

ALGORITHMS
OF INFORMATICS

Volume 3.

APPLICATIONS AND DATA
MANAGEMENT

ELTE EÖTVÖS KIADÓ
Budapest, 2006

Editor: Antal Iványi

Authors: Ulrich Tamm (Chapter 13), László Szirmay-Kalos (14), János Demetrovics and
Attila Sali (15), Ingo Althöfer and Stefan Schwarz (16), Tibor Gyires and László Lakatos

(17), Aurél Galántai and András Jeney (18), Attila Kiss (19)

Validators: Sándor Fridli (Chapter 13), János Vida (14), Attila Kiss (15), Tamás Szántai
(16), János Sztrik (18), András Benczúr (19)

Viktor Belényesi, Pál Dömösi, Gábor Farkas, Péter Gács, János Gonda, Csanád Imreh,
Antal Iványi, Gábor Ivanyos, Antal Járai Zoltán Kása, Imre Kátai, Attila Kovács, Claudia
Leopold, Kornél Locher, János Mayer, András Recski, Lajos Rónyai, Jörg Rothe, Ferenc

Szidarovszky, Béla Vizvári, 2005

ISBN: 963 463 664 0

Published by ELTE EÖTVÖS KIADÓ
Budapest, Szerb utca 21�23.

Hungary
Telephone/facsimile: 411-6740

Internet: http://www.elte.hu/szervezet/eotvos_kiado.html
E-mail: eotvoskiado@ludens.elte.hu

Responsible publisher: András Pándi
Cover design: Antal Iványi

Printed and bound by ???

http://people.inf.elte.hu/bvic/�
http://www.inf.unideb.hu/~domosi/�
http://www.compalg.inf.elte.hu/farkasg�
http://www.cs.bu.edu/fac/gacs/�
mailto:andog@compalg.inf.elte.hu�
http://www.inf.u-szeged.hu/~cimreh/�
http://people.inf.elte.hu/tony/�
http://www.sztaki.hu/~ivanyos/�
http://compalg.inf.elte.hu/~ajarai/�
http://www.cs.ubbcluj.ro/~kasa/�
mailto:Katai@compalg.inf.elte.hu�
http://www.compalg.inf.elte.hu/attila�
http://www.se.e-technik.uni-kassel.de/pm/leopoldE.html�
mailto:locherk@freemail.hu�
http://www.unizh.ch/ior/Pages/Deutsch/Mitglieder/Mayer/Mayer.php�
http://www.cs.bme.hu/recski�
http://www.sztaki.hu/~ronyai/�
http://www.cs.uni-duesseldorf.de/~rothe/�
http://www.sie.arizona.edu/faculty/szidar.html�
http://www.cs.elte.hu/vizvari�
http://www.elte.hu/szervezet/eotvos_kiado.html�
mailto:eotvoskiado@ludens.elte.hu�

Introduction

13. Compression and Decompression

Algorithms for data compression usually proceed as follows. They encode a text over some
�nite alphabet into a sequence of bits, hereby exploiting the fact that the letters of this
alphabet occur with different frequencies. For instance, an �e� occurs more frequently than
a �q� and will therefore be assigned a shorter codeword. The quality of the compression
procedure is then measured in terms of the average codeword length.

So the underlying model is probabilistic, namely we consider a �nite alphabet and a
probability distribution on this alphabet, where the probability distribution re�ects the (re-
lative) frequencies of the letters. Such a pair � an alphabet with a probability distribution �
is called a source. We shall �rst introduce some basic facts from Information Theory. Most
important is the notion of entropy, since the source entropy characterizes the achievable
lower bounds for compressibility.

The source model to be best understood, is the discrete memoryless source. Here the
letters occur independently of each other in the text. The use of pre�x codes, in which no
codeword is the beginning of another one, allows to compress the text down to the entropy of
the source. We shall study this in detail. The lower bound is obtained via Kraft's inequality,
the achievability is demonstrated by the use of Huffman codes, which can be shown to be
optimal.

There are some assumptions on the discrete memoryless source, which are not ful�lled
in most practical situations. Firstly, usually this source model is not realistic, since the letters
do not occur independently in the text. Secondly, the probability distribution is not known
in advance. So the coding algorithms should be universal for a whole class of probability
distributions on the alphabet. The analysis of such universal coding techniques is much
more involved than the analysis of the discrete memoryless source, such that we shall only
present the algorithms and do not prove the quality of their performance. Universal coding
techniques mainly fall into two classes.

Statistical coding techniques estimate the probability of the next letters as accurately as
possible. This process is called modelling of the source. Having enough information about
the probabilities, the text is encoded, where usually arithmetic coding is applied. Here the
probability is represented by an interval and this interval will be encoded.

Dictionary�based algorithms store patterns, which occurred before in the text, in a dicti-
onary and at the next occurrence of a pattern this is encoded via its position in the dictionary.
The most prominent procedure of this kind is due to Ziv and Lempel.

We shall also present a third universal coding technique which falls in neither of these

586 13. Compression and Decompression

two classes. The algorithm due to Burrows and Wheeler has become quite prominent in
recent years, since implementations based on it perform very well in practice.

All algorithms mentioned so far are lossless, i. e., there is no information lost after de-
coding. So the original text will be recovered without any errors. In contrast, there are lossy
data compression techniques, where the text obtained after decoding does not completely
coincide with the original text. Lossy compression algorithms are used in applications like
image, sound, video, or speech compression. The loss should, of course, only marginally
effect the quality. For instance, frequencies not realizable by the human eye or ear can be
dropped. However, the understanding of such techniques requires a solid background in
image, sound or speech processing, which would be far beyond the scope of this paper, such
that we shall illustrate only the basic concepts behind image compression algorithms such
as JPEG.

We emphasize here the recent developments such as the Burrows�Wheeler transform
and the context�tree weighting method. Rigorous proofs will only be presented for the re-
sults on the discrete memoryless source which is best understood but not a very realistic
source model in practice. However, it is also the basis for more complicated source mo-
dels, where the calculations involve conditional probabilities. The asymptotic computational
complexity of compression algorithms is often linear in the text length, since the algorithms
simply parse through the text. However, the running time relevant for practical implemen-
tations is mostly determined by the constants as dictionary size in Ziv-Lempel coding or
depth of the context tree, when arithmetic coding is applied. Further, an exact analysis or
comparison of compression algorithms often heavily depends on the structure of the source
or the type of �le to be compressed, such that usually the performance of compression al-
gorithms is tested on benchmark �les. The most well-known collections of benchmark �les
are the Calgary Corpus and the Canterbury Corpus.

13.1. Facts from information theory
13.1.1. The discrete memoryless source
The source model discussed throughout this chapter is the Discrete Memoryless Source
(DMS). Such a source is a pair (X, P), where X = {1, . . . , a} is a �nite alphabet and P =

(P(1), . . . , P(a)) is a probability distribution on X. A discrete memoryless source can also
be described by a random variable X, where Prob(X = x) = P(x) for all x ∈ X. A word xn =

(x1x2 . . . xn) ∈ Xn is the realization of the random variable (X1 . . . Xn), where the Xi-s are
identically distributed and independent of each other. So the probability Pn(x1x2 . . . xn) =

P(x1) · P(x2) · · · · · P(xn) is the product of the probabilities of the single letters.
Estimations for letter probabilities in natural languages are obtained by statistical met-

hods. If we consider the English language and choose the latin alphabet with an additional
symbol for Space and punctuation marks for X, the probability distribution can be derived
from the frequency table in 13.1 which is obtained from the copy��tting tables used by
professional printers. So P(A) = 0.064, P(B) = 0.014, etc.

Observe that this source model is often not realistic. For instance, in English texts e.g.
the combination `th' occurs more often than `ht'. This could not be the case if an English
text was produced by a discrete memoryless source, since then P(th) = P(t) · P(h) = P(ht).

13.1. Facts from information theory 587

A 64 H 42 N 56 U 31
B 14 I 63 O 56 V 10
C 27 J 3 P 17 W 10
D 35 K 6 Q 4 X 3
E 100 L 35 R 49 Y 18
F 20 M 20 S 56 Z 2
G 14 T 71

Space/Punctuation mark 166

Figure 13.1. Frequency of letters in 1000 characters of English

In the discussion of the communication model it was pointed out that the encoder wants
to compress the original data into a short sequence of binary digits, hereby using a binary
code, i. e., a function c : X −→ {0, 1}∗ =

∞⋃
n=0
{0, 1}n. To each element x ∈ X a codeword c(x)

is assigned. The aim of the encoder is to minimize the average length of the codewords. It
turns out that the best possible data compression can be described in terms of the entropy
H(P) of the probability distribution P. The entropy is given by the formula

H(P) = −
∑

x∈X
P(x) · lg P(x)

where the logarithm is to the base 2. We shall also use the notation H(x) according to the
interpretation of the source as a random variable.

13.1.2. Prefix codes
A code (of variable length) is a function c : X −→ {0, 1}∗, X = {1, . . . , a}. Here
{c(1), c(2), . . . , c(a)} is the set of codewords, where for x = 1, . . . , a the codeword is
c(x) =

(c1(x), c2(x), . . . , cL(x)(x)) where L(x) denotes the length of c(x), i. e., the number
of bits used to present c(x).

In the following example some binary codes for the latin alphabet are presented.
(S P=Space/punctuation mark)

c : a −→ 1, b −→ 10, c −→ 100, d −→ 1000, . . . , z −→ 10 . . . 0︸ ︷︷ ︸
26

, S P −→ 10 . . . 0︸ ︷︷ ︸
27

.

�c : a −→ 00000, b −→ 00001, c −→ 00010, . . . , z −→ 11001, S P −→ 11010. So �c(x) is
the binary representation of the position of letter x in the alphabetic order.

�c : a −→ 0, b −→ 00, c −→ 1, . . . (the further codewords are not important for the
following discussion).

The last code presented has an undesirable property. Observe that the sequence 00 could
either be decoded as b or as aa. Hence the messages encoded using this code are not uniquely
decipherable.

A code c is uniquely decipherable (UDC) , if every word in {0, 1}∗ is representable by
at most one sequence of codewords.

Code c is uniquely decipherable, since the number of 0s between two 1s determines
the next letter in a message encoded using c. Code �c is uniquely decipherable, since every

588 13. Compression and Decompression

letter is encoded with exactly �ve bits. Hence the �rst �ve bits of a sequence of binary digits
are decoded as the �rst letter of the original text, the bits 6 to 10 as the second letter, etc.

A code c is a pre�x code, if for any two codewords c(x) and c(y), x , y, with L(x) ≤ L(y)
holds (c1(x), c2(x), . . . , cL(x)(x)) , (c1(y), c2(y), . . . , cL(x)(y)). So c(x) and c(y) differ in at
least one of the �rst L(x) components.

Messages encoded using a pre�x code are uniquely decipherable. The decoder proceeds
by reading the next letter until a codeword c(x) is formed. Since c(x) cannot be the beginning
of another codeword, it must correspond to letter x ∈ X. Now the decoder continues until
another codeword is formed. The process may be repeated until the end of the message. So
after having found codeword c(x) the decoder instantaneously knows that x ∈ X is the next
letter of the message. Because of this property a pre�x code is also denoted as instantaneous
code. Observe that code c is not instantaneous, since every codeword is the beginning of the
following codewords.

The criterion for data compression is to minimize the average length of the codewords.
So if we are given a source (X, P), where X = {1, . . . , a} and P =

(P(1), P(2), . . . , P(a)) is a
probability distribution on X, the average length L(c) is de�ned by

L(c) =
∑

x∈X
P(x) · L(x) .

If in English texts all letters (incl. Space/punctuation mark) occured with the same fre-
quency, then code c would have an average length of 1

27 (1 + 2 + · · · + 27) = 1
27 · 27·28

2 = 14.
Hence code �c with an average length of 5 would be more appropriate in this case. From the
frequency table of the previous section we know that the occurrence of the letters in English
texts cannot be modelled by the uniform distribution. In this case it is possible to �nd a
better code by assigning short codewords to letters with high probability as demonstrated
by the following pre�x code c with average length L(c) = 3 · 0.266 + 4 · 0.415 + 5 · 0.190 +

6 · 0.101 + 7 · 0.016 + 8 · 0.012 = 4.222.

a −→ 0110, b −→ 010111, c −→ 10001, d −→ 01001 ,
e −→ 110, f −→ 11111, g −→ 111110, h −→ 00100 ,
i −→ 0111, j −→ 11110110, k −→ 1111010, l −→ 01010 ,
m −→ 001010, n −→ 1010, o −→ 1001, p −→ 010011 ,
q −→ 01011010, r −→ 1110, s −→ 1011, t −→ 0011 ,
u −→ 10000, v −→ 0101100, w −→ 001011, x −→ 01011011 ,
y −→ 010010, z −→ 11110111, S P −→ 000 .

