
21. Distributed Algorithms

We de�ne a distributed system as a collection of individual computing devices that
can communicate with each other [2]. This de�nition is very broad, it includes anyt-
hing, from a VLSI chip, to a tightly coupled multiprocessor, to a local area cluster
of workstations, to the Internet. Here we focus on more loosely coupled systems. In
a distributed system as we view it, each processor has its semi-independent agenda,
but for various reasons, such as sharing of resources, availability, and fault-tolerance,
processors need to coordinate their actions.

Distributed systems are highly desirable, but it is notoriously di�cult to const-
ruct e�cient distributed algorithms that perform well in realistic system settings.
These di�culties are not just of a more practical nature, they are also fundamental
in nature. In particular, many of the di�culties are introduced by the three factors
of: asynchrony, limited local knowledge, and failures. Asynchrony means that glo-
bal time may not be available, and that both absolute and relative times at which
events take place at individual computing devices can often not be known precisely.
Moreover, each computing device can only be aware of the information it receives,
it has therefore an inherently local view of the global status of the system. Finally,
computing devices and network components may fail independently, so that some
remain functional while others do not.

We will begin by describing the models used to analyze distributed systems in the
message-passing model of computation. We present and analyze selected distributed
algorithms based on these models. We include a discussion of fault-tolerance in
distributed systems and consider several algorithms for reaching agreement in the
messages-passing models for settings prone to failures. Given that global time is
often unavailable in distributed systems, we present approaches for providing logical
time that allows one to reason about causality and consistent states in distributed
systems. Moving on to more advanced topics, we present a spectrum of broadcast
services often considered in distributed systems and present algorithms implementing
these services. We also present advanced algorithms for rumor gathering algorithms.
Finally, we also consider the mutual exculsion problem in the shared-memory model
of distributed computation.
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21.1. Message Passing Systems and Algorithms
We present our �rst model of distributed computation, for message passing sys-
tems without failures [1]. We consider both synchronous and asynchronous systems
and present selected algorithms for message passing systems with arbitrary network
topology, and both synchronous and asynchronous settings.

21.1.1. Modeling Message Passing Systems
In a message passing system, processors communicate by sending messages over
communication channels, where each channel provides a bidirectional connection
between two speci�c processors. We call the pattern of connections described by the
channels, the topology of the system. This topology is represented by an undirected
graph, where each node represents a processor, and an edge is present between two
nodes if and only if there is a channel between the two processors represented by the
nodes. The collection of channels is also called the network. An algorithm for such a
message passing system with a speci�c topology consists of a local program for each
processor in the system. This local program provides the ability to the processor to
perform local computations, to send and receive messages from each of its neighbors
in the given topology.

Each processor in the system is modeled as a possibly in�nite state machine [13].
A con�guration is a vector C = (q0, ..., qn−1) where each qi is the state of a proces-
sor pi. Activities that can take place in the system are modeled as events (or actions)
that describe indivisible system operations. Examples of events include local compu-
tation events and delivery events where a processor receives a message. The behavior
of the system over time is modeled as an execution, a (�nite or in�nite) sequence
of con�gurations (Ci) alternating with events (ai): C0, a1, C1, a2, C2, . . . [13, 14, 15].
Executions must satisfy a variety of conditions that are used to represent the cor-
rectness properties, depending on the system being modeled. These conditions can
be classi�ed as either safety or liveness conditions. A safety condition for a system
is a condition that must hold in every �nite pre�x of any execution of the system.
Informally it states that nothing bad has happened yet. A liveness condition is a
condition that must hold a certain (possibly in�nite) number of times. Informally it
states that eventually something good must happen. An important liveness condition
is fairness, which requires that an (in�nite) execution contains in�nitely many ac-
tions by a processor, unless after some con�guration no actions are enabled at that
processor.

21.1.2. Asynchronous systems
We say that a system is asynchronous if there is no �xed upper bound on how long
it takes for a message to be delivered or how much time elapses between consecutive
steps of a processor [3, 17]. An obvious example of such an asynchronous system
is the Internet. In an implementation of a distributed system there are often upper
bounds on message delays and processor step times. But since these upper bounds
are often very large and can change over time, it is often desirable to develop an



2002 21. Distributed Algorithms

algorithm that is independent of any timing parameters, that is, an asynchronous
algorithm.

In the asynchronous model we say that an execution is admissible if each pro-
cessor has an in�nite number of computation events, and every message sent is
eventually delivered. The �rst of these requirements models the fact that processors
do not fail. (It does not mean that a processor's local program contains an in�nite
loop. An algorithm can still terminate by having a transition function not change a
processors state after a certain point.)

We assume that each processor's set of states includes a subset of terminated
states. Once a processor enters such a state it remains in it. The algorithm has
terminated if all processors are in terminated states and no messages are in transit.

The message complexity of an algorithm in the asynchronous model is the maxi-
mum over all admissible executions of the algorithm, of the total number of (point-
to-point) messages sent.

A timed execution is an execution that has a nonnegative real number associated
with each event, the time at which the event occurs. To measure the time complexity
of an asynchronous algorithm we �rst assume that the maximum message delay in
any execution is one unit of time. Hence the time complexity is the maximum time
until termination among all timed admissible executions in which every message
delay is at most one. Intuitively this can be viewed as taking any execution of the
algorithm and normalizing it in such a way that the longest message delay becomes
one unit of time.

21.1.3. Synchronous systems
In the synchronous model processors execute in lock-step. The execution is partiti-
oned into rounds so that every processor can send a message to each neighbor, the
messages are delivered, and every processor computes based on the messages just
received. This model is very convenient for designing algorithms. Algorithms desig-
ned in this model can in many cases be automatically simulated to work in other,
more realistic timing models.

In the synchronous model we say that an execution is admissible if it is in�-
nite. From the round structure it follows then that every processor takes an in�nite
number of computation steps and that every message sent is eventually delivered.
Hence in a synchronous system with no failures, once a (deterministic) algorithm
has been �xed, the only relevant aspect determining an execution that can change
is the initial con�guration. On the other hand in an asynchronous system, there
can be many di�erent executions of the same algorithm, even with the same initial
con�guration and no failures, since here the interleaving of processor steps, and the
message delays, are not �xed.

The notion of terminated states and the termination of the algorithm is de�ned
in the same way as in the asynchronous model.

The message complexity of an algorithm in the synchronous model is the maxi-
mum over all admissible executions of the algorithm, of the total number of messages
sent.

To measure time in a synchronous system we simply count the number of rounds
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until termination. Hence the time complexity of an algorithm in the synchronous mo-
del is the maximum number of rounds in any admissible execution of the algorithm
until the algorithm has terminated.

21.2. Basic algorithms
We begin with some simple examples of algorithms in the message passing model.

21.2.1. Broadcast
We start with a simple algorithm [?] for the (single message) broadcast problem,
assuming that a spanning tree of the network graph with n nodes (processors) is
already given. Later, we will remove this assumption. A processor pi wishes to send
a message M to all other processors. The spanning tree rooted at pi is maintained
in a distributed fashion: Each processor has a distinguished channel that leads to
its parent in the tree as well as a set of channels that lead to its children in the
tree. The root pi sends the message M on all channels leading to its children. When
a processor receives the message on a channel from its parent, it sends M on all
channels leading to its children.

Spanning tree broadcast algorithm for n processors.
Initially M is in transit from pi to all its children in the spanning tree.
Code for pi:

1 upon receiving no message: // �rst computation event by pi

2 terminate

Code for pj , 0 ≤ j ≤ n− 1, j 6= i:
3 upon receiving M from parent:
4 send M to all children
5 terminate

The Spanning tree broadcast algorithm is correct whether the system is synchro-
nous or asynchronous. Moreover, the message and time complexities are the same in
both models.

Using simple inductive arguments we will �rst prove a lemma that shows that
by the end of round t, the message M reaches all processors at distance t (or less)
from pr in the spanning tree.

Lemma 21.1 In every admissible execution of the broadcast algorithm in the syn-
chronous model, every processor at distance t from pr in the spanning tree receives
the message M in round t.

Proof. We proceed by induction on the distance t of a processor from pr. First let
t = 1. It follows from the algorithm that each child of pr receives the message in
round 1.
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Assume that each processor at distance t− 1 received the message M in round
t − 1. We need to show that each processor pt at distance t receives the message
in round t. Let ps be the parent of pt in the spanning tree. Since ps is at distance
t − 1 from pr, by the induction hypothesis, ps received M in round t − 1. By the
algorithm, pt will hence receive M in round t.

By Lemma 21.1 the time complexity of the broadcast algorithm is d, where d is
the depth of the spanning tree. Now since d is at most n − 1 (when the spanning
tree is a chain) we have:

Theorem 21.2 There is a synchronous broadcast algorithm for n processors with
message complexity n − 1 and time complexity d, when a rooted spanning tree with
depth d is known in advance.

We now move to an asynchronous system and apply a similar analysis.

Lemma 21.3 In every admissible execution of the broadcast algorithm in the asyn-
chronous model, every processor at distance t from pr in the spanning tree receives
the message M by time t.

Proof. We proceed by induction on the distance t of a processor from pr. First let
t = 1. It follows from the algorithm that M is initially in transit to each processor
pi at distance 1 from pr. By the de�nition of time complexity for the asynchronous
model, pi receives M by time 1.

Assume that each processor at distance t − 1 received the message M at time
t− 1. We need to show that each processor pt at distance t receives the message by
time t. Let ps be the parent of pt in the spanning tree. Since ps is at distance t− 1
from pr, by the induction hypothesis, ps sends M to pt when it receives M at time
t− 1. By the algorithm, pt will hence receive M by time t.

We immediately obtain:

Theorem 21.4 There is an asynchronous broadcast algorithm for n processors
with message complexity n − 1 and time complexity d, when a rooted spanning tree
with depth d is known in advance.

21.2.2. Construction of a spanning tree
The asynchronous algorithm called FLOOD, discussed next, constructs a spanning
tree rooted at a designated processor pr. The algorithm is similar to the Depth First
Search (DFS) algorithm. However, unlike DFS where there is just one processor with
�global knowledge� about the graph, in the FLOOD algorithm, each processor has
�local knowledge� about the graph, processors coordinate their work by exchanging
messages, and processors and messages may get delayed arbitrarily. This makes the
design and analysis of the FLOOD algorithm challenging, because we need to show
that the algorithm indeed constructs a spanning tree despite conspiratorial selection
of these delays.

Algorithm description
Each processor has four local variables. The links adjacent to a processor are



21.2. Basic algorithms 2005

identi�ed with distinct numbers starting from 1 and stored in a local variable called
neighbors. We will say that the spanning tree has been constructed, when the variable
parent stores the identi�er of the link leading to the parent of the processor in the
spanning tree, except that this variable is NONE for the designated processor pr;
children is a set of identi�ers of the links leading to the children processors in the
tree; and other is a set of identi�ers of all other links. So the knowledge about the
spanning tree may be �distributed� across processors.

The code of each processor is composed of segments. There is a segment (lines
1 to 4) that describes how local variables of a processor are initialized. Recall that
the local variables are initialized that way before time 0. The next three segments
(lines 5�11, 12�15 and 16�19) describe the instructions that any processor executes
in response to having received a message: <adopt>, <approved> or <rejected>.
The last segment (lines 20 to 22) is only included in the code of processor pr. This
segment is executed only when the local variable parent of processor pr is NIL. At
some point of time, it may happen that more than one segment can be executed
by a processor (e.g., because the processor received <adopt> messages from two
processors). Then the processor executes the segments serially, one by one (segments
of any given processor are never executed concurrently). However, instructions of
di�erent processor may be arbitrarily interleaved during an execution. Every message
that can be processed is eventually processed and every segment that can be executed
is eventually executed (fairness).
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FLOOD
Code for any processor pk, 1 ≤ k ≤ n

1 initialization
2 parent := NIL
3 children := ∅
4 other := ∅

5 process message <adopt> that has arrived on link j
6 if parent = NIL then
7 parent := j
8 send <approved> to link j
9 send <adopt> to all links in neighbors \ {j}

10 else
11 send <rejected> to link j

12 process message <approved> that has arrived on link j
13 children := children ∪ {j}
14 if children ∪ other = neighbors \ {parent} then
15 terminate

16 process message <rejected> that has arrived on link j
17 other := other ∪ {j}
18 if children ∪ other = neighbors \ {parent} then
19 terminate

Extra code for the designated processor pr

20 if parent = NIL then
21 parent := NONE
22 send <adopt> to all links in neighbors

Let us outline how the algorithm works. The designated processor sends an
<adopt> message to all its neighbors, and assigns NONE to the parent variable
(NIL and NONE are two distinguished values, di�erent from any natural number),
so that it never again sends the message to any neighbor.

When a processor processes message <adopt> for the �rst time, the processor
assigns to its own parent variable the identi�er of the link on which the message
has arrived, responds with an <approved> message to that link, and forwards an
<adopt> message to every other link. However, when a processor processes message
<adopt> again, then the processor responds with a <rejected> message, because
the parent variable is no longer NIL.

When a processor processes message <approved>, it adds the identi�er of the
link on which the message has arrived to the set children. It may turn out that
the sets children and other combined form identi�ers of all links adjacent to the
processor except for the identi�er stored in the parent variable. In this case the
processor enters a terminating state.
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When a processor processes message <rejected>, the identi�er of the link is
added to the set other. Again, when the union of children and other is large enough,
the processor enters a terminating state.

Correctness proof
We now argue that the FLOOD algorithm constructs a spanning tree. The key

moments in the execution of the algorithm are when any processor assigns a value
to its parent variable. These assignments determine the �shape� of the spanning
tree. The facts that any processor eventually executes an instruction, any message
is eventually delivered, and any message is eventually processed, ensure that the
knowledge about these assignments spreads to neighbors. Thus the algorithm is
expanding a subtree of the graph, albeit the expansion may be slow. Eventually,
a spanning tree is formed. Once a spanning tree has been constructed, eventually
every processor will terminate, even though some processors may have terminated
even before the spanning tree has been constructed.

Lemma 21.5 For any 1 ≤ k ≤ n, there is time tk which is the �rst moment
when there are exactly k processors whose parent variables are not NIL, and these
processors and their parent variables form a tree rooted at pr.

Proof. We prove the statement of the lemma by induction on k. For the base case,
assume that k = 1. Observe that processor pr eventually assigns NONE to its
parent variable. Let t1 be the moment when this assignment happens. At that time,
the parent variable of any processor other than pr is still NIL, because no <adopt>
messages have been sent so far. Processor pr and its parent variable form a tree
with a single node and not arcs. Hence they form a rooted tree. Thus the inductive
hypothesis holds for k = 1.

