
2. Automata and Formal Languages

Automata and formal languages play an important role in projecting and realizing compilers.
In the �rst section grammars and formal languages are de�ned. The different grammars
and languages are discussed based on Chomsky hierarchy. In the second section we deal in
detail with the �nite automata and the languages accepted by them, while in the third section
the pushdown automata and the corresponding accepted languages are discussed. Finally,
references from a rich bibliography are given.

2.1. Languages and grammars
A �nite and nonempty set of symbols is called an alphabet. The elements of an alphabet
are letters, but sometimes are named also symbols. E.g. the set Σ = {a, b, c, d, 0, 1, σ} is an
alphabet, with the letters a, b, c, d, 0, 1 and σ.

With the letters of an alphabet words are composed. If a1, a2, . . . , an ∈ Σ, n ≥ 0, then
a1a2 . . . an a Σ is a word over the alphabet Σ (the letters ai are not necessary distinct). The
number of letters of a word, with their multiplicities, constitutes the length of the word. If
w = a1a2 . . . an, then the length of w is |w| = n. If n = 0, then the word is an empty word,
which will be denoted by ε (sometimes λ in other books). The set of words over the alphabet
Σ will be denoted by Σ∗:

Σ∗ =
{a1a2 . . . an | a1, a2, . . . , an ∈ Σ, n ≥ 0} .

For the set of nonempty words over Σ the notation Σ+ = Σ∗ \ {ε} will be used. The set of
words of length n over Σ will be denoted by Σn, and Σ0 = {ε}. Then

Σ∗ = Σ0 ∪ Σ1 ∪ · · · ∪ Σn ∪ · · · and Σ+ = Σ1 ∪ Σ2 ∪ · · · ∪ Σn ∪ · · · .
The words u = a1a2 . . . am and v = b1b2 . . . bn are equal (i.e. u = v), if m = n and ai =

bi, i = 1, 2, . . . , n.
We de�ne in Σ∗ the binary operation called concatenation. The concatenation (or pro-

duct) of the words u = a1a2 . . . am and v = b1b2 . . . bn is the word uv = a1a2 . . . amb1b2 . . . bn.
It is clear that |uv| = |u| + |v|. This operation is associative but not commutative. Its neutral
element is ε, because εu = uε = u for all u ∈ Σ∗. Σ∗ with the concatenation is a monoid.

We introduce the power operation. If u ∈ Σ∗, then u0 = ε, and un = un−1u for n ≥ 1.
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The reversal (or mirror image) of the word u = a1a2 . . . an is u−1 = anan−1 . . . a1. The
reversal of u sometimes is denoted by uR or �u. It is clear that

(
u−1

)−1
= u and (uv)−1 =

v−1u−1.
Word v is a pre�x of the word u if there exists a word z such that u = vz. If z , ε then v

is a proper pre�x of u. Similarly v is a suffix of u if there exists a word x such that u = xv.
The proper suffix can also be de�ned. Word v is a subword of the word u if there are words
p and q such that u = pvq. If pq , ε then v is a proper subword.

A subset L of Σ∗ is called a language over the alphabet Σ. Sometimes this is called a
formal language because the words are here considered without any meanings. Note that ∅
is the empty language while {ε} is a language which contains the empty word.

2.1.1. Operations on languages
If L, L1, L2 are languages over Σ we de�ne the following operations
• union

L1 ∪ L2 = {u ∈ Σ∗ | u ∈ L1 or u ∈ L2} ,
• intersection

L1 ∩ L2 = {u ∈ Σ∗ | u ∈ L1 and u ∈ L2} ,
• difference

L1 \ L2 = {u ∈ Σ∗ | u ∈ L1 and u < L2} ,
• complement

L = Σ∗ \ L ,
• multiplication

L1L2 = {uv | u ∈ L1, v ∈ L2} ,
• power

L0 = {ε}, Ln = Ln−1L, if n ≥ 1 ,
• iteration or star operation

L∗ =

∞⋃

i=0
Li = L0 ∪ L ∪ L2 ∪ · · · ∪ Li ∪ · · · ,

• mirror
L−1 = {u−1 | u ∈ L}

We will use also the notation L+

L+ =

∞⋃

i=1
Li = L ∪ L2 ∪ · · · ∪ Li ∪ · · · .

The union, product and iteration are called regular operations.

2.1.2. Specifying languages
Languages can be speci�ed in several ways. For example a language can be speci�ed using

1) the enumeration of its words,
2) a property, such that all words of the language have this property but other word have

not,
3) a grammar.

Specifying languages by listing their elements
For example the following are languages
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L1 = {ε, 0, 1},
L2 = {a, aa, aaa, ab, ba, aba}.

Even if we cannot enumerate the elements of an in�nite set in�nite languages can be spe-
ci�ed by enumeration if after enumerating the �rst some elements we can continue the
enumeration using a rule. The following is such a language

L3 = {ε, ab, aabb, aaabbb, aaaabbbb, . . .}.

Specifying languages by properties
The following sets are languages

L4 = {anbn | n = 0, 1, 2, . . .},
L5 = {uu−1 | u ∈ Σ∗},
L6 = {u ∈ {a, b}∗ | na(u) = nb(u)},

where na(u) denotes the number of letters a in word u and nb(u) the number of letters b.

Specifying languages by grammars
De�ne the generative grammar or shortly the grammar.

De�nition 2.1 A grammar is an ordered quadruple G = (N,T, P, S ), where
• N is the alphabet of variables (or nonterminal symbols),
• T is the alphabet of terminal symbols, where N ∩ T = ∅,
• P ⊆ (N∪T )∗N(N∪T )∗×(N∪T )∗ is a �nite set, that is P is the �nite set of productions

of the form (u, v) , where u, v ∈ (N ∪ T )∗ and u contains at least a nonterminal symbol,
• S ∈ N is the start symbol.

Remarks. Instead of the notation (u, v) sometimes u→ v is used.
In the production u → v or (u, v) word u is called the left-hand side of the production

while v the right-hand side. If for a grammar there are more than one production with the
same left-hand side, then these production

u→ v1, u→ v2, . . . , u→ vr can be written as u→ v1 | v2 | . . . | vr .

We de�ne on the set (N ∪ T )∗ the relation called direct derivation

u =⇒ v, if u = p1 pp2, v = p1qp2 and (p, q) ∈ P .

In fact we replace in u an appearance of the subword p by q and we get v. Another notations
for the same relation can be ` or |=.

If we want to emphasize the used grammar G, then the notation =⇒ can be replaced
by =⇒

G
. Relation ∗

=⇒ is the re�exive and transitive closure of =⇒, while +
=⇒ denotes its

transitive closure. Relation ∗
=⇒ is called a derivation.

From the de�nition of a re�exive and transitive relation we can deduce the following:
u

∗
=⇒ v, if there exist the words w0,w1, . . . ,wn ∈ (N ∪ T )∗, n ≥ 0 and u = w0, w0 =⇒ w1,

w1 =⇒ w2, . . . ,wn−1 =⇒ wn, wn = v. This can be written shortly u = w0 =⇒ w1 =⇒
w2 =⇒ . . . =⇒ wn−1 =⇒ wn = v. If n = 0 then u = v. The same way we can de�ne the
relation u

+
=⇒ v except that n ≥ 1 always, so at least one direct derivation will de used.

De�nition 2.2 The language generated by grammar G = (N,T, P, S ) is the set
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L(G) = {u ∈ T ∗ | S ∗
=⇒ u} .

So L(G) contains all words over the alphabet T which can be derived from the start symbol
S using the productions from P.

Example 2.1 Let G = (N,T, P, S ) where
N = {S },
T = {a, b},
P = {S → aS b, S → ab}.

It is easy to see than L(G) = {anbn | n ≥ 1} because

S =⇒
G

aS b =⇒
G

a2S b2 =⇒
G
· · · =⇒

G
an−1S bn−1 =⇒

G
anbn ,

where up to the last but one replacement the �rst production (S → aS b) was used, while at the last
replacement the production S → ab. This derivation can be written S

∗
=⇒

G
anbn. Therefore anbn can

be derived from S for all n and no other words can be derived from S .

De�nition 2.3 Two grammars G1 and G2 are equivalent, and this is denoted by G1 � G2
if L(G1) = L(G2).

Example 2.2 The following two grammars are equivalent because both of them generate the language
{anbncn | n ≥ 1}.
G1 = (N1, T, P1, S 1), where

N1 = {S 1, X, Y}, T = {a, b, c},
P1 = {S 1 → abc, S 1 → aXbc, Xb→ bX, Xc→ Ybcc, bY → Yb, aY → aaX, aY → aa}.

G2 = (N2, T, P2, S 2), where
N2 = {S 2, A, B,C},
P2 = {S 2 → aS 2BC, S 2 → aBC, CB→ BC, aB→ ab, bB→ bb, bC → bc, cC → cc}.

First let us prove by mathematical induction that for n ≥ 2 S 1
∗

=⇒
G1

an−1Ybncn. If n = 2 then

S 1 =⇒
G1

aXbc =⇒
G1

abXc =⇒
G1

abYbcc =⇒
G1

aYb2c2 .

The inductive hypothesis is S 1
∗

=⇒
G1

an−2Ybn−1cn−1. We use production aY → aaX, then (n − 1) times
production Xb → bX, and then production Xc → Ybcc, afterwards again (n − 1) times production
bY → Yb. Therefore

S 1 =⇒
G1

an−2Ybn−1cn−1 =⇒
G1

an−1Xbn−1cn−1 ∗
=⇒
G1

an−1bn−1Xcn−1 =⇒
G1

an−1bn−1Ybcn ∗
=⇒
G1

an−1Ybncn .

If now we use production aY → aa we get S 1
∗

=⇒
G1

anbncn for n ≥ 2, but S 1 =⇒
G1

abc by the production
S 1 → abc, so anbncn ∈ L(G1) for any n ≥ 1. We have to prove in addition that using the productions
of the grammar we cannot derive only words of the form anbncn. It is easy to see that a successful
derivation (which ends in a word containing only terminals) can be obtained only in the presented
way.
Similarly for n ≥ 2

S 2 =⇒
G2

aS 2BC
∗

=⇒
G2

an−1S 2(BC)n−1 =⇒
G2

an(BC)n ∗
=⇒
G2

anBnCn
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=⇒
G2

anbBn−1Cn ∗
=⇒
G2

anbnCn =⇒
G2

anbncCn−1 ∗
=⇒
G2

anbncn .

Here orderly were used the productions S 2 → aS 2BC (n − 1 times), S 2 → aBC, CB → BC (n − 1
times), aB → ab, bB → bb (n − 1 times), bC → bc, cC → cc (n − 1 times). But S 2 =⇒

G2
aBC =⇒

G2

abC =⇒
G2

abc, So S 2
∗

=⇒
G2

anbncn, n ≥ 1. It is also easy to see than other words cannot be derived using
grammar G2.
The grammars

G3 = ({S }, {a, b}, {S → aS b, S → ε}, S ) and
G4 = ({S }, {a, b}, {S → aS b, S → ab}, S )

are not equivalent because L(G3) \ {ε} = L(G4).

Theorem 2.4 Not all languages can be generated by grammars.

Proof. We encode grammars for the proof as words on the alphabet {0, 1}. For a given
grammar G = (N,T, P, S ) let N = {S 1, S 2, . . . , S n}, T = {a1, a2, . . . , am} and S = S 1. The
encoding is the following:

the code of S i is 10 11 . . . 11︸   ︷︷   ︸
i times

01, the code of ai is 100 11 . . . 11︸   ︷︷   ︸
i times

001 .

In the code of the grammar the letters are separated by 000, the code of the arrow is 0000,
and the productions are separated by 00000.

It is enough, of course, to encode the productions only. For example, consider the gram-
mar

G = ({S }, {a, b}, {S → aS b, S → ab}, S ).
The code of S is 10101, the code of a is 1001001, the code of b is 10011001. The code of
the grammar is

10101︸︷︷︸ 0000 1001001︸    ︷︷    ︸ 000 10101︸︷︷︸ 000 10011001︸      ︷︷      ︸ 00000 10101︸︷︷︸ 0000 1001001︸    ︷︷    ︸ 000

10011001︸      ︷︷      ︸ .

From this encoding results that the grammars with terminal alphabet T can be enu-
merated 1 as G1,G2, . . . ,Gk, . . . , and the set of these grammars is a denumerable in�nite
set.

Consider now the set of all languages over T denoted by LT = {L | L ⊆ T ∗}, that
is LT = P(T ∗). The set T ∗ is denumerable because its words can be ordered. Let this or-
der s0, s1, s2, . . ., where s0 = ε. We associate to each language L ∈ LT an in�nite binary
sequence b0, b1, b2, . . . the following way:

bi =

{
1, if si ∈ L
0, if si < L i = 0, 1, 2, . . . .

It is easy to see that the set of all such binary sequences is not denumerable, because each
sequence can be considered as a positive number less than 1 using its binary representation

1Let us suppose that in the alphabet {0, 1} there is a linear order <, let us say 0 < 1. The words which are codes
of grammars can be enumerated by ordering them �rst after their lengths, and inside the equal length words,
alphabetically, using the order of their letters. But we can use equally the lexicographic order, which means that
u < v (u is before v) if u is a proper pre�x of v or there exists the decompositions u = xay and v = xby′, where x,
y, y′ are subwords, a and b letters with a < b.
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(The decimal point is considered to be before the �rst digit). Conversely, to each positive
number less than 1 in binary representation a binary sequence can be associated. So, the
cardinality of the set of in�nite binary sequences is equal to cardinality of interval [0, 1],
which is of continuum power. Therefore the set LT is of continuum cardinality. Now to each
grammar with terminal alphabet T associate the corresponding generated language over T .
Since the cardinality of the set of grammars is denumerable, there will exist a language from
LT , without associated grammar, a language which cannot be generated by a grammar.

2.1.3. Chomsky hierarchy of grammars and languages
Putting some restrictions on the form of productions, four type of grammars can be distin-
guished.

De�nition 2.5 De�ne for a grammar G = (N,T, P, S ) the following four types.
A grammar G is of type 0 (phrase-structure grammar) if there are no restrictions on

productions.
A grammar G is of type 1 (context-sensitive grammar) if all of its productions are of

the form αAγ → αβγ, where A ∈ N, α, γ ∈ (N ∪T )∗, β ∈ (N ∪T )+. A production of the form
S → ε can also be accepted if the start symbol S does not occur in the right-hand side of
any production.

A grammar G is of type 2 (context-free grammar) if all of its productions are of the
form A → β, where A ∈ N, β ∈ (N ∪ T )+. A production of the form S → ε can also be
accepted if the start symbol S does not occur in the right-hand side of any production.

A grammar G is of type 3 (regular grammar) if its productions are of the form A→ aB
or A→ a, where a ∈ T and A, B ∈ N. A production of the form S → ε can also be accepted
if the start symbol S does not occur in the right-hand side of any production.

If a grammar G is of type i then language L(G) is also of type i.

This classi�cation was introduced by Noam Chomsky.
A language L is of type i (i = 0, 1, 2, 3) if there exists a grammar G of type i which

generates the language L, so L = L(G).
Denote by Li (i = 0, 1, 2, 3) the class of the languages of type i. Can be proved that

L0 ⊃ L1 ⊃ L2 ⊃ L3 .

By the de�nition of different type of languages, the inclusions (⊇) are evident, but the strict
inclusions (⊃) must be proved.

Example 2.3 We give an example for each type of context-sensitive, context-free and regular gram-
mars.
Context-sensitive grammar. G1 = (N1, T1, P1, S 1), where N1 = {S 1, A, B,C}, T1 = {a, 0, 1}.

Elements of P1 are:
S 1 → ACA,
AC → AACA | ABa | AaB,
B → AB | A,
A → 0 | 1.

Language L(G1) contains words of the form uav with u, v ∈ {0, 1}∗ and |u| , |v|.
Context-free grammar. G2 = (N2,T2, P2, S ), where N2 = {S , A, B}, T2 = {+, ∗, (, ), a}.

Elements of P2 are:
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S → S + A | A,
A → A ∗ B | B,
B → (S ) | a.

Language L(G2) contains algebraic expressions which can be correctly built using letter a, ope-
rators + and ∗ and brackets.
Regular grammar. G3 = (N3,T3, P3, S 3), where N3 = {S 3, A, B}, T3 = {a, b}.

Elements of P3 are:
S 3 → aA
A → aB | a
B → aB | bB | a | b.

Language L(G3) contains words over the alphabet {a, b} with at least two letters a at the begin-
ning.

It is easy to prove that any �nite language is regular. The productions will be done to
generate all words of the language. For example, if u = a1a2 . . . an is in the language, then
we introduce the productions: S → a1A1, A1 → a2A2, . . . An−2 → an−1An−1, An−1 → an,
where S is the start symbol of the language and A1, . . . , An−1 are distinct nonterminals.
We de�ne such productions for all words of the language using different nonterminals for
different words, excepting the start symbol S . If the empty word is also an element of the
language, then the production S → ε is also considered.