We can still do better, if we do not encode single letters, but blocks of n letters for some
n ∈ N. In this case we replace the source (X, P) by (Xn, Pn) for some n ∈ N. Remember
that Pn(x1x2 . . . xn) = P(x1) · P(x2) · · · · · P(xn) for a word (x1x2 . . . xn) ∈ Xn, since the
source is memoryless. If e.g. we are given an alphabet with two letters, X = {a, b} and
P(a) = 0.9, P(b) = 0.1, then the code c de�ned by c(a) = 0, c(b) = 1 has average length
L(c) = 0.9 · 1 + 0.1 · 1 = 1. Obviously we cannot �nd a better code. The combinations of
two letters now have the following probabilities:

P2(aa) = 0.81, P2(ab) = 0.09, P2(ba) = 0.09, P2(bb) = 0.01 .

13.1. Facts from information theory 589

The pre�x code c2 de�ned by

c2(aa) = 0, c2(ab) = 10, c2(ba) = 110, c2(bb) = 111
has average length L(c2) = 1 ·0.81+2 ·0.09+3 ·0.09+3 ·0.01 = 1.29. So 1

2 L(c2) = 0.645
could be interpreted as the average length the code c2 requires per letter of the alphabet X.
When we encode blocks of n letters we are interested in the behaviour of

L(n, P) = min
cUDC

1
n

∑

(x1...xn)∈Xn

Pn(x1 . . . xn)L(x1 . . . xn) = min
cUDC

L(c) .

It follows from the noiseless coding theorem, which is stated in the next section, that
limn−→∞ L(n, P) = H(P), the entropy of the source (X, P).

In our example for the English language we have H(P) ≈ 4.19. So the code presented
above, where only single letters are encoded, is already nearly optimal in respect of L(n, P).
Further compression is possible if we consider the dependencies between the letters.

13.1.3. Kraft's inequality and the noiseless coding theorem
We shall now introduce a necessary and sufficient condition for the existence of a pre�x
code for X = {1, . . . , a} with prescribed word lengths L(1), . . . , L(a).

Theorem 13.1 (Kraft's inequality). Let X = {1, . . . , a}. A pre�x code c : X −→ {0, 1}∗ with
word lengths L(1), . . . , L(a) exists, if and only if

∑

x∈X
2−L(x) ≤ 1.

Proof. The central idea is to interpret the codewords as nodes of a rooted binary tree with
depth T = maxx∈X{L(x)}. The tree is required to be complete (every path from the root to
a leaf has length T) and regular (every inner node has outdegree 2). The example in Figure
13.2 for T = 3 may serve as an illustration.

So the nodes with distance n from the root are labelled with the words xn ∈ {0, 1}n.
The upper successor of x1x2 . . . xn is labelled x1x2 . . . xn0, its lower successor is labelled
x1x2 . . . xn1.

The shadow of a node labelled by x1x2 . . . xn is the set of all the leaves which are
labelled by a word (of length T) beginning with x1x2 . . . xn. In other words, the shadow
of x1 . . . xn consists of the leaves labelled by a sequence with pre�x x1 . . . xn. In our example
{000, 001, 010, 011} is the shadow of the node labelled by 0.

Now assume that we are given a pre�x code with word lengths L(1), . . . , L(a). Every co-
deword corresponds to a node in the binary tree of depth T . Observe that the shadows of any
two codewords are disjoint. If this was not the case, we could �nd a word x1x2 . . . xT , which
has as pre�x two codewords of length s and t, say (w.l.o.g. s < t). But these codewords are
x1x2 . . . xt and x1x2 . . . xs which obviously is a pre�x of the �rst one.

The shadow of codeword c(x) has size 2T−L(x). There are 2T words of length T . For
the sum of the shadow sizes follows ∑

x∈X
2T−L(x) ≤ 2T , since none of these words can be a

590 13. Compression and Decompression

�

R

*

j

j

*

1

q

1

1

q

q

q

1

0

1

00

01

10

11

000

001
010

011

100

101
110

111

Figure 13.2. Example of a code tree.

member of two shadows. Division by 2T yields the desired inequality ∑
x∈X

2−L(x) ≤ 1.
Conversely, suppose we are given positive integers L(1), . . . , L(a). We further assume

that L(1) ≤ L(2) ≤ · · · ≤ L(a). As �rst codeword c(1) = 00 . . . 0︸ ︷︷ ︸
L(1)

is chosen. Since
∑

x∈X
2T−L(x) ≤ 2T , we have 2T−L(1) < 2T (otherwise only one letter has to be encoded). Hence

there are some nodes left on the T�th level, which are not in the shadow of c(1). We pick
the �rst of these remaining nodes and go back T − L(2) steps in the direction of the root.
Since L(2) ≥ L(1), we shall �nd a node labelled by a sequence of L(2) bits, which is not a
pre�x of c(1). So we can choose this sequence as c(2). Now again, either a = 2, and we are
ready, or by the hypothesis 2T−L(1) + 2T−L(2) < 2T and we can �nd a node on the T�th level,
which is not contained in the shadows of c(1) and c(2). We �nd the next codeword as shown
above. The process can be continued until all codewords are assigned.

Kraft's inequality gives a necessary and sufficient condition for the existence of a pre�x
code with codewords of lengths L(1), . . . , L(a). In the following theorem it is shown that this
condition is also necessary for the existence of a uniquely decipherable code. This can be
interpreted in such a way that it is sufficient to consider only pre�x codes, since one cannot
expect a better performance by any other uniquely decipherable code.

Theorem 13.2 (Kraft's inequality for uniquely decipherable codes). A uniquely deciphe-
rable code with prescribed word lengths L(1), . . . , L(a) exists, if and only if

∑

x∈X
2−L(x) ≤ 1.

Proof. Since every pre�x code is uniquely decipherable, the sufficiency part of the proof is
immediate. Now observe that ∑

x∈X
2−L(x) =

T∑
j=1

w j 2− j, where w j is the number of codewords
with length j in the uniquely decipherable code and T again denotes the maximal word

13.1. Facts from information theory 591

length. The s�th power of this term can be expanded as


T∑

j=1
w j 2− j


s

=

T ·s∑

k=s
Nk 2−k.

Here Nk =
∑

i1+···+is=k
wi1 . . .wis is the total number of messages whose coded represen-

tation is of length k. Since the code is uniquely decipherable, to every sequence of k let-

ters corresponds at most one possible message. Hence Nk ≤ 2k and
T ·s∑
k=s

Nk 2−k ≤
T ·s∑
k=s

1 =

T · s − s + 1 ≤ T · s. Taking s�th root this yields
T∑

j=1
w j 2− j ≤ (T · s) 1

s .

Since this inequality holds for any s and lim
s−→∞

(T · s) 1
s = 1, we have the desired result

T∑

j=1
w j 2− j =

∑

x∈X
2−L(x) ≤ 1 .

Theorem 13.3 (Noiseless coding theorem). For a source (X, P), X = {1, . . . , a}, it is al-
ways possible to �nd a uniquely decipherable code c : X −→ {01, }∗ with an average length
of

H(P) ≤ Lmin(P) < H(P) + 1.

Proof. Let L(1), . . . , L(a) denote the codeword lengths of an optimal uniquely decipherable
code. Now we de�ne a probability distribution Q on X = {1, . . . , a} by Q(x) = 2−L(x)

r for
x ∈ X, where r =

a∑
x=1

2−L(x). By Kraft's inequality r ≤ 1.
For two probability distributions P and Q on X the I�divergence D(P||Q) is de�ned by

D(P||Q) =
∑

x∈X
P(x) lg P(x)

Q(x)

I-divergence is a good measure for the distance of two probability distributions. Especially,
always the I�divergence D(P||Q) ≥ 0. So for any probability distribution P

D(P||Q) = −H(P) −
∑

x∈X
P(x) · lg(2−L(x) · r−1) ≥ 0.

From this it follows that
H(P) ≤ − ∑

x∈X
P(x) · lg(2−L(x) · r−1)

=
∑

x∈X
P(x) · L(x) − ∑

x∈X
P(x) · lg r−1 = Lmin(P) + lg r.

Since r ≤ 1, lg r ≤ 0 and hence Lmin(P) ≥ H(P).
In order to prove the right-hand side of the noiseless coding theorem for x = 1, . . . , a

we de�ne L′(x) = d− lg P(x)e. Observe that − lg P(x) ≤ L′(x) < − lg P(x) + 1 and hence

592 13. Compression and Decompression

x P(x) Q(x) Q(x) dlg 1
P(x) e cS (x) cS FE(x)

1 0.25 0 0.125 2 00 001
2 0.2 0.25 0.35 3 010 0101
3 0.11 0.45 0.505 4 0111 10001
4 0.11 0.56 0.615 4 1000 10100
5 0.11 0.67 0.725 4 1010 10111
6 0.11 0.78 0.835 4 1100 11010
7 0.11 0.89 0.945 4 1110 11110

L 3.3 4.3

Figure 13.3. Example of Shannon code and Shannon-Fano-Elias code.

P(x) ≥ 2−L′(x).
So 1 =

∑
x∈X

P(x) ≥ ∑
x∈X

2−L′(x) and from Kraft's Inequality we know that there exists a
uniquely decipherable code with word lengths L′(1), . . . , L′(a). This code has an average
length of

∑

x∈X
P(x) · L′(x) <

∑

x∈X
P(x)(− lg P(x) + 1) = H(P) + 1.

13.1.4. Shannon-Fano-Elias codes and the Shannon-Fano algorithm
In the proof of the noiseless coding theorem it was explicitly shown how to construct a pre�x
code c to a given probability distribution P = (P(1), . . . , P(a)). The idea was to assign to
each x ∈ {1, . . . , a} a codeword of length L(x) = dlg 1

P(x) e by choosing an appropriate vertex
in the tree introduced. However, this procedure does not always yield an optimal code. If
e.g. we are given the probability distribution (1

3 ,
1
3 ,

1
3), we would encode 1 −→ 00, 2 −→ 01,

3 −→ 10 and thus achieve an average codeword length of 2. But the code with 1 −→ 00,
2 −→ 01, 3 −→ 1 has only average length of 5

3 .
Shannon gave an explicit procedure for obtaining codes with codeword lengths dlg 1

P(x) e
using the binary representation of cumulative probabilities (Shannon remarked this pro-
cedure was originally due to Fano). The elements of the source are ordered according to
increasing probabilities P(1) ≥ P(2) ≥ · · · ≥ P(a). Then codeword cS (x) consists of the �rst
dlg 1

P(x) e bits of the binary expansion of the sum Q(x) =
∑

j<x P(j).
This procedure was further developed by Elias . The elements of the source now may

occur in any order. The Shannon-Fano-Elias code has cS FE(x) the �rst dlg 1
P(x) e + 1 bits of

the binary expansion of the sum Q(x) =
∑

j<x P(j) + 1
2 P(x) as codewords.

We shall illustrate these procedures by the example in Figure 13.3.

A more efficient procedure is also due to Shannon and Fano. The Shannon-Fano algo-
rithm will be illustrated by the same example in Figure 13.4:

The messages are �rst written in order of nonincreasing probabilities. Then the message
set is partitioned into two most equiprobable subsets X0 and X1. A 0 is assigned to each

13.1. Facts from information theory 593

x P(x) c(x) L(x)
1 0.25 00 2
2 0.2 01 2
3 0.11 100 3
4 0.11 101 3
5 0.11 110 3
6 0.11 1110 4
7 0.11 1111 4

L(c) 2.77

Figure 13.4. Example of the Shannon-Fano algorithm.

message contained in the �rst subset and a 1 to each of the remaining messages. The same
procedure is repeated for subsets of X0 and X1; that is, X0 will be partitioned into two
subsets X00 and X01. Now the code word corresponding to a message contained in X00 will
start with 00 and that corresponding to a message in X01 will begin with 01. This procedure
is continued until each subset contains only one message.

However, this algorithm does not yield an optimal code in general, since the pre�x code
1 −→ 01, 2 −→ 000, 3 −→ 001, 4 −→ 110, 5 −→ 111, 6 −→ 100, 7 −→ 101 has an average
length of 2.75.

