure 7.3 shows a �nite tree. In the circle at each nonterminal node we indicate the
player assigned to that node. The payoff vectors are also shown at all terminal nodes. We have three
players, so the payoff vectors have three elements.

First we number the nodes such that the beginning of each arc has a smaller number than its
endpoint. We indicated these numbers in a box under each node. All nodes i for i ≥ 11 are terminal
nodes, as we start the backward induction with node 10. Since player P3 is assigned to this node we
have to compare the third components of the payoff vectors (2, 0, 0) and (1, 0, 1) associated to the
endpoints of the two arcs originating from node 10. Since 1 > 0, player P3 will select the arc to
node 22 as his best choice. Hence j10 = 22, and p(10) = p(22) = (1, 0, 1). Then we check node 9. By
comparing the third components of vectors p(19) and p(20) it is clear that player P3 will select node
20, so j9 = 20, and p(9) = p(20) = (4, 1, 4). In the graph we also indicated the choices of the players
by thicker arcs. Continuing the procedure in the same way for nodes 8, 7, . . . , 1 we �nally obtain the
payoff vector p(1) = (4, 1, 4) and equilibrium path 1→ 4→ 9→ 20.

Exercises
7.1-1 An entrepreneur (E) enters to a market, which is controlled by a chain store (C).
Their competition is a two-person game. The strategies of the chain store are soft (S), when
it allows the competitor to operate or tough (T), when it tries to drive out the competitor.
The strategies of the entrepreneur are staying in (I) or leaving (L) the market. The payoff

tables of the two player are assumed to be

I L
S 2 5
T 0 5
payoffs of C

I L
S 2 1
T 0 1
payoffs of E

Find the equilibrium.
7.1-2 A salesman sells an equipment to a buyer, which has 3 parts, under the following
conditions. If all parts are good, then the customer pays $α to the salesman, otherwise the
salesman has to pay $β to the customer. Before selling the equipment, the salesman is able
to check any one or more of the parts, but checking any one costs him $γ. Consider a two-
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Figure 7.4. Tree for Exercise 7.1-5.

person game in which player P1 is the salesman with strategies 0, 1, 2, 3 (how many parts
he checks before selling the equipment), and player P2 is the equipment with strategies
0, 1, 2, 3 (how many parts are defective). Show that the payoff matrix of player P1 is given
as below when we assume that the different parts can be defective with equal probability.

player P2
0 1 2 3

player P1

0
1
2
3

α

α − γ
α − 2γ
α − 3γ

−β
− 2

3β − γ
− 1

3β − 5
3γ

−2γ

−β
− 1

3β − γ
− 4

3γ

− 4
3γ

−β
−γ
−γ
−γ

7.1-3 Assume that in the previous problem the payoff of the second player is the negative
of the payoff of the salesman. Give a complete description of the number of equilibria as a
function of the parameter values α, β, γ. Determine the equilibria in all cases.
7.1-4 Assume that the payoff function of the equipment is its value (V if all parts are good,
and zero otherwise) in the previous exercise. Is there an equilibrium point?
7.1-5 Exercise 7.1-1. can be represented by the tree shown in Figure 7.4.
Find the equilibrium with backward induction.
7.1-6 Show that in the one-player case backward induction reduces to the classical dynamic
programming method.
7.1-7 Assume that in the tree of a game some nodes are so called �chance nodes" from
which the game continuous with given probabilities assigned to the possible next nodes.
Show the existence of the equilibrium for this more general case.
7.1-8 Consider the tree given in Figure 7.3, and double the payoff values of player P1,
change the sign of the payoff values of player P2, and do not change those for Player P3.
Find the equilibrium of this new game.

7.2. Continuous Games
If the strategy sets S k are connected subsets of �nite dimensional Euclidean Spaces and the
payoff functions are continuous, then the game is considered continuous.
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7.2.1. Fixed-Point Methods Based on Best Responses
It is very intuitive and usefull from algorithmic point of view to reformulate the equilibrium
concept as follows. For all players Pk and s = (s1, s2, . . . , sN) ∈ S = S 1 × S 2 × · · · × S N
de�ne the mapping:

Bk(s) = {sk ∈ S k | fk(s1, s2, . . . , sk−1, sk, sk+1, . . . , sN)
= max

tk∈S k
fk(s1, s2, . . . , sk−1, tk, sk+1, . . . , sN)}, (7.3)

which is the set of the best choices of player Pk with given strategies s1, s2, . . . , sk−1,
sk+1, . . . , sN of the other players. Note that Bk(s) does not depend on sk, it depends only
on all other strategies sl, k , l. There is no guarantee that maximum exists for all
s ∈ S 1×S 2×· · ·×S N . Let ∑ ⊆ S be the subset of S such that Bk(s) exists for all k and s ∈ ∑.
A simultaneous strategy vector s? = (s?1 , s?2 , . . . , s?N) is an equilibrium if and only if s? ∈ ∑,
and s?k ∈ Bk(s?) for all k. By introducing the best reply mapping, Bk(s) = (B1(s), . . . , BN(s))
we can further simplify the above reformulation:

Theorem 7.2 Vector s? is equilibrium if and only if s? ∈ ∑ and s? ∈ B(s?).

Hence we have shown that the equilibrium-problem of N-person games is equivalent to
�nd �xed points of certain point-to-set mappings.

The most frequently used existence theorems of equilibria are based on �xed point
theorems such as the theorems of Brouwer, Kakutani, Banach, Tarski etc. Any algorithm
for �nding �xed points can be successfully applied for computing equilibria.

The most popular existence result is a straightforward application of the Kakutani-�xed
point theorem.

Theorem 7.3 Assume that in an N-person game
1. the strategy sets S k are nonempty, closed, bounded, convex subsets of �nite dimensional

Euclidean spaces;
for all k,

2. the payoff function fk are continuous on S ;
3. fk is concave in sk with all �xed s1, . . . , sk−1, sk+1, . . . , sN .

Then there is at least one equilibrium.

Example 7.4 Consider a 2-person game, N = 2, with strategy sets S 1 = S 2 = [0, 1], and payoff

functions f1(s1, s2) = s1 s2 − 2s2
1 + 5, and f2(s1, s2) = s1 s2 − 2s2

2 + s2 + 3. We will �rst �nd the best
responses of both players. Both payoff functions are concave parabolas in their variables with vertices:

s1 =
s2

4 and s2 =
s1 + 1

4 .

For all s2 ∈ [0, 1] and s1 ∈ [0, 1] these values are clearly feasible strategies, so

B1(s) =
s2

4 and B2(s) =
s1 + 1

4 .

So (s?1 , s?2 ) is equilibrium if and only if it satis�es equations:

s?1 =
s?2
4 and s?2 =

s?1 + 1
4 .
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It is easy to see that the unique solution is:

s?1 =
1

15 and s?2 =
4
15 ,

which is therefore the unique equilibrium of the game.

Example 7.5 Consider a portion of a sea-channel, assume it is the unit interval [0, 1]. Player P2 is a
submarine hiding in location s2 ∈ [0, 1], player P1 is an airplane dropping a bomb at certain location
s1 ∈ [0, 1] resulting in a damage αe−β(s1−s2)2 to the submarine. Hence a special two-person game is
de�ned in which S 1 = S 2 = [0, 1], f1(s1, s2) = αe−β(s1−s2)2 and f2(s1, s2) = − f1(s1, s2). With �xed s2,

f1(s1, s2) is maximal if s1 = s2, therefore the best response of player P1 is B1(s) = s2. Player P2 wants
to minimize f1 which occurs if |s1 − s2| is as large as possible, which implies that

B2(s) =


1, if s1 < 1/2,
0, if s1 > 1/2,
{0, 1}, if s1 = 1/2.

Clearly, there is no (s1, s2) ∈ [0, 1] × [0, 1] such that s1 = B1(s) and s2 ∈ B2(s), consequently no
equilibrium exists.

7.2.2. Applying Fan's Inequality
De�ne the aggregation function H : S × S → R as:

Hr(s, z) =

N∑

k=1
rk fk(s1, . . . , sk−1, zk, sk+1, . . . , sN) (7.4)

for all s = (s1, . . . , sN) and z = (z1, . . . , zN) from S and some r = (r1, r2, . . . , rN) > 0.

Theorem 7.4 Vector s? ∈ S is an equilibrium if and only if

Hr(s?, z) ≤ Hr(s?, s?) (7.5)

for all z ∈ S .

Proof. Assume �rst that s? is an equilibrium, then inequality (7.1) holds for all k and sk ∈ S k.
Adding the rk-multiples of these relations for k = 1, 2, . . . ,N we immediately have (7.5).

Assume next that (7.5) holds for all z ∈ S . Select any k and sk ∈ S k, de�ne z =

(s?1 , . . . , s?k−1, sk, s?k+1, . . . , s?N), and apply inequality (7.5). All but the k-th terms cancel and
the remaining term shows that inequality (7.1) holds. Hence s? is an equilibrium.

Introduce function φ(s, z) = Hr(s, z) − Hr(s, s), then clearly s? ∈ S is an equilibrium if
and only if

φ(s?, z) ≤ 0 for all z ∈ S . (7.6)
Relation (7.6) is known as Fan's inequality . It can be rewritten as a variational inequality
(see section 7.2.9 later), or as a �xed point problem. We show here the second approach.
For all s ∈ S de�ne

Φ(s) = {z|z ∈ S , φ(s, z) = max
t∈S

φ(s, t)}. (7.7)
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Since φ(s, s) = 0 for all s ∈ S , relation (7.6) holds if and only if s? ∈ Φ(s?), that is s? is a
�xed-point of mapping Φ : S → 2S . Therefore any method to �nd �xed point is applicable
for computing equilibria.

The computation cost depends on the type and size of the �xed point problem and also
on the selected method.

Example 7.6 Consider again the problem of Example 7.4.. In this case

f1(z1, s2) = z1 s2 − 2z2
1 + 5,

f2(s1, z2) = s1z2 − 2z2
2 + z2 + 3,

so the aggregate function has the form with r1 = r2 = 1 :

Hr(s, z) = z1 s2 − 2z2
1 + s1z2 − 2z2

2 + z2 + 8.

Therefore
Hr(s, s) = 2s1 s2 − 2s2

1 − 2s2
2 + s2 + 8,

and
φ(s, z) = z1 s2 − 2z2

1 + s1z2 − 2z2
2 + z2 − 2s1 s2 + 2s2

1 + 2s2
2 − s2.

Notice that this function is strictly concave in z1 and z2, and is separable in these variables. At the
stationary points:

∂φ

∂z1
= s2 − 4z1 = 0

∂φ

∂z2
= s1 − 4z2 + 1 = 0

implying that at the optimum
z1 =

s2

4 and z2 =
s1 + 1

4 ,

since both right hand sides are feasible. At the �xed point:

s1 =
s2

4 and s2 =
s1 + 1

4 ,

giving the unique solution:
s1 =

1
15 and s2 =

4
15 .

7.2.3. Solving the Kuhn�Tucker Conditions
Assume that for all k,

S k = {sk |gk(sk) ≥ 0},
where gk : Rnk → Rmk is a vector variable vector valued function which is continuously
differentiable in an open set Ok containing S k. Assume furthermore that for all k, the payoff

function fk is continuously differentiable in sk on Ok with any �xed s1, . . . , sk−1, sk+1, . . . , sN .
If s? = (s?1 , . . . , s?N) is an equilibrium, then for all k, s?k is the optimal solution of

problem:
maximize fk(s?1 , . . . , s?k−1, sk, s?k+1, . . . , s?N)
sugject to gk(sk) ≥ 0. (7.8)
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By assuming that at sk the Kuhn�Tucker regularity condition is satis�ed, the solution
has to satisfy the Kuhn�Tucker necessary condition:

uk ≥ 0
gk(sk) ≥ 0

∇k fk(s) + uT
k ∇kgk(sk) = 0T

uT
k gk(sk) = 0,

(7.9)

where uk is an mk-element column vector, uT
k is its transpose, ∇k fk is the gradient of fk (as

a row vector) with respect to sk and ∇kgk is the Jacobian of function gk.

Theorem 7.5 If s? is an equilibrium, then there are vectors u?k such that relations (7.9)
are satis�ed.