For the inductive step, suppose that 1 ≤ k < n and that the inductive hypothesis
holds for k. Consider the time tk which is the �rst moment when there are exactly k
processors whose parent variables are not NIL. Because k < n, there is a non-tree
processor. But the graph G is connected, so there is a non-tree processor adjacent
to the tree. (For any subset T of processors, a processor pi is adjacent to T if and
only if there an edge in the graph G from pi to a processor in T .) Recall that by
de�nition, parent variable of such processor is NIL. By the inductive hypothesis,
the k processors must have executed line 7 of their code, and so each either has
already sent or will eventually send <adopt> message to all its neighbors on links
other than the parent link. So the non-tree processors adjacent to the tree have
already received or will eventually receive <adopt> messages. Eventually, each of
these adjacent processors will, therefore, assign a value other than NIL to its parent
variable. Let tk+1 > tk be the �rst moment when any processor performs such
assignment, and let us denote this processor by pi. This cannot be a tree processor,
because such processor never again assigns any value to its parent variable. Could
pi be a non-tree processor that is not adjacent to the tree? It could not, because
such processor does not have a direct link to a tree processor, so it cannot receive
<adopt> directly from the tree, and so this would mean that at some time t′ between
tk and tk+1 some other non-tree processor pj must have sent <adopt> message to
pi, and so pj would have to assign a value other than NIL to its parent variable
some time after tk but before tk+1, contradicting the fact the tk+1 is the �rst such



2008 21. Distributed Algorithms

moment. Consequently, pi is a non-tree processor adjacent to the tree, such that,
at time tk+1, pi assigns to its parent variable the index of a link leading to a tree
processor. Therefore, time tk+1 is the �rst moment when there are exactly k + 1
processors whose parent variables are not NIL, and, at that time, these processors
and their parent variables form a tree rooted at pr. This completes the inductive
step, and the proof of the lemma.

Theorem 21.6 Eventually each processor terminates, and when every processor
has terminated, the subgraph induced by the parent variables forms a spanning tree
rooted at pr.

Proof. By Lemma 21.5, we know that there is a moment tn which is the �rst moment
when all processors and their parent variables form a spanning tree.

Is it possible that every processor has terminated before time tn? By inspecting
the code, we see that a processor terminates only after it has received <rejected>
or <approved> messages from all its neighbors other than the one to which parent
link leads. A processor receives such messages only in response to <adopt> messages
that the processor sends. At time tn, there is a processor that still has not even sent
<adopt> messages. Hence, not every processor has terminated by time tn.

Will every processor eventually terminate? We notice that by time tn, each pro-
cessor either has already sent or will eventually send <adopt> message to all its
neighbors other than the one to which parent link leads. Whenever a processor re-
ceives <adopt> message, the processor responds with <rejected> or <approved>,
even if the processor has already terminated. Hence, eventually, each processor will
receive either <rejected> or <approved> message on each link to which the pro-
cessor has sent <adopt> message. Thus, eventually, each processor terminates.

We note that the fact that a processor has terminated does not mean that a
spanning tree has already been constructed. In fact, it may happen that processors
in a di�erent part of the network have not even received any message, let alone
terminated.

Theorem 21.7 Message complexity of the FLOOD algorithm is O(e), where e is
the number of edges in the graph G.

The proof of this theorem is left as an exercise.

Exercises
21.2-1 It may happen that a processor has terminated even though a processor has
not even received any message. Show a simple network and how to delay message
delivery and processor computation to demonstrate that this can indeed happen.

21.2-2 It may happen that a processor has terminated but may still respond to a
message. Show a simple network and how to delay message delivery and processor
computation to demonstrate that this can indeed happen.

21.2-3 Prove that the FLOOD algorithm sends O(e) messages in any execution,
given a graph G with n nodes and e links. What is the exact number of messages as
a function of the number of nodes and edges in the graph?
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21.3. Ring Algorithms
One often needs to coordinate the activities of processors in a distributed system.
This can frequently be simpli�ed when there is a single processor that acts as a
coordinator. Initially, the system may not have any coordinator, or an existing co-
ordinator may fail and so another may need to be elected. This creates the problem
where processors must elect exactly one among them, a leader. In this section we
study the problem for special types of networks � rings. We will develop an asyn-
chronous algorithm for the problem. As we shall demonstrate, the algorithm has
asymptotically optimal message complexity. In the current section, we will see a
distributed analogue of the well-know divide-and-conquer technique often used in
sequential algorithms to keep their time complexity low. The technique used in dist-
ributed systems helps reduce the message complexity.

21.3.1. The leader election problem
The leader election problem is to elect exactly leader among a set of processors. For-
mally each processor has a local variable leader initially equal to NIL. An algorithm
is said to solve the leader election problem if it satis�es the following conditions:
1. in any execution, exactly one processor eventually assigns TRUE to its leader

variable, all other processors eventually assign FALSE to their leader variables,
and

2. in any execution, once a processor has assigned a value to its leader variable,
the variable remains unchanged.
Ring model
We study the leader election problem on a special type of network � the ring.

Formally, the graph G that models a distributed system consists of n nodes that
form a simple cycle; no other edges exist in the graph. The two links adjacent to
a processor are labeled CW (clock-wise) and CCW (counter clock-wise). Processors
agree on the orientation of the ring i.e., if a message is passed on in CW direction n
times, then it visits all n processors and comes back to the one that initially sent the
message; same for CCW direction. Each processor has a unique identi�er that is a
natural number, i.e., the identi�er of each processor is di�erent from the identi�er of
any other processor; the identi�ers do not have to be consecutive numbers 1, . . . , n.
Initially, no processor knows the identi�er of any other processor. Also processors
do not know the size n of the ring.

21.3.2. The Leader Election Algorithm
The algorithm BULLY elects a leader among asynchronous processors p1, . . . , pn.
Identi�ers of processors are used by the algorithm in a crucial way. Brie�y speaking,
each processor tries to become the leader, the processor that has the largest identi�er
among all processors blocks the attempts of other processors, declares itself to be
the leader, and forces others to declare themselves not to be leaders.

Let us begin with a simpler version of the algorithm to exemplify some of the
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ideas of the algorithm. Suppose that each processor sends a message around the
ring containing the identi�er of the processor. Any processor passes on such message
only if the identi�er that the message carries is strictly larger than the identi�er of
the processor. Thus the message sent by the processor that has the largest identi�er
among the processors of the ring, will always be passed on, and so it will eventually
travel around the ring and come back to the processor that initially sent it. The
processor can detect that such message has come back, because no other processor
sends a message with this identi�er (identi�ers are distinct). We observe that, no
other message will make it all around the ring, because the processor with the
largest identi�er will not pass it on. We could say that the processor with the largest
identi�er �swallows� these messages that carry smaller identi�ers. Then the processor
becomes the leader and sends a special message around the ring forcing all others to
decide not to be leaders. The algorithm has Θ(n2) message complexity, because each
processor induces at most n messages, and the leader induces n extra messages; and
one can assign identi�ers to processors and delay processors and messages in such
a way that the messages sent by a constant fraction of n processors are passed on
around the ring for a constant fraction of n hops. The algorithm can be improved
so as to reduce message complexity to O(n log n), and such improved algorithm will
be presented in the remainder of the section.

The key idea of the BULLY algorithm is to make sure that not too many mes-
sages travel far, which will ensure O(n log n) message complexity. Speci�cally, the
activity of any processor is divided into phases. At the beginning of a phase, a pro-
cessor sends �probe� messages in both directions: CW and CCW. These messages
carry the identi�er of the sender and a certain �time-to-live� value that limits the
number of hops that each message can make. The probe message may be passed
on by a processor provided that the identi�er carried by the message is larger than
the identi�er of the processor. When the message reaches the limit, and has not
been swallowed, then it is �bounced back�. Hence when the initial sender receives
two bounced back messages, each from each direction, then the processor is certain
that there is no processor with larger identi�er up until the limit in CW nor CCW
directions, because otherwise such processor would swallow a probe message. Only
then does the processor enter the next phase through sending probe messages again,
this time with the time-to-live value increased by a factor, in an attempt to �nd if
there is no processor with a larger identi�er in twice as large neighborhood. As a
result, a probe message that the processor sends will make many hops only when
there is no processor with larger identi�er in a large neighborhood of the processor.
Therefore, fewer and fewer processors send messages that can travel longer and lon-
ger distances. Consequently, as we will soon argue in detail, message complexity of
the algorithm is O(n log n).

We detail the BULLY algorithm. Each processor has �ve local variables. The
variable id stores the unique identi�er of the processor. The variable leader stores
TRUE when the processor decides to be the leader, and FALSE when it decides not
to be the leader. The remaining three variables are used for bookkeeping: asleep
determines if the processor has ever sent a <probe, id, 0, 0> message that carries the
identi�er id of the processor. Any processor may send <probe, id, phase, 2phase− 1>
message in both directions (CW and CCW) for di�erent values of phase. Each time a
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message is sent, a <reply, id, phase> message may be sent back to the processor. The
variables CWreplied and CCWreplied are used to remember whether the replies
have already been processed the processor.

The code of each processor is composed of �ve segments. The �rst segment (lines
1 to 5) initializes the local variables of the processor. The second segment (lines 6 to
8) can only be executed when the local variable asleep is TRUE. The remaining three
segments (lines 9 to 17, 18 to 26, and 27 to 31) describe the actions that the processor
takes when it processes each of the three types of messages: <probe, ids, phase, ttl>,
<reply, ids, phase> and <terminate> respectively. The messages carry parameters
ids, phase and ttl that are natural numbers.

We now describe how the algorithm works. Recall that we assume that the local
variables of each processor have been initialized before time 0 of the global clock.
Each processor eventually sends a <probe, id, 0, 0> message carrying the identi�er
id of the processor. At that time we say that the processor enters phase number
zero. In general, when a processor sends a message <probe, id, phase, 2phase − 1>,
we say that the processor enters phase number phase. Message <probe, id, 0, 0> is
never sent again because FALSE is assigned to asleep in line 7. It may happen that
by the time this message is sent, some other messages have already been processed
by the processor.

When a processor processes message <probe, ids, phase, ttl> that has arrived on
link CW (the link leading in the clock-wise direction), then the actions depend on
the relationship between the parameter ids and the identi�er id of the processor. If
ids is smaller than id, then the processor does nothing else (the processor swallows
the message). If ids is equal to id and processor has not yet decided, then, as we
shall see, the probe message that the processor sent has circulated around the entire
ring. Then the processor sends a <terminate> message, decides to be the leader,
and terminates (the processor may still process messages after termination). If ids
is larger than id, then actions of the processor depend on the value of the parameter
ttl (time-to-live). When the value is strictly larger than zero, then the processor
passes on the probe message with ttl decreased by one. If, however, the value of
ttl is already zero, then the processor sends back (in the CW direction) a reply
message. Symmetric actions are executed when the <probe, ids, phase, ttl> message
has arrived on link CCW, in the sense that the directions of sending messages are
respectively reversed � see the code for details.
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BULLY
Code for any processor pk, 1 ≤ k ≤ n

1 initialization
2 asleep :=TRUE
3 CWreplied :=FALSE
4 CCWreplied :=FALSE
5 leader :=NIL

6 if asleep then
7 asleep :=FALSE
8 send <probe, id, 0, 0> to links CW and CCW

9 process message <probe, ids, phase, ttl> that has arrived on link CW (resp. CCW)
10 if id = ids and leader =NIL then
11 send <terminate> to link CCW
12 leader :=TRUE
13 terminate
14 if ids > id and ttl > 0 then
15 send <probe, ids, phase, ttl − 1> to link CCW (resp. CW)
16 if ids > id and ttl = 0 then
17 send <reply, ids, phase> to link CW (resp. CCW)

18 process message <reply, ids, phase> that has arrived on link CW (resp. CCW)
19 if id 6= ids then
20 send <reply, ids, phase> to link CCW (resp. CW)
21 else
22 CWreplied :=TRUE (resp. CCWreplied)
23 if CWreplied and CCWreplied then
24 CWreplied :=FALSE
25 CCWreplied :=FALSE
26 send <probe, id, phase + 1, 2phase+1 − 1> to links CW and CCW

27 process message <terminate> that has arrived on link CW
28 if leader = NIL then
29 send <terminate> to link CCW
30 leader :=FALSE
31 terminate

When a processor processes message <reply, ids, phase> that has arrived on link
CW, then the processor �rst checks if ids is di�erent from the identi�er id of the
processor. If so, the processor merely passes on the message. However, if ids = id,
then the processor records the fact that a reply has been received from direction CW,
by assigning TRUE to CWreplied. Next the processor checks if both CWreplied and
CCWreplied variables are TRUE. If so, the processor has received replies from both
directions. Then the processor assigns FALSE to both variables. Next the processor
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sends a probe message. This message carries the identi�er id of the processor, the
next phase number phase+1, and an increased time-to-live parameter 2phase+1− 1.
Symmetric actions are executed when <reply, ids, phase> has arrived on link CCW.

The last type of message that a processor can process is <terminate>. The
processor checks if it has already decided to be or not to be the leader. When no
decision has been made so far, the processor passes on the <terminate> message
and decides not to be the leader. This message eventually reaches a processor that
has already decided, and then the message is no longer passed on.

21.3.3. Analysis of the Leader Election Algorithm
We begin the analysis by showing that the BULLY algorithm solves the leader
election problem.

Correctness proof

Theorem 21.8 The BULLY algorithm solves the leader election problem on any
ring with asynchronous processors.

Proof. We need to show that the two conditions listed at the beginning of the sec-
tion are satis�ed. The key idea that simpli�es the argument is to focus on one
processor. Consider the processor pi with maximum id among all processors in
the ring. This processor eventually executes lines 6 to 8. Then the processor sends
<probe, id, 0, 0> messages in CW and CCW directions. Note that whenever the pro-
cessor sends <probe, id, phase, 2phase − 1> messages, each such message is always
passed on by other processors, until the ttl parameter of the message drops down to
zero, or the message travels around the entire ring and arrives at pi. If the message
never arrives at pi, then a processor eventually receives the probe message with ttl
equal to zero, and the processor sends a response back to pi. Then, eventually pi

receives messages <reply, id, phase> from each directions, and enters phase number
phase + 1 by sending probe messages <probe, id, phase + 1, 2phase+1 − 1> in both
directions. These messages carry a larger time-to-live value compared to the value
from the previous phase number phase. Since the ring is �nite, eventually ttl beco-
mes so large that processor pi receives a probe message that carries the identi�er of
pi. Note that pi will eventually receive two such messages. The �rst time when pi

processes such message, the processor sends a <terminate> message and terminates
as the leader. The second time when pi processes such message, lines 11 to 13 are
not executed, because variable leader is no longer NIL. Note that no other processor
pj can execute lines 11 to 13, because a probe message originated at pj cannot travel
around the entire ring, since pi is on the way, and pi would swallow the message; and
since identi�ers are distinct, no other processor sends a probe message that carries
the identi�er of processor pj . Thus no processor other than pi can assign TRUE
to its leader variable. Any processor other than pi will receive the <terminate>
message, assign FALSE to its leader variable, and pass on the message. Finally, the
<terminate> message will arrive at pi, and pi will not pass it anymore. The argu-
ment presented thus far ensures that eventually exactly one processor assigns TRUE
to its leader variable, all other processors assign FALSE to their leader variables,
and once a processor has assigned a value to its leader variable, the variable remains



2014 21. Distributed Algorithms

unchanged.
Our next task is to give an upper bound on the number of messages sent by

the algorithm. The subsequent lemma shows that the number of processors that can
enter a phase decays exponentially as the phase number increases.

