
13. Compression and Decompression

Algorithms for data compression usually proceed as follows. They encode a text over some
�nite alphabet into a sequence of bits, hereby exploiting the fact that the letters of this
alphabet occur with different frequencies. For instance, an �e� occurs more frequently than
a �q� and will therefore be assigned a shorter codeword. The quality of the compression
procedure is then measured in terms of the average codeword length.

So the underlying model is probabilistic, namely we consider a �nite alphabet and a
probability distribution on this alphabet, where the probability distribution re�ects the (re-
lative) frequencies of the letters. Such a pair � an alphabet with a probability distribution �
is called a source. We shall �rst introduce some basic facts from Information Theory. Most
important is the notion of entropy, since the source entropy characterizes the achievable
lower bounds for compressibility.

The source model to be best understood, is the discrete memoryless source. Here the
letters occur independently of each other in the text. The use of pre�x codes, in which no
codeword is the beginning of another one, allows to compress the text down to the entropy of
the source. We shall study this in detail. The lower bound is obtained via Kraft's inequality,
the achievability is demonstrated by the use of Huffman codes, which can be shown to be
optimal.

There are some assumptions on the discrete memoryless source, which are not ful�lled
in most practical situations. Firstly, usually this source model is not realistic, since the letters
do not occur independently in the text. Secondly, the probability distribution is not known
in advance. So the coding algorithms should be universal for a whole class of probability
distributions on the alphabet. The analysis of such universal coding techniques is much
more involved than the analysis of the discrete memoryless source, such that we shall only
present the algorithms and do not prove the quality of their performance. Universal coding
techniques mainly fall into two classes.

Statistical coding techniques estimate the probability of the next letters as accurately as
possible. This process is called modelling of the source. Having enough information about
the probabilities, the text is encoded, where usually arithmetic coding is applied. Here the
probability is represented by an interval and this interval will be encoded.

Dictionary�based algorithms store patterns, which occurred before in the text, in a dicti-
onary and at the next occurrence of a pattern this is encoded via its position in the dictionary.
The most prominent procedure of this kind is due to Ziv and Lempel.

We shall also present a third universal coding technique which falls in neither of these
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two classes. The algorithm due to Burrows and Wheeler has become quite prominent in
recent years, since implementations based on it perform very well in practice.

All algorithms mentioned so far are lossless, i. e., there is no information lost after de-
coding. So the original text will be recovered without any errors. In contrast, there are lossy
data compression techniques, where the text obtained after decoding does not completely
coincide with the original text. Lossy compression algorithms are used in applications like
image, sound, video, or speech compression. The loss should, of course, only marginally
effect the quality. For instance, frequencies not realizable by the human eye or ear can be
dropped. However, the understanding of such techniques requires a solid background in
image, sound or speech processing, which would be far beyond the scope of this paper, such
that we shall illustrate only the basic concepts behind image compression algorithms such
as JPEG.

We emphasize here the recent developments such as the Burrows�Wheeler transform
and the context�tree weighting method. Rigorous proofs will only be presented for the re-
sults on the discrete memoryless source which is best understood but not a very realistic
source model in practice. However, it is also the basis for more complicated source mo-
dels, where the calculations involve conditional probabilities. The asymptotic computational
complexity of compression algorithms is often linear in the text length, since the algorithms
simply parse through the text. However, the running time relevant for practical implemen-
tations is mostly determined by the constants as dictionary size in Ziv-Lempel coding or
depth of the context tree, when arithmetic coding is applied. Further, an exact analysis or
comparison of compression algorithms often heavily depends on the structure of the source
or the type of �le to be compressed, such that usually the performance of compression al-
gorithms is tested on benchmark �les. The most well-known collections of benchmark �les
are the Calgary Corpus and the Canterbury Corpus.

13.1. Facts from information theory
13.1.1. The discrete memoryless source
The source model discussed throughout this chapter is the Discrete Memoryless Source
(DMS). Such a source is a pair (X, P), where X = {1, . . . , a} is a �nite alphabet and P =

(P(1), . . . , P(a)) is a probability distribution on X. A discrete memoryless source can also
be described by a random variable X, where Prob(X = x) = P(x) for all x ∈ X. A word xn =

(x1x2 . . . xn) ∈ Xn is the realization of the random variable (X1 . . . Xn), where the Xi-s are
identically distributed and independent of each other. So the probability Pn(x1x2 . . . xn) =

P(x1) · P(x2) · · · · · P(xn) is the product of the probabilities of the single letters.
Estimations for letter probabilities in natural languages are obtained by statistical met-

hods. If we consider the English language and choose the latin alphabet with an additional
symbol for Space and punctuation marks for X, the probability distribution can be derived
from the frequency table in 13.1 which is obtained from the copy��tting tables used by
professional printers. So P(A) = 0.064, P(B) = 0.014, etc.

Observe that this source model is often not realistic. For instance, in English texts e.g.
the combination `th' occurs more often than `ht'. This could not be the case if an English
text was produced by a discrete memoryless source, since then P(th) = P(t) · P(h) = P(ht).
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A 64 H 42 N 56 U 31
B 14 I 63 O 56 V 10
C 27 J 3 P 17 W 10
D 35 K 6 Q 4 X 3
E 100 L 35 R 49 Y 18
F 20 M 20 S 56 Z 2
G 14 T 71

Space/Punctuation mark 166

Figure 13.1. Frequency of letters in 1000 characters of English

In the discussion of the communication model it was pointed out that the encoder wants
to compress the original data into a short sequence of binary digits, hereby using a binary
code, i. e., a function c : X −→ {0, 1}∗ =

∞⋃
n=0
{0, 1}n. To each element x ∈ X a codeword c(x)

is assigned. The aim of the encoder is to minimize the average length of the codewords. It
turns out that the best possible data compression can be described in terms of the entropy
H(P) of the probability distribution P. The entropy is given by the formula

H(P) = −
∑

x∈X
P(x) · lg P(x)

where the logarithm is to the base 2. We shall also use the notation H(x) according to the
interpretation of the source as a random variable.

13.1.2. Prefix codes
A code (of variable length) is a function c : X −→ {0, 1}∗, X = {1, . . . , a}. Here
{c(1), c(2), . . . , c(a)} is the set of codewords, where for x = 1, . . . , a the codeword is
c(x) =

(c1(x), c2(x), . . . , cL(x)(x)) where L(x) denotes the length of c(x), i. e., the number
of bits used to present c(x).

In the following example some binary codes for the latin alphabet are presented.
(S P=Space/punctuation mark)

c : a −→ 1, b −→ 10, c −→ 100, d −→ 1000, . . . , z −→ 10 . . . 0︸  ︷︷  ︸
26

, S P −→ 10 . . . 0︸  ︷︷  ︸
27

.

�c : a −→ 00000, b −→ 00001, c −→ 00010, . . . , z −→ 11001, S P −→ 11010. So �c(x) is
the binary representation of the position of letter x in the alphabetic order.

�c : a −→ 0, b −→ 00, c −→ 1, . . . (the further codewords are not important for the
following discussion).

The last code presented has an undesirable property. Observe that the sequence 00 could
either be decoded as b or as aa. Hence the messages encoded using this code are not uniquely
decipherable.

A code c is uniquely decipherable (UDC) , if every word in {0, 1}∗ is representable by
at most one sequence of codewords.

Code c is uniquely decipherable, since the number of 0s between two 1s determines
the next letter in a message encoded using c. Code �c is uniquely decipherable, since every
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letter is encoded with exactly �ve bits. Hence the �rst �ve bits of a sequence of binary digits
are decoded as the �rst letter of the original text, the bits 6 to 10 as the second letter, etc.

A code c is a pre�x code, if for any two codewords c(x) and c(y), x , y, with L(x) ≤ L(y)
holds (c1(x), c2(x), . . . , cL(x)(x)) , (c1(y), c2(y), . . . , cL(x)(y)). So c(x) and c(y) differ in at
least one of the �rst L(x) components.

Messages encoded using a pre�x code are uniquely decipherable. The decoder proceeds
by reading the next letter until a codeword c(x) is formed. Since c(x) cannot be the beginning
of another codeword, it must correspond to letter x ∈ X. Now the decoder continues until
another codeword is formed. The process may be repeated until the end of the message. So
after having found codeword c(x) the decoder instantaneously knows that x ∈ X is the next
letter of the message. Because of this property a pre�x code is also denoted as instantaneous
code. Observe that code c is not instantaneous, since every codeword is the beginning of the
following codewords.

The criterion for data compression is to minimize the average length of the codewords.
So if we are given a source (X, P), where X = {1, . . . , a} and P =

(P(1), P(2), . . . , P(a)) is a
probability distribution on X, the average length L(c) is de�ned by

L(c) =
∑

x∈X
P(x) · L(x) .

If in English texts all letters (incl. Space/punctuation mark) occured with the same fre-
quency, then code c would have an average length of 1

27 (1 + 2 + · · · + 27) = 1
27 · 27·28

2 = 14.
Hence code �c with an average length of 5 would be more appropriate in this case. From the
frequency table of the previous section we know that the occurrence of the letters in English
texts cannot be modelled by the uniform distribution. In this case it is possible to �nd a
better code by assigning short codewords to letters with high probability as demonstrated
by the following pre�x code c with average length L(c) = 3 · 0.266 + 4 · 0.415 + 5 · 0.190 +

6 · 0.101 + 7 · 0.016 + 8 · 0.012 = 4.222.

a −→ 0110, b −→ 010111, c −→ 10001, d −→ 01001 ,
e −→ 110, f −→ 11111, g −→ 111110, h −→ 00100 ,
i −→ 0111, j −→ 11110110, k −→ 1111010, l −→ 01010 ,
m −→ 001010, n −→ 1010, o −→ 1001, p −→ 010011 ,
q −→ 01011010, r −→ 1110, s −→ 1011, t −→ 0011 ,
u −→ 10000, v −→ 0101100, w −→ 001011, x −→ 01011011 ,
y −→ 010010, z −→ 11110111, S P −→ 000 .

We can still do better, if we do not encode single letters, but blocks of n letters for some
n ∈ N. In this case we replace the source (X, P) by (Xn, Pn) for some n ∈ N. Remember
that Pn(x1x2 . . . xn) = P(x1) · P(x2) · · · · · P(xn) for a word (x1x2 . . . xn) ∈ Xn, since the
source is memoryless. If e.g. we are given an alphabet with two letters, X = {a, b} and
P(a) = 0.9, P(b) = 0.1, then the code c de�ned by c(a) = 0, c(b) = 1 has average length
L(c) = 0.9 · 1 + 0.1 · 1 = 1. Obviously we cannot �nd a better code. The combinations of
two letters now have the following probabilities:

P2(aa) = 0.81, P2(ab) = 0.09, P2(ba) = 0.09, P2(bb) = 0.01 .
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The pre�x code c2 de�ned by

c2(aa) = 0, c2(ab) = 10, c2(ba) = 110, c2(bb) = 111
has average length L(c2) = 1 ·0.81+2 ·0.09+3 ·0.09+3 ·0.01 = 1.29. So 1

2 L(c2) = 0.645
could be interpreted as the average length the code c2 requires per letter of the alphabet X.
When we encode blocks of n letters we are interested in the behaviour of

L(n, P) = min
cUDC

1
n

∑

(x1...xn)∈Xn

Pn(x1 . . . xn)L(x1 . . . xn) = min
cUDC

L(c) .