Relations (7.9) for k = 1, 2, . . . ,N give a (usually large) system of equations and ine-
qualities for the unknowns sk and uk (k = 1, 2, . . . ,N). Any equilibrium (if exists) has to be
among the solutions. If in addition for all k, all components of gk are concave, and fk is con-
cave in sk, then the Kuhn�Tucker conditions are also sufficient, and therefore all solutions
of (7.9) are equilibria.

The computation cost in solving system (7.9) depends on its type and the chosen met-
hod.

Example 7.7 Consider again the two-person game of the previous example. Clearly,

S 1 = {s1|s1 ≥ 0, 1 − s1 ≥ 0},

S 2 = {s2|s2 ≥ 0, 1 − s2 ≥ 0},
so we have

g1(s1) =

(
s1

1 − s1

)
and g2(s2) =

(
s2

1 − s2

)
.

Simple differentiation shows that

∇1g1(s1) =

(
1
−1

)
, ∇2g2(s2) =

(
1
−1

)
,

∇1 f1(s1, s2) = s2 − 4s1, ∇2 f2(s1, s2) = s1 − 4s2 + 1,
therefore the Kuhn�Tucker conditions can be written as follows:

u(1)
1 , u(1)

2 ≥ 0
s1 ≥ 0
s1 ≤ 1

s2 − 4s1 + u(1)
1 − u(1)

2 = 0
u(1)

1 s1 + u(1)
2 (1 − s1) = 0

u(2)
1 , u(2)

2 ≥ 0
s2 ≥ 0
s2 ≤ 1

s1 − 4s2 + 1 + u(2)
1 − u(2)

2 = 0
u(2)

1 s2 + u(2)
2 (1 − s2) = 0.
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Notice that f1 is concave in s1, f2 is concave in s2, and all constraints are linear, therefore all solutions
of this equality-inequality system are really equilibria. By systematically examining the combination
of cases

s1 = 0, 0 < s1 < 1, s1 = 1,

and
s2 = 0, 0 < s2 < 1, s2 = 1,

it is easy to see that there is a unique solution

u(1)
1 = u(2)

1 = u(1)
2 = u(2)

2 = 0, s1 =
1

15 , s2 =
4

15 .

By introducing slack and surplus variables the Kuhn�Tucker conditions can be rewritten as
a system of equations with some nonnegative variables. The nonnegativity conditions can
be formally eliminated by considering them as squares of some new variables, so the result
becomes a system of (usually) nonlinear equations without additional constraints. There is
a large set of numerical methods for solving such systems.

7.2.4. Reduction to Optimization Problems
Assume that all conditions of the previous section hold. Consider the following optimization
problem:

minimize ∑N
k=1 uT

k gk(sk)
subjective to uk ≥ 0

gk(sk) ≥ 0
∇k fk(s) + uT

k ∇kgk(sk) = 0.
(7.10)

The two �rst constraints imply that the objective function is nonnegative, so is the mini-
mal value of it. Therefore system (7.9) has feasible solution if and only if the optimal value
of the objective function of problem (7.10) is zero, and in this case any optimal solution
satis�es relations (7.9).

Theorem 7.6 The N-person game has equilibrium only if the optimal value of the objective
function is zero. Then any equilibrium is optimal solution of problem (7.10). If in addition
all components of gk are concave and fk is concave in sk for all k, then any optimal solution
of problem (7.10) is equilibrium.

Hence the equilibrium problem of the N-person game has been reduced to �nding the
optimal solutions of this (usually nonlinear) optimization problem. Any nonlinear program-
ming method can be used to solve the problem.

The computation cost in solving the optimization problem (7.10) depends on its type
and the chosen method. For example, if (7.10) is an LP, and solved by the simplex method,
then the maximum number of operations is exponential. However in particular cases the
procedure terminates with much less operations.
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Example 7.8 In the case of the previous problem the optimization problem has the following form:

minimize u(1)
1 s1 + u(1)

2 (1 − s1) + u(2)
1 s2 + u(2)

2 (1 − s2)
subject to u(1)

1 , u(2)
1 , u(1)

2 , u(2)
2 ≥ 0

s1 ≥ 0
s1 ≤ 1
s2 ≥ 0
s2 ≤ 1
s2 − 4s1 + u(1)

1 − u(1)
2 = 0

s1 − 4s2 + 1 + u(2)
1 − u(2)

2 = 0.

Notice that the solution u(1)
1 = u(2)

1 = u(1)
2 = u(2)

2 = 0, s1 = 1/15 and s2 = 4/15 is feasible with zero
objective function value, so it is also optimal. Hence it is a solution of system (7.9) and consequently
an equilibrium.

Mixed Extension of Finite Games
We have seen earlier that a �nite game does not necessary have equilibrium. Even if it does,
in the case of repeating the game many times the players wish to introduce some randomness
into their actions in order to make the other players confused and to seek an equilibrium in
the stochastic sense. This idea can be modeled by introducing probability distributions as
the strategies of the players and the expected payoff values as their new payoff functions.

Keeping the notation of section 7.1. assume that we have N players, the �nite strategy
set of player Pk is S k = {s(1)

k , . . . , s(nk)
k }. In the mixed extension of this �nite game each

player selects a discrete probability distribution on its strategy set and in each realization of
the game an element of S k is chosen according to the selected distribution. Hence the new
strategy set of player Pk is

S k = {xk |xk = (x(1)
k , . . . , x(nk)

k ),
nk∑

i=1
x(i)

k = 1, x(i)
k ≥ 0 for all i}, (7.11)

which is the set of all nk-element probability vectors. The new payoff function of this player
is the expected value:

f k(x1, . . . , xN) =

n1∑

i1=1

n2∑

i2=1
. . .

nN∑

iN =1
fk(s(i1)

1 , s(i2)
2 , . . . , s(iN )

N )x(i1)
1 x(i2)

2 . . . x(iN )
N . (7.12)

Notice that the original �pure� strategies s(i)
k can be obtained by selecting xk as the k-th

basis vector. This is a continuous game and as a consequence of Theorem 7.3 it has at least
one equilibrium. Hence if a �nite game is without an equilibrium, its mixed extension has
always at least one equilibrium, which can be obtained by using the methods outlined in the
previous sections.

Example 7.9 Consider the two-person case in which N = 2, and as in section 7.1 introduce matrices
A(1) and A(2) with (i, j) elements f1(s(i)

1 , s
( j)
2 ) and f2(s(i)

1 , s
( j)
2 ). In this special case

f k(x1, x2) =

n1∑

i=1

n2∑

j=1
a(k)

i j x(1)
i x(2)

j = xT
1 A(k)x2 . (7.13)
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The constraints of S k can be rewritten as:

x(i)
k ≥ 0 (i = 1, 2, . . . , nk),

−1 +

nk∑

i=1
x(i)

k ≥ 0,

1 −
nk∑

i=1
x(i)

k ≥ 0.

so we may select

gk(xk) =



x(1)
k
...

x(nk)
k∑nk

i=1 x(i)
k − 1

−∑nk
i=1 x(i)

k + 1



. (7.14)

The optimization problem (7.10) now reduces to the following:

minimize ∑2
k=1[∑nk

i=1 u(i)
k x(i)

k + u(nk+1)
k (∑nk

j=1 x( j)
k − 1) + u(nk+2)

k (−∑nk
j=1 x( j)

k + 1)]
subject to u(i)

k ≥ 0 (1 ≤ i ≤ nk + 2)
x(i)

k ≥ 0 (1 ≤ i ≤ nk)
1T xk = 1
xT

2 (A(1))T + vT
1 + (u(n1+1)

1 − u(n1+2)
1 )1T

1 = 0T
1

xT
1 (A(2)) + vT

2 + (u(n2+1)
2 − u(n2+2)

2 )1T
2 = 0T

2 ,

(7.15)

where vT
k = (u(1)

k , . . . .u(nk)
k ), 1T

k = (1(1), . . . , 1(nk)) and 0T
k = (0(1), . . . , 0(nk)), k = 1, 2 .

Notice this is a quadratic optimization problem. Computation cost depends on the selec-
ted method. Observe that the problem is usually nonconvex, so there is the possibility of
stopping at a local optimum.

Bimatrix games
Mixed extensions of two-person �nite games are called bimatrix games . They were already
examined in Example 7.9.. For notational convenience introduce the simplifying notation:

A = A(1),B = A(2), x = x1, y = x2,m = n1 and n = n2.

We will show that problem (7.15) can be rewritten as quadratic programming problem with
linear constraints.

Consider the objective function �rst. Let

α = u(m+2)
1 − u(m+1)

1 , and β = u(n+2)
2 − u(n+1)

2 ,

then the objective function can be rewritten as follows:

vT
1 x + vT

2 y − α(1T
mx − 1) − β(1T

n y − 1). (7.16)

The last two constraints also simplify:

yT AT + vT
1 − α1T

m = 0T
m,

xT B + vT
2 − β1T

n = 0T
n ,
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implying that
vT

1 = α1T
m − yT AT and vT

2 = β1T
n − xT B, (7.17)

so we may rewrite the objective function again:

(α1T
m − yT AT )x + (β1T

n − xT B)y − α(1T
mx − 1) − β(1T

n y − 1) = α + β − xT (A + B)y,

since
1T

mx = 1T
n y = 1.

Hence we have the following quadratic programming problem :
maximize xT (A + B)y − α − β
subject to x ≥ 0

y ≥ 0
1T

mx = 1
1T

n y = 1
Ay ≤ α1m
BT x ≤ β1n,

(7.18)

where the last two conditions are obtained from (7.17) and the nonnegativity of vectors v1,
v2.

Theorem 7.7 Vectors x? and y? are equilibria of the bimatrix game if and only if with
some α? and β?, (x?, y?, α?, β?) is optimal solution of problem (7.18). The optimal value of
the objective function is zero.

This is a quadratic programming problem. Computation cost depends on the selected
method. Since it is usually nonconvex, the algorithm might terminate at local optimum. We
know that at the global optimum the objective function must be zero, which can be used for
optimality check.

Example 7.10 Select
A =

(
2 −1
−1 1

)

and
B =

(
1 −1
−1 2

)
.

Then
A + B =

(
3 −2
−2 3

)
,

so problem (7.18) has the form:

maximize 3x1y1 − 2x1y2 − 2x2y1 + 3x2y2 − α − β
subject to x1, x2, y1, y2 ≥ 0

x1 + x2 = 1
y1 + y2 = 1
2y1 − y2 ≤ α
−y1 + y2 ≤ α
x1 − x2 ≤ β
−x1 + 2x2 ≤ β,
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where x = (x1, x2)T and y = (y1, y2)T . We also know from Theorem 7.7 that the optimal objective
function value is zero, therefore any feasible solution with zero objective function value is necessarily
optimal. It is easy to see that the solutions

x =

(
1
0

)
, y =

(
0
1

)
, α = 2, β = 1,

x =

(
0
1

)
, y =

(
1
0

)
, α = 1, β = 2,

x =

(
0.6
0.4

)
, y =

(
0.4
0.6

)
, α = 0.2, β = 0.2

are all optimal, so they provide equilibria.

One might apply relations (7.9) to �nd equilibria by solving the equality-inequality
system instead of solving an optimization problem. In the case of bimatrix games problem
(7.9) simpli�es as

xT Ay = α
xT By = β

Ay ≤ α1m
BT x ≤ β1n

x ≥ 0m
y ≥ 0n

1T
mx = 1T

n y = 1,

(7.19)

which can be proved along the lines of the derivation of the quadratic optimization problem.
The computation cost of the solution of system (7.19) depends on the particular method

being selected.

Example 7.11 Consider again the bimatrix game of the previous example. Substitute the �rst and
second constraints α = xT Ay and β = xT By into the third and fourth condition to have

2y1 − y2 ≤ 2x1y1 − x1y2 − x2y1 + x2y2

−y1 + y2 ≤ 2x1y1 − x1y2 − x2y1 + x2y2

x1 − x2 ≤ x1y1 − x1y2 − x2y1 + 2x2y2

−x1 + 2x2 ≤ x1y1 − x1y2 − x2y1 + 2x2y2

x1, x2, y1, y2 ≥ 0
x1 + x2 = y1 + y2 = 1.

It is easy to see that the solutions given in the previous example solve this system, so they are equilib-
ria.

We can also rewrite the equilibrium problem of bimatrix games as an equality-
inequality system with mixed variables. Assume �rst that all elements of A and B are bet-
ween 0 and 1. This condition is not really restrictive, since by using linear transformations

A = a1A + b11 and B = a2B + b21,

where a1, a2 > 0, and 1 is the matrix all elements of which equal 1, the equilibria remain
the same and all matrix elements can be transformed into interval [0, 1].