Lemma 21.9 Given a ring of size n, the number k of processors that enter phase
number i ≥ 0 is at most n/2i−1.

Proof. There are exactly n processors that enter phase number i = 0, because each
processor eventually sends <probe, id, 0, 0> message. The bound stated in the lemma
says that the number of processors that enter phase 0 is at most 2n, so the bound
evidently holds for i = 0. Let us consider any of the remaining cases i.e., let us assume
that i ≥ 1. Suppose that a processor pj enters phase number i, and so by de�nition
it sends message <probe, id, i, 2i−1>. In order for a processor to send such message,
each of the two probe messages <probe, id, i−1, 2i−1−1> that the processor sent in
the previous phase in both directions must have made 2i−1 hops always arriving at a
processor with strictly lower identi�er than the identi�er of pj (because otherwise, if
a probe message arrives at a processor with strictly larger or the same identi�er, than
the message is swallowed, and so a reply message is not generated, and consequently
pj cannot enter phase number i). As a result, if a processor enters phase number
i, then there is no other processor 2i−1 hops away in both directions that can ever
enter the phase. Suppose that there are k ≥ 1 processors that enter phase i. We can
associate with each such processor pj , the 2i−1 consecutive processors that follow
pj in the CW direction. This association assigns 2i−1 distinct processors to each of
the k processors. So there must be at least k + k · 2i−1 distinct processor in the
ring. Hence k(1 + 2i−1) ≤ n, and so we can weaken this bound by dropping 1, and
conclude that k · 2i−1 ≤ n, as desired.

Theorem 21.10 The BULLY algorithm has O(n log n) message complexity, where
n is the size of the ring.

Proof. Note that any processor in phase i, sends messages that are intended to travel
2i away and back in each direction (CW and CCW). This contributes at most 4 · 2i

messages per processor that enters phase number i. The contribution may be smaller
than 4 · 2i if a probe message gets swallowed on the way away from the processor.
Lemma 21.9 provides an upper bound on the number of processors that enter phase
number k. What is the highest phase that a processor can ever enter? The number
k of processors that can be in phase i is at most n/2i−1. So when n/2i−1 < 1, then
there can be no processor that ever enters phase i. Thus no processor can enter any
phase beyond phase number h = 1+dlog2 ne, because n < 2(h+1)−1. Finally, a single
processor sends one termination message that travels around the ring once. So the
total number of messages sent by the algorithm is at most

n +
1+dlog2 ne∑

i=0

(
n/2i−1 · 4 · 2i

)
= n +

1+dlog2 ne∑

i=0

8n = O(n log n)
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Burns [?] furthermore showed that the asynchronous leader election algorithm
is asymptotically optimal: Any uniform algorithm for electing a leader in an asyn-
chronous ring sends at least Ω(n log n) messages.

Theorem 21.11 Any uniform algorithm for electing a leader in an asynchronous
ring sends at least Ω(n log n) messages.

The proof builds wasteful executions of any algorithm on rings of size n/2. Then
two rings of size n/2 are pasted together in such a way that the wasteful executions
of the smaller rings can be combined and Θ(n) additional messages are received.

Exercises
21.3-1 Show that the simpli�ed BULLY algorithm has Ω(n2) message complexity,
by appropriately assigning identi�ers to processors on a ring of size n, and by deter-
mining how to delay processors and messages.

21.3-2 Show that the BULLY algorithm has Ω(n log n) message complexity.

21.3-3 Assume that messages can only be sent in CW direction, and design an
asynchronous algorithm for leader election on a ring that has O(n log n) message
complexity. Hint. Let processors work in phases. Each processor begins in the ac-
tive mode with a value equal to the identi�er of the processor, and under certain
conditions can enter the relay mode, where it just relays messages. An active pro-
cessor waits for messages from two active processors, and then inspects the values
sent by the processors, and decides whether to become the leader, remain active and
adopt one of the values, or start relaying. Determine how the decisions should be
made so as to ensure that if there are three or more active processors, then at least
one will remain active; and no matter what values active processors have in a phase,
at most half of them will still be active in the next phase.

21.4. Fault-Tolerant Consensus
The algorithms presented so far are based on the assumption that the system on
which they run is reliable. Here we present selected algorithms for unreliable dist-
ributed systems, where the active (or correct) processors need to coordinate their
activities based on common decisions.

It is inherently di�cult for processors to reach agreement in a distributed set-
ting prone to failures. Consider the deceptively simple problem of two failure-free
processors attempting to agree on a common bit using a communication medium
where messages may be lost. This problem is known as the two generals problem [9].
Here two generals must coordinate an attack using couriers that may be destroyed
by the enemy. It turns out that it is not possible to solve this problem using a �nite
number of messages. We prove this fact by contradiction. Assume that there is a
protocol used by processors A and B involving a �nite number of messages. Let us
consider such a protocol that uses the smallest number of messages, say k messages.
Assume without loss of generality that the last kth message is sent from A to B.
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Since this �nal message is not acknowledged by B, A must determine the decision
value whether or not B receives this message. Since the message may be lost, B must
determine the decision value without receiving this �nal message. But now both A
and B decide on a common value without needing the kth message. In other words,
there is a protocol that uses only k − 1 messages for the problem. But this contra-
dicts the assumption that k is the smallest number of messages needed to solve the
problem.

In the rest of this section we consider agreement problems where the communica-
tion medim is reliable, but where the processors are subject to two types of failures:
crash failures, where a processor stops and does not perform any further actions,
and byzantine failures, where a processor may exhibit arbitrary, or even malicious,
behavior as the result of the failure.

The algorithms presented deal with the so called consensus problem, �rst intro-
duced by Lamport, Pease, and Shostak [12, 16]. The consensus problem is a funda-
mental coordination problem that requires processors to agree on a common output,
based on their possibly con�icting inputs.

21.4.1. The Consensus Problem
We consider a system in which each processor pi has a special state component xi,
called the input and yi, called the output (also called the decision). The variable
xi initially holds a value from some well ordered set of possible inputs and yi is
unde�ned. Once an assignment to yi has been made, it is irreversible. Any solution
to the consensus problem must guarantee:
• Termination: In every admissible execution, yi is eventually assigned a value,

for every nonfaulty processor pi.
• Agreement: In every execution, if yi and yj are assigned, then yi = yj , for all

nonfaulty processors pi and pj . That is nonfaulty processors do not decide on
con�icting values.

• Validity: In every execution, if for some value v, xi = v for all processors pi,
and if yi is assigned for some nonfaulty processor pi, then yi = v. That is, if all
processors have the same input value, then any value decided upon must be that
common input.
Note that in the case of crash failures this validity condition is equivalent to

requiring that every nonfaulty decision value is the input of some processor. Once a
processor crashes it is of no interest to the algorithm, and no requirements are put
on its decision.

We begin by presenting a simple algorithm for consensus in a synchronous mes-
sage passing system with crash failures.

21.4.2. Consensus with Crash Failures
Since the system is synchronous, an execution of the system consists of a series of
rounds. Each round consists of the delivery of all messages, followed by one com-
putation event for every processor. The set of faulty processors can be di�erent in



21.4. Fault-Tolerant Consensus 2017

di�erent executions, that is, it is not known in advance. Let F be a subset of at
most f processors, the faulty processors. Each round contains exactly one computa-
tion event for the processors not in F and at most one computation event for every
processor in F . Moreover, if a processor in F does not have a computation event in
some round, it does not have such an event in any further round. In the last round in
which a faulty processor has a computation event, an arbitrary subset of its outgoing
messages are delivered.

Consensus in the presence of crash failures:

Code for processor pi, 0 ≤ i ≤ n− 1.
Initially V = {x}
round k, 1 ≤ k ≤ f + 1

1 send {v ∈ V : pi has not already sent v} to all processors
2 receive Si from pj , 0 ≤ j ≤ n− 1, j 6= i

3 V := V ∪⋃n−1
j=0 Sj

4 if k = f + 1 then y:= min(V )

In the previous algorithm, which is based on an algorithm by Dolev and
Strong [6], each processor maintains a set of the values it knows to exist in the
system. Initially, the set contains only its own input. In later rounds the processor
updates its set by joining it with the sets received from other processors. It then
broadcasts any new additions to the set of all processors. This continues for f + 1
rounds, where f is the maximum number of processors that can fail. At this point,
the processor decides on the smallest value in its set of values.

To prove the correctness of this algorithm we �rst notice that the algorithm
requires exactly f + 1 rounds. This implies termination. Moreover the validity con-
dition is clearly satis�ed since the decision value is the input of some processor. It
remains to show that the agreement condition holds. We prove the following lemma:

Lemma 21.12 In every execution at the end of round f + 1, Vi = Vj, for every
two nonfaulty processors pi and pj.

Proof. We prove the claim by showing that if x ∈ Vi at the end of round f +1 then
x ∈ Vj at the end of round f + 1.

Let r be the �rst round in which x is added to Vi for any nonfaulty processor
pi. If x is initially in Vi let r = 0. If r ≤ f then, in round r + 1 ≤ f + 1 pi sends x
to each pj , causing pj to add x to Vj , if not already present.

Otherwise, suppose r = f + 1 and let pj be a nonfaulty processor that receives
x for the �rst time in round f + 1. Then there must be a chain of f + 1 processors
pi1 , ...pif+1 that transfers the value x to pj . Hence pi1 sends x to pi2 in round one
etc. until pif+1 sends x to pj in round f + 1. But then pi1 , ...pif+1 is a chain of f + 1
processors. Hence at least one of them, say pik

must be nonfaulty. Hence pik
adds x

to its set in round k − 1 < r, contradicting the minimality of r.
This lemma together with the before mentioned observations hence implies the

following theorem.
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Theorem 21.13 The previous consensus algorithm solves the consensus problem
in the presence of f crash failures in a message passing system in f + 1 rounds.

The following theorem was �rst proved by Fischer and Lynch [7] for Byzantine
failures. Dolev and Strong [6] later extended it to crash failures. The Theorem shows
that the previous algorithm, assuming the given model, is optimal.

Theorem 21.14 There is no algorithm which solves the consensus problem in less
than f + 1 rounds in the presence of f crash failures, if n ≥ f + 2.

What if failures are not benign? That is can the consensus problem be solved in
the presence of Byzantine failures? And if so, how?

21.4.3. Consensus with Byzantine Failures
In a computation step of a faulty processor in the Byzantine model, the new state of
the processor and the message sent are completely unconstrained. As in the reliable
case, every processor takes a computation step in every round and every message sent
is delivered in that round. Hence a faulty processor can behave arbitrarily and even
maliciously. For example, it could send di�erent messages to di�erent processors.
It can even appear that the faulty processors coordinate with each other. A faulty
processor can also mimic the behavior of a crashed processor by failing to send any
messages from some point on.

In this case, the de�nition of the consensus problem is the same as in the message
passing model with crash failures. The validity condition in this model, however, is
not equivalent with requiring that every nonfaulty decision value is the input of
some processor. Like in the crash case, no conditions are put on the output of faulty
processors.

21.4.4. Lower Bound on the Ratio of Faulty Processors
Pease, Shostak and Lamport [16] �rst proved the following theorem.

Theorem 21.15 In a system with n processors and f Byzantine processors, there
is no algorithm which solves the consensus problem if n ≤ 3f .

21.4.5. A Polynomial Algorithm
The following algorithm uses messages of constant size, takes 2(f + 1) rounds, and
assumes that n > 4f . It was presented by Berman and Garay [4].

This consensus algorithm for Byzantine Failures contains f + 1 phases, each
taking two rounds. Each processor has a preferred decision for each phase, initially
its input value. At the �rst round of each phase, processors send their preferences to
each other. Let vk

i be the majority value in the set of values received by processor
pi at the end of the �rst round of phase k. If no majority exists, a default value v⊥
is used. In the second round of the phase processor pk, called the king of the phase,
sends its majority value vk

k to all processors. If pi receives more than n/2 + f copies
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of vk
i (in the �rst round of the phase) then it sets its preference for the next phase

to be vk
i ; otherwise it sets its preference to the phase kings preference, vk

k received
in the second round of the phase. After f + 1 phases, the processor decides on its
preference. Each processor maintains a local array pref with 4nentries.

We prove correctness using the following lemmas. Termination is immediate. We
next note the persistence of agreement:

Lemma 21.16 If all nonfaulty processors prefer v at the beginning of phase k, then
they all prefer v at the end of phase k, for all k, 1 ≤ k ≤ f + 1.

Proof. Since all nonfaulty processors prefer v at the beginning of phase k, they all
receive at least n− f copies of v (including their own) in the �rst round of phase k.
Since n > 4f , n− f > n/2 + f , implying that all nonfaulty processors will prefer v
at the end of phase k.

Consensus in the presence of Byzantine failures:

Code for processor pi, 0 ≤ i ≤ n− 1.
Initially pref[j] = v⊥, for any j 6= i
round 2k − 1, 1 ≤ k ≤ f + 1

1 send 〈pref[i]〉 to all processors
2 receive 〈vj〉 from pj and assign to pref[j], for all 0 ≤ j ≤ n− 1, j 6= i
3 let maj be the majority value of pref[0],...,pref[n− 1](v⊥ if none)
4 let mult be the multiplicity of maj

round 2k, 1 ≤ k ≤ f + 1
5 if i = k then send 〈maj〉 to all processors
6 receive 〈king-maj〉 from pk (v⊥ if none)
7 if mult >

n

2
+ f

8 then pref[i]:= maj
9 then pref[i]:= king-maj

10 if k = f + 1 then y :=pref[i]

This implies the validity condition: If they all start with the same input v they
will continue to prefer v and �nally decide on v in phase f +1. Agreement is achieved
by the king breaking ties. Since each phase has a di�erent king and there are f + 1
phases, at least one round has a nonfaulty king.