13.1.5. The Huffman coding algorithm
The Huffman coding algorithm is a recursive procedure which we shall illustrate with
the same example as for the Shannon-Fano algorithm in Figure 13.5 with px = P(x) and
cx = c(x). The source is successively reduced by one element. In each reduction step we
add up the two smallest probabilities and insert their sum P(a) + P(a−1) in the increasingly
ordered sequence P(1) ≥ · · · ≥ P(a − 2), thus obtaining a new probability distribution P′
with P′(1) ≥ · · · ≥ P′(a − 1). Finally we arrive at a source with two elements ordered
according to their probabilities. The �rst element is assigned a 0, the second element a 1.
Now we again �blow up� the source until the original source is restored. In each step c(a−1)
and c(a) are obtained by appending 0 or 1, respectively, to the codeword corresponding to
P(a) + P(a − 1).

Correctness
The following theorem demonstrates that the Huffman coding algorithm always yields

a pre�x code optimal with respect to the average codeword length.

Theorem 13.4 We are given a source (X, P), where X = {1, . . . , a} and the probabilities
are ordered non�increasingly: P(1) ≥ P(2) ≥ · · · ≥ P(a). A new probability distribution is
de�ned by

P′ =
(P(1), . . . , P(a − 2), P(a − 1) + P(a)).

Let c′ =
(c′(1), c′(2), . . . , c′(a − 1)) be an optimal pre�x code for P′. Now we de�ne a

code c for the distribution P by

594 13. Compression and Decompression

p1 0.25 p1 0.25 p1 0.25 P23 0.31 p4567 0.44 p123 0.56
p2 0.2 p67 0.22 p67 0.22 p1 0.25 p23 0.31 p4567 0.44
p3 0.11 p2 0.2 p45 0.22 p67 0.22 p1 0.25
p4 0.11 p3 0.11 p2 0.2 p45 0.22
p5 0.11 p4 0.11 p3 0.11
P6 0.11 p5 0.11
p7 0.11

C123 0 c4567 1 c23 00 c1 01 c1 01 c1 01
c4567 1 c23 00 c1 01 c67 10 c67 10 c2 000

c1 01 c67 10 c45 11 c2 000 c3 001
c45 11 c2 000 c3 001 c4 110

c3 001 c4 110 c5 111
c5 111 c6 100

c7 101

Figure 13.5. Example of a Huffman code.

c(x) = c′(x) for x = 1, . . . , a − 2,

c(a − 1) = c′(a − 1)0,

c(a) = c′(a − 1)1.

In this case c is an optimal pre�x code for P and Lmin(P) − Lmin(P′) = p(a − 1) + p(a).
Proof. For a probability distribution P on X = {1, . . . , a} with P(1) ≥ P(2) ≥ · · · ≥ P(a)
there exists an optimal pre�x code c with
i) L(1) ≤ L(2) ≤ · · · ≤ L(a)

ii) L(a − 1) = L(a)
iii) c(a − 1) and c(a) differ exactly in the last position.

This holds, since:
i) Assume that there are x, y ∈ X with P(x) ≥ P(y) and L(x) > L(y). In this case the code

c′ obtained by interchanging codewords c(x) and c(y) has average length L(c′) ≤ L(c),
since

L(c′) − L(c) = P(x) · L(y) + P(y) · L(x) − P(x) · L(x) − P(y) · L(y)
= (P(x) − P(y)) · (L(y) − L(x)) ≤ 0

ii) Assume we are given a code c′ with L(1) ≤ · · · ≤ L(a−1) < L(a). Because of the pre�x
property we may drop the last L(a) − L(a − 1) bits of c′(a) and thus obtain a new code
c with L(a) = L(a − 1).

iii) If no two codewords of maximal length agree in all places but the last, then we may
drop the last digit of all such codewords to obtain a better code.

13.1. Facts from information theory 595

Now we are ready to prove the statement from the theorem. From the de�nition of c
and c′ we have

Lmin(P) ≤ L(c) = L(c′) + p(a − 1) + p(a).

Now let c′′ be an optimal pre�x code with the properties ii) and iii) from the preceding
lemma. We de�ne a pre�x code c′′′ for

P′ = (P(1), . . . , P(a − 2), P(a − 1) + P(a))

by c′′′(x) = c′′(x) for x = 1, . . . , a− 2 and c′′′(a− 1) is obtained by dropping the last bit
of c′′(a − 1) or c′′(a).

Now
Lmin(P) = L(c′′) = L(c′′′) + P(a − 1) + P(a)

≥ Lmin(P′) + P(a − 1) + P(a)

and hence Lmin(P) − Lmin(P′) = P(a − 1) + P(a), since L(c′) = Lmin(P′).

Analysis
If a denotes the size of the source alphabet, the Huffman coding algorithm needs a − 1

additions and a− 1 code modi�cations (appending 0 or 1). Further we need a− 1 insertions,
such that the total complexity can be roughly estimated to be O(a lg a). However, observe
that with the noiseless coding theorem, the quality of the compression rate can only be
improved by jointly encoding blocks of, say, k letters, which would result in a Huffman
code of size ak for the source Xk. So, the price of better compression is a rather drastic
increase in complexity. Further, the codewords for all ak letters have to be stored. Encoding
a sequence of n letters can therefore be done in O(n

k · (ak lg ak)) steps.

Exercises
13.1-1 Show that the code c : {a, b} −→ {0, 1}∗ with c(a) = 0 and c(b) = 0 . . . 01︸ ︷︷ ︸

n

is uniquely

decipherable but not instantaneous for any n > 0.
13.1-2 Compute the entropy of the source (X, P), with X = {1, 2} and P = (0.8, 0.2).
13.1-3 Find the Huffman codes and the Shannon-Fano codes for the sources (Xn, Pn) with
(X, P) as in the previous exercise for n = 1, 2, 3 and calculate their average codeword
lengths.
13.1-4 Show that 0 ≤ H(P) ≤ lg |X| for every source.
13.1-5 Show that the redundancy ρ(c) = L(c) − H(P) of a pre�x code c for a source with
probability distribution P can be expressed as a special I�divergence.
13.1-6 Show that the I-divergence D(P||Q) ≥ 0 for all probability distributions P and Q
over some alphabet X with equality exactly if P = Q, but that the I�divergence is not a
metric.

596 13. Compression and Decompression

13.2. Arithmetic coding and modelling
In statistical coding techniques as Shannon-Fano or Huffman coding the probability distri-
bution of the source is modelled as accurately as possible and then the words are encoded
such that a higher probability results in a shorter codeword length.

We know that Huffman codes are optimal with respect to the average codeword length.
However, the entropy is approached by increasing the block length. On the other hand, for
long blocks of source symbols, Huffman coding is a rather complex procedure, since it
requires the calculation of the probabilities of all sequences of the given block length and
the construction of the corresponding complete code.

For compression techniques based on statistical methods often arithmetic coding is
preferred. Arithmetic coding is a straightforward extension of the Shannon-Fano-Elias code.
The idea is to represent a probability by an interval. In order to do so, the probabilities
have to be calculated very accurately. This process is denoted as modelling of the source .
So statistical compression techniques consist of two stages: modelling and coding. As just
mentioned, coding is usually done by arithmetic coding. The different algorithms like, for
instance, DCM (Discrete Markov Coding) and PPM (Prediction by Partial Matching) vary
in the way of modelling the source. We are going to present the context�tree weighting
method, a transparent algorithm for the estimation of block probabilities due to Willems,
Shtarkov, and Tjalkens, which also allows a straightforward analysis of the efficiency.

13.2.1. Arithmetic coding
The idea behind arithmetic coding is to represent a message xn = (x1 . . . xn) by interval
I(xn) = [Qn(xn),Qn(xn) + Pn(xn)), where Qn(xn) =

∑
yn<xn Pn(yn) is the sum of the probabi-

lities of those sequences which are smaller than xn in lexicographic order.
A codeword c(xn) assigned to message xn also corresponds to an interval. Namely, we

identify codeword c = c(xn) of length L = L(xn) with interval J(c) = [bin(c), bin(c) + 2−L),
where bin(c) is the binary expansion of the nominator in the fraction c

2L . The special choice
of codeword c(xn) will be obtained from Pn(xn) and Qn(xn) as follows:

L(xn) = dlg 1
Pn(xn) e + 1, bin(c) = dQn(xn) · 2L(xn)e.

So message xn is encoded by a codeword c(xn), whose interval J(xn) is inside interval
I(xn).

Let us illustrate arithmetic coding by the following example of a discrete memoryless
source with P(1) = 0.1 and n = 2.

xn Pn(xn) Qn(xn) L(xn) c(xn)
00 0.81 0.00 2 00
01 0.09 0.81 5 11010
10 0.09 0.90 5 11101
11 0.01 0.99 8 11111110

At �rst glance it may seem that this code is much worse than the Huffman code
for the same source with codeword lengths (1, 2, 3, 3) we found previously. On the other
hand, it can be shown that arithmetic coding always achieves an average codeword length

13.2. Arithmetic coding and modelling 597

L(c) < H(Pn) + 2, which is only two bits apart from the lower bound in the noiseless
coding theorem. Huffman coding would usually yield an even better code. However, this
�negligible� loss in compression rate is compensated by several advantages. The codeword
is directly computed from the source sequence, which means that we do not have to store
the code as in the case of Huffman coding. Further, the relevant source models allow to
easily compute Pn(x1x2 . . . xn−1xn) and Qn(x1x2 . . . xn−1xn) from Pn−1(x1x2 . . . xn−1), usually
by multiplication by P(xn). This means that the sequence to be encoded can be parsed se-
quentially bit by bit, unlike in Huffman coding, where we would have to encode blockwise.

Encoding: The basic algorithm for encoding a sequence (x1 . . . xn) by arithmetic coding
works as follows. We assume that Pn(x1 . . . xn) = P1(x1) · P2(x2) · · · Pn(xn), (in the case
Pi = P for all i the discrete memoryless source arises, but in the section on modelling more
complicated formulae come into play) and hence Qi(xi) =

∑
y<xi Pi(xi)

Starting with B0 = 0 and A0 = 1 the �rst i letters of the text to be compressed determine
the current interval [Bi, Bi + Ai). These current intervals are successively re�ned via the
recursions

Bi+1 = Bi + Ai · Qi(xi), Ai+1 = Ai · Pi(xi)

Ai · Pi(x) is usually denoted as augend. The �nal interval [Bn, Bn + An) =

[Qn(xn),Qn(xn) + Pn(xn)) will then be encoded by interval J(xn) as described above. So
the algorithm looks as follows.

A�E(x)
1 B← 0
2 A← 1
3 for i← 1 to n
4 B← B + A · Qi(x[i])
5 do A← A · Pi(x[i])
6 L← dlg 1

A e + 1
7 c← dB · 2Le
8 return c
We shall illustrate the encoding procedure by the following example from the literature.

Let the discrete, memoryless source (X, P) be given with ternary alphabet X = {1, 2, 3} and
P(1) = 0.4, P(2) = 0.5, P(3) = 0.1. The sequence x4 = (2, 2, 2, 3) has to be encoded.
Observe that Pi = P and Qi = Q for all i = 1, 2, 3, 4. Further Q(1) = 0, Q(2) = P(1) = 0.4,
and Q(3) = P(1) + P(2) = 0.9.

The above algorithm yields

i Bi Ai
0 0 1
1 B0 + A0 · Q(2) = 0.4 A0 · P(2) = 0.5
2 B1 + A1 · Q(2) = 0.6 A1 · P(2) = 0.25
3 B2 + A2 · Q(2) = 0.7 A2 · P(2) = 0.125
4 B3 + A3 · Q(3) = 0.8125 A3 · P(3) = 0.0125

Hence Q(2, 2, 2, 3) = B4 = 0.8125 and P(2, 2, 2, 3) = A4 = 0.0125. From this can be
calculated that L = dlg 1

A e + 1 = 8 and �nally dB · 2Le = d0.8125 · 256e = 208 whose binary
representation is codeword c(2, 2, 2, 3) = 11010000.