318 7. Game Theory

Theorem 7.8 Vectors x, y are an equilibrium if and only if there are real numbers α, β and
zero-one vectors u, and v such that

0 ≤ α1m − Ay ≤ 1m − u ≤ 1m − x
0 ≤ β1n − BT x ≤ 1n − v ≤ 1n − y

x ≥ 0m
y ≥ 0n

1T
mx = 1T

n y = 1,

(7.20)

where 1 denotes the vector with all unit elements.
Proof. Assume �rst that x, y is an equilibrium, then with some α and β, (7.19) is satis�ed.
De�ne

ui =

{
1, if xi > 0,
0, if xi = 0, and v j =

{
1, if y j > 0,
0, if y j = 0.

Since all elements of A and B are between 0 and 1, the values α = xT Ay and β = xT By are
also between 0 and 1. Notice that

0 = xT (α1m − Ay) = yT (β1n − BT x),

which implies that (7.20) holds.
Assume next that (7.20) is satis�ed. Then

0 ≤ x ≤ u ≤ 1m and 0 ≤ y ≤ v ≤ 1n.

If ui = 1, then α − eT
i Ay = 0, (where ei is the i-th basis vector), and if ui = 0, then xi = 0.

Therefore
xT (α1m − Ay) = 0,

implying that α = xT Ay. We can similarly show that β = xT By. Thus (7.19) is satis�ed, so,
x, y is an equilibrium.

The computation cost of the solution of system (7.20) depends on the particular method
being seleced.

Example 7.12 In the case of the bimatrix game introduced earlier in Example 7.10. we have the
following:

0 ≤ α − 2y1 + y2 ≤ 1 − u1 ≤ 1 − x1
0 ≤ α + y1 − y2 ≤ 1 − u2 ≤ 1 − x2
0 ≤ β − x1 + x2 ≤ 1 − v1 ≤ 1 − y1
0 ≤ β + x1 − 2x2 ≤ 1 − v2 ≤ 1 − y2

x1 + x2 = y1 + y2 = 1
x1, x2, y1, y2 ≥ 0
u1, u2, v1, v2 ∈ {0, 1}.

Notice that all three solutions given in Example 7.10. satisfy these relations with

u = (1, 0), v = (0, 1)

u = (0, 1), v = (1, 0)
and

u = (1, 1), v = (1, 1),
respectively.
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Matrix games
In the special case of B = −A, bimatrix games are called matrix games and they are repre-
sented by matrix A. Sometimes we refer to the game as matrix A game. Since A + B = 0,
the quadratic optimization problem (7.18) becomes linear:

minimize α + β
subject to x ≥ 0

y ≥ 0
1mx = 1
1ny = 1
Ay ≤ α1m
AT x ≥ −β1n.

(7.21)

From this formulation we see that the set of the equilibrium strategies is a convex poly-
hedron. Notice that variables (x, β) and (y, α) can be separated, so we have the following
result.

Theorem 7.9 Vectors x? and y? give an equilibrium of the matrix game if and only if with
some α? and β?, (x?, β?) and (y?, α?) are optimal solutions of the linear programming
problems:

minimize α minimize β
subject to y ≥ 0n subject to x ≥ 0m

1T
n y = 1 1T

mx = 1
Ay ≤ α1m AT x ≥ −β1n.

(7.22)

Notice that at the optimum, α+ β = 0. The optimal α value is called the value of the matrix
game .

Solving problem (7.22) requires exponential number of operations if the simplex met-
hod is chosen. With polynomial algorithm (such as the interior point method) the number
of operations is only polynomial.

Example 7.13 Consider the matrix game with matrix:

A =


2 1 0
2 0 3
−1 3 3

 .

In this case problems (7.22) have the from:

minimize α and minimize β

subject to y1, y2, y3 ≥ 0 subject to x1, x2, x3 ≥ 0
y1 + y2 + y3 = 1 x1 + x2 + x3 = 1
2y1 + y2 − α ≤ 0 2x1 + 2x2 − x3 + β ≥ 0
2y1 + 3y3 − α ≤ 0 x1 + 3x3 + β ≥ 0
−y1 + 3y2 + 3y3 − α ≤ 0 3x2 + 3x3 + β ≥ 0.

The application of the simplex method shows that the optimal solutions are α = 9/7, y =

(3/7, 3/7, 1/7)T , β = −9/7, and x = (4/7, 4/21, 5/21)T .

We can also obtain the equilibrium by �nding feasible solutions of a certain set of linear
constraints. Since at the optimum of problem (7.21), α + β = 0, vectors x, y and scalers α
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and β are optimal solutions if and only if

x, y ≥ 0
1T

mx = 1
1T

n y = 1
Ay ≤ α1m

AT x ≥ α1n.

(7.23)

The �rst phase of the simplex method has to be used to solve system (7.23), where the
number of operations might be experimental. However in most practical examples much
less operations are needed.

Example 7.14 Consider again the matrix game of the previous example. In this case system (7.23) has
the following form:

x1, x2, x3, y1, y2, y3 ≥ 0
x1 + x2 + x3 = y1 + y2 + y3 = 1

2y1 + y2 ≤ α

2y1 + 3y3 ≤ α

−y1 + 3y2 + 3y3 ≤ α

2x1 + 2x2 − x3 ≥ α

x1 + 3x3 ≥ α

3x2 + 3x3 ≥ α.

It is easy to see that α = 9/7, x = (4/7, 4/21, 5/21)T , y = (3/7, 3/7, 1/7)T satisfy these relations, so x,
y is an equilibrium.

7.2.5. Method of Fictitious Play
Consider now a matrix game with matrix A. The main idea of this method is that at each
step both players determine their best pure strategy choices against the average strategies of
the other player of all previous steps. Formally the method can be described as follows.

Let x1 be the initial (mixed) strategy of player P1. Select y1 = e j1 (the j1st basis vector)
such that

xT
1 Ae j1 = min

j
{xT

1 Ae j}. (7.24)

In any further step k ≥ 2, let

yk−1 =
1

k − 1((k − 2)yk−2 + yk−1), (7.25)

and select xk = eik so that
eT

ik Ayk−1 = max
i
{eT

i Ayk−1}. (7.26)

Let then
xk =

1
k ((k − 1)xk−1 + xk), (7.27)
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and select yk = e jk so that
xT

k Ae jk = min
j
{xT

k Ae j}. (7.28)

By repeating the general step for k = 2, 3, . . . two sequences are generated: {xk}, and
{yk}. We have the following result:

Theorem 7.10 Any cluster point of these sequences is an equilibrium of the matrix game.
Since all xk and yk are probability vectors, they are bounded. Therefore there is at least one
cluster point.

Assume, matrix A is m × n. In (7.24) we need mn multiplications. In (7.25) and (7.27)
m + n multiplications and divisions. In (7.26) and (7.28) mn multiplications. If we make L
iteration steps, then the total number of multiplications and divisions is:

mn + L[2(m + n) + 2mn] = 	(Lmn).

The formal algorithm is as follows:

1 k ← 1
2 de�ne j1 such that xT

1 Ae j1 = min j{xT
1 Ae j}

3 y1 ← e j1
4 k ← k + 1
5 yk−1 ← 1

k−1 ((k − 2)yk−2 + yk−1)
6 de�ne ik such that eT

ik Ayk−1 = maxi{eT
i Ayk−1}

7 xk ← eik
8 xk ← 1

k ((k − 1)xk−1 + xk)
9 de�ne jk such that xT

k Ae jk = min j{xT
k Ae j}

10 yk ← e jk
11 if ||xk − xk−1|| < ε and ||yk−1 − xk−2|| < ε
12 then (xk, yk−1

) is equilibrium
13 else go back to 4

Here ε > 0 is a user selected error tolerance.

Example 7.15 We applied the above method for the matrix game of the previous example and started
the procedure with x1 = (1, 0, 0)T . After 100 steps we obtained x101 = (0.446, 0.287, 0.267)T and
y101 = (0.386, 0.436, 0.178)T . Comparing it to the true values of the equilibrium strategies we see that
the error is below 0.126, showing the very slow convergence of the method.

7.2.6. Symmetric Matrix Games
A matrix game with skew-symmetric matrix is called symmetric. In this case AT = −A and
the two linear programming problems are identical. Therefore at the optimum α = β = 0,
and the equilibrium strategies of the two players are the same. Hence we have the following
result:
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Theorem 7.11 A vector x? is equilibrium of the symmetric matrix game if and only if

x ≥ 0
1T x = 1
Ax ≤ 0.

(7.29)

Solving system (7.29) the �rst phase of the simplex method is needed, the number of
operations is exponential in the worst case but in practical case usually much less.

Example 7.16 Consider the symmetric matrix game with matrix A =

(
0 1
−1 0

)
. In this case relations

(7.29) simplify as follows:

x1, x2 ≥ 0
x1 + x2 = 1

x2 ≤ 0
−x1 ≤ 0.

Clearly the only solution is x1 = 1 and x2 = 0, that is the �rst pure strategy.

We will see in the next subsection that linear programming problems are equivalent to
symmetric matrix games so any method for solving such games can be applied to solve
linear programming problems, so they serve as alternative methodology to the simplex met-
hod. As we will see next, symmetry is not a strong assumption, since any matrix game is
equivalent to a symmetric matrix game.

Consider therefore a matrix game with matrix A, and construct the skew-symmetric
matrix

P =


0m×m A −1m
−AT 0n×n 1n
1T

m −1T
n 0

 ,

where all components of vector 1 equal 1. Matrix games A and P are equivalent in the
following sense. Assume that A > 0, which is not a restriction, since by adding the same
constant to all element of A they become positive without changing equilibria.

Theorem 7.12

1. If z =


u
v
λ

 is an equilibrium strategy of matrix game P then with a = (1 − λ)/2,

x = (1/a)u and y = (1/a)v is an equilibrium of matrix game A with value v = λ/a;
2. If x, y is an equilibrium of matrix game A and v is the value of the game, then

z =
1

2 + v


x
y
v



is equilibrium strategy of matrix game P.
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Proof. Assume �rst that z is an equilibrium strategy of game P, then u ≥ 0, v ≥ 0, Pz ≤ 0,
so

Av − λ1m ≤ 0
−AT u + λ1n ≤ 0

1T
mu − 1T

n v ≤ 0.
(7.30)

First we show that 0 < λ < 1, that is a , 0. If λ = 1, then (since z is a probability vector)
u = 0 and v = 0, contradicting the second inequality of (7.30). If λ = 0, then 1T

mu+1T
n v = 1,

and by the third inequality of (7.30), v must have at least one positive component which
makes the �rst inequality impossible.

Next we show that 1T u = 1T v. From (7.30) we have

uT Av − λuT 1m ≤ 0,
−vT AT u + λuT 1n ≤ 0

and by adding these inequalities we see that

vT 1n − uT 1m ≤ 0,

and combining this relation with the third inequality of (7.30) we see that 1T
mu − 1T

n v = 0.
Select a = (1 − λ)/2 , 0, then 1T

mu = 1T
n v = a, so both x = u/a, and y = v/a are

probability vectors, furthermore from (7.30),

AT x = 1
a AT u ≥ λ

a 1n,
Ay = 1

a Av ≤ λ
a 1m.

So by selecting α = λ/a and β = −λ/a, x and y are feasible solutions of the pair (7.22)
of linear programming problems with α + β = 0, therefore x, y is an equilibrium of matrix
game A. Part 2. can be proved in a similar way, the details are not given here.

7.2.7. Linear Programming and Matrix Games
In this section we will show that linear programming problems can be solved by �nding the
equilibrium strategies of symmetric matrix games and hence, any method for �nding the
equilibria of symmetric matrix games can be applied instead of the simplex method.

Consider the primal-dual linear programming problem pair:

maximize cT x and minimize bT y
subject to x ≥ 0 subject to y ≥ 0

Ax ≤ b AT y ≥ c.
(7.31)

Construct the skew-symmetric matrix:

P =


0 A −b
−AT 0 c
bT −cT 0

 .

Theorem 7.13 Assume z =


u
v
λ

 is an equilibrium strategy of the symmetric matrix game
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P with λ > 0. Then
x =

1
λ

v and y =
1
λ

u

are optimal solutions of the primal and dual problems, respectively.