Lemma 21.17 Let g be a phase whose king pg is nonfaulty. Then all nonfaulty
processors �nish phase g with the same preference.

Proof. Suppose all nonfaulty processors use the majority value received from the
king for their preference. Since the king is nonfaulty, it sends the same message and
hence all the nonfaulty preferences are the same.

Suppose a nonfaulty processor pi uses its own majority value v for its preference.



2020 21. Distributed Algorithms

Thus pi receives more than n/s + f messages for v in the �rst round of phase g.
Hence every processor, including pg receives more than n/2 messages for v in the �rst
round of phase g and sets its majority value to v. Hence every nonfaulty processor
has v for its preference.

Hence at phase g+1 all processors have the same preference and by Lemma 21.16
they will decide on the same value at the end of the algorithm. Hence the algorithm
has the agreement property and solves consensus.

Theorem 21.18 There exists an algorithm for n processors which solves the con-
sensus problem in the presence of f Byzantine failures within (2(f +1) rounds using
constant size messages, if n > 4f .

21.4.6. Impossibility in Asynchronous Systems
As shown before, the consensus problem can be solved in synchronous systems in
the presence of both crash (benign) and Byzantine (severe) failures. What about
asynchronous systems? Under the assumption that the communication system is
completely reliable, and the only possible failures are caused by unreliable processors,
it can be shown that if the system is completely asynchronous that there is no
consensus algorithm even in the presence of only a single processor failure. The
result holds even if the processors only fail by crashing. The impossibility proof
relies heavily on the system being asynchronous. This result was �rst shown in
a breakthrough paper by Fischer, Lynch and Paterson [8]. It is one of the most
in�uential results in Distributed Computing.

The impossibility holds for both shared memory systems if only read/write re-
gisters are used, and for message passing systems. The proof �rst shows it for shared
memory systems. The result for message passing systems can then be obtained th-
rough simulation.

Theorem 21.19 There is no consensus algorithm for a read/write asynchronous
shared memory system that can tolerate even a single crash failure.

And through simulation it can be shown:

Theorem 21.20 There is no algorithm for solving the consensus problem in an
asynchronous message passing system with n processors, one of which may fail by
crashing.

Note that these results do not mean that consensus can never be solved in
asynchronous systems. Rather the results mean that there are no algorithms that
guarantee termination, agreement, and validity, in all executions. It is reasonable to
assume that agreement and validity are essential, that is, if a consensus algorithm
terminates, then agreement and validity are guaranteed. In fact there are e�cient and
useful algorithms for the consensus problem that are not guaranteed to terminate in
all executions. In practice this is often su�cient because the special conditions that
cause non-termination may be quite rare. Additionally, since in many real systems
one can make some timing assumption, it may not be necessary to provide a solution
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for asynchronous consensus.

Exercises

21.4-1 Show that the validity condition is equivalent to requiring that every non-
faulty processor decision be the input of some processor. [2]
21.4-2 Prove the correctness of Algorithmconsensus-crash.
21.4-3 Prove the correctness of the consensus algorithm in the presence of Byzan-
tine Failures.
21.4-4 Prove Theorem 21.20.
21.4-5 An alternative version of the consensus problem requires that the input value
of one distinguished processor (the general) be distributed to all the other processors
(the lieutenants). This problem is also called single source consensus. The conditions
that need to be satis�ed are:
• Termination: Every nonfaulty lieutenant must eventually decide,

• Agreement: All the nonfaulty lieutenants must have the same decision,

• Validity: If the general is nonfaulty, then the common decision value is the
general's input.

So if the general is faulty, then the nonfaulty processors need not decide on the
general's input, but they must still agree with each other. Consider the synchronous
message passing system with Byzantine faults. Show how to transform a solution to
the consensus problem 21.4.5 into a solution to the general's problem and vice versa.
What are the message and round overheads of your transformation? [2]

21.5. Logical Time, Causality, and Consistent State
In a distributed system it is often useful to compute a global state that consists of
the states of all processors. Having access to the global can allows us to reason about
the system properties that depend on all processors, for example to be able to detect
a deadlock. One may attempt to compute global state by stopping all processors,
and then gathering their states to a central location. Such a method is will-suited for
many distributed systems that must continue computation at all times. This section
discusses how one can compute global state that is quite intuitive, yet consistent, in
a precise sense. We �rst discuss a distributed algorithm that imposes a global order
on instructions of processors. This algorithm creates the illusion of a global clock
available to processors. Then we introduce the notion of one instruction causally
a�ecting other instruction, and an algorithm for computing which instruction a�ects
which. The notion turns out to be very useful in de�ning a consistent global state of
distributed system. We close the section with distributed algorithms that compute
a consistent global state of distributed system.
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21.5.1. Logical time
The design of distributed algorithms is easier when processors have access to (New-
tonian) global clock, because then each event that occurs in the distributed system
can be labeled with the reading of the clock, processors agree on the ordering of any
events, and this consensus can be used by algorithms to make decisions. However,
construction of a global clock is di�cult. There exist algorithms that approximate
the ideal global clock by periodically synchronizing drifting local hardware clocks.
However, it is possible to totally order events without using hardware clocks. This
idea is called the logical clock.

Recall that an execution is an interleaving of instructions of the n programs.
Each instruction can be either a computational step of a processor, or sending a
message, or receiving a message. Any instruction is performed at a distinct point of
global time. However, the reading of the global clock is not available to processors.
Our goal is to assign values of the logical clock to each instruction, so that these
values appear to be readings of the global clock. That is, it possible to postpone
or advance the instants when instructions are executed in such a way, that each
instruction x that has been assigned a value tx of the logical clock, is executed
exactly at the instant tx of the global clock, and that the resulting execution is a
valid one, in the sense that it can actually occur when the algorithm is run with the
modi�ed delays.

The Logical Clock algorithm assigns logical time to each instruction. Each pro-
cessor has a local variable called counter. This variable is initially zero and it gets
incremented every time processor executes an instruction. Speci�cally, when a pro-
cessor executes any instruction other than sending or receiving a message, the vari-
able counter gets incremented by one. When a processor sends a message, it incre-
ments the variable by one, and attaches the resulting value to the message. When a
processor receives a message, then the processor retrieves the value attached to the
message, then calculates the maximum of the value and the current value of counter,
increments the maximum by one, and assigns the result to the counter variable. Note
that every time instruction is executed, the value of counter is incremented by at
least one, and so it grows as processor keeps on executing instructions. The value
of logical time assigned to instruction x is de�ned as the pair (counter, id), where
counter is the value of the variable counter right after the instruction has been
executed, and id is the identi�er of the processor. The values of logical time form
a total order, where pairs are compared lexicographically. This logical time is also
called Lamport time. We de�ne tx to be a quotient counter + 1/(id + 1), which is
an equivalent way to represent the pair.

Beobachtung 21.1 For any execution, logical time satis�es three conditions
(i) if an instruction x is performed by a processor before an instruction y is per-

formed by the same processor, then the logical time of x is strictly smaller than
that of y,

(ii) any two distinct instructions of any two processors get assigned di�erent logical
times,

(iii) if instruction x sends a message and instruction y receives this message, then
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the logical time of x is strictly smaller than that of y.

Our goal now is to argue that logical clock provides to processors the illusion of
global clock. Intuitively, the reason why such an illusion can be created is that we
can take any execution of a deterministic algorithm, compute the logical time tx of
each instruction x, and run the execution again delaying or speeding up processors
and messages in such a way that each instruction x is executed at the instant tx
of the global clock. Thus, without access to a hardware clock or other external
measurements not captured in our model, the processors cannot distinguish the
reading of logical clock from the reading of a real global clock. Formally, the reason
why the re-timed sequence is a valid execution that is indistinguishable from the
original execution, is summarized in the subsequent corollary that follows directly
from Observation 21.1.

Korollar 21.2 For any execution α, let T be the assignment of logical time to
instructions, and let β be the sequence of instructions ordered by their logical time in
α. Then for each processor, the subsequence of instructions executed by the processor
in α is the same as the subsequence in β. Moreover, each message is received in β
after it is sent in β.

21.5.2. Causality
In a system execution, an instruction can a�ect another instruction by altering the
state of the computation in which the second instruction executes. We say that one
instruction can causally a�ect (or in�uence) another, if the information that one
instruction produces can be passed on to the other instruction. Recall that in our
model of distributed system, each instruction is executed at a distinct instant of
global time, but processors do not have access to the reading of the global clock.
Let us illustrate causality. If two instructions are executed by the same processor,
then we could say that the instruction executed earlier can causally a�ect the inst-
ruction executed later, because it is possible that the result of executing the former
instruction was used when the later instruction was executed. We stress the word
possible, because in fact the later instruction may not use any information produced
by the former. However, when de�ning causality, we simplify the problem of captu-
ring how processors in�uence other processors, and focus on what is possible. If two
instructions x and y are executed by two di�erent processors, then we could say that
instruction x can causally a�ect instruction y, when the processor that executes x
sends a message when or after executing x, and the message is delivered before or
during the execution of y at the other processor. It may also be the case that in�u-
ence is passed on through intermediate processors or multiple instructions executed
by processors, before reaching the second processor.

We will formally de�ne the intuition that one instruction can causally a�ect anot-
her in terms of a relation called happens before, and that relates pairs of instructions.
The relation is de�ned for a given execution, i.e., we �x a sequence of instructions
executed by the algorithm and instances of global clock when the instructions were
executed, and de�ne which pairs of instructions are related by the happens before
relation. The relation is introduced in two steps. If instructions x and y are executed
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by the same processor, then we say that x happens before y if and only if x is exe-
cuted before y. When x and y are executed by two di�erent processors, then we say
that x happens before y if and only if there is a chain of instructions and messages

snd1

↘
rcv2 . . . snd2

↘
. . .

↘
rcvk−1 . . . sndk−1

↘
rcvk

for k ≥ 2, such that snd1 is either equal to x or is executed after x by the same
processor that executes x; rcvk is either equal to y or is executed before y by the
same processor that executes y; rcvh is executed before sndh by the same processor,
2 ≤ h < k; and sndh sends a message that is received by rcvh+1 , 1 ≤ h < k.
Note that no instruction happens before itself. We write x <HB y when x happens
before y. We omit the reference to the execution for which the relation is de�ned,
because it will be clear from the context which execution we mean. We say that two
instructions x and y are concurrent when neither x <

HB
y nor y <

HB
x. The question

stands how processors can determine if one instruction happens before another in a
given execution according to our de�nition. This question can be answered through
a generalization of the Logical Clock algorithm presented earlier. This generalization
is called vector clocks.

The Vector Clocks algorithm allows processors to relate instructions, and this
relation is exactly the happens before relation. Each processor pi maintains a
vector Vi of n integers. The j-th coordinate of the vector is denoted by Vi[j].
The vector is initialized to the zero vector (0, . . . , 0). A vector is modi�ed each
time processor executes an instruction, in a way similar to the way counter was
modi�ed in the Logical Clock algorithm. Speci�cally, when a processor pi exe-
cutes any instruction other than sending or receiving a message, the coordinate
Vi[i] gets incremented by one, and other coordinates remain intact. When a pro-
cessor sends a message, it increments Vi[i] by one, and attaches the resulting
vector Vi to the message. When a processor pj receives a message, then the
processor retrieves the vector V attached to the message, calculates coordinate-
wise maximum of the current vector Vj and the vector V , except for coordinate
Vj [j] that gets incremented by one, and assigns the result to the variable Vj .

Vj [j] := Vj [j] + 1
for all k ∈ [n] \ {j}

Vj [k] := max{Vj [k], V [k]}

We label each instruction x executed by processor pi with the value of the vector
Vi right after the instruction has been executed. The label is denoted by V T (x) and
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is called vector timestamp of instruction x. Intuitively, V T (x) represents the know-
ledge of processor pi about how many instructions each processor has executed at
the moment when pi has executed instruction x. This knowledge may be obsolete.

Vector timestamps can be used to order instructions that have been executed.
Speci�cally, given two instructions x and y, and their vector timestamps V T (x) and
V T (y), we write that x ≤

V T
y when the vector V T (x) is majorized by the vector

V T (y) i.e., for all k, the coordinate V T (x)[k] is at most the corresponding coordinate
V T (y)[k]. We write x <

V T
y when x ≤

V T
y but V T (x) 6= V T (y).

The next theorem explains that the Vector Clocks algorithm indeed implements
the happens before relation, because we can decide if two instructions happen or not
before each other, just be comparing the vector timestamps of the instructions.

Theorem 21.21 For any execution and any two instructions x and y, x <HB y if
and only if x <V T y.

Proof. We �rst show the forward implication. Suppose that x <
HB

y. Hence x and
y are two di�erent instructions. If the two instructions are executed on the same
processor, then x must be executed before y. Only �nite number of instructions
have been executed by the time y has been executed. The Vector Clock algorithm
increases a coordinate by one as it calculates vector timestamps of instructions from
x until y inclusive, and no coordinate is ever decreased. Thus x <V T y. If x and
y were executed on di�erent processors, then by the de�nition of happens before
relation, there must be a �nite chain of instructions and messages leading from x
to y. But then by the Vector Clock algorithm, the value of a coordinate of vector
timestamp gets increased at each move, as we move along the chain, and so again
x <V T y.

Now we show the reverse implication. Suppose that it is not the case that x <
HB

y. We consider a few subcases always concluding that it is not that case that x <
V T

y.
First, it could be the case that x and y are the same instruction. But then obviously
vector clocks assigned to x and y are the same, and so it cannot be the case that
x <V T y. Let us, therefore, assume that x and y are di�erent instructions. If they
are executed by the same processor, then x cannot be executed before y, and so x
is executed after y. Thus, by monotonicity of vector timestamps, y <

V T
x, and so

it is not the case that x <
V T

y. The �nal subcase is when x and y are executed by
two distinct processors pi and pj . Let us focus on the component i of vector clock
Vi of processor pi right after x was executed. Let its value be k. Recall that other
processors can only increase the value of their components i by adopting the value
sent by other processors. Hence, in order for the value of component i of processor pj

to be k or more at the moment y is executed, there must be a chain of instructions
and messages that passes a value at least k, originating at processor pi. This chain
starts at x or at an instruction executed by pi subsequent to x. But the existence of
such chain would imply that x happens before y, which we assumed was not the case.
So the component i of vector clock V T (y) is strictly smaller than the component i
of vector clock V T (x). Thus it cannot be the case that x <

V T
y.