It follows from the noiseless coding theorem, which is stated in the next section, that
limn−→∞ L(n, P) = H(P), the entropy of the source (X, P).

In our example for the English language we have H(P) ≈ 4.19. So the code presented
above, where only single letters are encoded, is already nearly optimal in respect of L(n, P).
Further compression is possible if we consider the dependencies between the letters.

13.1.3. Kraft's inequality and the noiseless coding theorem
We shall now introduce a necessary and sufficient condition for the existence of a pre�x
code for X = {1, . . . , a} with prescribed word lengths L(1), . . . , L(a).

Theorem 13.1 (Kraft's inequality). Let X = {1, . . . , a}. A pre�x code c : X −→ {0, 1}∗ with
word lengths L(1), . . . , L(a) exists, if and only if

∑

x∈X
2−L(x) ≤ 1.

Proof. The central idea is to interpret the codewords as nodes of a rooted binary tree with
depth T = maxx∈X{L(x)}. The tree is required to be complete (every path from the root to
a leaf has length T ) and regular (every inner node has outdegree 2). The example in Figure
13.2 for T = 3 may serve as an illustration.

So the nodes with distance n from the root are labelled with the words xn ∈ {0, 1}n.
The upper successor of x1x2 . . . xn is labelled x1x2 . . . xn0, its lower successor is labelled
x1x2 . . . xn1.

The shadow of a node labelled by x1x2 . . . xn is the set of all the leaves which are
labelled by a word (of length T ) beginning with x1x2 . . . xn. In other words, the shadow
of x1 . . . xn consists of the leaves labelled by a sequence with pre�x x1 . . . xn. In our example
{000, 001, 010, 011} is the shadow of the node labelled by 0.

Now assume that we are given a pre�x code with word lengths L(1), . . . , L(a). Every co-
deword corresponds to a node in the binary tree of depth T . Observe that the shadows of any
two codewords are disjoint. If this was not the case, we could �nd a word x1x2 . . . xT , which
has as pre�x two codewords of length s and t, say (w.l.o.g. s < t). But these codewords are
x1x2 . . . xt and x1x2 . . . xs which obviously is a pre�x of the �rst one.

The shadow of codeword c(x) has size 2T−L(x). There are 2T words of length T . For
the sum of the shadow sizes follows ∑

x∈X
2T−L(x) ≤ 2T , since none of these words can be a
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Figure 13.2. Example of a code tree.

member of two shadows. Division by 2T yields the desired inequality ∑
x∈X

2−L(x) ≤ 1.
Conversely, suppose we are given positive integers L(1), . . . , L(a). We further assume

that L(1) ≤ L(2) ≤ · · · ≤ L(a). As �rst codeword c(1) = 00 . . . 0︸  ︷︷  ︸
L(1)

is chosen. Since
∑

x∈X
2T−L(x) ≤ 2T , we have 2T−L(1) < 2T (otherwise only one letter has to be encoded). Hence

there are some nodes left on the T�th level, which are not in the shadow of c(1). We pick
the �rst of these remaining nodes and go back T − L(2) steps in the direction of the root.
Since L(2) ≥ L(1), we shall �nd a node labelled by a sequence of L(2) bits, which is not a
pre�x of c(1). So we can choose this sequence as c(2). Now again, either a = 2, and we are
ready, or by the hypothesis 2T−L(1) + 2T−L(2) < 2T and we can �nd a node on the T�th level,
which is not contained in the shadows of c(1) and c(2). We �nd the next codeword as shown
above. The process can be continued until all codewords are assigned.

Kraft's inequality gives a necessary and sufficient condition for the existence of a pre�x
code with codewords of lengths L(1), . . . , L(a). In the following theorem it is shown that this
condition is also necessary for the existence of a uniquely decipherable code. This can be
interpreted in such a way that it is sufficient to consider only pre�x codes, since one cannot
expect a better performance by any other uniquely decipherable code.

Theorem 13.2 (Kraft's inequality for uniquely decipherable codes). A uniquely deciphe-
rable code with prescribed word lengths L(1), . . . , L(a) exists, if and only if

∑

x∈X
2−L(x) ≤ 1.

Proof. Since every pre�x code is uniquely decipherable, the sufficiency part of the proof is
immediate. Now observe that ∑

x∈X
2−L(x) =

T∑
j=1

w j 2− j, where w j is the number of codewords
with length j in the uniquely decipherable code and T again denotes the maximal word
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length. The s�th power of this term can be expanded as


T∑

j=1
w j 2− j


s

=

T ·s∑

k=s
Nk 2−k.

Here Nk =
∑

i1+···+is=k
wi1 . . .wis is the total number of messages whose coded represen-

tation is of length k. Since the code is uniquely decipherable, to every sequence of k let-

ters corresponds at most one possible message. Hence Nk ≤ 2k and
T ·s∑
k=s

Nk 2−k ≤
T ·s∑
k=s

1 =

T · s − s + 1 ≤ T · s. Taking s�th root this yields
T∑

j=1
w j 2− j ≤ (T · s) 1

s .

Since this inequality holds for any s and lim
s−→∞

(T · s) 1
s = 1, we have the desired result

T∑

j=1
w j 2− j =

∑

x∈X
2−L(x) ≤ 1 .

Theorem 13.3 (Noiseless coding theorem). For a source (X, P), X = {1, . . . , a}, it is al-
ways possible to �nd a uniquely decipherable code c : X −→ {01, }∗ with an average length
of

H(P) ≤ Lmin(P) < H(P) + 1.

Proof. Let L(1), . . . , L(a) denote the codeword lengths of an optimal uniquely decipherable
code. Now we de�ne a probability distribution Q on X = {1, . . . , a} by Q(x) = 2−L(x)

r for
x ∈ X, where r =

a∑
x=1

2−L(x). By Kraft's inequality r ≤ 1.
For two probability distributions P and Q on X the I�divergence D(P||Q) is de�ned by

D(P||Q) =
∑

x∈X
P(x) lg P(x)

Q(x)

I-divergence is a good measure for the distance of two probability distributions. Especially,
always the I�divergence D(P||Q) ≥ 0. So for any probability distribution P

D(P||Q) = −H(P) −
∑

x∈X
P(x) · lg(2−L(x) · r−1) ≥ 0.

From this it follows that
H(P) ≤ − ∑

x∈X
P(x) · lg(2−L(x) · r−1)

=
∑

x∈X
P(x) · L(x) − ∑

x∈X
P(x) · lg r−1 = Lmin(P) + lg r.

Since r ≤ 1, lg r ≤ 0 and hence Lmin(P) ≥ H(P).
In order to prove the right-hand side of the noiseless coding theorem for x = 1, . . . , a

we de�ne L′(x) = d− lg P(x)e. Observe that − lg P(x) ≤ L′(x) < − lg P(x) + 1 and hence
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x P(x) Q(x) Q(x) dlg 1
P(x) e cS (x) cS FE(x)

1 0.25 0 0.125 2 00 001
2 0.2 0.25 0.35 3 010 0101
3 0.11 0.45 0.505 4 0111 10001
4 0.11 0.56 0.615 4 1000 10100
5 0.11 0.67 0.725 4 1010 10111
6 0.11 0.78 0.835 4 1100 11010
7 0.11 0.89 0.945 4 1110 11110

L 3.3 4.3

Figure 13.3. Example of Shannon code and Shannon-Fano-Elias code.

P(x) ≥ 2−L′(x).
So 1 =

∑
x∈X

P(x) ≥ ∑
x∈X

2−L′(x) and from Kraft's Inequality we know that there exists a
uniquely decipherable code with word lengths L′(1), . . . , L′(a). This code has an average
length of

∑

x∈X
P(x) · L′(x) <

∑

x∈X
P(x)(− lg P(x) + 1) = H(P) + 1.

13.1.4. Shannon-Fano-Elias codes and the Shannon-Fano algorithm
In the proof of the noiseless coding theorem it was explicitly shown how to construct a pre�x
code c to a given probability distribution P = (P(1), . . . , P(a)). The idea was to assign to
each x ∈ {1, . . . , a} a codeword of length L(x) = dlg 1

P(x) e by choosing an appropriate vertex
in the tree introduced. However, this procedure does not always yield an optimal code. If
e.g. we are given the probability distribution ( 1

3 ,
1
3 ,

1
3 ), we would encode 1 −→ 00, 2 −→ 01,

3 −→ 10 and thus achieve an average codeword length of 2. But the code with 1 −→ 00,
2 −→ 01, 3 −→ 1 has only average length of 5

3 .
Shannon gave an explicit procedure for obtaining codes with codeword lengths dlg 1

P(x) e
using the binary representation of cumulative probabilities (Shannon remarked this pro-
cedure was originally due to Fano). The elements of the source are ordered according to
increasing probabilities P(1) ≥ P(2) ≥ · · · ≥ P(a). Then codeword cS (x) consists of the �rst
dlg 1

P(x) e bits of the binary expansion of the sum Q(x) =
∑

j<x P( j).
This procedure was further developed by Elias . The elements of the source now may

occur in any order. The Shannon-Fano-Elias code has cS FE(x) the �rst dlg 1
P(x) e + 1 bits of

the binary expansion of the sum Q(x) =
∑

j<x P( j) + 1
2 P(x) as codewords.

We shall illustrate these procedures by the example in Figure 13.3.

A more efficient procedure is also due to Shannon and Fano. The Shannon-Fano algo-
rithm will be illustrated by the same example in Figure 13.4:

The messages are �rst written in order of nonincreasing probabilities. Then the message
set is partitioned into two most equiprobable subsets X0 and X1. A 0 is assigned to each
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x P(x) c(x) L(x)
1 0.25 00 2
2 0.2 01 2
3 0.11 100 3
4 0.11 101 3
5 0.11 110 3
6 0.11 1110 4
7 0.11 1111 4

L(c) 2.77

Figure 13.4. Example of the Shannon-Fano algorithm.

message contained in the �rst subset and a 1 to each of the remaining messages. The same
procedure is repeated for subsets of X0 and X1; that is, X0 will be partitioned into two
subsets X00 and X01. Now the code word corresponding to a message contained in X00 will
start with 00 and that corresponding to a message in X01 will begin with 01. This procedure
is continued until each subset contains only one message.

However, this algorithm does not yield an optimal code in general, since the pre�x code
1 −→ 01, 2 −→ 000, 3 −→ 001, 4 −→ 110, 5 −→ 111, 6 −→ 100, 7 −→ 101 has an average
length of 2.75.

13.1.5. The Huffman coding algorithm
The Huffman coding algorithm is a recursive procedure which we shall illustrate with
the same example as for the Shannon-Fano algorithm in Figure 13.5 with px = P(x) and
cx = c(x). The source is successively reduced by one element. In each reduction step we
add up the two smallest probabilities and insert their sum P(a) + P(a−1) in the increasingly
ordered sequence P(1) ≥ · · · ≥ P(a − 2), thus obtaining a new probability distribution P′
with P′(1) ≥ · · · ≥ P′(a − 1). Finally we arrive at a source with two elements ordered
according to their probabilities. The �rst element is assigned a 0, the second element a 1.
Now we again �blow up� the source until the original source is restored. In each step c(a−1)
and c(a) are obtained by appending 0 or 1, respectively, to the codeword corresponding to
P(a) + P(a − 1).

Correctness
The following theorem demonstrates that the Huffman coding algorithm always yields

a pre�x code optimal with respect to the average codeword length.

Theorem 13.4 We are given a source (X, P), where X = {1, . . . , a} and the probabilities
are ordered non�increasingly: P(1) ≥ P(2) ≥ · · · ≥ P(a). A new probability distribution is
de�ned by

P′ =
(P(1), . . . , P(a − 2), P(a − 1) + P(a)).

Let c′ =
(c′(1), c′(2), . . . , c′(a − 1)) be an optimal pre�x code for P′. Now we de�ne a

code c for the distribution P by
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p1 0.25 p1 0.25 p1 0.25 P23 0.31 p4567 0.44 p123 0.56
p2 0.2 p67 0.22 p67 0.22 p1 0.25 p23 0.31 p4567 0.44
p3 0.11 p2 0.2 p45 0.22 p67 0.22 p1 0.25
p4 0.11 p3 0.11 p2 0.2 p45 0.22
p5 0.11 p4 0.11 p3 0.11
P6 0.11 p5 0.11
p7 0.11

C123 0 c4567 1 c23 00 c1 01 c1 01 c1 01
c4567 1 c23 00 c1 01 c67 10 c67 10 c2 000

c1 01 c67 10 c45 11 c2 000 c3 001
c45 11 c2 000 c3 001 c4 110

c3 001 c4 110 c5 111
c5 111 c6 100

c7 101

Figure 13.5. Example of a Huffman code.

c(x) = c′(x) for x = 1, . . . , a − 2,

c(a − 1) = c′(a − 1)0,

c(a) = c′(a − 1)1.

In this case c is an optimal pre�x code for P and Lmin(P) − Lmin(P′) = p(a − 1) + p(a).
Proof. For a probability distribution P on X = {1, . . . , a} with P(1) ≥ P(2) ≥ · · · ≥ P(a)
there exists an optimal pre�x code c with
i) L(1) ≤ L(2) ≤ · · · ≤ L(a)

ii) L(a − 1) = L(a)
iii) c(a − 1) and c(a) differ exactly in the last position.

This holds, since:
i) Assume that there are x, y ∈ X with P(x) ≥ P(y) and L(x) > L(y). In this case the code

c′ obtained by interchanging codewords c(x) and c(y) has average length L(c′) ≤ L(c),
since

L(c′) − L(c) = P(x) · L(y) + P(y) · L(x) − P(x) · L(x) − P(y) · L(y)
= (P(x) − P(y)) · (L(y) − L(x)) ≤ 0

ii) Assume we are given a code c′ with L(1) ≤ · · · ≤ L(a−1) < L(a). Because of the pre�x
property we may drop the last L(a) − L(a − 1) bits of c′(a) and thus obtain a new code
c with L(a) = L(a − 1).

iii) If no two codewords of maximal length agree in all places but the last, then we may
drop the last digit of all such codewords to obtain a better code.
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Now we are ready to prove the statement from the theorem. From the de�nition of c
and c′ we have

Lmin(P) ≤ L(c) = L(c′) + p(a − 1) + p(a).

Now let c′′ be an optimal pre�x code with the properties ii) and iii) from the preceding
lemma. We de�ne a pre�x code c′′′ for

P′ = (P(1), . . . , P(a − 2), P(a − 1) + P(a))

by c′′′(x) = c′′(x) for x = 1, . . . , a− 2 and c′′′(a− 1) is obtained by dropping the last bit
of c′′(a − 1) or c′′(a).

Now
Lmin(P) = L(c′′) = L(c′′′) + P(a − 1) + P(a)

≥ Lmin(P′) + P(a − 1) + P(a)

and hence Lmin(P) − Lmin(P′) = P(a − 1) + P(a), since L(c′) = Lmin(P′).

Analysis
If a denotes the size of the source alphabet, the Huffman coding algorithm needs a − 1

additions and a− 1 code modi�cations (appending 0 or 1). Further we need a− 1 insertions,
such that the total complexity can be roughly estimated to be O(a lg a). However, observe
that with the noiseless coding theorem, the quality of the compression rate can only be
improved by jointly encoding blocks of, say, k letters, which would result in a Huffman
code of size ak for the source Xk. So, the price of better compression is a rather drastic
increase in complexity. Further, the codewords for all ak letters have to be stored. Encoding
a sequence of n letters can therefore be done in O( n

k · (ak lg ak)) steps.

Exercises
13.1-1 Show that the code c : {a, b} −→ {0, 1}∗ with c(a) = 0 and c(b) = 0 . . . 01︸  ︷︷  ︸

n

is uniquely

decipherable but not instantaneous for any n > 0.
13.1-2 Compute the entropy of the source (X, P), with X = {1, 2} and P = (0.8, 0.2).
13.1-3 Find the Huffman codes and the Shannon-Fano codes for the sources (Xn, Pn) with
(X, P) as in the previous exercise for n = 1, 2, 3 and calculate their average codeword
lengths.
13.1-4 Show that 0 ≤ H(P) ≤ lg |X| for every source.
13.1-5 Show that the redundancy ρ(c) = L(c) − H(P) of a pre�x code c for a source with
probability distribution P can be expressed as a special I�divergence.
13.1-6 Show that the I-divergence D(P||Q) ≥ 0 for all probability distributions P and Q
over some alphabet X with equality exactly if P = Q, but that the I�divergence is not a
metric.
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13.2. Arithmetic coding and modelling
In statistical coding techniques as Shannon-Fano or Huffman coding the probability distri-
bution of the source is modelled as accurately as possible and then the words are encoded
such that a higher probability results in a shorter codeword length.

We know that Huffman codes are optimal with respect to the average codeword length.
However, the entropy is approached by increasing the block length. On the other hand, for
long blocks of source symbols, Huffman coding is a rather complex procedure, since it
requires the calculation of the probabilities of all sequences of the given block length and
the construction of the corresponding complete code.

For compression techniques based on statistical methods often arithmetic coding is
preferred. Arithmetic coding is a straightforward extension of the Shannon-Fano-Elias code.
The idea is to represent a probability by an interval. In order to do so, the probabilities
have to be calculated very accurately. This process is denoted as modelling of the source .
So statistical compression techniques consist of two stages: modelling and coding. As just
mentioned, coding is usually done by arithmetic coding. The different algorithms like, for
instance, DCM (Discrete Markov Coding) and PPM (Prediction by Partial Matching) vary
in the way of modelling the source. We are going to present the context�tree weighting
method, a transparent algorithm for the estimation of block probabilities due to Willems,
Shtarkov, and Tjalkens, which also allows a straightforward analysis of the efficiency.

13.2.1. Arithmetic coding
The idea behind arithmetic coding is to represent a message xn = (x1 . . . xn) by interval
I(xn) = [Qn(xn),Qn(xn) + Pn(xn)), where Qn(xn) =

∑
yn<xn Pn(yn) is the sum of the probabi-

lities of those sequences which are smaller than xn in lexicographic order.
A codeword c(xn) assigned to message xn also corresponds to an interval. Namely, we

identify codeword c = c(xn) of length L = L(xn) with interval J(c) = [bin(c), bin(c) + 2−L),
where bin(c) is the binary expansion of the nominator in the fraction c

2L . The special choice
of codeword c(xn) will be obtained from Pn(xn) and Qn(xn) as follows:

L(xn) = dlg 1
Pn(xn) e + 1, bin(c) = dQn(xn) · 2L(xn)e.

So message xn is encoded by a codeword c(xn), whose interval J(xn) is inside interval
I(xn).

Let us illustrate arithmetic coding by the following example of a discrete memoryless
source with P(1) = 0.1 and n = 2.

xn Pn(xn) Qn(xn) L(xn) c(xn)
00 0.81 0.00 2 00
01 0.09 0.81 5 11010
10 0.09 0.90 5 11101
11 0.01 0.99 8 11111110

At �rst glance it may seem that this code is much worse than the Huffman code
for the same source with codeword lengths (1, 2, 3, 3) we found previously. On the other
hand, it can be shown that arithmetic coding always achieves an average codeword length
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L(c) < H(Pn) + 2, which is only two bits apart from the lower bound in the noiseless
coding theorem. Huffman coding would usually yield an even better code. However, this
�negligible� loss in compression rate is compensated by several advantages. The codeword
is directly computed from the source sequence, which means that we do not have to store
the code as in the case of Huffman coding. Further, the relevant source models allow to
easily compute Pn(x1x2 . . . xn−1xn) and Qn(x1x2 . . . xn−1xn) from Pn−1(x1x2 . . . xn−1), usually
by multiplication by P(xn). This means that the sequence to be encoded can be parsed se-
quentially bit by bit, unlike in Huffman coding, where we would have to encode blockwise.

Encoding: The basic algorithm for encoding a sequence (x1 . . . xn) by arithmetic coding
works as follows. We assume that Pn(x1 . . . xn) = P1(x1) · P2(x2) · · · Pn(xn), (in the case
Pi = P for all i the discrete memoryless source arises, but in the section on modelling more
complicated formulae come into play) and hence Qi(xi) =

∑
y<xi Pi(xi)

Starting with B0 = 0 and A0 = 1 the �rst i letters of the text to be compressed determine
the current interval [Bi, Bi + Ai). These current intervals are successively re�ned via the
recursions

Bi+1 = Bi + Ai · Qi(xi), Ai+1 = Ai · Pi(xi)

Ai · Pi(x) is usually denoted as augend. The �nal interval [Bn, Bn + An) =

[Qn(xn),Qn(xn) + Pn(xn)) will then be encoded by interval J(xn) as described above. So
the algorithm looks as follows.

A�E(x)
1 B← 0
2 A← 1
3 for i← 1 to n
4 B← B + A · Qi(x[i])
5 do A← A · Pi(x[i])
6 L← dlg 1

A e + 1
7 c← dB · 2Le
8 return c
We shall illustrate the encoding procedure by the following example from the literature.

Let the discrete, memoryless source (X, P) be given with ternary alphabet X = {1, 2, 3} and
P(1) = 0.4, P(2) = 0.5, P(3) = 0.1. The sequence x4 = (2, 2, 2, 3) has to be encoded.
Observe that Pi = P and Qi = Q for all i = 1, 2, 3, 4. Further Q(1) = 0, Q(2) = P(1) = 0.4,
and Q(3) = P(1) + P(2) = 0.9.

The above algorithm yields

i Bi Ai
0 0 1
1 B0 + A0 · Q(2) = 0.4 A0 · P(2) = 0.5
2 B1 + A1 · Q(2) = 0.6 A1 · P(2) = 0.25
3 B2 + A2 · Q(2) = 0.7 A2 · P(2) = 0.125
4 B3 + A3 · Q(3) = 0.8125 A3 · P(3) = 0.0125

Hence Q(2, 2, 2, 3) = B4 = 0.8125 and P(2, 2, 2, 3) = A4 = 0.0125. From this can be
calculated that L = dlg 1

A e + 1 = 8 and �nally dB · 2Le = d0.8125 · 256e = 208 whose binary
representation is codeword c(2, 2, 2, 3) = 11010000.
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Decoding: Decoding is very similar to encoding. The decoder recursively "undoes" the
encoder's recursion. We divide the interval [0, 1) into subintervals with bounds de�ned by
Qi. Then we �nd the interval in which codeword c can be found. This interval determines
the next symbol. Then we subtract Qi(xi) and rescale by multiplication by 1

Pi(xi) .
A�D(c)
1 for i← 1 to n
2 do j← 1
3 while (c < Qi( j)) do j← j + 1
4 x[i]← j − 1
5 c← (c − Qi(x[i]))/Pi(x[i])
6 return x
Observe that when the decoder only receives codeword c he does not know when the

decoding procedure terminates. For instance c = 0 can be the codeword for x1 = (1),
x2 = (1, 1), x3 = (1, 1, 1), etc. In the above pseudocode it is implicit that the number n
of symbols has also been transmitted to the decoder, in which case it is clear what the
last letter to be encoded was. Another possibility would be to provide a special end-of-�le
(EOF)-symbol with a small probability, which is known to both the encoder and the decoder.
When the decoder sees this symbol, he stops decoding. In this case line 1 would be replaced
by

1 while (x[i] , EOF)
(and i would have to be increased). In our above example, the decoder would receive

the codeword 11010000, the binary expansion of 0.8125 up to L = 8 bits. This number falls
in the interval [0.4, 0.9) which belongs to the letter 2, hence the �rst letter x1 = 2. Then
he calculates (0.8075 − Q(2)) 1

P(2) = (0.815 − 0.4) · 2 = 0.83. Again this number is in the
interval [0.4, 0.9) and the second letter is x2 = 2. In order to determine x3 the calculation
(0.83 − Q(2)) 1

P(2) = (0.83 − 0.4) · 2 = 0.86 must be performed. Again 0.86 ∈ [0.4, 0.9) such
that also x3 = 2. Finally (0.86 − Q(2)) 1

P(2) = (0.86 − 0.4) · 2 = 0.92. Since 0.92 ∈ [0.9, 1),
the last letter of the sequence must be x4 = 3.

Correctness
Recall that message xn is encoded by a codeword c(xn), whose interval J(xn) is inside

interval I(xn). This follows from dQn(xn) · 2L(xn)e2−L(xn) + 2−L(xn) < Qn(xn) + 21−L(xn) =

Qn(xn) + 2−dlg 1
Pn(xn ) e ≤ Qn(xn) + Pn(xn).

Obviously a pre�x code is obtained, since a codeword can only be a pre�x of another
one, if their corresponding intervals overlap � and the intervals J(xn) ⊂ I(xn) are obviously
disjoint for different n-s.

Further, we mentioned already that arithmetic coding compresses down to the entropy
up to two bits. This is because for every sequence xn it is L(xn) < lg 1

Pn(xn) + 2. It can also
be shown that the additional transmission of block length n or the introduction of the EOF
symbol only results in a negligible loss of compression.

However, the basic algorithms we presented are not useful in order to compress longer
�les, since with increasing block length n the intervals are getting smaller and smaller, such
that rounding errors will be unavoidable. We shall present a technique to overcome this
problem in the following.

Analysis
The basic algorithm for arithmetic coding is linear in the length n of the sequence to be
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encoded. Usually, arithmetic coding is compared to Huffman coding. In contrast to Huffman
coding, we do not have to store the whole code, but can obtain the codeword directly from
the corresponding interval. However, for a discrete memoryless source, where the probabi-
lity distribution Pi = P is the same for all letters, this is not such a big advantage, since the
Huffman code will be the same for all letters (or blocks of k letters) and hence has to be
computed only once. Huffman coding, on the other hand, does not use any multiplications
which slow down arithmetic coding.

For the adaptive case, in which the Pi's may change for different letters xi to be en-
coded, a new Huffman code would have to be calculated for each new letter. In this case,
usually arithmetic coding is preferred. We shall investigate such situations in the section on
modelling.

For implementations in practice �oating point arithmetic is avoided. Instead, the sub-
division of the interval [0, 1) is represented by a subdivision of the integer range 0, . . . , M,
say, with proportions according to the source probabilities. Now integer arithmetic can be
applied, which is faster and more precise.

Precision problem.
In the basic algorithms for arithmetic encoding and decoding the shrinking of the cur-

rent interval would require the use of high precision arithmetic for longer sequences. Furt-
her, no bit of the codeword is produced until the complete sequence xn has been read in.
This can be overcome by coding ech bit as soon as it is known and then double the length of
the current interval [LO,HI), say, so that this expansion represents only the unknown part
of the interval. This is the case when the leading bits of the lower and upper bound are the
same, i. e. the interval is completely contained either in [0, 1

2 ) or in [ 1
2 , 1). The following

expansion rules guarantee that the current interval does not become too small.
Case 1 ([LO,HI) ∈ [0, 1

2 )): LO← 2 · Lo, HI ← 2 · HI.
Case 2 ([LO,HI) ∈ [ 1

2 , 1)): LO← 2 · LO − 1, HI ← 2 · HI − 1.
Case 3 ( 1

4 ≤ LO < 1
2 ≤ HI < 3

4 ): LO← 2 · LO − 1
2 , HI ← 2 · HI − 1

2 .
The last case called under�ow (or follow) prevents the interval from shrinking too

much when the bounds are close to 1
2 . Observe that if the current interval is contained

in [ 1
4 ,

3
4 ) with LO < 1

2 ≤ HI, we do not know the next output bit, but we do know that
whatever it is, the following bit will have the opposite value. However, in contrast to the
other cases we cannot continue encoding here, but have to wait (remain in the under�ow
state and adjust a counter under f lowcount to the number of subsequent under�ows, i. e.
under f lowcount ← under f lowcount + 1) until the current interval falls into either [0, 1

2 ) or
[ 1

2 , 1). In this case we encode the leading bit of this interval � 0 for [0, 1
2 ) and 1 for [ 1

2 , 1) �
followed by under f lowcount many inverse bits and then set under f lowcount = 0. The pro-
cedure stops, when all letters are read in and the current interval does not allow any further
expansion.

A--(x)
1 LO← 0
2 HI ← 1
3 A← 1
4 under f lowcount ← 0
5 for i← 1 to n
6 do LO← LO + Qi(x[i]) · A
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7 A← Pi(x[i])
8 HI ← LO + A
9 while HI − LO < 1

2 AND NOT (LO < 1
4 AND HI ≥ 1

2 )
10 do if HI < 1

2
11 then c← c||0, under f lowcount many 1s
12 under f lowcount ← 0
13 LO← 2 · LO
14 HI ← 2 · HI
15 else if LO ≥ 1

2
16 then c← c||1, under f lowcount many 0s
17 under f lowcount ← 0
18 LO← 2 · LO − 1
19 HI ← 2 · HI − 1
20 else if LO ≥ 1

4 AND HI < 3
4

21 then under f lowcount ← under f lowcount + 1
22 LO← 2 · LO − 1

2
23 HI ← 2 · HI − 1

2
24 if under f lowcount > 0
25 then c← c||0, under f lowcount many 1s)
26 return c
We shall illustrate the encoding algorithm in Figure 13.6 by our example � the en-

coding of the message (2, 2, 2, 3) with alphabet X = {1, 2, 3} and probability distribution
P = (0.4, 0.5, 0.1). An under�ow occurs in the sixth row: we keep track of the under�ow
state and later encode the inverse of the next bit, here this inverse bit is the 0 in the ninth
row. The encoded string is 1101000.

Precision � decoding involves the consideration of a third variable besides the interval
bounds LO and HI.

13.2.2. Modelling
Modelling of memoryless sources with The Krichevsky-Tro�mov Estimator
In this section we shall only consider binary sequences xn ∈ {0, 1}n to be compressed by
an arithmetic coder. Further, we shortly write P(xn) instead of Pn(xn) in order to allow
further subscripts and superscripts for the description of the special situation. Pe will denote
estimated probabilities, Pw weighted probabilities, and Ps probabilities assigned to a special
context s.

The application of arithmetic coding is quite appropriate if the probability distribution
of the source is such that P(x1x2 . . . xn−1xn) can easily be calculated from P(x1x2 . . . xn−1).
Obviously this is the case, when the source is discrete and memoryless, since then
P(x1x2 . . . xn−1xn) = P(x1x2 . . . xn−1) · P(xn).

Even when the underlying parameter θ = P(1) of a binary, discrete memoryless source
is not known, there is an efficient way due to Krichevsky and Tro�mov to estimate the
probabilities via

P(Xn = 1|xn−1) =
b + 1

2
a + b + 1 ,
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Current Subintervals
Interval Action 1 2 3 Input

[0.00, 1.00) subdivide [0.00, 0.40) [0.40, 0.90) [0.90, 1.00) 2
[0.40, 0.90) subdivide [0.40, 0.60) [0.60, 0.85) [0.85, 0.90) 2
[0.60, 0.85) encode 1

expand [ 1
2 , 1)

[0.20, 0.70) subdivide [0.20, 0.40) [0.40, 0.65) [0.65, 0.70) 2
[0.40, 0.65) under�ow

expand [ 1
4 ,

3
4 )

[0.30, 0.80) subdivide [0.30, 0.50) [0.50, 0.75) [0.75, 0.80) 3
[0.75, 0.80) encode 10

expand [ 1
2 , 1)

[0.50, 0.60) encode 1
expand [ 1

2 , 1)
[0.00, 0.20) encode 0

expand [0, 1
2 )

[0.00, 0.40) encode 0
expand [0, 1

2 )
[0.00, 0.80) encode 0

Figure 13.6. Example of Arithmetic encoding with interval expansion.

a b 0 1 2 3 4 5
0 1 1/2 3/8 5/16 35/128 63/256
1 1/2 1/8 1/16 5/128 7/256 21/1024
2 3/8 1/16 3/128 3/256 7/1024 9/2048
3 5/16 5/128 3/256 5/1024 5/2048 45/32768

Figure 13.7. Table of the �rst values for the Krichevsky-Tro�mov estimator.

where a and b denote the number of 0s and 1s, respectively, in the sequence xn−1 =

(x1x2 . . . xn−1). So given the sequence xn−1 with a many 0s and b many 1s, the probability
that the next letter xn will be a 1 is estimated as b+ 1

2
a+b+1 . The estimated block probability of a

sequence containing a zeros and b ones then is

Pe(a, b) =

1
2 · · · (a − 1

2 ) 1
2 · · · (b − 1

2 )
1 · 2 · · · (a + b)

with initial values a = 0 and b = 0 as in Figure 13.7, where the values of the Krichevsky-
Tro�mov estimator Pe(a, b) for small (a, b) are listed.

Note that the summand 1
2 in the nominator guarantees that the probability for the next

letter to be a 1 is positive even when the symbol 1 did not occur in the sequence so far.
In order to avoid in�nite codeword length, this phenomenon has to be carefully taken into
account when estimating the probability of the next letter in all approaches to estimate the
parameters, when arithmetic coding is applied.
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???????

θ1

θ10

θ00

0 11100100 1

Figure 13.8. An example for a tree source.

Models with known context tree
In most situations the source is not memoryless, i. e., the dependencies between the letters
have to be considered. A suitable way to represent such dependencies is the use of a suffix
tree, which we denote as context tree. The context of symbol xt is suffix s preceding xt. To
each context (or leaf in the suffix tree) s there corresponds a parameter θs = P(Xt = 1|s),
which is the probability of the occurrence of a 1 when the last sequence of past source
symbols is equal to context s (and hence 1 − θs is the probability for a 0 in this case). We
are distinguishing here between the model (the suffix tree) and the parameters (θs).

Example 13.1 Let S = {00, 10, 1} and θ00 = 1
2 , θ10 = 1

3 , and θ1 = 1
5 . The corresponding suffix tree

jointly with the parsing process for a special sequence can be seen in Figure 13.8.

The actual probability of the sequence '0100111' given the past '. . . 010' is
Ps(0100111| . . . 010) = (1 − θ10)θ00(1 − θ1)(1 − θ10)θ00θ1θ1 = 2

3 · 1
2 · 4

5 · 2
3 · 1

2 · 1
5 · 1

5 = 4
1075 ,

since the �rst letter 0 is preceded by suffix 10, the second letter 1 is preceded by suffix 00,
etc.

Suppose the model S is known, but not the parameters θs. The problem now is to �nd
a good coding distribution for this case. The tree structure allows to easily determine which
context precedes a particular symbol. All symbols having the same context (or suffix) s ∈ S
form a memoryless source subsequence whose probability is determined by the unknown
parameter θs. In our example these subsequences are '11' for θ00, '00' for θ10 and '011' for
θ1. One uses the Krichevsky-Tro�mov-estimator for this case. To each node s in the suffix
tree, we count the numbers as of zeros and bs of ones preceded by suffix s. For the children
0s and 1s of parent node s obviously a0s + a1s = as and b0s + b1s = bs must be satis�ed.

In our example (aλ, bλ) = (3, 4) for the root λ, (a1, b1) = (1, 2), (a0, b0) = (2, 2)
and (a10, b10) = (2, 0), (a00, b00) = (0, 2). Further (a11, b11) = (0, 1), (a01, b01) = (1, 1),
(a111, b111) = (0, 0), (a011, b011) = (0, 1), (a101, b101) = (0, 0),(a001, b001) = (1, 1),
(a110, b110) = (0, 0), (a010, b010) = (2, 0), (a100, b100) = (0, 2), and (a000, b000) = (0, 0). These
last numbers are not relevant for our special source S but will be important later on, when
the source model or the corresponding suffix tree, respectively, is not known in advance.

Example 13.2 Let S = {00, 10, 1} as in the previous example. Encoding a subsequence is done by
successively updating the corresponding counters for as and bs. For example, when we encode the
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sequence '0100111' given the past '. . . 010' using the above suffix tree and Krichevsky�Tro�mov�
estimator we obtain

Ps
e(0100111| . . . 010) =

1
2 ·

1
2 ·

1
2 ·

3
4 ·

3
4 ·

1
4 ·

1
2 =

3
8 ·

3
8 ·

1
16 =

9
1024 ,

where 3
8 , 3

8 and 1
16 are the probabilities of the subsequences '11', '00' and '011' in the context of the

leaves. These subsequences are assumed to be memoryless.

The context-tree weighting method
Suppose we have a good coding distribution P1 for source 1 and another one, P2, for source
2. We are looking for a good coding distribution for both sources. One possibility is to
compute P1 and P2 and then 1 bit is needed to identify the best model which then will be
used to compress the sequence. This method is called selecting. Another possibility is to
employ the weighted distribution, which is

Pw(xn) =
P1(xn) + P2(xn)

2 .

We shall present now the context-tree weighting algorithm . Under the assumption that
a context tree is a full tree of depth D, only as and bs, i. e. the number of zeros and ones in
the subsequence of bits preceded by context s, are stored in each node s of the context tree.

Further, to each node s is assigned a weighted probability Ps
w which is recursively de�-

ned as
Ps

w =

{ Pe(as,bs)+P0s
w P1s

w
2 for 0 ≤ L(s) < D,

Pe(as, bs) for L(s) = D,
where L(s) describes the length of the (binary) string s and Pe(as, bs) is the estimated pro-
bability using the Krichevsky - Tro�mov estimator.

Example 13.3 After encoding the sequence '0100111' given the past '. . . 010' we obtain the context
tree of depth 3 in Figure 13.9. The weighted probability Pλ

w = 35
4096 of the root node λ �nally yields the

coding probability corresponding to the parsed sequence.

Recall that for the application in arithmetic coding it is important that probabilities
P(x1 . . . xn−10) and P(x1 . . . xn−11) can be efficiently calculated from P(x1 . . . xn). This is
possible with the context�tree weighting method, since the weighted probabilities Ps

w only
have to be updated, when s is changing. This just occurs for the contexts along the path from
the root to the leaf in the context tree preceding the new symbol xn � namely the D + 1
contexts xn−1, . . . , xn−i for i = 1, . . . ,D − 1 and the root λ. Along this path, as = as + 1 has
to be performed, when xn = 0, and bs = bs + 1 has to be performed, when xn = 1, and the
corresponding probabilities Pe(as, bs) and Ps

w have to be updated.
This suggests the following algorithm for updating the context tree

CT (x1, . . . , xn−1|x−D+1, . . . x0) when reading the next letter xn. Recall that to each
node of the tree we store the parameters (as, bs), Pe(as, bs) and Ps

w. These parameters have
to be updated in order to obtain CT (x1, . . . , xn|x−D+1, . . . x0). We assume the convention that
the ordered pair (xn−1, xn) denotes the root λ.

U--(xn,CT (x1 . . . xn−1|x−D+1 . . . x0))
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(0,0)

(0,1)

(0,0)

(1,1)

(0,0)

(2,0)

(0,2)

(0,0)

P010
w = 3/8

P11
w = 1/2

P011
w = 1/2

P001
w = 1/8

P100
w = 3/8

P01
w = 1/8

P10
w = 3/8

P00
w = 3/8

P1
w = 1/16

Pλw = 35/4096

P0
w = 21/256

1

0(2,2)

(2,0)

(0,2)

(1,1)

(0,1)

(1,2)

(3,4)

Figure 13.9. Weighted context tree for source sequence '0100111' with past . . . 010. The pair (as, bs) denotes as
zeros and bs ones preceded by the corresponding context s. For the contexts s = 111, 101, 110, 000 it is Ps

w =
Pe(0, 0) = 1.

1 s← (xn−1 . . . xn−D)
2 if xn = 0
3 then Ps

w ← Ps
w · as+1/2

as+bs+1
4 as ← as + 1
5 else Ps

w ← Ps
w · bs+1/2

as+bs+1
6 bs ← bs + 1
7 for i← 1 to D
8 do s← (xn−1, . . . , xn−D+i)
9 if xn = 0
10 then Pe(as, bs)← Pe(as, bs) · as+1/2

as+bs+1
11 as ← as + 1
12 else Pe(as, bs)← Pe(as, bs) · as+1/2

as+bs+1
13 bs ← bs + 1
14 Ps

w ← 1
2 · (Pe(as, bs) + P0s

w · P1s
w )

15 return Ps
w

The probability Pλ
w assigned to the root in the context tree will be used for the successive

subdivisions in arithmetic coding. Initially, before reading x1, the parameters in the context
tree are (as, bs) = (0, 0), Pe(as, bs) = 1, and Ps

w = 1 for all contexts s in the tree. In
our example the updates given the past (x−2, x−1, x0) = (0, 1, 0) would yield the successive
probabilities Pλ

w: 1
2 for x1 = 0, 9

32 for (x1x2) = (01), 5
64 for (x1x2x3) = (010), 13

256 for
(x1x2x3x4) = (0100), 27

1024 for (x1x2x3x4) = (01001), 13
1024 for (x1x2x3x4x5) = (010011), 13

1024
for (x1x2x3x4x5x6) = (010011), and �nally 35

4096 for (x1x2x3x4x5x6x7) = (0100111).
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Correctness
Recall that the quality of a code concerning its compression capability is measured

with respect to the average codeword length. The average codeword length of the best code
comes as close as possible to the entropy of the source. The difference between the average
codeword length and the entropy is denoted as the redundancy ρ(c) of code c, hence

ρ(c) = L(c) − H(P),

which obviously is the weighted (by P(xn)) sum of the individual redundancies

ρ(xn) = L(xn) − lg 1
P(xn) .

The individual redundancy ρ(xn|S) of sequences xn given the (known) source S for all
θs ∈ [0, 1] for s ∈ S, |S| ≤ n is bounded by

ρ(xn|S) ≤ |S|2 lg n
|S| + |S| + 2.

The individual redundancy ρ(xn|S) of sequences xn using the context�tree weighting
algorithm (and hence a complete tree of all possible contexts as model S) is bounded by

ρ(xn|S) < 2|S| − 1 +
|S|
2 lg n

|S| + |S| + 2.

Comparing these two formulae, we see that the difference of the individual redundan-
cies is 2|S| − 1 bits. This can be considered as the cost of not knowing the model, i.e. the
model redundancy. So, the redundancy splits into the parameter redundancy, i. e. the cost
of not knowing the parameter, and the model redundancy. It can be shown that the expected
redundancy behaviour of the context�tree weighting method achieves the asymptotic lower
bound due to Rissanen who could demonstrate that about 1

2 lg n bits per parameter is the
minimum possible expected redundancy for n −→ ∞.

Analysis
The computational complexity is proportional to the number of nodes that are visi-

ted when updating the tree, which is about n(D + 1). Therefore, the number of operations
necessary for processing n symbols is linear in n. However, these operations are mainly
multiplications with factors requiring high precision.

As for most modelling algorithms, the backlog of implementations in practice is the
huge amount of memory. A complete tree of depth D has to be stored and updated. Only
with increasing D the estimations of the probabilities are becoming more accurate and hence
the average codeword length of an arithmetic code based on these estimations would become
shorter. The size of the memory, however, depends exponentially on the depth of the tree.

We presented the context�tree weighting method only for binary sequences. Note that
in this case the cumulative probability of a binary sequence (x1 . . . xn) can be calculated as

Qn(x1x2 . . . xn−1xn) =
∑

j=1,...,n;x j=1
P j(x1x2 . . . x j−10).

For compression of sources with larger alphabets, for instance ASCII-�les, we refer to
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the literature.

Exercises
13.2-1 Compute the arithmetic codes for the sources (Xn, Pn), n = 1, 2, 3 with X = {1, 2}
and P = (0.8, 0.2) and compare these codes with the corresponding Huffman codes derived
previously.
13.2-2 For the codes derived in the previous exercise compute the individual redundancies
of each codeword and the redundancies of the codes.
13.2-3 Compute the estimated probabilities Pe(a, b) for the sequence 0100110 and all its
subsequences using the Krichevsky-Tro�mov estimator.
13.2-4 Compute all parameters (as, bs) and the estimated probability Ps

e for the sequence
0100110 given the past 110, when the context tree S = {00, 10, 1} is known. What will be
the codeword of an arithmetic code in this case?
13.2-5 Compute all parameters (as, bs) and the estimated probability Pλ for the sequence
0100110 given the past 110, when the context tree is not known, using the context-tree we-
ighting algorithm.
13.2-6 Based on the computations from the previous exercise, update the estimated proba-
bility for the sequence 01001101 given the past 110.

Show that for the cumulative probability of a binary sequence (x1 . . . xn) it is

Qn(x1x2 . . . xn−1xn) =
∑

j=1,...,n;x j=1
P j(x1x2 . . . x j−10).

13.3. Ziv-Lempel coding
In 1976�1978 Jacob Ziv and Abraham Lempel introduced two universal coding algorithms,
which in contrast to statistical coding techniques, considered so far, do not make explicit
use of the underlying probability distribution. The basic idea here is to replace a previously
seen string with a pointer into a history buffer (LZ77) or with the index of a dictionary
(LZ78). LZ algorithms are widely used � �zip� and its variations use the LZ77 algorithm.
So, in contrast to the presentation by several authors, Ziv-Lempel coding is not a single
algorithm. Originally, Lempel and Ziv introduced a method to measure the complexity of
a string � like in Kolmogorov complexity. This led to two different algorithms, LZ77 and
LZ78. Many modi�cations and variations have been developed since. However, we shall
present the original algorithms and refer to the literature for further information.

13.3.1. LZ77
The idea of LZ77 is to pass a sliding window over the text to be compressed. One looks for
the longest substring in this window representing the next letters of the text. The window
consists of two parts: a history window of length lh, say, in which the last lh bits of the text
considered so far are stored, and a lookahead window of length l f containing the next l f
bits of the text. In the simplest case lh and l f are �xed. Usually, lh is much bigger than l f .
Then one encodes the triple (offset, length, letter). Here the offset is the number of letters
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one has to go back in the text to �nd the matching substring, the length is just the length of
this matching substring, and the letter to be stored is the letter following the matching subst-
ring. Let us illustrate this procedure with an example. Assume the text to be compressed
is ...abaabbaabbaaabbbaaaabbabbbabbb..., the window is of size 15 with lh = 10 letters
history and l f = 5 letters lookahead buffer. Assume, the sliding window now arrived at

...aba||abbaabbaaa|bbbaa||,
i. e., the history window contains the 10 letters abbaabbaaa and the lookahead window

contains the �ve letters bbbaa. The longest substring matching the �rst letters of the looka-
head window is bb of length 2, which is found nine letters back from the right end of the
history window. So we encode (9, 2, b), since b is the next letter (the string bb is also found
�ve letters back, in the original LZ77 algorithm one would select the loargest offset). The
window then is moved 3 letters forward

...abaabb||aabbaaabbb|aaaab||.
The next codeword is (6, 3, a), since the longest matching substring is aaa of length

3 found 6 letters backwards and a is the letter following this substring in the lookahead
window. We proceed with

...abaabbaabb||aaabbbaaaa|bbabb||,
and encode (6, 3, b). Further

...abaabbaabbaaab||bbaaaabbab|babbb||.
Here we encode (3, 4, b). Observe that the match can extend into the lookahead window.
There are many subtleties to be taken into account. If a symbol did not appear yet in

the text, offset and length are set to 0. If there are two matching strings of the same length,
one has to choose between the �rst and the second offset. Both variations have advantages.
Initially one might start with an empty history window and the �rst letters of the text to be
compressed in the lookahead window - there are also further variations.

A common modi�cation of the original scheme is to output only the pair (offset, length)
and not the following letter of the text. Using this coding procedure one has to take into
consideration the case in which the next letter does not occur in the history window. In
this case, usually the letter itself is stored, such that the decoder has to distinguish between
pairs of numbers and single letters. Further variations do not necessarily encode the longest
matching substring.

13.3.2. LZ78
LZ78 does not use a sliding window but a dictionary which is represented here as a table
with an index and an entry. LZ78 parses the text to be compressed into a collection of strings,
where each string is the longest matching string α seen so far plus the symbol s following α
in the text to be compressed. The new string αs is added into the dictionary. The new entry
is coded as (i, s), where i is the index of the existing table entry α and s is the appended
symbol.
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As an example, consider the string �abaabbaabbaaabbbaaaabba�. It is divided by
LZ78 into strings as shown below. String 0 is here the empty string.

Input a b aa bb aab ba aabb baa aabba
String Index 1 2 3 4 5 6 7 8 9
Output (0, a) (0, b) (1, a) (2, b) (3, b) (2, a) (5, b) (6, a) (7, a)

Since we are not using a sliding window, there is no limit for how far back strings
can reach. However, in practice the dictionary cannot continue to grow in�nitely. There
are several ways to manage this problem. For instance, after having reached the maximum
number of entries in the dictionary, no further entries can be added to the table and coding
becomes static. Another variation would be to replace older entries. The decoder knows
how many bits must be reserved for the index of the string in the dictionary, and hence
decompression is straightforward.

Correctness
Ziv-Lempel coding asymptotically achieves the best possible compression rate which

again is the entropy rate of the source. The source model, however, is much more general
than the discrete memoryless source. The stochastic process generating the next letter, is
assumed to be stationary (the probability of a sequence does not depend on the instant of
time, i. e. P(X1 = x1, . . . , Xn = xn) = P(Xt+1 = x1, . . . , Xt+n = xn) for all t and all sequences
(x1 . . . xn)). For stationary processes the limit limn→∞ 1

n H(X1, . . . Xn) exists and is de�ned to
be the entropy rate.

If s(n) denotes the number of strings in the parsing process of LZ78 for a text generated
by a stationary source, then the number of bits required to encode all these strings is s(n) ·
(lg s(n) + 1). It can be shown that s(n)·(lg s(n)+1)

n converges to the entropy rate of the source.
However, this would require that all strings can be stored in the dictionary.

Analysis
If we �x the size of the sliding window or the dictionary, the running time of encoding

a sequence of n letters will be linear in n. However, as usually in data compression, there is
a tradeoff between compression rate and speed. A better compression is only possible with
larger memory. Increasing the size of the dictionary or the window will, however, result in
a slower performance, since the most time consuming task is the search for the matching
substring or the position in the dictionary.

Decoding in both LZ77 and LZ78 is straightforward. Observe that with LZ77 decoding
is usually much faster than encoding, since the decoder already obtains the information at
which position in the history he can read out the next letters of the text to be recovered,
whereas the encoder has to �nd the longest matching substring in the history window. So
algorithms based on LZ77 are useful for �les which are compressed once and decompressed
more frequently.

Further, the encoded text is not necessarily shorter than the original text. Especially in
the beginning of the encoding the coded version may expand a lot. This expansion has to be
taken into consideration.

For implementation it is not optimal to represent the text as an array. A suitable data
structure will be a circular queue for the lookahead window and a binary search tree for the
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history window in LZ77, while for LZ78 a dictionary tree should be used.

Exercises
13.3-1 Apply the algorithms LZ77 and LZ78 to the string �abracadabra�.
13.3-2 Which type of �les will be well compressed with LZ77 and LZ78, respectively? For
which type of �les are LZ77 and LZ78 not so advantageous?
13.3-3 Discuss the advantages of encoding the �rst or the last offset, when several matching
substrings are found in LZ77.

13.4. The Burrows-Wheeler transform
The Burrows-Wheeler transform will best be demonstrated by an example. Assume that
our original text is ~X = �WHEELER�. This text will be mapped to a second text ~L and an
index I according to the following rules.

1) We form a matrix M consisting of all cyclic shifts of the original text ~X. In our
example

M =



W H E E L E R
H E E L E R W
E E L E R W H
E L E R W H E
L E R W H E E
E R W H E E L
R W H E E L E



.

2) From M we obtain a new matrix M′ by simply ordering the rows in M lexicograhi-
cally. Here this yields the matrix

M′ =



E E L E R W H
E L E R W H E
E R W H E E L
H E E L E R W
L E R W H E E
R W H E E L E
W H E E L E R



.

3) The transformed string ~L then is just the last column of the matrix M′ and the index
I is the number of the row of M′, in which the original text is contained. In our example ~L =

�HELWEER� and I = 6 � we start counting the the rows with row no. 0.
This gives rise to the following pseudocode. We write here X instead of ~X and L instead

of ~L, since the purpose of the vector notation is only to distinguish the vectors from the
letters in the text.

BWT-(X)
1 for j← 0 to n − 1
2 do M[0, j]← X[ j]
3 for i← 0 to n − 1
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4 do for j← 0 to n − 1
5 do M[i, j]← M[i − 1, j + 1 mod n]
6 for i← 0 to n − 1
7 do row i of M′ ← row i of M in lexicographic order
8 for i← 0 to n − 1
9 do L[i]← M′[i, n − 1]
10 i = 0
11 while (row i of M′ , row i of M)
12 do i← i + 1
13 I ← i
14 return L and I
It can be shown that this transformation is invertible, i. e., it is possible to reconstruct

the original text ~X from its transform ~L and the index I. This is because these two parameters
just yield enough information to �nd out the underlying permutation of the letters. Let us
illustrate this reconstruction using the above example again. From the transformed string ~L
we obtain a second string ~E by simply ordering the letters in ~L in ascending order. Actually,
~E is the �rst column of the matrix M′ above. So, in our example

~L = �H E L W E E R′′

~E = �E E E H L R W ′′.

Now obviously the �rst letter ~X(0) of our original text ~X is the letter in position I of
the sorted string ~E, so here ~X(0) = ~E(6) = W. Then we look at the position of the letter
just considered in the string ~L � here there is only one W, which is letter no. 3 in ~L. This
position gives us the location of the next letter of the original text, namely ~X(1) = ~E(3) = H.
H is found in position no. 0 in ~L, hence ~X(2) = ~E(0) = E. Now there are three E�s in the
string ~L and we take the �rst one not used so far, here the one in position no. 1, and hence
~X(3) = ~E(1) = E. We iterate this procedure and �nd ~X(4) = ~E(4) = L, ~X(5) = ~E(2) = E,
~X(6) = ~E(5) = R.

This suggests the following pseudocode.
BWT-(L, I)
1 E[0..n − 1]← sort L[0..n − 1]
2 pi[−1]← I
3 for i← 0 to n − 1
4 do j = 0
5 while (L[ j]) , E[pi[i − 1]] OR j is a component of pi)
6 do j← j + 1
7 pi[i]← j
8 X[i]← L[ j]
9 return X
This algorithm implies a more formal description. Since the decoder only knows ~L, he

has to sort this string to �nd out ~E. To each letter ~L( j) from the transformed string ~L record
the position π( j) in ~E from which it was jumped to by the process described above. So the
vector pi in our pseudocode yields a permutation π such that for each j = 0, . . . , n − 1 row
j it is ~L( j) = ~E(π( j)) in matrix M. In our example π = (3, 0, 1, 4, 2, 5, 6). This permutation
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can be used to reconstruct the original text ~X of length n via ~X(n − 1 − j) = ~L(π j(I)), where
π0(x) = x and π j(x) = π(π j−1(x)) for j = 1, . . . , n − 1.

Observe that so far the original data have only been transformed and are not comp-
ressed, since string ~L has exactly the same length as the original string ~L. So what is the
advantage of the Burrows�Wheeler transformation? The idea is that the transformed string
can be much more efficiently encoded than the original string. The dependencies among the
letters have the effect that in the transformed string ~L there appear long blocks consisting of
the same letter.

In order to exploit such frequent blocks of the same letter, Burrows and Wheeler sug-
gested the following move�to�front�code, which we shall illustrate again with our example
above.

We write down a list containing the letters used in our text in alphabetic order indexed
by their position in this list.

E H L R W
0 1 2 3 4

Then we parse through the transformed string ~L letter by letter, note the index of the
next letter and move this letter to the front of the list. So in the �rst step we note 1 � the
index of the H, move H to the front and obtain the list

H E L R W
0 1 2 3 4

Then we note 1 and move E to the front,

E H L R W
0 1 2 3 4

note 2 and move L to the front,

L E H R W
0 1 2 3 4

note 4 and move W to the front,

W L E H R
0 1 2 3 4

note 2 and move E to the front,

E W L H R
0 1 2 3 4

note 0 and leave E at the front,

E W L H R
0 1 2 3 4

note 4 and move R to the front,

R E W L H
0 1 2 3 4
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So we obtain the sequence (1, 1, 2, 4, 2, 0, 4) as our move-to-front-code. The pseudocode
may look as follows, where Q is a list of the letters occuring in the string ~L.

M--(L)
1 Q[0..n − 1]← list of m letters occuring in L ordered alphabetically
2 for i← 0 to n − 1
3 do j = 0
4 while ( j , L[i])
5 do j← j + 1
6 c[i]← j
7 for l← 0 to j
8 do Q[l]← Q[l − 1 mod j + 1]
9 return c
The move�to�front code c will �nally be compressed, for instance by Huffman coding.
Correctness
The compression is due to the move-to-front code obtained from the transformed string

~L. It can easily be seen that this move-to-front coding procedure is invertible, so one can
recover the string ~L from the code obtained as above.

Now it can be observed that in the move-to-front-code small numbers occur more fre-
quently. Unfortunately, this will become obvious only with much longer texts than in our
example � in long strings it was observed that even about 70 per cent of the numbers are
0. This irregularity in distribution can be exploited by compressing the sequence obtained
after move-to-front coding, for instance by Huffman codes or run�length codes.

The algorithm performed very well in practice regarding the compression rate as well
as the speed. The asymptotic optimality of compression has been proven for a wide class of
sources.

Analysis
The most complex part of the Burrows�Wheeler transform is the sorting of the block

yielding the transformed string ~L. Due to fast sorting procedures, especially suited for the
type of data to be compressed, compression algorithms based on the Burrows�Wheeler
transform are usually very fast. On the other hand, compression is done blockwise. The text
to be compressed has to be divided into blocks of appropriate size such that the matrices M
and M′ still �t into the memory. So the decoder has to wait until the whole next block is
transmitted and cannot work sequentially bit by bit as in arithmetic coding or Ziv-Lempel
coding.

Exercises
13.4-1 Apply the Burrows-Wheeler transform and the move-to-front code to the text �ab-
racadabra�.
13.4-2 Verify that the transformed string ~L and the index i of the position in the sorted
text ~E (containing the �rst letter of the original text to be compressed) indeed yield enough
information to reconstruct the original text.
13.4-3 Show how in our example the decoder would obtain the string ~L =�HELWEER�
from the move-to-front code (1, 1, 2, 4, 2, 0, 4) and the letters E,H,L,W,R occuring in the
text. Describe the general procedure for decoding move-to-front codes.
13.4-4 We followed here the encoding procedure presented by Burrows and Wheeler. Can
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the encoder obtain the transformed string ~L even without constructing the two matrices M
and M′?

13.5. Image compression
The idea of image compression algorithms is similar to the one behind the Burrows-Wheeler
transform. The text to be compressed is transformed to a format which is suitable for app-
lication of the techniques presented in the previous sections, such as Huffman coding or
arithmetic coding. There are several procedures based on the type of image (for instance,
black/white, greyscale or colour image) or compression (lossless or lossy). We shall present
the basic steps � representation of data, discrete cosine transform, quantization, coding � of
lossy image compression procedures like the standard JPEG.

13.5.1. Representation of data
A greyscale image is represented as a two�dimensional array X, where each entry X(i, j)
represents the intensity (or brightness) at position (i, j) of the image. Each X(i, j) is eit-
her a signed or an unsigned k-bit integers, i. e., X(i, j) ∈ {0, . . . , 2k − 1} or X(i, j) ∈
{−2k−1, . . . , 2k−1 − 1}.

A position in a colour image is usually represented by three greyscale values R(i, j),
G(i, j), and B(i, j) per position corresponding to the intensity of the primary colours red,
green and blue.

In order to compress the image, the three arrays (or channels) R, G, B are �rst converted
to the luminance/chrominance space by the YCbCr-transform (performed entry�wise)


Y
Cb
Cr

 =


0.299 0.587 0.114
−0.169 −0.331 0.5

0.5 −0.419 −0.0813

 ·


R
G
B



Y = 0.299R + 0.587G + 0.114B is the luminance or intensity channel, where the coef-
�cients weighting the colours have been found empirically and represent the best possible
approximation of the intensity as perceived by the human eye. The chrominance channels
Cb = 0.564(B − Y) and Cr = 0.713(R − Y) contain the colour information on red and blue
as the differences from Y . The information on green is obtained as big part in the luminance
Y .

A �rst compression for colour images commonly is already obtained after application
of the YCbCr�transform by removing irrelevant information. Since the human eye is less
sensitive to rapid colour changes than to changes in intensity, the resolution of the two
chrominance channels Cb and Cr is reduced by a factor of 2 in both vertical and horizontal
direction, which results after sub-sampling in arrays of 1

4 of the original size.
The arrays then are subdivided into 8×8 blocks, on which successively the actual (lossy)

data compression procedure is applied.
Let us consider the following example based on a real image, on which the steps of

compression will be illustrated. Assume that the 8 × 8 block of 8-bit unsigned integers
below is obtained as a part of an image.
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f =



139 144 149 153 155 155 155 155
144 151 153 156 159 156 156 155
150 155 160 163 158 156 156 156
159 161 162 160 160 159 159 159
159 160 161 161 160 155 155 155
161 161 161 161 160 157 157 157
162 162 161 163 162 157 157 157
161 162 161 161 163 158 158 158



13.5.2. The discrete cosine transform
Each 8×8 block ( f (i, j))i, j=0,...,7, say, is transformed into a new block (F(u, v))u,v=0,...,7. There
are several possible transforms, usually the discrete cosine transform is applied, which here
obeys the formula

F(u, v) =
1
4cucv


7∑

i=0

7∑

j=0
f (i, j) · cos (2i + 1)uπ

16 cos (2 j + 1)vπ
16



The cosine transform is applied after shifting the unsigned integers to signed integers
by subtraction of 2k−1.

DCT( f )
1 for u← 0 to 7
2 do for v← 0 to 7
3 do F(u, v)← DCT - coefficient of matrix f
4 return F

The coefficients need not be calculated according to the formula above. They can also be
obtained via a related Fourier transform (see Exercises) such that a Fast Fourier Transform
may be applied. JPEG also supports wavelet transforms, which may replace the discrete
cosine transform here.

The discrete cosine transform can be inverted via

f (i, j) =
1
4


7∑

u=0

7∑

v=0
cucvF(u, v) · cos (2i + 1)uπ

16 cos (2 j + 1)vπ
16

 ,

where cu =

{ 1√
2 for u = 0

1 for u , 0 and cv =

{ 1√
2 for v = 0

1 for v , 0 are normalization cons-
tants.

In our example, the transformed block F is
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F =



235.6 −1.0 −12.1 −5.2 2.1 −1.7 −2.7 1.3
−22.6 −17.5 −6.2 −3.2 −2.9 −0.1 0.4 −1.2
−10.9 −9.3 −1.6 1.5 0.2 −0.9 −0.6 −0.1
−7.1 −1.9 0.2 1.5 0.9 −0.1 0.0 0.3
−0.6 −0.8 1.5 1.6 −0.1 −0.7 0.6 1.3
1.8 −0.2 1.6 −0.3 −0.8 1.5 1.0 −1.0
−1.3 −0.4 −0.3 −1.5 −0.5 1.7 1.1 −0.8
−2.6 1.6 −3.8 −1.8 1.9 1.2 −0.6 −0.4



where the entries are rounded.
The discrete cosine transform is closely related to the discrete Fourier transform and

similarly maps signals to frequencies. Removing higher frequencies results in a less sharp
image, an effect that is tolerated, such that higher frequencies are stored with less accuracy.

Of special importance is the entry F(0, 0), which can be interpreted as a measure for the
intensity of the whole block.

13.5.3. Quantization
The discrete cosine transform maps integers to real numbers, which in each case have to be
rounded to be representable. Of course, this rounding already results in a loss of information.
However, the transformed block F will now be much easier to manipulate. A quantization
takes place, which maps the entries of F to integers by division by the corresponding entry
in a luminance quantization matrix Q. In our example we use

Q =



16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99



.

The quantization matrix has to be carefully chosen in order to leave the image at highest
possible quality. Quantization is the lossy part of the compression procedure. The idea is to
remove information which should not be �visually signi�cant�. Of course, at this point there
is a tradeoff between the compression rate and the quality of the decoded image. So, in JPEG
the quantization table is not included into the standard but must be speci�ed (and hence be
encoded).

Q(F)
1 for i← 0 to 7
2 do for j← 0 to 7
3 do T (i, j)← { F(i, j)

Q(i, j) }
4 return T
This quantization transforms block F to a new block T with T (i, j) = { F(i, j)

Q(i, j) }, where {x}
is the closest integer to x. This block will �nally be encoded. Observe that in the transformed
block F besides the entry F(0, 0) all other entries are relatively small numbers, which has
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the effect that T mainly consists of 0s .

T =



15 0 −1 0 0 0 0 0
−2 −1 0 0 0 0 0 0
−1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



Coefficient T (0, 0), in this case 15, deserves special consideration. It is called DC term
(direct current), while the other entries are denoted AC coefficients (alternate current).

13.5.4. Coding
Matrix T will �nally be encoded by a Huffman code. We shall only sketch the procedure.
First the DC term will be encoded by the difference to the DC term of the previously encoded
block. For instance, if the previous DC term was 12, then T (0, 0) will be encoded as −3.

After that the AC coefficients are encoded according to the zig�zag order T (0, 1),
T (1, 0), T (2, 0), T (1, 1), T (0, 2), T (0, 3), T (1, 2), etc.. In our example, this yields the se-
quence 0,−2,−1,−1,−1, 0, 0,−1 followed by 55 zeros. This zig�zag order exploits the fact
that there are long runs of successive zeros. These runs will be even more efficiently repre-
sented by application of run-length coding, i. e., we encode the number of zeros before the
next nonzero element in the sequence followed by this element.

Integers are written in such a way that small numbers have shorter representations. This
is achieved by splitting their representation into size (number of bits to be reserved) and
amplitude (the actual value). So, 0 has size 0, 1 and −1 have size 1. −3, −2, 2, and 3 have
size 2, etc.

In our example this yields the sequence (2)(3) for the DC term followed by (1, 2)(−2),
(0, 1)(−1), (0, 1)(−1), (0, 1)(−1), (2, 1)(−1), and a �nal (0, 0) as an end-of-block symbol
indicating that only zeros follow from now on. (1, 2)(−2), for instance, means that there is
1 zero followed by an element of size 2 and amplitude −2.

These pairs are then assigned codewords from a Huffman code. There are different
Huffman codes for the pairs (run, size) and for the amplitudes. These Huffman codes have
to be speci�ed and hence be included into the code of the image.

In the following pseudocode for the encoding of a single 8× 8�block T we shall denote
the different Huffman codes by encode-1, encode-2, encode-3.

R--(T )
1 c← encode-1(size(DC − T [0, 0]))
2 c← c|| encode-3(amplitude(DC − T [00]))
3 DC ← T [0, 0]
4 for l← 1 to 14
5 do for i← 0 to l
6 do if l = 1 mod 2 then u← i else u← l − i
7 if T[u,l-u]=0 then run← run + 1
8 else c← c|| encode-2(run, size(T [u, l − u]))



13.5. Image compression 613

9 c← c|| encode-3(amplitude(T [u, l − u])
10 run← 0
11 if run > 0 then encode-2(0, 0)
12 return c
At the decoding end matrix T will be reconstructed. Finally, by multiplication of each

entry T (i, j) by the corresponding entry Q(i, j) from the quantization matrix Q we obtain an
approximation F to the block F, here

F =



240 0 −10 0 0 0 0 0
−24 −12 0 0 0 0 0 0
−14 −13 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



.

To F the inverse cosine transform is applied. This allows to decode the original 8 × 8�
block f of the original image � in our example as

f =



144 146 149 152 154 156 156 156
148 150 152 154 156 156 156 156
155 156 157 158 158 157 156 155
160 161 161 162 161 159 157 155
163 163 164 163 162 160 158 156
163 164 164 164 162 160 158 157
160 161 162 162 162 161 159 158
158 159 161 161 162 161 159 158



.

Exercises
13.5-1 Find size and amplitude for the representation of the integers 5, −19, and 32.
13.5-2 Write the entries of the following matrix in zig � zag order.



5 0 −2 0 0 0 0 0
3 1 0 1 0 0 0 0
0 −1 0 0 0 0 0 0
2 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



How would this matrix be encoded if the difference of the DC term to the previous one was
−2?
13.5-3 In our example after quantizing the sequence (2)(3), (1, 2)(−2), (0, 1)(−1),
(0, 1)(−1), (0, 1)(−1), (2, 1)(−1), (0, 0) has to be encoded. Assume the Huffman codebo-
oks would yield 011 to encode the difference 2 from the preceding block's DC, 0, 01, and
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11 for the amplitudes −1, −2, and 3, respectively, and 1010, 00, 11011, and 11100 for the
pairs (0, 0), (0, 1), (1, 2), and (2, 1), respectively. What would be the bitstream to be encoded
for the 8 × 8 block in our example? How many bits would hence be necessary to compress
this block?
13.5-4 What would be matrices T , F and f , if we had used

Q =



8 6 5 8 12 20 26 31
6 6 7 10 13 29 30 28
7 7 8 12 20 29 35 28
7 9 11 15 26 44 40 31
9 11 19 28 34 55 52 39

12 18 28 32 41 52 57 46
25 32 39 44 57 61 60 51
36 46 48 49 56 50 57 50



for quantizing after the cosine transform in the block of our example?
13.5-5 What would be the zig�zag code in this case (assuming again that the DC term
would have difference −3 from the previous DC term)?
13.5-6 For any sequence ( f (n))n=0,...,m−1 de�ne a new sequence ( �f (n))n=0,...,2m−1 by

�f (n) =

{
f (n) for n = 0, . . . ,m − 1

f (2m − 1 − n) for n = m, . . . , 2m − 1 .

This sequence can be expanded to a Fourier series via

�f (n) =
1√
2m

2m−1∑

n=0
�g(u)ei 2π

2m nu with �g(u) =
1√
2m

2m−1∑

n=0

�f (u)e−i 2π
2m nu, i =

√
−1.

Show how the coefficients of the discrete cosine transform

F(u) = cu

m−1∑

n=0
f (n) cos( (2n + 1)πu

2m , cu =


1√
m for u = 0

2√
m for u , 0

arise from this Fourier series.

Chapter notes
The frequency table of the letters in English texts is taken from [24]. The Huffman coding
algorithm was introduced by Huffman in [13]. A pseudocode can be found in [8], where
the Huffman coding algorithm is presented as a special Greedy algorithm. There are also
adaptive or dynamic variants of Huffman coding, which adapt the Huffman code if it is no
longer optimal for the actual frequency table, for the case that the probability distribution of
the source is not known in advance. The �3/4-conjecture� on Kraft's inequality for �x-free
codes is due to Ahlswede, Balkenhol, and Khachatrian [1].

Arithmetic coding has been introduced by Rissanen [19] and Pasco [18]. For a dis-
cussion of implementation questions see [16, 16, 27]. In the section on modelling we are
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following the presentation of Willems, Shtarkov and Tjalkens in [26]. The exact calculati-
ons can be found in their original paper [25] which received the Best Paper Award of the
IEEE Information Theory Society in 1996. The Krichevsky-Tro�mov estimator had been
introduced in [14].

We presented the two original algorithms LZ77 and LZ78 [28, 29] due to Lempel and
Ziv. Many variants, modi�cations and extensions have been developed since that � con-
cerning the handling of the dictionary, the pointers, the behaviour after the dictionary is
complete, etc. For a description, see, for instance, [3] or [4]. Most of the prominent tools for
data compression are variations of Ziv-Lempel coding. For example �zip� and �gzip� are
based on LZ77 and a variant of LZ78 is used by the program �compress�.

The Burrows-Wheeler transform was introduced in the technical report [5]. It became
popular in the sequel, especially because of the Unix compression tool �bzip� based on the
Burrows-Wheeler transform, which outperformed most dictionary � based tools on several
benchmark �les. Also it avoids arithmetic coding, for which patent rights have to be ta-
ken into consideration. Further investigations on the Burrows-Wheeler transform have been
carried out, for instance in [2, 10, 15].

We only sketched the basics behind lossy image compression, especially the preparation
of the data for application of techniques as Huffman coding. For a detailed discussion we
refer to [22], where also the new JPEG2000 standard is described. Our example is taken
from [23].

JPEG � short for Joint Photographic Experts Group � is very �exible. For instance, it
also supports lossless data compression. All the topics presented in the section on image
compression are not unique. There are models involving more basic colours and further
transforms besides the YCbCr-transform (for which even different scaling factors for the
chrominance channels were used, the formula presented here is from [22]). The cosine
transform may be replaced by another operation like a wavelet transform. Further, there
is freedom to choose the quantization matrix, responsible for the quality of the compressed
image, and the Huffman code. On the other hand, this has the effect that these parameters
have to be explicitly speci�ed and hence are part of the coded image.

The ideas behind procedures for video and sound compression are rather similar to
those for image compression. In principal, they follow the same steps. The amount of data
in these cases, however, is much bigger. Again information is lost by removing irrelevant
information not realizable by the human eye or ear (for instance by psychoacoustic mo-
dels) and by quantizing, where the quality should not be reduced signi�cantly. More re�ned
quantizing methods are applied in these cases.

Most information on data compression algorithms can be found in literature on Infor-
mation Theory, for instance [9, 11], since the analysis of the achievable compression rates
requires knowledge of source coding theory. Recently, there have appeared several books
on data compression, for instance [4, 12, 17, 20, 21], to which we refer to further reading.
The benchmark �les of the Calgary Corpus and the Canterbury Corpus are available under
[6] or [7].

Problems
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13-1. Adaptive Huffman codes
Dynamic and adaptive Huffman coding is based on the following property. A binary code
tree has the sibling property if each node has a sibling and if the nodes can be listed in
order of nonincreasing probabilities with each node being adjacent to its sibling. Show that
a binary pre�x code is a Huffman code exactly if the corresponding code tree has the sibling
property.
13-2. Generalizations of Kraft's inequality
In the proof of Kraft's inequality it is essential to order the lengths L(1) ≤ · · · ≤ L(a). Show
that the construction of a pre�x code for given lengths 2, 1, 2 is not possible if we are not
allowed to order the lengths. This scenario of unordered lengths occurs with the Shannon-
Fano-Elias code and in the theory of alphabetic codes, which are related to special search
problems. Show that in this case a pre�x code with lengths L(1) ≤ · · · ≤ L(a) exists if and
only if ∑

x∈X
2−L(x) ≤ 1

2 .

If we additionally require the pre�x codes to be also suffix-free i. e., no codeword is the end
of another one, it is an open problem to show that Kraft's inequality holds with the 1 on the
right�hand side replaced by 3/4, i. e.,

∑

x∈X
2−L(x) ≤ 3

4 .

13-3. Redundancy of Krichevsky-Tro�mov estimator
Show that using the Krichevsky-Tro�mov estimator, when parameter θ of a discrete memo-
ryless source is unknown, the individual redundancy of sequence xn is at most 1

2 lg n + 3 for
all sequences xn and all θ ∈ {0, 1}.
13-4. Alternatives to move-to-front codes
Find further procedures which like move-to-front coding prepare the text for compression
after application of the Burrows-Wheeler transform.
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