Proof. If z is an equilibrium strategy, then Pz ≤ 0, that is,

Av − λb ≤ 0
−AT u + λc ≤ 0
bT u − cT v ≤ 0.

(7.32)

Since z ≥ 0 and λ > 0, both vectors x = (1/λ)v, and y = (1/λ)u are nonnegative, and by
dividing the �rst two relations of (7.32) by λ,

Ax ≤ b and AT y ≥ c,

showing that x and y are feasible for the primal and dual, respectively. From the last condi-
tion of (7.32) we have

bT y ≤ cT x.

However
bT y ≥ (xT AT )y = xT (AT y) ≥ xT c = cT x,

consequently, bT y = cT x, showing that the primal and dual objective functions are equal.
The duality theorem implies the optimality of x and y.

Example 7.17 Consider the linear programming problem:

maximize x1 + 2x2

subject to x1 ≥ 0
−x1 + x2 ≥ 1
5x1 + 7x2 ≤ 25.

First we have to rewrite the problem as a primal problem. Introduce the new variables:

x+
2 =

{
x2, if x2 ≥ 0,
0 otherwise,

x−2 =

{ −x2, if x2 < 0,
0 otherwise.

and multiply the ≥-type constraint by −1. Then the problem becomes the following:

maximize x1 + 2x+
2 − 2x−2

subject to x1, x+
2 , x−2 ≥ 0

x1 − x+
2 + x−2 ≤ −1

5x1 + 7x+
2 − 7x−2 ≤ 25.

Hence
A =

(
1 −1 1
5 7 −7

)
, b =

(−1
25

)
, cT = (1, 2,−2),



7.2. Continuous Games 325

and so matrix P becomes:

P =



0 0
... 1 −1 1

... 1

0 0
... 5 7 −7

... −25
· · · · · · · · · · · · · · · · · · · · · · · ·
−1 −5

... 0 0 0
... 1

1 −7
... 0 0 0

... 2

−1 7
... 0 0 0

... −2
· · · · · · · · · · · · · · · · · · · · · · · ·
−1 25

... −1 −2 2
... 0



.

7.2.8. The Method of Von Neumann
The �ctitious play method is an iteration algorithm in which at each step the players adjust
their strategies based on the opponent's strategies. This method can therefore be considered
as the realization of a discrete system where the strategy selections of the players are the
state variables. For symmetric matrix games John von Neumann introduced a continuous
systems approach when the players continuously adjust their strategies. This method can be
applied to general matrix games, since�as we have seen earlier�any matrix game is equiva-
lent to a symmetric matrix game. The method can also be used to solve linear programming
problems as we have seen earlier that any primal-dual pair can be reduced to the solution of
a symmetric matrix game.

Let now P be a skew-symmetric n×n matrix. The strategy of player P2, y(t) is conside-
red as the function of time t ≥ 0. Before formulating the dynamism of the system, introduce
the following notation:

ui : Rn → R, ui(y(t)) = eT
i Py(t) (i = 1, 2, . . . , n) ,

φ : R → R, φ(ui) = max{0, ui} ,
Φ : Rn → R, Φ(y(t)) =

∑n
i=1 φ(ui(y(t))) .

(7.33)

For arbitrary probability vector y0 solve the following nonlinear initial-value problem:

y′j(t) = φ(u j(y(t))) − Φ(y(t))y j(t), y j(0) = y j0 (1 ≤ j ≤ n) . (7.34)

Since the right-hand side is continuous, there is at least one solution. The right hand side of
the equation can be interpreted as follows. Assume that φ(u j(y(t))) > 0. If player P2 selects
strategy y(t), then player P1 is able to obtain a positive payoff by choosing the pure strategy
e j, which results in a negative payoff for player P2. However if player P2 increases y j(t) to
one by choosing the same strategy e j its payoff eT

j Pe j becomes zero, so it increases. Hence
it is the interest of player P2 to increase y j(t). This is exactly what the �rst term represents.
The second term is needed to ensure that y(t) remains a probability vector for all t ≥ 0.

The computation of the right hand side of equations (7.34) for all t requires n2 + n
multiplications. The total computation cost depends on the length of solution interval, on
the selected step size, and on the choice of the differential equation solver.
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Theorem 7.14 Assume that t1, t2, . . . is a positive strictly increasing sequence converging
to∞, then any cluster point of the sequence {y(tk)} is equilibrium strategy, furthermore there
is a constant c such that

eT
i Py(tk) ≤

√
n

c + tk
(i = 1, 2, . . . , n) . (7.35)

Proof. First we have to show that y(t) is a probability vector for all t ≥ 0. Assume that with
some j and t1 > 0, y j(t1) < 0. De�ne

t0 = sup{t|0 < t < t1, y j(t) ≥ 0} .

Since y j(t) is continuous and y j(0) ≥ 0, clearly y j(t0) = 0, and for all τ ∈ (t0, t1), y j(τ) < 0.
Then for all τ ∈ (t0, t1],

y′j(τ) = φ(u j(y(τ))) − Φ(y(τ))y j(τ) ≥ 0,

and the Lagrange mean-value theorem implies that with some τ ∈ (t0, t1),

y j(t1) = y j(t0) + y′j(τ)(t1 − t0) ≥ 0 ,

which is a contradiction. Hence y j(t) is nonnegative. Next we show that ∑n
j=1 y j(t) = 1 for

all t. Let f (t) = 1 −∑n
j=1 y j(t), then

f ′(t) = −
n∑

j=1
y′j(t) = −

n∑

j=1
φ(u j(y(t))) + Φ(y(t))(

n∑

j=1
y j(t)) = −Φ(y(t))(1 −

n∑

j=1
y j(t)) ,

so f (t) satis�es the homogeneous equation

f ′(t) = −Φ(y(t)) f (t)

with the initial condition f (0) = 1 − ∑n
j=1 y j0 = 0. Hence for all t ≥ 0, f (t) = 0, showing

that y(t) is a probability vector.
Assume that for some t, φ(ui(y(t))) > 0. Then

d
dtφ(ui(y(t))) =

n∑

j=1
pi jy′j(t) =

n∑

j=1
pi j[φ(u j(y(t))) − Φ(y(t))y j(t)]

=

n∑

j=1
pi jφ(u j(y(t))) − Φ(y(t))φ(ui(y(t))).

(7.36)

By multiplying both sides by φ(ui(y(t))) and adding the resulted equations for i = 1, 2, . . . , n
we have:

n∑

i=1
φ(ui(y(t))) d

dtφ(ui(y(t))) =

n∑

i=1

n∑

j=1
pi jφ(ui(y(t)))φ(u j(y(t)))

−Φ(y(t))(
n∑

i=1
φ2(ui(y(t)))).

(7.37)
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The �rst term is zero, since P is skew-symmetric. Notice that this equation remains valid
even as φ(ui(y(t))) = 0 except the break-points (where the derivative of φ(ui(y(t))) does not
exist) since (7.36) remains true.

Assume next that with a positive t, Φ(y(t)) = 0. Then for all i, φ(ui(y(t))) = 0. Since
equation (7.37) can be rewritten as

1
2

d
dt Ψ(y(t)) = −Φ(y(t))Ψ(y(t)) (7.38)

with
Ψ : Rn → R and Ψ(y(t)) =

n∑

i=1
φ2(ui(y(t))) ,

we see that Ψ(y(t)) satis�es a homogeneous equation with zero initial solution at t, so the
solution remains zero for all τ ≥ t. Therefore φ(ui(y(τ))) = 0 showing that Py(τ) ≤ 0, that
is, y(τ) is equilibrium strategy.

If Φ(y(t)) > 0 for all t ≥ 0, then Ψ(y(t)) > 0, and clearly

1
2

d
dt Ψ(y(t)) ≤ −

√
Ψ(y(t))Ψ(y(t)) ,

that is 1
2

d
dt Ψ(y(t))(Ψ(y(t)))− 3

2 ≤ −1 .

Integrate both sides in interval [0, t] to have

−Ψ(y(t))−(1/2) + c ≤ −t ,

with c = (Ψ(y(0)))−(1/2), which implies that

(Ψ(y(t)))1/2 ≤ 1
c + t . (7.39)

By using the Cauchy�Schwartz inequality we get

eT
i Py(t) = ui(y(t)) ≤ φ(ui(y(t))) ≤ Φ(y(t)) ≤

√
nΨ(y(t)) ≤

√
n

c + t , (7.40)

which is valid even at the break points because of the continuity of functions ui. And �nally,
take a sequence {y(tk)}with tk increasingly converging to∞. The sequence is bounded (being
probability vectors), so there is at least one cluster point y?. From (7.40), by letting tk → ∞
we have that Py? ≤ 0 showing that y? is an equilibrium strategy.

Example 7.18 Consider the matrix game with matrix

A =


2 1 0
2 0 3
−1 3 3

 ,

which was the subject of our earlier Example 7.13. In order to apply the method of von Neumann
we have to �nd �rst an equivalent symmetric matrix game. The application of the method given in
Theorem 7.12. requires that the matrix has to be positive. Without changing the equilibria we can add
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2 to all matrix elements to have

Anew =


4 3 2
4 2 5
1 5 5

 ,

and by using the method we get the skew-symmetric matrix

P =



0 0 0
... 4 3 2

... −1

0 0 0
... 4 2 5

... −1

0 0 0
... 1 5 5

... −1
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
−4 −4 −1

... 0 0 0
... 1

−3 −2 −5
... 0 0 0

... 1

−2 −5 −5
... 0 0 0

... 1
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

1 1 1
... −1 −1 −1

... 0



.

The differential equations (7.34) were solved by using the 4th order Runge�Kutta method in the inter-
val [0, 100] with the step size h = 0.01 and initial vector y(0) = (1, 0, . . . , 0)T . From y(100) we get the
approximations

x ≈ (0.563619, 0.232359, 0.241988),

y ≈ (0.485258, 0.361633, 0.115144)

of the equilibrium strategies of the original game. Comparing these values to the exact values:

x =

(
4
7 ,

4
21 ,

5
21

)
and y =

(
3
7 ,

3
7 ,

1
7

)

we see that the maximum error is about 0.067.

7.2.9. Diagonally Strictly Concave Games
Consider an N-person continuous game and assume that all conditions presented at
the beginning of Section 7.2.3 are satis�ed. In addition, assume that for all k, S k is
bounded, all components of gk are concave and fk is concave in sk with any �xed
s1, . . . , sk−1, sk+1, . . . , sN . Under these conditions there is at least one equilibrium (Theo-
rem 7.3). The uniqueness of the equilibrium is not true in general, even if all fk are strictly
concave in sk. Such an example is shown next.

Example 7.19 Consider a two-person game with S 1 = S 2 = [0, 1] and f1(s1, s2) = f2(s1, s2) =

1−(s1−s2)2. Clearly both payoff functions are strictly concave and there are in�nitely many equilibria:
s?1 = s?2 ∈ [0, 1].



7.2. Continuous Games 329

Select an arbitrary nonnegative vector r ∈ RN and de�ne function

h : RM → RM , h(s, r) =



r1∇1 f1(s)T

r2∇2 f2(s)T

...
rN∇N fN(s)T


, (7.41)

where M =
∑N

k=1 nk, and ∇k fk is the gradient (as a row vector) of fk with respect to sk. The
game is said to be diagonally strictly concave if for all s(1) , s(2), s(1), s(2) ∈ S and for some
r ≥ 0,

(s(1) − s(2))T (h(s(1), r) − h(s(2), r)) < 0. (7.42)

Theorem 7.15 Under the above conditions the game has exactly one equilibrium.