This theorem tells us that we can decide if two distinct instructions x and y are
concurrent, by checking that it is not the case that V T (x) < V T (y) nor is it the
case that V T (x) > V T (y).
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21.5.3. Consistent state
The happens before relation can be used to compute a global state of distributed
system, such that this state is in some sense consistent. Shortly, we will formally
de�ne the notion of consistency. Each processor executes instructions. A cut K is
de�ned as a vector K = (k1, . . . , kn) of non-negative integers. Intuitively, the vector
K denotes the states of processors. Formally, ki denotes the number of instructions
that processor pi has executed. Not all cuts correspond to collections of states of
distributed processors that could be considered natural or consistent. For example,
if a processor pi has received a message from pj and we record the state of pi in the
cut by making ki appropriately large, but make kj so small that the cut contains
the state of the sender before the moment when the message was sent, then we
could say that such cut is not natural � there are instructions recorded in the cut
that are causally a�ected by instructions that are not recorded in the cut. Such cuts
we consider not consistent and so undesirable. Formally, a cut K = (k1, . . . , kn) is
inconsistent when there are processors pi and pj such that the instruction number
ki of processor pi is causally a�ected by an instruction subsequent to instruction
number kj of processor pj . So in an inconsistent cut there is a message that �crosses�
the cut in a backward direction. Any cut that is not inconsistent is called a consistent
cut.

The Consistent Cut algorithm uses vector timestamps to �nd a consistent cut.
We assume that each processor is given the same cut K = (k1, . . . , kn) as an in-
put. Then processors must determine a consistent cut K ′ that is majorized by K.
Each processor pi has an in�nite table V Ti[0, 1, 2, . . .] of vectors. Processor executes
instructions, and stores vector timestamps in consecutive entries of the table. Speci-
�cally, entry m of the table is the vector timestamp V Ti[m] of the m-th instruction
executed by the processor; we de�ne V Ti[0] to be the zero vector. Processor pi begins
calculating a cut right after the moment when the processor has executed instruction
number ki. The processor determines the largest number k′i ≥ 0 that is at most ki,
such that the vector V Ti[k′i] is majorized by K. The vector K ′ = (k′1, . . . , k

′
n) that

processors collectively �nd turns out to be a consistent cut.

Theorem 21.22 For any cut K, the cut K ′ computed by the Consistent Cut algo-
rithm is a consistent cut majorized by K.

Proof. First observe that there is no need to consider entries of V Ti further than
ki. Each of these entries is not majorized by K, because the i-th coordinate of any
of these vectors is strictly larger than ki. So we can indeed focus on searching among
the �rst ki entries of V Ti. Let k′i ≥ 0 be the largest entry such that the vector V Ti[k′i]
is majorized by the vector K. We know that such vector exists, because V Ti[0] is a
zero vector, and such vector is majorized by any cut K.

We argue that (k′1, . . . , k
′
n) is a consistent cut by way of contradiction. Suppose

that the vector (k′1, . . . , k
′
n) is an inconsistent cut. Then, by de�nition, there are

processors pi and pj such that there is an instruction x of processor pi subsequent to
instruction number k′i, such that x happens before instruction number k′j of processor
pj . Recall that k′i is the furthest entry of V Ti majorized by K. So entry k′i +1 is not
majorized by K, and since all subsequent entries, including the one for instruction
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x, can have only larger coordinates, the entries are not majorized by K either. But,
x happens before instruction number k′j , so entry k′j can only have lager coordinates
than respective coordinates of the entry corresponding to x, and so V Tj [k′j ] cannot
be majorized by K either. This contradicts the assumption that V Tj [k′j ] is majorized
by K. Therefore, (k′1, . . . , k

′
n) must be a consistent cut.

There is a trivial algorithm for �nding a consistent cut. The algorithm picks
K ′ = (0, . . . , 0). However, the Consistent Cut algorithm is better in the sense that
the consistent cut found in maximal. That this is indeed true, is left as an exercise.

There is an alternative way to �nd a consistent cut. The Consistent Cut algo-
rithm requires that we attach vector timestamps to messages and remember vector
timestamps for all instructions executed so far by the algorithm A which consistent
cut we want to compute. This may be too costly. The algorithm called Distributed
Snapshot avoids this cost. In the algorithm, a processor initiates the calculation of
consistent cut by �ooding the network with a special message that acts like a sword
that cuts the execution of algorithm A consistently. In order to prove that the cut is
indeed consistent, we require that messages are received by the recipient in the or-
der they were sent by the sender. Such ordering can be implemented using sequence
number.

In the Distributed Snapshot algorithm, each processor pi has a variable called
counter that counts the number of instructions of algorithm A executed by the pro-
cessor so far. In addition the processor has a variable ki that will store the i-th
coordinate of the cut. This variable is initialized to ⊥. Since the variables counter
only count the instructions of algorithm A, the instructions of Distributed Snapshot
algorithm do not a�ect the counter variables. In some sense the snapshot algorithm
runs in the �background�. Suppose that there is exactly one processor that can de-
cide to take a snapshot of the distributed system. Upon deciding, the processor
��oods� the network with a special message <Snapshot>. Speci�cally, the proces-
sor sends the message to all its neighbors and assigns counter to ki. Whenever a
processor pj receives the message and the variable kj is still ⊥, then the processor
sends <Snapshot> message to all its neighbors and assigns current to kj . The sen-
ding of <Snapshot> messages and assignment are done by the processor without
executing any instruction of A (we can think of Distributed Snapshot algorithm as
an �interrupt�). The algorithm calculates a consistent cut.

Theorem 21.23 Let for any processors pi and pj, the messages sent from pi to pj

be received in the order they are sent. The Distributed Snapshot algorithm eventually
�nds a consistent cut (k1, . . . , kn). The algorithm sends O(e) messages, where e is
the number of edges in the graph.

Proof. The fact that each variable ki is eventually di�erent from ⊥ follows from our
model, because we assumed that instructions are eventually executed and messages
are eventually received, so the <Snapshot> messages will eventually reach all nodes.

Suppose that (k1, . . . , kn) is not a consistent cut. Then there is a processor pj

such that instruction number kj + 1 or later sends a message <M> other than
<Snapshot>, and the message is received on or before a processor pi executes inst-
ruction number ki. So the message <M> must have been sent after the message
<Snapshot> was sent from pj to pi. But messages are received in the order they
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are sent, so pi processes <Snapshot> before it processes <M>. But then message
<M> arrives after snapshot was taken at pi. This is a desired contradiction.

Exercises
21.5-1 Show that logical time preserves the happens before relation. That is show
that if x <

HB
y, then LT (x) < LT (y).

21.5-2 Show that any vector clock that captures concurrency between n processors
must have at least n coordinates.

21.5-3 Show that the vector K ′ calculated by the Consistent Cut algorithm is in
fact a maximal consistent cut majorized by K. That is that there is no K ′′ that
majorizes K ′ and is di�erent from K ′, such that K ′′ is majorized by K.

21.5-4 Imagine that there are n banks that are interconnected. Each bank i starts
with an amount of money mi. Banks do not remember the initial amount of money.
Banks keep on transferring money among themselves by sending messages of type
<10> that represent the value of a transfer. At some point of time a bank decides to
�nd the total amount of money in the system. Design an algorithm for calculating
m1 + . . . + mn that does not stop monetary transactions.

21.6. Communication services
Among the fundamental problems in distributed systems where processors commu-
nicate by message passing are the tasks of spreading and gathering information.
Many distributed algorithms for communication networks can be constructed using
building blocks that implement various broadcast and multicast services. In this sec-
tion we present some basic communication services in the message-passing model.
Such services typically need to satisfy some quality of service requirements dealing
with ordering of messages and reliability. We �rst focus on broadcast services, then
we discuss more general multicast services.

21.6.1. Properties of Broadcast Services
In the broadcast problem, a selected processor pi, called a source or a sender, has
the message m, which must be delivered to all processors in the system (including
the source). The interface of the broadcast service is speci�ed as follows:
bc-sendi(m, qos) : an event of processor pi that sends a message m to all processors.
bc-recvi(m, j, qos) : an event of processor pi that receives a message m sent by

processor pj .
In above de�nitions qos denotes the quality of service provided by the system. We
consider two kinds of quality service:
Ordering: how the order of received messages depends on the order of messages
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sent by the source?

Reliability: how the set of received messages depends on the failures in the system?

The basic model of a message-passing distributed system normally does not guaran-
tee any ordering or reliability of messaging operations. In the basic model we only
assume that each pair of processors is connected by a link, and message delivery is
independent on each link � the order of received messages may not be related to
the order of the sent messages, and messages may be lost in the case of crashes of
senders or receivers.

We present some of the most useful requirements for ordering and reliability of
broadcast services. The main question we address is how to implement a stronger
service on top of the weaker service, starting with the basic system model.

Variants of ordering requirements
Applying the de�nition of happens before to messages, we say that message m hap-
pens before message m′ if either m and m′ are sent by the same processor and m is
sent before m′, or the bc-recv event for m happens before the bc-send event for m′.

We identify four common broadcast services with respect to the message ordering
properties:

Basic Broadcast: no order of messages is guaranteed.

Single-Source FIFO (�rst-in-�rst-out): messages sent by one processor are re-
ceived by each processor in the same order as sent; more precisely, for all proces-
sors pi, pj and messages m,m′, if processor pi sends m before it sends m′ then
processor pj does not receive message m′ before message m.

Causal Order: messages are received in the same order as they happen; more pre-
cisely, for all messages m,m′ and every processor pi, if m happens before m′

then pi does not receive m′ before m.

Total Order: the same order of received messages is preserved in each processor;
more precisely, for all processors pi, pj and messages m, m′, if processor pi recei-
ves m before it receives m′ then processor pj does not receive message m′ before
message m.

It is easy to see that Causal Order implies Single-Source FIFO requirements (since
the relation �happens before� for messages includes the order of messages sent by
one processor), and each of the given services trivially implies Basic Broadcast.
There are no additional relations between these four services. For example, there
are executions that satisfy Single-Source FIFO property, but not Causal Order.
Consider two processors p0 and p1. In the �rst event p0 broadcasts message m,
next processor p1 receives m, and then p1 broadcasts message m′. It follows that m
happens before m′. But if processor p0 receives m′ before m, which may happen,
then this execution violates Causal Order. Note that trivially Single-Source FIFO
requirement is preserved, since each processor broadcasts only one message.

We denote by bb the Basic Broadcast service, by ssf the Single-Source FIFO, by
co the Causal Order and by to the Total Order service.



2030 21. Distributed Algorithms

Reliability requirements
In the model without failures we would like to guarantee the following properties of
broadcast services:

Integrity: each message m received in event bc-recv has been sent in some bc-send
event.

No-Duplicates: each processor receives a message not more than once.

Liveness: each message sent is received by all processors.

In the model with failures we de�ne the notion of reliable broadcast service, which
satis�es Integrity, No-Duplicates and two kinds of Liveness properties:

Nonfaulty Liveness: each message m sent by non-faulty processor pi must be re-
ceived by every non-faulty processor.

Faulty Liveness: each message sent by a faulty processor is either received by all
non-faulty processors or by none of them.

We denote by rbb the Reliable Basic Broadcast service, by rssf the Reliable
Single-Source FIFO, by rco the Reliable Causal Order, and by rto the Reliable
Total Order service.

21.6.2. Ordered Broadcast Services
We now describe implementations of algorithms for various broadcast services.

Implementing Basic Broadcast on top of asynchronous point-to-point
messaging
The bb service is implemented as follows. If event bc-sendi(m, bb) occurs then pro-
cessor pi sends message m via every link from pi to pj , where 0 ≤ i ≤ n − 1. If a
message m comes to processor pj then it enables event bc-recvj(m, i, bb).

To provide reliability we do the following. We build the reliable broadcast on
the top of Basic Broadcast servise. When bc-sendi(m, rbb) occurs, processor pi enab-
les event bc-sendi(〈m, i〉, bb). If event bc-recvj(〈m, i〉, k, bb) occurs and message-
coordinate m appears for the �rst time then processor pj �rst enables event bc-
sendj(〈m, i〉, bb) (to inform other non-faulty processors about message m in case
when processor pi is faulty), and next enables event bc-recvj(m, i, rbb).

We prove that the above algorithm provides reliability for the Basic Broadcast
service. First observe that Integrity and No-Duplicates properties follow directly
from the fact that each processor pj enables bc-recvj(m, i, rbb) only if message-
coordinate m is received for the �rst time. Nonfaulty Liveness is preserved since
links between non-faulty processors enables events bc-recvj(·, ·, bb) correctly. Faulty
Liveness is guaranteed by the fact that if there is a non-faulty processor pj which
receives message m from the faulty source pi, then before enabling bc-recvj(m, i, rbb)
processor pj sends message m using bc-sendj event. Since pj is non-faulty, each non-
faulty processor pk gets message m in some bc-recvk(〈m, i〉, ·, bb) event, and then
accepts it (enabling event bc-recvk(m, i, rbb)) during the �rst such event.
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Implementing Single-Source FIFO on top of Basic Broadcast service
Each processor pi has its own counter (timestamp), initialized to 0. If event bc-
sendi(m, ssf) occurs then processor pi sends message m with its current timestamp
attached, using bc-sendi(< m, timestamp >, bb). If an event bc-recvj(< m, t >
, i, bb) occurs then processor pj enables event bc-recvj(m, i, ssf) just after events bc-
recvj(m0, i, ssf), ... , bc-recvj(mt−1, i, ssf) have been enabled, where m0, . . . ,mt−1

are the messages such that events bc-recvj(< m0, 0 >, i, bb),...,bc-recvj(< mt−1, t−
1 >, i, bb) have been enabled.

Note that if we use reliable Basic Broadcast instead of Basic Broadcast as the
background service, the above implementation of Single-Source FIFO becomes Re-
liable Single-Source FIFO service. We leave the proof to the reader as an exercise.

Implementing Causal Order and Total Order on the top of Single-Source
FIFO service
We present an Ordered Broadcast Algorithm which works in the asynchronous
message-passing system providing Single-Source FIFO broadcast service. It uses the
idea of timestamps, but in more advanced way than in the implementation of ssf .
We denote by cto the service satisfying causal and total orders requirements.