598 13. Compression and Decompression

Decoding: Decoding is very similar to encoding. The decoder recursively "undoes" the
encoder's recursion. We divide the interval [0, 1) into subintervals with bounds de�ned by
Qi. Then we �nd the interval in which codeword c can be found. This interval determines
the next symbol. Then we subtract Qi(xi) and rescale by multiplication by 1

Pi(xi) .
A�D(c)
1 for i← 1 to n
2 do j← 1
3 while (c < Qi(j)) do j← j + 1
4 x[i]← j − 1
5 c← (c − Qi(x[i]))/Pi(x[i])
6 return x
Observe that when the decoder only receives codeword c he does not know when the

decoding procedure terminates. For instance c = 0 can be the codeword for x1 = (1),
x2 = (1, 1), x3 = (1, 1, 1), etc. In the above pseudocode it is implicit that the number n
of symbols has also been transmitted to the decoder, in which case it is clear what the
last letter to be encoded was. Another possibility would be to provide a special end-of-�le
(EOF)-symbol with a small probability, which is known to both the encoder and the decoder.
When the decoder sees this symbol, he stops decoding. In this case line 1 would be replaced
by

1 while (x[i] , EOF)
(and i would have to be increased). In our above example, the decoder would receive

the codeword 11010000, the binary expansion of 0.8125 up to L = 8 bits. This number falls
in the interval [0.4, 0.9) which belongs to the letter 2, hence the �rst letter x1 = 2. Then
he calculates (0.8075 − Q(2)) 1

P(2) = (0.815 − 0.4) · 2 = 0.83. Again this number is in the
interval [0.4, 0.9) and the second letter is x2 = 2. In order to determine x3 the calculation
(0.83 − Q(2)) 1

P(2) = (0.83 − 0.4) · 2 = 0.86 must be performed. Again 0.86 ∈ [0.4, 0.9) such
that also x3 = 2. Finally (0.86 − Q(2)) 1

P(2) = (0.86 − 0.4) · 2 = 0.92. Since 0.92 ∈ [0.9, 1),
the last letter of the sequence must be x4 = 3.

Correctness
Recall that message xn is encoded by a codeword c(xn), whose interval J(xn) is inside

interval I(xn). This follows from dQn(xn) · 2L(xn)e2−L(xn) + 2−L(xn) < Qn(xn) + 21−L(xn) =

Qn(xn) + 2−dlg 1
Pn(xn) e ≤ Qn(xn) + Pn(xn).

Obviously a pre�x code is obtained, since a codeword can only be a pre�x of another
one, if their corresponding intervals overlap � and the intervals J(xn) ⊂ I(xn) are obviously
disjoint for different n-s.

Further, we mentioned already that arithmetic coding compresses down to the entropy
up to two bits. This is because for every sequence xn it is L(xn) < lg 1

Pn(xn) + 2. It can also
be shown that the additional transmission of block length n or the introduction of the EOF
symbol only results in a negligible loss of compression.

However, the basic algorithms we presented are not useful in order to compress longer
�les, since with increasing block length n the intervals are getting smaller and smaller, such
that rounding errors will be unavoidable. We shall present a technique to overcome this
problem in the following.

Analysis
The basic algorithm for arithmetic coding is linear in the length n of the sequence to be

13.2. Arithmetic coding and modelling 599

encoded. Usually, arithmetic coding is compared to Huffman coding. In contrast to Huffman
coding, we do not have to store the whole code, but can obtain the codeword directly from
the corresponding interval. However, for a discrete memoryless source, where the probabi-
lity distribution Pi = P is the same for all letters, this is not such a big advantage, since the
Huffman code will be the same for all letters (or blocks of k letters) and hence has to be
computed only once. Huffman coding, on the other hand, does not use any multiplications
which slow down arithmetic coding.

For the adaptive case, in which the Pi's may change for different letters xi to be en-
coded, a new Huffman code would have to be calculated for each new letter. In this case,
usually arithmetic coding is preferred. We shall investigate such situations in the section on
modelling.

For implementations in practice �oating point arithmetic is avoided. Instead, the sub-
division of the interval [0, 1) is represented by a subdivision of the integer range 0, . . . , M,
say, with proportions according to the source probabilities. Now integer arithmetic can be
applied, which is faster and more precise.

Precision problem.
In the basic algorithms for arithmetic encoding and decoding the shrinking of the cur-

rent interval would require the use of high precision arithmetic for longer sequences. Furt-
her, no bit of the codeword is produced until the complete sequence xn has been read in.
This can be overcome by coding ech bit as soon as it is known and then double the length of
the current interval [LO,HI), say, so that this expansion represents only the unknown part
of the interval. This is the case when the leading bits of the lower and upper bound are the
same, i. e. the interval is completely contained either in [0, 1

2) or in [1
2 , 1). The following

expansion rules guarantee that the current interval does not become too small.
Case 1 ([LO,HI) ∈ [0, 1

2)): LO← 2 · Lo, HI ← 2 · HI.
Case 2 ([LO,HI) ∈ [1

2 , 1)): LO← 2 · LO − 1, HI ← 2 · HI − 1.
Case 3 (1

4 ≤ LO < 1
2 ≤ HI < 3

4): LO← 2 · LO − 1
2 , HI ← 2 · HI − 1

2 .
The last case called under�ow (or follow) prevents the interval from shrinking too

much when the bounds are close to 1
2 . Observe that if the current interval is contained

in [1
4 ,

3
4) with LO < 1

2 ≤ HI, we do not know the next output bit, but we do know that
whatever it is, the following bit will have the opposite value. However, in contrast to the
other cases we cannot continue encoding here, but have to wait (remain in the under�ow
state and adjust a counter under f lowcount to the number of subsequent under�ows, i. e.
under f lowcount ← under f lowcount + 1) until the current interval falls into either [0, 1

2) or
[1

2 , 1). In this case we encode the leading bit of this interval � 0 for [0, 1
2) and 1 for [1

2 , 1) �
followed by under f lowcount many inverse bits and then set under f lowcount = 0. The pro-
cedure stops, when all letters are read in and the current interval does not allow any further
expansion.

A--(x)
1 LO← 0
2 HI ← 1
3 A← 1
4 under f lowcount ← 0
5 for i← 1 to n
6 do LO← LO + Qi(x[i]) · A

600 13. Compression and Decompression

7 A← Pi(x[i])
8 HI ← LO + A
9 while HI − LO < 1

2 AND NOT (LO < 1
4 AND HI ≥ 1

2)
10 do if HI < 1

2
11 then c← c||0, under f lowcount many 1s
12 under f lowcount ← 0
13 LO← 2 · LO
14 HI ← 2 · HI
15 else if LO ≥ 1

2
16 then c← c||1, under f lowcount many 0s
17 under f lowcount ← 0
18 LO← 2 · LO − 1
19 HI ← 2 · HI − 1
20 else if LO ≥ 1

4 AND HI < 3
4

21 then under f lowcount ← under f lowcount + 1
22 LO← 2 · LO − 1

2
23 HI ← 2 · HI − 1

2
24 if under f lowcount > 0
25 then c← c||0, under f lowcount many 1s)
26 return c
We shall illustrate the encoding algorithm in Figure 13.6 by our example � the en-

coding of the message (2, 2, 2, 3) with alphabet X = {1, 2, 3} and probability distribution
P = (0.4, 0.5, 0.1). An under�ow occurs in the sixth row: we keep track of the under�ow
state and later encode the inverse of the next bit, here this inverse bit is the 0 in the ninth
row. The encoded string is 1101000.

Precision � decoding involves the consideration of a third variable besides the interval
bounds LO and HI.

13.2.2. Modelling
Modelling of memoryless sources with The Krichevsky-Tro�mov Estimator
In this section we shall only consider binary sequences xn ∈ {0, 1}n to be compressed by
an arithmetic coder. Further, we shortly write P(xn) instead of Pn(xn) in order to allow
further subscripts and superscripts for the description of the special situation. Pe will denote
estimated probabilities, Pw weighted probabilities, and Ps probabilities assigned to a special
context s.

The application of arithmetic coding is quite appropriate if the probability distribution
of the source is such that P(x1x2 . . . xn−1xn) can easily be calculated from P(x1x2 . . . xn−1).
Obviously this is the case, when the source is discrete and memoryless, since then
P(x1x2 . . . xn−1xn) = P(x1x2 . . . xn−1) · P(xn).

Even when the underlying parameter θ = P(1) of a binary, discrete memoryless source
is not known, there is an efficient way due to Krichevsky and Tro�mov to estimate the
probabilities via

P(Xn = 1|xn−1) =
b + 1

2
a + b + 1 ,

13.2. Arithmetic coding and modelling 601

Current Subintervals
Interval Action 1 2 3 Input

[0.00, 1.00) subdivide [0.00, 0.40) [0.40, 0.90) [0.90, 1.00) 2
[0.40, 0.90) subdivide [0.40, 0.60) [0.60, 0.85) [0.85, 0.90) 2
[0.60, 0.85) encode 1

expand [1
2 , 1)

[0.20, 0.70) subdivide [0.20, 0.40) [0.40, 0.65) [0.65, 0.70) 2
[0.40, 0.65) under�ow

expand [1
4 ,

3
4)

[0.30, 0.80) subdivide [0.30, 0.50) [0.50, 0.75) [0.75, 0.80) 3
[0.75, 0.80) encode 10

expand [1
2 , 1)

[0.50, 0.60) encode 1
expand [1

2 , 1)
[0.00, 0.20) encode 0

expand [0, 1
2)

[0.00, 0.40) encode 0
expand [0, 1

2)
[0.00, 0.80) encode 0

Figure 13.6. Example of Arithmetic encoding with interval expansion.

a b 0 1 2 3 4 5
0 1 1/2 3/8 5/16 35/128 63/256
1 1/2 1/8 1/16 5/128 7/256 21/1024
2 3/8 1/16 3/128 3/256 7/1024 9/2048
3 5/16 5/128 3/256 5/1024 5/2048 45/32768

Figure 13.7. Table of the �rst values for the Krichevsky-Tro�mov estimator.

where a and b denote the number of 0s and 1s, respectively, in the sequence xn−1 =

(x1x2 . . . xn−1). So given the sequence xn−1 with a many 0s and b many 1s, the probability
that the next letter xn will be a 1 is estimated as b+ 1

2
a+b+1 . The estimated block probability of a

sequence containing a zeros and b ones then is

Pe(a, b) =

1
2 · · · (a − 1

2) 1
2 · · · (b − 1

2)
1 · 2 · · · (a + b)

with initial values a = 0 and b = 0 as in Figure 13.7, where the values of the Krichevsky-
Tro�mov estimator Pe(a, b) for small (a, b) are listed.

Note that the summand 1
2 in the nominator guarantees that the probability for the next

letter to be a 1 is positive even when the symbol 1 did not occur in the sequence so far.
In order to avoid in�nite codeword length, this phenomenon has to be carefully taken into
account when estimating the probability of the next letter in all approaches to estimate the
parameters, when arithmetic coding is applied.

602 13. Compression and Decompression

???????

θ1

θ10

θ00

0 11100100 1

Figure 13.8. An example for a tree source.

Models with known context tree
In most situations the source is not memoryless, i. e., the dependencies between the letters
have to be considered. A suitable way to represent such dependencies is the use of a suffix
tree, which we denote as context tree. The context of symbol xt is suffix s preceding xt. To
each context (or leaf in the suffix tree) s there corresponds a parameter θs = P(Xt = 1|s),
which is the probability of the occurrence of a 1 when the last sequence of past source
symbols is equal to context s (and hence 1 − θs is the probability for a 0 in this case). We
are distinguishing here between the model (the suffix tree) and the parameters (θs).

13.1. Example. Let S = {00, 10, 1} and θ00 = 1
2 , θ10 = 1

3 , and θ1 = 1
5 . The corresponding suffix tree

jointly with the parsing process for a special sequence can be seen in Figure 13.8.

The actual probability of the sequence '0100111' given the past '. . . 010' is
Ps(0100111| . . . 010) = (1 − θ10)θ00(1 − θ1)(1 − θ10)θ00θ1θ1 = 2

3 · 1
2 · 4

5 · 2
3 · 1

2 · 1
5 · 1

5 = 4
1075 ,

since the �rst letter 0 is preceded by suffix 10, the second letter 1 is preceded by suffix 00,
etc.

Suppose the model S is known, but not the parameters θs. The problem now is to �nd
a good coding distribution for this case. The tree structure allows to easily determine which
context precedes a particular symbol. All symbols having the same context (or suffix) s ∈ S
form a memoryless source subsequence whose probability is determined by the unknown
parameter θs. In our example these subsequences are '11' for θ00, '00' for θ10 and '011' for
θ1. One uses the Krichevsky-Tro�mov-estimator for this case. To each node s in the suffix
tree, we count the numbers as of zeros and bs of ones preceded by suffix s. For the children
0s and 1s of parent node s obviously a0s + a1s = as and b0s + b1s = bs must be satis�ed.

In our example (aλ, bλ) = (3, 4) for the root λ, (a1, b1) = (1, 2), (a0, b0) = (2, 2)
and (a10, b10) = (2, 0), (a00, b00) = (0, 2). Further (a11, b11) = (0, 1), (a01, b01) = (1, 1),
(a111, b111) = (0, 0), (a011, b011) = (0, 1), (a101, b101) = (0, 0),(a001, b001) = (1, 1),
(a110, b110) = (0, 0), (a010, b010) = (2, 0), (a100, b100) = (0, 2), and (a000, b000) = (0, 0). These
last numbers are not relevant for our special source S but will be important later on, when
the source model or the corresponding suffix tree, respectively, is not known in advance.