Proof. The existence of the equilibrium follows from Theorem 7.3. In proving uniqueness
assume that s(1) and s(2) are both equilibria, and both satisfy relations (7.9). Therefore for
l = 1, 2,

u(l)
k

T gk(s(l)
k ) = 0

∇k fk(s(l)) + u(l)T

k ∇kgk(s(l)
k ) = 0T ,

and the second equation can be rewritten as

∇k fk(s(l)) +

mk∑

j=1
u(l)

k j∇kgk j(s(l)
k ) = 0 , (7.43)

where u(l)
k j and gk j are the jth components of u(l)

k and gk, respectively. Multiplying (7.43) by
(rk(s(2)

k − s(1)
k )T ) for l = 1 and by rk(s(1)

k − s(2)
k )T for l = 2 and adding the resulted equalities

for k = 1, 2, . . . ,N we have

0 = {(s(2) − s(1))T h(s(1), r) + (s(1) − s(2))T h(s(2), r)}

+

N∑

k=1

mk∑

j=1
rk[u(1)

k j (s(2)
k − s(1)

k )T∇kgk j(s(1)
k ) + u(2)

k j (s(1)
k − s(2)

k )T∇kgk j(s(2)
k )] . (7.44)

Notice that the sum of the �rst two terms is positive by the diagonally strict concavity of the
game, the concavity of the components of gk implies that

(s(2)
k − s(1)

k )T∇kgk j(s(1)
k ) ≥ gk j(s(2)

k ) − gk j(s(1)
k )

and
(s(1)

k − s(2)
k )T∇kgk j(s(2)

k ) ≥ gk j(s(1)
k ) − gk j(s(2)

k ) .
Therefore from (7.44) we have

0 >
N∑

k=1

mk∑

j=1
rk[u(1)

k j (gk j(s(2)
k ) − gk j(s(1)

k )) + u(2)
k j (gk j(s(1)

k ) − gk j(s(2)
k ))]

=

N∑

k=1

mk∑

j=1
rk[u(1)

k j gk j(s(2)
k ) + u(2)

k j gk j(s(1)
k )] ≥ 0 ,
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where we used the fact that for all k and l,

0 = u(l)
k

T gk(s(l)
k ) =

mk∑

j=1
u(l)

k jgk j(s(l)
k ).

This is an obvious contradiction, which completes the proof.

Checking for Uniqueness of Equilibrium
In practical cases the following result is very useful in checking diagonally strict concavity
of N-person games.

Theorem 7.16 Assume S is convex, fk is twice continuously differentiable for all k, and
J(s, r) + J(s, r)T is negative de�nite with some r ≥ 0, where J(s, r) is the Jacobian of h(s, r).
Then the game is diagonally strictly concave.

Proof. Let s(1) , s(2), s(1), s(2) ∈ S . Then for all α ∈ [0, 1], s(α) = αs(1) + (1 − α)s(2) ∈ S and

d
dαh(s(α), r) = J(s(α), r)(s(1) − s(2)) .

Integrate both side in [0, 1] to have

h(s(1), r) − h(s(2), r) =

∫ 1

0
J(s(α), r)(s(1) − s(2))dα ,

and by premultiplying both sides by (s(1) − s(2))T we see that

(s(1) − s(2))T (h(s(1), r) − h(s(2), r)) =

∫ 1

0
(s(1) − s(2))T J(s(α), r)(s(1) − s(2))dα

=
1
2

∫ 1

0
(s(1) − s(2))T (J(s(α), r) + J(s(α), r)T )(s(1) − s(2))dα < 0 ,

completing the proof.

Example 7.20 Consider a simple two-person game with strategy sets S 1 = S 2 = [0, 1], and payoff

functions
f1(s1, s2) = −s2

1 + s1 − s1 s2

and
f2(s1, s2) = −s2

2 + s2 − s1 s2 .

Clearly all conditions, except diagonally strict concavity, are satis�ed. We will use Theorem 7.16 to
show this additional property. In this case

∇1 f1(s1, s2) = −2s1 + 1 − s2, ∇2 f2(s1, s2) = −2s2 + 1 − s1 ,

so
h(s, r) =

(
r1(−2s1 + 1 − s2)
r2(−2s2 + 1 − s1

)

with Jacobian
J(s, r) =

( −2r1 −r1
−r2 −2r2

)
.
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We will show that
J(s, r) + J(s, r)T =

( −4r1 −r1 − r2
−r1 − r2 −4r2

)

is negative de�nite with some r ≥ 0. For example, select r1 = r2 = 1, then this matrix becomes
( −4 −2
−2 −4

)

with characteristic polynomial

φ(λ) = det
( −4 − λ −2

−2 −4 − λ
)

= λ2 + 8λ + 12 ,

having negative eigenvalues λ1 = −2, λ2 = −6.

Iterative Computation of Equilibrium
We have see earlier in Theorem 7.4 that s? ∈ S is an equilibrium if and only if

Hr(s?, s?) ≥ Hr(s?, s) (7.45)

for all s ∈ S , where Hr is the aggregation function (7.4). In the following analysis we assume
that the N-person game satis�es all conditions presented at the beginning of Section 7.2.9
and (7.42) holds with some positive r.

We �rst show the equivalence of (7.45) and a variational inequality.

Theorem 7.17 A vector s? ∈ S satis�es (7.45) if and only if

h(s?, r)T (s − s?) ≤ 0 (7.46)

for all s ∈ S , where h(s, r) is de�ned in (7.41).

Proof. Assume s? satis�es (7.45). Then Hr(s?, s) as function of s obtains maximum at s =

s?, therefore
∇sHr(s?, s?)(s − s?) ≤ 0

for all s ∈ S , and since ∇sHr(s?, s?) is h(s?, r), we proved that s? satis�es (7.46).
Assume next that s? satis�es (7.46). By the concavity of Hr(s?, s) in s and the diagonally

strict concavity of the game we have

Hr(s?, s?) −Hr(s?, s) ≥ h(s, r)T (s? − s) ≥ h(s, r)T (s? − s) + h(s?, r)T (s − s?) > 0 ,

so s? satis�es (7.45).
Hence any method available for solving variational inequalities can be used to �nd

equilibria.
Next we construct a special two-person, game the equilibrium problem of which is

equivalent to the equilibrium problem of the original N-person game.

Theorem 7.18 Vector s? ∈ S satis�es (7.45) if and only if (s?, s?) is an equilibrium of the
two-person game D = {2; S , S ; f ,− f } where f (s, z) = h(z, r)T (s − z).

Proof.
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• Assume �rst that s? ∈ S satis�es (7.45). Then it satis�es (7.46) as well, so

f (s, s?) ≤ 0 = f (s?, s?).

We need in addition to show that

− f (s?, s) ≤ 0 = − f (s?, s?).

In contrary assume that with some s, f (s?, s) < 0. Then

0 > f (s?, s) = h(s, r)T (s? − s) > h(s, r)T (s? − s) + (s − s?)T (h(s, r) − h(s?, r))
= h(s?, r)T (s? − s) ≥ 0,

where we used (7.42) and (7.46). This is a clear contradiction.
• Assume next that (s?, s?) is an equilibrium of game D. Then for any s, z ∈ S ,

f (s, s?) ≤ f (s?, s?) = 0 ≤ f (s?, z).

The �rst part can be rewritten as

h(s?, r)T (s − s?) ≤ 0,

showing that (7.46) is satis�ed, so is (7.45).

Consider the following iteration procedure.
Let s(1) ∈ S be arbitrary, and solve problem

maximize f (s, s(1))
subject to s ∈ S . (7.47)

Let s(2) denote an optimal solution and de�ne µ1 = f (s(2), s(1)). If µ1 = 0, then for all s ∈ S ,

f (s, s(1)) = h(s(1), r)T (s − s(1)) ≤ 0,

so by Theorem 7.17, s(1) is an equilibrium. Since f (s(1), s(1)) = 0, we assume that µ1 > 0.
In the general step k ≥ 2 we have already k vectors s(1), s(2), . . . , s(k), and k − 1 scalers
µ1, µ2, . . . , µk−1 > 0. Then the next vector s(k+1) and next scaler µk are the solutions of the
following problem:

maximize µ
subject to f (s, s(i)) ≥ µ (i = 1, 2, . . . , k)

s ∈ S .
(7.48)

Notice that
f (s(k), s(i)) ≥ µk−1 ≥ 0 (i = 1, 2, . . . , k − 1)

and
f (s(k), s(k)) = 0,

so we know that µk ≥ 0.
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The formal algorithm is as follows:

1 k ← 1
2 solve problem (7.47), let s(2) be optimal solution
3 if f (s(2), s(1)) = 0
4 then s(1) is equilibrium and stop
5 k ← k + 1
6 solve problem (7.48), let s(k+1) be optimal solution
7 if ||s(k+1) − s(k)|| < ε
8 then s(k+1) is equilibrium
9 else go to 4

Before stating the convergence theorem of the algorithm we notice that in the special
case when the strategy sets are de�ned by linear inequalities (that is, all functions gk are
linear) then all constraints of problem (7.48) are linear, so at each iteration step we have to
solve a linear programming problem.

In this linear case the simplex method has to be used in each iteration step with expo-
nential computational cost, so the overall cost is also exponential (with pre�xed number of
steps).

Theorem 7.19 There is a subsequence {s(ki)} of {s(k)} generated by the method that conver-
ges to the unique equilibrium of the N-person game.

Proof. The proof consists of several steps.
First we show that µk → 0 as k → ∞. Since at each new iteration an additional const-

raint is added to (7.48), sequence {µk} is nonincreasing. Since it is also nonnegative, it must
be convergent. Sequence {s(k)} is bounded, since it is from the bounded set S , so it has a
convergent subsequence {s(ki)}. Notice that from (7.48) we have

0 ≤ µki−1 = min
1≤k≤ki−1

h(s(k), r)T (s(ki) − s(k)) ≤ h(s(ki−1), r)T (s(ki) − s(ki−1)) ,

where the right hand side tends to zero. Thus µki−1 → 0 and since the entire sequence {µk}
is monotonic, the entire sequence converges to zero.

Let next s? be an equilibrium of the N-person game, and de�ne

δ(t) = min{(h(s, r) − h(z, r))T (z − s)|‖s − z‖ ≥ t, z, s ∈ S }. (7.49)

By (7.42), δ(t) > 0 for all t > 0. De�ne the indices ki so that

δ(‖s(ki) − s?‖) = min
1≤k≤i

δ(‖s(k) − s?‖) (i = 1, 2, . . .),

then for all k = 1, 2, . . . , i,

δ(‖s(ki) − s?‖) ≤ (h(s(k), r) − h(s?, r))T (s? − s(k))
= h(s(k), r)T (s? − s(k)) − h(s?, r)T (s? − s(k))
≤ h(s(k), r)T (s? − s(k)),
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which implies that

δ(‖s(ki) − s?‖) ≤ min
1≤k≤i

h(s(k), r)T (s? − s(k))

≤ max
s∈S

min
1≤k≤i

h(s(k), r)T (s − s(k))

= min
1≤k≤i

h(s(k), r)T (s(i+1) − s(k))
= µi

where we used again problem (7.48). From this relation we conclude that δ(‖s(ki)− s?‖)→ 0
as i→ ∞. And �nally, notice that function δ(t) satis�es the following properties:
1. δ(t) is continuous in t;
2. δ(t) > 0 if t > 0 (as it was shown just below relation (7.49));
3. if for a convergent sequence {t(k)}, δ(t(k))→ 0, then necessarily t(k) → 0.
By applying property 3. with sequence {‖s(ki) − s?‖} it is clear that ‖s(ki) − s?‖ → 0 so
s(ki) → s?. Thus the proof is complete.

Exercises
7.2-1 Consider a 2-person game with strategy sets S 1 = S 2 = [0, 1], and payoff functions
f1(x1, x2) = x2

1+x1x2+2 and f2(x1, x2) = x1+x2. Show the existence of a unique equilibrium
point by computing it. Show that Theorem 7.3. cannot be applied to prove existence.
7.2-2 Consider the �price war" game in which two �rms are price setting. Assume that p1
and p2 are the strategies of the players, p1, p2 ∈ [0, pmax] and the payoff functions are:

f1(p1, p2) =

{
p1, if p1 ≤ p2,
p1 − c, if p1 > p2,

f2(p1, p2) =

{
p2, if p2 ≤ p1,
p2 − c, if p2 > p1,

by assuming that c < pmax. Is there an equilibrium? How many equilibria were found?
7.2-3 A portion of the sea is modeled by the unit square in which a submarine is hiding.
The strategy of the submarine is the hiding place x ∈ [0, 1] × [0, 1]. An airplane drops a
bomb in a location y = [0, 1] × [0, 1],j which is its strategy. The payoff of the airplane is
the damage αe−β‖x−y‖ occurred by the bomb, and the payoff of the submarine is its negative.
Does this 2-person game have an equilibrium?
7.2-4 In the second-price auction they sell one unit of an item to N bidders. They value the
item as v1 < v2 < · · · < vN . Each of them offers a price for the item simultaneously without
knowing the offers of the others. The bidder with the highest offer will get the item, but he
has to pay only the second highest price. So the strategy of bidder k is [0,∞], so xk ∈ [0,∞],
and the payoff function for this bidder is:

fk(x1, x2, . . . , xN) =

{
vk −max j,k x j, if xk = max j x j,
0 otherwise.