Each processor pi maintains in a local array T its own increasing counter (ti-
mestamp), and the estimated values of timestamps of other processors. Timestamps
are used to mark messages before sending � if pi is going to broadcast a message,
it increases its timestamp and uses it to tag this message (lines 11-13). During the
execution processor pi estimates values of timestamps of other processors in the lo-
cal vector T � if processor pi receives a message from processor pj with a tag t
(timestamp of pj), it puts t into T [j] (lines 23 and 32). Processor pi sets its current
timestamp to be the maximum of the estimated timestamps in the vector T plus
one (lines 24-26). After updating the timestamp processor sends an update message.
Processor accepts a message m with associated timestamp t from processor j if pair
(t, j) is the smallest among other received messages (line 42), and each processor
has at least as large a timestamp as known by processor pi (line 43). The details are
given in the code below.
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Ordered Broadcast Algorithm
Code for any processor pi, 0 ≤ i ≤ n− 1

01 initialization
02 T [j] := 0 for every 0 ≤ j ≤ n− 1

11 if bc-sendi(m, cto) occurs then
12 T [i] := T [i] + 1
13 enable bc-sendi(< m,T [i] >, ssf)

21 if bc-recvi(< m, t >, j, ssf) occurs then
22 add triple (m, t, j) to pending
23 T [j] := t
24 if t > T [i] then
25 T [i] := t
26 enable bc-sendi(< update, T [i] >, ssf)

31 if bc-recvi(< update, t >, j, ssf) occurs then
32 T [j] := t

41 if
42 (m, t, j) is the pending triple with the smallest (t, j), and
43 t ≤ T [k] for every 0 ≤ k ≤ n− 1
44 then
45 enable bc-recvi(m, j, cto)
46 remove triple (m, t, j) from pending

Algorithm Ordered Broadcast satis�es the Causal Order requirement. We leave
the proof to the reader as an exercise (in the latter part we show how to achieve
stronger Reliable Causal Order service and provide the proof for that stronger case).

Theorem 21.24 Algorithm Ordered Broadcast satis�es the Total Order require-
ment.

Proof: Integrity follows from the fact that each processor can enable event bc-
recvi(m, j, cto) only if the triple (m, t, j) is pending (lines 41-45), which may happen
after receiving a message m from processor j (lines 21-22). No-Duplicates property
is guaranteed by the fact that there is at most one pending triple containing message
m sent by processor j (lines 13 and 21-22).

Liveness follows from the fact that each pending triple satis�es conditions in
lines 42-43 in some moment of the execution. The proof of this fact is by induction
on the events in the execution � suppose to the contrary that (m, t, j) is the triple
with smallest (t, j) which does not satisfy conditions in lines 42-43 at any moment
of the execution. It follows that there is a moment from which triple (m, t, j) has
smallest (t, j) coordinates among pending triples in processor pi. Hence, starting
from this moment, it must violate condition in line 43 for some k. Note that kNEi, j,
by updating rules in lines 23-25. It follows that processor pi never receives a message
from pk with timestamp greater than t − 1, which by updating rules in lines 24-26
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means that processor pk never receives a message < m, t > from j, which contradicts
the liveness property of ssf broadcast service.

To prove Total Order property it is su�cient to prove that for every processor pi

and messages m,m′ sent by processors pk, pl with timestamps t, t′ respectively, each
of the triples (m, t, k), (m′, t′, l) are accepted according to the lexicographic order of
(t, k), (t′, l). There are two cases.

Case 1. Both triples are pending in processor pi at some moment of the execu-
tion. Then condition in line 42 guarantees acceptance in order of (t, k), (t′, l).

Case 2. Triple (m, t, k) (without loss of generality) is accepted by processor
pi before triple (m′, t′, l) is pending. If (t, k) < (t′, l) then still the acceptance is
according to the order of (t, k), (t′, l). Otherwise (t, k) > (t′, l), and by condition in
line 43 we get in particular that t ≤ T [l], and consequently t′ ≤ T [l]. This can not
happen because of the ssf requirement and the assumption that processor pi has
not yet received message < m′, t′ > from l via the ssf broadcast service.

Now we address reliable versions of Causal Order and Total Order services. A
Reliable Causal Order requirements can be implemented on the top of Reliable Basic
Broadcast service in asynchronous message-passing system with processor crashes
using the following algorithm. It uses the same data structures as previous Orde-
red broadcast Algorithm. The main di�erence between Reliable Causally Ordered
Broadcast Algorithm and Ordered Broadcast Algorithm are as follows: instead of
using integer timestamps processors use vector timestamps T , and they do not esti-
mate timestamps of other processors, only compare in lexicographic order their own
(vector) timestamps with received ones. The intuition behind vector timestamp of
processor pi is that it stores information how many messages have been sent by pi

and how many have been accepted by pi from every pk, where kNEi.
In the course of the algorithm processor pi increases corresponding position i

in its vector timestamp T before sending a new message (line 12), and increases
jth position of its vector timestamp after accepting new message from processor pj

(line 38). After receiving a new message from processor pj together with its vector
timestamp T̂ , processor pi adds triple (m, T̂ , j) to pending and accepts this triple if
it is �rst not accepted message received from processor pj (condition in line 33) and
the number of accepted messages (from each processor pkNEpi) by processor pj was
not bigger in the moment of sending m than it is now in processor pi (condition in
line 34). Detailed code of the algorithm follows.
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Reliable Causally Ordered Broadcast Algorithm
Code for any processor pi, 0 ≤ i ≤ n− 1

01 initialization
02 T [j] := 0 for every 0 ≤ j ≤ n− 1
03 pending list is empty

11 if bc-sendi(m, rco) occurs then
12 T [i] := T [i] + 1
13 enable bc-sendi(< m,T >, rbb)

21 if bc-recvi(< m, T̂ >, j, rbb) occurs then
22 add triple (m, T̂ , j) to pending

31 if
32 (m, T̂ , j) is the pending triple, and
33 T̂ [j] = T [j] + 1, and
34 T̂ [k] ≤ T [k] for every kNEi
35 then
36 enable bc-recvi(m, j, rco)
37 remove triple (m, T̂ , j) from pending
38 T [j] := T [j] + 1

We argue that Reliable Causally Ordered Broadcast algorithm provides Reliable
Causal Order broadcast service on the top of the system equipped with the Reliable
Basic Broadcast service. Integrity and No-Duplicate properties are guaranteed by rbb
broadcast service and facts that each message is added to pending at most once and
non-received message is never added to pending. Nonfaulty and Faulty Liveness can
be proved by one induction on the execution, using facts that non-faulty processors
have received all messages sent, which guarantees that conditions in lines 33-34 are
eventually satis�ed. Causal Order requirement holds since if message m happens
before message m′ then each processor pi accepts messages m,m′ according to the
lexicographic order of T̂ , T̂ ′, and these vector-arrays are comparable in this case.
Details are left to the reader.

Note that Reliable Total Order broadcast service can not be implemented in the
general asynchronous setting with processor crashes, since it would solve consensus in
this model � �rst accepted message would determine the agreement value (against
the fact that consensus is not solvable in the general model).

21.6.3. Multicast services
Multicast services are similar to the broadcast services, except each multicast mes-
sage is destined for a speci�ed subset of all processors. In the multicast service we
provide two types of events, where qos denotes a quality of service required:

mc-sendi(m,D, qos) : an event of processor pi which sends a message m together
with its id to all processors in a destination set D ⊆ {0, . . . , n− 1}.
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mc-recvi(m, j, qos) : an event of processor pi which receives a message m sent by
processor pj .

Note that the event mc-recv is similar to bc-recv.
As in case of a broadcast service, we would like to provide useful ordering and

reliable properties of the multicast services. We can adapt ordering requirements
from the broadcast services. Basic Multicast does not require any ordering properties.
Single-Source FIFO requires that if one processor multicasts messages (possibly to
di�erent destination sets), then the messages received in each processors (if any)
must be received in the same order as sent by the source. De�nition of Causal
Order remains the same. Instead of Total Order, which is di�cult to achieve since
destination sets may be di�erent, we de�ne another ordering property:

Sub-Total Order: orders of received messages in all processors may be extended to
the total order of messages; more precisely, for any messages m,m′ and processors
pi, pj , if pi and pj receives both messages m, m′ then they are received in the
same order by pi and pj .

The reliability conditions for multicast are somewhat di�erent from the conditi-
ons for reliable broadcast.

Integrity: each message m received in event mc-recvi was sent in some mc-send
event with destination set containing processor pi.

No Duplicates: each processor receives a message not more than once.

Nonfaulty Liveness: each message m sent by non-faulty processor pi must be re-
ceived in every non-faulty processor in the destination set.

Faulty Liveness: each message sent by a faulty processor is either received by all
non-faulty processors in the destination set or by none of them.

One way of implementing ordered and reliable multicast services is to use
the corresponding broadcast services (for Sub-Total Order the corresponding bro-
adcast requirement is Total Order). More precisely, if event mc-sendi(m,D, qos)
occurs processor pi enables event bc-sendi(< m,D >, qos). When an event bc-
recvj(< m, D >, i, qos) occurs, processor pj enables event mc-recvj(m, i, qos) if
pj ∈ D, otherwise it ignores this event. The proof that such method provides required
multicast quality of service is left as an exercise.

21.7. Rumor Collection Algorithms
Reliable multicast services can be used as building blocks in constructing algorithms
for more advanced communication problems. In this section we illustrate this method
for the problem of collecting rumors by synchronous processors prone to crashes.
(Since we consider only fair executions, we assume that at least one processor remains
operational to the end of the computation).
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21.7.1. Rumor Collection (Gossip) Problem and Requirements
The classic problem of collecting rumors, or gossip, is de�ned as follows:

At the beginning, each processor has its distinct piece of information,
called a rumor, the goal is to make every processor know all the rumors.

However in the model with processor crashes we need to re-de�ne the gossip problem
to respect crash failures of processors. Both Integrity and No-Duplicates properties
are the same as in the reliable broadcast service, the only di�erence (which follows
from the speci�cation of the gossip problem) is in Liveness requirements:
Non-faulty Liveness: the rumor of every non-faulty processor must be known by

each non-faulty processor.
Faulty Liveness: if processor pi has crashed during execution then each non-faulty

processor either knows the rumor of pi or knows that pi is crashed.
The e�ciency of gossip algorithms is measured in terms of time and message

complexity. Time complexity measures number of (synchronous) steps from the be-
ginning to the termination. Message complexity measures the total number of point-
to-point messages sent (more precisely, if a processor sends a message to three other
processors in one synchronous step, it contributes three to the message complexity).

The following simple algorithm completes gossip in just one synchronous step:
each processor broadcasts its rumor to all processors. The algorithm is correct, be-
cause each message received contains a rumor, and a message not received means
the failure of its sender. A drawback of such a solution is that a quadratic number
of messages could be sent, which is quite ine�cient.

We would like to perform gossip not only quickly, but also with fewer point-
to-point messages. There is a natural trade-o� between time and communication.
Note that in the system without processor crashes such a trade-o� may be achie-
ved, e.g., sending messages over the (almost) complete binary tree, and then time
complexity is O(log n), while the message complexity is O(n log n). Hence by slightly
increasing time complexity we may achieve almost linear improvement in message
complexity. However, if the underlying communication network is prone to failu-
res of components, then irregular failure patterns disturb a �ow of information and
make gossiping last longer. The question we address in this section is what is the
best trade-o� between time and message complexity in the model with processor
crashes?

21.7.2. Efficient Gossip Algorithms
In this part we describe the family of gossip algorithms, among which we can �nd
some e�cient ones. They are all based on the same generic code, and their e�ciency
depends on the quality of two data structures put in the generic algorithm. Our goal
is to prove that we may �nd some of those data structures that obtained algorithm
is always correct, and e�cient if the number of crashes in the execution is at most
f , where f ≤ n− 1 is a parameter.

We start with description of these structures: communication graph and com-
munication schedules.
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Communication graph
A graph G = (V, E) consists of a set V of vertices and a set E of edges. Graphs
in this paper are always simple, which means that edges are pairs of vertices, with
no direction associated with them. Graphs are used to describe communication pat-
terns. The set V of vertices of a graph consists of the processors of the underlying
distributed system. Edges in E determine the pairs of processors that communicate
directly by exchanging messages, but this does not necessarily mean an existence
of a physical link between them. We abstract form the communication mechanism:
messages that are exchanged between two vertices connected by an edge in E may
need to be routed and traverse a possibly long path in the underlying physical com-
munication network. Graph topologies we use, for a given number n of processors,
vary depending on an upper bound f on the number of crashes we would like to to-
lerate in an execution. A graph that matters, at a given point in an execution, is the
one induced by the processors that have not crashed till this step of the execution.

To obtain an e�cient gossip algorithm, communication graphs should satisfy
some suitable properties, for example the following R(n, f) property:

De�nition 21.3 Let f < n be a pair of positive integers. Graph G is said to satisfy
property R(n, f), if G has n vertices, and if, for each subgraph R ⊆ G of size at
least n− f , there is a subgraph P (R) of G, such that the following hold:

1 : P (R) ⊆ R � inheritance
2 : |P (R)| = |R|/7 � large size
3 : The diameter of P (R) is at most 2 + 30 ln n � logarithmic communication
4 : If R1 ⊆ R2, then P (R1) ⊆ P (R2) � monotonicity.
Observe that graph P (R) is connected, even if R is not, since its diameter is

�nite. The following result justi�es that graphs satisfying property R(n, f) can be
constructed.

Theorem 21.25 For each f < n, there exists a graph G(n, f) satisfying pro-
perty R(n, f). The maximum degree ∆ of graph G(n, f) is O

(
n

n−f

)1.837.

Communication schedules
A local permutation is a permutation of all the integers in the range [0..n − 1]. We
assume that prior the computation there is given set Π of n local permutations.
Each processor pi has such a permutation πi from Π. For simplicity we assume that
πi(0) = pi. Local permutation is used to collect rumor in systematic way according
to the order given by this permutation, while communication graphs are rather used
to exchange already collected rumors within large and compact non-faulty graph
component.

Generic algorithm
We start with specifying a goal that gossiping algorithms need to achieve. We say
that processor pi has heard about processor pj if either pi knows the original input
rumor of pj or p knows that pj has already failed. We may reformulate correctness
of a gossiping algorithm in terms of hearing about other processors: algorithm is
correct if Integrity and No-Duplicates properties are satis�ed and if each processor
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has hard about any other processor by the termination of the algorithm.
The code of a gossiping algorithm includes objects that depend on the number n

of processors in the system, and also on the bound f < n on the number of failures
which are �e�ciently tolerated� (if the number of failures is at most f then message
complexity of design algorithm is small). The additional parameter is a termination
threshold τ which in�uences time complexity of the speci�c implementation of the
generic gossip scheme. Our goal is to construct the generic gossip algorithm which
is correct for any additional parameters f, τ and any communication graph and set
of schedules, while e�cient for some values f, τ and structures G(n, f) and Π.

Each processor starts gossiping as a collector. Collectors seek actively informa-
tion about rumors of the other processors, by sending direct inquiries to some of
them. A collector becomes a disseminator after it has heard about all the proces-
sors. Processors with this status disseminate their knowledge by sending local views
to selected other processors.
Local views. Each processor pi starts with knowing only its ID and its input
information rumori. To store incoming data, processor pi maintains the following
arrays:

Rumorsi, Activei and Pendingi,

each of size n. All these arrays are initialized to store the value nil. For an array Xi

of processor pi, we denote its jth entry by Xi[j] - intuitively this entry contains some
information about processor pj . The array Rumor is used to store all the rumors that
a processor knows. At the start, processor pi sets Rumorsi[i] to its own input rumori.
Each time processor pi learns some rumorj , it immediately sets Rumorsi[j] to this
value. The array Active is used to store a set of all the processors that the owner
of the array knows as crashed. Once processor pi learns that some processor pj has
failed, it immediately sets Activei[j] to failed. Notice that processor pi has heard
about processor pj , if one among the values Rumorsi[j] and Activei[j] is not equal
to nil.

The purpose of using the array Pending is to facilitate dissemination. Each
time processor pi learns that some other processor pj is fully informed, that is,
it is either a disseminator itself or has been noti�ed by a disseminator, then it
marks this information in Pendingi[j]. Processor pi uses the array Pendingi to send
dissemination messages in a systematic way, by scanning Pendingi to �nd those
processors that possibly still have not heard about some processor.

The following is a useful terminology about the current contents of the arrays
Active and Pending. Processor pj is said to be active according to pi, if pi has not
yet received any information implying that pj crashed, which is the same as having
nil in Activei[j]. Processor pj is said to need to be noti�ed by pi if it is active
according to pi and Pendingi[j] is equal to nil.
Phases. An execution of a gossiping algorithm starts with the processors initializing
all the local objects. Processor pi initializes its list Rumorsi with nil at all the
locations, except for the ith one, which is set equal to rumori. The remaining part of
execution is structured as a loop, in which phases are iterated. Each phase consists
of three parts: receiving messages, local computation, and multicasting messages.
Phases are of two kinds: regular phase and ending phase. During regular phases
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processor: receives messages, updates local knowledge, checks its status, sends its
knowledge to neighbors in communication graphs as well as inquiries about rumors
and replies about its own rumor. During ending phases processor: receives messages,
sends inquiries to all processors from which it has not heard yet, and replies about its
own rumor. The regular phases are performed τ times; the number τ is a termination
threshold. After this, the ending phase is performed four times. This de�nes a generic
gossiping algorithm.

Generic Gossip Algorithm
Code for any processor pi, 0 ≤ i ≤ n− 1

01 initialization
02 processor pi becomes a collector
03 initialization of arrays Rumorsi, Activei and Pendingi

11 repeat τ times
12 perform regular phase

20 repeat 4 times
21 perform ending phase

Now we describe communication and kinds of messages used in regular and
ending phases.
Graph and range messages used during regular phases. A processor pi may
send a message to its neighbor in the graph G(n, f), provided that it is is still active
according to pi. Such a message is called a graph one. Sending these messages only is
not su�cient to complete gossiping, because the communication graph may become
disconnected as a result of node crashes. Hence other messages are also sent, to cover
all the processors in a systematic way. In this kind of communication processor pi

considers the processors as ordered by its local permutation πi, that is, in the order
πi(0), πi(1), . . . , πi(n−1). Some of additional messages sent in this process are called
range ones.

During regular phase processors send the following kind of range messages: in-
quiring, reply and notifying messages. A collector pi sends an inquiring message to
the �rst processor about which pi has not heard yet. Each recipient of such a message
sends back a range message that is called a reply one.

Disseminators send range messages also to subsets of processors. Such messages
are called notifying ones. The target processor selected by disseminator pi is the �rst
one that still needs to be noti�ed by pi. Notifying messages need not to be replied
to: a sender already knows the rumors of all the processors, that are active according
to it, and the purpose of the message is to disseminate this knowledge.



2040 21. Distributed Algorithms

Regular Phase
Code for any processor pi, 0 ≤ i ≤ n− 1

01 receive messages

11 perform local computation
12 update the local arrays
13 if pi is a collector, that has already heard about all the processors
14 then pi becomes a disseminator
15 compute set of destination processors: for each processor pj

16 if pj is active according to pi and pj is a neighbor of pi in graph G(n, t)
17 then add pj to destination set for a graph message
18 if pi is a collector and pj is the �rst processor
19 about which pi has not heard yet
20 then send an inquiring message to pj

21 if pi is a disseminator and pj is the �rst processor
22 that needs to be noti�ed by pi

23 then send a notifying message to pj

24 if pj is a collector, from which an inquiring message was received
25 in the receiving step of this phase
26 then send a reply message to pj

30 send graph/inquiring/notifying/reply messages to corresponding destination sets

Last-resort messages used during ending phases. Messages sent during the
ending phases are called last-resort ones. These messages are categorized into in-
quiring, replying, and notifying, similarly as the corresponding range ones, which is
because they serve a similar purpose. Collectors that have not heard about some
processors yet send direct inquiries to all of these processors simultaneously. Such
messages are called inquiring ones. They are replied to by the non-faulty recipients
in the next step, by way of sending reply messages. This phase converts all the col-
lectors into disseminators. In the next phase, each disseminator sends a message to
all the processors that need to be noti�ed by it. Such messages are called notifying
ones.

The number of graph messages, sent by a processor at a step of the regular phase,
is at most as large as the maximum node degree in the communication graph. The
number of range messages, sent by a processor in a step of the regular phase, is at
most as large as the number of inquiries received plus a constant - hence the global
number of point-to-point range messages sent by all processors during regular phases
may be accounted as a constant times the number of inquiries sent (which is one
per processor per phase). In contrast to that, there is no a priori upper bound on
the number of messages sent during the ending phase. By choosing the termination
threshold τ to be large enough, one may control how many rumors still needs to be
collected during the ending phases.
Updating local view. A message sent by a processor carries its current local
knowledge. More precisely, a message sent by processor pi brings the following:
the ID pi, the arrays Rumorsi, Activei, and Pendingi, and a label to notify the
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recipient about the character of the message. A label is selected from the fol-
lowing: graph_message, inquiry_from_collector, noti�cation_from_disseminator,
this_is_a_reply, their meaning is self-explanatory. A processor pi scans a newly
received message from some processor pj to learn about rumors, failures, and the
current status of other processors. It copies each rumor from the received copy of
Rumorsj into Rumorsi, unless it is already there. It sets Activei[k] to failed, if this
value is at Activej [k]. It sets Pendingi[k] to done, if this value is at Pendingj [k]. It
sets Pendingi[j] to done, if pj is a disseminator and the received message is a range
one. If pi is itself a disseminator, then it sets Pendingi[j] to done immediately after
sending a range message to pj . If a processor pi expects a message to come from
processor pj , for instance a graph one from a neighbor in the communication graph,
or a reply one, and the message does not arrive, then pi knows that processor pj has
failed, and it immediately sets Activei[j] to failed.

Ending Phase
Code for any processor pi, 0 ≤ i ≤ n− 1

01 receive messages

11 perform local computation
12 update the local arrays
13 if pi is a collector, that has already heard about all the processors
14 then pi becomes a disseminator
15 compute set of destination processors: for each processor pj

16 if pi is a collector and it has not heard about pj yet
17 then send an inquiring message to pj

18 if pi is a disseminator and pj needs to be noti�ed by pi

19 then send a notifying message to pj

20 if an inquiring message was received from pj

21 in the receiving step of this phase
22 then send a reply message to pj

30 send inquiring/notifying/reply messages to corresponding destination sets

Correctness. Ending phases guarantee correctness, as is stated in the next fact.

Lemma 21.26 Generic Gossip Algorithm is correct for every communication
graph G(n, f) and set of schedules Π.

Proof: Integrity and No-Duplicates properties follow directly from the code and
the multicast service in synchronous message-passing system. It remains to prove
that each processor has heard about all processors. Consider the step just before the
�rst ending phases. If a processor pi has not heard about some other processor pj

yet, then it sends a last-resort message to pj in the �rst ending phase. It is replied to
in the second ending phase, unless processor pj has crashed already. In any case, in
the third ending phase, processor pi either learns the input rumor of pj or it gets to
know that pj has failed. The fourth ending phase provides an opportunity to receive
notifying messages, by all the processors that such messages were sent to by pi.
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The choice of communication graph G(n, f), set of schedules Π and termination
threshold τ in�uences however time and message complexities of the speci�c imple-
mentation of Generic Gossip Algorithm. First consider the case when G(n, f) is a
communication graph satisfying property R(n, f) from De�nition 21.3, Π contains
n random permutations, and τ = c log2 n for su�ciently large positive constant c.
Using Theorem 21.25 we get the following result.

Satz 21.4 For every n and f ≤ c ·n, for some constant 0 ≤ c < 1, there is a graph
G(n, f) such that the implementation of the generic gossip scheme with G(n, f) as
a communication graph and a set Π of random permutations completes gossip in
expected time O(log2 n) and with expected message complexity O(n log2 n), if the
number of crashes is at most f .

Consider a small modi�cation of Generic Gossip scheme: during regular phase
every processor pi sends an inquiring message to the �rst ∆ (instead of one) pro-
cessors according to permutation πi, where ∆ is a maximum degree of used com-
munication graph G(n, f). Note that it does not in�uence the asymptotic message
complexity, since besides inquiring messages in every regular phase each processor
pi sends ∆ graph messages.

Satz 21.5 For every n there are parameters f ≤ n − 1 and τ = O(log2 n) and
there is a graph G(n, f) such that the implementation of the modi�ed Generic Gossip
scheme with G(n, f) as a communication graph and a set Π of random permutations
completes gossip in expected time O(log2 n) and with expected message complexity
O(n1.838), for any number of crashes.

Since in the above theorem set Π is selected prior the computation, we obtain
the following existential deterministic result.

Satz 21.6 For every n there are parameters f ≤ n−1 and τ = O(log2 n) and there
are graph G(n, f) and set of schedules Π such that the implementation of the modi�ed
Generic Gossip scheme with G(n, f) as a communication graph and schedules Π
completes gossip in time O(log2 n) and with message complexity O(n1.838), for any
number of crashes.

Exercises
21.7-1 Design executions showing that there is no relation between Causal Order
and Total Order and between Single-Source FIFO and Total Order broadcast servi-
ces. For simplicity consider two processors and two messages sent.
21.7-2 Does broadcast service satisfying Single-Source FIFO and Causal Order re-
quirements satisfy a Total Order property? Does broadcast service satisfying Single-
Source FIFO and Total Order requirements satisfy a Causal Order property? If yes
provide a proof, if not show a counterexample.
21.7-3 Show that using reliable Basic Broadcast instead of Basic Broadcast in the
implementation of Single-Source FIFO service, then we obtain reliable Single-Source
FIFO broadcast.
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21.7-4 Prove that the Ordered Broadcast algorithm implements Causal Order ser-
vice on a top of Single-Source FIFO one.
21.7-5 What is the total number of point-to-point messages sent in the algorithm
Ordered Broadcast in case of k broadcasts?
21.7-6 Estimate the total number of point-to-point messages sent during the exe-
cution of Reliable Causally Ordered Broadcast, if it performs k broadcast and there
are f < n processor crashes during the execution.
21.7-7 Show an execution of Reliable Causally Ordered Broadcast Algorithm which
violates Total Order requirement.
21.7-8 Write a code of the implementation of reliable Sub-Total Order multicast
service.
21.7-9 Show that the described method of implementing multicast services on the
top of corresponding broadcast services is correct.
21.7-10 Show that the random graph G(n, f) - in which each node selects indepen-
dently at random n

n−f log n edges from itself to other processors - satis�es property
R(n, f) from De�nition 21.3 and has degree O( n

n−f log2 n) with probability at least
1−O(1/n).
21.7-11 Leader election problem is as follows: all non-faulty processors must elect
one non-faulty processor in the same synchronous step. Show that leader election
can not be solved faster than gossip problem in synchronous message-passing system
with processors crashes.

21.8. Mutual Exclusion in Shared Memory
We now describe the second main model used to describe Distributed Systems, the
Shared Memory Model. To illustrate algorithmic issues in this model we discuss
solutions for the mutual exclusion problem.

21.8.1. Shared Memory Systems
We assume the system contains n processors, p0, ..., pn−1, and m registers
R0, ..., Rm−1. Each processor is modeled as a state machine. Each register has a
type, which speci�es:
1. the values it can hold,
2. the operations that can be performed on it,
3. the value (if any) to be returned by each operation, and
4. the new register value resulting from each operation.

Each register can have an initial value.
For example, an integer valued read/write register R can take on all integer va-

lues and has operations read(R,v) and write(R,v). The read operation returns the
value v of the last preceding write, leaving R unchanged. The write(R,v) operation
has an integer parameter v, returns no value and changes R's value to v. A con�gu-
ration is a vector C = (q0, ..., qn−1, r0, ..., rm−1), where qi is a state of pi and rj is a
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value of register Rj . The events are computation steps at the processors where the
following happens atomically (indivisibly):
1. pi chooses a shared variable to access with a speci�c operation, based on pi's

current state,
2. the speci�ed operation is performed on the shared variable,
3. pi's state changes based on its transition function, based on its current state and

the value returned by the shared memory operation performed.
A �nite sequence of con�gurations and events that begins with an initial con-

�guration is called an execution. In the asynchronous shared memory system, an
in�nite execution is admissible if it has an in�nite number of computation steps.

21.8.2. The Mutual Exclusion Problem
In this problem a group of processors need to access a shared resource that cannot
be used simultaneously by more than a single processor. The solution needs to have
the following two properties. (1) Mutual exclusion: Each processor needs to execute a
code segment called a critical section so that at any given time at most one processor
is executing it (i.e., is in the critical section). (2) Deadlock freedom: If one or more
processors attempt to enter the critical section, then one of them eventually succeeds
as long as no processor stays in the critical section forever. These two properties
do not provide any individual guarantees to any processor. A stronger property
is (3) No lockout: A processor that wishes to enter the critical section eventually
succeeds as long as no processor stays in the critical section forever. Original solutions
to this problem relied on special synchronization support such as semaphores and
monitors. We will present some of the distributed solutions using only ordinary shared
variables.

We assume the program of a processor is partitioned into the following sections:
• Entry / Try: the code executed in preparation for entering the critical section.
• Critical: the code to be protected from concurrent execution.
• Exit: the code executed when leaving the critical section.
• Remainder: the rest of the code.

A processor cycles through these sections in the order: remainder, entry, critical
and exit. A processor that wants to enter the critical section �rst executes the entry
section. After that, if successful, it enters the critical section. The processor releases
the critical section by executing the exit section and returning to the remainder
section. We assume that a processor may transition any number of times from the
remainder to the entry section. Moreover, variables, both shared and local, accessed
in the entry and exit section are not accessed in the critical and remainder section.
Finally, no processor stays in the critical section forever. An algorithm for a shared
memory system solves the mutual exclusion problem with no deadlock (or no lockout)
if the following hold:
• Mutual Exclusion: In every con�guration of every execution at most one pro-

cessor is in the critical section.
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• No deadlock: In every admissible execution, if some processor is in the entry
section in a con�guration, then there is a later con�guration in which some
processor is in the critical section.

• No lockout: In every admissible execution, if some processor is in the entry
section in a con�guration, then there is a later con�guration in which that same
processor is in the critical section.
In the context of mutual exclusion, an execution is admissible if for every pro-

cessor pi, pi either takes an in�nite number of steps or pi ends in the remainder
section. Moreover, no processor is ever stuck in the exit section (unobstructed exit
condition).

21.8.3. Mutual Exclusion Using Powerful Primitives
A single bit su�ces to guarantee mutual exclusion with no deadlock if a powerful
test&set register is used. A test&set variable V is a binary variable which supports
two atomic operations, test&set and reset, de�ned as follows:

test&set(V : memory address) returns binary value:
temp := V
V := 1
return (temp)

reset(V : memory address):
V := 0

The test&set operation atomically reads and updates the variable. The reset
operation is merely a write. There is a simple mutual exclusion algorithm with no
deadlock, which uses one test&set register.

Mutual Exclusion using one test&set register
Initially V equals 0

〈Entry〉:
1 wait until test&set(V ) = 0
〈Critical Section〉
〈Exit〉:

2 reset(V )
〈Remainder〉

Assume that the initial value of V is 0. In the entry section, processor pi repe-
atedly tests V until it returns 0. The last such test will assign 1 to V , causing any
following test by other processors to return 1, prohibiting any other processor from
entering the critical section. In the exit section pi resets V to 0; another processor
waiting in the entry section can now enter the critical section.

Theorem 21.27 The algorithm using one test &set register provides mutual exc-
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lusion without deadlock.

21.8.4. Mutual Exclusion Using Read/Write Registers
If a powerful primitive such as test&set is not available, then mutual exclusion must
be implemented using only read/write operations.

The Bakery Algorithm
Lamport's Bakery Algorithm [10] for mutual exclusion is an early, classical example
of such an algorithm that uses only shared read/write registers. The algorithm gua-
rantees mutual exclusion and no lockout for n processors using O(n) registers (but
the registers may need to store integer values that cannot be bounded ahead of
time).

Processors wishing to enter the critical section behave like customers in a bakery.
They all get a number and the one with the smallest number in hand is the next
one to be �served�. Any processor not standing in line has number 0, which is not
counted as the smallest number.

The algorithm uses the following shared data structures: Number is an array of
n integers, holding in its i-th entry the current number of processor pi. Choosing is
an array of n boolean values such that Choosing[i] is true while pi is in the process
of obtaining its number. Any processor pi that wants to enter the critical section
attempts to choose a number greater than any number of any other processor and
writes it into Number[i]. To do so, processors read the array Number and pick the gre-
atest number read +1 as their own number. Since however several processors might
be reading the array at the same time, symmetry is broken by choosing (Number[i],
i) as i's ticket. An ordering on tickets is de�ned using the lexicographical ordering
on pairs. After choosing its ticket, pi waits until its ticket is minimal: For all other
pj , pi waits until pj is not in the process of choosing a number and then compares
their tickets. If pj 's ticket is smaller, pi waits until pj executes the critical section
and leaves it.
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The bakery algorithm:

Code for processor pi, 0 ≤ i ≤ n− 1.
Initially Number[i]= 0 and
Choosing[i] = false, for 0 ≤ i ≤ n− 1

〈Entry〉:
1 Choosing[i] := true
2 Number[i] := max(Number[0],...,Number[n− 1])+1
3 Choosing[i] := false
4 for j:= 1 to n ( 6= i) do
5 wait until Choosing[j] = false
6 wait until Number[j] = 0 or (Number[j],j > (Number[i],i) 〈Critical Section〉
〈Exit〉:

7 Number[i] := 0
〈Remainder〉

We leave the proofs of the following theorems as exercises.

Theorem 21.28 The bakery algorithm guarantees mutual exclusion.

Theorem 21.29 The bakery algorithm guarantees no lockout.

A bounded mutual exclusion algorithm for n processors
Lamports Bakery Algorithm [10] requires the use of unbounded values. We next
present an algorithm that removes this requirement. In this algorithm, �rst presented
by Peterson and Fischer [17], processors compete pairwise using a two-processor
algorithm in a tournament tree arrangement. All pairwise competitions are arranged
in a complete binary tree. Each processor is assigned to a speci�c leaf of the tree.
At each level, the winner in a given node is allowed to proceed to the next higher
level, where it will compete with the winner moving up from the other child of this
node (if such a winner exists). The processor that �nally wins the competition at
the root node is allowed to enter the critical section.

Let k = dlog ne − 1. Consider a complete binary tree with 2k leaves and a total
of 2k+1 − 1 nodes. The nodes of the tree are numbered inductively in the following
manner: The root is numbered 1; the left child of node numbered m is numbered 2m
and the right child is numbered 2m + 1. Hence the leaves of the tree are numbered
2k, 2k + 1,...,2k+1 − 1.

With each node m, three binary shared variables are associated: Wantm[0],
Wantm[1], and Prioritym. All variables have an initial value of 0. The algorithm
is recursive. The code of the algorithm consists of a procedure Node(m, side) which
is executed when a processor accesses node m, while assuming the role of processor
side. Each node has a critical section. It includes the entry section at all the nodes
on the path from the nodes parent to the root, the original critical section and the
exit code on all nodes from the root to the nodes parent. To begin, processor pi

executes the code of node (2k + bi/2c, i mod 2).
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The tournament tree algorithm: A bounded mutual exclusion algo-
rithm for n processors.

procedure Node(m: integer; side: 0..1
1 Wantm[side] := 0
2 wait until (Wantm[1− side] = 0 or Prioritym = side)
3 Wantm[side] := 1
4 if Prioritym = 1−side then
5 if Wantm[1− side] = 1) then goto line 1
6 else wait until Wantm[1− side] = 0
7 if (v = 1) then
8 〈Critical Section〉
9 else Node (bm/2c, m mod 2)

10 Prioritym = 1−side
11 Wantm[side] := 0

end procedure

This algorithm uses bounded values and as the next theorem shows, satis�es the
mutual exclusion, no lockout properties:

Theorem 21.30 The tournament tree algorithm guarantees mutual exclusion.

Proof. Consider any execution. We begin at the nodes closest to the leaves of the
tree. A processor enters the critical section of this node if it reaches line 9 (it moves
up to the next node). Assume we are at a node m that connects to the leaves where
pi and pj start. Assume that two processors are in the critical section at some point.
It follows from the code that then Wantm[0] = Wantm[1] = 1 at this point. Assume,
without loss of generality that pi's last write to Wantm[0] before entering the critical
section follows pj 's last write to Wantm[1] before entering the critical section. Note
that pi can enter the critical section (of m) either through line 5 or line 6. In both
cases pi reads Wantm[1] = 0. However pi's read of Wantm[1], follows pj 's write to
Wantm[0], which by assumption follows pj 's write to Wantm[1]. Hence pi's read of
Wantm[1] should return 1, a contradiction.

The claim follows by induction on the levels of the tree.

Theorem 21.31 The tournament tree algorithm guarantees no lockout.

Proof. Consider any admissible execution. Assume that some processor pi is starved.
Hence from some point on pi is forever in the entry section. We now show that pi

cannot be stuck forever in the entry section of a node m. The claim then follows by
induction.

Case 1: Suppose pj executes line 10 setting Prioritym to 0. Then Prioritym

equals 0 forever after. Thus pi passes the test in line 2 and skips line 5. Hence pi

must be waiting in line 6, waiting for Wantm[1] to be 0, which never occurs. Thus pj

is always executing between lines 3 and 11. But since pj does not stay in the critical
section forever, this would mean that pj is stuck in the entry section forever which
is impossible since pj will execute line 5 and reset Wantm[1] to 0.

Case 2: Suppose pj never executes line 10 at some later point. Hence pj must
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be waiting in line 6 or be in the remainder section. If it is in the entry section, pj

passes the test in line 2 (Prioritym is 1). Hence pi does not reach line 6. Therefore pi

waits in line 2 with Wantm[0] = 0. Hence pj passes the test in line 6. So pj cannot
be forever in the entry section. If pj is forever in the remainder section Wantm[1]
equals 0 henceforth. So pi cannot be stuck at line 2, 5 or 6, a contradiction.

The claim follows by induction on the levels of the tree.

Lower Bound on the Number of Read/Write Registers
So far, all deadlock-free mutual exclusion algorithms presented require the use of at
least n shared variables, where n is the number of processors. Since it was possible to
develop an algorithm that uses only bounded values [17], the question arises whether
there is a way of reducing the number of shared variables used. Burns and Lynch [5]
�rst showed that any deadlock-free mutual exclusion algorithm using only shared
read/write registers must use at least n shared variables, regardless of their size. The
proof of this theorem allows the variables to be multi-writer variables. This means
that each processor is allowed to write to each variable. Note that if the variables
are single writer, that the theorem is obvious since each processor needs to write
something to a (separate) variable before entering the critical section. Otherwise
a processor could enter the critical section without any other processor knowing,
allowing another processor to enter the critical section concurrently, a contradiction
to the mutual exclusion property.

The proof by Burns and Lynch [5] introduces a new proof technique, a covering
argument: Given any no deadlock mutual exclusion algorithm A, it shows that there
is some reachable con�guration of A in which each of the n processors is about to
write to a distinct shared variable. This is called a covering of the shared variables.
The existence of such a con�guration can be shown using induction and it exploits
the fact that any processor before entering the critical section, must write to at
least one shared variable. The proof constructs a covering of all shared variables. A
processor then enters the critical section. Immediately thereafter the covering writes
are released so that no processor can detect the processor in the critical section.
Another processor now concurrently enters the critical section, a contradiction.
Theorem 21.32 Any no deadlock mutual exclusion algorithm using only
read/write registers must use at least n shared variables.

21.8.5. Lamport's Fast Mutual Exclusion Algorithm
In all mutual exclusion algorithms presented so far, the number of steps taken by
processors before entering the critical section depends on n, the number of processors
even in the absence of contention (where multiple processors attempt to concurrently
enter the critical section), when a single processor is the only processor in the entry
section. In most real systems however, the expected contention is usually much
smaller than n.

A mutual exclusion algorithm is said to be fast if a processor enters the critical
section within a constant number of steps when it is the only processor trying to
enter the critical section. Note that a fast algorithm requires the use of multi-writer,
multi-reader shared variables. If only single writer variables are used, a processor
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would have to read at least n variables.
Such a Fast Mutual Exclusion Algorithm is presented by Lamport [11].

Lamport's Fast Mutual Exclusion Algorithm:

Code for processor pi, 0 ≤ i ≤ n− 1. Initially Fast-Lock and Slow-Lock are 0, and
Want[i] is false for all i, 0 ≤ i ≤ n− 1

〈 Entry 〉:
1 Want[i] := true
2 Fast-Lock := i
3 if Slow-Lock 6= 0 then
4 Want[i] := false
5 wait until Slow-Lock =0
6 goto 1
7 Slow-Lock := i
8 if Fast-Lock 6= i then
9 Want[i] := false

10 for all j, wait until Want[j] =false
11 if Slow-Lock 6= i then
12 wait until Slow-Lock = 0
13 goto 1

〈Critical Section〉
〈Exit〉:

14 Slow-Lock :=0
15 Want[i] := false

〈Remainder〉

Lamport's algorithm is based on the correct combination of two mechanisms, one
for allowing fast entry when no contention is detected, and the other for providing
deadlock freedom in the case of contention. Two variables, Fast-Lock and Slow-
Lock are used for controlling access when there is no contention. In addition, each
processor pi has a boolean variable Want[i] whose value is true if pi is interested in
entering the critical section and false otherwise. A processor can enter the critical
section by either �nding Fast-Lock = i - in this case it enters the critical section on
the fast path - or by �nding Slow-Lock = i in which case it enters the critical section
along the slow path.

Consider the case where no processor is in the critical section or in the entry
section. In this case, Slow-Lock is 0 and all Want entries are 0. Once pi now enters
the entry section, it sets Want[i] to 1 and Fast-Lock to i. Then it checks Slow-Lock
which is 0. then it checks Fast-Lock again and since no other processor is in the entry
section it reads i and enters the critical section along the fast path with three writes
and two reads.

If Fast-Lock 6= i then pi waits until all Want �ags are reset. After some processor
executes the for loop in line 10, the value of Slow-Lock remains unchanged until
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some processor leaving the critical section resets it. Hence at most one processor pj

may �nd Slow-Lock= j and this processor enters the critical section along the slow
path. Note that the Lamport's Fast Mutual Exclusion algorithm does not guarantee
lockout freedom.

Theorem 21.33 Lamport's Fast Mutual Exclusion algorithm guarantees mutual
exclusion without deadlock.

Exercises
21.8-1 An algorithm solves the 2-mutual exclusion problem if at any time at most
two processors are in the critical section. Present an algorithm for solving the 2-
mutual exclusion problem using test & set registers.
21.8-2 Prove that bakery algorithm satis�es the mutual exclusion property.
21.8-3 Prove that bakery algorithm provides no lockout.
21.8-4 Isolate a bounded mutual exclusion algorithm with no lockout for two proces-
sors from the tournament tree algorithm. Show that your algorithm has the mutual
exclusion property. Show that it has the no lockout property.
21.8-5 Prove that Lamport's Fast Mutual Exclusion Algorithm has the mutual exc-
lusion property.
21.8-6 Prove that Lamport's Fast Mutual Exclusion Algorithm has the no deadlock
property.
21.8-7 Show that Lamport's Fast Mutual Exclusion Algorithm does not satisfy the
no lockout property, i.e. construct an execution in which a processor is locked out of
the critical section.
21.8-8 Construct an execution of Lamport's Fast Mutual Exclusion Algorithm in
which two processors are in the entry section and both read at least Ω(n) variables
before entering the critical section [2].

Chapter notes
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