13.2. Example. Let S = {00, 10, 1} as in the previous example. Encoding a subsequence is done by
successively updating the corresponding counters for as and bs. For example, when we encode the

13.2. Arithmetic coding and modelling 603

sequence '0100111' given the past '. . . 010' using the above suffix tree and Krichevsky�Tro�mov�
estimator we obtain

Ps
e(0100111| . . . 010) =

1
2 ·

1
2 ·

1
2 ·

3
4 ·

3
4 ·

1
4 ·

1
2 =

3
8 ·

3
8 ·

1
16 =

9
1024 ,

where 3
8 , 3

8 and 1
16 are the probabilities of the subsequences '11', '00' and '011' in the context of the

leaves. These subsequences are assumed to be memoryless.

The context-tree weighting method
Suppose we have a good coding distribution P1 for source 1 and another one, P2, for source
2. We are looking for a good coding distribution for both sources. One possibility is to
compute P1 and P2 and then 1 bit is needed to identify the best model which then will be
used to compress the sequence. This method is called selecting. Another possibility is to
employ the weighted distribution, which is

Pw(xn) =
P1(xn) + P2(xn)

2 .

We shall present now the context-tree weighting algorithm . Under the assumption that
a context tree is a full tree of depth D, only as and bs, i. e. the number of zeros and ones in
the subsequence of bits preceded by context s, are stored in each node s of the context tree.

Further, to each node s is assigned a weighted probability Ps
w which is recursively de�-

ned as
Ps

w =

{ Pe(as,bs)+P0s
w P1s

w
2 for 0 ≤ L(s) < D,

Pe(as, bs) for L(s) = D,
where L(s) describes the length of the (binary) string s and Pe(as, bs) is the estimated pro-
bability using the Krichevsky - Tro�mov estimator.

13.3. Example. After encoding the sequence '0100111' given the past '. . . 010' we obtain the context
tree of depth 3 in Figure 13.9. The weighted probability Pwλ = 35

4096 of the root node λ �nally yields
the coding probability corresponding to the parsed sequence.

Recall that for the application in arithmetic coding it is important that probabilities
P(x1 . . . xn−10) and P(x1 . . . xn−11) can be efficiently calculated from P(x1 . . . xn). This is
possible with the context�tree weighting method, since the weighted probabilities Ps

w only
have to be updated, when s is changing. This just occurs for the contexts along the path from
the root to the leaf in the context tree preceding the new symbol xn � namely the D + 1
contexts xn−1, . . . , xn−i for i = 1, . . . ,D − 1 and the root λ. Along this path, as = as + 1 has
to be performed, when xn = 0, and bs = bs + 1 has to be performed, when xn = 1, and the
corresponding probabilities Pe(as, bs) and Ps

w have to be updated.
This suggests the following algorithm for updating the context tree

CT (x1, . . . , xn−1|x−D+1, . . . x0) when reading the next letter xn. Recall that to each
node of the tree we store the parameters (as, bs), Pe(as, bs) and Ps

w. These parameters have
to be updated in order to obtain CT (x1, . . . , xn|x−D+1, . . . x0). We assume the convention that
the ordered pair (xn−1, xn) denotes the root λ.

U--(xn,CT (x1 . . . xn−1|x−D+1 . . . x0))

604 13. Compression and Decompression

6

?

(0,0)

(0,1)

(0,0)

(1,1)

(0,0)

(2,0)

(0,2)

(0,0)

P010
w = 3/8

P11
w = 1/2

P011
w = 1/2

P001
w = 1/8

P100
w = 3/8

P01
w = 1/8

P10
w = 3/8

P00
w = 3/8

P1
w = 1/16

Pλw = 35/4096

P0
w = 21/256

1

0(2,2)

(2,0)

(0,2)

(1,1)

(0,1)

(1,2)

(3,4)

Figure 13.9. Weighted context tree for source sequence '0100111' with past . . . 010. The pair (as, bs) denotes as
zeros and bs ones preceded by the corresponding context s. For the contexts s = 111, 101, 110, 000 it is Ps

w =
Pe(0, 0) = 1.

1 s← (xn−1 . . . xn−D)
2 if xn = 0
3 then Ps

w ← Ps
w · as+1/2

as+bs+1
4 as ← as + 1
5 else Ps

w ← Ps
w · bs+1/2

as+bs+1
6 bs ← bs + 1
7 for i← 1 to D
8 do s← (xn−1, . . . , xn−D+i)
9 if xn = 0
10 then Pe(as, bs)← Pe(as, bs) · as+1/2

as+bs+1
11 as ← as + 1
12 else Pe(as, bs)← Pe(as, bs) · as+1/2

as+bs+1
13 bs ← bs + 1
14 Ps

w ← 1
2 · (Pe(as, bs) + P0s

w · P1s
w)

15 return Ps
w

The probability Pλ
w assigned to the root in the context tree will be used for the successive

subdivisions in arithmetic coding. Initially, before reading x1, the parameters in the context
tree are (as, bs) = (0, 0), Pe(as, bs) = 1, and Ps

w = 1 for all contexts s in the tree. In
our example the updates given the past (x−2, x−1, x0) = (0, 1, 0) would yield the successive
probabilities Pλ

w: 1
2 for x1 = 0, 9

32 for (x1x2) = (01), 5
64 for (x1x2x3) = (010), 13

256 for
(x1x2x3x4) = (0100), 27

1024 for (x1x2x3x4) = (01001), 13
1024 for (x1x2x3x4x5) = (010011), 13

1024
for (x1x2x3x4x5x6) = (010011), and �nally 35

4096 for (x1x2x3x4x5x6x7) = (0100111).

13.2. Arithmetic coding and modelling 605

Correctness
Recall that the quality of a code concerning its compression capability is measured

with respect to the average codeword length. The average codeword length of the best code
comes as close as possible to the entropy of the source. The difference between the average
codeword length and the entropy is denoted as the redundancy ρ(c) of code c, hence

ρ(c) = L(c) − H(P),

which obviously is the weighted (by P(xn)) sum of the individual redundancies

ρ(xn) = L(xn) − lg 1
P(xn) .

The individual redundancy ρ(xn|S) of sequences xn given the (known) source S for all
θs ∈ [0, 1] for s ∈ S, |S| ≤ n is bounded by

ρ(xn|S) ≤ |S|2 lg n
|S| + |S| + 2.

The individual redundancy ρ(xn|S) of sequences xn using the context�tree weighting
algorithm (and hence a complete tree of all possible contexts as model S) is bounded by

ρ(xn|S) < 2|S| − 1 +
|S|
2 lg n

|S| + |S| + 2.

Comparing these two formulae, we see that the difference of the individual redundan-
cies is 2|S| − 1 bits. This can be considered as the cost of not knowing the model, i.e. the
model redundancy. So, the redundancy splits into the parameter redundancy, i. e. the cost
of not knowing the parameter, and the model redundancy. It can be shown that the expected
redundancy behaviour of the context�tree weighting method achieves the asymptotic lower
bound due to Rissanen who could demonstrate that about 1

2 lg n bits per parameter is the
minimum possible expected redundancy for n −→ ∞.

Analysis
The computational complexity is proportional to the number of nodes that are visi-

ted when updating the tree, which is about n(D + 1). Therefore, the number of operations
necessary for processing n symbols is linear in n. However, these operations are mainly
multiplications with factors requiring high precision.

As for most modelling algorithms, the backlog of implementations in practice is the
huge amount of memory. A complete tree of depth D has to be stored and updated. Only
with increasing D the estimations of the probabilities are becoming more accurate and hence
the average codeword length of an arithmetic code based on these estimations would become
shorter. The size of the memory, however, depends exponentially on the depth of the tree.

We presented the context�tree weighting method only for binary sequences. Note that
in this case the cumulative probability of a binary sequence (x1 . . . xn) can be calculated as

Qn(x1x2 . . . xn−1xn) =
∑

j=1,...,n;x j=1
P j(x1x2 . . . x j−10).

For compression of sources with larger alphabets, for instance ASCII-�les, we refer to

606 13. Compression and Decompression

the literature.

Exercises
13.2-1 Compute the arithmetic codes for the sources (Xn, Pn), n = 1, 2, 3 with X = {1, 2}
and P = (0.8, 0.2) and compare these codes with the corresponding Huffman codes derived
previously.
13.2-2 For the codes derived in the previous exercise compute the individual redundancies
of each codeword and the redundancies of the codes.
13.2-3 Compute the estimated probabilities Pe(a, b) for the sequence 0100110 and all its
subsequences using the Krichevsky-Tro�mov estimator.
13.2-4 Compute all parameters (as, bs) and the estimated probability Ps

e for the sequence
0100110 given the past 110, when the context tree S = {00, 10, 1} is known. What will be
the codeword of an arithmetic code in this case?
13.2-5 Compute all parameters (as, bs) and the estimated probability Pλ for the sequence
0100110 given the past 110, when the context tree is not known, using the context-tree we-
ighting algorithm.
13.2-6 Based on the computations from the previous exercise, update the estimated proba-
bility for the sequence 01001101 given the past 110.

Show that for the cumulative probability of a binary sequence (x1 . . . xn) it is

Qn(x1x2 . . . xn−1xn) =
∑

j=1,...,n;x j=1
P j(x1x2 . . . x j−10).

13.3. Ziv-Lempel coding
In 1976�1978 Jacob Ziv and Abraham Lempel introduced two universal coding algorithms,
which in contrast to statistical coding techniques, considered so far, do not make explicit
use of the underlying probability distribution. The basic idea here is to replace a previously
seen string with a pointer into a history buffer (LZ77) or with the index of a dictionary
(LZ78). LZ algorithms are widely used � �zip� and its variations use the LZ77 algorithm.
So, in contrast to the presentation by several authors, Ziv-Lempel coding is not a single
algorithm. Originally, Lempel and Ziv introduced a method to measure the complexity of
a string � like in Kolmogorov complexity. This led to two different algorithms, LZ77 and
LZ78. Many modi�cations and variations have been developed since. However, we shall
present the original algorithms and refer to the literature for further information.

13.3.1. LZ77
The idea of LZ77 is to pass a sliding window over the text to be compressed. One looks for
the longest substring in this window representing the next letters of the text. The window
consists of two parts: a history window of length lh, say, in which the last lh bits of the text
considered so far are stored, and a lookahead window of length l f containing the next l f
bits of the text. In the simplest case lh and l f are �xed. Usually, lh is much bigger than l f .
Then one encodes the triple (offset, length, letter). Here the offset is the number of letters

13.3. Ziv-Lempel coding 607

one has to go back in the text to �nd the matching substring, the length is just the length of
this matching substring, and the letter to be stored is the letter following the matching subst-
ring. Let us illustrate this procedure with an example. Assume the text to be compressed
is ...abaabbaabbaaabbbaaaabbabbbabbb..., the window is of size 15 with lh = 10 letters
history and l f = 5 letters lookahead buffer. Assume, the sliding window now arrived at

...aba||abbaabbaaa|bbbaa||,
i. e., the history window contains the 10 letters abbaabbaaa and the lookahead window

contains the �ve letters bbbaa. The longest substring matching the �rst letters of the looka-
head window is bb of length 2, which is found nine letters back from the right end of the
history window. So we encode (9, 2, b), since b is the next letter (the string bb is also found
�ve letters back, in the original LZ77 algorithm one would select the loargest offset). The
window then is moved 3 letters forward

...abaabb||aabbaaabbb|aaaab||.
The next codeword is (6, 3, a), since the longest matching substring is aaa of length

3 found 6 letters backwards and a is the letter following this substring in the lookahead
window. We proceed with

...abaabbaabb||aaabbbaaaa|bbabb||,
and encode (6, 3, b). Further

...abaabbaabbaaab||bbaaaabbab|babbb||.
Here we encode (3, 4, b). Observe that the match can extend into the lookahead window.
There are many subtleties to be taken into account. If a symbol did not appear yet in

the text, offset and length are set to 0. If there are two matching strings of the same length,
one has to choose between the �rst and the second offset. Both variations have advantages.
Initially one might start with an empty history window and the �rst letters of the text to be
compressed in the lookahead window - there are also further variations.

A common modi�cation of the original scheme is to output only the pair (offset, length)
and not the following letter of the text. Using this coding procedure one has to take into
consideration the case in which the next letter does not occur in the history window. In
this case, usually the letter itself is stored, such that the decoder has to distinguish between
pairs of numbers and single letters. Further variations do not necessarily encode the longest
matching substring.

13.3.2. LZ78
LZ78 does not use a sliding window but a dictionary which is represented here as a table
with an index and an entry. LZ78 parses the text to be compressed into a collection of strings,
where each string is the longest matching string α seen so far plus the symbol s following α
in the text to be compressed. The new string αs is added into the dictionary. The new entry
is coded as (i, s), where i is the index of the existing table entry α and s is the appended
symbol.

608 13. Compression and Decompression

As an example, consider the string �abaabbaabbaaabbbaaaabba�. It is divided by
LZ78 into strings as shown below. String 0 is here the empty string.

Input a b aa bb aab ba aabb baa aabba
String Index 1 2 3 4 5 6 7 8 9
Output (0, a) (0, b) (1, a) (2, b) (3, b) (2, a) (5, b) (6, a) (7, a)

Since we are not using a sliding window, there is no limit for how far back strings
can reach. However, in practice the dictionary cannot continue to grow in�nitely. There
are several ways to manage this problem. For instance, after having reached the maximum
number of entries in the dictionary, no further entries can be added to the table and coding
becomes static. Another variation would be to replace older entries. The decoder knows
how many bits must be reserved for the index of the string in the dictionary, and hence
decompression is straightforward.

Correctness
Ziv-Lempel coding asymptotically achieves the best possible compression rate which

again is the entropy rate of the source. The source model, however, is much more general
than the discrete memoryless source. The stochastic process generating the next letter, is
assumed to be stationary (the probability of a sequence does not depend on the instant of
time, i. e. P(X1 = x1, . . . , Xn = xn) = P(Xt+1 = x1, . . . , Xt+n = xn) for all t and all sequences
(x1 . . . xn)). For stationary processes the limit limn→∞ 1

n H(X1, . . . Xn) exists and is de�ned to
be the entropy rate.

If s(n) denotes the number of strings in the parsing process of LZ78 for a text generated
by a stationary source, then the number of bits required to encode all these strings is s(n) ·
(lg s(n) + 1). It can be shown that s(n)·(lg s(n)+1)

n converges to the entropy rate of the source.
However, this would require that all strings can be stored in the dictionary.

Analysis
If we �x the size of the sliding window or the dictionary, the running time of encoding

a sequence of n letters will be linear in n. However, as usually in data compression, there is
a tradeoff between compression rate and speed. A better compression is only possible with
larger memory. Increasing the size of the dictionary or the window will, however, result in
a slower performance, since the most time consuming task is the search for the matching
substring or the position in the dictionary.

Decoding in both LZ77 and LZ78 is straightforward. Observe that with LZ77 decoding
is usually much faster than encoding, since the decoder already obtains the information at
which position in the history he can read out the next letters of the text to be recovered,
whereas the encoder has to �nd the longest matching substring in the history window. So
algorithms based on LZ77 are useful for �les which are compressed once and decompressed
more frequently.

Further, the encoded text is not necessarily shorter than the original text. Especially in
the beginning of the encoding the coded version may expand a lot. This expansion has to be
taken into consideration.

For implementation it is not optimal to represent the text as an array. A suitable data
structure will be a circular queue for the lookahead window and a binary search tree for the

13.4. The Burrows-Wheeler transform 609

history window in LZ77, while for LZ78 a dictionary tree should be used.

Exercises
13.3-1 Apply the algorithms LZ77 and LZ78 to the string �abracadabra�.
13.3-2 Which type of �les will be well compressed with LZ77 and LZ78, respectively? For
which type of �les are LZ77 and LZ78 not so advantageous?
13.3-3 Discuss the advantages of encoding the �rst or the last offset, when several matching
substrings are found in LZ77.

13.4. The Burrows-Wheeler transform
The Burrows-Wheeler transform will best be demonstrated by an example. Assume that
our original text is ~X = �WHEELER�. This text will be mapped to a second text ~L and an
index I according to the following rules.

1) We form a matrix M consisting of all cyclic shifts of the original text ~X. In our
example

M =



W H E E L E R
H E E L E R W
E E L E R W H
E L E R W H E
L E R W H E E
E R W H E E L
R W H E E L E



.

2) From M we obtain a new matrix M′ by simply ordering the rows in M lexicograhi-
cally. Here this yields the matrix

M′ =



E E L E R W H
E L E R W H E
E R W H E E L
H E E L E R W
L E R W H E E
R W H E E L E
W H E E L E R



.

3) The transformed string ~L then is just the last column of the matrix M′ and the index
I is the number of the row of M′, in which the original text is contained. In our example ~L =

�HELWEER� and I = 6 � we start counting the the rows with row no. 0.
This gives rise to the following pseudocode. We write here X instead of ~X and L instead

of ~L, since the purpose of the vector notation is only to distinguish the vectors from the
letters in the text.

BWT-(X)
1 for j← 0 to n − 1
2 do M[0, j]← X[j]
3 for i← 0 to n − 1

610 13. Compression and Decompression

4 do for j← 0 to n − 1
5 do M[i, j]← M[i − 1, j + 1 mod n]
6 for i← 0 to n − 1
7 do row i of M′ ← row i of M in lexicographic order
8 for i← 0 to n − 1
9 do L[i]← M′[i, n − 1]
10 i = 0
11 while (row i of M′ , row i of M)
12 do i← i + 1
13 I ← i
14 return L and I
It can be shown that this transformation is invertible, i. e., it is possible to reconstruct

the original text ~X from its transform ~L and the index I. This is because these two parameters
just yield enough information to �nd out the underlying permutation of the letters. Let us
illustrate this reconstruction using the above example again. From the transformed string ~L
we obtain a second string ~E by simply ordering the letters in ~L in ascending order. Actually,
~E is the �rst column of the matrix M′ above. So, in our example

~L = �H E L W E E R′′

~E = �E E E H L R W ′′.

Now obviously the �rst letter ~X(0) of our original text ~X is the letter in position I of
the sorted string ~E, so here ~X(0) = ~E(6) = W. Then we look at the position of the letter
just considered in the string ~L � here there is only one W, which is letter no. 3 in ~L. This
position gives us the location of the next letter of the original text, namely ~X(1) = ~E(3) = H.
H is found in position no. 0 in ~L, hence ~X(2) = ~E(0) = E. Now there are three E�s in the
string ~L and we take the �rst one not used so far, here the one in position no. 1, and hence
~X(3) = ~E(1) = E. We iterate this procedure and �nd ~X(4) = ~E(4) = L, ~X(5) = ~E(2) = E,
~X(6) = ~E(5) = R.

This suggests the following pseudocode.
BWT-(L, I)
1 E[0..n − 1]← sort L[0..n − 1]
2 pi[−1]← I
3 for i← 0 to n − 1
4 do j = 0
5 while (L[j]) , E[pi[i − 1]] OR j is a component of pi)
6 do j← j + 1
7 pi[i]← j
8 X[i]← L[j]
9 return X
This algorithm implies a more formal description. Since the decoder only knows ~L, he

has to sort this string to �nd out ~E. To each letter ~L(j) from the transformed string ~L record
the position π(j) in ~E from which it was jumped to by the process described above. So the
vector pi in our pseudocode yields a permutation π such that for each j = 0, . . . , n − 1 row
j it is ~L(j) = ~E(π(j)) in matrix M. In our example π = (3, 0, 1, 4, 2, 5, 6). This permutation

13.4. The Burrows-Wheeler transform 611

can be used to reconstruct the original text ~X of length n via ~X(n − 1 − j) = ~L(π j(I)), where
π0(x) = x and π j(x) = π(π j−1(x)) for j = 1, . . . , n − 1.

Observe that so far the original data have only been transformed and are not comp-
ressed, since string ~L has exactly the same length as the original string ~L. So what is the
advantage of the Burrows�Wheeler transformation? The idea is that the transformed string
can be much more efficiently encoded than the original string. The dependencies among the
letters have the effect that in the transformed string ~L there appear long blocks consisting of
the same letter.

In order to exploit such frequent blocks of the same letter, Burrows and Wheeler sug-
gested the following move�to�front�code, which we shall illustrate again with our example
above.

We write down a list containing the letters used in our text in alphabetic order indexed
by their position in this list.

E H L R W
0 1 2 3 4

Then we parse through the transformed string ~L letter by letter, note the index of the
next letter and move this letter to the front of the list. So in the �rst step we note 1 � the
index of the H, move H to the front and obtain the list

H E L R W
0 1 2 3 4

Then we note 1 and move E to the front,

E H L R W
0 1 2 3 4

note 2 and move L to the front,

L E H R W
0 1 2 3 4

note 4 and move W to the front,

W L E H R
0 1 2 3 4

note 2 and move E to the front,

E W L H R
0 1 2 3 4

note 0 and leave E at the front,

E W L H R
0 1 2 3 4

note 4 and move R to the front,

R E W L H
0 1 2 3 4

612 13. Compression and Decompression

So we obtain the sequence (1, 1, 2, 4, 2, 0, 4) as our move-to-front-code. The pseudocode
may look as follows, where Q is a list of the letters occuring in the string ~L.

M--(L)
1 Q[0..n − 1]← list of m letters occuring in L ordered alphabetically
2 for i← 0 to n − 1
3 do j = 0
4 while (j , L[i])
5 do j← j + 1
6 c[i]← j
7 for l← 0 to j
8 do Q[l]← Q[l − 1 mod j + 1]
9 return c
The move�to�front code c will �nally be compressed, for instance by Huffman coding.
Correctness
The compression is due to the move-to-front code obtained from the transformed string

~L. It can easily be seen that this move-to-front coding procedure is invertible, so one can
recover the string ~L from the code obtained as above.

Now it can be observed that in the move-to-front-code small numbers occur more fre-
quently. Unfortunately, this will become obvious only with much longer texts than in our
example � in long strings it was observed that even about 70 per cent of the numbers are
0. This irregularity in distribution can be exploited by compressing the sequence obtained
after move-to-front coding, for instance by Huffman codes or run�length codes.

The algorithm performed very well in practice regarding the compression rate as well
as the speed. The asymptotic optimality of compression has been proven for a wide class of
sources.

Analysis
The most complex part of the Burrows�Wheeler transform is the sorting of the block

yielding the transformed string ~L. Due to fast sorting procedures, especially suited for the
type of data to be compressed, compression algorithms based on the Burrows�Wheeler
transform are usually very fast. On the other hand, compression is done blockwise. The text
to be compressed has to be divided into blocks of appropriate size such that the matrices M
and M′ still �t into the memory. So the decoder has to wait until the whole next block is
transmitted and cannot work sequentially bit by bit as in arithmetic coding or Ziv-Lempel
coding.

Exercises
13.4-1 Apply the Burrows-Wheeler transform and the move-to-front code to the text �ab-
racadabra�.
13.4-2 Verify that the transformed string ~L and the index i of the position in the sorted
text ~E (containing the �rst letter of the original text to be compressed) indeed yield enough
information to reconstruct the original text.
13.4-3 Show how in our example the decoder would obtain the string ~L =�HELWEER�
from the move-to-front code (1, 1, 2, 4, 2, 0, 4) and the letters E,H,L,W,R occuring in the
text. Describe the general procedure for decoding move-to-front codes.
13.4-4 We followed here the encoding procedure presented by Burrows and Wheeler. Can

13.5. Image compression 613

the encoder obtain the transformed string ~L even without constructing the two matrices M
and M′?

13.5. Image compression
The idea of image compression algorithms is similar to the one behind the Burrows-Wheeler
transform. The text to be compressed is transformed to a format which is suitable for app-
lication of the techniques presented in the previous sections, such as Huffman coding or
arithmetic coding. There are several procedures based on the type of image (for instance,
black/white, greyscale or colour image) or compression (lossless or lossy). We shall present
the basic steps � representation of data, discrete cosine transform, quantization, coding � of
lossy image compression procedures like the standard JPEG.

13.5.1. Representation of data
A greyscale image is represented as a two�dimensional array X, where each entry X(i, j)
represents the intensity (or brightness) at position (i, j) of the image. Each X(i, j) is eit-
her a signed or an unsigned k-bit integers, i. e., X(i, j) ∈ {0, . . . , 2k − 1} or X(i, j) ∈
{−2k−1, . . . , 2k−1 − 1}.

A position in a colour image is usually represented by three greyscale values R(i, j),
G(i, j), and B(i, j) per position corresponding to the intensity of the primary colours red,
green and blue.