What is the best response function of bidder k? Does this game have equilibrium?
7.2-5 Formulate Fan's inequality for the Problem 7.2-1.
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7.2-6 Formulate and solve Fan's inequality for Problem 7.2-2.

7.2-7 Formulate and solve Fan's inequality for Problem 7.2-4.
7.2-8 Consider a 2-person game with strategy sets S 1 = S 2 = [0, 1], and payoff functions

f1(x1, x2) = −(x1 − x2)2 + 2x1 − x2 + 1

f2(x1, x2) = −(x1 − 2x2)2 − 2x1 + x2 − 1.

Formulate Fan's inequality.
7.2-9 Let n = 2, S 1 = S 2 = [0, 10], f1(x1, x2) = f2(x1, x2) = 2x1 + 2x2 − (x1 + x2)2.
Formulate the Kuhn�Tucker conditions to �nd the equilibrium. Solve the resulted system of
inequalities and equations.
7.2-10 Consider a 3-person game with S 1 = S 2 = S 3 = [0, 1], f1(x1, x2, x3) = (x1−x2)2+x3,
f2(x1, x2, x3) = (x2−x3)2+x1 and f3(x1, x2, x3) = (x3−x1)2+x2. Formulate the Kuhn�Tucker
condition.
7.2-11 Formulate and solve system (7.9) for Problem 7.2-8.
7.2-12 Repeat the previous problem for the game given in Problem 7.2-1.
7.2-13 Rewrite the Kuhn�Tucker conditions for Problem 7.2-8. into the optimization prob-
lem (7.10) and solve it.
7.2-14 Formulate the mixed extension of the �nite game given in Problem 7.1-1.
7.2-15 Formulate and solve optimization problem (7.10) for the game obtained in the pre-
vious problem.
7.2-16 Formulate the mixed extension of the game introduced in Problem 7.2-3.
Formulate and solve the corresponding linear optimization problems (7.22) with α = 5,
β = 3, γ = 1.
7.2-17 Use �ctitious play method for solving the matrix game of Problem 7.2-16.
7.2-18 Generalize the �ctitious play method for bimatrix games.
7.2-19 Generalize the �ctitious play method for the mixed extensions of �nite n-person
games.
7.2-20 Solve the bimatrix game with matrics A =

(
2 −1
−1 1

)
and B =

(
1 −1
−1 2

)
with

the method you have developed in Problem 7.2-18.

7.2-21 Solve the symmetric matrix game A =


0 1 5
−1 0 −3
−5 3 0

 by linear programming.

7.2-22 Repeat problem 7.2-21. with the method of �ctitious play.
7.2-23 Develop the Kuhn�Tucker conditions (7.9) for the game given in Problem 7.2-21.
above.
7.2-24? Repeat Problems 7.2-21., 7.2-22. and 7.2-23. for the matrix game A =(

1 2 3
−1 0 1

)
. (First �nd the equivalent symmetric matrix game!).

7.2-25 Formulate the linear programming problem to solve the matrix game with matrix
A =

(
1 2
3 1

)
.

7.2-26 Formulate a linear programming solver based on the method of �ctitious play and
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solve the LP problem:

maximize x1 + x2

subject to x1, x2 ≥ 0
3x1 + x2 ≤ 4
x1 + 3x2 ≤ 4.

7.2-27 Solve the LP problem given in Example 8.17 by the method of �ctitious play.
7.2-28 Solve problem 7.2-21. by the method of von Neumann.
7.2-29 Solve Problem 7.2-24. by the method of von Neumann.
7.2-30 Solve Problem 7.2-17. by the method of von Neumann.
7.2-31? Check the solution obtained in the previous problems by verifying that all const-
raints of (7.21) are satis�ed with zero objective function. Hint. What α and β should be
selected?
7.2-32 Solve problem 7.2-26. by the method of von Neumann.
7.2-33 Let N = 2, S 1 = S 2 = [0, 10], f1(x1, x2) = f2(x1, x2) = 2x1 + 2x2 − (x1 + x2)2. Show
that both payoff functions are strictly concave in x1 and x2 respectively. Prove that there are
in�nitely many equilibria, that is , the strict concavity of the payoff functions does not imply
the uniqueness of the equilibrium.
7.2-34 Can matrix games be strictly diagonally concave?
7.2-35 Consider a two-person game with strategy sets S 1 = S 2 = [0, 1], and payoff func-
tions f1(x1, x2) = −2x2

1 + x1(1 − x2), f2(x1, x2) = −3x2
2 + x2(1 − x1). Show that this game

satis�es all conditions of Theorem 7.16.
7.2-36 Solve the problem of the previous exercise by algorithm (7.47)�(7.48).

7.3. The Oligopoly Problem
The previous sections presented general methodology, however special methods are avai-
lable for almost all special classes of games. In the following parts of this chapter a special
game, the oligopoly game will be examined. It describes a real-life economic situation when
N-�rms produce a homogeneous good to a market, or offers the same service. This model
is known as the classical Cournot model. The �rms are the players. The strategy of each
player is its production level xk with strategy set S k = [0, Lk], where Lk is its capacity limit.
It is assumed that the market price depends on the total production level s = x1 +x2 + · · ·+xN
offered to the market: p(s), and the cost of each player depends on its own production level:
ck(xk). The pro�t of each �rm is given as

fk(x1, . . . , xN) = xk p


N∑

l=1
xl

 − ck(xk). (7.50)

In this way an N-person game G = {N; S 1, . . . , S N ; f1, . . . , fN} is de�ned.
It is usually assumed that functions p and ck (k = 1, 2, . . . ,N) are twice continuously

differentiable, furthermore
1. p′(s) < 0;
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2. p′(s) + xk p′′(s) ≤ 0;
3. p′(s) − c′′k (xk) < 0
for all k, xk ∈ [0, Lk] and s ∈ [0,∑N

l=1 Ll]. Under assumptions 1.�3. the game satis�es all
conditions of Theorem 7.3, so there is at least one equilibrium.

Best Reply Mappings
Notice that with the notation sk =

∑
l,k xl, the payoff function of player Pk can be rewritten

as
xk p(xk + sk) − ck(xk) . (7.51)

Since S k is a compact set and this function is strictly concave in xk, with �xed sk there
is a unique pro�t maximizing production level of player Pk, which is its best reply and is
denoted by Bk(sk).

It is easy to see that there are three cases: Bk(sk) = 0 if p(sk) − c′k(0) ≤ 0, Bk(sk) = Lk if
p(sk + Lk) + Lk p′(sk + Lk) − c′k(Lk) ≥ 0, and otherwise Bk(sk) is the unique solution of the
monotonic equation

p(sk + xk) + xk p′(sk + xk) − c′k(xk) = 0.
Assume that xk ∈ (0, Lk). Then implicit differentiation with respect to sk shows that

p′(1 + B′k) + B′k p′ + xk p′′(1 + B′k) − c′′k B′k = 0

showing that
B′k(sk) = − p′ + xk p′′

2p′ + xk p′′ − c′′k
.

Notice that from assumptions 2. and 3.,

− 1 < B′k(sk) ≤ 0 , (7.52)

which is also true for the other two cases except for the break points.
As in Section 7.2.1. we can introduce the best reply mapping:

B(x1, . . . , xN) =

B1


∑

l,1
xl

 , . . . , BN


∑

l,N
xl


 (7.53)

and look for its �xed points. Another alternative is to introduce dynamic process which
converges to the equilibrium.

Similarly to the method of �ctitious play a discrete system can be developed in which
each �rm selects its best reply against the actions of the competitors chosen at the previous
time period:

xk(t + 1) = Bk(
∑

l,k
xl(t)) (k = 1, 2, . . . ,N) . (7.54)

Based on relation (7.52) we see that for N = 2 the right hand side mapping R2 → R2 is
a contraction, so it converges, however if N > 2, then no convergence can be established.
Consider next a slight modi�cation of this system: with some Kk > 0:

xk(t + 1) = xk(t) + Kk(Bk(
∑

l,k
xl(t)) − xk(t)) (7.55)
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for k = 1, 2, . . . ,N. Clearly the steady-states of this system are the equilibria, and it can be
proved that if Kk is sufficiently small, then sequences xk(0), xk(1), xk(2), . . . are all conver-
gent to the equilibrium strategies.

Consider next the continuous counterpart of model (7.55), when (similarly to the met-
hod of von Neumann) continuous time scales are assumed:

�xk(t) = Kk(Bk(
∑

l,k
xl(t)) − xk(t)) (k = 1, 2, . . . ,N) . (7.56)

The following result shows the convergence of this process.

Theorem 7.20 Under assumptions 1�3, system (7.56) is asymptotically stable, that is, if
the initial xk(0) values are selected close enough to the equilibrium, then as t → ∞, xk(t)
converges to the equilibrium strategy for all k.

Proof. It is sufficient to show that the eigenvalues of the Jacobian of the system have negative
real parts. Clearly the Jacobian is as follows:

J =



−K1 K1b1 · · · K1b1
K2b2 −K2 · · · K2b2
...

...
...

KNbN KNbN · · · −KN


, (7.57)

where bk = B′k(∑l,k xl) at the equilibrium. From (7.52) we know that −1 < bk ≤ 0 for all k.
In order to compute the eigenvalues of J we will need a simple but very useful fact. Assume
that a and b are N-element real vectors. Then

det(I + abT ) = 1 + bT a , (7.58)

where I is the N × N identity matrix. This relation can be easily proved by using �nite
induction with respect to N. By using (7.58), the characteristic polynomial of J can be
written as

φ(λ) = det(J − λI) = det(D + abT − λI)
= det(D − λI)det(I + (D − λI)−1abT )
= det(D − λI)[1 + bT (D − λI)−1a]

= ΠN
k=1(−Kk(1 + bk) − λ)[1 +

N∑

k=1

Kkbk
−Kk(1 + bk) − λ ],

where we used the notation

a =



K1b1
K2b2
...

KNbN


, bT = (1, 1, . . . , 1), D =



−K1(1 + b1)
. . .

−KN(1 + bN)

 .

The roots of the �rst factor are all negative: λ = −Kk(1 + bk), and the other eigenvalues are
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the roots of equation

1 +

N∑

k=1

Kkbk
−Kk(1 + bk) − λ = 0.

Notice that by adding the terms with identical denominators this equation becomes

1 +

m∑

l=1

αk
βk + λ

= 0 (7.59)

with αk, βk > 0, and the βk s are different. If g(λ) denotes the left hand side then clearly the
values λ = −βk are the poles,

lim
λ→±∞

g(λ) = 1, lim
λ→−βk±0

g(λ) = ±∞,

g′(λ) =

m∑

l=1

−αl
(βl + λ)2 < 0,

so g(λ) strictly decreases locally. The graph of the function is shown in Figure 7.3. Notice
�rst that (7.59) is equivalent to a polynomial equation of degree m, so there are m real or
complex roots. The properties of function g(λ) indicate that there is one root below −β1, and
one root between each −βk and −βk+1 (k = 1, 2, . . . ,m− 1). Therefore all roots are negative,
which completes the proof.

The general discrete model (7.55) can be examined in the same way. If Kk = 1 for all k,
then model (7.55) reduces to the simple dynamic process (7.54).

Example 7.21 Consider now a 3-person oligopoly with price function

p(s) =

{
2 − 2s − s2, if 0 ≤ s ≤ √3 − 1 ,
0 otherwise ,

strategy sets S 1 = S 2 = S 3 = [0, 1], and cost functions

ck(xk) = kx3
k + xk (k = 1, 2, 3) .

The pro�t of �rm k is therefore the following:

xk(2 − 2s − s2) − (kx3
k + xk) = xk(2 − 2xk − 2sk − x2

k − 2xk sk − s2
k) − kx3

k − xk .

The best reply of play k can be obtained as follows. Following the method outlined at the beginning
of Section 7.3. we have the following three cases. If 1 − 2sk − s2

k ≤ 0, then xk = 0 is the best choice. If
(−6 − 3k) − 6sk − s2

k ≥ 0, then xk = 1 is the optimal decision. Otherwise xk is the solution of equation

∂

∂xk
[xk(2 − 2xk − 2sk − s2

k − 2sk xk − x2
k) − kx3

k − xk]

= 2 − 4xk − 2sk − s2
k − 4sk xk − 3x2

k − 3kx2
k − 1 = 0 ,

where the only positive solution is

xk =
−(4 + 4sk) +

√
(4 + 4sk)2 − 12(1 + k)(s2

k + 2sk − 1)
6(1 + k) .

After the best replies are found, we can easily construct any of the methods presented before.
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glambda

lambda

1

−b1 −b2 −bm−1 −bm

PSfrag replacements
λ

g(λ)
−β1
−β2
−βm−1
−βm

Figure 7.5. The graph of function g(λ)

Reduction to Single-Dimensional Fixed Point Problems
Consider an N-�rm oligopoly with price function p and cost functions ck (k = 1, 2, . . . ,N).
Introduce the following function

Ψk(s, xk, tk) = tk p(s − xk + tk) − ck(tk) , (7.60)

and de�ne
Xk(s) = {xk |xk ∈ S k, Ψk(s, xk, xk) = max

tk∈S k
Ψk(s, xk, tk)} (7.61)

for k = 1, 2, . . . ,N and let

X(s) = {u|u =

N∑

k=1
xk, xk ∈ Xk(s), k = 1, 2, . . . ,N}. (7.62)

Notice that if s ∈ [0,∑N
k=1 Lk], then all elements of X(s) are also in this interval, therefore X

is a single-dimensional point-to-set mapping. Clearly (x?1 , . . . , x?N) is an equilibrium of the
N-�rm oligopoly game if and only if s? =

∑N
k=1 x?k is a �xed point of mapping X and for all
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k, x?k ∈ Xk(s?). Hence the equilibrium problem has been reduced to �nd �xed points of only
one-dimensional mappings. This is a signi�cant reduction in the difficulty of the problem,
since best replies are N-dimensional mappings.

If conditions 1�3 are satis�ed, then Xk(s) has exactly one element for all s and k:

X(s) =


0, if p(s) − c′k(0) ≤ 0 ,
Lk, if p(s) + Lk p′k(s) − c′k(Lk) ≥ 0,
z? otherwise,

(7.63)

where z? is the unique solution of the monotonic equation

p(s) + zp′(s) − c′k(z) = 0 (7.64)

in the interval (0, Lk). In the third case, the left hand side is positive at z = 0, negative at
z = Lk, and by conditions 2�3, it is strictly decreasing, so there is a unique solution.

In the entire interval [0,∑N
k=1 Lk], Xk(s) is nonincreasing. In the �rst two cases it is

constant and in the third case strictly decreasing. Consider �nally the single-dimensional
equation

N∑

k=1
Xk(s) − s = 0. (7.65)

At s = 0 the left hand side is nonnegative, at s =
∑N

k=1 Lk it is nonpositive, and is strictly
decreasing. Therefore there is a unique solution (that is, �xed point of mapping X), which
can be obtained by any method known to solve single-dimensional equations.

Let [0, S max] be the initial interval for the solution of equation (7.65). After K bisection
steps the accuracy becomes S max/2K , which will be smaller than an error tolerance ε > 0 if
K > log2(S max/ε).

1 solve equation (7.65) for s
2 for k ← 1 to n
3 do solve equation (7.64), and let xk ← z
4 (x1, . . . , xN) is equilibrium

Example 7.22 Consider the 3-person oligopoly examined in the previous example. From (7.63) we
have

X(s) =


0, if 1 − 2s − s2 ≤ 0,
1, if − (1 + 3k) − 4s − s2 ≥ 0,
z? otherwise,

where z? is the unique solution of equation

3kz2 + z(2s + 2) + (−1 + 2s + s2) = 0.

The �rst case occurs for s ≥ √2 − 1, the second case never occurs, and in the third case there is a
unique positive solution:

z? =
−(2s + 2) +

√
(2s + 2)2 − 12k(−1 + 2s + s2)

6k . (7.66)
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And �nally equation (7.65) has the special form
3∑

k=1

−(s + 1) +
√

(s + 1)2 − 3k(−1 + 2s + s2)
3k − s = 0 .

A single program based on the bisection method gives the solution s? ≈ 0.2982 and then equation
(7.66) gives the equilibrium strategies x?1 ≈ 0.1077, x?2 ≈ 0.0986, x?3 ≈ 0.0919.

Methods Based on Kuhn�Tucker Conditions
Notice �rst that in the case of N-player oligopolies S k = {xk |xk ≥ 0, Lk − xk ≥ 0}, so we
select

gk(xk) =

(
xk

Lk − xk

)
, (7.67)

and since the payoff functions are

fk(x1, . . . , xN) = xk p(xk + sk) − ck(xk) , (7.68)

the Kuhn�Tucker conditions (7.9) have the following form. The components of the 2-
dimensional vectors uk will be denoted by u(1)

k and u(2)
k . So we have for k = 1, 2, . . . ,N,

u(1)
k , u(2)

k ≥ 0
xk ≥ 0

Lk − xk ≥ 0
p(∑N

l=1 xl) + xk p′(∑N
l=1 xl) − c′k(xk) + (u(1)

k , u(2)
k )

( 1
−1

)
= 0

u(1)
k xk + u(2)

k (Lk − xk) = 0.

(7.69)

One might either look for feasible solutions of these relations or rewrite them as the optimi-
zation problem (7.10), which has the following special form in this case:

minimize ∑N
k=1(u(1)

k xk + u(2)
k (Lk − xk))

subject to u(1)
k , u(2)

k ≥ 0
xk ≥ 0
Lk − xk ≥ 0
p(∑N

l=1 xl) + xk p′(∑N
l=1 xl) − c′k(xk) + u(1)

k − u(2)
k = 0

(k = 1, 2, . . . ,N).

(7.70)

Computational cost in solving (7.69) or (7.70) depends on the type of functions p and
ck. No general characterization can be given.

Example 7.23 In the case of the three-person oligopoly introduced in Example 7.21. we have

minimize
3∑

k=1
(u(1)

k xk + u(2)
k (1 − xk))

subject to u(1)
k , u(2)

k ≥ 0
xk ≥ 0
1 − xk ≥ 0
1 − 2s − s2 − 2xk − 2xk s − 3kx2

k + u(1)
k − u(2)

k = 0
x1 + x2 + x3 = s.
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A professional optimization software was used to obtain the optimal solutions:

x?1 ≈ 0.1077, x?2 ≈ 0.0986, x?3 ≈ 0.0919 ,

and all u(1)
k = u(2)

k = 0.

Reduction to Complementarity Problems
If (x?1 , . . . , x?N) is an equilibrium of an N-person oligopoly, then with �xed x?1 , . . . ,
x?k−1, x?k+1, . . . , x?N , xk = x?k maximizes the payoff fk of player Pk. Assuming that condition
1�3 are satis�ed, fk is concave in xk, so x?k maximizes fk if and only if at the equilibrium

∂ fk
∂xk

(x?) =


≤ 0, if x?k = 0,
= 0, if 0 < x?k < Lk,
≥ 0, if x?k = Lk.

So introduce the slack variables

zk =

{
= 0, if xk > 0,
≥ 0, if xk = 0

vk =

{
= 0, if xk < Lk,
≥ 0, if xk = Lk

and
wk = Lk − xk. (7.71)

Then clearly at the equilibrium
∂ fk
∂xk

(x) − vk + zk = 0 (7.72)

and by the de�nition of the slack variables

zk xk = 0 (7.73)

vkwk = 0, (7.74)
and if we add the nonnegativity conditions

xk, zk, vk,wk ≥ 0 , (7.75)

then we obtain a system of nonlinear relations (7.71)�(7.75) which are equivalent to the
equilibrium problem.

We can next show that relations (7.71)�(7.75) can be rewritten as a nonlinear comp-
lementarity problem, for the solution of which standard methods are available. For this
purpose introduce the notation

v =



v1
v2
...

vN


, L =



L1
L2
...

LN


, h(x) =



∂ f1
∂x1

(x)
∂ f2
∂x2

(x)
...

∂ fN
∂xN

(x)


,
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t =

(x
v

)
, and g(t) =

(−h(x) + v
L − x

)
,

then system (7.72)�(7.75) can be rewritten as

t ≥ 0
g(t) ≥ 0

tT g(t) = 0.
(7.76)

This problem is the usual formulation of nonlinear complementarity problems. Notice
that the last condition requires that in each component either t or g(t) or both must be zero.

The computational cost in solving problem (7.76) depends on the type of the involved
functions and the choice of method.

Example 7.24 In the case of the 3-person oligopoly introduced and examined in the previous examples
we have:

t =



x1
x2
x3
v1
v2
v3



and g(t) =



−1 + 2 ∑3
l=1 xl + (∑3

l=1 xl)2 + 2x1 + 2x1
∑3

l=1 xl + 3x2
1 + v1

−1 + 2 ∑3
l=1 xl + (∑3

l=1 xl)2 + 2x2 + 2x2
∑3

l=1 xl + 6x2
2 + v2

−1 + 2 ∑3
l=1 xl + (∑3

l=1 xl)2 + 2x3 + 2x3
∑3

l=1 xl + 9x2
3 + v3

1 − x1
1 − x2
1 − x3



.

Linear Oligopolies and Quadratic Programming
In this section N-player oligopolies will be examined under the special condition that the
price and all cost functions are linear :

p(s) = As + B, ck(xk) = bk xk + ck (k = 1, 2, . . . ,N) ,

where B, bk, and ck are positive, but A < 0. Assume again that the strategy set of player Pk
is the interval [0, Lk]. In this special case

fk(x1, . . . , xN) = xk(Ax1 + · · · + AxN + B) − (bk xk + ck) (7.77)

for all k, therefore
∂ fk
∂xk

(x) = 2Axk + A
∑

l,k
xl + B − bk, (7.78)

and relations (7.71)�(7.75) become more special:

2Axk + A
∑

l,k
xl + B − bk − vk + zk = 0

zk xk = vkwk = 0
xk + wk = Lk

xk, vk, zk,wk ≥ 0,
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where we changed the order of them. Introduce the following vectors and matrixes:

Q =



2A A · · · A
A 2A · · · A
...

...
...

A A · · · 2A


, B =



B
B
...
B


, b =



b1
b2
...

bN


,

v =



v1
v2
...

vN


, w =



w1
w2
...

wN


, z =



z1
z2
...

zN


, and L =



L1
L2
...

LN


.

Then the above relations can be summarized as:
Qx + B − b − v + z = 0

x + w = L
xT z = vT w = 0

x, v, z,w ≥ 0 .
(7.79)

Next we prove that matrix Q is negative de�nite. With any nonzero vector a = (ai),

aT Qa = 2A
∑

i
a2

i + A
∑

i

∑

j,i
aia j = A(

∑

i
a2

i + (
∑

i
ai)2) < 0 ,

which proves the assertion.
Observe that relations (7.79) are the Kuhn�Tucker conditions of the strictly concave

quadratic programming problem:
maximize 1

2 xT Qx + (B − b)x
subject to 0 ≤ x ≤ L, (7.80)

and since the feasible set is a bounded linear polyhedron and the objective function is strictly
concave, the Kuhn�Tucker conditions are sufficient and necessary. Consequently a vector
x? is an equilibrium if and only if it is the unique optimal solution of problem (7.80). There
are standard methods to solve problem (7.80) known from the literature.

Since (7.79) is a convex quadratic programming problem, several algorithms are avai-
lable. Their costs are different, so computation cost depends on the particular method being
selected.

Example 7.25 Consider now a duopoly (two-person oligopoly) where the price function is p(s) =

10− s and the cost functions are c1(x1) = 4x1 + 1 and c2(x2) = x2 + 1 with capacity limits L1 = L2 = 5.
That is,

B = 10, A = −1, b1 = 4, b2 = 1, c1 = c2 = 1 .
Therefore,

Q =

( −2 −1
−1 −2

)
, B =

(
10
10

)
, b =

(
4
1

)
, L =

(
5
5

)
,

so the quadratic programming problem can be written as:

maximize 1
2 (−2x2

1 − 2x1 x2 − 2x2
2) + 6x1 + 9x2

subject to 0 ≤ x1 ≤ 5
0 ≤ x2 ≤ 5.
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It is easy to see by simple differentiation that the global optimum at the objective function without
the constraints is reached at x?1 = 1 and x?2 = 4. They however satisfy the constraints, so they are the
optimal solutions. Hence they provide the unique equilibrium of the duopoly.

Exercises
7.3-1 Consider a duopoly with S 1 = S 2 = [0, 1], p(s) = 2 − s and costs c1(x) = c2(x) =

x2 + 1. Examine the convergence of the iteration scheme (7.55).
7.3-2 Select n = 2, S 1 = S 2 = [0, 1.5], ck(xk) = 0.5xk (k = 1, 2) and

p(s) =


1.75 − 0.5s, if 0 ≤ s ≤ 1.5,
2.5 − s, if 1.5 ≤ s ≤ 2.5,
0, if 2.5 ≤ s.

Show that there are in�nitely many equilibria:

{(x?1 , x?2 )|0.5 ≤ x1 ≤ 1, 0.5 ≤ x2 ≤ 1, x1 + x2 = 1.5}.

7.3-3 Consider the duopoly of Problem 7.3-1. above. Find the best reply mappings of the
players and determine the equilibrium.
7.3-4 Consider again the duopoly of the previous problem.
(a) Construct the one-dimensional �xed point problem of mapping (7.62) and solve it to
obtain the equilibrium.
(b) Formulate the Kuhn�Tucker equations and inequalities (7.69).
(c) Formulate the complementarity problem (7.76) in this case.

Chapter notes
(Economic) Nobel Prize was given only once, in 1994 in the �eld of game theory. One of
the winner was John Nash , who received this honor for his equilibrium concept, which was
introduced in 1951 [11].

Backward induction is a more restrictive equilibrium concept. It was developed by Kuhn
and can be found in [7]. Since it is more restrictive equilibrium, it is also a Nash equilibrium.

The existence and computation of equilibria can be reduced to those of �xed points. the
different variants of �xed point theorems-such as that of Brouwer [2], Kakutani[5], Tarski
[21] are successfully used to prove existence in many game classes. The article [13] uses
the �xed point theorem of Kakutani. The books [20] and [3] discuss computer methods
for computing �xed points. The most popular existence result is the well known theorem of
Nikaido and Isoda [13].

The Fan inequality is discussed in the book of Aubin [1]. The Kuhn�Tucker conditi-
ons are presented in the book of Martos [9]. By introducing slack and surplus variables
the Kuhn�Tucker conditions can be rewritten as a system of equations. For their computer
solutions well known methods are available ([20] and [9]).

The reduction of bimatrix games to mixed optimization problems is presented in the
papers of Mills [10] and Shapiro [18]. The reduction to quadratic programming problem is
given in ([8]).
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The method of �ctitious play is discussed in the paper of Robinson [16]. In order to use
the Neumann method we have to solve a system of nonlinear ordinary differential equations.
The Runge�Kutta method is the most popular procedure for doing it. It can be found in [20].

The paper of Rosen [17] introduces diagonally strictly concave games. The computer
method to �nd the equilibria of N-person concave games is introduced in Zuhovitsky et al.
[22].

The different extensions and generalizations of the classical Cournot model can be fo-
und in the books of Okuguchi and Szidarovszky [14, 15]. The proof of Theorem 7.20 is
given in [19]. For the proof of lemma (7.58) see the monograph [15]. The bisection method
is described in [20]. The paper [6] contains methods which are applicable to solve nonli-
near complementarity problems. The solution of problem (7.80) is discussed in the book of
Hadley [4].

The book of von Neumann and Morgenstern [12] is considered the classical textbook
of game theory. There is a large variety of game theory textbooks (see for example [3]).



Bibliography

[1] J-P. Aubin. Mathematical Methods of Game and Economic Theory. North-Holland, 1979. 346
[2] L. E. J. Brouwer. Über Abbildung von Manningfaltigkeiten. Mathematische Annalen, pp. 97�115. 346
[3] F. Forgó, J. Szép, F. Szidarovszky. Introduction to the Theory of Games: Concepts, Methods and Applicati-

ons. Kluwer Academic Publishers, 1999. 346, 347
[4] G. Hadley. Nonlinear and Dynamic Programming. Addison-Wesley, 1964. 347
[5] S. Kakutani. A generalization of Brouwer's �xed point theorem. Duke Mathematical Journal, 8:457�459,

1941. 346
[6] S. Karamardian. The nonlinear complementarity problems with applications. I, II. Journal of Optimization

Theory and Applications, 4:87�98 and 167�181, 1969. 347
[7] H. W. Kuhn, A. Tucker (szerkeszt�ok). Contributions to the Theory of Games. II. Princeton University Press,

1953. 346
[8] O. Mangasarian, H. Stone. Two-person zero-sum games and quadratic programming. Journal of Mathema-

tical Analysis and its Applications, 9:348�355, 1964. 346
[9] B. Martos. Nonlinear Programming Theory and Methods. Akadémiai Kiadó, 1975. 346

[10] H. Mills. Equilibrium points of �nite games. SIAM Journal of Applied Mathematics, 8:397�402, 1976. 346
[11] J. Nash. Noncooperative games. Annals of Mathematics, 54:286�295, 1951. 346
[12] J. Neumann, O. Morgenstern. Theory of Games and Economical Behaviour. Princeton University Press,

1947 (2. edition). 347
[13] H. Nikaido, K. Isoda. Note on noncooperative games. Paci�c Journal of Mathematics, 5:807�815, 1955. 346
[14] K. Okuguchi. Expectation and Stability of Oligopoly Models. Springer, 1976. 347
[15] K. Okuguchi, F. Szidarovszky. The Theory of Oligopoly with Multi-Product Firms. Springer, 1999 (2. kia-

dás). 347
[16] J. Robinson. An iterative method of solving a game. Annals of Mathematics, 154:296�301, 1951. 347
[17] J. Rosen. Existence and uniqueness of equilibrium points for concave n-person games. Econometrica,

33:520�534, 1965. 347
[18] H. N. Shapiro. Note on a computation method in the theory of games. Communications on Pure and Applied

Mathematics, 11:587�593, 1958. 346
[19] F. Szidarovszky, C. Chiarella. Dynamic oligopolies, stability and bifurcation. Cubo Mathemática Educatio-

nal, 3(2):267�284, 2001. 347
[20] F. Szidarovszky, S. Yakowitz. Principles and Procedures of Numerical Analysis. Plenum Press, 1998. 346,

347
[21] A. Tarski. A lattice-theoretical �xpoint theorem and its application. Paci�c Journal of Mathematics, 5:285�

308, 1955. 346
[22] S. I. Zuhovitsky, R. A. Polyak, M. E. Primak. Concave n-person games (numerical methods). Ékonomika i

Matematicheskie Methody, 7:888�900, 1971 (in Russian). 347

file:www.elsevier.nl/.dvi�
http://www.sie.arizona.edu/faculty/szidar.html�
file:www.wkap�
http://www.aw.com/�
http://www.dukemathjournal.org/index.shtml�
http://www.kluweronline.com/issn/0022-3239�
file:pup.princeton.edu/.dvi�
file:www.akkrt.hu/.dvi�
http://epubs.siam.org/sam-bin/dbq/toclist/SIAP�
http://www.math.princeton.edu/~annals/�
http://pup.princeton.edu/�
http://nyjm.albany.edu:8000/PacJ/�
http://www.nanzan-u.ac.jp/~economic/STAFF/okuguchi.html�
http://www.springer-ny.com/�
http://www.nanzan-u.ac.jp/~economic/STAFF/okuguchi.html�
http://www.sie.arizona.edu/faculty/szidar.html�
http://www.springer-ny.com/�
http://www.math.princeton.edu/~annals/�
http://www.jstor.org/journals/00129682.html�
http://www3.interscience.wiley.com/cgi-bin/jhome/29240�
http://www.sie.arizona.edu/faculty/szidar.html�
http://www.sie.arizona.edu/faculty/szidar.html�
http://isbndb.com/d/publisher/plenum_press.html�
http://nyjm.albany.edu:8000/PacJ/�


Name index

A, Á
Aubin, Jean-Pierre, 346, 348

B
Banach, Stephan (1892�1945), 309
Brouwer, Luitzer Egbertus Jan (1881�1966), 309,

346, 348

C
Cauchy, Augustin-Louis (1789�1857), 327
Chiarella, Carl, 347, 348
Cournot, Antoine Augustin (1801�1877), 336, 347

F
Fan, Ky, 310, 334, 346
Forgó, Ferenc, 346, 348

H
Hadley, George F., 347, 348

I, Í
Isoda, K., 348

J
Jacobi, Carl Gustav Jacob (1804�1851), 312

K
Kakutani, Shizou, 309, 346, 348
Karamardian, S., 348
Kuhn, Harold W., 311, 346, 348
Kutta, Wilhelm Martin (1867�1944), 328

L
Lagrange, Joseph Louis (1736�1813), 326

M
Mangasarian, Olvi L., 348
Martos, Béla, 346, 348

Mills, H., 348
Morgenstern, Oscar (1902�1976), 347, 348

N
Nash, John F., Jr., 301, 346, 348
Neumann, John, von (1903�1957), 325, 347, 348
Nikaido, Hukukane, 346, 348

O, Ó
Okuguchi, Koji, 347, 348

P
Polyak, Roman A., 348
Primak, M. E., 348

R
Robinson, Julia, 347, 348
Rosen, J. B., 347, 348
Runge, Carl David Tolmé (1856�1927), 328

S
Schwartz, Jacob Theodore, 327
Shapiro, Harold N., 348
Stone, H., 348

SZ
Szép, Jen�o (1920�2004), 346, 348
Szidarovszky, Ferenc, 346�348

T
Tarski, Alfred (1902�1983), 309, 346, 348
Tucker, Albert W., 311, 346, 348

Y
Yakowitz, Sidney, 347, 348

Z
Zuhovitsky, S. I., 347, 348



Subject Index

A, Á
aggregation function, 310

B
backward induction, 305
best reply mapping, 309
bimatrix games, 315

C
classical Cournot model, 336
continuous games, 308

D
diagonally strictly concave games, 329

F
Fan's inequality, 310
�nite games, 302

G
games, 301
games representable by �nite trees, 305

K
Kuhn�Tucker conditions, 311

M
matrix games, 319

mixed extensions of �nite games, 314

N
Nash-equilibrium, 301
nonlinear complementarity problem, 344

O, Ó
oligopoly game, 336

P
payoff, 301
payoff function, 301
payoff matrixes, 304
payoff vector, 301
players, 301
prisoner's dilemma, 302

S
saddle points, 304
simultaneous strategy vector, 301
strategies, 301
strategy set, 301
symmetric matrix games, 321

V
value of matrix games, 319

Z
zero-sum games, 304



Contents

7. Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
7.1. Finite Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

7.1.1. Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
7.1.2. Games Represented by Finite Trees . . . . . . . . . . . . . . . . . 305

7.2. Continuous Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
7.2.1. Fixed-Point Methods Based on Best Responses . . . . . . . . . . . 309
7.2.2. Applying Fan's Inequality . . . . . . . . . . . . . . . . . . . . . . 310
7.2.3. Solving the Kuhn�Tucker Conditions . . . . . . . . . . . . . . . . 311
7.2.4. Reduction to Optimization Problems . . . . . . . . . . . . . . . . . 313

Mixed Extension of Finite Games . . . . . . . . . . . . . . . . . . 314
Bimatrix games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
Matrix games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

7.2.5. Method of Fictitious Play . . . . . . . . . . . . . . . . . . . . . . 320
7.2.6. Symmetric Matrix Games . . . . . . . . . . . . . . . . . . . . . . 321
7.2.7. Linear Programming and Matrix Games . . . . . . . . . . . . . . . 323
7.2.8. The Method of Von Neumann . . . . . . . . . . . . . . . . . . . . 325
7.2.9. Diagonally Strictly Concave Games . . . . . . . . . . . . . . . . . 328

Checking for Uniqueness of Equilibrium . . . . . . . . . . . . . . 330
Iterative Computation of Equilibrium . . . . . . . . . . . . . . . . 331

7.3. The Oligopoly Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
Best Reply Mappings . . . . . . . . . . . . . . . . . . . . . . . . . 337
Reduction to Single-Dimensional Fixed Point Problems . . . . . . 340
Methods Based on Kuhn�Tucker Conditions . . . . . . . . . . . . 342
Reduction to Complementarity Problems . . . . . . . . . . . . . . 343
Linear Oligopolies and Quadratic Programming . . . . . . . . . . . 344

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
Name index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350