The empty set is also a regular language, because the regular grammar G =

({S }, {a}, {S → aS }, S ) generates it.

Eliminating unit productions
A production of the form A→ B is called a unit production, where A, B ∈ N. Unit produc-
tions can be eliminated from a grammar in such a way that the new grammar will be of the
same type and equivalent to the �rst one.

Let G = (N,T, P, S ) be a grammar with unit productions. De�ne an equivalent grammar
G′ = (N,T, P′, S ) without unit productions. The following algorithm will construct the
equivalent grammar.

E--(G,G')
1 if the unit productions A→ B and B→ C are in P put also

the unit production A→ C in P while P can be extended,
2 if the unit production A→ B and the production B→ α (α < N) are in P

put also the production A→ α in P,
3 let P′ be the set of productions of P except unit productions.

Clearly, G and G′ are equivalent. If G is of type i ∈ {0, 1, 2, 3} then G′ is also of type i.

Example 2.4 Use the above algorithm in the case of the grammar G =
({S , A, B,C}, {a, b}, P, S ),

where P contains
S → A, A→ B, B→ C, C → B, D→ C,
S → B, A→ D, C → Aa,

A→ aB,
A→ b.

Using the �rst step of the algorithm, we get the following new unit productions:
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S → D (because of S → A and A→ D),
S → C (because of S → B and B→ C),
A→ C (because of A→ B and B→ C),
B→ B (because of B→ C and C → B),
C → C (because of C → B and B→ C),
D→ B (because of D→ C and C → B).

In the second step of the algorithm will be considered only productions with A or C in the right-hand
side, since productions A → aB, A → b and C → Aa can be used (the other productions are all unit
productions). We get the following new productions:

S → aB (because of S → A and A→ aB),
S → b (because of S → A and A→ b),
S → Aa (because of S → C and C → Aa),
A→ Aa (because of A→ C and C → Aa),
B→ Aa (because of B→ C and C → Aa).

The new grammar G′ =
({S , A, B,C}, {a, b}, P′, S ) will have the productions:

S → b, A→ b, B→ Aa, C → Aa,
S → aB, A→ aB,
S → Aa A→ Aa,

Grammars in normal forms
A grammar is to be said a grammar in normal form if its productions have no terminal
symbols in the left-hand side.

We need the following notions. For alphabets Σ1 and Σ2 a homomorphism is a function
h : Σ∗1 → Σ∗2 for which h(u1u2) = h(u1)h(u2), ∀u1, u2 ∈ Σ∗1. It is easy to see that for arbitrary
u = a1a2 . . . an ∈ Σ∗1 value h(u) is uniquely determined by the restriction of h on Σ1, because
h(u) = h(a1)h(a2) . . . h(an).

If a homomorphism h is a bijection then h an isomorphism.

Theorem 2.6 To any grammar an equivalent grammar in normal form can be associated.

Proof.
Grammars of type 2 and 3 have in left-hand side of any productions only a nonterminal,

so they are in normal form. The proof has to be done for grammars of type 0 and 1 only.
Let G = (N,T, P, S ) be the original grammar and we de�ne the grammar in normal form

as G′ = (N′,T, P′, S ).
Let a1, a2, . . . , ak be those terminal symbols which occur in the left-hand side of pro-

ductions. We introduce the new nonterminals A1, A2, . . . , Ak. The following notation will be
used: T1 = {a1, a2, . . . , ak}, T2 = T \ T1, N1 = {A1, A2, . . . , Ak} and N′ = N ∪ N1.

De�ne the isomorphism h : N ∪ T −→ N′ ∪ T2, where

h(ai) = Ai, if ai ∈ T1,
h(X) = X, if X ∈ N ∪ T2

De�ne the set P′ of production as

P′ =
{
h(α)→ h(β)

∣∣∣ (α→ β) ∈ P
}
∪

{
Ai −→ ai

∣∣∣ i = 1, 2, . . . , k
}

In this case α ∗
=⇒

G
β if and only if h(α) ∗

=⇒
G′

h(β). From this the theorem immediately
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results because S
∗

=⇒
G

u ⇔ S = h(S ) ∗
=⇒
G′

h(u) = u.

Example 2.5 Let G = ({S ,D, E}, {a, b, c, d, e}, P, S ), where P contains
S → aebc | aDbc
Db → bD
Dc → Ebccd
bE → Eb
aE → aaD | aae

In the left-hand side of productions the terminals a, b, c occur, therefore consider the new nonter-
minals A, B,C, and include in P′ also the new productions A→ a, B→ b and C → c.

Terminals a, b, c will be replaced by nonterminals A, B,C respectively, and we get the set P′ as
S → AeBC | ADBC
DB → BD
DC → EBCCd
BE → EB
AE → AAD | AAe
A → a
B → b
C → c.

Let us see what words can be generated by this grammars. It is easy to see that aebc ∈ L(G′),
because S =⇒ AeBC

∗
=⇒ aebc.

S =⇒ ADBC =⇒ ABDC =⇒ ABEBCCd =⇒ AEBBCCd =⇒ AAeBBCCd
∗

=⇒ aaebbccd, so
aaebbccd ∈ L(G′).

We prove, using the mathematical induction, that S
∗

=⇒ An−1EBnC(Cd)n−1 for n ≥ 2. For n = 2
this is the case, as we have seen before. Continuing the derivation we get S

∗
=⇒ An−1EBnC(Cd)n−1 =⇒

An−2AADBnC(Cd)n−1 ∗
=⇒ AnBnDC(Cd)n−1 =⇒ AnBnEBCCd(Cd)n−1 ∗

=⇒ AnEBn+1CCd(Cd)n−1 =

AnEBn+1C(Cd)n, and this is what we had to prove.
But S

∗
=⇒ An−1EBnC(Cd)n−1 =⇒ An−2AAeBnC(Cd)n−1 ∗

=⇒ anebnc(cd)n−1. So anebnc(cd)n−1 ∈
L(G′), n ≥ 1. These words can be generated also in G.

2.1.4. Extended grammars
In this subsection extended grammars of type 1, 2 and 3 will be presented.

Extended grammar of type 1. All productions are of the form α → β, where |α| ≤ |β|,
excepted possibly the production S → ε.

Extended grammar of type 2. All productions are of the form A→ β, where A ∈ N, β ∈
(N ∪ T )∗.

Extended grammar of type 3. All productions are of the form A → uB or A → u,
Where A, B ∈ N, u ∈ T ∗.

Theorem 2.7 To any extended grammar an equivalent grammar of the same type can be
associated.

Proof. Denote by Gext the extended grammar and by G the corresponding equivalent gram-
mar of the same type.

Type 1. De�ne the productions of grammar G by rewriting the productions α → β,
where |α| ≤ |β| of the extended grammar Gext in the form γ1δγ2 → γ1γγ2 allowed in the
case of grammar G by the following way.
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Let X1X2 . . . Xm → Y1Y2 . . . Yn (m ≤ n) be a production of Gext, which is not in
the required form. Add to the set of productions of G the following productions, where
A1, A2, . . . , Am are new nonterminals:

X1X2 . . . Xm → A1X2X3 . . . Xm
A1X2 . . . Xm → A1A2X3 . . . Xm

. . .
A1A2 . . . Am−1Xm → A1A2 . . . Am−1Am
A1A2 . . . Am−1Am → Y1A2 . . . Am−1Am
Y1A2 . . . Am−1Am → Y1Y2 . . . Am−1Am

. . .
Y1Y2 . . . Ym−2Am−1Am → Y1Y2 . . . Ym−2Ym−1Am
Y1Y2 . . . Ym−1Am → Y1Y2 . . . Ym−1YmYm+1 . . . Yn.

Furthermore, add to the set of productions of G without any modi�cation the producti-
ons of Gext which are of permitted form, i.e. γ1δγ2 → γ1γγ2.

Inclusion L(Gext) ⊆ L(G) can be proved because each used production of Gext in a
derivation can be simulated by productions G obtained from it. Furthermore, since the pro-
ductions of G can be used only in the prescribed order, we could not obtain other words, so
L(G) ⊆ L(Gext) also is true.

Type 2. Let Gext = (N,T, P, S ). Productions of form A → ε have to be eliminated, only
S → ε can remain, if S doesn't occur in the right-hand side of productions. For this de�ne
the following sets:

U0 = {A ∈ N | (A→ ε) ∈ P}
Ui = Ui−1 ∪ {A ∈ N | (A→ w) ∈ P, w ∈ U+

i−1}.
Since for i ≥ 1 we have Ui−1 ⊆ Ui, Ui ⊆ N and N is a �nite set, there must exists such

a k for which Uk−1 = Uk. Let us denote this set as U. It is easy to see that a nonterminal A
is in U if and only if A

∗
=⇒ ε. (In addition ε ∈ L(Gext) if and only if S ∈ U.)

We de�ne the productions of G starting from the productions of Gext in the following
way. For each production A → α with α , ε of Gext add to the set of productions of G this
one and all productions which can be obtained from it by eliminating from α one or more
nonterminals which are in U, but only in the case when the right-hand side does not become
ε.

It in not difficult to see that this grammar G generates the same language as Gext does,
except the empty word ε. So, if ε < L(Gext) then the proof is �nished. But if ε ∈ L(Gext),
then there are two cases. If the start symbol S does not occur in any right-hand side of
productions, then by introducing the production S → ε, grammar G will generate also the
empty word. If S occurs in a production in the right-hand side, then we introduce a new
start symbol S ′ and the new productions S ′ → S and S ′ → ε. Now the empty word ε can
also be generated by grammar G.

Type 3. First we use for Gext the procedure de�ned for grammars of type 2 to elimi-
nate productions of the form A → ε. From the obtained grammar we eliminate the unit
productions using the algorithm E-- (see page 82).

In the obtained grammar for each production A→ a1a2 . . . anB, where B ∈ N ∪ {ε}, add
to the productions of G also the followings
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A → a1A1,
A1 → a2A2,

. . .
An−1 → anB,

where A1, A2, . . . , An−1 are new nonterminals. It is easy to prove that grammar G built in this
way is equivalent to Gext.

Example 2.6 Let Gext = (N, T, P, S ) be an extended grammar of type 1, where N = {S , B,C}, T =

{a, b, c} and P contains the following productions:
S → aS BC | aBC CB → BC
aB → ab bB → bb
bC → bc cC → cc .

The only production which is not context-sensitive is CB→ BC. Using the method given in the proof,
we introduce the productions:

CB → AB
AB → AD
AD → BD
BD → BC

Now the grammar G = ({S , A, B,C,D}, {a, b, c}, P′, S ) is context-sensitive, where the elements of P′
are

S → aS BC | aBC
CB → AB aB → ab
AB → AD bB → bb
AD → BD bC → bc
BD → BC cC → cc.

It can be proved that L(Gext) = L(G) = {anbncn | n ≥ 1}.

Example 2.7 Let Gext = ({S , B,C}, {a, b, c}, P, S ) be an extended grammar of type 2, where P contains:
S → aS c | B
B → bB | C
C → Cc | ε.

Then U0 = {C}, U1 = {B,C}, U3 = {S , B,C} = U. The productions of the new grammar are:
S → aS c | ac | B
B → bB | b | C
C → Cc | c.

The original grammar generates also the empty word and because S occurs in the right-hand side of
a production, a new start symbol and two new productions will be de�ned: S ′ → S , S ′ → ε. The
context-free grammar equivalent to the original grammar is G = ({S ′, S , B,C}, {a, b, c}, P′, S ′) with
the productions:

S ′ → S | ε
S → aS c | ac | B
B → bB | b | C
C → Cc | c.

Both of these grammars generate language {ambncp | p ≥ m ≥ 0, n ≥ 0}.

Example 2.8 Let Gext = ({S , A, B}, {a, b}, P, S ) be the extended grammar of type 3 under examination,
where P:

S → abA
A → bB
B → S | ε.
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First, we eliminate production B→ ε. Since U0 = U = {B}, the productions will be
S → abA
A → bB | b
B → S .

The latter production (which a unit production) can also be eliminated, by replacing it with B→ abA.
Productions S → abA and B → abA have to be transformed. Since, both productions have the same
right-hand side, it is enough to introduce only one new nonterminal and to use the productions S → aC
and C → bA instead of S → abA. Production B → abA will be replaced by B → aC. The new
grammar is G = ({S , A, B,C}, {a, b}, P′, S ), where P′:

S → aC
A → bB | b
B → aC
C → bA.

Can be proved that L(Gext) = L(G) = {(abb)n | n ≥ 1}.

2.1.5. Closure properties in the Chomsky-classes
We will prove the following theorem, by which the Chomsky-classes of languages are closed
under the regular operations, that is, the union and product of two languages of type i is also
of type i, the iteration of a language of type i is also of type i (i = 0, 1, 2, 3).

Theorem 2.8 The class Li (i = 0, 1, 2, 3) of languages is closed under the regular opera-
tions.

Proof. For the proof we will use extended grammars. Consider the extended grammars G1 =

(N1,T1, P1, S 1) and G2 = (N2,T2, P2, S 2) of type i each. We can suppose that N1 ∩ N2 = ∅.
Union. Let G∪ = (N1 ∪ N2 ∪ {S },T1 ∪ T2, P1 ∪ P2 ∪ {S → S 1, S → S 2}, S ).
We will show that L(G∪) = L(G1) ∪ L(G2). If i = 0, 2, 3 then from the assumption that

G1 and G2 are of type i follows by de�nition that G∪ also is of type i. If i = 1 and one
of the grammars generates the empty word, then we eliminate from G∪ the corresponding
production (possibly the both) S k → ε (k = 1, 2) and replace it by production S → ε.

Product. Let G× = (N1 ∪ N2 ∪ {S },T1 ∪ T2, P1 ∪ P2 ∪ {S → S 1S 2}, S ).
We will show that L(G×) = L(G1)L(G2). By de�nition, if i = 0, 2 then G× will be of the

same type. If i = 1 and there is production S 1 → ε in P1 but there is no production S 2 → ε
in P2 then production S 1 → ε will be replaced by S → S 2. We will proceed the same way
in the symmetrical case. If there is in P1 production S 1 → ε and in P2 production S 2 → ε
then they will be replaced by S → ε.

In the case of regular grammars (i = 3), because S → S 1S 2 is not a regular production,
we need to use another grammar G× = (N1 ∪N2,T1 ∪ T2, P′1 ∪ P2, S 1), where the difference
between P′1 and P1 lies in that instead of productions in the form A → u, u ∈ T ∗ in P′1 will
exist production of the form A→ uS 2.

Iteration. Let G∗ = (N1 ∪ {S },T1, P, S ).
In the case of grammars of type 2 let P = P1 ∪ {S → S 1S , S → ε}. Then G∗ also is of

type 2.
In the case of grammars of type 3, as in the case of product, we will change the pro-

ductions, that is P = P′1 ∪ {S → S 1, S → ε}, where the difference between P′1 and P1 lies
in that for each A → u (u ∈ T ∗) will be replaced by A → uS , and the others will be not
changed. Then G∗ also will be of type 3.
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The productions given in the case of type 2 are not valid for i = 0, 1, because when
applying production S → S 1S we can get the derivations of type S

∗
=⇒ S 1S 1, S 1

∗
=⇒ α1β1,

S 1
∗

=⇒ α2β2, where β1α2 can be a left-hand side of a production. In this case, replacing β1α2
by its right-hand side in derivation S

∗
=⇒ α1β1α2β2, we can generate a word which is not

in the iterated language. To avoid such situations, �rst let us assume that the language is in
normal form, i.e. the left-hand side of productions does not contain terminals (see page 83),
second we introduce a new nonterminal S ′, so the set of nonterminals now is N1 ∪ {S , S ′},
and the productions are the following:

P = P1 ∪ {S → ε, S → S 1S ′} ∪ {aS ′ → aS | a ∈ T1} .
Now we can avoid situations in which the left-hand side of a production can extend over
the limits of words in a derivation because of the iteration. The above derivations can be
used only by beginning with S =⇒ S 1S ′ and getting derivation S

∗
=⇒ α1β1S ′. Here we

can not replace S ′ unless the last symbol in β1 is a terminal symbol, and only after using a
production of the form aS ′ → aS .

It is easy to show that L(G∗) = L(G1)∗ for each type.

Exercises
2.1-1 Give a grammar which generates language L =

{uu−1 | u ∈ {a, b}∗} and determine its
type.
2.1-2 Let G = (N,T, P, S ) be an extended context-free grammar, where

N = {S , A,C,D}, T = {a, b, c, d, e},
P = {S → abCADe, C → cC, C → ε, D→ dD, D→ ε, A→ ε, A→ dDcCA}.

Give an equivalent context-free grammar.
2.1-3 Show that Σ∗ and Σ+ are regular languages over arbitrary alphabet Σ.
2.1-4 Give a grammar to generate language L =

{u ∈ {0, 1}∗ | n0(u) = n1(u)}, where n0(u)
represents the number of 0's in word u and n1(u) the number of 1's.
2.1-5 Give a grammar to generate all natural numbers.
2.1-6 Give a grammar to generate the following languages, respectively:

L1 = {anbmcp | n ≥ 1,m ≥ 1, p ≥ 1},
L2 = {a2n | n ≥ 1},
L3 = {anbm | n ≥ 0,m ≥ 0 },
L4 = {anbm | n ≥ m ≥ 1}.

2.1-7 Let G = (N,T, P, S ) be an extended grammar, where N = {S , A, B,C}, T = {a} and P
contains the productions:

S → BAB, BA→ BC, CA→ AAC, CB→ AAB, A→ a, B→ ε .
Determine the type of this grammar. Give an equivalent, not extended grammar with the
same type. What language it generates?

2.2. Finite automata and regular languages
Finite automata are computing models with input tape and a �nite set of states (Fig. 2.1).
Among the states some are called initial and some �nal. At the beginning the automaton
read the �rst letter of the input word written on the input tape. Beginning with an initial
state, the automaton read the letters of the input word one after another while change its
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a1 a2 a3 . . .

-

control unit

input tape

yes/no

6

an

Figure 2.1. Finite automaton.

states, and when after reading the last input letter the current state is a �nal one, we say that
the automaton accepts the given word. The set of words accepted by such an automaton is
called the language accepted (recognized) by the automaton.

De�nition 2.9 A nondeterministic �nite automaton (NFA) is a system A = (Q,Σ, E, I, F),
where
• Q is a �nite, nonempty set of states,
• Σ is the input alphabet,
• E is the set of transitions (or of edges), where E ⊆ Q × Σ × Q,
• I ⊆ Q is the set of initial states,
• F ⊆ Q is the set of �nal states.

An NFA is in fact a directed, labelled graph, whose vertices are the states and there is
a (directed) edge labelled with a from vertex p to vertex q if (p, a, q) ∈ E. Among vertices
some are initial and some �nal states. Initial states are marked by a small arrow entering the
corresponding vertex, while the �nal states are marked with double circles. If two vertices
are joined by two edges with the same direction then these can be replaced by only one edge
labelled with two letters. This graph can be called a transition graph.

Example 2.9 Let A = (Q,Σ, E, I, F), where Q = {q0, q1, q2}, Σ = {0, 1, 2},
E =

{(q0, 0, q0), (q0, 1, q1), (q0, 2, q2),
(q1, 0, q1), (q1, 1, q2), (q1, 2, q0),
(q2, 0, q2), (q2, 1, q0), (q2, 2, q1)}

I = {q0}, F = {q0}.
The automaton can be seen in Fig. 2.2.

In the case of an edge (p, a, q) vertex p is the start-vertex, q the end-vertex and a the
label. Now de�ne the notion of the walk as in the case of graphs. A sequence

(q0, a1, q1), (q1, a2, q2), . . . , (qn−2, an−1, qn−1), (qn−1, an, qn)

of edges of a NFA is a walk with the label a1a2 . . . an. If n = 0 then q0 = qn and a1a2 . . . an =

ε. Such a walk is called an empty walk. For a walk the notation

q0
a1−→ q1

a2−→ q2
a3−→ · · · an−1−→ qn−1

an−→ qn ,
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Figure 2.2. The �nite automaton of Example 2.9..
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Figure 2.3. Nondeterministic �nite automata.

will be used, or if w = a1a2 . . . an then we write shortly q0
w−→ qn. Here q0 is the start-vertex

and qn the end-vertex of the walk. The states in a walk are not necessary distinct.
A walk is productive if its start-vertex is an initial state and its end-vertex is a �nal state.

We say that an NFA accepts or recognizes a word if this word is the label of a productive
walk. The empty word ε is accepted by an NFA if there is an empty productive walk, i.e.
there is an initial state which is also a �nal state.

The set of words accepted by an NFA will be called the language accepted by this NFA.
The language accepted or recognized by NFA A is

L(A) =
{
w ∈ Σ∗ | ∃p ∈ I, ∃q ∈ F, ∃p w−→ q

}
.

The NFA A1 and A2 are equivalent if L(A1) = L(A2).
Sometimes it is useful the following transition function:

δ : Q × Σ→ P(Q), δ(p, a) = {q ∈ Q | (p, a, q) ∈ E} .
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δ 0 1
q0 {q1} ∅
q1 ∅ {q2}
q2 {q2} {q2}

A

δ 0 1
q0 {q0, q1} {q0}
q1 ∅ {q2}
q2 {q2} {q2}

B

Figure 2.4. Transition tables of the NFA in Fig. 2.3.

This function associate to a state p and input letter a the set of states in which the
automaton can go if its current state is p and the head is on input letter a.

Denote by |H| the cardinal (the number of elements) of H.2 An NFA is a deterministic
�nite automaton (DFA) if

|I| = 1 and |δ(q, a)| ≤ 1, ∀q ∈ Q, ∀a ∈ Σ .

In Fig. 2.2 a DFA can be seen.
Condition |δ(q, a)| ≤ 1 can be replaced by

(p, a, q) ∈ E, (p, a, r) ∈ E =⇒ q = r ,∀p, q, r ∈ Q,∀a ∈ Σ .

If for a DFA |δ(q, a)| = 1 for each state q ∈ Q and for each letter a ∈ Σ then it is called a
complete DFA.

Every DFA can be transformed in a complete DFA by introducing a new state,
which can be called a snare state. Let A = (Q,Σ, E, {q0}, F) be a DFA. An equivalent
and complete DFA will be A′ = (Q ∪ {s},Σ, E′, {q0}, F), where s is the new state and
E′ = E ∪ {(p, a, s) | δ(p, a) = ∅, p ∈ Q, a ∈ Σ

} ∪ {(s, a, s) | a ∈ Σ
}. It is easy to see

that L(A) = L(A′).
Using the transition function we can easily de�ne the transition table. The rows of this

table are indexed by the elements of Q, its columns by the elements of Σ. At the intersection
of row q ∈ Q and column a ∈ Σ we put δ(q, a). In the case of Fig. 2.2, the transition table is:

δ 0 1 2
q0 {q0} {q1} {q2}
q1 {q1} {q2} {q0}
q2 {q2} {q0} {q1}

The NFA in 2.3 are not deterministic: the �rst (automaton A) has two initial states, the
second (automaton B) has two transitions with 0 from state q0 (to states q0 and q1). The
transition table of these two automata are in Fig. 2.4. L(A) is set of words over Σ = {0, 1}
which do not begin with two zeroes (of course ε is in language), L(B) is the set of words
which contain 01 as a subword.

Eliminating inaccessible states
Let A = (Q,Σ, E, I, F) be a �nite automaton. A state is accessible if it is on a walk which

2The same notation is used for the cardinal of a set and length of a word, but this is no matter of confusion because
for word we use lowercase letters and for set capital letters. The only exception is δ(q, a), but this could not be
confused with a word.
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starts by an initial state. The following algorithm determines the inaccessible states building
a sequence U0, U1, U2, . . . of sets, where U0 is the set of initial states, and for any i ≥ 1 Ui
is the set of accessible states, which are at distance at most i from an initial state.

I-(A,U)
U0 ← I
i← 0
repeat

i← i + 1
for all q ∈ Ui−1 do

for all a ∈ Σ do
Ui ← Ui−1 ∪ δ(q, a)

endfor
endfor

until Ui = Ui−1
U ← Q \ Ui
return U

The inaccessible states of the automaton can be eliminated without changing the accepted
language.

If |Q| = n and |Σ| = m then the running time of the algorithm (the number of steps) in
the worst case is O(n2m), because the number of steps in the two embedded loops is at most
nm and in the loop repeat at most n.

Set U has the property that L(A) , ∅ if and only if U ∩ F , ∅. The above algorithm
can be extended by inserting the U ∩ F , ∅ condition to decide if language L(A) is or not
empty.

Eliminating nonproductive states
Let A = (Q,Σ, E, I, F) be a �nite automaton. A state is productive if it is on a walk which
ends in a terminal state. For �nding the productive states the following algorithm uses the
function δ−1:

δ−1 : Q × Σ→ P(Q), δ−1(p, a) = {q | (q, a, p) ∈ E}.
This function for a state p and a letter a gives the set of all states from which using this letter
a the automaton can go into the state p.

N-A,V)
V0 ← F
i← 0
repeat

i← i + 1
for all p ∈ Vi−1 do

for all a ∈ Σ do
Vi ← Vi−1 ∪ δ−1(p, a)

endfor
endfor

until Vi = Vi−1
V ← Q \ Vi



2.2. Finite automata and regular languages 93

return V

The nonproductive states of the automaton can be eliminated without changing the accepted
language.

If n is the number of states, m the number of letters in the alphabet, then the running
time of the algorithm is also O(n2m) as in the case of the algorithm I-.

The set V given by the algorithm has the property that L(A) , ∅ if and only if V ∩ I , ∅.
So, by a little modi�cation it can be used to decide if language L(A) is or not empty.

2.2.1. Transforming nondeterministic finite automata in deterministic finite
automata

As follows we will show that any NFA can be transformed in an equivalent DFA.

Theorem 2.10 For any NFA one may construct an equivalent DFA.

Proof. Let A = (Q,Σ, E, I, F) be an NFA. De�ne a DFA A = (Q,Σ, E, I, F), where
• Q = P(Q) \ ∅,
• edges of E are those triplets (S , a,R) for which R, S ∈ Q are not empty, a ∈ Σ and

R =
⋃

p∈S
δ(p, a),

• I = {I},
• F = {S ⊆ Q | S ∩ F , ∅}.
We prove that L(A) = L(A).
a) First prove that L(A) ⊆ L(A). Let w = a1a2 . . . ak ∈ L(A). Then there exists a walk

q0
a1−→ q1

a2−→ q2
a3−→ · · · ak−1−→ qk−1

ak−→ qk, q0 ∈ I, qk ∈ F.

Using the transition function δ of NFA A we construct the sets S 0 = {q0}, δ(S 0, a1) = S 1,
. . . δ(S k−1, ak) = S k. Then q1 ∈ S 1, . . . , qk ∈ S k and since qk ∈ F we get S k ∩ F , ∅, so
S k ∈ F. Thus, there exists a walk

S 0
a1−→ S 1

a2−→ S 2
a3−→ · · · ak−1−→ S k−1

ak−→ S k, S 0 ⊆ I, S k ∈ F.

There are sets S ′0, . . . , S ′k for which S ′0 = I, and for i = 0, 1, . . . , k we have S i ⊆ S ′i , and

S ′0
a1−→ S ′1

a2−→ S ′2
a3−→ · · · ak−1−→ S ′k−1

ak−→ S ′k

is a productive walk. Therefore w ∈ L(A). That is L(A) ⊆ L(A).
b) Now we show that L(A) ⊆ L(A). Let w = a1a2 . . . ak ∈ L(A). Then there is a walk

q0
a1−→ q1

a2−→ q2
a3−→ · · · ak−1−→ qk−1

ak−→ qk, q0 ∈ I, qk ∈ F.

Using the de�nition of F we have qk ∩ F , ∅, i.e. there exists qk ∈ qk ∩ F, that is by the
de�nitions of qk ∈ F and qk there is qk−1 such that (qk−1, ak, qk) ∈ E. Similarly, there are the
states qk−2, . . . , q1, q0 such that (qk−2, ak, qk−1) ∈ E, . . . , (q0, a1, q1) ∈ E, where q0 ∈ q0 = I,
thus, there is a walk

q0
a1−→ q1

a2−→ q2
a3−→ · · · ak−1−→ qk−1

ak−→ qk, q0 ∈ I, qk ∈ F,
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Figure 2.5. The equivalent DFA with NFA A in Fig. 2.3.

so L(A) ⊆ L(A).
In constructing DFA we can use the corresponding transition function δ:

δ(q, a) =


⋃

q∈q
δ(q, a)

 , ∀q ∈ Q,∀a ∈ Σ.

The empty set was excluded from the states, so we used here ∅ instead of {∅}.

Example 2.10 Apply Theorem 2.10 to transform NFA A in Fig. 2.3. Introduce the following notation
for the states of the DFA:

S 0 := {q0, q1}, S 1 := {q0}, S 2 := {q1}, S 3 := {q2},
S 4 := {q0, q2}, S 5 := {q1, q2}, S 6 := {q0, q1, q2} ,

where S 0 is the initial state. Using the transition function we get the transition table:

δ 0 1
S 0 {S 2} {S 3}
S 1 {S 2} ∅
S 2 ∅ {S 3}
S 3 {S 3} {S 3}
S 4 {S 5} {S 3}
S 5 {S 3} {S 3}
S 6 {S 5} {S 3}

This automaton contains many inaccessible states. By algorithm I- we determine the
accessible states of DFA:

U0 = {S 0}, U1 = {S 0, S 2, S 3}, U2 = {S 0, S 2, S 3} = U1 = U.
Initial state S 0 is also a �nal state. States S 2 and S 3 are �nal states. States S 1, S 4, S 5, S 6 are

inaccessible and can be removed from the DFA. The transition table of the resulted DFA is

δ 0 1
S 0 {S 2} {S 3}
S 2 ∅ {S 3}
S 3 {S 3} {S 3}

The corresponding transition graph is in Fig. 2.5.

The algorithm given in Theorem 2.10 can be simpli�ed. It is not necessary to consider
all subset of the set of states of NFA. The states of DFA A can be obtained successively.
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Begin with the state q0 = I and determine the states δ(q0, a) for all a ∈ Σ. For the newly
obtained states we determine the states accessible from them. This can be continued until
no new states arise.

In our previous example q0 := {q0, q1} is the initial state. From this we get
δ(q0, 0) = {q1}, where q1 := {q1}, δ(q0, 1) = {q2}, where q2 := {q2},
δ(q1, 0) = ∅, δ(q1, 1) = {q2},
δ(q2, 0) = {q2}, δ(q2, 1) = {q2}.

The transition table is
δ 0 1
q0 {q1} {q2}
q1 ∅ {q2}
q2 {q2} {q2}

which is the same (excepted the notation) as before.
The next algorithm will construct for an NFA A = (Q,Σ, E, I, F) the transition table M

of the equivalent DFA A = (Q,Σ, E, I, F), but without to determine the �nal states (which
can easily be included). Value of II(q,Q) in the algorithm is true if state q is already in Q
and is false otherwise. Let a1, a2, . . . , am be an ordered list of the letters of Σ.

N-(A,A)
1 q0 ← I
2 Q← {q0}
3 i← 0 B i counts the rows.
4 k ← 0 B k counts the states.
5 repeat
6 for j = 1, 2, . . . ,m B j counts the columns.
7 do q←

⋃

p∈qi

δ(p, a j)

8 if q , ∅
9 then if II(q,Q)

10 then M[i, j]← {q}
11 else k ← k + 1
12 qk ← q
13 M[i, j]← {qk}
14 Q← Q ∪ {qk}
15 else M[i, j]← ∅
16 i← i + 1
17 until i = k + 1
18 return transition table M of A

Since loop repeat is executed as many times as the number of states of new automaton,
in worst case the running time can be exponential, because, if the number of states in NFA
is n, then DFA can have even 2n − 1 states. (The number of subsets of a set of n elements is
2n, including the empty set.)

Theorem 2.10 will have it that to any NFA one may construct an equivalent DFA. Con-
versely, any DFA is also an NFA by de�nition. So, the nondeterministic �nite automata
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accepts the same class of languages as the deterministic �nite automata.

2.2.2. Equivalence of deterministic finite automata
In this subsection we will use complete deterministic �nite automata only. In this case δ(q, a)
has a single element. In formulae, sometimes, instead of set δ(q, a) we will use its single
element. We introduce for a set A = {a} the function elem(A) which give us the single
element of set A, so elem(A) = a. Using walks which begin with the initial state and have
the same label in two DFA's we can determine the equivalence of these DFA's. If only one
of these walks ends in a �nal state, then they could not be equivalent.

Consider two DFA's over the same alphabet A = (Q,Σ, E, {q0}, F) and A′ =

(Q′,Σ, E′, {q′0}, F′). We are interested to determine if they are or not equivalent. We const-
ruct a table with elements of form (q, q′), where q ∈ Q and q′ ∈ Q′. Beginning with the
second column of the table, we associate a column to each letter of the alphabet Σ. If the
�rst element of the ith row is (q, q′) then at the cross of ith row and the column associated
to letter a will be the pair

(
elem(

δ(q, a)), elem(
δ′(q′, a))

)
.

. . . a . . .
. . . . . .

(q, q′)
(
elem(

δ(q, a)), elem(
δ′(q′, a))

)

. . . . . .

In the �rst column of the �rst row we put (q0, q′0) and complete the �rst row using the above
method. If in the �rst row in any column there occur a pair of states from which one is a
�nal state and the other not then the algorithm ends, the two automata are not equivalent. If
there is no such a pair of states, every new pair is written in the �rst column. The algorithm
continues with the next un�lled row. If no new pair of states occurs in the table and for each
pair both of states are �nal or both are not, then the algorithm ends and the two DFA are
equivalent.
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D-(A,A′)
1 write in the �rst column of the �rst row the pair (q0, q′0)
2 i← 0
3 repeat
4 i← i + 1
5 let (q, q′) be the pair in the �rst column of the ith row
6 for all a ∈ Σ

7 do write in the column associated to a in the ith row
the pair

(
elem(

δ(q, a)), elem(
δ′(q′, a))

)

8 if one state in
(
elem(

δ(q, a)), elem(
δ′(q′, a))

)
is �nal and the other not

9 then return 

10 else write pair
(
elem(

δ(q, a)), elem(
δ′(q′, a))

)
in the next empty row

of the �rst column, if not occurred already in the �rst column
11 until the �rst element of (i + 1)th row becomes empty
12 return 

If |Q| = n, |Q′| = n′ and |Σ| = m then taking into account that in worst case loop repeat
is executed nn′ times, loop for m times, the running time of the algorithm in worst case will
be O(nn′m), or if n = n′ then O(n2m).

Our algorithm was described to determine the equivalence of two complete DFA's. If
we have to determine the equivalence of two NFA's, �rst we transform them into complete
DFA's and after this we can apply the above algorithm.

Example 2.11 Determine if the two DFA's in Fig. 2.6 are equivalent or not. The algorithm gives the
table

a b
(q0, p0) (q2, p3) (q1, p1)
(q2, p3) (q1, p2) (q2, p3)
(q1, p1) (q2, p3) (q0, p0)
(q1, p2) (q2, p3) (q0, p0)

The two DFA's are equivalent because all possible pairs of states are considered and in every pair both
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Figure 2.6. Equivalent DFA's (Example 2.11.).
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states are �nal or both are not �nal.

Example 2.12 The table of the two DFA's in Fig. 2.7 is:

a b
(q0, p0) (q1, p3) (q2, p1)
(q1, p3) (q2, p2) (q0, p3)
(q2, p1)
(q2, p2)

These two DFA's are not equivalent, because in the last column of the second row in the pair (q0, p3)
the �rst state is �nal and the second not.

2.2.3. Equivalence of finite automata and regular languages
We have seen that NFA's accept the same class of languages as DFA's. The following theo-
rem states that this class is that of regular languages.

Theorem 2.11 If L is a language accepted by a DFA, then one may construct a regular
grammar which generates language L.

Proof. Let A = (Q,Σ, E, {q0}, F) be the DFA accepting language L, that is L = L(A). De�ne
the regular grammar G = (Q,Σ, P, q0) with the productions:
• If (p, a, q) ∈ E for p, q ∈ Q and a ∈ Σ, then put production p→ aq in P.
• If (p, a, q) ∈ E and q ∈ F, then put also production p→ a in P.
Prove that L(G) = L(A) \ {ε}.
Let u = a1a2 . . . an ∈ L(A) and u , ε. Thus, since A accepts word u, there is a walk

q0
a1−→ q1

a2−→ q2
a3−→ · · · an−1−→ qn−1

an−→ qn, qn ∈ F.

Then there are in P the productions

q0 → a1q1, q1 → a2q2, . . . , qn−2 → an−1qn−1, qn−1 → an
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Figure 2.7. Non equivalent DFA's (Example 2.12.).
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Figure 2.8. DFA of the Example 2.13..

(in the right-hand side of the last production qn does not occur, because qn ∈ F), so there is
the derivation

q0 =⇒ a1q1 =⇒ a1a2q2 =⇒ . . . =⇒ a1a2 . . . an−1qn−1 =⇒ a1a2 . . . an.

Therefore, u ∈ L(G).
Conversely, let u = a1a2 . . . an ∈ L(G) and u , ε. Then there exists a derivation

q0 =⇒ a1q1 =⇒ a1a2q2 =⇒ . . . =⇒ a1a2 . . . an−1qn−1 =⇒ a1a2 . . . an,

in which productions

q0 → a1q1, q1 → a2q2, . . . , qn−2 → an−1qn−1, qn−1 → an

were used, which by de�nition means that in DFA A there is a walk

q0
a1−→ q1

a2−→ q2
a3−→ · · · an−1−→ qn−1

an−→ qn,

and since qn is a �nal state, u ∈ L(A) \ {ε} .
If the DFA accepts also the empty word ε, then in the above grammar we introduce

a new start symbol q′0 instead of q0, consider the new production q′0 → ε and for each
production q0 → α introduce also q′0 → α.

Example 2.13 Let A = ({q0, q1, q2}, {a, b}, E, {q0}, {q2}) be a DFA, where E =
{(q0, a, q0),

(q0, b, q1), (q1, b, q2), (q2, a, q2)}. The corresponding transition table is

δ a b
q0 {q0} {q1}
q1 ∅ {q2}
q2 {q2} ∅

The transition graph of A is in Fig. 2.8. By Theorem 2.11 we de�ne regular grammar G =

({q0, q1, q2}, {a, b}, P, q0) with the productions in P
q0 → aq0 | bq1, q1 → bq2 | b, q2 → aq2 | a.

One may prove that L(A) = {ambban | m ≥ 0, n ≥ 0}.

The method described in the proof of Theorem 2.11 easily can be given as an al-
gorithm. The productions of regular grammar G = (Q,Σ, P, q0) obtained from the DFA
A = (Q,Σ, E, {q0}, F) can be determined by the following algorithm.
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R---(A,G)
1 P← ∅
2 for all p ∈ Q
3 do for all a ∈ Σ

4 do for all q ∈ Q
5 do if (p, a, q) ∈ E
6 then P← P ∪ {p→ aq}
7 if q ∈ F
8 then P← P ∪ {p→ a}
9 if q0 ∈ F

10 then P← P ∪ {q0 → ε}

It is easy to see that the running time of the algorithm is Θ(n2m), if the number of states
is n and the number of letter in alphabet is m. In lines 2�4 we can consider only one loop, if
we use the elements of E. Then the worst case running time is Θ(p), where p is the number
of transitions of DFA. This is also O(n2m), since all transitions are possible. This algorithm
is:

R---'(A,G)
1 P← ∅
2 for all (p, a, q) ∈ E
3 do P← P ∪ {p→ aq}
4 if q ∈ F
5 then P← P ∪ {p→ a}
6 if q0 ∈ F
7 then P← P ∪ {q0 → ε}

Theorem 2.12 If L = L(G) is a regular language, then one may construct an NFA that
accepts language L.

Proof. Let G = (N,T, P, S ) be the grammar which generates language L. De�ne NFA A =

(Q,T, E, {S }, F):
• Q = N ∪ {Z}, where Z < N ∪ T (i.e. Z is a new symbol),
• For every production A→ aB, de�ne transition (A, a, B) in E.
• For every production A→ a, de�ne transition (A, a,Z) in E.
• F =

{ {Z} if production S → ε does not occur in G,
{Z, S } if production S → ε occurs in G.

Prove that L(G) = L(A).
Let u = a1a2 . . . an ∈ L(G), u , ε. Then there is in G a derivation of word u:

S =⇒ a1A1 =⇒ a1a2A2 =⇒ . . . =⇒ a1a2 . . . an−1An−1 =⇒ a1a2 . . . an.

This derivation is based on productions
S → a1A1, A1 → a2A2, . . . , An−2 → an−1An−1, An−1 → an.

Then, by the de�nition of the transitions of NFA A there exists a walk

S a1−→ A1
a2−→ A2

a3−→ · · · an−1−→ An−1
an−→ Z, Z ∈ F.
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Figure 2.9. NFA associated to grammar in Example 2.14..

Thus, u ∈ L(A). If ε ∈ L(G), there is production S → ε, but in this case the initial state is
also a �nal one, so ε ∈ L(A). Therefore, L(G) ⊆ L(A).

Let now u = a1a2 . . . an ∈ L(A). Then there exists a walk

S a1−→ A1
a2−→ A2

a3−→ · · · an−1−→ An−1
an−→ Z, Z ∈ F.

If u is the empty word, then instead of Z we have in the above formula S , which also is a
�nal state. In other cases only Z can be as last symbol. Thus, in G there exist the productions

S → a1A1, A1 → a2A2, . . . , An−2 → an−1An−1, An−1 → an ,

and there is the derivation

S =⇒ a1A1 =⇒ a1a2A2 =⇒ . . . =⇒ a1a2 . . . an−1An−1 =⇒ a1a2 . . . an,

thus, u ∈ L(G) and therefore L(A) ⊆ L(G).

Example 2.14 Let G = ({S , A, B}, {a, b}, {S → aS , S → bA, A → bB, A → b, B → aB, B →
a}, S ) be a regular grammar. The NFA associated is A = ({S , A, B, Z}, {a, b}, E, S , {Z}), where E ={(S , a, S ), (S , b, A), (A, b, B), (A, b, Z), (B, a, B), (B, a, Z)}. The corresponding transition table is

δ a b
S {S } {A}
A ∅ {B,Z}
B {B,Z} ∅
E ∅ ∅

The transition graph is in Fig. 2.9. This NFA can be simpli�ed, states B and Z can be contracted in
one �nal state.

Using the above theorem we de�ne an algorithm which associate an NFA A = (Q,T, E,
{S }, F) to a regular grammar G = (N,T, P, S )
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N---(G,A)
1 E ← ∅
2 Q← N ∪ {Z}
3 for all A ∈ N
4 do for all a ∈ T
5 do if (A→ a) ∈ P
6 then E ← E ∪ {(A, a,Z)}
7 for all B ∈ N
8 do if (A→ aB) ∈ P
9 then E ← E ∪ {(A, a, B)}

10 if (S → ε) < P
11 then F ← {Z}
12 else F ← {Z, S }

As in the case of algorithm R---, the running time is Θ(n2m),
where n is number of nonterminals and m the number of terminals. Loops in lines 3, 4 and 7
can be replaced by only one, which uses productions. The running time in this case is better
and is equal to Θ(p), if p is the number of productions. This algorithm is:

N---'(G,A)
1 E ← ∅
2 Q← N ∪ {Z}
3 for all (A→ u) ∈ P
4 do if u = a
5 then E ← E ∪ {(A, a,Z)}
6 if u = aB
7 then E ← E ∪ {(A, a, B)}
8 if (S → ε) < P
9 then F ← {Z}

10 else F ← {Z, S }

From theorems 2.10, 2.11 and 2.12 results that the class of regular languages coincides
with the class of languages accepted by NFA's and also with class of languages accepted by
DFA's. The result of these three theorems is illustrated in Fig. 2.10 and can be summarised
also in the following theorem.

Theorem 2.13 The following three class of languages are the same:
• the class of regular languages,
• the class of languages accepted by DFA's,
• the class of languages accepted by NFA's.

Operation on regular languages
It is known (see Theorem 2.8) that the set L3 of regular languages is closed under the regular
operations, that is if L1, L2 are regular languages, then languages L1 ∪ L2, L1L2 and L∗1 are
also regular. For regular languages are true also the following statements.

The complement of a regular language is also regular. This is easy to prove using au-
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Figure 2.10. Relations between regular grammars and �nite automata. To any regular grammar one may construct
an NFA which accepts the language generated by that grammar. Any NFA can be transformed in an equivalent
DFA. To any DFA one may construct a regular grammar which generates the language accepted by that DFA.
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Figure 2.11. Finite automata ε-moves.

tomata. Let L be a regular language and let A = (Q,Σ, E, {q0}, F) be a DFA which accepts
language L. It is easy to see that the DFA A = (Q,Σ, E, {q0},Q \ F) accepts language L. So,
L is also regular.

The intersection of two regular languages is also regular. Since L1 ∩ L2 = L1 ∪ L2, the
intersection is also regular.

The difference of two regular languages is also regular. Since L1 \ L2 = L1 ∩ L2, the
difference is also regular.

2.2.4. Finite automata with ε-moves
A �nite automaton with ε-moves (FA with ε-moves) extends NFA in such way that it may
have transitions on the empty input ε, i.e. it may change a state without reading any input
symbol. In the case of a FA with ε-moves A = (Q,Σ, E, I, F) for the set of transitions it is
true that E ⊆ Q × (

Σ ∪ {ε}) × Q.
The transition function of a FA with ε-moves is:

δ : Q × (
Σ ∪ {ε})→ P(Q), δ(p, a) = {q ∈ Q | (p, a, q) ∈ E} .

The FA with ε-moves in Fig. 2.11 accepts words of form uvw, where u ∈ {1}∗, v ∈ {0}∗
and w ∈ {1}∗.

Theorem 2.14 To any FA with ε-moves one may construct an equivalent NFA (without
ε-moves).

Let A = (Q,Σ, E, I, F) be an FA with ε-moves and we construct an equivalent NFA A =

(Q,Σ, E, I, F). The following algorithm determines sets F and E.
For a state q denote by Λ(q) the set of states (including even q) in which one may go
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from q using ε-moves only. This may be extended also to sets

Λ(S ) =
⋃

q∈S
Λ(q), ∀S ⊆ Q .

Clearly, for all q ∈ Q and S ⊆ Q both Λ(q) and Λ(S ) may be computed. Suppose in the
sequel that these are given.

The following algorithm determine the transitions using the transition function δ, which
is de�ned in line 5.

If |Q| = n and |Σ| = m,, then lines 2�6 show that the running time in worst case is
O(n2m).

E--(A,A)
1 F ← F ∪ {q ∈ I | Λ(q) ∩ F , ∅}
2 for all q ∈ Q
3 do for all a ∈ Σ

4 do ∆←
⋃

p∈Λ(q)
δ(p, a)

5 δ(q, a)← ∆ ∪

⋃

p∈∆
Λ(p)


6 E ← {(p, a, q), | p, q ∈ Q, a ∈ Σ, q ∈ δ(p, a)}

Example 2.15 Consider the FA with ε-moves in Fig. 2.11. The corresponding transition table is:

δ 0 1 ε

q0 ∅ {q0} {q1}
q1 {q1} ∅ {q2}
q2 ∅ {q2} ∅

Apply algorithm E--.
Λ(q0) = {q0, q1, q2}, Λ(q1) = {q1, q2}, Λ(q2) = {q2}
Λ(I) = Λ(q0), and its intersection with F is not empty, thus F = F ∪ {q0} = {q0, q2}.
(q0, 0) :

∆ = δ(q0, 0) ∪ δ(q1, 0) ∪ δ(q2, 0) = {q1}, {q1} ∪ Λ(q1) = {q1, q2}
δ(q0, 0) = {q1, q2}.

(q0, 1) :
∆ = δ(q0, 1) ∪ δ(q1, 1) ∪ δ(q2, 1) = {q0, q2}, {q0, q2} ∪ (Λ(q0) ∪ Λ(q2)) = {q0, q1, q2}
δ(q0, 1) = {q0, q1, q2}

(q1, 0) :
∆ = δ(q1, 0) ∪ δ(q2, 0) = {q1}, {q1} ∪ Λ(q1) = {q1, q2}
δ(q1, 0) = {q1, q2}

(q1, 1) :
∆ = δ(q1, 1) ∪ δ(q2, 1) = {q2}, {q2} ∪ Λ(q2) = {q2}
δ(q1, 1) = {q2}

(q1, 1) : ∆ = δ(q2, 0) = ∅
δ(q2, 0) = ∅
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Figure 2.12. NFA equivalent to FA with ε-moves given in Fig. 2.11.
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Figure 2.13. (a) Representation of an NFA. Initial states are represented by a circle with an arrow, �nal states by a
double circle. (b) Union of two NFA's.

(q2, 1) :
∆ = δ(q2, 1) = {q2}, {q2} ∪ Λ(q2) = {q2}
δ(q2, 1) = {q2}.

The transition table of NFA A is:

δ 0 1
q0 {q1, q2} {q0, q1, q2}
q1 {q1, q2} {q2}
q2 ∅ {q2}

and the transition graph is in Fig. 2.12.

De�ne regular operations on NFA: union, product and iteration. The result will be an
FA with ε-moves.

Operation will be given also by diagrams. An NFA is given as in Fig. 2.13(a). Initial
states are represented by a circle with an arrow, �nal states by a double circle.

Let A1 = (Q1,Σ1, E1, I1, F1) and A2 = (Q2,Σ2, E2, I2, F2) be NFA. The result of any
operation is a FA with ε-moves A = (Q,Σ, E, I, F). Suppose that Q1 ∩ Q2 = ∅ always. If
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Figure 2.14. (a) Product of two FA. (b) Iteration of an FA.

not, we can rename the elements of any set of states.
Union. A = A1 ∪ A2, where

Q = Q1 ∪ Q2 ∪ {q0},
Σ = Σ1 ∪ Σ2,
I = {q0},
F = F1 ∪ F2,
E = E1 ∪ E2 ∪

⋃

q∈I1∪I2

{(q0, ε, q)}.

For the result of the union see Fig. 2.13(b). The result is the same if instead of a single
initial state we choose as set of initial states the union I1∪I2. In this case the result automaton
will be without ε-moves. By the de�nition it is easy to see that L(A1 ∪ A2) = L(A1)∪ L(A2).

Product. A = A1 · A2, where
Q = Q1 ∪ Q2,
Σ = Σ1 ∪ Σ2,
F = F2,
I = I1,
E = E1 ∪ E2 ∪

⋃

p ∈ F1
q ∈ I2

{(p, ε, q)}

For the result automaton see Fig. 2.14(a). Here also L(A1 · A2) = L(A1)L(A2).

Iteration. A = A1
∗, where

Q = Q1 ∪ {q0},
Σ = Σ1,
F = F1 ∪ {q0},
I = {q0}
E = E1 ∪

⋃

p∈I1

{(q0, ε, p)} ∪
⋃

q ∈ F1
p ∈ I1

{(q, ε, p)} .

The iteration of an FA can be seen in Fig. 2.14(b). For this operation it is also true that
L(A∗1) =

(L(A1))∗.
The de�nition of these tree operations proves again that regular languages are closed

under the regular operations.
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Figure 2.15. Minimization of DFA.

2.2.5. Minimization of finite automata
A DFA A = (Q,Σ, E, {q0}, F) is called minimum state automaton if for any equivalent
complete DFA A′ = (Q′,Σ, E′, {q′0}, F′) it is true that |Q| ≤ |Q′|. We give an algorithm
which builds for any complete DFA an equivalent minimum state automaton.

States p and q of an DFA A = (Q,Σ, E, {q0}, F) are equivalent if for arbitrary word u
we reach from both either �nal or non�nal states, that is

p ≡ q if for any word u ∈ Σ∗


p u−→ r, r ∈ F and q u−→ s, s ∈ F or
p u−→ r, r < F and q u−→ s, s < F .

If two states are not equivalent, then they are distinguishable. In the following algorithm
the distinguishable states will be marked by a star, and equivalent states will be merged.
The algorithm will associate list of pair of states with some pair of states expecting a later
marking by a star, that is if we mark a pair of states by a star, then all pairs on the associated
list will be also marked by a star. The algorithm is given for DFA without inaccessible states.
The used DFA is complete, so δ(p, a) contains exact one element, function elem de�ned on
page 96, which gives the unique element of the set, will be also used here.



108 2. Automata and Formal Languages

- - -

?

¾

¾

q0q3 q1q5 q2

q4

0

0 1 1

1

1

0

0

¾

-

¼

Figure 2.16. Minimum automaton equivalent with DFA in Fig. 2.15.

A-(A)
1 mark with a star all pairs of states {p, q} for which

p ∈ F and q < F or p < F and q ∈ F,
2 associate an empty list with each unmarked pair {p, q},
3 for all unmarked pair of states {p, q} and for all symbol a ∈ Σ

examine pairs of states {elem(
δ(p, a)), elem(

δ(q, a))},
if any of these pairs is marked,
then mark also pair {p, q} with all the elements on the list before

associated with pair {p, q},
else, if all the above pairs are unmarked,

then put pair {p, q} on each list associated with pairs{elem(
δ(p, a)), elem(

δ(q, a))}, unless δ(p, a) = δ(q, a),
4 merge all unmarked (equivalent) pairs.

After �nishing the algorithm, if a cell of the table does not contain a star, then the states
corresponding to its row and column index, are equivalent and may be merged. Merging
states is continued until it is possible. We can say that the equivalence relation decomposes
the set of states in equivalence classes, and the states in such a class may be all merged.

Remark. The above algorithm can be used also in the case of an DFA which is not
complete, that is there are states for which does not exist transition. Then a pair {∅, {q}} may
occur, and if q is a �nal state, consider this pair marked.

Example 2.16 Let be the DFA in Fig. 2.15. We will use a table for marking pairs with a star. Marking
pair {p, q} means putting a star in the cell corresponding to row p and column q (or row q and column
p).

First we mark pairs {q2, q0}, {q2, q1}, {q2, q3}, {q2, q4} and {q2, q5} (because q2 is the single �nal
state). Then consider all unmarked pairs and examine them as the algorithm requires. Let us begin with
pair {q0, q1}. Associate with it pairs {elem(

δ(q0, 0)), elem(
δ(q1, 0))}, {elem(

δ(q0, 1)), elem(
δ(q1, 1))},



2.2. Finite automata and regular languages 109

that is {q1, q4}, {q4, q2}. Because pair {q4, q2} is already marked, mark also pair {q0, q1}.
In the case of pair {q0, q3} the new pairs are {q1, q5} and {q4, q4}. With pair {q1, q5} associate pair

{q0, q3} on a list, that is
{q1, q5} −→ {q0, q3} .

Now continuing with {q1, q5} one obtain pairs {q4, q4} and {q2, q2}, with which nothing are associated
by algorithm.

Continue with pair {q0, q4}. The associated pairs are {q1, q4} and {q4, q3}. None of them are mar-
ked, so associate with them on a list pair {q0, q4}, that is

{q1, q4} −→ {q0, q4}, {q4, q3} −→ {q0, q4} .
Now continuing with {q1, q4} we get the pairs {q4, q4} and {q2, q3}, and because this latter is marked
we mark pair {q1, q4} and also pair {q0, q4} associated to it on a list. Continuing we will get the table in
Fig. 2.15, that is we get that q0 ≡ q3 and q1 ≡ q5. After merging them we get an equivalent minimum
state automaton (see Fig. 2.16).

2.2.6. Pumping lemma for regular languages
The following theorem, called pumping lemma for historical reasons, may be efficiently used
to prove that a language is not regular. It is a sufficient condition for a regular language.
Theorem 2.15 (pumping lemma). For any regular language L there exists a natural num-
ber n ≥ 1 (depending only on L), such that any word u of L with length at least n may be
written as u = xyz such that

(1) |xy| ≤ n,
(2) |y| ≥ 1,
(3) xyiz ∈ L for all i = 0, 1, 2, . . ..

Proof. If L is a regular language, then there is such an DFA which accepts L (by theorems
2.12 and 2.10). Let A = (Q,Σ, E, {q0}, F) be this DFA, so L = L(A). Let n be the number of
its states, that is |Q| = n. Let u = a1a2 . . . am ∈ L and m ≥ n. Then, because the automaton
accepts word u, there are states q0, q1, . . . , qm and walk

q0
a1−→ q1

a2−→ q2
a3−→ · · · am−1−→ qm−1

am−→ qm, qm ∈ F.
Because the number of states is n and m ≥ n, by the pigeonhole principle3 states

q0, q1, . . . , qm can not all be distinct (see Fig. 2.17), there are at least two of them which
are equal. Let q j = qk, where j < k and k is the least such index. Then j < k ≤ n. Decom-
pose word u as:

x = a1a2 . . . a j
y = a j+1a j+2 . . . ak
z = ak+1ak+2 . . . am.

This decomposition immediately yields to |xy| ≤ n and |y| ≥ 1. We will prove that xyiz ∈ L
for any i.
Because u = xyz ∈ L, there exists an walk

q0
x−→ q j

y−→ qk
z−→ qm, qm ∈ F,

3Pigeonhole principle: If we have to put more than k objects into k boxes, then at least two boxes will contain at
least two objects.
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Figure 2.17. Sketch of DFA used in the proof of the pumping lemma.

and because of q j = qk, this may be written also as

q0
x−→ q j

y−→ q j
z−→ qm, qm ∈ F .

From this walk q j
y−→ q j can be omitted or can be inserted many times. So, there are the

following walks:
q0

x−→ q j
z−→ qm, qm ∈ F ,

q0
x−→ q j

y−→ q j
y−→ . . .

y−→ q j
z−→ qm, qm ∈ F .

Therefore xyiz ∈ L for all i, and this proves the theorem.

Example 2.17 We use the pumping lemma to show that L1 = {akbk | k ≥ 1} is not regular. Assume that
L1 is regular, and let n be the corresponding natural number given by the pumping lemma. Because
the length of the word u = anbn is 2n, this word can be written as in the lemma. We prove that this
leads to a contradiction. Let u = xyz be the decomposition as in the lemma. Then |xy| ≤ n, so x and y
can contain no other letters than a, and because we must have |y| ≥ 1, word y contains at least one a.
Then xyiz for i , 1 will contain a different number of a's and b's, therefore xyiz < L1 for any i , 1.
This is a contradiction with the third assertion of the lemma, this is why that assumption that L1 is
regular, is false. Therefore L1 < L3.

Because the context-free grammar G1 = ({S }, {a, b}, {S → ab, S → aS b}, S ) generates language
L1, we have L1 ∈ L2. From these two follow that L3 ⊂ L2.

Example 2.18 We show that L2 =
{u ∈ {0, 1}∗ | n0(u) = n1(u)} is not regular. (n0(u) is the number of

0's in u, while n1(u) the number of 1's).
We proceed as in the previous example using here word u = 0n1n, where n is the natural number

associated by lemma to language L2.

Example 2.19 We prove, using the pumping lemma, that L3 =
{uu | u ∈ {a, b}∗} is not a regular

language. Let w = anbanb = xyz be, where n here is also the natural number associated to L3 by the
pumping lemma. From |xy| ≤ n we have that y contains no other letters than a, but it contains at least
one. By lemma we have xz ∈ L3, that is not possible. Therefore L3 is not regular.
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Pumping lemma has several interesting consequences.

Corollary 2.16 Regular language L is not empty if and only if there exists a word u ∈ L,
|u| < n, where n is the natural number associated to L by the pumping lemma.

Proof. The assertion in a direction is obvious: if there exists a word shorter than n in L, then
L , ∅. Conversely, let L , ∅ and let u be the shortest word in L. We show that |u| < n. If
|u| ≥ n, then we apply the pumping lemma, and give the decomposition u = xyz, |y| > 1 and
xz ∈ L. This is a contradiction, because |xz| < |u| and u is the shortest word in L. Therefore
|u| < n.

Corollary 2.17 There exists an algorithm that can decide if a regular language is or not
empty.

Proof. Assume that L = L(A), where A = (Q,Σ, E, {q0}, F) is a DFA. By consequence 2.16
and theorem 2.15 language L is not empty if and only if it contains a word shorter than n,
where n is the number of states of automaton A. By this it is enough to decide that there
is a word shorter than n which is accepted by automaton A. Because the number of words
shorter than n is �nite, the problem can be decided.

When we had given an algorithm for inaccessible states of a DFA, we remarked that the
procedure can be used also to decide if the language accepted by that automaton is or not
empty. Because �nite automata accept regular languages, we can consider to have already
two procedures to decide if a regular languages is or not empty. Moreover, we have a third
procedure, if we take into account that the algorithm for �nding productive states also can
be used to decide on a regular language when it is empty.

Corollary 2.18 A regular language L is in�nite if and only if there exists a word u ∈ L
such that n ≤ |u| < 2n, where n is the natural number associated to language L, given by
the pumping lemma.

Proof. If L is in�nite, then it contains words longer than 2n, and let u be the shortest word
longer than 2n in L. Because L is regular we can use the pumping lemma, so u = xyz, where
|xy| ≤ n, thus |y| ≤ n is also true. By the lemma u′ = xz ∈ L. But because |u′| < |u| and the
shortest word in L longer than 2n is u, we get |u′| < 2n. From |y| ≤ n we get also |u′| ≥ n.

Conversely, if there exists a word u ∈ L such that n ≤ |u| < 2n, then using the pumping
lemma, we obtain that u = xyz, |y| ≥ 1 and xyiz ∈ L for any i, therefore L is in�nite.

Now, the question is: how can we apply the pumping lemma for a �nite regular lan-
guage, since by pumping words we get an in�nite number of words? The number of states
of a DFA accepting language L is greater than the length of the longest word in L. So, in
L there is no word with length at least n, when n is the natural number associated to L by
the pumping lemma. Therefore, no word in L can be decomposed in the form xyz, where
|xyz| ≥ n, |xy| ≤ n, |y| ≥ 1, and this is why we can not obtain an in�nite number of words in
L.

2.2.7. Regular expressions
In this subsection we introduce for any alphabet Σ the notion of regular expressions over Σ

and the corresponding representing languages. A regular expression is a formula, and the
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x + y ≡ y + x
(x + y) + z ≡ x + (y + z)

(xy)z ≡ x(yz)
(x + y)z ≡ xz + yz
x(y + z) ≡ xy + xz

(x + y)∗ ≡ (x∗ + y)∗ ≡ (x + y∗)∗ ≡ (x∗ + y∗)∗

(x + y)∗ ≡ (xy∗)∗ ≡ (x∗y)∗ ≡ (x∗y∗)∗

(x∗)∗ ≡ x∗

x∗x ≡ xx∗

xx∗ + ε ≡ x∗

2.1. Table. Properties of regular expressions.

corresponding language is a language over Σ. For example, if Σ = {a, b}, then a∗, b∗, a∗ + b∗
are regular expressions over Σ which represent respectively languages {a}∗, {b}∗, {a}∗ ∪ {b}∗.
The exact de�nition is the following.

De�nition 2.19 De�ne recursively a regular expression over Σ and the language it repre-
sent.
• ∅ is a regular expression representing the empty language.
• ε is a regular expression representing language {ε}.
• If a ∈ Σ, then a is a regular expression representing language {a}.
• If x, y are regular expressions representing languages X and Y respectively, then (x +

y), (xy), (x∗) are regular expressions representing languages X∪Y, XY and X∗ respectively.
Regular expression over Σ can be obtained only by using the above rules a �nite number

of times.

Some brackets can be omitted in the regular expressions if taking into account the priority
of operations (iteration, product, union) the corresponding languages are not affected. For
example instead of ((x∗)(x + y)) we can consider x∗(x + y).

Two regular expressions are equivalent if they represent the same language, that is
x ≡ y if X = Y , where X and Y are the languages represented by regular expressions x and
y respectively. Table 2.1 shows some equivalent expressions.

We show that to any �nite language L can be associated a regular expression x which
represent language L. If L = ∅, then x = ∅. If L = {w1,w2, . . . ,wn}, then x = x1 +x2 + . . .+xn,
where for any i = 1, 2, . . . , n expression xi is a regular expression representing language {wi}.
This latter can be done by the following rule. If wi = ε, then xi = ε, else if wi = a1a2 . . . am,
where m ≥ 1 depends on i, then xi = a1a2 . . . am, where the brackets are omitted.

We prove the theorem of Kleene which refers to the relationship between regular lan-
guages and regular expression.

Theorem 2.20 (Kleene's theorem). Language L ⊆ Σ∗ is regular if and only if there exists
a regular expression over Σ representing language L.
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Figure 2.18. DFA from Example 2.20., to which regular expression is associated by Method 1.

Proof. First we prove that if x is a regular expression, then language L which represents x
is also regular. The proof will be done by induction on the construction of expression.

If x = ∅, x = ε, x = a,∀a ∈ Σ, then L = ∅, L = {ε}, L = {a} respectively. Since L is
�nite in all three cases, it is also regular.

If x = (x1 + x2), then L = L1 ∪ L2, where L1 and L2 are the languages which represent
the regular expressions x1 and x2 respectively. By the induction hypothesis languages L1
and L2 are regular, so L is also regular because regular languages are closed on union. Cases
x = (x1x2) and x = (x∗1) can be proved by similar way.

Conversely, we prove that if L is a regular language, then a regular expression x can be
associated to it, which represent exactly the language L. If L is regular, then there exists a
DFA A = (Q,Σ, E, {q0}, F) for which L = L(A). Let q0, q1, . . . , qn the states of the automaton
A. De�ne languages Rk

i j for all −1 ≤ k ≤ n and 0 ≤ i, j ≤ n. Rk
i j is the set of words, for which

automaton A goes from state qi to state q j without using any state with index greater than
k. Using transition graph we can say: a word is in Rk

i j, if from state qi we arrive to state q j
following the edges of the graph, and concatenating the corresponding labels on edges we
get exactly that word, not using any state qk+1, . . . qn. Sets Rk

i j can be done also formally:
R−1

i j = {a ∈ Σ | (qi, a, q j) ∈ E}, if i , j,
R−1

ii = {a ∈ Σ | (qi, a, qi) ∈ E} ∪ {ε},
Rk

i j = Rk−1
i j ∪ Rk−1

ik

(
Rk−1

kk

)∗
Rk−1

k j for all i, j, k ∈ {0, 1, . . . , n}.
We can prove by induction that sets Rk

i j can be described by regular expressions. Indeed,
if k = −1, then for all i and j languages Rk

i j are �nite, so they can be expressed by regular
expressions representing exactly these languages. Moreover, if for all i and j language Rk−1

i j
can be expressed by regular expression, then language Rk

i j can be expressed also by regular
expression, which can be corresponding constructed from regular expressions representing
languages Rk−1

i j , Rk−1
ik , Rk−1

kk and Rk−1
k j respectively, using the above formula for Rk

i j.
Finally, if F = {qi1 , qi2 , . . . , qip } is the set of �nal states of the DFA A, then L = L(A) =

Rn
0i1 ∪ Rn

0i2 ∪ . . . ∪ Rn
0ip

can be expressed by a regular expression obtained from expressions
representing languages Rn

0i1 ,R
n
0i2 , . . . ,R

n
0ip

using operation +.
Further on we give some procedures which associate DFA to regular expressions and

conversely regular expression to DFA.

Associating regular expressions to �nite automata
We present here three methods, each of which associate to a DFA the corresponding regular
expression.

Method 1. Using the result of the theorem of Kleene, we will construct the sets Rk
i j, and

write a regular expression which represent the language L = Rn
0i1 ∪ Rn

0i2 ∪ . . . ∪ Rn
0ip

, where
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q0 q1 q2 q3- - - -
?R

µ
1 0 1
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0 0

Figure 2.19. DFA in example 2.21. to which a regular expression is associated by Method 1. The computation are
in the Table 2.2.

F = {qi1 , qi2 , . . . , qip } is the set of �nal states of the automaton.

Example 2.20 Consider the DFA in Fig. 2.18.
L(A) = R1

00 = R0
00 ∪ R0

01

(
R0

11

)∗
R0

10
R0

00 : 1∗ + ε ≡ 1∗
R0

01 : 1∗0
R0

11 : 11∗0 + ε + 0 ≡ (11∗ + ε)0 + ε ≡ 1∗0 + ε

R0
10 : 11∗

Then the regular expression corresponding to L(A) is 1∗ + 1∗0(1∗0 + ε)∗11∗ ≡ 1∗ + 1∗0(1∗0)∗11∗.

Example 2.21 Find a regular expression associated to DFA in Fig. 2.19. The computations are in
Table 2.2. The regular expression corresponding to R3

03 is 11 + (0 + 10)0∗1.

Method 2. Now we generalize the notion of �nite automaton, considering words instead
of letters as labels of edges. In such an automaton each walk determine a regular expression,
which determine a regular language. The regular language accepted by a generalized �nite
automaton is the union of regular languages determined by the productive walks. It is easy
to see that the generalized �nite automata accept regular languages.

The advantage of generalized �nite automata is that the number of its edges can be
diminuted by equivalent transformations, which do not change the accepted language, and
leads to a graph with only one edge which label is exactly the accepted language.

The possible equivalent transformations can be seen in Fig. 2.20. If some of the vertices
1, 2, 4, 5 on the �gure coincide, in the result they are merged, and a loop will arrive.

First, the automaton is transformed by corresponding ε-moves to have only one initial
and one �nal state. Then, applying the equivalent transformations until the graph will have
only one edge, we will obtain as the label of this edge the regular expression associated to
the automaton.

Example 2.22 In the case of Fig. 2.18 the result is obtained by steps illustrated in Fig. 2.21. This result
is (1 + 00∗1)∗, which represents the same language as obtained by Method 1 (See example 2.20.).

Example 2.23 In the case of Fig. 2.19 is not necessary to introduce new initial and �nal state. The



2.2. Finite automata and regular languages 115

k = −1 k = 0 k = 1 k = 2 k = 3

Rk
00 ε ε ε ε

Rk
01 1 1 1 1

Rk
02 0 0 0 + 10 (0 + 10)0∗

Rk
03 ∅ ∅ 11 11 + (0 + 10)0∗1 11 + (0 + 10)0∗1

Rk
11 ε ε ε ε

Rk
12 0 0 0 00∗

Rk
13 1 1 1 1 + 00∗1

Rk
22 0 + ε 0 + ε 0 + ε 0∗

Rk
23 1 1 1 0∗1

Rk
33 ε ε ε ε

2.2. Table. Determining a regular expression associated to DFA in Fig. 2.19 using sets Rk
i j.

steps of transformations can be seen in Fig. 2.22. The resulted regular expression can be written also
as (0 + 10)0∗1 + 11, which is the same as obtained by the previous method.

Method 3. The third method for writing regular expressions associated to �nite automata
uses formal equations. A variable X is associated to each state of the automaton (to different
states different variables). Associate to each state an equation which left side contains X,
its right side contains sum of terms of form Ya or ε, where Y is a variable associated to
a state, and a is its corresponding input symbol. If there is no incoming edge in the state
corresponding to X then the right side of the equation with left side X contains ε, otherwise
is the sum of all terms of the form Ya for which there is a transition labelled with letter a
from state corresponding to Y to the state corresponding to X. If the state corresponding to
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Figure 2.20. Possible equivalent transformations for �nding regular expression associated to an automaton.
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Figure 2.21. Transformation of the �nite automaton in Fig. 2.18.

X is also an initial and a �nal state, then on right side of the equation with the left side X will
be also a term equal to ε. For example in the case of Fig. 2.19 let these variable X,Y,Z,U
corresponding to the states q0, q1, q2, q3. The corresponding equation are

X = ε
Y = X1
Z = X0 + Y0 + Z0
U = Y1 + Z1.
If an equation is of the form X = Xα + β, where α, β are arbitrary words not containing

X, then it is easy to see by a simple substitution that X = βα∗ is a solution of the equation.
Because these equations are linear, all of them can be written in the form X = Xα + β

or X = Xα, where α do not contain any variable. Substituting this in the other equations
the number of remaining equations will be diminuted by one. In such a way the system of
equation can be solved for each variable.
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Figure 2.22. Steps of example 2.23..

The solution will be given by variables corresponding to �nal states summing the cor-
responding regular expressions.

In our example from the �rst equation we get Y = 1. From here Z = 0 + 10 +

Z0, or Z = Z0 + (0 + 10), and solving this we get Z = (0 + 10)0∗. Variable U can be
obtained immediately and we obtain U = 11 + (0 + 10)0∗1.

Using this method in the case of Fig. 2.18, the following equations will be obtained
X = ε + X1 + Y1
Y = X0 + Y0

Therefore
X = ε + (X + Y)1
Y = (X + Y)0.

Adding the two equations we will obtain
X + Y = ε+ (X + Y)(0 + 1), from where (considering ε as β and (0 + 1) as α) we get the

result
X + Y = (0 + 1)∗.

From here the value of X after the substitution is
X = ε + (0 + 1)∗1,

which is equivalent to the expression obtained using the other methods.

Associating �nite automata to regular expressions
Associate to the regular expression r a generalized �nite automaton:
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Figure 2.23. Possible transformations to obtain �nite automaton associated to a regular expression.

-- r

After this, use the transformations in Fig. 2.23 step by step, until an automaton with labels
equal to letters from Σ or ε will be obtained.

Example 2.24 Get started from regular expression ε+(0+1)∗1. The steps of transformations are in Fig.
2.24(a)-(e). The last �nite automaton (see Fig. 2.24(e)) can be done in a simpler form as can be seen
in Fig. 2.24(f). After eliminating the ε-moves and transforming in a deterministic �nite automaton the
DFA in Fig. 2.25 will be obtained, which is equivalent to DFA in Fig. 2.18.

Exercises
2.2-1 Give a DFA which accepts natural numbers divisible by 9.
2.2-2 Give a DFA which accepts the language containing all words formed by

a. an even number of 0's and an even number of 1's,
b. an even number of 0's and an odd number of 1's,
c. an odd number of 0's and an even number of 1's,
d. an odd number of 0's and an odd number of 1's.

2.2-3 Give a DFA to accept respectively the following languages:
L1 = {anbm | n ≥ 1,m ≥ 0}, L2 = {anbm | n ≥ 1,m ≥ 1},
L3 = {anbm | n ≥ 0,m ≥ 0}, L4 = {anbm | n ≥ 0,m ≥ 1}.

2.2-4 Give an NFA which accepts words containing at least two 0's and any number of 1's.
Give an equivalent DFA.
2.2-5 Minimize the DFA's in Fig. 2.26.
2.2-6 Show that the DFA in 2.27.(a) is a minimum state automaton.
2.2-7 Transform NFA in Fig. 2.27.(b) in a DFA, and after this minimize it.
2.2-8 De�ne �nite automaton A1 which accepts all words of the form 0(10)n (n ≥ 0), and
�nite automaton A2 which accepts all words of the form 1(01)n (n ≥ 0). De�ne the union
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Figure 2.24. Associating �nite automaton to regular expression ε + (0 + 1)∗1.
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Figure 2.25. Finite automaton associated to regular expression ε + (0 + 1)∗1.
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Figure 2.26. DFA's to minimize for exercise 2.2-5..
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Figure 2.27. Finite automata for exercises 2.2-6. and 2.2-7..

automaton A1 ∪ A2, and then eliminate the ε-moves.
2.2-9 Associate to DFA in Fig. 2.28 a regular expression.
2.2-10 Associate to regular expression ab∗ba∗ + b + ba∗a a DFA.
2.2-11 Prove, using the pumping lemma, that none of the following languages are regular:

L1 =
{ancbn | n ≥ 0}, L2 =

{anbnan | n ≥ 0}, L3 =
{ap | p prím}

.
2.2-12 Prove that if L is a regular language, then {u−1 | u ∈ L} is also regular.
2.2-13 Prove that if L ⊆ Σ∗ is a regular language, then the following languages are also
regular.

pre(L) = {w ∈ Σ∗ | ∃u ∈ Σ∗,wu ∈ L}, suf(L) = {w ∈ Σ∗ | ∃u ∈ Σ∗, uw ∈ L}.
2.2-14 Show that the following languages are all regular.

- - - -
? ?

0,1

1 0 1

0,1

q0 q1 q2 q3

Figure 2.28. DFA for exercise 2.2-9..
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Figure 2.29. Pushdown automaton.

L1 = {abncdm | n > 0,m > 0},
L2 = {(ab)n | n ≥ 0},
L3 = {akn | n ≥ 0, k constant}.

2.3. Pushdown automata and context-free languages
In this section we deal with the pushdown automata and the class of languages � the
context-free languages � accepted by them.

As we have been seen in the section 2.1, a context-free grammar G = (N,T, P, S ) is one
with the productions of the form A → β, A ∈ N, β ∈ (N ∪ T )+. The production S → ε
is also permitted if S does not appear in right hand side of any productions. Language
L(G) = {u ∈ T | S ∗

=⇒
G

u} is the context-free language generated by grammar G.

2.3.1. Pushdown automata
We have been seen that �nite automata accept the class of regular languages. Now we get to
know a new kind of automata, the so-called pushdown automata, which accept context-free
languages. The pushdown automata differ from �nite automata mainly in that to have the
possibility to change states without reading any input symbol (i.e. to read the empty symbol)
and possess a stack memory, which uses the so-called stack symbols (See Fig. 2.29).

The pushdown automaton get a word as input, start to function from an initial state
having in the stack a special symbol, the initial stack symbol. While working, the pushdown
automaton change its state based on current state, next input symbol (or empty word) and
stack top symbol and replace the top symbol in the stack with a (possibly empty) word.

There are two type of acceptances. The pushdown automaton accepts a word by �nal
state when after reading it the automaton enter a �nal state. The pushdown automaton ac-
cepts a word by empty stack when after reading it the automaton empties its stack. We show
that these two acceptances are equivalent.

De�nition 2.21 A nondeterministic pushdown automaton is a system
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V = (Q,Σ,W, E, q0, z0, F),
where
• Q is the �nite, non-empty set of states
• Σ is the input alphabet,
• W is the stack alphabet,
• E ⊆ Q × (

Σ ∪ {ε}) ×W ×W∗ × Q is the set of transitions or edges,
• q0 ∈ Q is the initial state,
• z0 ∈ W is the start symbol of stack,
• F ⊆ Q is the set of �nal states.

A transition (p, a, z,w, q) means that if pushdown automaton V is in state p, reads from
the input tape letter a (instead of input letter we can also consider the empty word ε), and
the top symbol in the stack is z, then the pushdown automaton enters state q and replaces
in the stack z by word w. Writing word w in the stack is made by natural order (letters of
word w will be put in the stack letter by letter from left to right). Instead of writing transition
(p, a, z,w, q) we will use a more suggestive notation (p, (a, z/w), q).

Here, as in the case of �nite automata, we can de�ne a transition function

δ : Q × (Σ ∪ {ε}) ×W → P(W∗ × Q) ,

which associate to current state, input letter and top letter in stack pairs of the form (w, q),
where w ∈ W∗ is the word written in stack and q ∈ Q the new state.

Because the pushdown automaton is nondeterministic, we will have for the transition
function

δ(q, a, z) = {(w1, p1), . . . , (wk, pk)} (if the pushdown automaton reads an input letter and
moves to right), or

δ(q, ε, z) = {(w1, p1), . . . , (wk, pk)} (without move on the input tape).
A pushdown automaton is deterministic, if for any q ∈ Q and z ∈ W we have
• |δ(q, a, z)| ≤ 1, ∀a ∈ Σ ∪ {ε} and
• if δ(q, ε, z) , ∅, then δ(q, a, z) = ∅, ∀a ∈ Σ.
We can associate to any pushdown automaton a transition table, exactly as in the case

of �nite automata. The rows of this table are indexed by elements of Q, the columns by
elements from Σ ∪ {ε} and W (to each a ∈ Σ ∪ {ε} and z ∈ W will correspond a column). At
intersection of row corresponding to state q ∈ Q and column corresponding to a ∈ Σ ∪ {ε}
and z ∈ W we will have pairs (w1, p1), . . . , (wk, pk) if δ(q, a, z) = {(w1, p1), . . . , (wk, pk)}.

The transition graph, in which the label of edge (p, q) will be (a, z/w) corresponding to
transition (p, (a, z/w), q), can be also de�ned.

Example 2.25 V1 = ({q0, q1, q2}, {a, b}, {z0, z1}, E, q0, z0, {q0}). Elements of E are:
(q0, (a, z0/z0z1), q1

)
(q1, (a, z1/z1z1), q1

) (q1, (b, z1/ε), q2
)

(q2, (b, z1/ε), q2
) (q2, (ε, z0/ε), q0

)
.

The transition function:

δ(q0, a, z0) = {(z0z1, q1)}
δ(q1, a, z1) = {(z1z1, q1)} δ(q1, b, z1) = {(ε, q2)}
δ(q2, b, z1) = {(ε, q2)} δ(q2, ε, z0) = {(ε, q0)} .
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Figure 2.30. Example of pushdown automaton.

The transition table:

Σ ∪ {ε} a b ε

W z0 z1 z1 z0

q0 (z0z1, q1)

q1 (z1z1, q1) (ε, q2)

q2 (ε, q2) (ε, q0)

Because for the transition function every set which is not empty contains only one element (e.g.
δ(q0, a, z0) = {(z0z1, q1)}), in the above table each cell contains only one element, And the set notation
is not used. Generally, if a set has more than one element, then its elements are written one under
other. The transition graph of this pushdown automaton is in Fig. 2.30.

The current state, the unread part of the input word and the content of stack constitutes
a con�guration of the pushdown automaton, i.e. for each q ∈ Q, u ∈ Σ∗ and v ∈ W∗ the
triplet (q, u, v) can be a con�guration.

If u = a1a2 . . . ak and v = x1x2 . . . xm, then the pushdown automaton can change its
con�guration in two ways:
• (q, a1a2 . . . ak, x1x2 . . . xm−1xm) =⇒ (p, a2a3 . . . ak, x1, x2 . . . xm−1w),

if (q, (a1, xm/w), p) ∈ E
• (q, a1a2 . . . ak, x1x2 . . . xm) =⇒ (p, a1a2 . . . ak, x1, x2 . . . xm−1w),

if (q, (ε, xm/w), p) ∈ E.
The re�exive and transitive closure of the relation =⇒ will be denoted by ∗

=⇒. Instead
of using =⇒, sometimes ` is considered.

How does work such a pushdown automaton? Getting started with the initial con�gura-
tion (q0, a1a2 . . . an, z0) we will consider all possible next con�gurations, and after this the
next con�gurations to these next con�gurations, and so on, until it is possible.
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De�nition 2.22 Pushdown automaton V accepts (recognizes) word u by �nal state if there
exist a sequence of con�gurations of V for which the following are true:
• the �rst element of the sequence is (q0, u, z0),
• there is a going from each element of the sequence to the next element, excepting the

case when the sequence has only one element,
• the last element of the sequence is (p, ε,w), where p ∈ F and w ∈ W∗.

Therefore pushdown automaton V accepts word u by �nal state, if and only if
(q0, u, z0) ∗

=⇒ (p, ε,w) for some w ∈ W∗ and p ∈ F. The set of words accepted by �-
nal state by pushdown automaton V will be called the language accepted by V by �nal state
and will be denoted by L(V).

De�nition 2.23 Pushdown automaton V accepts (recognizes) word u by empty stack if
there exist a sequence of con�gurations of V for which the following are true:
• the �rst element of the sequence is (q0, u, z0),
• there is a going from each element of the sequence to the next element,
• the last element of the sequence is (p, ε, ε) and p is an arbitrary state.

Therefore pushdown automaton V accepts a word u by empty stack if (q0, u, z0) ∗
=⇒

(p, ε, ε) for some p ∈ Q. The set of words accepted by empty stack by pushdown automaton
V will be called the language accepted by empty stack by V and will be denoted by Lε(V).

Example 2.26 Pushdown automaton V1 of Example 2.25. accepts the language {anbn | n ≥ 0} by �nal
state. Consider the derivation for words aaabbb and abab.

Word a3b3 is accepted by the considered pushdown automaton because
(q0, aaabbb, z0) =⇒ (q1, aabbb, z0z1) =⇒ (q1, abbb, z0z1z1) =⇒ (q1, bbb, z0z1z1z1)
=⇒ (q2, bb, z0z1z1) =⇒ (q2, b, z0z1) =⇒ (q2, ε, z0) =⇒ (q0, ε, ε) and because q0 is a �nal state the

pushdown automaton accepts this word. But the stack being empty, it accepts this word also by empty
stack.

Because the initial state is also a �nal state, the empty word is accepted by �nal state, but not by
empty stack.

To show that word abab is not accepted, we need to study all possibilities. It is easy to see that in
our case there is only a single possibility:

(q0, abab, z0) =⇒ (q1, bab, z0z1) =⇒ (q2, ab, z0) =⇒ (q0, ab, ε), but there is no further going, so
word abab is not accepted.

Example 2.27 The transition table of the pushdown automaton V2 =

({q0, q1}, {0, 1}, {z0, z1, z2}, E, q0, z0, ∅) is:

Σ ∪ {ε} 0 1 ε

W z0 z1 z2 z0 z1 z2 z0

q0 (z0z1, q0) (z1z1, q0) (z2z1, q0) (z0z2, q0) (z1z2, q0) (z2z2, q0) (ε, q1)
(ε, q1) (ε, q1)

q1 (ε, q1) (ε, q1) (ε, q1)
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Figure 2.31. Transition graph of the Example 2.27..

The corresponding transition graph can be seen in Fig. 2.31. Pushdown automaton V2 accepts the
language {uu−1 | u ∈ {0, 1}∗}. Because V2 is nemdeterministic, all the con�gurations obtained from the
initial con�guration (q0, u, z0) can be illustrated by a computation tree. For example the computation
tree associated to the initial con�guration (q0, 1001, z0) can be seen in Fig. 2.32. From this computation
tree we can observe that, because (q1, ε, ε) is a leaf of the tree, pushdown automaton V2 accepts word
1001 by empty stack. The computation tree in Fig. 2.33 shows that pushdown automaton V2 does not
accept word 101, because the con�gurations in leaves can not be continued and none of them has the
form (q, ε, ε).

Theorem 2.24 A language L is accepted by a nondeterministic pushdown automaton V1
by empty stack if and only if it can be accepted by a nondeterministic pushdown automaton
V2 by �nal state.

Proof. a) Let V1 = (Q,Σ,W, E, q0, z0, ∅) be the pushdown automaton which accepts
by empty stack language L. De�ne pushdown automaton V2 = (Q ∪ {p0, p},Σ,W ∪
{x}, E′, p0, x, {p}), where p, p0 < Q, , x < W and

E′ = E ∪
{(p0, (ε, x/xz0), q0

)} ∪
{(q, (ε, x/ε), p)

∣∣∣ q ∈ Q
}

Working of V2: Pushdown automaton V2 with an ε-move �rst goes in the initial state of V1,
writing z0 (the initial stack symbol of V1) in the stack (beside x). After this it is working as
V1. If V1 for a given word empties its stack, then V2 still has x in the stack, which can be
deleted by V2 using an ε-move, while a �nal state will be reached. V2 can reach a �nal state
only if V1 has emptied the stack.

b) Let V2 = (Q,Σ,W, E, q0, z0, F) be a pushdown automaton, which accepts language L
by �nal state. De�ne pushdown automaton V1 = (Q∪{p0, p},Σ,W ∪{x}, E′, p0, x, ∅), where
p0, p < Q, x < W and

E′ = E ∪
{(p0, (ε, x/xz0), q0

)} ∪
{(q, (ε, z/ε), p)

∣∣∣ q ∈ F, p ∈ Q, z ∈ W
}

∪
{(p, (ε, z/ε), p)

∣∣∣ p ∈ Q, z ∈ W ∪ {x}
}

Working V1: Pushdown automaton V1 with an ε-move writes in the stack beside x the initial
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(q0, 1001, z0)

(q0, 001, z0z2) (q1, 1001, ε)

(q0, 01, z0z2z1)

(q0, 1, z0z2z1z1) (q1, 1, z0z2)

(q0, ε, z0z2, z1z1z2) (q1, ε, z0)

(q1, ε, ε)

Figure 2.32. Computation tree to show acceptance of the word 1001 (see Example 2.27.).

(q0, 101, z0)

(q0, 01, z0z2) (q1, 101, ε)

(q0, 1, z0z2z1) (q1, 01, z0)

(q0, ε, z0z2z1z2)

Figure 2.33. Computation tree to show that the pushdown automaton in Example 2.27. does not accept word 101.

stack symbol z0 of V2, then works as V2, i.e reaches a �nal state for each accepted word.
After this V1 empties the stack by an ε-move. V1 can empty the stack only if V2 goes in a
�nal state.

The next two theorems prove that the class of languages accepted by nondeterministic
pushdown automata is just the set of context-free languages.
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Theorem 2.25 If G is a context-free grammar, then there exists such a nondeterministic
pushdown automaton V which accepts L(G) by empty stack, i.e. Lε(V) = L(G).

We outline the proof only. Let G = (N,T, P, S ) be a context-free grammar. De�ne pushdown
automaton V = ({q},T,N ∪ T, E, q, S , ∅), where q < N ∪ T, and the set E of transitions is:
• If there is in the set of productions of G a production of type A→ α, then let put in E

the transition (q, (ε, A/α−1), q),
• For any letter a ∈ T let put in E the transition (q, (a, a/ε), q).
If there is a production S → α in G, the pushdown automaton put in the stack the mirror

of α with an ε-move. If the input letter coincides with that in the top of the stack, then the
automaton deletes it from the stack. If in the top of the stack there is a nonterminal A, then
the mirror of right-hand side of a production which has A in its left-hand side will be put
in the stack. If after reading all letters of the input word, the stack will be empty, then the
pushdown automaton recognized the input word.

The following algorithm builds for a context-free grammar G = (N,T, P, S ) the push-
down automaton V = ({q},T,N ∪ T, E, q, S , ∅), which accepts by empty stack the language
generated by G.

F----(G,V)
1 for all production A→ α
2 do put in E the transition (q, (ε, A/α−1), q)
3 for all terminal a ∈ T
4 do put in E the transition (q, (a, a/ε), q)

If G has n productions and m terminals, then the number of step of the algorithm is
Θ(n + m).

Example 2.28 Let G = ({S , A}, {a, b}, {S → ε, S → ab, S → aAb, A → aAb, A → ab}, S ). Then
V = ({q}, {a, b}, {a, b, A, S }, E, q, S , ∅), with the following transition table.

Σ ∪ {ε} a b ε

W a b S A

(ε, q) (ε, q) (ε, q) (bAa, q)
q (ba, q) (ba, q)

(bAa, q)

Let us see how pushdown automaton V accepts word aabb, which in grammar G can be derived
in the following way:

S =⇒ aAb =⇒ aabb,
where productions S → aAb and A→ ab were used. Word is accepted by empty stack (see Fig. 2.34).

Theorem 2.26 For a nondeterministic pushdown automaton V there exists always a
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(q, aabb, S )

(q, aabb, ε) (q, aabb, bAa) (q, aabb, ba)

(q, abb, b)(q, abb, bA)

(q, abb, bbAa) (q, abb, bba)

(q, bb, bb)

(q, b, b)

(q, ε, ε)

(q, bb, bbA)

(q, bb, bbbAa) (q, bb, bbba)

Figure 2.34. Recognising a word by empty stack (see Example 2.28.).

context-free grammar G such that V accepts language L(G) by empty stack, i.e. Lε(V) =

L(G).

Instead of a proof we will give a method to obtain grammar G. Let V = (Q,Σ,W, E, q0, z0, ∅)
be the nondeterministic pushdown automaton in question.

Then G = (N,T, P, S ), where
N = {S } ∪ {S p,z,q | p, q ∈ Q, z ∈ W} and T = Σ.
Productions in P will be obtained as follows.
• For all state q put in P production S → S q0,z0,q.
• If (q, (a, z/zk . . . z2z1), p) ∈ E, where q ∈ Q, z, z1, z2, . . . zk ∈ W (k ≥ 1) and a ∈

Σ ∪ {ε}, put in P for all possible states p1, p2, . . . , pk productions
S q,z,pk → aS p,z1,p1 S p1,z2,p2 . . . S pk−1,zk ,pk .
• If (q, (a, z/ε), p) ∈ E, where p, q ∈ Q, z ∈ W, and a ∈ Σ ∪ {ε}, put in P production
S q,z,p → a.
The context-free grammar de�ned by this is an extended one, to which an equivalent

context-free language can be associated. The proof of the theorem is based on the fact that
to every sequence of con�gurations, by which the pushdown automaton V accepts a word,
we can associate a derivation in grammar G. This derivation generates just the word in
question, because of productions of the form S q,z,pk → aS p,z1,p1 S p1,z2,p2 . . . S pk−1,zk ,pk , which
were de�ned for all possible states p1, p2, . . . , pk. In Example 2.27. we show how can be
associated a derivation to a sequence of con�gurations. The pushdown automaton de�ned
in the example recognizes word 00 by the sequence of con�gurations

(q0, 00, z0) =⇒ (q0, 0, z0z1) =⇒ (q1, ε, z0) =⇒ (q1, ε, ε),
which sequence is based on the transitions(q0, (0, z0/z0z1), q0

),(q0, (0, z1/ε), q1
),
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(q1, (ε, z1/ε), q1
).

To these transitions, by the de�nition of grammar G, the following productions can be asso-
ciated

(1) S q0,z0,p2 −→ 0S q0,z1,p1 S p1,z0,p2 for all states p1, p2 ∈ Q,
(2) S q0,z1,q1 −→ 0,
(3) S q1,z0,q1 −→ ε.

Furthermore, for each state q productions S −→ S q0,z0,q were de�ned.
By the existence of production S −→ S q0,z0,q there exists the derivation S =⇒ S q0,z0,q,

where q can be chosen arbitrarily. Let choose in above production (1) state q to be equal to
p2. Then there exists also the derivation

S =⇒ S q0,z0,q =⇒ 0S q0,z1,p1 S p1,z0,q,
where p1 ∈ Q can be chosen arbitrarily. If p1 = q1, then the derivation

S =⇒ S q0,z0,q =⇒ 0S q0,z1,q1 S q1,z0,q =⇒ 00S q1,z0,q
will result. Now let q equal to q1, then

S =⇒ S q0,z0,q1 =⇒ 0S q0,z1,q1 S q1,z0,q1 =⇒ 00S q1,z0,q1 =⇒ 00,
which proves that word 00 can be derived used the above grammar.

The next algorithm builds for a pushdown automaton V = (Q,Σ,W, E, q0, z0, ∅) a
context-free grammar G = (N,T, P, S ), which generates the language accepted by push-
down automaton V by empty stack.

F-----(V,G)
1 for all q ∈ Q
2 do put in P production S → S q0,z0,q
3 for all (q, (a, z/zk . . . z2z1), p) ∈ E B q ∈ Q, z, z1, z2, . . . zk ∈ W (k ≥ 1), a ∈ Σ ∪ {ε}
4 do for all states p1, p2, . . . , pk
5 do put in P productions S q,z,pk → aS p,z1,p1 S p1,z2,p2 . . . S pk−1,zk ,pk

6 for All (q(a, z/ε), p) ∈ E B p, q ∈ Q, z ∈ W, a ∈ Σ ∪ {ε}
7 do put in P production S q,z,p → a

If the automaton has n states and m productions, then the above algorithm executes at
most n + mn + m steps, so in worst case the number of steps is O(nm).

Finally, without proof, we mention that the class of languages accepted by deterministic
pushdown automata is a proper subset of the class of languages accepted by nondeterminis-
tic pushdown automata. This points to the fact that pushdown automata behave differently
as �nite automata.

Example 2.29 As an example, consider pushdown automaton V from the Example 2.28.: V =

({q}, {a, b}, {a, b, A, S }, E, q, S , ∅). Grammar G is:
G = ({S , S a, S b, S S , S A, }, {a, b}, P, S ) ,

where for all z ∈ {a, b, S , A} instead of S q,z,q we shortly used S z. The transitions:
(q, (a, a/ε), q), (q, (b, b/ε), q) ,(q, (ε, S/ε), q), (q, (ε, S/ba), q), (q, (ε, S/bAa), q) ,(q, (ε, A/ba), q), (q, (ε, A/bAa), q) .

Based on these, the following productions are de�ned:
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S

a A

a A

a A b

a b

Figure 2.35. Derivation (or syntax) tree of word aaaabb.

S → S S
S a → a
S b → b
S S → ε | S aS b | S aS AS b
S A → S aS AS b | S aS b.

It is easy to see that S S can be eliminated, and the productions will be:
S → ε | S aS b | S aS AS b,

S A → S aS AS b | S aS b,

S a → a, S b → b,
and these productions can be replaced:

S → ε | ab | aAb,
A→ aAb | ab.

2.3.2. Context-free languages
Consider context-free grammar G = (N,T, P, S ). A derivation tree of G is a �nite, ordered,
labelled tree, which root is labelled by the the start symbol S , every interior vertex is labelled
by a nonterminal and every leaf by a terminal. If an interior vertex labelled by a nonterminal
A has k descendents, then in P there exists a production A → a1a2 . . . ak such that the
descendents are labelled by letters a1, a2, . . . ak. The result of a derivation tree is a word over
T , which can be obtained by reading the labels of the leaves from left to right. Derivation
tree is also called syntax tree.

Consider the context-free grammar G = ({S , A}, {a, b}, {S → aA, S → a, S → ε, A→
aA, A → aAb, A → ab, A → b}, S ). It generates language L(G) = {anbm | n ≥ m ≥ 0}.
Derivation of word a4b2 ∈ L(G) is:

S =⇒ aA =⇒ aaA =⇒ aaaAb =⇒ aaaabb.
In Fig. 2.35 this derivation can be seen, which result is aaaabb.

To every derivation we can associate a syntax tree. Conversely, to any syntax tree more
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than one derivation can be associated. For example to syntax tree in Fig. 2.35 the derivation
S =⇒ aA =⇒ aaAb =⇒ aaaAb =⇒ aaaabb

also can be associated.

De�nition 2.27 Derivation α0 =⇒ α1 =⇒ . . . =⇒ αn is a leftmost
derivation, if for all i = 1, 2, . . . , n − 1 there exist words ui ∈ T ∗,
βi ∈ (N ∪ T )∗ and productions (Ai → γi) ∈ P, for which we have

αi = uiAiβi and αi+1 = uiγiβi.

Consider grammar:
G = ({S , A}, {a, b, c}, {S → bA, S → bAS , S → a, A→ cS , A→ a}, S ).

In this grammar word bcbaa has two different leftmost derivations:
S =⇒ bA =⇒ bcS =⇒ bcbAS =⇒ bcbaS =⇒ bcbaa,
S =⇒ bAS =⇒ bcS S =⇒ bcbAS =⇒ bcbaS =⇒ bcbaa.

De�nition 2.28 A context-free grammar G is ambiguous if in L(G) there exists a word
with more than one leftmost derivation. Otherwise G is unambiguous.

The above grammar G is ambiguous, because word bcbaa has two different leftmost
derivations. A language can be generated by more than one grammar, and between them can
exist ambiguous and unambiguous too. A context-free language is inherently ambiguous,
if there is no unambiguous grammar which generates it.

Example 2.30 Examine the following two grammars.
Grammar G1 = ({S }, {a,+, ∗}, {S → S + S , S → S ∗ S , S → a}, S ) is ambiguous because

S =⇒ S + S =⇒ a + S =⇒ a + S ∗ S =⇒ a + a ∗ S =⇒ a + a ∗ S + S =⇒ a + a ∗ a + S
=⇒ a + a ∗ a + a and
S =⇒ S ∗ S =⇒ S + S ∗ S =⇒ a + S ∗ S =⇒ a + a ∗ S =⇒ a + a ∗ S + S =⇒ a + a ∗ a + S
=⇒ a + a ∗ a + a.

Grammar G2 = ({S , A}, {a, ∗,+}, {S → A + S | A, A→ A ∗ A | a}, S ) is unambiguous.
Can be proved that L(G1) = L(G2).

2.3.3. Pumping lemma for context-free languages
Like for regular languages there exists a pumping lemma also for context-free languages.

Theorem 2.29 (pumping lemma). For any context-free language L there exists a natural
number n (which depends only on L), such that every word z of the language longer than n
can be written in the form uvwxy and the following are true:

(1) |w| ≥ 1,
(2) |vx| ≥ 1,
(3) |vwx| ≤ n,
(4) uviwxiy is also in L for all i ≥ 0.

Proof. Let G = (N,T, P, S ) be a grammar without unit productions, which generates langu-
age L. Let m = |N| be the number of nonterminals, and let ` be the maximum of lengths of
right-hand sides of productions, i.e. ` = max {|α| | ∃A ∈ N : (A→ α) ∈ P}. Let n = `m+1 and
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Figure 2.36. Decomposition of tree in the proof of pumping lemma.

z ∈ L(G), such that |z| > n. Then there exists a derivation tree T with the result z. Let h be
the height of T (the maximum of path lengths from root to leaves). Because in T all interior
vertices have at most ` descendents, T has at most `h leaves, i.e. |z| ≤ `h. On the other hand,
because of |z| > `m+1, we get that h > m + 1. From this follows that in derivation tree T there
is a path from root to a leave in which there are more than (m + 1) vertices. Consider such a
path. Because in G the number of nonterminals is m and on this path vertices different from
the leaf are labelled with nonterminals, by the pigeonhole principle, it must be a nonterminal
on this path which occurs at least twice.

Let us denote by A the nonterminal being the �rst on this path from root to the leaf
which �rstly repeat. Denote by T ′ the subtree, which root is this occurrence of A. Similarly,
denote by T ′′ the subtree, which root is the second occurrence of A on this path. Let w
be the result of the tree T ′. Then the result of T ′′ is in form vwx, while of T in uvwxy.
Derivation tree T with this decomposition of z can be seen in Fig. 2.36. We show that this
decomposition of z satis�es conditions (1)�(4) of lemma.

Because in P there are no ε-productions (except maybe the case S → ε), we have
|w| ≥ 1. Furthermore, because each interior vertex of the derivation tree has at least two
descendents (namely there are no unit productions), also the root of T ′′ has, hence |vx| ≥ 1.
Because A is the �rst repeated nonterminal on this path, the height of T ′′ is at most m + 1,
and from this |vwx| ≤ `m+1 = n results.

After eliminating from T all vertices of T ′′ excepting the root, the result of obtained
tree is uAy, i.e. S

∗
=⇒

G
uAy.

Similarly, after eliminating T ′ we get A
∗

=⇒
G

vAx, and �nally because of the de�nition

of T ′ we get A
∗

=⇒
G

w. Then S
∗

=⇒
G

uAy, A
∗

=⇒
G

vAx and A
∗

=⇒
G

w. Therefore

S
∗

=⇒
G

uAy
∗

=⇒
G

uwy and S
∗

=⇒
G

uAy
∗

=⇒
G

uvAxy
∗

=⇒
G

. . .
∗

=⇒
G

uviAxiy
∗

=⇒
G

uviwxiy for all
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i ≥ 1. Therefore, for all i ≥ 0 we have S
∗

=⇒ uviwxiy, i.e. for all i ≥ 0 uviwxiy ∈ L(G) .
Now we present two consequences of the lemma.

Corollary 2.30 L2 ⊂ L1.

Proof. This consequence states that there exists a context-sensitive language which is not
context-free. To prove this it is sufficient to �nd a context-sensitive language for which the
lemma is not true. Let this language be L = {ambmcm | m ≥ 1}.

To show that this language is context-sensitive it is enough to give a convenient gram-
mar. In Example 2.2. both grammars are extended context-sensitive, and we know that to
each extended grammar of type i an equivalent grammar of the same type can be associated.

Let n be the natural number associated to L by lemma, and consider the word z = anbncn.
Because of |z| = 3n > n, if L is context-free z can be decomposed in z = uvwxy such that
conditions (1)�(4) are true. We show that this leads us to a contradiction.

Firstly, we will show that word v and x can contain only one type of letters. Indeed if
either v or x contain more than one type of letters, then in word uvvwxxy the order of the
letters will be not the order a, b, c, so uvvwxxy < L(G), which contradicts condition (4) of
lemma.

If both v and x contain at most one type of letters, then in word uwy the number of
different letters will be not the same, so uwy < L(G). This also contradicts condition (4) in
lemma. Therefore L is not context-free.

Corollary 2.31 The class of context-free languages is not closed under the intersection.

Proof. We give two context-free languages which intersection is not context-free. Let N =

{S , A, B}, T = {a, b, c} and
G1 = (N,T, P1, S ) where P1 :

S → AB,
A→ aAb | ab,
B→ cB | c,

and G2 = (N,T, P2, S ), where P2 :
S → AB,
A→ Aa | a,
B→ bBc | bc.

Languages L(G1) = {anbncm | n ≥ 1,m ≥ 1} and L(G2) = {anbmcm | n ≥ 1,m ≥ 1} are
context-free. But

L(G1) ∩ L(G2) = {anbncn | n ≥ 1}
is not context-free (see the proof of the Consequence 2.30).

2.3.4. Normal forms of the context-free languages
In the case of arbitrary grammars the normal form was de�ned (see page 83) as grammars
with no terminals in the left-hand side of productions. The normal form in the case of the
context-free languages will contains some restrictions on the right-hand sides of producti-
ons. Two normal forms (Chomsky and Greibach) will be discussed.
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Chomsky normal form

De�nition 2.32 A context-free grammar G = (N,T, P, S ) is in Chomsky normal form, if all
productions have form A→ a or A→ BC , where A, B,C ∈ N, a ∈ T.

Example 2.31 Grammar G = ({S , A, B,C}, {a, b}, {S → AB, S → CB, C → AS , A→ a, B→ b}, S )
is in Chomsky normal form and L(G) = {anbn | n ≥ 1}.

To each ε-free context-free language can be associated an equivalent grammar is
Chomsky normal form. The next algorithm transforms an ε-free context-free grammar
G = (N,T, P, S ) in grammar G′ = (N′,T, P′, S ) which is in Chomsky normal form.

C--(G,G')
1 N′ ← N
2 eliminate unit productions, and let P′ the new set of productions

(see algorithm E-- on page 82)
3 in P′ replace in each production with at least two letters in right-hand side

all terminals a by a new nonterminal A, and add this nonterminal to N′
and add production A→ a to P′

4 replace all productions B→ A1A2 . . . Ak, where k ≥ 3 and A1, A2, . . . , Ak ∈ N,
by the following:

B → A1C1,
C1 → A2C2,
. . .
Ck−3 → Ak−2Ck−2,
Ck−2 → Ak−1Ak,

where C1,C2, . . . ,Ck−2 are new nonterminals, and add them to N′.

Example 2.32 Let G = ({S ,D}, {a, b, c}, {S → aS c, S → D, D → bD, D → b}, S ). It is easy to
see that L(G) = {anbmcn | n ≥ 0,m ≥ 1}. Steps of transformation to Chomsky normal form are the
following:
Step 1: N′ = {S ,D}
Step 2: After eliminating the unit production S → D the productions are:

S → aS c | bD | b,
D→ bD | b.

Step 3: We introduce three new nonterminals because of the three terminals in productions. Let these
be A, B,C. Then the production are:

S → AS C | BD | b,
D→ BD | b,
A→ a,
B→ b,
C → c.

Step 4: Only one new nonterminal (let this E) must be introduced because of a single production with
three letters in the right-hand side. Therefore N′ = {S , A, B,C,D, E}, and the productions in P′ are:

S → AE | BD | b,
D→ BD | b,
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A→ a,
B→ b,
C → c,
E → S C.

All these productions are in required form.

Greibach normal form

De�nition 2.33 A context-free grammar G = (N,T, P, S ) is in Greibach normal form if
all production are in the form A→ aw, where A ∈ N, a ∈ T, w ∈ N∗.

Example 2.33 Grammar G = ({S , B}, {a, b}, {S → aB, S → aS B, B → b}, S ) is in Greibach normal
form and L(G) = {anbn | n ≥ 1}.

To each ε-free context-free grammar an equivalent grammar in Greibach normal form can
be given. We give and algorithm which transforms a context-free grammar G = (N,T, P, S )
in Chomsky normal form in a grammar G′ = (N′,T, P′, S ) in Greibach normal form.

First, we give an order of the nonterminals: A1, A2, . . . , An, where A1 is the start symbol.
The algorithm will use the notations x ∈ N′+, α ∈ T N′∗ ∪ N′+.

G--(G,G')
1 N′ ← N
2 P′ ← P
3 for i← 2 to n B Case Ai → A jx, j < i
4 do for j← 1 to i − 1
5 do for all productions Ai → A jx and A j → α (where α has no A j as �rst letter)

in P′ productions Ai → αx,
delete from P′ productions Ai → A jx

6 if there is a production Ai → Aix B Case Ai → Aix
7 then put in N′ the new nonterminal Bi,

for all productions Ai → Aix put in P′ productions Bi → xBi and Bi → x,
delete from P′ production Ai → Aix,
for all production Ai → α (where Ai is not the �rst letter of α)
put in P′ production Ai → αBi

8 for i← n − 1 downto 1 B Case Ai → A jx, j > i
9 do for j← i + 1 to n

10 do for all productions Ai → A jx and A j → α
put in P′ production Ai → αx and
delete from P′ productions Ai → A jx,

11 for i← 1 to n B Case Bi → A jx
12 do for j← 1 to n
13 do for all productions Bi → A jx and A j → α

put in P′ production Bi → αx and
delete from P′ productions Bi → A jx
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The algorithm �rst transform productions of the form Ai → A jx, j < i such that
Ai → A jx, j ≥ i or Ai → α, where this latter is in Greibach normal form. After this,
introducing a new nonterminal, eliminate productions Ai → Aix, and using substitutions all
production of the form Ai → A jx, j > i and Bi → A jx will be transformed in Greibach
normal form.

Example 2.34 Transform productions in Chomsky normal form
A1 → A2A3 | A2A4
A2 → A2A3 | a
A3 → A2A4 | b
A4 → c

in Greibach normal form.
Steps of the algorithm:
3�5: Production A3 → A2A4 must be transformed. For this production A2 → a is appropriate. Put

A3 → aA4 in the set of productions and eliminate A3 → A2A4.
The productions will be:

A1 → A2A3 | A2A4
A2 → A2A3 | a
A3 → aA4 | b
A4 → c

6-7: Elimination of production A2 → A2A3 will be made using productions:
B2 → A3B2
B2 → A3
A2 → aB2

Then, after steps 6�7. the productions will be:
A1 → A2A3 | A2A4
A2 → aB2 | a
A3 → aA4 | b
A4 → c
B2 → A3B2 | A3

8�10: We make substitutions in productions with A1 in left-hand side. The results is:
A1 → aA3 | aB2A3 | aA4 | aB2A4

11�13: Similarly with productions with B2 in left-hand side:
B2 → aA4B2 | aA3A4B2 | aA4 | aA3A4

After the elimination in steps 8�13 of productions in which substitutions were made, the follo-
wing productions, which are now in Greibach normal form, result:

A1 → aA3 | aB2A3 | aA4 | aB2A4
A2 → aB2 | a
A3 → aA4 | b
A4 → c
B2 → aA4B2 | aA3A4B2 | aA4 | aA3A4

Example 2.35 Language
L =

{anbkcn+k | n ≥ 0, k ≥ 0, n + k > 0}

can be generated by grammar
G =

{{S ,R}, {a, b, c}, {S → aS c, S → ac, S → R,R→ bRc, R→ bc}, S }

First, will eliminate the single unit production, and after this we will give an equivalent grammar
in Chomsky normal form, which will be transformed in Greibach normal form.
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Productions after the elimination of production S → R:
S → aS c | ac | bRc | bc
R→ bRc | bc.

We introduce productions A → a, B → b,C → c, and replace terminals by the corresponding nonter-
minals:

S → AS C | AC | BRC | BC,
R→ BRC | BC,
A→ a, B→ b, C → c.

After introducing two new nonterminals (D, E):
S → AD | AC | BE | BC,
D→ S C,
E → RC,
R→ BE | BC,
A→ a, B→ b, C → c.

This is now in Chomsky normal form. Replace the nonterminals to be letters Ai as in the algorithm.
Then, after applying the replacements

S replaced by A1, A replaced by A2, B replaced by A3, C replaced by A4, D replaced by A5,
E replaced by A6, R replaced by A7,

our grammar will have the productions:
A1 → A2A5 | A2A4 | A3A6 | A3A4,

A2 → a, A3 → b, A4 → c,
A5 → A1A4,

A6 → A7A4,

A7 → A3A6 | A3A4.

In steps 3�5 of the algorithm the new productions will occur:
A5 → A2A5A4 | A2A4A4 | A3A6A4 | A3A4A4 then
A5 → aA5A4 | aA4A4 | bA6A4 | bA4A4
A7 → A3A6 | A3A4, then
A7 → bA6 | bA4.

Therefore
A1 → A2A5 | A2A4 | A3A6 | A3A4,

A2 → a, A3 → b, A4 → c,
A5 → aA5A4 | aA4A4 | bA6A4 | bA4A4
A6 → A7A4,

A7 → bA6 | bA4.

Steps 6�7 will be skipped, because we have no left-recursive productions. In steps 8�10 after the
appropriate substitutions we have:

A1 → aA5 | aA4 | bA6 | bA4,

A2 → a,
A3 → b,
A4 → c,
A5 → aA5A4 | aA4A4 | bA6A4 | bA4A4
A6 → bA6A4 | bA4A4,

A7 → bA6 | bA4.

Exercises
2.3-1 Give pushdown automata to accept the following languages:

L1 =
{ancbn | n ≥ 0},

L2 =
{anb2n | n ≥ 1},
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L3 =
{a2nbn | n ≥ 0} ∪ {anb2n | n ≥ 0},

2.3-2 Give a context-free grammar to generate language L = {anbncm | n ≥ 0,m ≥ 0}, and
transform it in Chomsky and Greibach normal forms. Give a pushdown automaton which
accepts L.
2.3-3 What languages are generated by the following context-free grammars?

G1 =
({S }, {a, b}, {S → S S a, → b}, S )

, G2 =
({S }, {a, b}, {S → S aS , → b}, S )

2.3-4 Give a context-free grammar to generate words with an equal number of letters a and
b.
2.3-5 Prove, using the pumping lemma, that a language which words contains an equal
number of letters a, b and c can not be context-free.
2.3-6 Let the grammar G = (V,T, P, S ), where

V = {S },
T = {if, then, else, a, c},
P = {S → if a then S, S → if a then S else S, S → c},

Show that word if a then if a then c else c has two different leftmost derivations.
2.3-7 Prove that if L is context-free, then L−1 = {u−1 | u ∈ L} is also context-free.

Problems

2-1. Linear grammars
A grammar G = (N,T, P, S ) which has productions only in the form A → u1Bu2 or A → u,
where A, B ∈ N, u, u1, u2 ∈ T ∗, is called a linear grammar. If in a linear grammar all
production are of the form A → Bu or A → v, then it is called a left-linear grammar. Prove
that the language generated by a left-linear grammar is regular.
2-2. Operator grammars
An ε-free context-free grammar is called operator grammar if in the right-hand side of
productions there are no two successive nonterminals. Show that, for all ε-free context-free
grammar an equivalent operator grammar can be built.
2-3. Complement of context-free languages
Prove that the class of context-free languages is not closed on complement.

Chapter notes
In the de�nition of �nite automata instead of transition function we have used the transition
graph, which in many cases help us to give simpler proofs.

There exist a lot of classical books on automata and formal languages. We mention from
these the following: two books of Aho and Ullman [1, 2] in 1972 and 1973, book of Gécseg
and Peák [7] in 1972, two books of Salomaa [21, 22] in 1969 and 1973, a book of Hopcroft
and Ullman [11] in 1979, a book of Harrison [9] in 1978, a book of Manna [17], which in
1981 was published also in Hungarian. We notice also a book of Sipser [25] in 1997 and
a monograph of Rozenberg and Salomaa [20]. In a book of Lothaire (common name of
French authors) [16] on combinatorics of words we can read on other types of automata.
Paper of Giammarresi and Montalbano [8] generalise the notion of �nite automata. A new
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monograph is of Hopcroft, Motwani and Ullman [10]. In German we recommend the student
book of Asteroth and Baier [3]. The concise description of the transformation in Greibach
normal form is based on this book.

Other books in English: : [4, 5, 6, 12, 13, 14, 15, 18, 19, 23, 24, 26, 27].
At the end of the chapter on compilers another books on the subject are mentioned.
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