In order to compress the image, the three arrays (or channels) R, G, B are �rst converted
to the luminance/chrominance space by the YCbCr-transform (performed entry�wise)


Y
Cb
Cr

 =


0.299 0.587 0.114
−0.169 −0.331 0.5

0.5 −0.419 −0.0813

 ·


R
G
B



Y = 0.299R + 0.587G + 0.114B is the luminance or intensity channel, where the coef-
�cients weighting the colours have been found empirically and represent the best possible
approximation of the intensity as perceived by the human eye. The chrominance channels
Cb = 0.564(B − Y) and Cr = 0.713(R − Y) contain the colour information on red and blue
as the differences from Y . The information on green is obtained as big part in the luminance
Y .

A �rst compression for colour images commonly is already obtained after application
of the YCbCr�transform by removing irrelevant information. Since the human eye is less
sensitive to rapid colour changes than to changes in intensity, the resolution of the two
chrominance channels Cb and Cr is reduced by a factor of 2 in both vertical and horizontal
direction, which results after sub-sampling in arrays of 1

4 of the original size.
The arrays then are subdivided into 8×8 blocks, on which successively the actual (lossy)

data compression procedure is applied.
Let us consider the following example based on a real image, on which the steps of

compression will be illustrated. Assume that the 8 × 8 block of 8-bit unsigned integers
below is obtained as a part of an image.

614 13. Compression and Decompression

f =



139 144 149 153 155 155 155 155
144 151 153 156 159 156 156 155
150 155 160 163 158 156 156 156
159 161 162 160 160 159 159 159
159 160 161 161 160 155 155 155
161 161 161 161 160 157 157 157
162 162 161 163 162 157 157 157
161 162 161 161 163 158 158 158



13.5.2. The discrete cosine transform
Each 8×8 block (f (i, j))i, j=0,...,7, say, is transformed into a new block (F(u, v))u,v=0,...,7. There
are several possible transforms, usually the discrete cosine transform is applied, which here
obeys the formula

F(u, v) =
1
4cucv


7∑

i=0

7∑

j=0
f (i, j) · cos (2i + 1)uπ

16 cos (2 j + 1)vπ
16



The cosine transform is applied after shifting the unsigned integers to signed integers
by subtraction of 2k−1.

DCT(f)
1 for u← 0 to 7
2 do for v← 0 to 7
3 do F(u, v)← DCT - coefficient of matrix f
4 return F

The coefficients need not be calculated according to the formula above. They can also be
obtained via a related Fourier transform (see Exercises) such that a Fast Fourier Transform
may be applied. JPEG also supports wavelet transforms, which may replace the discrete
cosine transform here.

The discrete cosine transform can be inverted via

f (i, j) =
1
4


7∑

u=0

7∑

v=0
cucvF(u, v) · cos (2i + 1)uπ

16 cos (2 j + 1)vπ
16

 ,

where cu =

{ 1√
2 for u = 0

1 for u , 0 and cv =

{ 1√
2 for v = 0

1 for v , 0 are normalization cons-
tants.

In our example, the transformed block F is

13.5. Image compression 615

F =



235.6 −1.0 −12.1 −5.2 2.1 −1.7 −2.7 1.3
−22.6 −17.5 −6.2 −3.2 −2.9 −0.1 0.4 −1.2
−10.9 −9.3 −1.6 1.5 0.2 −0.9 −0.6 −0.1
−7.1 −1.9 0.2 1.5 0.9 −0.1 0.0 0.3
−0.6 −0.8 1.5 1.6 −0.1 −0.7 0.6 1.3
1.8 −0.2 1.6 −0.3 −0.8 1.5 1.0 −1.0
−1.3 −0.4 −0.3 −1.5 −0.5 1.7 1.1 −0.8
−2.6 1.6 −3.8 −1.8 1.9 1.2 −0.6 −0.4



where the entries are rounded.
The discrete cosine transform is closely related to the discrete Fourier transform and

similarly maps signals to frequencies. Removing higher frequencies results in a less sharp
image, an effect that is tolerated, such that higher frequencies are stored with less accuracy.

Of special importance is the entry F(0, 0), which can be interpreted as a measure for the
intensity of the whole block.

13.5.3. Quantization
The discrete cosine transform maps integers to real numbers, which in each case have to be
rounded to be representable. Of course, this rounding already results in a loss of information.
However, the transformed block F will now be much easier to manipulate. A quantization
takes place, which maps the entries of F to integers by division by the corresponding entry
in a luminance quantization matrix Q. In our example we use

Q =



16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99



.

The quantization matrix has to be carefully chosen in order to leave the image at highest
possible quality. Quantization is the lossy part of the compression procedure. The idea is to
remove information which should not be �visually signi�cant�. Of course, at this point there
is a tradeoff between the compression rate and the quality of the decoded image. So, in JPEG
the quantization table is not included into the standard but must be speci�ed (and hence be
encoded).

Q(F)
1 for i← 0 to 7
2 do for j← 0 to 7
3 do T (i, j)← { F(i, j)

Q(i, j) }
4 return T
This quantization transforms block F to a new block T with T (i, j) = { F(i, j)

Q(i, j) }, where {x}
is the closest integer to x. This block will �nally be encoded. Observe that in the transformed
block F besides the entry F(0, 0) all other entries are relatively small numbers, which has

616 13. Compression and Decompression

the effect that T mainly consists of 0s .

T =



15 0 −1 0 0 0 0 0
−2 −1 0 0 0 0 0 0
−1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



Coefficient T (0, 0), in this case 15, deserves special consideration. It is called DC term
(direct current), while the other entries are denoted AC coefficients (alternate current).

13.5.4. Coding
Matrix T will �nally be encoded by a Huffman code. We shall only sketch the procedure.
First the DC term will be encoded by the difference to the DC term of the previously encoded
block. For instance, if the previous DC term was 12, then T (0, 0) will be encoded as −3.

After that the AC coefficients are encoded according to the zig�zag order T (0, 1),
T (1, 0), T (2, 0), T (1, 1), T (0, 2), T (0, 3), T (1, 2), etc.. In our example, this yields the se-
quence 0,−2,−1,−1,−1, 0, 0,−1 followed by 55 zeros. This zig�zag order exploits the fact
that there are long runs of successive zeros. These runs will be even more efficiently repre-
sented by application of run-length coding, i. e., we encode the number of zeros before the
next nonzero element in the sequence followed by this element.

Integers are written in such a way that small numbers have shorter representations. This
is achieved by splitting their representation into size (number of bits to be reserved) and
amplitude (the actual value). So, 0 has size 0, 1 and −1 have size 1. −3, −2, 2, and 3 have
size 2, etc.

In our example this yields the sequence (2)(3) for the DC term followed by (1, 2)(−2),
(0, 1)(−1), (0, 1)(−1), (0, 1)(−1), (2, 1)(−1), and a �nal (0, 0) as an end-of-block symbol
indicating that only zeros follow from now on. (1, 2)(−2), for instance, means that there is
1 zero followed by an element of size 2 and amplitude −2.

These pairs are then assigned codewords from a Huffman code. There are different
Huffman codes for the pairs (run, size) and for the amplitudes. These Huffman codes have
to be speci�ed and hence be included into the code of the image.

In the following pseudocode for the encoding of a single 8× 8�block T we shall denote
the different Huffman codes by encode-1, encode-2, encode-3.

R--(T)
1 c← encode-1(size(DC − T [0, 0]))
2 c← c|| encode-3(amplitude(DC − T [00]))
3 DC ← T [0, 0]
4 for l← 1 to 14
5 do for i← 0 to l
6 do if l = 1 mod 2 then u← i else u← l − i
7 if T[u,l-u]=0 then run← run + 1
8 else c← c|| encode-2(run, size(T [u, l − u]))

13.5. Image compression 617

9 c← c|| encode-3(amplitude(T [u, l − u])
10 run← 0
11 if run > 0 then encode-2(0, 0)
12 return c
At the decoding end matrix T will be reconstructed. Finally, by multiplication of each

entry T (i, j) by the corresponding entry Q(i, j) from the quantization matrix Q we obtain an
approximation F to the block F, here

F =



240 0 −10 0 0 0 0 0
−24 −12 0 0 0 0 0 0
−14 −13 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



.

To F the inverse cosine transform is applied. This allows to decode the original 8 × 8�
block f of the original image � in our example as

f =



144 146 149 152 154 156 156 156
148 150 152 154 156 156 156 156
155 156 157 158 158 157 156 155
160 161 161 162 161 159 157 155
163 163 164 163 162 160 158 156
163 164 164 164 162 160 158 157
160 161 162 162 162 161 159 158
158 159 161 161 162 161 159 158



.

Exercises
13.5-1 Find size and amplitude for the representation of the integers 5, −19, and 32.
13.5-2 Write the entries of the following matrix in zig � zag order.



5 0 −2 0 0 0 0 0
3 1 0 1 0 0 0 0
0 −1 0 0 0 0 0 0
2 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



How would this matrix be encoded if the difference of the DC term to the previous one was
−2?
13.5-3 In our example after quantizing the sequence (2)(3), (1, 2)(−2), (0, 1)(−1),
(0, 1)(−1), (0, 1)(−1), (2, 1)(−1), (0, 0) has to be encoded. Assume the Huffman codebo-
oks would yield 011 to encode the difference 2 from the preceding block's DC, 0, 01, and

618 13. Compression and Decompression

11 for the amplitudes −1, −2, and 3, respectively, and 1010, 00, 11011, and 11100 for the
pairs (0, 0), (0, 1), (1, 2), and (2, 1), respectively. What would be the bitstream to be encoded
for the 8 × 8 block in our example? How many bits would hence be necessary to compress
this block?
13.5-4 What would be matrices T , F and f , if we had used

Q =



8 6 5 8 12 20 26 31
6 6 7 10 13 29 30 28
7 7 8 12 20 29 35 28
7 9 11 15 26 44 40 31
9 11 19 28 34 55 52 39

12 18 28 32 41 52 57 46
25 32 39 44 57 61 60 51
36 46 48 49 56 50 57 50



for quantizing after the cosine transform in the block of our example?
13.5-5 What would be the zig�zag code in this case (assuming again that the DC term
would have difference −3 from the previous DC term)?
13.5-6 For any sequence (f (n))n=0,...,m−1 de�ne a new sequence (�f (n))n=0,...,2m−1 by

�f (n) =

{
f (n) for n = 0, . . . ,m − 1

f (2m − 1 − n) for n = m, . . . , 2m − 1 .

This sequence can be expanded to a Fourier series via

�f (n) =
1√
2m

2m−1∑

n=0
�g(u)ei 2π

2m nu with �g(u) =
1√
2m

2m−1∑

n=0

�f (u)e−i 2π
2m nu, i =

√
−1.

Show how the coefficients of the discrete cosine transform

F(u) = cu

m−1∑

n=0
f (n) cos((2n + 1)πu

2m , cu =


1√
m for u = 0

2√
m for u , 0

arise from this Fourier series.

Chapter notes
The frequency table of the letters in English texts is taken from [120]. The Huffman coding
algorithm was introduced by Huffman in [66]. A pseudocode can be found in [33], where
the Huffman coding algorithm is presented as a special Greedy algorithm. There are also
adaptive or dynamic variants of Huffman coding, which adapt the Huffman code if it is no
longer optimal for the actual frequency table, for the case that the probability distribution of
the source is not known in advance. The �3/4-conjecture� on Kraft's inequality for �x-free
codes is due to Ahlswede, Balkenhol, and Khachatrian [2].

Arithmetic coding has been introduced by Rissanen [94] and Pasco [90]. For a dis-
cussion of implementation questions see [78, 78, 124]. In the section on modelling we are

13. Problems 619

following the presentation of Willems, Shtarkov and Tjalkens in [123]. The exact calculati-
ons can be found in their original paper [122] which received the Best Paper Award of the
IEEE Information Theory Society in 1996. The Krichevsky-Tro�mov estimator had been
introduced in [75].

We presented the two original algorithms LZ77 and LZ78 [132, 133] due to Lempel
and Ziv. Many variants, modi�cations and extensions have been developed since that �
concerning the handling of the dictionary, the pointers, the behaviour after the dictionary is
complete, etc. For a description, see, for instance, [14] or [15]. Most of the prominent tools
for data compression are variations of Ziv-Lempel coding. For example �zip� and �gzip�
are based on LZ77 and a variant of LZ78 is used by the program �compress�.

The Burrows-Wheeler transform was introduced in the technical report [22]. It became
popular in the sequel, especially because of the Unix compression tool �bzip� based on the
Burrows-Wheeler transform, which outperformed most dictionary � based tools on several
benchmark �les. Also it avoids arithmetic coding, for which patent rights have to be ta-
ken into consideration. Further investigations on the Burrows-Wheeler transform have been
carried out, for instance in [6, 45, 76].

We only sketched the basics behind lossy image compression, especially the preparation
of the data for application of techniques as Huffman coding. For a detailed discussion we
refer to [110], where also the new JPEG2000 standard is described. Our example is taken
from [117].

JPEG � short for Joint Photographic Experts Group � is very �exible. For instance, it
also supports lossless data compression. All the topics presented in the section on image
compression are not unique. There are models involving more basic colours and further
transforms besides the YCbCr-transform (for which even different scaling factors for the
chrominance channels were used, the formula presented here is from [110]). The cosine
transform may be replaced by another operation like a wavelet transform. Further, there is
freedom to choose the quantization matrix, responsible for the quality of the compressed
image, and the Huffman code. On the other hand, this has the effect that these parameters
have to be explicitly speci�ed and hence are part of the coded image.

The ideas behind procedures for video and sound compression are rather similar to
those for image compression. In principal, they follow the same steps. The amount of data
in these cases, however, is much bigger. Again information is lost by removing irrelevant
information not realizable by the human eye or ear (for instance by psychoacoustic mo-
dels) and by quantizing, where the quality should not be reduced signi�cantly. More re�ned
quantizing methods are applied in these cases.

Most information on data compression algorithms can be found in literature on Infor-
mation Theory, for instance [35, 60], since the analysis of the achievable compression rates
requires knowledge of source coding theory. Recently, there have appeared several books
on data compression, for instance [15, 61, 86, 97, 99], to which we refer to further reading.
The benchmark �les of the Calgary Corpus and the Canterbury Corpus are available under
[23] or [24].

Problems

620 13. Compression and Decompression

13-1. Adaptive Huffman codes
Dynamic and adaptive Huffman coding is based on the following property. A binary code
tree has the sibling property if each node has a sibling and if the nodes can be listed in
order of nonincreasing probabilities with each node being adjacent to its sibling. Show that
a binary pre�x code is a Huffman code exactly if the corresponding code tree has the sibling
property.
13-2. Generalizations of Kraft's inequality
In the proof of Kraft's inequality it is essential to order the lengths L(1) ≤ · · · ≤ L(a). Show
that the construction of a pre�x code for given lengths 2, 1, 2 is not possible if we are not
allowed to order the lengths. This scenario of unordered lengths occurs with the Shannon-
Fano-Elias code and in the theory of alphabetic codes, which are related to special search
problems. Show that in this case a pre�x code with lengths L(1) ≤ · · · ≤ L(a) exists if and
only if ∑

x∈X
2−L(x) ≤ 1

2 .

If we additionally require the pre�x codes to be also suffix-free i. e., no codeword is the end
of another one, it is an open problem to show that Kraft's inequality holds with the 1 on the
right�hand side replaced by 3/4, i. e.,

∑

x∈X
2−L(x) ≤ 3

4 .

13-3. Redundancy of Krichevsky-Tro�mov estimator
Show that using the Krichevsky-Tro�mov estimator, when parameter θ of a discrete memo-
ryless source is unknown, the individual redundancy of sequence xn is at most 1

2 lg n + 3 for
all sequences xn and all θ ∈ {0, 1}.
13-4. Alternatives to move-to-front codes
Find further procedures which like move-to-front coding prepare the text for compression
after application of the Burrows-Wheeler transform.

14. Computer graphics

Computer Graphics algorithms create and render virtual worlds stored in the computer me-
mory. The virtual world model may contain shapes (points, line segments, surfaces, solid
objects etc.), which are represented by digital numbers. Rendering computes the displayed
image of the virtual world from a given virtual camera. The image consists of small rec-
tangles, called pixels. A pixel has a unique colour, thus it is sufficient to solve the rendering
problem for a single point in each pixel. This point is usually the centre of the pixel. Rende-
ring �nds that shape which is visible through this point and writes its visible colour into the
pixel. In this chapter we discuss the creation of virtual worlds and the determination of the
visible shapes.

14.1. Fundamentals of analytic geometry
The base set of our examination is the Euclidean space. In computer algorithms the elements
of this space should be described by numbers. The branch of geometry describing the ele-
ments of space by numbers is the analytic geometry. The basic tools of analytic geometry
are the vector and the coordinate system.

De�nition 14.1 A vector is an oriented line segment or a translation that is de�ned by its
direction and length. A vector is denoted by ~v.

The length of the vector is also called its absolute value, and is denoted by |~v|. Vectors can
be added, resulting in a new vector that corresponds to subsequent translations. Addition is
denoted by ~v1 +~v2 = ~v. Vectors can be multiplied by scalar values, resulting also in a vector
(λ ·~v1 = ~v), which translates at the same direction as ~v1, but the length of translation is scaled
by λ.

The dot product of two vectors is a scalar that is equal to the product of the lengths of
the two vectors and the cosine of their angle:

~v1 · ~v2 = |~v1| · |~v2| · cosα, where α is the angle between ~v1 and ~v2.

Two vectors are said to be orthogonal if their dot product is zero.
On the other hand, the cross product of two vectors is a vector that is orthogonal to

the plane of the two vectors and its length is equal to the product of the lengths of the two

622 14. Computer graphics

vectors and the sine of their angle:

~v1 × ~v2 = ~v, where ~v is orthogonal to ~v1 and ~v2, and |~v| = |~v1| · |~v2| · sinα.

There are two possible orthogonal vectors, from which that alternative is selected where our
middle �nger of the right hand would point if our thumb were pointing to the �rst and our
fore�nger to the second vector (right hand rule). Two vectors are said to be parallel if their
cross product is zero.

14.1.1. Cartesian coordinate system
Any vector ~v of a plane can be expressed as the linear combination of two, non-parallel
vectors~i, ~j in this plane, that is

~v = x ·~i + y · ~j.

Similarly, any vector ~v in the three-dimensional space can be unambiguously de�ned by the
linear combination of three, not coplanar vectors:

~v = x ·~i + y · ~j + z · ~k.

Vectors~i, ~j,~k are called basis vectors, while scalars x, y, z are referred to as coordinates.
We shall assume that the basis vectors have unit length and they are orthogonal to each other.
Having de�ned the basis vectors any other vector can unambiguously be expressed by three
scalars, i.e. by its coordinates.

A point can be de�ned by that vector which translates the reference point, called origin,
to the given point. In this case the translating vector is the place vector of the given point.

The origin and the basis vectors constitute the Cartesian coordinate system, which is
the basic tool to describe the points of the Euclidean plane or space by numbers.

The Cartesian coordinate system is the algebraic basis of the Euclidean geometry, which
means that scalar triplets of Cartesian coordinates can be paired with the points of the space,
and having made a correspondence between algebraic and geometric concepts, the axioms
and the theorems of the Euclidean geometry can be proven by algebraic means.

Exercises
14.1-1 Prove that there is a one-to-one mapping between Cartesian coordinate triplets and
points of the three-dimensional space.
14.1-2 Prove that if the basis vectors have unit length and are orthogonal to each other, then
(x1, y1, z1) · (x2, y2, z2) = x1x2 + y1y2 + z1z2.
14.1-3 Prove that the dot product is distributive with respect to the vector addition.

14.2. Description of point sets with equations
Coordinate systems provide means to de�ne points by numbers. A set of conditions on
these numbers, on the other hand, may de�ne point sets. The set of conditions is usually an
equation. The points de�ned by the solutions of these equations form the set.

14.2. Description of point sets with equations 623

solid f (x, y, z) implicit function
sphere of radius R R2 − x2 − y2 − z2

block of size 2a, 2b, 2c min{a − |x|, b − |y|, c − |z|}
torus of axis z, radii r (tube) and R (hole) r2 − z2 − (R −

√
x2 + y2)2

Figure 14.1. Implicit functions de�ning the sphere, the block, and the torus.

14.2.1. Solids
A solid is a subset of the three-dimensional Euclidean space. To de�ne this subset, continu-
ous function f is used which maps the coordinates of points onto the set of real numbers.
We say that a point belongs to the solid if the coordinates of the point satisfy the following
implicit inequality:

f (x, y, z) ≥ 0 .
Points satisfying inequality f (x, y, z) > 0 are the internal points, while points de�ned by
f (x, y, z) < 0 are the external points. Because of the continuity of function f , points sa-
tisfying equality f (x, y, z) = 0 are between external and internal points and are called the
boundary surface of the solid. Intuitively, function f describes the distance between a point
and the boundary surface.

We note that we usually do not consider any subset of the space as a solid, but also
require that the point set does not have lower dimensional degeneration (e.g. hanging lines
or surfaces), i.e. that arbitrarily small neighbourhoods of each point of the boundary surface
contain internal points.

Figure 14.1 de�nes the implicit functions of the sphere, the box and the torus.

14.2.2. Surfaces
Points having coordinates that satisfy equation f (x, y, z) = 0 are the boundary points of the
solid, which form a surface. Surfaces can thus be de�ned by this implicit equation. Since
points can also be given by the place vectors, the implicit equation can be formulated for
the place vectors as well:

f (~r) = 0 .
A surface may have many different equations. For example, equations f (x, y, z) = 0,
f 2(x, y, z) = 0, and 2 · f 3(x, y, z) = 0 are algebraically different, but they de�ne the same set
of points.

A plane of normal ~n and place vector ~r0 contains those points for which vector ~r − ~r0
is perpendicular to the normal, thus their dot product is zero. Based on this, the points of a
plane are de�ned by the following vector and scalar equations:

(~r − ~r0) · ~n = 0, nx · x + ny · y + nz · z + d = 0 , (14.1)

where nx, ny, nz are the coordinates of the normal and d = −~r0 · ~n. If the normal vector has
unit length, then d expresses the signed distance between the plane and the origin of the
coordinate system. Two planes are said to be parallel if their normals are parallel.

Instead of using implicit equations, surfaces can also be de�ned by parametric forms.
In this case, the Cartesian coordinates of surface points are functions of two independent

624 14. Computer graphics

solid x(u, v) y(u, v) z(u, v)
sphere of radius R R · cos 2πu · sin πv R · sin 2πu · sin πv R · cos πv

cylinder of radius R, axis z, and of height h R · cos 2πu R · sin 2πu h · v
cone of radius R, axis z, and of height h R · (1 − v) · cos 2πu R · (1 − v) · sin 2πu h · v

Figure 14.2. Parametric forms of the sphere, the cylinder, and the cone, where u, v ∈ [0, 1].

variables. Denoting these free parameters by u and v, the parametric equations of the surface
are:

x = x(u, v), y = y(u, v), z = z(u, v), u ∈ [umin, umax], v ∈ [vmin, vmax] .

The implicit equation of a surface can be obtained from the parametric equations by
eliminating free parameters u, v. Figure 14.2 includes the parametric forms of the sphere,
the cylinder and the cone.

Parametric forms can also be de�ned directly for the place vectors:

~r = ~r(u, v) .

A triangle is the convex combination of points ~p1, ~p2, and ~p3, that is

~r(α, β, γ) = α · ~p1 + β · ~p2 + γ · ~p3, where α, β, γ ≥ 0 and α + β + γ = 1 .

From this de�nition we can obtain the usual two-variate parametric form substituting α
by u, β by v, and γ by (1 − u − v):

~r(u, v) = u · ~p1 + v · ~p2 + (1 − u − v) · ~p3, where u, v ≥ 0 and u + v ≤ 1 .

14.2.3. Curves
By intersecting two surfaces, we obtain a curve that may be de�ned formally by the implicit
equations of the two intersecting surfaces

f1(x, y, z) = f2(x, y, z) = 0,

but this is needlessly complicated. Instead, let us consider the parametric forms of the two
surfaces, given as ~r1(u1, v1) and ~r2(u2, v2), respectively. The points of the intersection satisfy
vector equation ~r1(u1, v1) = ~r2(u2, v2), which corresponds to three scalar equations, one for
each coordinate of the three-dimensional space. Thus we can eliminate three from the four
unknowns (u1, v1, u2, v2), and obtain a one-variate parametric equation for the coordinates
of the curve points:

x = x(t), y = y(t), z = z(t), t ∈ [tmin, tmax].

Similarly, we can use the vector form:

~r = ~r(t), t ∈ [tmin, tmax].

Figure 14.3 includes the parametric equations of the ellipse, the helix, and the line segment.
Note that we can de�ne curves on a surface by �xing one of free parameters u, v. For

14.2. Description of point sets with equations 625

test x(u, v) y(u, v) z(u, v)
ellipse of main axes 2a, 2b on plane z = 0 a · cos 2πt b · sin 2πt 0
helix of radius R, axis z, and elevation h R · cos 2πt R · sin 2πt h · t

line segment between points (x1, y1, z1) and (x2, y2, z2) x1(1 − t) + x2t y1(1 − t) + y2t z1(1 − t) + z2t

Figure 14.3. