
5. Computer Algebra

Computer systems doing various mathematical computations are inevitable in modern sci-
ence and technology. We are able to compute the orbits of planets and stars, to command
nuclear reactors, to describe and model many of the natural forces. These computations can
be essentially numerical and symbolical.

Although numerical computations may involve not only elementary arithmetical opera-
tions of numbers (addition, subtraction, multiplication, division) but also more sophisticated
calculations, like computing numerical values of mathematical functions, �nding roots of
polynomials or computing numerical eigenvalues of matrices, these operations can be car-
ried out only on numbers. Furthermore, in most cases these numbers are not exact. Their
degree of precision depends on the �oating-point arithmetic of the given computer hard-
ware architecture.

Unlike numerical calculations, the symbolic and algebraic computations operate on
symbols which represent mathematical objects. These objects may be numbers as integers,
rational numbers, real and complex numbers, but may also be polynomials, rational and
trigonometric functions, equations, algebraic structures as groups, rings, ideals, algebras or
elements of them, or even sets, lists, tables.

Computer systems with the ability to handle symbolic computations are called computer
algebra systems or symbolic and algebraic systems or formula manipulation systems. In
most cases these systems are able to handle numerical and graphical computations as well.
The word �symbolic� is to emphasise that, during the problem solving procedure, the objects
are represented by symbols, and the adjective �algebraic� refers to the algebraic origin of
the operations on these symbolic objects.

To characterise the notion computer algebra, one can describe it as a collection of com-
puter programs developed basically to perform
• exact representations of mathematical objects and
• arithmetic with these objects.
On the other hand, computer algebra can be viewed as a discipline which has been developed
in order to invent, analyse and implement efficient mathematical algorithms based on exact
arithmetic for scienti�c research and applications.

Since computer algebra systems are able to perform computations essentially with arbit-
rary precision and error-free �rst we have to clarify the data structures mapped to the various
objects. The Subsection 5.1 deals with the problems of representing mathematical objects.

202 5. Computer Algebra

Further, we describe those symbolic algorithms which are in many area indispensable in the
modern science and practice.

The problems of natural sciences are mainly expressed in terms of mathematical equati-
ons. Research in solving symbolic linear systems is based upon the well-known elimination
methods. Finding the solutions of non-linear systems �rst we analyse the versions of the
Euclidean algorithm and the method of resultants. In the mid-sixties of the last century
Bruno Buchberger in his PhD thesis presented a method to solve multivariate polynomial
equations of arbitrary degree. We know this method as the Gröbner basis method. At that
time the mathematical community paid little attention to his work, but since then it became
the base of a powerful set of tools for computing with higher degree polynomial equations.
We go into the details in the Subsections 5.2 and 5.3.

The next area to be introduced is the �eld of symbolic integration. Although the nature
of the problem was understood long ago (Liouville's principle), it was only 1969 when Ro-
bert Risch invented an algorithm to solve the following: given an elementary function f (x)
of a real variable x, decide whether the inde�nite integral

∫
f (x)dx is again an elementary

function and if so, compute the integral. We describe the method in the Subsection ??.
At the end of this section we offer a brief survey of the theoretical and practical rela-

tions of symbolic algorithms (Subsection 5.5) devoting an independent part to the present
computer algebra systems.

5.1. Data representation
In computer algebra, one encounters mathematical objects of different kinds. In order to be
able to manipulate these objects on a computer, one �rst has to represent and store them in
the memory of that computer. This can cause several theoretical and practical difficulties. In
this subsection we examine these questions.

Consider the integers. We know from our curriculum that the set of integers is countable,
whereas the computers can store only �nitely many of them. The range of values for such a
single-precision integer is limited by the number of distinct encodings that can be made in
the computer word, which is typically 32 or 64 bits in length. Hence, one cannot directly use
the computer's integers to represent the mathematical integers, but must be prepared to write
programs to handle �arbitrarily� large integers represented by several computer integers.
The word arbitrary large does not mean in�nitely large since some architectural constraints
or the memory size limits in any case. Moreover, one has to construct data structures over
which efficient operations can be built. In fact, there are two standard ways of performing
such a representation.

• radix notation (a generalisation of conventional decimal notation), in which n is repre-
sented as ∑k−1

i=0 diBi, where the digits di (0 ≤ i ≤ k − 1) are single precision integers.
These integers can be chosen from the canonical digit set {0 ≤ di ≤ B − 1} or from
the symmetrical digit set {−bB/2c < di ≤ bB/2c}, where the base B could be, in prin-
ciple, any positive integer greater than 1. For efficiency, B is chosen so that B − 1 is
representable in a single computer word. The length k of the linear list (d0, d1, . . . , dk−1)
used to represent a multiprecision integer may be dynamic (i.e. chosen approximately
for the particular integer being represented) or static (i.e. pre-speci�ed �xed length),

5.1. Data representation 203

depending on whether the linear list is implemented using linked list allocation or using
array (sequential) notation. The sign of n is stored within the list, possibly as the sign
of d0 or one or more of the other entries.

• modular notation, in which n is represented by its value modulo a sufficient number
of large (but representable in one computer word) primes. From the images one can
reconstruct n using the chinese remainder algorithm.
The modular form is fast for addition, subtraction and multiplication but is much slower

for divisibility tasks. Hence, the choice of representation in�uences the algorithms that will
be chosen. Indeed, not only the choice of representation in�uences the algorithms to be used
but also the algorithms in�uence the choice of representation.

Example 5.1 For the sake of simplicity in the next example we work only with natural numbers.
Suppose that we have a computer architecture with machine word 32 bits in length, i.e. our computer
is able to perform integer arithmetic with the integers in range I1 = [0, 232 − 1] = [0, 4 294 967 295].
Using this arithmetic we carry out a new arithmetic by which we are able to perform integer arithmetic
with the integers in range I2 = [0, 1050].

Using radix representation let B = 104, and let

n1 = 123456789098765432101234567890 ,
n2 = 2110 .

Then,

n1 = [7890, 3456, 1012, 5432, 9876, 7890, 3456, 12] ,
n2 = [2110] ,

n1 + n2 = [0, 3457, 1012, 5432, 9876, 7890, 3456, 12] ,
n1 · n2 = [7900, 3824, 6049, 1733, 9506, 9983, 3824, 6049, 2] ,

where the addition and the multiplication were computed using radix notation.
Switching to modular representation we have to chose pairwise relative prime integers from the

interval I1 such that their product is greater than 1050. Let for example the primes be

m1 = 4294967291, m2 = 4294967279, m3 = 4294967231 ,
m4 = 4294967197, m5 = 4294967189, m6 = 4294967161 ,

where ∏6
i=1 mi > 1050. Then, an integer from the interval I2 can be represented by a 6-tuple from the

interval I1. Therefore

n1 ≡ 2009436698 (mod m1), n1 ≡ 961831343 (mod m2) ,
n1 ≡ 4253639097 (mod m3), n1 ≡ 1549708 (mod m4) ,
n1 ≡ 2459482973 (mod m5), n1 ≡ 3373507250 (mod m6) ,

furthermore n2 ≡ 2110 (mod mi), (1 ≤ i ≤ 6). Hence

n1 + n2 = [2009438808, 961833453, 4253641207, 1551818, 2459485083, 3373509360] ,
n1 · n2 = [778716563, 2239578042, 2991949111, 3269883880, 1188708718, 1339711723] ,

where the addition and the multiplication are carried out by modular arithmetic.

More generally, concerning the choice of representation of other mathematical objects
it is worth to distinguish three levels of abstraction:

204 5. Computer Algebra

1. Object level. This is the level where the objects are considered as formal mathematical
objects. For example 3 + 3, 4 · 4 − 10 and 6 are all representations of the integer 6. On
the object level the polynomials (x − 1)2(x + 1) and x3 − x2 − x + 1 are to be considered
equal.

2. Form level. On this level one has to distinguish between different representations of an
object. For example (x − 1)2(x + 1) and x3 − x2 − x + 1 are to be considered different
representations of the same polynomial, namely the former is a product, a latter is a
sum.

3. Data structure level. On this level one has to consider different ways of representing an
object in a computer memory. For example, we distinguish between representations of
the polynomial x3 − x2 − x + 1 as

• an array [1,−1,−1, 1] ,
• a linked list [1, 0]→ [−1, 1]→ [−1, 2]→ [1, 3] .

In order to represent objects in a computer algebra system, one has to make choices on both
the form and the data structure level. Clearly, for many objects various representations are
possible. The problem of �how to represent an object� becomes even more difficult when
one takes into consideration other criteria, such as memory space, computation time, or
readability. Let us see an example. For the polynomial

f (x) = (x − 1)2(x + 1)3(2x + 3)4

= 16x9 − 80x8 + 88x7 + 160x6 − 359x5 + x4 + 390x3 − 162x2 − 135x + 81

the product form is more comprehensive, but the second one is more suitable to know the
coefficient of, say, x5. Two other illustrative examples are
• x1000 − 1 and (x − 1)(x999 + x998 + · · · + x + 1) ,
• (x + 1)1000 and x1000 + 1000x999 + · · · + 1000x + 1 .
It is very hard to �nd any good strategy to represent mathematical objects satisfying several
criteria. In practice, one object may have several different representations. This, however,
gives rise to the problem of detecting equality when different representations of the same
object are encountered. In addition, one has to be able to convert from a given representation
to others, to be able to simplify the representations.

Consider the integers. In the form level one can represent the integers using base B
representation, while at the data structure level they can be represented by a linked list or as
an array.

Rational numbers can be represented by two integers, a numerator and a denominator.
Considering memory constraints one needs to ensure that the rational numbers are in lowest
terms and also that the denominator is positive (although other choices, such as numerator
positive, are possible as well). This implies that a greatest common divisor computation
has to be performed. Since the ring of integers is a Euclidean domain, using the Euclidean
algorithm this can be easily computed. The uniqueness of the representation follows from
the choice of the denominator's sign.

Multivariate polynomials (elements of R[x1, x2, . . . , xn], where R is an integral domain)
can be represented in the form a1xe1 + a2xe2 + · · · + anxen , where ai ∈ R \ {0} and for
ei = (ei1 , . . . , ein) one can write xei for xei1

1 xei2
2 · · · x

ein
n . In the form level one can consider the

5.1. Data representation 205

following levels of abstraction:
1. Expanded or factored representation, where the products are multiplied out or the exp-

ression is in product form. Compare

• x2y − x2 + y − 1 , and
•

(
x2 + 1

)
(y − 1) .

2. Recursive or distributive representation (only for multivariate polynomials). In the biva-
riate case the polynomial f (x, y) is viewed as an element of the domain R[x, y], (R[x])[y]
or (R[y])[x]. Compare

• x2y2 + x2 + xy2 − 1 ,
• (x2 + x)y2 + x2 − 1 , and
• (y2 + 1)x2 + y2x − 1 .

At the data structure level there can be dense or sparse representation. Either all terms
are considered, or only those having non-zero coefficients. Compare x4 + 0x3 + 0x2 + 0x− 1
and x4 − 1. In practice, multivariate polynomials are represented mainly in sparse way.

The traditional approach representing power series of form ∑∞
i=0 aixi is to truncate at

some speci�ed point, and then to regard them essentially as univariate polynomials. Howe-
ver, this is not a real representation since many power series can have the same represen-
tation. To overcome this disadvantage, there exist a technique of representing power series
by a procedure generating all of the coefficients (rather than by any �nite list of coeffici-
ents). The generating function is a computable function f such that f (i) = ai. Performing
an operation on power series, it is enough to know how to compute the coefficients of the
resulting series from the coefficients of the operands. For example, the coefficients hi of the
product of the power series f and g can be computed as hi =

∑i
k=0 fkgi−k. In that way, the

coefficients are computed when they are needed. This technique is called lazy evaluation.
Since computer algebra programs compute in a symbolic way with arbitrary accuracy,

in addition to examining the time complexity of the algorithms it is also important to exa-
mine their space complexity.1 Consider the simple problem of solving a linear system having
n equations an n unknowns with integer coefficients which require ω computer word of sto-
rage. Using Gaussian elimination it is easy to see that each coefficient of the reduced linear
system may need 2n−1ω computer words of storage. In other words, Gaussian elimination
suffers from exponential growth in the size of the coefficients. We remark that if we applied
the same method to linear systems having polynomial coefficients, we would have both ex-
ponential growth in the size of the numerical coefficients of the polynomials and exponential
growth in the degrees of the polynomials themselves. In spite of the observed exponential
growth the �nal result of the Gaussian elimination will always be of reasonable size, beca-
use by Cramer's rule we know that each component of the solution to such a linear system is
a ratio of two determinants, each of which requires approximately nω computer words. The
phenomenon described above is called intermediate expression swell. This appears often in
computer algebra algorithms.

1We consider the running time as the number of operations executed, according to the RAM-model. Considering
the Turing-machine model and using machine words with constant length, we do not have this problem since in
this case space is always lowered by the time.

206 5. Computer Algebra

Example 5.2 Using only integer arithmetic we solve the following system of linear equations:

37x + 22y + 22z = 1 ,
31x − 14y − 25z = 97 ,
−11x + 13y + 15z = −86 .

First we eliminate the variable x from the second equation. We multiply the �rst row by 31, the second
by −37 and take their sum. If we apply this strategy for the third equation eliminating the variable x
we got the following system.

37x + 22y + 22z = 1 ,
1200y + 1607z = −3558 ,

723y + 797z = −3171 .

Now, we eliminate the variable y multiplying the second equation by 723, the third one by −1200,
then taking their sum. The result is

37x + 22y + 22z = 1 ,
1200y + 1607z = −3558 ,

205461z = 1232766 .

Continuing this process for eliminating the variables, �nally we have the following system:

1874311479932400x = 5622934439797200 ,
246553200y = −2712085200 ,

205461z = 1232766 .

After some simpli�cation we got that x = 3, y = −11, z = 6. If we apply greatest common divisor
computations in each elimination step the coefficient growth will be less drastic.

In order to avoid the intermediate expression swell phenomenon one uses modular tech-
niques. Instead of performing the operations in the base structure R (e.g. Euclidean ring)
they are performed in some factor structure, and then, the result is transformed back to R
(Figure 5.1). In general, modular computations can be performed efficiently, and the re-
construction steps can be made with some interpolation strategy. We note that the modular
algorithms are very common in computer algebra, but it is not a universal technique.

5.2. Common roots of polynomials
Let R be an integral domain and let

f (x) = f0 + f1x + · · · + fm−1xm−1 + fmxm ∈ R[x], fm , 0 , (5.1)
g(x) = g0 + g1x + · · · + gn−1xn−1 + gnxn ∈ R[x], gn , 0 (5.2)

arbitrary polynomials with n,m ∈ N, n + m > 0. Let us give a necessary and sufficient
condition of f and g sharing a common root in R.

5.2. Common roots of polynomials 207

problem in R

solution
in R

problem in R/〈m〉

solution in
R/〈m〉

modular
reduction

reconstruction

direct
computations

modular
computations

-

�

? ?

Figure 5.1. The general scheme of modular computations

5.2.1. Classical and extended Euclidean algorithm
If T is a �eld then T [x] is a Euclidean domain. Recall that we call an integral domain R
Euclidean together with the function ϕ : R \ {0} → N if for all a, b ∈ R (b , 0) there exist
q, r ∈ R such that a = qb+r, where r = 0 or ϕ(r) < ϕ(b); furthermore for all a, b ∈ R\{0} we
have ϕ(ab) ≥ ϕ(a). The element q = a quo b is called the quotient and r = a rem b is called
the remainder. If we are working in a Euclidean domain we would like the greatest common
divisor to be unique. For this, a unique element has to be chosen from each equivalence class
obtained by multiplying by the units of the ring R. (For example in the case of integers we
always choose the non-negative one form the classes {0}, {−1, 1}, {−2, 2}, . . .) Thus every
element a ∈ R has a unique form

a = unit(a) · normal(a) ,

where normal(a) is called the normal form of a. Let us consider a Euclidean domain R =

T [x] over a �eld T . Let the normal form of a ∈ R be the corresponding normalised monic
polynomial, that is normal(a) = a/lc(a), where lc(a) denotes the leading coefficient of the
polynomial a. Let us summarise these important cases:

• If R = Z then unit(a) = sgn(a) (a , 0) and ϕ(a) = normal(a) = | a |,

• if R = T [x] (T is a �eld) then unit(a) = lc(a) (the leading coefficient of the polynomial
a with the convention of unit(0) = 1), normal(a) = a/lc(a) and ϕ(a) = deg a.

The following algorithm computes the greatest common divisor of two arbitrary elements
of a Euclidean domain. We note that this is one of the most ancient algorithms of the world,
already known by Euclid around 300 B.C.

208 5. Computer Algebra

iteration r c d
� � 18 30
1 18 30 18
2 12 18 12
3 6 12 6
4 0 6 0

(a) The operation of C-E(−18, 30).
iteration r c d

� � x4 − 17
3 x3 + 13

3 x2 − 23
3 x + 14

3 x3 − 20
3 x2 + 7x − 2

1 4x2 − 38
3 x + 20

3 x3 − 20
3 x2 + 7x − 2 4x2 − 38

3 x + 20
3

2 − 23
4 x + 23

6 4x2 − 38
3 x + 20

3 − 23
4 x + 23

6
3 0 − 23

4 x + 23
6 0

(b) The operation of C-E(12x4 − 68x3 + 52x2 − 92x + 56,−12x3 + 80x2 − 84x + 24).

Figure 5.2. Illustration of the operation of the C-E algorithm in Z and Q[x]. In the case (a) the
input is a = −18, b = 30, a, b ∈ Z. The �rst two lines of the pseudocode compute the absolute values of the input
numbers. The loop between lines 3 and 6 is executed four times, the values r, c and d in these iterations is shown in
the table. The C-E(−18,30) algorithm outputs 6 as result. In the case (b) the input parameters are
a = 12x4 − 68x3 + 52x2 − 92x + 56, b = −12x3 + 80x2 − 84x + 24 ∈ Q[x]. The �rst two lines compute the normal
form of the polynomials, and the while loop is executed three times. The output of the algorithm is the polynomial
normal(c) = x − 2/3.

C-E(a, b)
1 c← normal(a)
2 d ← normal(b)
3 while d , 0
4 do r ← c rem d
5 c← d
6 d ← r
7 return normal(c)

In the ring of integers the remainder in line 4 becomes c − bc/dc. When R = T [x], where
T is a �eld, the remainder in line 4 can be calculated by the algorithm E--
-(c, d), the analysis of which is left to Exercise 5.2-1..

Figure 5.2 shows the operation of the C-E algorithm in Z and in Q[x].
We note that in Z the program only enters the while loop with non-negative numbers and
the remainder is always non-negative, so the normalisation in line 7 is not needed.

Before examining the running time of the C-E algorithm we deal with
an extended version of it.

5.2. Common roots of polynomials 209

E-E(a, b)
1 (r0, u0, v0)← (normal(a), 1, 0)
2 (r1, u1, v1)← (normal(b), 0, 1)
3 while r1 , 0
4 do q← r0 quo r1
5 r ← r0 − qr1
6 u← (u0 − qu1)
7 v← (v0 − qv1)
8 (r0, u0, v0)← (r1, u1, v1)
9 (r1, u1, v1)← (r, u, v)

10 return (normal(r0), u0/(unit(a) · unit(r0)), v0/(unit(b) · unit(r0)))

It is known that in the Euclidean domain R the greatest common divisor of the elements
a, b ∈ R can be expressed in the form gcd(a, b) = au+bv with appropriate elements u, v ∈ R.
However, this pair u, v is not unique. For, if u0, v0 are appropriate then so are u1 = u0 + bt
and v1 = v0 − at, for all t ∈ R:

au1 + bv1 = a(u0 + bt) + b(v0 − at) = au0 + bv0 = gcd(a, b) .

The C-E algorithm is completed in a way that beside the greatest common
divisor it outputs an appropriate pair u, v ∈ R as discussed above.

Let a, b ∈ R, where R is a Euclidean domain together with the function ϕ. The equations

r0 = u0a + v0b and r1 = u1a + v1b (5.3)

are obviously ful�lled due to the initialisation in the �rst two lines of the pseudocode
E-E. We show that the equations (5.3) are invariant under the transfor-
mations of the while loop of the pseudocode. Let us presume that the conditions (5.3) are
ful�lled before an iteration of the loop. Then lines 4�5 of the pseudocode imply

r = r0 − qr1 = u0a + v0b − q(au1 + bv1) = a(u0 − qu1) + b(v0 − qv1) ,

hence, because of lines 6�7

r = a(u0 − qu1) + b(v0 − qv1) = au + bv.

Lines 8�9 perform the following operations: u0, v0 take the values of u1 and v1, then u1, v1
take the values of u and v, while r0, r1 takes the value of r1 and r. Thus the equalities in (5.3)
are ful�lled after the iteration of the while loop as well. Since in each iteration of the loop
ϕ(r1) < ϕ(r0), the series {ϕ(ri)} obtained in lines 8�9 is a strictly decreasing series of natural
numbers, so sooner or later the control steps out of the while loop. The greatest common
divisor is the last non-zero remainder in the series of Euclidean divisions, that is r0 in lines
8�9.

Example 5.3 Let us examine the series of remainders in the case of the polynomials

a(x) = 63x5 + 57x4 − 59x3 + 45x2 − 8 , (5.4)
b(x) = −77x4 + 66x3 + 54x2 − 5x + 99 : (5.5)

210 5. Computer Algebra

r0 = x5 +
19
21 x4 − 59

63 x3 +
5
7 x2 − 8

63 ,

r1 = x4 − 6
7 x3 − 54

77 x2 +
5

77 x − 9
7 ,

r2 =
6185
4851 x3 +

1016
539 x2 +

1894
1617 x +

943
441 ,

r3 =
771300096
420796475 x2 +

224465568
420796475 x +

100658427
38254225 ,

r4 = −125209969836038125
113868312759339264 x − 3541728593586625

101216278008301568 ,

r5 =
471758016363569992743605121
180322986033315115805436875 .

The values of the variables u0, v0 before the execution of line 10:

u0 =
113868312759339264
125209969836038125 x3 − 66263905285897833785656224

81964993651506870820653125 x2

−1722144452624036901282056661
901614930166575579027184375 x +

1451757987487069224981678954
901614930166575579027184375 ,

v0 = −113868312759339264
125209969836038125 x4 − 65069381608111838878813536

81964993651506870820653125 x3

+
178270505434627626751446079
81964993651506870820653125 x2 +

6380859223051295426146353
81964993651506870820653125 x

−179818001183413133012445617
81964993651506870820653125 .

The return values are:

gcd(a, b) = 1,

u =
2580775248128

467729710968369 x3 − 3823697946464
779549518280615 x2

− 27102209423483
2338648554841845 x +

7615669511954
779549518280615 ,

v =
703847794944

155909903656123 x4 +
3072083769824

779549518280615 x3

− 25249752472633
2338648554841845 x2 − 301255883677

779549518280615 x +
25468935587159

2338648554841845 .

We can see that the sizes of the coefficients show a drastic growth. One might ask: why
don't we normalise in every iteration of the while loop? This idea leads to the normalised
version of the Euclidean algorithm for polynomials.

5.2. Common roots of polynomials 211

E-E-(a, b)
1 e0 ← unit(a)
2 (r0, u0, v0)← (normal(a), e−1

0 , 0)
3 e1 ← unit(b)
4 (r1, u1, v1)← (normal(b), 0, e−1

1)
5 while r1 , 0
6 do q← r0 quo r1
7 s← r0 remr1
8 e← unit(s)
9 r ← normal(s)

10 u← (u0 − qu1)/e
11 v← (v0 − qv1)/e
12 (r0, u0, v0)← (r1, u1, v1)
13 (r1, u1, v1)← (r, u, v)
14 return (r0, u0, v0

)

Example 5.4 Let us look at the series of remainders and the series e obtained in the E-
E- algorithm in the case of the polynomials (5.4) and (5.5)

r0 = x5 +
19
21 x4 − 59

63 x3 +
5
7 x2 − 8

63 , e0 =63 ,

r1 = x4 − 6
7 x3 − 54

77 x2 +
5
77 x − 9

7 , e1 = − 77 ,

r2 = x3 +
9144
6185 x2 +

5682
6185 x +

10373
6185 , e2 =

6185
4851 ,

r3 = x2 +
2338183
8034376 x +

369080899
257100032 , e3 =

771300096
420796475 ,

r4 = x +
166651173

5236962760 , e4 = − 222685475860375
258204790837504 ,

r5 = 1, e5 =
156579848512133360531
109703115798507270400 .

Before the execution of line 14 of the pseudocode the values of the variables gcd(a, b) = r0, u =

u0, v = v0 are:

gcd(a, b) = 1,

u =
2580775248128

467729710968369 x3 − 3823697946464
779549518280615 x2

− 27102209423483
2338648554841845 x +

7615669511954
779549518280615 ,

v =
703847794944

155909903656123 x4 +
3072083769824

779549518280615 x3

− 25249752472633
2338648554841845 x2 − 301255883677

779549518280615 x +
25468935587159

2338648554841845 .

Looking at the size of the coefficients in Q[x] the advantage of the normalised version is
obvious, but we could not avoid the growth this way either. To get a machine architecture-
dependent description and analysis of the E-E- algorithm we

212 5. Computer Algebra

introduce the following notation. Let

λ(a) = blog2 |a|/wc + 1, if a ∈ Z \ {0}, and λ(0) = 0 ,
λ(a) = max{λ(b), λ(c)}, if a = b/c ∈ Q, b, c ∈ Z, gcd(b, c) = 1 ,
λ(a) = max{λ(b), λ(a0), . . . , λ(an)}, if a =

∑

0≤i≤n
aixi/b ∈ Q[x] ,

ai ∈ Z, b ∈ N+, gcd(b, a0, . . . , an) = 1 ,

where w is the word length of the computer in bits. It is easy to verify that if a, b ∈ Z[x] and
c, d ∈ Q then

λ(c + d) ≤ λ(c) + λ(d) + 1 ,
λ(a + b) ≤ max{λ(a), λ(b)} + 1 ,

λ(cd), λ(c/d) ≤ λ(c) + λ(d) ,
λ(ab) ≤ λ(a) + λ(b) + λ(min{deg a, deg b} + 1) .

We give the following theorems without proof.

Theorem 5.1 If a, b ∈ Z and λ(a) = m ≥ n = λ(b) then the C-E and
E-E algorithms require O(mn) machine-word arithmetic operations.

Theorem 5.2 If F is a �eld and a, b ∈ F[x], deg(a) = m ≥ n = deg(b) then the C-
E, E-E and E-E- algorithms require
O(mn) elementary operations in F.

Is the growth of the coefficients perhaps due to the choice of our polynomials? Let us
examine a single Euclidean division in the E-E- algorithm. Let
a = bq + e∗r, where

a = xm +
1
c

m−1∑

i=0
aixi ∈ Q[x] ,

b = xn +
1
d

n−1∑

i=0
bixi ∈ Q[x] ,

and r ∈ Q[x] are monic polynomials, ai, bi ∈ Z, e∗ ∈ Q, c, d ∈ N+, and consider the case
n = m − 1. Then

q = x +
am−1d − bn−1c

cd ,

λ(q) ≤ λ(a) + λ(b) + 1 ,

e∗r = a − qb =
acd2 − xbcd2 − (am−1d − bn−1c)bd

cd2 ,

λ(e∗r) ≤ λ(a) + 2λ(b) + 3 . (5.6)

Note that the bound (5.6) is valid for the coefficients of the remainder polynomial r as well,
that is λ(r) ≤ λ(a) + 2λ(b) + 3. So in the case when λ(a) ∼ λ(b) the size of the coefficients
may only grow by a factor of around three in each Euclidean division. This estimate seems

5.2. Common roots of polynomials 213

accurate for pseudorandom polynomials, the interested reader should look at problem 5-1..
The worst case estimate suggests that

λ(rl) = O(3l ·max{λ(a), λ(b)}),

where l denotes the running time of the E-E- algorithm, practi-
cally the number of times the while loop is executed. Luckily, this exponential growth is not
achieved in each iteration of the loop and altogether the growth of the coefficients is poly-
nomially bounded in terms of the input. Later we shall see that using modular techniques
the growth can be totally eliminated.

Summarising: after computing the greatest common divisor of the polynomials f , g ∈
R[x] (R is a �eld) f and g have a common root if and only if their greatest common divisor
is not a constant. For, if gcd(f , g) = d ∈ R[x] is not a constant then the roots of d are the
roots of f and g, too, since d divides f and g. On the other hand, if f and g have a root in
common then their greatest common divisor cannot be a constant, since the common root is
the root of it, too.

5.2.2. Primitive Euclidean algorithm
If R is a UFD (unique factorisation domain, where every non-zero non-unit element can be
written as a product of irreducible elements in a unique way up to reordering and multiplica-
tion by units) but not necessarily a Euclidean domain then the situation is more complicated,
since we may not have a Euclidean algorithm in R[x]. Luckily there are several useful met-
hods due to: (1) unique factorisation in R[x], (2) the existence of a greatest common divisor
of two or more arbitrary elements.

The �rst possible method is performing the calculations in the �eld of fractions of R.
The polynomial p(x) ∈ R[x] is called a primitive polynomial if there is no prime in R that
divides all coefficients of p(x). A famous lemma by Gauss says that the product of primitive
polynomials is again primitive, hence for the primitive polynomials f , g, d = gcd(f , g) ∈
R[x] if and only if d = gcd(f , g) ∈ H[x], where H denotes the �eld of fractions of R. So we
can calculate greatest common divisors in H[x] instead of R[x]. Unfortunately, this approach
is not really effective because arithmetic in the �eld of fractions H is much more expensive
than in R.

A second possibility is an algorithm similar to the Euclidean algorithm: in the ring of
polynomials in one variable over an integral domain a so called pseudo-division can be
de�ned. Using the polynomials (5.1), (5.2) if m ≥ n then there exist q, r ∈ R[x], such that

gm−n+1
n f = gq + r ,

where r = 0 or deg r < deg g. The polynomial q is called the pseudo-quotient of f and g
and r is called pseudo-remainder. The notation is q = pquo(f , g), r = prem(f , g).

Example 5.5 Let

f (x) = 12x4 − 68x3 + 52x2 − 92x + 56 ∈ Z[x] , (5.7)
g(x) = −12x3 + 80x2 − 84x + 24 ∈ Z[x] . (5.8)

then pquo(f , g) = −144(x + 1), prem(f , g) = 1152(6x2 − 19x + 10).

214 5. Computer Algebra

iteration r c d
� � 3x4 − 17x3 + 13x2 − 23x + 14 −3x3 + 20x2 − 21x + 6
1 108x2 − 342x + 108 −3x3 + 20x2 − 21x + 6 6x2 − 19x + 10
2 621x − 414 6x2 − 19x + 10 3x − 2
3 0 3x − 2 0

Figure 5.3. The illustration of the operation of the P-E algorithm with input a(x) = 12x4 − 68x3 +
52x2 − 92x + 56, b(x) = −12x3 + 80x2 − 84x + 24 ∈ Z[x]. The �rst two lines of the program compute the primitive
parts of the polynomials. The loop between lines 3 and 6 is executed three times, the table shows the values of
r, c and d in the iterations. In line 7 the variable γ equals gcd(4, 4) = 4. The P-E(a, b) algorithm
returns 4 · (3x − 2) as result.

On the other hand, each polynomial f (x) ∈ R[x] can be written in a unique form

f (x) = cont(f) · pp(f)

up to a unit factor, where cont(f) ∈ R and pp(f) ∈ R[x] are primitive polynomials. Then
cont(f) is called the content, pp(f) is called the primitive part of f (x). The uniqueness of
the form can be achieved by the normalisation of units. For example in the case of integers,
we always choose the positive number from the equivalence classes of Z.

The following algorithm performs a series of pseudo-divisions. The algorithm uses the
function prem(), which computes the pseudo-remainder; and it assumes that we can cal-
culate greatest common divisor in R and content and primitive part in R[x]. The input is
a, b ∈ R[x], where R is a UFD. The output is the polynomial gcd(a, b) ∈ R[x].

P-E(a, b)
1 c← pp(f)
2 d ← pp(g)
3 while d , 0
4 do r ← prem(c, d)
5 c← d
6 d ← pp(r)
7 γ ← gcd(cont(a), cont(b))
8 δ← γc
9 return δ

The operation of the algorithm is illustrated by �gure 5.3. The running time of the P-
E algorithm is the same as the running time of the previous versions of the Eucli-
dean algorithm.

The P-E algorithm is very important because the ring R[x1, x2, . . . , xt]
of multivariate polynomials is a UFD, so we apply the algorithm recursively, e.g. in
R[x2, . . . , xt][x1], using computations in the UFDs R[x2, . . . , xt], . . . ,R[xt]. In other words,
the recursive view of multivariate polynomial rings leads to the recursive application of the
P-E algorithm in a straightforward way.

We may note that, like above, the algorithm shows a growth in the coefficients.
Let us take a detailed look at the UFD Z[x]. The bound on the size of the coefficients

5.2. Common roots of polynomials 215

of the greatest common divisor is given by the following theorem, which we state without
proof.

Theorem 5.3 (Landau-Mignotte). Let a(x) =
∑m

i=0 aixi, b(x) =
∑n

i=0 bixi ∈ Z[x], am , 0 ,
bn, and b(x) | a(x). Then

n∑

i=1
|bi| ≤ 2n

∣∣∣∣∣
bn
am

∣∣∣∣∣

√√ m∑

i=0
a2

i .

Corollary 5.4 With the notations of the previous theorem, the absolute value of any coef-
�cient of the polynomial gcd(a, b) ∈ Z[x] is smaller than

2min{m,n} · gcd(am, bn) ·min
{ 1
|am|

√√ m∑

i=1
a2

i ,
1
|bn|

√√ n∑

i=1
b2

i

}
.

Proof. The greatest common divisor of a and b obviously divides a and b and its degree is at
most the minimum of their degrees. Further, the leading coefficient of the greatest common
divisor divides am and bn, so it divides gcd(am, bn), too.

Example 5.6 Corollary 5.4 implies that the absolute value of the coefficients of the greatest common
divisor is at most b32/9

√
3197c = 201 for the polynomials (5.4), (5.5), and at most b32

√
886c = 952

for the polynomials (5.7) and (5.8).

5.2.3. The resultant
The following method describes the necessary and sufficient conditions for the common
roots of (5.1) and (5.2) in the most general context. As a further advantage, it can be applied
to solve algebraic equation systems of higher degree.

Let R be an integral domain and H its �eld of fractions. Let us consider the smallest
extension K of H over which both f (x) of (5.1) and g(x) of (5.2) splits into linear factors.
Let us denote the roots (in K) of the polynomial f (x) by α1, α2, . . . , αm, and the roots of g(x)
by β1, β2, . . . , βn. Let us form the following product:

res(f , g) = f n
mgm

n (α1 − β1)(α1 − β2) · · · (α1 − βn)
·(α2 − β1)(α2 − β2) · · · (α2 − βn)
...

·(αm − β1)(αm − β2) · · · (αm − βn)

= f n
mgm

n

m∏

i=1

n∏

j=1
(αi − β j) .

It is obvious that res(f , g) equals 0 if and only if for some i and j we have αi = β j, that is f
and g have a common root. We call this product res(f , g) the resultant of the polynomials f
and g. Note that the value of the resultant depends on the order of f and g, but the resultants

216 5. Computer Algebra

obtained in the two ways can only differ in sign.

res(g, f) = gm
n f n

m

n∏

j=1

m∏

i=1
(β j − αi)

= (−1)mn f n
mgm

n

m∏

i=1

n∏

j=1
(αi − β j) = (−1)mnres(f , g) .

Evidently, this form of the resultant cannot be applied in practice, since it presumes the
knowledge of the roots. Let us examine the different forms of the resultant. Since

f (x) = fm(x − α1)(x − α2) · · · (x − αm) (fm , 0) ,
g(x) = gn(x − β1)(x − β2) · · · (x − βn) (gn , 0) ,

hence

g(αi) = gn(αi − β1)(αi − β2) · · · (αi − βn)

= gn

n∏

j=1
(αi − β j) .

Thus

res(f , g) = f n
m

m∏

i=1

(
gn

n∏

j=1
(αi − β j)

)

= f n
m

m∏

i=1
g(αi) = (−1)mngm

n

n∏

j=1
f (β j) .

Although it looks a lot more friendly, this form still requires our knowledge of the roots of
at least one polynomial. We next examine how the resultant may be expressed only in terms
of the coefficients of the polynomials. This leads to the Sylvester form of the resultant.

Let us presume that the polynomial f in (5.1) and the polynomial g in (5.2) have a
common root. This means that there exists a number α ∈ K for which

f (α) = fmαm + fm−1α
m−1 + · · · + f1α + f0 = 0 ,

g(α) = gnα
n + gn−1α

n−1 + · · · + g1α + g0 = 0 .

Multiply these equations by the numbers αn−1, αn−2, . . . , α, 1 and αm−1, αm−2, . . . , α, 1, res-
pectively. We get n equations from the �rst one and m from the second one. We consider
these m + n equations as a homogeneous system of linear equations in m + n indetermi-
nates. This system has the obviously non-trivial solution αm+n−1, αm+n−2, . . . , α, 1. It is a
well-known fact that a homogeneous system with as many equations as indeterminates has
non-trivial solutions if and only if its determinant is zero. We get that f and g can only have

5.2. Common roots of polynomials 217

common roots if the determinant

D =

fm · · · · · · · · · f0 ↑
. . .

. . . n
fm · · · · · · · · · f0 ↓

gn · · · · · · g0 ↑
. . .

. . . m
. . .

. . .

gn · · · · · · g0 ↓

(5.9)

equals 0 (there are 0s everywhere outside the dotted areas). Thus a necessary condition
for the existence of common roots is that the determinant D of order (m + n) be 0. Below
we prove that D equals the resultant of f and g, hence D = 0 is a sufficient condition for
common roots, too. The determinant (5.9) is called the Sylvester form of the resultant.
Theorem 5.5 With the notations above

D = f n
m

m∏

i=1
g(αi) .

Proof. We shall procede by induction on m. If m = 0 then f = fm = f0, so the right-hand
side is f n

0 . The left hand side is a determinant of order n with f0 everywhere in the diagonal,
and 0 everywhere else. Thus D = f n

0 , the statement is true. In the following presume that
m > 0 and the statement is true for m − 1. So if we take the polynomial

f ∗(x) = fm(x − α1) · · · (x − αm−1) = f ∗m−1xm−1 + f ∗m−2xm−2 + · · · + f ∗1 x + f ∗0
instead of f then f ∗ and g ful�ll the condition:

D∗ =

f ∗m−1 · · · · · · · · · f ∗0
. . .

. . .

f ∗m−1 · · · · · · · · · f ∗0
gn · · · · · · g0

. . .
. . .

. . .
. . .

gn · · · · · · g0

= f ∗mm−1

m−1∏

i=1
g(αi) .

Since f = f ∗(x − αm), the coefficients of f and f ∗ satisfy
fm = f ∗m−1, fm−1 = f ∗m−2 − f ∗m−1αm, . . . , f1 = f ∗0 − f ∗1αm, f0 = − f ∗0αm.

Thus

D =

f ∗m−1 f ∗m−2 − f ∗m−1αm · · · · · · − f ∗0αm
. . .

. . .

f ∗m−1 · · · · · · · · · − f ∗0αm
gn · · · · · · g0

. . .
. . .

. . .
. . .

gn · · · · · · g0

.

218 5. Computer Algebra

We transform the determinant in the following way: we add αm times the �rst column to
the second column, then we add αm times the new second column to the third column, etc.
In this way the αm-s disappeared from the �rst n lines, so the �rst n lines of D∗ and the
transformed D are identical. In the last m rows, subtract αm times the second one from the
�rst one, and similarly, always subtract αm times a row from the row right above it. In the
end, D becomes

D =

f ∗m−1 · · · · · · · · · f ∗0
. . .

. . .

f ∗m−1 · · · · · · · · · f ∗0
gn · · · · · · g0

. . .
. . .

. . .
. . .

gn · · · · · · g0
gn gnαm + gn−1 · · · g(αm)

.

Using the last row for expansion we get D = D∗g(αm) which implies D = f n
m
∏m

i=1 g(αi) by
the induction hypothesis.

We get that D = res(f , g), that is the polynomials f and g have a common root in K if
and only if the determinant D vanishes.

From an algorithmic point of view, the computation of the resultant in Sylvester form
for higher degree polynomials means the computation of a large determinant. The following
theorem implies that pseudo-division may simplify the computation.

Theorem 5.6 For the polynomials f of (5.1) and g of (5.2) in the case of m ≥ n > 0


res(f , g) = 0, if prem(f , g) = 0 ,

g(m−n)(n−1)+d
n res(f , g) = (−1)mnres(g, r), if r = prem(f , g) , 0 and d = deg(r) .

Proof. Multiply the �rst line of the determinant (5.9) by gm−n+1
n . Let q = qm−nxm−n+· · ·+q0 ∈

R[x] and r = rd xd + · · · + r0 ∈ R[x] be the uniquely determined polynomials with

gm−n+1
n (fmxm + · · · + f0) = (qm−nxm−n + · · · + q0)(gnxn + · · · + g0)

+ rd xd + · · · + r0 ,

where r = prem(f , g). Then multiplying row (n + 1) of the resultant by qm−n, row (n + 2) by

5.2. Common roots of polynomials 219

qm−n−1 etc. and subtracting from the �rst line we get the determinant

gm−n+1
n res(f , g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 · · · 0 rd · · · · · · r0
fm · · · · · · · · · · · · · · · f0

. . .
. . .

fm · · · · · · · · · · · · · · · f0
gn · · · · · · · · · g0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

gn · · · · · · · · · g0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Here rd is in the (m − d + 1)th column of the �rst row, and r0 is in the (m + 1)th column of
the �rst row.

Similarly, let us multiply the second row by gm−n+1
n , then multiply rows (n + 2), (n + 3),

. . . by qm−n, qm−n−1 etc., and subtract them from the second row. Continue in the same way
for the third, . . ., nth row. The result:

gn(m−n+1)
n res(f , g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

rd · · · · · · r0
. . .

. . .

. . .
. . .

rd · · · · · · r0
gn · · · · · · · · · g0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

gn · · · · · · · · · g0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

220 5. Computer Algebra

After reordering of rows

gn(m−n+1)
n res(f , g) = (−1)mn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

gn · · · · · · · · · g0
. . .

. . .

. . .
. . .

gn · · · · · · · · · g0
. . .

. . .

gn · · · · · · · · · g0
rd · · · · · · r0

. . .
. . .

. . .
. . .

rd · · · · · · r0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Note that ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

gn · · · · · · · · · g0
. . .

. . .

gn · · · · · · · · · g0
rd · · · · · · r0

. . .
. . .

. . .
. . .

rd · · · · · · r0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= res(g, r) ,

thus
gn(m−n+1)

n res(f , g) = (−1)mngm−d
n res(g, r) ,

and then
g(m−n)(n−1)+d

n res(f , g) = (−1)mnres(g, r) (5.10)
follows.

Equation (5.10) describes an important relationship. Instead of computing the possibly
gigantic determinant res(f , g) we perform a series of pseudo-divisions and apply (5.10) in
every step. We calculate the resultant only when no more pseudo-division can be done. An
important consequence of the theorem is
Corollary 5.7 There exist polynomials u, v ∈ R[x] for which res(f , g) = f u + gv with
deg u < deg g, deg v < deg f .
Proof. Multiply the ith column in the determinant form of the resultant by xm+n−i and add it
to the last column for each i = 1, . . . , (m + n − 1). The result is:

res(f , g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fm · · · · · · f0 · · · xn−1 f
. . .

. . .
...

fm · · · · · · f
gn · · · · · · g0 · · · xm−1g

. . .
. . .

...
gn · · · · · · g

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

5.2. Common roots of polynomials 221

Using the last column for expansion and factoring out f and g we get the statement with
the restrictions on the degrees.

The most important bene�t of the resultant method, compared to the previously discus-
sed methods, is that the input polynomials may contain symbolic coefficients as well.

Example 5.7 Let

f (x) = 2x3 − ξx2 + x + 3 ∈ Q[x] ,
g(x) = x2 − 5x + 6 ∈ Q[x] .

Then the existence of common rational roots of f and g cannot be decided by variants of the Euclidean
algorithm, but we can decide it with the resultant method. Such a root exists if and only if

res(f , g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 −ξ 1 3
2 −ξ 1 3

1 −5 6
1 −5 6

1 −5 6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 36ξ2 − 429ξ + 1260 = 3(4ξ − 21)(3ξ − 20) = 0 ,

that is when ξ = 20/3 or ξ = 21/4.

The signi�cance of the resultant is not only that we can decide the existence of common
roots of polynomials, but also that using it we can reduce the solution of algebraic equation
systems to solving univariate equations.

Example 5.8 Let

f (x, y) = x2 + xy + 2x + y − 1 ∈ Z[x, y] , (5.11)
g(x, y) = x2 + 3x − y2 + 2y − 1 ∈ Z[x, y] . (5.12)

Consider the polynomials f and g as elements of (Z[x])[y]. They have a common root if and only if

resy(f , g) =

∣∣∣∣∣∣∣∣

x + 1 x2 + 2x − 1 0
0 x + 1 x2 + 2x − 1
−1 2 x2 + 3x − 1

∣∣∣∣∣∣∣∣
= −x3 − 2x2 + 3x = 0 .

Common roots in Z can exist for x ∈ {−3, 0, 1}. For each x we substitute into the equations (5.11),
(5.12) (already in Z[y]) and get that the integer solutions are (−3, 1), (0, 1), (1,−1).

We note that the resultant method can be applied for the solution of polynomial equa-
tions in several variables, too, but it is not really effective. One problem is that computa-
tional space explosion occurs in the computation of the determinant. We note that compu-
ting the resultant of two univariate polynomials in determinant form with the usual Gauss-
elimination requires O((m + n)3) operations, while variants of the Euclidean algorithm are
quadratic. The other problem is that computational complexity depends strongly on the
order of the indeterminates. Eliminating all variables together in a polynomial equation
system is much more effective. This leads to the introduction of multivariate resultants.

5.2.4. Modular greatest common divisor
All methods considered so far for the existence and calculation of common roots of poly-
nomials are characterised by an explosion of computational space. The natural question

222 5. Computer Algebra

arises: can we apply modular techniques? Below we examine the case a(x), b(x) ∈ Z[x]
with (a, b , 0). Let us consider the polynomials (5.4), (5.5) ∈ Z[x] and let p = 13 a prime
number. Then the series of remainders in Zp[x] in the C-E algorithm is the
following:

r0 = 11x5 + 5x4 + 6x3 + 6x2 + 5 ,
r1 = x4 + x3 + 2x2 + 8x + 8 ,
r2 = 3x3 + 8x2 + 12x + 1 ,
r3 = x2 + 10x + 10 ,
r4 = 7x ,
r5 = 10 .

We get that the polynomials a and b are relatively prime in Zp[x]. The following theorem
describes the connection between greatest common divisors in Z[x] and Zp[x].
Theorem 5.8 Let a, b ∈ Z[x], a, b , 0. Let p be a prime for which p 6 | lc(a) and p 6 | lc(b).
Let further c = gcd(a, b) ∈ Z[x], ap = a remp, bp = b remp and cp = c remp. Then

(1) deg (gcd(ap, bp)) ≥ deg (gcd(a, b)),
(2) if p 6 | res(a/c, b/c), then gcd(ap, bp) = cp.

Proof. (1): Since cp | ap and cp | bp, thus cp | gcd(ap, bp). So
deg (gcd(ap, bp)) ≥ deg (gcd(a, b) mod p).

By hypothesis p 6 | lc(gcd(a, b)), which implies
deg (gcd(a, b) mod p) = deg (gcd(a, b)) .

(2): Since gcd(a/c, b/c) = 1, and cp is non-trivial, so
gcd(ap, bp) = cp · gcd(ap/cp, bp/cp) . (5.13)

If gcd(ap, bp) , cp then the right hand side of (5.13) is non-trivial, thus res(ap/cp, bp/cp) =

0. But the resultant is the sum of the corresponding products of the coefficients, so p |
res(a/c, b/c), a contradiction.
Corollary 5.9 There are at most a �nite number of primes p for which p 6 | lc(a), p 6 | lc(b)
and deg (gcd(ap, bp)) > deg (gcd(a, b)).

In the case when in statement (1) of theorem 5.8 is ful�lled we call p a �lucky prime�.
We can outline a modular algorithm for gcd computation.

M-G-B(a, b)
1 M ← the Landau-Mignotte constant (from corollary 5.4)
2 H ← {}
3 while 

4 do p← a prime with p ≥ 2M, p < H, p 6 | lc(a) and p 6 | lc(b)
5 cp ← gcd(ap, bp)
6 if cp | a and cp | b
7 then return cp
8 else H ← H ∪ {p}

5.2. Common roots of polynomials 223

The �rst line of the algorithm requires the calculation of the Landau-Mignotte bound. The
fourth line requires a �sufficiently large� prime p which does not divide the leading coeffi-
cient of a or b. The �fth line computes the greatest common divisor of the polynomials a
and b modulo p (for example with the C-E algorithm in Zp[x]). We store
the coefficients of the resulting polynomials with symmetrical representation. The sixth line
examines whether cp | a and cp | b are ful�lled, in which case cp is the required greatest
common divisor. If this is not the case then p is an �unlucky prime�, so we choose another
prime. Since by theorem 5.8 there are only �nitely many �unlucky primes�, the algorithm
will always terminate sooner or later. If the primes are chosen according to a given strategy,
the set H is not needed.

The disadvantage of the M-- algorithm is that the Landau-Mignotte
constant grows exponentially in terms of the degree of the input polynomials, so we have to
work with large primes. The question is how we could modify the algorithm so that we can
rather work with �many small primes�. Since greatest common divisor in Zp[x] is unique
only up to a constant factor, we have to be careful with the coefficients of the polynomials in
the new algorithm. So before applying the Chinese remainder theorem for the coefficients of
the modular greatest common divisors taken modulo different primes, we have to normalise
the leading coefficient of gcd(ap, bp). If am and bn are the leading coefficients of a and b then
the leading coefficient of gcd(a, b) divides gcd(am, bn). Therefore, we normalise the leading
coefficient of gcd(ap, bp) to gcd(am, bn) mod p in the case of primitive polynomials a and b;
and �nally we take the primitive part of the resulting polynomial. Just like in the M-
- algorithm, modular values are stored with symmetrical representation. These
observations lead to the following modular gcd algorithm using small primes.

M-G-S(a, b)
1 d ← gcd(lc(a), lc(b))
2 p← a prime for which p 6 | d
3 H ← {p}

224 5. Computer Algebra

4 P← p
5 cp ← gcd(ap, bp)
6 gp ← (d mod p) · cp
7 (n, i, j)← (3, 1, 1)
8 while 

9 do if j = 1
10 then if deg gp = 0
11 then return 1
12 (g, j, P)← (gp, 0, p)
13 if n ≤ i
14 then g← pp(g)
15 if g | a and g | b
16 then return g
17 p← a prime for which p 6 | d and p < H
18 H ← H ∪ {p}
19 cp ← gcd(ap, bp)
20 gp ← (d mod p) · cp
21 if deg gp < deg g
22 then (i, j)← (1, 1)
23 if j = 0
24 then if deg gp = deg g
25 then g1 = C-(g, gp, P, p)
26 if g1 = g
27 then i← i + 1
28 else i← 1
29 P← P · p
30 g← g1

C-B(a, b,m1,m2)
1 p← 0
2 c← 1/m1 mod m2
3 for i← deg a downto 0
4 do r ← ai mod m1
5 s← (bi − r) mod m2
6 p← p + (r + s · m1)xi

7 return p

We may note that the algorithm M-G-S does not require as many small
primes as the Landau-Mignotte bound tells us. When the value of the polynomial g does
not change during a few iterations, we test in lines 13�16 if g is really a greatest common
divisor. The number of these iterations is stored in the variable n of line six. We note that the
value of n could vary according to the input polynomial. The primes used in the algorithms
could preferably be chosen from a (architecture-dependent) prestored list containing primes
that �t in a machine word, so the use of the set H becomes unnecessary. Corollary 5.9

5.2. Common roots of polynomials 225

implies that the M-- algorithm always comes to an end.
The C- algorithm computes the solution of the equation system obtained by

taking congruence relations modulo m1 and m2 for the coefficients of identical degree in the
input polynomials a and b. This is done according to the Chinese remainder theorem. It is
very important to store the results in symmetrical modular representation form.

Example 5.9 Let us examine the operation of the M-- algorithm for the pre-
viously seen polynomials (5.4), (5.5). For comprehensivity we calculate with small primes. Recall
that

a(x) = 63x5 + 57x4 − 59x3 + 45x2 − 8 ∈ Z[x] ,
b(x) = −77x4 + 66x3 + 54x2 − 5x + 99 ∈ Z[x] .

After the execution of the �rst six lines of the algorithm with p = 5 we have d = 7, cp = x2 + 3x + 2
and gp = 2x2 + x − 1. Since j = 1 due to line 7, the lines 10�12 are executed. The polynomial gp is
not zero so g = 2x2 + x − 1, j = 0, and P = 5 will be the values after execution. The condition in line
13 is not ful�lled so we choose another prime. The prime p = 7 is a bad choice but p = 11 is allowed.
According to lines 19�20 then cp = 1, gp = −4. Since deg gp < deg g, we have j = 1 and lines 25�30
are not executed. The polynomial gp is constant so the return value in line 11 is 1, which means that
the polynomials a and b are relatively prime.

Example 5.10 In our second example consider the already discussed polynomials

a(x) = 12x4 − 68x3 + 52x2 − 92x + 56 ∈ Z[x] ,
b(x) = −12x3 + 80x2 − 84x + 24 ∈ Z[x] .

Let again p = 5. After the �rst six lines of the polynomials d = 12, cp = x + 1, gp = 2x + 2.
After the execution of lines 10�12 we have P = 5, g = 2x + 2. Let the next prime be p = 7. So
the new values are cp = x + 4, gp = −2x − 1. Since deg gp = deg g, after lines 25�30 P = 35 and
the new value of g is 12x − 8. The value of the variable i is still 1. Let the next prime be 11. Then
cp = gp = x + 3. The polynomials gp and g have the same degree, so we modify the coefficients of
g. Then g1 = 12x − 8 and since g = g1, we get i = 2 and P = 385. Let the new prime be 13. Then
cp = x + 8, gp = −x + 5. The degrees of gp and g are still equal thus lines 25�30 are executed and the
variables become g = 12x − 8, P = 4654, i = 3.

After the execution of lines 17�18 it turns out that g | a and g | b so g = 12x − 8 is the greatest
common divisor.

We give the following theorem without proof.

Theorem 5.10 The M-- algorithm works correctly. The computati-
onal complexity of the algorithm is O(m3(lg m +λ(K))2) in machine word operations, where
m = min{deg a, deg b}, and K is the Landau-Mignotte bound for the polynomials a and b.

Exercises
5.2-1 Let R be a commutative ring with identity element, a =

∑m
i=0 aixi ∈ R[x], b =∑n

i=0 bixi ∈ R[x], furthermore bn a unit, m ≥ n ≥ 0. The following algorithm performs
Euclidean division for a and b and outputs the polynomials q, r ∈ R[x] for which a = qb + r
and deg r < n or r = 0 holds.

226 5. Computer Algebra

E---(a, b)
1 r ← a
2 for i← m − n downto 0
3 do if deg r = n + i
4 then qi ← lc(r)/bn
5 r ← r − qixib
6 else qi ← 0
7 q← ∑m−n

i=0 qixi and r
8 return q

Prove that the algorithm uses at most

(2 deg b + 1)(deg q + 1) = O(m2)

operations in R.
5.2-2 What is the difference between the algorithms E-E and E-
E- in Z[x]?
5.2-3 Prove that res(f · g, h) = res(f , h) · res(g, h).
5.2-4 The discriminant of the polynomial f (x) ∈ R[x] (deg f = m, lc(f) = fm) is the
element

discr f =
(−1) m(m−1)

2

fm
res(f , f ′) ∈ R

where f ′ denotes the derivative of f with respect to x. The polynomial f has a multiple root
if and only if its discriminant is 0. Compute (discr f) for general polynomials of second and
third degree.

5.3. Gröbner basis
Let F be a �eld and R = F[x1, x2, . . . , xn] be a multivariate polynomial ring in n variables
over F. Let f1, f2, . . . , fs ∈ R. First we determine a necessary and sufficient condition having
the polynomials f1, f2, . . . , fs common roots in R. We can see that the problem is a kind of
generalisation of the case s = 2 from the previous subsection. Let

I = 〈 f1, . . . , fs〉 =

{ ∑

1≤i≤s
qi fi : qi ∈ R

}

denote the ideal generated by the polynomials f1, . . . , fs. Then the polynomials f1, . . . , fs
form a basis of the ideal I. The variety of an ideal I is the set

V(I) =

{
u ∈ Fn : f (u) = 0 for all f ∈ I

}
.

The knowledge of the variety V(I) means that we also know the common roots of f1, . . . , fs.
The most important questions about the variety and the ideal I are as follows.
• V(I) , ∅ ?

5.3. Gröbner basis 227

• How �big� is V(I)?

• Given f ∈ R, in which case f ∈ I?

• I = R ?
Fortunately, in a special basis of the ideal I, in the so called Gröbner basis these questions
are easy to answer. First let us study the case n = 1. Since F[x] is a Euclidean ring, therefore

〈 f1, . . . , fs〉 = 〈 gcd(f1, . . . , fs) 〉 . (5.14)

We may assume that s = 2. Let f , g ∈ F[x] and divide f by g with remainder. Then there
exist unique polynomials q, r ∈ F[x] with f = gq + r and deg r < deg g. Hence

f ∈ 〈g〉 ⇔ r = 0 .

Moreover, V(g) = {u1, . . . , ud} if x− u1, . . . , x− ud are the distinct linear factors of g ∈ F[x].
Unfortunately, the equality (5.14) is not true in the case of two or more variables. Indeed, a
multivariate polynomial ring over an arbitrary �eld is not necessary Euclidean, therefore we
have to give a new interpretation of division with remainder. We proceed in this direction.

5.3.1. Monomial order
Recall that a partial order ρ ⊆ S × S is a total order (or simply order) if either aρb or bρa
for all a, b ∈ S . The total order `�` ⊆ Nn is allowable if

(i) (0, . . . , 0) � v for all v ∈ Nn,
(ii) v1 � v2 ⇒ v1 + v � v2 + v for all v1, v2, v ∈ Nn.

It is easy to prove that any allowable order on Nn is a well-order (namely, every nonempty
subset of Nn has a least element). With the notation already adopted consider the set

T = {xi1
1 · · · xin

n | i1, . . . , in ∈ N}.

The elements of T are called monomials. Observe that T is closed under multiplication on
F[x1, . . . , xn] constituting a commutative monoid. The mapNn → T , (i1, . . . , in) 7→ xi1

1 · · · xin
n

is an isomorphism, therefore for an allowable total order � on T we have that
(i) 1 � t for all t ∈ T ,
(ii) ∀ t1, t2, t ∈ T t1 ≺ t2 ⇒ t1t ≺ t2t.

The allowable orders on T are called monomial orders. If n = 1, the natural order is a
monomial order, and the corresponding univariate monomials are ordered by their degree.
Let us see some standard examples of higher degree monomial orders. Let

α = xi1
1 · · · xin

n , β = x j1
1 · · · x jn

n ∈ T ,

where the variables are ordered as x1 � x2 � · · · � xn−1 � xn.
• Pure lexicographic order.

α ≺plex β⇔ ∃l ∈ {1, . . . , n} il < jl and i1 = j1, . . . , il−1 = jl−1.

228 5. Computer Algebra

• Graded lexicographic order.
α ≺grlex β⇔ i1 + · · · + in < j1 + · · · + jn or (i1 + · · · + in = j1 + · · · + jn and α ≺plex β).

• Graded reverse lexicographic order.
α ≺grevlex β⇔ i1 + · · ·+ in < j1 + · · ·+ jn or (i1 + · · ·+ in = j1 + · · ·+ jn and ∃l ∈ {1, . . . , n}
il > jl and il+1 = jl+1, . . . , in = jn).

To prove that these orders are really monomial orders we leave as an exercise. Observe that
if n = 1 then ≺plex=≺grlex=≺grevlex. We call the graded reverse lexicographic order often as
a total degree order and we denote it by ≺tdeg.

Example 5.11
Let ≺=≺plex and let z ≺ y ≺ x. Then

1 ≺ z ≺ z2 ≺ · · · ≺ y ≺ yz ≺ yz2 ≺ · · ·
≺ y2 ≺ y2z ≺ y2z2 ≺ · · · x ≺ xz ≺ xz2 ≺ · · ·
≺ xy ≺ xy2 ≺ · · · ≺ x2 ≺ · · · .

Let ≺=≺tdeg and again, z ≺ y ≺ x. Then

1 ≺ z ≺ y ≺ x
≺ z2 ≺ yz ≺ xz ≺ y2 ≺ xy ≺ x2

≺ z3 ≺ yz2 ≺ xz2 ≺ y2z ≺ xyz
≺ x2z ≺ y3 ≺ xy2 ≺ x2y ≺ x3 ≺ · · · .

Let a monomial order ≺ be given. Further we identify the vector α = (α1, . . . , αn) ∈ Nn with
the monomial xα = xα1

1 · · · xαn
n ∈ R. Let f =

∑
α∈Nn cαxα ∈ R be a non-zero polynomial, cα ∈

F. Then cαxα (cα , 0) are the terms of the polynomial f , mdeg(f) = max{α ∈ Nn : cα , 0}
is the multidegree of the polynomial (where the maximum is with respect to the monomial
order), lc(f) = cmdeg(f) ∈ F \ {0} is the leading coefficient of f , lm(f) = xmdeg(f) ∈ R is
the leading monomial of f , and lt(f) = lc(f) · lm(f) ∈ R is the leading term of f . Let
lt(0) = lc(0) = lm(0) = 0 and mdeg(0) = −∞.

Example 5.12 Consider the polynomial f (x, y, z) = 2xyz2−3x3 +4y4−5xy2z ∈ Q[x, y, z]. Let ≺=≺plex
and z ≺ y ≺ x. Then

mdeg(f) = (3, 0, 0), lt(f) = −3x3, lm(f) = x3, lc(f) = −3 .

If ≺=≺tdeg and z ≺ y ≺ x then

mdeg(f) = (0, 4, 0), lt(f) = 4y4, lm(f) = y4, lc(f) = 4 .

5.3.2. Multivariate division with remainder
In this subsection our aim is to give an algorithm for division with remainder in R. Given
multivariate polynomials f , f1, . . . , fs ∈ R and monomial order ≺ we want to compute the
polynomials q1, . . . , qs ∈ R and r ∈ R such that f = q1 f1 + · · · + qs fs + r and no monomial
in r is divisible by any of lt(f1), . . . , lt(fs).

5.3. Gröbner basis 229

M---(f , f1, . . . , fs)
1 r ← 0
2 p← f
3 for i← 1 to s
4 do qi ← 0
5 while p , 0
6 do if lt(fi) divides lt(p) for some i ∈ {1, . . . , s}
7 then choose such an i and qi ← qi + lt(p)/lt · (fi)
8 p← p − lt(p)/lt(fi) · fi
9 else r ← r + lt(p)

10 p← p − lt(p)
11 return q1, . . . , qs and r

The correctness of the algorithm follows from the fact that in every iteration of the while
cycle of lines 5�10 the following invariants hold:

(i) mdeg(p) � mdeg(f) and f = p + q1 f1 + · · · + qs fs + r,
(ii) qi , 0⇒ mdeg(qi fi) � mdeg(f) for all 1 ≤ i ≤ s,
(iii) no monomial in r is divisible by any of lt(fi).

The algorithm has a weakness, namely the multivariate division with remainder is not de-
terministic. In line 7 we can choose arbitrarily from the appropriate values of i.

Example 5.13 Let f = x2y + xy2 + y2 ∈ Q[x, y], f1 = xy − 1, f2 = y2 − 1, the monomial order ≺plex,
y ≺plex x, and in line 7 we always choose the smallest possible i. Then the result of the algorithm is
q1 = x + y, q2 = 1, r = x + y + 1. But if change the order of the functions f1 and f2 (that is f1 = y2 − 1
and f2 = xy − 1) then the output of the algorithm is q1 = x + 1, q2 = x and r = 2x + 1.

As we have seen in the previous example we can make the algorithm deterministic by
always choosing the smallest possible i in line 7. In this case the quotients q1, . . . , qs and
the remainder r are unique, which we can express as r = f rem (f1, . . . , fs).

Observe that if s = 1 then the algorithm gives the answer to the ideal membership
problem: f ∈ 〈 f1〉 if and only if the remainder is zero. Unfortunately, if s ≥ 2 then this is
not true any more. For example, with the monomial order ≺plex

xy2 − x rem (xy + 1, y2 − 1) = −x − y,

and the quotients are q1 = y, q2 = 0. On the other hand, xy2 − x = x · (y2 − 1) + 0, which
shows that xy2 − x ∈ 〈xy + 1, y2 − 1〉.

5.3.3. Monomial ideals and Hilbert's basis theorem
Our next goal is to �nd a special basis for an arbitrary polynomial ideal such that the rema-
inder on division by that basis is unique, which gives the answer to the ideal membership
problem. But such a basis exists at all? And if exists, is it �nite?

The ideal I ⊆ R is a monomial ideal if there exists a subset A ⊆ Nn, for which

I = 〈xA〉 = 〈{xα ∈ T : α ∈ A}〉 ,
that is, the ideal I is generated by monomials.

230 5. Computer Algebra

Lemma 5.11 Let I = 〈xA〉 ⊆ R be a monomial ideal, and β ∈ Nn. Then

xβ ∈ I ⇔ ∃α ∈ A xα | xβ .

Proof. The⇐ direction is obvious. Conversely, let α1, . . . , αs ∈ A and q1, . . . , qs ∈ R such
that xβ =

∑
i qixαi . Then the sum has at least one member qixαi which contains xβ, therefore

xαi | xβ.
The most important corollary of the lemma is that two monomial ideals are identical if

and only if they contain the same monomials.

Lemma 5.12 (Dickson-lemma). Every monomial ideal is �nitely generated, namely for
every A ⊆ Nn there exists a �nite subset B ⊆ A such that 〈xA〉 = 〈xB〉.

Lemma 5.13 Let I be an ideal in R = F[x1, . . . , xn]. If G ⊆ I is a �nite subset such that
〈lt(G)〉 = 〈lt(I)〉, then 〈G〉 = I.

Proof. Let G = {g1, . . . , gs}. If f ∈ I is an arbitrary polynomial, then division with remainder
gives f = q1g1 + · · · + qsgs + r, with q1, . . . , qs, r ∈ R, such that either r = 0 or no term
of r is divisible by the leading term of any gi. But r = f − q1g1 − · · · − qsgs ∈ I, hence
lt(r) ∈ lt(I) ⊆ 〈lt(g1), . . . , lt(gs)〉. This together with lemma (5.11) implies that r = 0,
therefore f ∈ 〈g1, . . . , gs〉 = 〈G〉.

Together with Dickson's lemma applied to 〈lt(I)〉, and the fact that the zero polynomial
generates the zero ideal, we obtain the following famous result.

Theorem 5.14 (Hilbert's basis theorem). Every ideal I ⊆ R = F[x1, . . . , xn] is �nitely
generated, namely there exists a �nite subset G ⊆ I such that 〈G〉 = I and 〈lt(G)〉 = 〈lt(I)〉.

Corollary 5.15 (ascending chain condition). Let I1 ⊆ I2 ⊆ · · · be an ascending chain of
ideals in R. Then there exists an n ∈ N such that In = In+1 = · · · .

Proof. Let I = ∪ j≥1I j. Then I is an ideal, which is �nitely generated by Hilbert's basis
theorem. Let I = 〈g1, . . . , gs〉. With n = min{ j ≥ 1 : g1, . . . , gs ∈ I j}, we then have In =

In+1 = · · · = I.
A ring satisfying the ascending chain condition is called Noetherian. Speci�cally, if F

is a �eld, then F[x1, . . . , xn] is Noetherian.
Let ≺ be a monomial order on R and I ⊆ R an ideal. A �nite set G ⊆ I is a Gröbner

basis for the ideal I with respect to ≺ if 〈lt(G)〉 = 〈lt(I)〉. Hilbert's basis theorem implies the
following

Corollary 5.16 Every ideal I in R = F[x1, . . . , xn] has a Gröbner basis.

It is easy to show that the remainder on division by Gröbner basis G does not depend on
the order of the elements of G. Therefore we can use the notation f rem G = r ∈ R. Using
the Gröbner basis we can easily answer the ideal membership problem.

5.3. Gröbner basis 231

Theorem 5.17 Let G be a Gröbner basis for the ideal I ⊆ R with respect to a monomial
order ≺ and let f ∈ R. Then f ∈ I ⇔ f rem G = 0.

Proof. We prove that there exists a unique r ∈ R such that (1) f − r ∈ I, (2) no term of r
is divisible by any monomial of lt(G). The existence of such an r comes from the division
with remainder. For the uniqueness let f = h1 + r1 = h2 + r2 for arbitrary h1, h2 ∈ I and no
term of r1 or r2 is divisible by any monomial of lt(G). Then r1 − r2 = h2 − h1 ∈ I, and by the
lemma 5.11 lt(r1 − r2) is divisible by some lt(g), g ∈ G. It means that r1 − r2 = 0.

Thus, if G is a Gröbner basis of R, then for all f , g, h ∈ R

g = f rem G and h = f rem G ⇒ g = h.

5.3.4. Buchberger's algorithm
Unfortunately, the Hilbert's basis theorem is not constructive, since it does not tell us how
to compute a Gröbner basis for an ideal I and basis G. In the following we investigate how
the �nite set G can fail to be a Gröbner basis for an ideal I.

Let g, h ∈ R be nonzero polynomials, α = (α1, . . . , αn) = mdeg(g), β = (β1, . . . , βn) =

mdeg(h), and γ = (max{α1, β1}, . . . ,max{αn, βn}). The S-polynomial of g and h is

S (g, h) =
xγ

lt(g)g − xγ
lt(h)h ∈ R.

It is easy to see that S (g, h) = −S (h, g), moreover, since xγ/lt(g), xγ/lt(h) ∈ R, therefore
S (g, h) ∈ 〈g, h〉.

The following theorem yields an easy method to test that a given set G is a Gröbner
basis of the ideal 〈G〉.
Theorem 5.18 The set G = {g1, . . . , gs} ⊆ R is the Gröbner basis if the ideal 〈G〉 if and
only if

S (gi, g j) rem (g1, . . . , gs) = 0 for all i (1 ≤ i < j ≤ s) .

Using the S -polynomials it is easy to give an algorithm for constructing the Gröbner
basis. We present a simpli�ed version of the Buchberger's method (1965): given monomial
order ≺ and polynomials f1, . . . , fs ∈ R = F[x1, . . . , xn] the algorithm yields a G ⊆ R
Gröbner basis of the ideal I = 〈 f1, . . . , fs〉.
G̈-(f1, . . . , fs)
1 G ← { f1, . . . , fs}
2 P← {(fi, f j) | fi, f j ∈ G, i < j, fi , f j}
3 while P , ∅
4 do (f , g)← an arbitrary pair from P
5 P← P \ (f , g)
6 r ← S (f , g) rem G
7 if r , 0
8 then G ← G ∪ {r}
9 P← P ∪ {(f , r) | f ∈ G}

10 return G

232 5. Computer Algebra

First we show the correctness of the G̈- algorithm assuming that the procedure
terminates. At any stage of the algorithm the set G is a basis of the ideal I, since initially it
is, and at any other steps only those elements are added to G which are the remainders of
the S -polynomials on division by G. If the algorithm terminates the remainders of all the
S -polynomials on division by G are zero and by the theorem (5.18) G is a Gröbner basis.

Next we show that the algorithm terminates. Let G and G∗ be the sets corresponding to
successive iterations of the while cycle 3−9. Clearly, G ⊆ G∗ and 〈lt(G)〉 ⊆ 〈lc(G∗)〉. Hence
the ideals 〈lt(G)〉 in successive iteration steps form an ascending chain, which stabilizes by
the corollary (5.15). Thus, after a �nite number of steps we have that 〈lt(G)〉 = 〈lc(G∗)〉. We
state that then G = G∗. Let f , g ∈ G and r = S (f , g) rem G. Then r ∈ G∗ and either r = 0 or
lt(r) ∈ 〈lt(G∗)〉 = 〈lt(G)〉, and from the de�nition of the remainder we conclude that r = 0.

Example 5.14 Let F = Q, ≺=≺plex, z ≺ y ≺ x, f1 = x − y − z, f2 = x + y − z2, f3 = x2 + y2 − 1.
By step one G = { f1, f2, f3}, and by step two P = {(f1, f2), (f1, f3), (f2, f3)}.
At the �rst iteration of the while cycle let us chose the pair (f1, f2). Then P = {(f1, f3), (f2, f3)},

S (f1, f2) = −2y − z + z2 and r = f4 = S (f1, f2) rem G = −2y − z + z2. Therefore G = { f1, f2, f3, f4} and
P = {(f1, f3), (f2, f3), (f1, f4), (f2, f4), (f3, f4)}.

At the second iteration of the while cycle let us chose the pair (f1, f3). Then P = P \ { f1, f3},
S (f1, f3) = −xy− xz−y2 +1, r = f5 = S (f1, f3) rem G = −1/2z4−1/2z2 +1, hence G = { fi | 1 ≤ i ≤ 5}
and P = {(f2, f3), (f1, f4), . . . , (f3, f4), (f1, f5), . . . , (f4, f5)}.

At the third iteration of the while cycle let us chose the pair (f2, f3). Then P = P \ {(f2, f3)},
S (f2, f3) = xy − xz2 − y2 + 1, r = S (f2, f3) rem G = 0.

At the fourth iteration let us chose the pair (f1, f4). Then P = P \ { f1, f4}, S (f1, f4) = 2y2 + 2yz +

xz − xz2, r = S (f1, f4) rem G = 0.
In the same way, the remainders of the S -polynomials on division by G of all the remaining pairs

are zero, hence the algorithm returns with G = {x− y− z, x + y− z2, x2 + y2 − 1,−2y− z + z2,−1/2z4 −
1/2z2 + 1} which constitutes a Gröbner basis.

5.3.5. Reduced Gröbner basis
In general, the Gröbner basis computed by Buchberger's algorithm is neither unique nor
minimal. Fortunately, both can be achieved by a little �nesse.

Lemma 5.19 If G is a Gröbner basis if I ⊆ R, g ∈ G and lt(g) ∈ 〈lt(G \ {g})〉 then G \ {g}
is a Gröbner basis of I as well.

We say that the set G ⊆ R is a minimal Gröbner basis for the ideal I = 〈G〉 if it is a Gröbner
basis and for all g ∈ G
• lc(g) = 1,

• lt(g) < 〈lt(G \ {g})〉.
An element g ∈ G of a Gröbner basis G is said to be reduced with respect to G if no
monomial of g is in the ideal 〈lt(G \ {g})〉. A minimal Gröbner basis G for I ⊆ R is reduced
if all its elements are reduced with respect to G.

Theorem 5.20 Every ideal has a unique reduced Gröbner basis.

5.3. Gröbner basis 233

Example 5.15 In example 5.14. not only G but G′ = {x − y − z,−2y − z + z2,−1/2z4 − 1/2z2 + 1} is a
Gröbner basis as well. It is not hard to show that Gr = {x − 1/2z2 − 1/2z, y − 1/2z2 − 1/2z, z4 + z2 − z}
is a reduced Gröbner basis.

5.3.6. The complexity of computing Gröbner bases
The last forty years (from Buchberger's dissertation) was not enough to clear up entirely the
algorithmic complexity of Gröbner basis computation. Implementation experiments show
that we are faced with the intermediate expression swell phenomenon. Starting with a few
polynomials of low degree and small coefficients the algorithm produce large number of
polynomials with huge degrees and enormous coefficients. Moreover, in contrast to the va-
riants of the Euclidean algorithm the explosion can not be kept under control. Kühnle and
Mayr in 1996 gave an exponential space algorithm for computing a reduced Gröbner basis.
The polynomial ideal membership problem over Q is EXPSPACE-complete.

Let f , f1, . . . , fs ∈ F[x1, . . . , xn] be polynomials over a �eld F with deg fi ≤ d (≺=≺tdeg).
If f ∈ 〈 f1, f2, . . . fs〉 then

f = f1g1 + · · · + fsgs

for polynomials g1, . . . , gs ∈ F[x1, . . . , xn] for which their degrees are bounded by β =

β(n, d) = (2d)2n . The double exponential bound essentially unavoidable which is shown
by several examples. Unfortunately, for the case F = Q the ideal membership problem
falls into this category. Fortunately, in special cases better results are available. If f = 1
(Hilbert's famous Nullstellensatz) then for the case d = 2 the bound is β = 2n+1, while
for the other cases d > 2 the bound is β = dn. But the variety V(f1, . . . , fs) is empty if
and only if 1 ∈ 〈 f1, f2, . . . fs〉, therefore the solvability problem of a polynomial system
is in PSPACE. Several result states that under speci�c circumstances the (general) ideal
membership problem is again in PSPACE. Such a criteria is for example that 〈 f1, f2, . . . fs〉
being zero-dimensional (contains �nitely many isolated points).

In spite of the exponential complexity there are many successful story for the applica-
tion of Gröbner bases: geometric theorem proving, robot kinematics and motion planning,
solving polynomial system of equations are the most widespread application areas. In the
following we enumerate some topics where the Gröbner basis strategy has been applied
successfully.
• Equivalence of polynomial equations. Two sets of polynomials generate the same ideal

if and only if their Gröbner bases are equal with arbitrary monomial order.
• Solvability of polynomial equations. The polynomial system of equations

fi(x1, . . . , xn) = 0, 1 ≤ i ≤ s is solvable if and only if 1 < 〈 f1, . . . , fs〉.
• Finite solvability of polynomial equations. The polynomial system of equations

fi(x1, . . . , xn) = 0, 1 ≤ i ≤ s has a �nite number of solutions if and only if in any
Gröbner basis of 〈 f1, . . . , fs〉 for every variable xi there is a polynomial such that its
leading term with respect to the chosen monomial order is a power of xi.

• Counting of �nite solutions. Suppose that the system of polynomial equations
fi(x1, . . . , xn) = 0, 1 ≤ i ≤ s has a �nite number of solutions. Then the number of
solutions counted with multiplicities is equal to the cardinality of the set of monomials
that are no multiples of the leading monomials of the polynomials in the Gröbner basis,

234 5. Computer Algebra

where any monomial order can be chosen.
• Simpli�cation of expressions.
We show an example for the last item.

Example 5.16 Let a, b, c ∈ R be given such that

a + b + c = 3, a2 + b2 + c2 = 9, a3 + b3 + c3 = 24 .

Simplify the expression a4 + b4 + c4. So let f1 = a + b + c−3, f2 = a2 + b2 + c2 −9 and a3 + b3 + c3 −24
be elements of R[a, b, c] and let ≺=≺plex, c ≺ b ≺ a. Then the Gröbner basis of 〈 f1, f2, f3〉 is

G = {a + b + c − 3, b2 + c2 − 3b − 3c + bc, 1 − 3c2 + c3} .

Since a4 + b4 + c4 rem G = 69, the answer to the question is at hand.

Exercises
5.3-1 Prove that the orders ≺plex,≺grlex and ≺tdeg are really monomial orders.
5.3-2 Let ≺ be a monomial order on R, f , g ∈ R \ {0}. Prove the following:

a. mdeg(f g) = mdeg(f) + mdeg(g),
b. if f + g , 0 then mdeg(f + g) � max{mdeg(f),mdeg(g)}, with equality if mdeg(f) ,

mdeg(g).
5.3-3 Let f = 2x4y2z − 3x4yz2 + 4xy4z2 − 5xy2z4 + 6x2y4z − 7x2yz4 ∈ Q[x, y, z].

a. Determine the order of the monomials in f for the monomial orders ≺plex, ≺grlex and
≺tdeg with z ≺ y ≺ x in all cases.

b. For each of the three monomial orders from (a.) determine mdeg(f), lc(f), lm(f) and
lt(f).
5.3-4? Prove the Dickson's lemma.
5.3-5 Compute the Gröbner basis and the reduced Gröbner basis of the ideal I = 〈x2 + y −
1, xy − x〉 ⊆ Q[x, y] using the monomial order ≺=≺lex, where y ≺ x. Which of the following
polynomials belong to I: f1 = x2 + y2 − y, f2 = 3xy2 − 4xy + x + 1?

5.4. Symbolic integration
The problem of inde�nite integration is the following: given a function f , �nd a function g
the derivative of which is f , that is, g′(x) = f (x); for this relationship the

∫
f (x) dx = g(x)

notation is also used. In introductory calculus courses one tries to solve inde�nite integration
problems by different methods, among which one tries to choose in a heuristic way: substi-
tution, trigonometric substitution, integration by parts, etc. Only the integration of rational
functions is usually solved by an algorithmic method.

It can be shown that inde�nite integration in the general case is algorithmically unsol-
vable. So we only have the possibility to look for a reasonably large part that can be solved
using algorithms.

The �rst step is the algebraization of the problem: we discard every analytical con-
cept and consider differentiation as a new (unary) algebraic operation connected to addition

5.4. Symbolic integration 235

and multiplication in a given way, and we try to �nd the �inverse� of this operation. This
approach leads to the introduction of the concept of differential algebra.

The integration routines of computer algebra systems (e.g. M), similarly to us,
�rst try a few heuristic methods. Integrals of polynomials (or a bit more generally, �nite
Laurent-series) are easy to determine. This is followed by a simple table lookup process
(e.g. in the case of M 35 basic integrals are used). One can of course use integral tables
entered from books as well. Next we may look for special cases where appropriate methods
are known. For example, for integrands of the form

eax+b sin(cx + d) · p(x) ,

where p is a polynomial, the integral can be determined using integration by parts. When the
above methods fail, a form of substitution called the �derivative-divides� method is tried:
if the integrand is a composite expression then for every sub-expression f (x) we divide
by the derivative of f , and we check if x vanishes from the result after the substitution
u = f (x). With the use of these simple methods we can determine a surprisingly large
number of integrals. To their great advantage they can solve simple problems very quickly.
If they do not succeed we try algorithmic methods. The �rst one is for the integration of
rational functions. As we shall see, there is signi�cant difference between the version used
in computer algebra systems and the version used in hand computations, since the aims are
short running times even in complicated cases, and the simplest possible form of the result.
The Risch algorithm for integrating elementary functions is based on the algorithm for the
integration of rational functions. We describe the Risch algorithm, but not in full detail. In
most cases we only outline the proofs.

5.4.1. Integration of Rational Functions
In this subsection we introduce the notion of differential �eld and differential extension
�eld, then we describe Hermite's method.

Differential �elds
Let K be a �eld of characteristic 0, with a mapping f 7→ f ′ of K into itself satisfying:
(1) (f + g)′ = f ′ + g′ (additivity);
(2) (f g)′ = f ′g + g′ f (Leibniz-rule).
The mapping f 7→ f ′ is called a differential operator, differentiation or derivation, and
K is called a differential �eld. The set C = {c ∈ K : c′ = 0} is the �eld of constants or
constant sub�eldin K. If f ′ = g we also write f =

∫
g. Obviously, for any constant c ∈ C

we have f + c =
∫

g. The logarithmic derivative of an element 0 , f ∈ K is de�ned as
f ′/ f . (Formally this is the �derivative of log(f)�.)

Theorem 5.21 With the notations of the previous de�nition the usual rules of derivation
hold:
(1) 0′ = 1′ = (−1)′ = 0;

(2) derivation is C-linear: (a f + bg)′ = a f ′ + bg′, if f , g ∈ K, a, b ∈ C;

(3) if g , 0, f is arbitrary, then (f /g)′ = (f ′g − g′ f)/g2;

236 5. Computer Algebra

(4) (f n)′ = n f ′ f n−1, if 0 , f ∈ K and n ∈ Z;

(5)
∫

f g′ = f g −
∫

g f ′, if f , g ∈ K (integration by parts).

Example 5.17 (1) With the notations of the previous de�nition the mapping f 7→ 0 on K is the trivial
derivation, for this we have C = K.

(2) Let K = Q(x). There exists a single differential operator on Q(x) with x′ = 1, it is the usual
differentiation. For this the constants are the elements of Q. Indeed, n′ = 0 for n ∈ N by induction
so the elements of Z and Q are constants, too. We have by induction that the derivative of power
functions is the usual one, thus by linearity, this is true for polynomials, and by the differentiation rule
of quotients, we get the statement. It is not difficult to calculate that for the usual differentiation the
constants are the elements of Q.

(3) If K = C(x), where C is an arbitrary �eld of characteristic 0, then there exists a single diffe-
rential operator on K with constant sub�eld C and x′ = 1, it is the usual differentiation; this statement
is obtained similarly to the previous one.

If C is an arbitrary �eld of characteristic 0, and K = C(x) with the usual differentiation
then 1/x is not the derivative of anything. (The proof of the statement is very much like the
proof of the irrationality of

√
2, but we have to work with divisibility by x rather than by 2.)

The example shows that for the integration of 1/x and other similar functions we have
to extend the differential �eld. In order to integrate rational functions an extension by loga-
rithms will be sufficient.

Extensions of differential �elds
Let L be a differential �eld and K ⊂ L a sub�eld of L. If differentiation doesn't lead out of
K, then we say that K is a differential sub�eld of L, and L is a differential extension �eld
of K. If for some f , g ∈ L we have f ′ = g′/g, that is the derivative of f is the logarithmic
derivative of g, then we write f = log g. (We note that log, just like

∫
is a relation rather

than a function. In other words, log is an abstract concept here and not a logarithm function
to a given base.) If we can choose g ∈ K we say that f is logarithmic over K.

Example 5.18 (1) Let g = x ∈ K = Q(x), L = Q(x, f), where f is a new indeterminate, and let
f ′ = g′/g = 1/x, that is f = log(x). Then

∫
1/x dx = log(x).

(2) Analogically,
∫ 1

x2 − 2 =

√
2

4 log(x −
√

2) −
√

2
4 log(x +

√
2)

is in the differential �eld Q(
√

2)(x, log(x − √2), log(x +
√

2)).
(3) Since

∫ 1
x3 + x = log(x) − 1

2 log(x + i) − 1
2 log(x − i) = log(x) − 1

2 log(x2 + 1) ,

the integral can be considered as an element of

Q
(x, log(x), log(x2 + 1))

or an element of
Q(i)(x, log(x), log(x − i), log(x + i))

5.4. Symbolic integration 237

as well. Obviously, it is more reasonable to choose the �rst possibility, because in this case there is no
need to extend the base �eld.

Hermite's method
Let K be a �eld of characteristic 0, f , g ∈ K[x] non-zero relatively prime polynomials. To
compute the integral

∫
f /g using Hermite's method, we can �nd polynomials a, b, c, d ∈

K[x] with ∫ f
g =

c
d +

∫ a
b , (5.15)

where deg a < deg b and b is monic and square-free. The rational function c/d is called the
rational part, the expression

∫
a/b is called the logarithmic part of the integral. The method

avoids the factorisation of g into linear factors (in a factor �eld or some larger �eld), and
even its decomposition into irreducible factors over K.

Trivially, we may assume that g is monic. By Euclidean division we have f = pg + h,
where deg h < deg g, thus f /g = p + h/g. The integration of the polynomial part p is trivial.
Let us determine the square-free factorisation of g, that is �nd monic and pairwise relatively
prime polynomials g1, . . . , gm ∈ K[x] for which gm , 1 and g = g1g2

2 · · · gm
m. Let us construct

the partial fraction decomposition (this can be achieved by the Euclidean algorithm):

h
g =

m∑

i=1

i∑

j=1

hi, j

g j
i
,

where every hi, j has smaller degree than gi.
The Hermite-reduction is the iteration of the following step: if j > 1 then the integral∫

hi, j/g j
i is reduced to the sum of a rational function and an integral similar to the original

one, with j reduced by 1. Using that gi is square-free we get gcd(gi, g′i) = 1, thus we can
can obtain polynomials s, t ∈ K[x] by the application of the extended Euclidean algorithm
for which sgi + tg′i = hi, j and deg s, deg t < deg gi. Hence, using integration by parts

∫ hi, j

g j
i

=

∫ t · g′i
g j

i
+

∫ s
g j−1

i

=
−t

(j − 1)g j−1
i

+

∫ t′

(j − 1)g j−1
i

+

∫ s
g j−1

i

=
−t

(j − 1)g j−1
i

+

∫ s + t′/(j − 1)
g j−1

i
.

It can be shown that using fast algorithms, if deg f , deg g < n, then the procedure re-
quires O(M(n) log n) operations in the �eld K, where M(n) is a bound on the number of
operations needed to multiply to polynomials of degree at most n.

Hermite's method has a variant that avoids the partial fraction decomposition of h/g. If
m = 1 then g is square-free. If m > 1 then let

g∗ = g1g2
2 · · · gm−1

m−1 =
g

gm
m
.

Since gcd(gm, g∗g′m) = 1, there exist polynomials s, t ∈ K[x] for which

sgm + tg∗g′m = h .

238 5. Computer Algebra

Dividing both sides by g = g∗gm
m and integrating by parts

∫ h
g =

−t
(m − 1)gm−1

m
+

∫ s + g∗t′/(m − 1)
g∗gm−1

m
,

thus m is reduced by one.
We note that a and c can be determined by the method of undetermined coefficients

(Horowitz' method). After division we may assume deg f < deg g. As it can be seen from
the algorithm, we can choose d = g2g2

3 · · · gm−1
m and b = g1g2 · · · gm. Differentiating (5.15)

we get a system of linear equations on deg b coefficients of a and degd coefficients of c,
altogether n coefficients. This method in general is not as fast as Hermite's method.

The algorithm below performs the Hermite-reduction for a rational function f /g of the
variable x.
H-R(f , g)
1 p← quo(f , g)
2 h← rem(f , g)
3 (g[1], . . . , g[m])← S-(g)
4 construct partial fraction decomposition of (h/g), compute counters h[i, j] belonging to g[i] j

5 rac← 0
6 int ← 0
7 for i← 1 to m
8 do int ← int + h[i, 1]/g[i]
9 for j← 2 to i

10 do n← j
11 while n > 1
12 do determine s and t from the equation s · g[i] + t · g[i]′ = h[i, j]
13 n← n − 1
14 rac← rac − (t/n)/g[i]n

15 h[i, n]← s + t′/n
16 int ← int + h[i, 1]/g[i]
17 red← rac +

∫
p +

∫
int

18 return red

If for some �eld K of characteristic 0 we want to compute the integral
∫

a/b, where
a, b ∈ K[x] are non-zero relatively prime polynomials with deg a < deg b, b square-free and
monic, we can proceed by decomposing the polynomial b into linear factors in its factor
�eld L: b =

∏n
k=1(x − �ak), then constructing the partial fraction decomposition over L:

a/b =
∑n

k=1 ck/(x − �ak), �nally integrating:
∫ a

b =

n∑

k=1
ck log(x − �ak) ∈ L(x, log(x − �a1), . . . , log(x − �an)) .

The disadvantage of this method, as we have seen in the example of the function 1/(x3 + x),
is that the degree of the �eld extension L can be too large. An extension degree as large as n!
can occur, which leads to totally unmanageable cases. On the other hand, it is not clear either
if a �eld extension is needed at all: for example in the case of the function 1/(x2 − 2) can't

5.4. Symbolic integration 239

we compute the integral without extending the base �eld? The following theorem enables
us to choose the degree of the �eld extension as small as possible.

Theorem 5.22 (Rothstein�Trager integration algorithm). Let K be a �eld of characteristic
0, a, b ∈ K[x] non-zero relatively prime polynomials, deg a < deg b, b square-free and
monic. If L is an algebraic extension of K, c1, . . . , ck ∈ L \ K are square-free and pairwise
relatively prime monic polynomials then the following statements are equivalent:

(1)
∫ a

b =

k∑

i=1
ci log vi ,

(2) The polynomial r = resx(b, a − yb′) ∈ K[y] can be decomposed into linear factors over
L, c1, . . . , ck are exactly the distinct of r, and vi = gcd(b, a − cib′), if i = 1, . . . , k. Here, resx
is the resultant taken in the indeterminate x.

Example 5.19 Let us consider again the problem of computing the integral
∫

1/(x3 + x) dx. In this
case

r = resx
(x3 + x, 1 − y(3x2 + 1)) = −4z3 + 3y + 1 = −(2y + 1)2(y − 1) ,

the roots of which are c1 = 1 and c2 = −1/2. Thus

v1 = gcd(x3 + x, 1 − (3x2 + 1)) = x ,

v2 = gcd(x3 + x, 1 +
1
2 (3x2 + 1)) = x2 + 1 .

The algorithm which is easily given based on the previous theorem can be slightly
improved: instead of computing vi = gcd(b, a − cib′) (by calculations over the �eld L), vi
can be computed over K as well, applying the E-E- algorithm.
This was discovered independently by Trager, , respectively Lazard and Rioboo. It is not
difficult to show that the running time of the complete integration algorithm obtained this
way is O(nM(n) lg n), if deg f , deg g < n.

Theorem 5.23 (Lazard�Rioboo�Trager-formula). With the notations of the previous the-
orem, let e denote the multiplicity of ci as a root of the polynomial r = resx(b, a − yb′).
Then
(1) deg vi = e;

(2) if w(x, y) ∈ K(y)[x] denotes the remainder of degree e in the E-E-
-algorithm performed in K(y)[x] on b and a − yb′, then vi = w(x, ci).

The algorithm below is the improved Lazard�Rioboo�Trager version of the Rothstein�
Trager-method. We compute

∫
a/b for the rational function a/b of the indeterminate x,

where b is square-free and monic and deg a < deg b.

240 5. Computer Algebra

I-L-P(a, b, x)
1 Let r(y)← resx(b, a − yb′) by the subresultant algorithm, furthermore
2 we(x, y) the remainder of degree e during the computation
3 (r1(y), . . . , rk(y))←S-(r(y))
4 int ← 0
5 for i← 1 to k
6 do if ri(y) , 1
7 then w(y)← the gcd of the coefficients of wi(x, y)
8 (l(y), s(y), t(y))←E-E-N(w(y), ri(y))
9 wi(x, y)←P-P(rem(s(y) · wi(x, y), ri(y)))

10 (ri,1, . . . , ri,k)←F(ri)
11 for j← 1 to k
12 do d ← deg(ri, j)
13 c←S(ri, j(y) = 0, y)
14 if d = 1
15 then int ← int + c · log(wi(x, c))
16 else for n← 1 to d
17 do int ← int + c[n] · log(wi(x, c[n]))
18 return int

Example 5.20 Let us consider again the problem of computing the integral
∫

1/(x2 − 2) dx. In this
case

r = resx(x2 − 2, 1 − y · 2x) = −8y2 + 1 .
The polynomial is irreducible in Q[x], thus we cannot avoid the extension of Q. The roots of r are
±1/
√

8. From the E-E--algorithm over Q(y) w1(x, y) = x − 1/(2y), thus
the integral ∫ 1

x2 − 2 dx =
1√
8

log(x −
√

2) − 1√
8

log(x +
√

2) .

5.4.2. The Risch integration algorithm
Surprisingly, the methods found for the integration of rational functions can be generalised
for the integration of expressions containing common functions (sin, exp etc.) and their in-
verse. Computer algebra systems can compute the integral of remarkably complicated func-
tions, but sometimes they fail in seemingly very simple cases, for example the expression∫

x/(1 + ex) dx is returned unevaluated or else the result contains a special non-elementary
function, for example the logarithmic integral. This is due to the fact that in such cases the
integral cannot be given in �closed form�.

Although the basic results for integration in �closed form� had been discovered by
Liouville in 1833, the corresponding algorithmic methods were only developed by Risch in
1968.

Elementary functions
The functions usually referred to as functions in �closed form� are the ones composed of

5.4. Symbolic integration 241

rational functions, exponential functions, logarithms, trigonometric and hyperbolic functi-
ons, their inverses and n-th roots (or more generally �inverses� of polynomial functions, that
is solutions of polynomial equations); that is any nesting of the above functions is again a
function in �closed form�.

One might note that while
∫

1/(1 + x2) dx is usually given in the form arctg(x), the
algorithm for the integration of rational functions returns

∫ 1
1 + x2 dx =

i
2 log(x + i) − i

2 log(x − i)

as solution. Since trigonometric, hyperbolic functions and their inverses in C can be exp-
ressed in terms of exponentials and logarithms, we can restrict our attention to exponentials
and logarithms. Surprisingly, it turns out that the only extensions needed are logarithms
(besides algebraic numbers) in the general case, too.

Exponential elements
Let L be a differential extension �eld of the differential �eld K. If for a θ ∈ L there exists
a u ∈ K such that θ′/θ = u′, that is the logarithmic derivative of θ equals the derivative of
an element of K then we say that θ is exponential over K and we write θ = exp(u). If only
the following is true: for an element θ ∈ L there is a u ∈ K such that θ′/θ = u, that is the
logarithmic derivative of θ is an element of K then we call θ hyperexponential over K.

Logarithmic, exponential or hyperexponential elements may be algebraic or transcen-
dent over K.

Elementary extensions
Let L be a differential extension �eld of the differential �eld K. If

L = K(θ1, θ2, . . . , θn) ,

where θ j for j = 1, 2, . . . , n is logarithmic, exponential or algebraic over the �eld

K j−1 = K(θ1, . . . , θ j−1)

(K0 = K) then L is called an elementary extension of K. If for j = 1, 2, . . . , n θ j is either
transcendental and logarithmic, or transcendental exponential over K j−1, then L is a trans-
cendental elementary extension of K.

Let C(x) be the differential �eld of rational functions with the usual differentiation and
constant sub�eld C. An elementary extension of C(x) is called a �eld of elementary func-
tions, a transcendental elementary extension of C(x) is called a �eld of transcendental ele-
mentary functions.

Example 5.21 The function f = exp(x)+exp(2x)+exp(x/2) can be written in the form f = θ1+θ2+θ3 ∈
Q(x, θ1, θ2, θ3), where θ1 = exp(x), θ2 = exp(2x), θ3 = exp(x/2). Trivially, θ1 is exponential over Q(x),
θ2 is exponential over Q(x, θ1) and θ3 is exponential over Q(x, θ1, θ2). Since θ2 = θ2

1 and Q(x, θ1, θ2) =

Q(θ1), f can be written in the simpler form f = θ1 +θ2
1 +θ3. The function θ3 is not only exponential but

also algebraic over Q(x, θ1), since θ2
3 − θ1 = 0, that is θ3 = θ1/2

1 . So f = θ1 + θ2
1 + θ1/2

1 ∈ Q(x, θ1, θ
1/2
1).

But f can be put in an even simpler form:

f = θ2
3 + θ4

3 + θ3 ∈ Q(x, θ3) .

242 5. Computer Algebra

Example 5.22 The function

f =

√
log(x2 + 3x + 2)(log(x + 1) + log(x + 2))

can be written in form f = θ4 ∈ Q(x, θ1, θ2, θ3, θ4), where θ1 = log(x2 + 3x + 1), θ2 = log(x + 1),
θ3 = log(x+2), and θ4 satis�es the algebraic equation θ2

4−θ1(θ2 +θ3) = 0; but also in the much simpler
form f = θ1 ∈ Q(x, θ1).

Example 5.23 The function f = exp(log(x)/2) can be written in the form f = θ2 ∈ Q(x, θ1, θ2), where
θ1 = log(x) and θ2 = exp(θ1/2), so θ1 is logarithmic over Q(x), and θ2 is exponential over Q(x, θ1). But
θ2

2 − x = 0, so θ2 is algebraic over Q(x), and f (x) = x1/2.

The integration of elementary functions
The integral of an element of a �eld of elementary functions will be completely charac-
terised by Liouville's Principle in the case when it is an elementary function. Algebraic
extensions however � if not only the constant �eld is extended � cause us great difficulty.

Here we only deal with the integration of elements of �elds of transcendental elemen-
tary functions by the Risch integration algorithm.

In practice, this means an element of the �eld of transcendental elementary functions
Q(α1, . . . , αk)(x, θ1, . . . , θn), where α1, . . . , αk are algebraic over Q and the integral is an
element of the �eld

Q(α1, . . . , αk, . . . , αk+h)(x, θ1, . . . , θn, . . . , θn+m)

of elementary functions. In principle it would be simpler to choose C as constant sub�eld
but, as we have seen in the case of rational functions, this is impossible, for we can only
compute in an exact way in special �elds like algebraic number �elds; and we even have to
keep the number and degrees of αk+1, . . . , αk+h as small as possible. Nevertheless, we will
deal with algebraic extensions of the constant sub�eld dynamically: we can imagine that
necessary extensions have already been made, while in practice we only perform extensions
when they become necessary.

After the conversion of trigonometric and hyperbolic functions (and their inverses) to
exponentials (respectively, logarithms), the integrand becomes an element of a �eld of ele-
mentary functions. Examples 5.21. and 5.22. show that there are functions that do not seem
to be elements of a transcendental elementary extension �at �rst sight�, and yet they are; and
example 5.23. shows that there are functions that seem to be elements of such an extension

�at �rst sight�, and yet they are not. The �rst step is to represent the integrand as an element
of a �eld of transcendental elementary functions using the algebraic relationships between
the different exponential and logarithmic functions. We will not consider how this can be
done. If we succeeded in doing so can be veri�ed by the following structure theorem by
Risch. We omit the proof of the theorem. We will need a de�nition.

An element θ is monomial over a differential �eld K if K and K(θ) have the same
constant �eld, θ is transcendental over K and it is either exponential or logarithmic over K.

5.4. Symbolic integration 243

Theorem 5.24 (Structure Theorem). Let K the �eld of constants and Kn = K(x, θ1, . . . , θn)
a differential extension �eld of K(x), which has constant �eld K. Let us assume that for all
j either θ j is algebraic over K j−1 = K(x, θ1, . . . , θ j−1), or θ j = w j, with w j = log(u j) and
u j ∈ K j−1, or θ j = u j, with u j = exp(w j) and w j ∈ K j−1. Then
1. g = log(f), where f ∈ Kn \ K, is monomial over Kn if and only if there is no product

f k ·
∏

uk j
j , k, k j ∈ Z, k , 0

which is an element of K;
2. g = exp(f), where f ∈ Kn \ K, is monomial over Kn if and only if there is no linear

combination
f +

∑
c jw j, c j ∈ Q

which is an element of K.
Product and summation is only taken for logarithmic and exponential steps.

The most important classic result of the entire theory is the following theorem.

Theorem 5.25 (Liouville's Principle). Let K be a differential �eld with constant �eld C.
Let L be a differential extension �eld of K with the same constant �eld. Let us assume that
g′ = f ∈ K. Then there exist constants c1, . . . , cm ∈ C and elements v0, v1, . . . , vm ∈ K , such
that

f = v′0 +

m∑

j=1
c j

v′j
v j
,

that is

g =

∫
f = v0 +

m∑

j=1
c j log(v j) .

Note that the situation is similar to the case of rational functions.

We shall not prove this theorem. Although the proof is lengthy, the idea of the proof
is easy to describe. First we show that a transcendental exponential extension cannot be

�eliminated�, that is differentiating a rational function of it, the new element does not va-
nish. This is due to the fact that differentiating a polynomial of an element of the trans-
cendental exponential extension we get a polynomial of the same degree, and the original
polynomial does not divide the derivative except in case when the original polynomial is
monomial. Next we show that no algebraic extension is needed to express the integral. This
is essentially due to the fact that substituting an element of an algebraic extension into its
minimal polynomial we get zero, and differentiating this equation we get the derivative of
the extending element as a rational function of the element. Finally we have to examine
extensions by transcendental logarithmic elements. We show that such an extending ele-
ment can be eliminated by differentiation if and only if it appears in a linear polynomial
with constant leading coefficient. This is due to the fact that differentiating a polynomial of
such an extending element we get a polynomial the degree of which is either the same or is
reduced by one, the latter case only being possible when the leading coefficient is constant.

244 5. Computer Algebra

The Risch algorithm
Let K be an algebraic number �eld over Q, and Kn = K(x, θ1, . . . , θn) a �eld of transcen-
dental elementary functions. The algorithm is recursive in n: using the notation θ = θn we
will integrate a function f (θ)/g(θ) ∈ Kn = Kn−1(θ), where Kn−1 = K(x, θ1, . . . , θn−1). (The
case n = 0 is the integration of rational functions.) We may assume f and g relatively prime
and g monic. Besides differentiation with respect to x we will also use differentiation with
respect to θ which we denote by d/dθ. In the following we shall only present the algorithms.

Risch algorithm: logarithmic case
With the notations of the previous paragraph we �rst presume that θ is transcendental and
logarithmic, θ′ = u′/u, u ∈ Kn−1. By Euclidean division f (θ) = p(θ)g(θ) + h(θ), hence

∫ f (θ)
g(θ) =

∫
p(θ) +

∫ h(θ)
g(θ) .

Unlike the integration of rational functions, here the integration of the polynomial part is
more difficult. Therefore we begin with the integration of the rational part.

Logarithmic case, rational part
Let g(θ) = g1(θ)g2

2(θ) · · · gm
m(θ) the square-free factorisation of g(θ). Then

gcd
(
g j(θ),

d
dθg j(θ))

)
= 1

is obvious. It can be shown that the much stronger condition gcd(g j(θ), g j(θ)′
)

= 1 is also
ful�lled. By partial fraction decomposition

h(θ)
g(θ) =

m∑

i=1

i∑

j=1

hi, j(θ)
gi(θ) j .

We use Hermite-reduction: using the extended Euclidean algorithm we get polynomials
s(θ), t(θ) ∈ Kn−1[θ] which satisfy s(θ)gi(θ) + t(θ)gi(θ)′ = hi, j(θ) and deg s(θ), deg t(θ) <
deg gi(θ). Using integration by parts

∫ hi, j(θ)
g j

i (θ)
=

∫ t(θ) · gi(θ)′
gi(θ) j +

∫ s(θ)
gi(θ) j−1

=
−t(θ)

(j − 1)gi(θ) j−1 +

∫ t(θ)′
(j − 1)gi(θ) j−1 +

∫ s(θ)
gi(θ) j−1

=
−t(θ)

(j − 1)gi(θ) j−1 +

∫ s(θ) + t(θ)′/(j − 1)
gi(θ) j−1 .

Continuing this procedure while j > 1 we get
∫ h(θ)

g(θ) =
c(θ)
d(θ) +

∫ a(θ)
b(θ) ,

where a(θ), b(θ), c(θ), d(θ) ∈ Kn−1[θ], deg a(θ) < deg b(θ) and b(θ) is a square-free and
monic polynomial.

5.4. Symbolic integration 245

It can be shown that the Rothstein�Trager-method can be applied to compute the integ-
ral

∫
a(θ)/b(θ). Let us calculate the resultant

r(y) = resθ
(b(θ), a(θ) − y · b(θ)′) .

It can be shown that the integral is elementary if and only if r(y) is of form r(y) = r(y)s
where r(y) ∈ K[y] and s ∈ Kn−1. If we compute the primitive part of r(y), choose it as r(y)
and any coefficient of r(y) is not a constant then there is no elementary integral. Otherwise,
let c1, . . . , ck be the distinct roots of r(y) in its factor �eld and let

vi(θ) = gcd(b(θ), a(θ) − cib(θ)′) ∈ Kn−1(c1, . . . , ck)[θ] ,

for i = 1, . . . , k. It can be shown that
∫ a(θ)

b(θ) =

k∑

i=1
ci log(vi(θ)

)
.

Let us consider a few examples.

Example 5.24 The integrand of the integral
∫

1/ log(x) is 1/θ ∈ Q(x, θ), where θ = log(x) . Since

r(y) = resθ(θ, 1 − y/x) = 1 − y/x ∈ Q(x)[y]

is a primitive polynomial and it has a coefficient that is not constant, the integral is not elementary.

Example 5.25 The integrand of the integral
∫

1/(x log(x)) 1/(xθ) ∈ Q(x, θ), where θ = log(x). Here

r(y) = resθ(θ, 1/x − y/x) = 1/x − y/x ∈ Q(x)[y],

which has primitive part 1−y. Every coefficient of this is constant, so the integral is elementary, c1 = 1,
v1(θ) = gcd(θ, 1/x − 1/x) = θ, so

∫ 1
x log(x) = c1 log(v1(θ)) = log(log(x)) .

Logarithmic case, polynomial part
The remaining problem is the integration of the polynomial part

p(θ) = pkθ
k + pk−1θ

k−1 + · · · + p0 ∈ Kn−1[θ] .

According to Liouville's Principle
∫

p(θ) is elementary if and only if

p(θ) = v0(θ)′ +
k∑

j=1
c j

v j(θ)′
v j(θ)

,

where c j ∈ K and vi ∈ Kn−1(θ) for j = 0, 1, . . . ,m, and KC is an extension of K and
Kn−1 = K(x, θ1, . . . , θn−1). We will show that K can be an algebraic extension of K. A similar

246 5. Computer Algebra

reasoning to the proof of Liouville's Principle shows that v0(θ) ∈ Kn−1[θ] and v j(θ) ∈ Kn−1
(that is independent of θ) for j = 1, 2, . . . ,m. Thus

p(θ) = v0(θ)′ +
m∑

j=1
c j

v′j
v j
.

We also get by the reasoning used in the proof of Liouville's Principle that the degree of
v0(θ) is at most k + 1. So if v0(θ) = qk+1θ

k+1 + qkθ
k + · · · + q0, then

pkθ
k + pk−1θ

k−1 + · · · + p0 = (qk+1θ
k+1 + qkθ

k + · · · + q0)′ +
m∑

j=1
c j

v′j
v j
.

Hence we get the following system of equations:

0 = q′k+1 ,
pk = (k + 1)qk+1θ

′ + q′k ,
pk−1 = kqkθ

′ + q′k−1 ,
...

p1 = 2q2θ
′ + q′1 ,

p0 = q1θ
′ + q′0 ,

where in the last equation q0 = q0 +
∑m

j=1 c j log(v j). The solution of the �rst equation is
simply a constant bk+1. Substituting this into the next equation and integrating both sides we
get ∫

pk = (k + 1)bk+1 · θ + qk .

Applying the integration procedure recursively the integral of pk ∈ Kn−1 can be computed,
but this equation can only be solved if the integral is elementary and it uses at most one
logarithmic extension and it is exactly θ = log(u). If this is not ful�lled then

∫
p(θ) cannot

be elementary. If it is ful�lled then
∫

pk = ckθ + dk for some ck ∈ K and dk ∈ Kn−1,
hence bk+1 = ck+1/(k + 1) ∈ K and qk = dk + bk with an arbitrary integration constant bk.
Substituting for qk into the next equation and rearranging we get

pk−1 − kdkθ
′ = kbkθ

′ + q′k−1 ,

so we have ∫ (
pk−1 − kdk

u′
u

)
= kbkθ + qk−1

after integration. The integrand on the right hand side is in Kn−1 so we can call the integration
procedure in a recursive way. Just like above, the equation can only be solved when the
integral is elementary and it uses at most one logarithmic extension and it is exactly θ =

log(u). Let us assume that this is the case and
∫ (

pk−1 − kdk
u′
u

)
= ck−1θ + dk−1 ,

where ck−1 ∈ K and dk−1 ∈ Kn−1. Then the solution is bk = ck−1/k ∈ K and qk−1 = dk−1+bk−1,
where bk−1 is an arbitrary integration constant. Continuing the procedure, the solution of the

5.4. Symbolic integration 247

penultimate equation is b2 = c1/2 ∈ K and q1 = d1 + b1 with an integration constant b1.
Substituting for q1 into the last equation, after rearrangement and integration

∫ (
p0 − d1

u′
u

)
= b1θ + q0 .

This time the only condition is that the integral should be an elementary function. If it is
elementary, say ∫ (

p0 − d1
u′
u

)
= d0 ∈ Kn−1 ,

then b1 ∈ K is the coefficient of θ = log(u) in d0-ban and q0 = d0 − b1 log(u), and the result
is ∫

p(θ) = bk+1θ
k+1 + qkθ

k + · · · + q1θ + q0 .

Let us consider a few examples.

Example 5.26 The integrand of the integral
∫

log(x) is θ ∈ Q(x, θ), where θ = log(x). If the integral
is elementary then ∫

θ = b2θ
2 + q1θ + q0

and 0 = b′2, 1 = 2b2θ
′ + q′1, 0 = q1θ

′ + q′0. With the unknown constant b2 from the second equation∫
1 = 2b2θ+q1. Since

∫
1 = x+b1, we get b2 = 0, q1 = x+b1. From the third equation −xθ′ = b1θ

′+q′0.
Since θ′ = 1/x, after integration

∫
−1 = b1θ + q0 and

∫
−1 = −x, we get b1 = 0, q0 = −x, hence∫

log(x) = x log(x) − x.

Example 5.27 The integrand of the integral
∫

log(log(x)) is θ2 ∈ Q(x, θ1, θ2), where θ1 = log(x) and
θ2 = log(θ1). If the integral is elementary then

∫
θ2 = b2θ

2
2 + q1θ2 + q0

and 0 = b′2, 1 = 2b2θ
′
2 + q′1, 0 = q1θ

′
2 + q′0. With the unknown constant b2 from the second equation∫

1 = 2b2θ+q1. Since
∫

1 = x+b1, we get b2 = 0, q1 = x+b1. From the third equation −xθ′2 = b1θ
′
2+q′0.

Since θ′2 = θ′1/θ1 = 1/(x log(x)), the equation
∫ −1

log(x) = b1θ2 + q0

must hold but we know from example 5.24. that the integral on the left hand side is not elementary.

Risch algorithm: exponential case
Now we assume that θ is transcendental and exponential, θ′/θ = u′, u ∈ Kn−1. By Euclidean
division f (θ) = q(θ)g(θ) + h(θ), whence

∫ f (θ)
g(θ) =

∫
q(θ) +

∫ h(θ)
g(θ) .

We plan using Hermite's methodfor the rational part. But we have to face an unpleasant
surprise: although for the square-free factors g j(θ)

gcd
(
g j(θ),

d
dθg j(θ)

)
= 1

248 5. Computer Algebra

is obviously satis�ed, the much stronger condition gcd(g j(θ), g j(θ)′
)

= 1 is not. For example
if g j(θ) = θ then

gcd(g j(θ), g j(θ)′
)

= gcd(θ, u′θ) = θ .

It can be shown, however, that this unpleasant phenomenon does not appear if θ 6 | g j(θ),
in such cases gcd(g j(θ), g j(θ)′

)
= 1. Thus it will be sufficient to eliminate θ from the de-

nominator. Let g(θ) = θ`g(θ), where θ 6 | g(θ) already and let us look for polynomials
h(θ), s(θ) ∈ Kn−1[θ] with h(θ)θ` + t(θ)g(θ) = h(θ), deg h(θ) < deg g(θ) and deg s(θ) < `.
Dividing both sides by g(θ) we get

f (θ(
g(θ) = q(θ) +

t(θ)
θl +

h(θ)
g(θ) .

With the notation p(θ) = q(θ) + t(θ)/θl, p(θ) is a �nite Laurent-series the integration of
which will be no harder than the integration of a polynomial. This is not surprising if we
note θ−1 = exp(−u). Even so, the integration of the �polynomial part� is more difficult here
too. We start with the other one.

Exponential case, rational part
Let g(θ) = g1(θ)g2

2(θ) · · · gm
m(θ) be the square-free factorisation of g(θ). Then because of

θ 6 | g j(θ), gcd(g j(θ), g j(θ)′
)

= 1. Using partial fraction decomposition

h(θ)
g(θ) =

m∑

i=1

i∑

j=1

hi, j(θ)
gi(θ) j .

Hermite-reduction goes the same way as in the logarithmic case. We get
∫ h(θ)

g(θ) =
c(θ)
d(θ) +

∫ a(θ)
b(θ) ,

where a(θ), b(θ), c(θ), d(θ) ∈ Kn−1[θ], deg a(θ) < deg b(θ) and b(θ) is a square-free and
monic polynomial, θ 6 | b(θ).

It can be shown that the Rothstein�Trager-method can be applied to compute the integ-
ral

∫
a(θ)/b(θ) Let us calculate the resultant

r(y) = resθ
(b(θ), a(θ) − y · b(θ)′) .

It can be shown that the integral is elementary if and only if r(y) is of form r(y) = r(y)s
where r(y) ∈ K[y] and s ∈ Kn−1. If we compute the primitive part of r(y), choose it as r(y)
and any coefficient of r(y) is not a constant then there is no elementary integral. Otherwise,
let c1, . . . , ck be the distinct roots of r(y) in its factor �eld and let

vi(θ) = gcd(b(θ), a(θ) − cib(θ)′) ∈ Kn−1(c1, . . . , ck)[θ] ,

for i = 1, . . . , k. It can be shown that
∫ a(θ)

b(θ) = −


k∑

i=1
ci deg vi(θ)

 +

k∑

i=1
ci log(vi(θ)

)
.

5.4. Symbolic integration 249

Let us consider a few examples.

Example 5.28 The integrand of the integral
∫

1/(1 + exp(x)) is 1/(1 + θ) ∈ Q(x, θ), where θ = exp(x).
Since

r(y) = resθ(θ + 1, 1 − yθ) = −1 − y ∈ Q(x)[y]
is a primitive polynomial which has only constant coefficients, the integral is elementary, c1 = −1,
v1(θ) = gcd(θ + 1, 1 + θ) = 1 + θ, thus

∫ 1
1 + exp(x) = −c1 x deg v1(θ) + c1 log(v1(θ)) = x − log(exp(x) + 1) .

Example 5.29 The integrand of the integral
∫

x/(1 + exp(x)) is x/(1 + θ) ∈ Q(x, θ), where θ = exp(x).
Since

r(y) = resθ(θ + 1, x − yθ) = −x − y ∈ Q(x)[y]
is a primitive polynomial that has a non-constant coefficient, the integral is not elementary.

Exponential case, polynomial part
The remaining problem is the integration of the �polynomial part�

p(θ) =

k∑

i=−`
piθ

i ∈ Kn−1(θ) .

According to Liouville's Principle
∫

p(θ) is elementary if and only if

p(θ) = v0(θ)′ +
m∑

j=1
c j

v j(θ)′
v j(θ)

,

where c j ∈ K and v j ∈ Kn−1(θ) for j = 0, 1, . . . ,m, and KC is an extension of K and
Kn−1 = K(x, θ1, . . . , θn−1). It can be shown that K can be an algebraic extension of K. A
similar reasoning to the proof of Liouville's Principle shows that we may assume without
breaking generality: v j(θ) is either an element of Kn−1 (that is independent of θ), or it is
monic and irreducible in Kn−1[θ] for j = 1, 2, . . . ,m. Furthermore, it can be shown that
there can be no non-monomial factor in the denominator of v0(θ), since such a factor would
be present in the derivative, too. Similarly, the denominator of v j(θ) (j = 1, 2, . . . ,m) can
have no non-monomial factor either. So we get that either v j(θ) ∈ Kn−1, or v j(θ) = θ, since
this is the only irreducible monic monomial. But if v j(θ) = θ then the corresponding member
of the sum is c jv′j(θ)/v j(θ) = c ju′, which can be incorporated into v0(θ)′. Hence we get that
if p(θ) has an elementary integral then

p(θ) =


k∑

j=−`
q jθ

j


′

+

m∑

j=1
c j

v′j
v j
,

where q j, v j ∈ Kn−1 and c j ∈ K; that the summation should be taken over the same range as
in p(θ) follows from

(q jθ
j)′ = (q′j + ju′g j)θ j .

250 5. Computer Algebra

Comparing the coefficients we get the system

p j = q′j + ju′q j, ha −` ≤ j ≤ k, j , 0 ,
p0 = q′0 ,

where q0 = q0 +
∑m

j=1 c j log(v j). The solution of the equation p0 = q′0 is simply q0 =
∫

p0;
if this integral is not elementary then

∫
p(θ) cannot be elementary either, but if it is then we

have determined q0. In the case j , 0 we have to solve a differential equation called Risch
differential equation to determine q j. The differential equation is of form y′ + f y = g where
the given functions f , g are elements of Kn−1 and we are looking for solutions in Kn−1. At
�rst sight it looks as if we had replaced the problem of integration with a more difficult
problem, but the linearity of the equations and that the solution has to be in Kn−1 means a
great facility. If any Risch differential equation fails to have a solution in Kn−1 then

∫
p(θ)

is not elementary, otherwise ∫
p(θ) =

∑

j,0
q jθ

j + q0 .

The Risch differential equation can be solved algorithmically, but we will not go into details.
Let us consider a few examples

Example 5.30 The integrand of the integral
∫

exp(−x2) is θ ∈ Q(x, θ), where θ = exp(−x2). If the
integral is elementary then

∫
θ = q1θ, where q1 ∈ C(x). It is not difficult to show that the differential

equation has no rational solutions so
∫

exp(−x2) is not elementary.

Example 5.31 The integrand of the integral
∫

xx is exp((x log(x)) = θ2 ∈ Q(x, θ1, θ2), where
θ1 = log(x) and θ2 = exp(xθ1). If the integral is elementary then

∫
θ2 = q1θ2, where q1 ∈ C(x, θ1).

Differentiating both sides θ2 = q′1θ2 + q1(θ1 + 1)θ2, thus 1 = q′1 + (θ1 + 1)q1. Since θ1 is transcendental
over C(x), by comparing the coefficients 1 = q′1 + q1 and 0 = q1, which has no solutions. Therefore∫

xx is not elementary.

Example 5.32 The integrand of the integral
∫ (4x2 + 4x − 1)(exp(x2) + 1)(exp(x2) − 1)

(x + 1)2

is
f (θ) =

4x2 + 4x − 1
(x + 1)2 (θ2 − 1) ∈ Q(x, θ) ,

where θ = exp(x2). If the integral is elementary then it is of the form
∫

f (θ) = q2θ
2 + q0 , where

q′2 + 4xq2 =
4x2 + 4x − 1

(x + 1)2 ,

q′0 = −4x2 + 4x − 1
(x + 1)2 .

The second equation can be integrated and q0 is elementary. The solution of the �rst equation is
q2 = 1/(1 + x). Hence

∫
f (θ) =

1
x + 1 exp2(x2) − (2x + 1)2

x + 1 + 4 log(x + 1) .

5.5. Theory and practice 251

Exercises
5.4-1 Apply Hermite-reduction to the following function f (x) ∈ Q(x) :

f (x) =
441x7 + 780x6 − 286x5 + 4085x4 + 769x3 + 3713x2 − 43253x + 24500

9x6 + 6x5 − 65x4 + 20x3 + 135x2 − 154x + 49 .

5.4-2 Compute the integral
∫

f , where

f (x) =
36x6 + 126x5 + 183x4 + 13807/6x3 − 407x2 − 3242/5x + 3044/15

(x2 + 7/6x + 1/3)2(x − 2/5)3 ∈ Q(x) .

5.4-3 Apply the Risch integration algorithm to compute the following integral:
∫ x(x + 1){(x2e2x2 − log(x + 1)2) + 2xe3x2 (x − (2x3 + 2x2 + x + 1) log(x + 1))}

((x + 1) log2(x + 1) − (x3 + x2)e2x2)2
dx .

5.5. Theory and practice
So far in the chapter we tried to illustrate the algorithm design problems of computer algebra
through the presentation of a few important symbolic algorithms. Below the interested rea-
der will �nd an overview of the wider universe of the research of symbolic algorithms.

5.5.1. Other symbolic algorithms
Besides the resultant method and the theory of Gröbner-bases presented in this chapter there
exists algorithms for �nding real symbolic roots of non-linear equations and inequalities,
too (Collins).

There are some remarkable algorithms in the area of symbolic solution of differential
equations. There exists a decision procedure similar to the Risch algorithm for the com-
putation of solutions in closed form of a homogeneous ordinary differential equation of
second degree with rational function coefficients. In the case of higher degree linear equa-
tions Abramov's procedure gives closed rational solutions of an equation with polynomial
coefficients, while Bronstein's algorithm gives solutions of the form exp(

∫
f (x)dx). In the

case of partial differential equations Lie's symmetry methods can be used. There also exists
an algorithm for the factorisation of linear differential operators over formal power series
and rational functions.

Procedures based on factorisation are of great importance in the research of computer
algebra algorithms. Such an importance that many consider that the entire research �eld
was born with Berlekamp's publication on an effective algorithm for the factorization of
polynomials of one variable over �nite �elds of small characteristic p. Later, Berlekamp
extended his results for larger characteristic, too. In order to have similarly good running

252 5. Computer Algebra

times he introduced probabilistic elements into the algorithm. Today's computer algebra
systems use Berlekamp's procedure even for large �nite �elds as a routine, perhaps without
most of the users knowing about the probabilistic origin of the algorithm. The method will
be presented in another chapter of the book. We note that there are numerous algorithms for
the factorization of polynomials over �nite �elds.

Not much time after polynomial factorization over �nite �elds was solved, Zassenhaus,
taking van der Waerden's book Moderne Algebra from 1936 as a base, used the so cal-
led Hensel's lemma for the arithmetic of p-adic numbers to extend factorization. �Hensel-
lifting� � as his procedure is called now � is a general approach for the reconstruction of
factors from their modular images. Unlike interpolation, which needs multiple points from
the image, Hensel-li�ng only needs one point from the image. The Berlekamp�Zassenhaus-
algorithm for the factorization of polynomials with integer coefficients is of fundamental
importance but it has two hidden pitfalls. First, for a certain kind of polynomials the running
time is exponential. Unfortunately, many �bad� polynomials appear in the case of factori-
zation over algebraic number �elds. Second, for multivariable polynomials a representation
problem appears, similar to what we have encountered at the Gauss-elimination of sparse
matrices. The �rst problem was solved by a diophantine optimisation based on the geometry
of numbers, a so called lattice reduction algorithm by Lenstra�Lenstra�Lovász; it is used
together with Berlekamp's method. This polynomial algorithm is completed by a procedure
which ensures that the Hensel-lifting will start from a �good� modular image and that it will
end �in time�. Solutions have been found for the mentioned representation problem of the
factorization of multivariable polynomials, as well. This is the second area where randomi-
sation plays a crucial role in the design of effective algorithms. We note that in practice the
Berlekamp�Zassenhaus�Hensel-algorithm proves more effective than the Lenstra�Lenstra�
Lovász-procedure. As a contrast, the problem of polynomial factorization can be solved in
polynomial time, while the best proved algorithmic bound for the factorization of the in-
teger N is Õ(N1/4) (Pollard and Strassen) in the deterministic case and L(N)1+o(1) (Lenstra
and Pomerance) in the probabilistic case, where L(N) = e

√
ln N ln ln N .

In fact, a new theory of heuristic or probabilistic methods in computer algebra is being
born to avoid computational or memory explosion and to make algorithms with determi-
nistically large running times more effective. In the case of probabilistic algorithms the
probability of inappropriate operation can be positive, this may result in an incorrect ans-
wer (Monte Carlo algorithms) or � although we always get the correct answer (Las Vegas
algorithms) � we may not get anything in polynomial time. Beside the examples above,
nice results have been achieved in testing polynomial identity, irreducibility of polynomi-
als, determining matrix normal forms (Frobenius, Hilbert, Smith), etc. Their role is likely to
increase in the future.

So far in the chapter we gave an overview of the most important symbolic algorithms.
We mentioned in the introduction that most computer algebra systems are able to perform
numeric computations as well: unlike traditional systems, the precision can be set by the
user. In many cases it is useful to combine symbolic and numeric computation. Let us con-
sider for example the symbolically computed power series solution of a differential equa-
tion. After truncation evaluating the power series with the usual �oating point arithmetics
in certain points we get a numerical approximation of the solution. When the problem is an
approximation of a physical problem the attractivity of symbolic computation is often lost;
simply because they are too complicated or too slow and they are not necessary or useful

5.5. Theory and practice 253

since we are looking for a numerical solution. In other cases, when the problem cannot be
dealt with using symbolic computation, the only way is numerical approximation. This may
be the case when the existing symbolic algorithm does not �nd a closed solution (e.g. the
integral of non-elementary functions, etc.), or when a symbolic algorithm for the speci�ed
problem does not exist. Although more and more numerical algorithms have symbolic equi-
valents, numerical procedures play an important role in computer algebra. Let us think of
differentiation and integration: sometimes traditional algorithms � integral transformation,
power series approximation, perturbation methods � can be the most effective.

In the design of computer algebra algorithms parallel architectures will play an inc-
reasing role in the future. Although many existing algorithms can be parallelised �by the
look�, it is not obvious that good sequential algorithms will perform optimally on parallel
architectures as well: the optimal performance might be achieved by a completely different
method.

5.5.2. An overview of computer algebra systems
The development of computer algebra systems is linked with the development of compu-
ter science and algorithmic mathematics. In the early period of computers researchers of
different �elds began the development of the �rst computer algebra systems to facilitate
and accelerate their symbolic computations; these systems, reconstructed and continuously
updated are present in their manieth versions today. General purpose computer algebra sys-
tems appeared in the seventies, these provide a wide range of built-in data structures, mathe-
matical functions and algorithms, trying to cover a wide area of users. Because of their large
need of computational resources their expansion became explosive in the beginning of the
eighties when microprocessor-based workstations appeared. Better hardware environments,
more effective resource management, the use of system-independent high-level languages
and last but not least social-economic demands gradually transformed general purpose com-
puter algebra systems into market products, which also resulted in a better user interface and
document preparation.

Below we list the most widely known general and special purpose computer algebra
systems and libraries.
• General purpose computer algebra systems: A, D, F, GNU-, J,

M, M, M, D M, MCAD, M S M

T, S, MAS, M, M, M-M, MPAD, R, R.
• Algebra and number theory: B, CCA, F, F, GRB, K, M,

M, N, P, S, S.
• Algebraic geometry: C, G.
• Group theory: G, LE, M, S.
• Tensor analysis: C, FC, GRG, GRT, MT, RT, R,

TTC.
• Computer algebra libraries: A, BN, GNU MP, K, LDA, NTL, S,

U, W, Z.

Most general purpose computer algebra systems are characterised by
• interactivity,

254 5. Computer Algebra

• knowledge of mathematical facts,
• a high-level, declarative2 programming language with the possibility of functional pro-

gramming and the knowledge of mathematical objects,
• expansibility towards the operational system and other programs,
• integration of symbolic and numeric computations,
• automatic (optimised) C and Fortran code generation,
• graphical user interface,
• 2 and 3 dimensional graphics and animation,
• possibility of editing text and automatic LATEX conversion,
• on-line help.
Computer algebra systems are also called mathematical expert systems. Today we can see
an tonishing development of general purpose computer algebra systems, mainly because
their knowledge and wide application area. But it would be a mistake to underestimate
special systems, which play a very important role in many research �elds, besides, in many
cases are easier to use and more effective due to their system of notation and the low-level
programming language implementation of their algorithms. It is essential that we choose
the most appropriate computer algebra system to solve a speci�ed problem.

Problems
5-1. The length of coefficients in the series of remainders in a Euclidean division
Generate two pseudorandom polynomials of degree n = 10 in Z[x] with coefficients with
l = 10 decimal digits. Perform a single Euclidean division in (in Q[x]) and compute the
ratio of the maximal coefficients of the remainder and the original polynomial (determined
by the function λ). Repeat the computation t = 20 times and compute the average. What is
the result? Repeat the experiment with l = 100, 500, 1000.
5-2. Simulation of the M-- algorithm
Using simulation, give an estimation for the optimal value of the variable n in the M-
- algorithm. Use random polynomials for different degrees and coefficient
magnitudes.
5-3. Modi�ed pseudo-euclidean division
Let f , g ∈ Z[x], deg f = m ≥ n = deg g. Modify the pseudo-euclidean division in such a
way that in the equation

gs
n f = gq + r

instead of the exponent s = m − n + 1 put the smallest value s ∈ N, for which q, r ∈
Z[x]. Replace the procedures pquo() and prem() in the P-E algorithm by the
obtained procedures spquo() and sprem(). Compare the amount of memory space required
by the algorithms.
5-4. Construction of reduced Gröbner basis
Design an algorithm that from a given Gröbner-basis G computes a reduced Gröbner basis.

2Declarative programming languages specify the desired result unlike imperative languages, which describe how
to get the result.

5. Megjegyzések a fejezethez 255

5-5. Implementation of Hermite-reduction
Implement Hermite-reduction in a chosen computer algebra language
5-6. Integration of rational functions

Write a program for the integration of rational functions.

Chapter notes
The algorithms C-E and E-E for non-negative integers are
described in [7]. A natural continuation of the theory of resultants leads to subresultants,
which can help in reducing the growth of the coefficients in the E-E algo-
rithm (see e.g. [9, 10]).

Gröbner bases were introduced by B. Buchberger in 1965 [2]. Several authors examined
polynomial ideals before this. The most well-known is perhaps Hironaka, who used bases
of ideals of power series to resolve singularities over C. He was rewarded a Fields-medal for
his work. His method was not constructive, however. Gröbner bases have been generalised
for many algebraic structures in the last two decades.

The bases of differential algebra have been layed by J. F. Ritt in 1948 [24]. The square-
free factorization algorithm used in symbolic integration can be found e.g. in the books
[9, 10]. The importance of choosing the smallest possible extension degree in the Hermite-
reduction is illustrated by example 11.11 in [10], where the decomposition �eld has very
large degree but the integral can be expressed in an extension of degree 2. The proof of
the Rothstein�Trage integration algorithm can be found in [9] (theorem 22.8.). We note
that the algorithm was found independently by Rothstein and Trager. The proof of the cor-
rectness Lazard�Rioboo�Trager formula, the analysis of the running time of the I-
- algorithm, an overview of the procedures that deal with the difficulties of
algebraic extension steps, the determination of the hyperexponential integral (if exists) of a
hyperexponential element over C(x), the proof of Liouville's principle and the proofs of the
statements connected to the Risch algorithm can be found in the book [9].

There are many books and publications available on computer algebra and related
topics. The interested reader will �nd mathematical description in the following general
works: Caviness [3], Davenport et al. [8], von zur Gathen et al. [9], Geddes et al. [10],
Knuth [16, 17, 18], Mignotte [20], Mishra [21], Pavelle et al. [23], Winkler [26].

The computer-oriented reader will �nd further information on computer algebra in
Christensen [4], Gonnet and Gruntz [11], Harper et al. [13], and on the world wide web.

A wide range of books and articles deal with applications, e.g. Akritas [1], Cohen et al.
(ed.) [5, 6], Grossman (ed.) [12], Hearn (ed.) [14], Kovács [19] and Odlyzko [22].

For the role of computer algebra systems in education see e.g. the works of Karian [15]
and Uhl [25].

Conference proceedings: A, D, E, E, I and S.
Computer algebra journals: Journal of Symbolic Computation � Academic Press, App-

licable Algebra in Engineering, Communication and Computing � Springer-Verlag, S

Bulletin � ACM Press.
The Department of Computer Algebra of the University Eötvös Loránd, Budapest takes

the works [9, 10, 20, 26] as a base in the education.

Bibliography

[1] A. G. Akritas. Elements of Computer Algebra with Applications. John Wiley & Sons, 1989. 255
[2] B. Buchberger. Ein algorithmus zum auffinden der basiselemente des restklassenringes nach einem nulldi-

mensionalen polynomideal, 1965. PhD disszertáció, Leopold-Franzens-Universität, Innsbruck. 255
[3] B. F. Caviness. Computer algebra: past and future. Journal of Symbolic Computations, 2:217�263, 1986.

255
[4] S. M. Christensen. Resources for computer algebra. Computers in Physics, 8:308�315, 1994. 255
[5] A. M. Cohen, L. van Gasten, S. Lunel (szerkeszt�ok). Computer Algebra for Industry 2, Problem Solving in

Practice. John Wiley & Sons, 1995. 255
[6] A. M. Cohen (szerkeszt�o). Computer Algebra for Industry: Problem Solving in Practice. John Wiley & Sons,

1993. 255
[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction to Algorithms. The MIT Press/McGraw-

Hill, 2004 (Fifth corrected printing of 2. edition. 255
[8] J. Davenport, Y. Siret, E. Tournier, E.. Computer Algebra: Systems and Algorithms for Algebraic Computa-

tion. Academic Press, 2000. 255
[9] J. Gathen, von zur. Modern Computer Algebra. Cambridge University Press, 2003. 255

[10] K. O. Geddes S. Czapor, G. Labahhn. Algorithms for Computer Algebra. Kluwer Academic Publishers,
1992. 255

[11] G. Gonnet, D. Gruntz, L. Bernardin Computer algebra systems. In A. Ralston, E. D. Reilly, D.
Hemmendinger (szerkeszt�ok), Encyclopedia of Computer Science, 287�301. o. Nature Publishing Group,
4. kiadás, 2000. 255

[12] R. Grossman. Symbolic Computation: Applications to Scienti�c Computing, Frontiers in Applied Mathema-
tics 5. kötete. SIAM, 1989. 255

[13] D. Harper, C. Wooff D. Hodginson. A Guide to Computer Algebra Systems. John Wiley & Sons, 1991. 255
[14] A. C. Hearn. Future Directions for Research in Symbolic Computation. SIAM Reports on Issues in the

Mathematical Sciences. SIAM, 1990. 255
[15] Z. Karian, A. Starrett. Use of symbolic computation in probability and statistics. In Z. Karian (szerkeszt�o),

Symbolic Computation in Undergraduate Mathematics Education, number24 in Notes of Mathematical As-
sociation of America. Mathematical Association of America, 1992. 255

[16] D. E. Knuth. Fundamental Algorithms, The Art of Computer Programming 1. kötete. Addison-Wesley, 1968
(3. updated edition). 255

[17] D. E. Knuth. Seminumerical Algorithms, 2. kötet. Addison-Wesley, 1969 (3. corrected edition). 255
[18] D. E. Knuth. Sorting and Searching, The Art of Computer Programming 3. kötete. Addison-Wesley, 1973 (3.

corrected edition). 255
[19] A. Kovács. Komputer algebra a tudományokban és a gyakorlatban (Computer algebra in science and

practice). Alkalmazott Matematikai Lapok, 18:181�202, 1994-98. 255
[20] M. E. Mignotte. Mathematics for Computer Algebra. Springer, 1992. 255
[21] B. E. Mishra. Algorithmic Algebra. Springer, 1993. 255
[22] A. Odlyzko. Applications of Symbolic Mathematics to Mathematics. Kluwer Academic Publishers, 1985.

255

http://www.wiley.com/�
file:www.elte.hu/.dvi�
http://www.aip.org/cip/�
http://www.win.tue.nl/~amc/�
file:www.wiley.com/.dvi�
http://www.win.tue.nl/~amc/�
file:www.wiley.com/.dvi�
http://www.cs.dartmouth.edu/~thc/�
http://theory.lcs.mit.edu/~cel/�
http://theory.lcs.mit.edu/~rivest/�
http://www.ieor.columbia.edu/~cliff/�
http://mitpress.mit.edu/main/home/default.asp?sid=C6EE87F7-92B7-4CC1-8035-E3AB8EAC0886�
file:www.mcgraw-hill.com/.dvi�
http://www.academicpress.com/�
http://uk.cambridge.org/�
file:www.wkap.nl/.dvi�
file:.�
http://www.doc.ic.ac.uk/~ar9/�
http://home.nycap.rr.com/cybernetic/�
http://tardis.union.edu/~hemmendd/�
http://npg.nature.com/npg/servlet/Content?data=xml/02_welcome.xml&style=xml/02_welcome.xsl�
http://www.siam.org/�
http://www.wiley.com/�
http://www.siam.org/�
http://www-cs-faculty.stanford.edu/~knuth/�
http://www.aw.com/�
http://www-cs-faculty.stanford.edu/~knuth/�
http://www.aw.com/�
http://www-cs-faculty.stanford.edu/~knuth/�
http://www.aw.com/�
http://compalg.inf.elte.hu/~attila/�
http://www.math.bme.hu/akademia/folyoiratok.html�
http://www.springer-ny.com/�
http://www.springer-ny.com/�
file:www.wkap.nl/.dvi�

Bibliography 257

[23] R. Pavelle, M. Rothstein. Computer algebra. Scienti�c American, 245(12):102�113, 1981. 255
[24] J. Ritt. Integration in Finite Terms. Columbia University Press, 1948. 255
[25] J. J. Uhl. M and Me. Notices of AMS, 35:1345�1345, 1988. 255
[26] F. Winkler. Polynomial Algorithms in Computer Algebra. Springer-Verlag, 1990. 255

http://www.sciam.com/�
file:www.mkp.com/.dvi�
http://www.springer.de/ �

Subject Index

A, Á
algebraic

element, 241
extension, 239, 242, 245, 249
number �eld, 242, 244

ascending chain of ideals, 230, 232

B
basis

of the ideal, 226

C
C-E, 208, 255
C-B, 224
computer algebra, 201
computer algebra systems

general purpose, 253
special purpose, 253

constant sub�eld, 235
content, 214

D
data representation

in computer algebra, 203
derivation, 235

rules of, 235
Dickson's lemma, 234gy
Dickson-lemma, 230
differential algebra, 235
differential extension, 243
differential extension �eld, 236, 241
differential �eld, 235

extensions of, 236
differential operator, 235
differential sub�eld, 236
differentiation, 235
discriminant, 226gy
--

multivariate, 229

E, É
elementary

extension, 241

extensions, 241
functions, 240

E---, 208,
226

exponential
elements, 241

exponential element, 241
E-E, 209, 226gy, 255
E-E-, 211, 226gy

F
�eld

of elementary functions, 241, 242, 244
of transcendental elementary functions, 241

�eld of constants, 235

G
Gauss-elimination, 252
Gröbner basis, 226, 230, 231, 233, 254fe

minimal, 232
reduced, 232

Gröbner-basis, 251

H
Hermite's method, 247
Hermite-reduction, 237, 238, 244, 248, 251gy, 255fe
Hilbert's basis, 230
Horowitz' method, 238
hyperexponential element, 241

I, Í
integers, 202, 204
integral

logarithmic part of, 237
rational part of, 237

I-L-P, 240
integration

by parts, 236
of elementary functions, 242
of rational functions, 235

intermediate expression swell, 205, 233

Subject Index 259

L
Laurent-series, 248
Lazard�Rioboo�Trager-formula, 239
lazy evaluation, 205
leading coefficient, 207
Leibniz-rule, 235
Liouville's Principle, 242, 243, 245, 246, 249
logarithmic

derivative, 235, 241
element, 241, 244
extension, 236, 246
function, 242

logarithmic integral, 240
lucky prime, 222

M
mathematical expert systems, 254
M-G-B, 222
M-G-S, 223
monomial, 227

element, 242
order, 227

monomial ideal, 230
multivariate polynomial

leading coefficient, 228
leading monomial, 228
leading term, 228
multidegree, 228

N
Noetherian ring, 230
normal form, 207

O, Ó
Operation of the C-E algorithm,

208áb
Operation of the P-E algorithm,

214áb
order

allowable, 227
monomial, 227, 234gy

P
partial fraction decomposition, 244
polynomial

multivariate, 204, 228
representation, 205

polynomial equations

equivalence, 233
�nite solvability, 233
number of �nite solutions, 234
solvability, 233

power series, 205
primitive

part, 214
polynomial, 213

P-E, 214, 254gy
pseudo-division, 213
pseudo-quotient, 213
pseudo-remainder, 213

Q
quotient, 207, 229

R
rational numbers, 204
remainder, 207, 229
resultant, 215, 245, 248

Sylvester form, 217
resultant method, 215
Risch algorithm, 244, 251

exponential case, 247
logarithmic case, 244

Risch differential equation, 250
Risch integration algorithm, 240, 242
Rothstein�Trager integration algorithm, 239
Rothstein�Trager-method, 245, 248

S
simpli�cation of expressions, 234
S-polynomial, 231
symbolic

computation, 201
integration, 234

T
transcendent

element, 241
transcendental

element, 244
elementary extension, 241

V
variety, 226

Name index

A, Á
Abramov, Sergey Alexandrovich, 251
Akritas, A. G., 256

B
Berlekamp, Elwyn Ralph, 251, 252
Bernardin, Laurent, 256
Bronstein, Manuel, 251
Buchberger, Bruno, 202, 231, 232, 255, 256

C
Caviness, Bob Forrester, 255, 256
Christenswn, S. M., 256
Cohen, Arjeh M., 255, 256
Collins, Georges Edwin, 251
Cormen, Thomas H., 256
Cramer, Gabriel (1704�1752), 205
Czapor, S. R., 256

D
Davenport, J. H., 256
Dickson, Leonard Eugene, 230, 234

E, É
Euclid, 207

F
Frobenius, Ferdinand Georg, 252

G
Gauss, Johann Carl Friedrich (1777�1855), 205,

213, 221, 252
Geddes, Keith Oliver, 255, 256
Gonnet, Haas Gaston Henry, 255, 256
Grossman, R., 256
Gröbner, Wolfgang Anton Maria, 202, 226,

230�234, 251
Gruntz, Dominik, 256

H
Harper, D., 256

Hearn, Anthony Clern, 255, 256
Hemmendinger, David, 256
Hensel, Kurt Wilhelm Sebastian, 252
Hermite, Charles, 235, 237, 247, 255
Hilbert, David (1862�1943), 229�231, 252
Hironaka, Heisuke, 255
Hodginson, D., 256
Horowitz, Ellis, 238

K
Karian, Z. A., 256
Knuth, Donald Ervin, 255, 256
Kovács Attila, 255, 256

L
Labahn, G., 256
Landau, Edmund Georg Hermann (1867�1938),

223, 225
Landau, Edmund Georg Hermann (1877�1938),

215, 224
Laurent, Pierre Alphonse, 223, 235, 248
Lazard, Daniel, 239
Leibniz, Gottfried Wilhelm (1646�1716), 235
Leiserson, Charles E., 256
Lenstra, Arjen Klaas, 252
Lenstra, Hendrik Willem Jr., 252
Lie, Marius Sophus, 251
Liouville, Joseph, 202, 240, 243, 245, 246, 249
Lovász László, 252
Lunel, Sjoerd Verduyn, 256

M
Mignotte, Maurice, 215, 223�225, 255, 256
Mishra, Bhubaneswar, 255, 256

N
†Noether, Emmy, 230

O, Ó
Odlyzko, Andrew Michael, 255, 256

P

Name index 261

Pavelle, R., 256
Pollard, John Michael, 252
Pomerance, Karl, 252

R
Ralston, Anthony, 256
Reilly, Edwin D., 256
Rioboo, Renaud, 239
Risch, Robert, 235, 240, 242, 244, 250, 251
Ritt, Joseph Fels, 255, 257
Rivest, Ronald Lewis, 256
Rothstein, Michael, 239, 245, 248, 256

S
Siret, Y., 256
Smith, Henry John Stephen, 252
Stein, Clifford, 256
Sterrett, A., 256
Strassen, Volker, 252
Sylvester, James Joseph, 216�218

T
Tournier, E., 256
Trager, Barry Marshall, 239, 245, 248

U, Ú
Uhl, J. J., 257

V
van der Waerden, Bartel Leendert, 252
van Gastel, Leendert, 256
von zur Gathen, Joachim, 255, 256

W
Winkler, Franz, 255, 257
Wooff, C., 256

Z
Zassenhaus, Hans Julius, 252

Contents

5. Computer Algebra . 201
5.1. Data representation . 202
5.2. Common roots of polynomials . 206

5.2.1. Classical and extended Euclidean algorithm 207
5.2.2. Primitive Euclidean algorithm . 213
5.2.3. The resultant . 215
5.2.4. Modular greatest common divisor 221

5.3. Gröbner basis . 226
5.3.1. Monomial order . 227
5.3.2. Multivariate division with remainder 228
5.3.3. Monomial ideals and Hilbert's basis theorem 229
5.3.4. Buchberger's algorithm . 231
5.3.5. Reduced Gröbner basis . 232
5.3.6. The complexity of computing Gröbner bases 233

5.4. Symbolic integration . 234
5.4.1. Integration of Rational Functions 235

Differential �elds . 235
Extensions of differential �elds 236
Hermite's method . 237

5.4.2. The Risch integration algorithm 240
Elementary functions . 240
Exponential elements . 241
Elementary extensions . 241
The integration of elementary functions 242
The Risch algorithm . 244
Risch algorithm: logarithmic case 244
Logarithmic case, rational part . 244
Logarithmic case, polynomial part 245
Risch algorithm: exponential case 247
Exponential case, rational part . 248
Exponential case, polynomial part 249

5.5. Theory and practice . 251
5.5.1. Other symbolic algorithms . 251

Contents 263

5.5.2. An overview of computer algebra systems 253
Bibliography . 256
Subject Index . 258
Name index . 260

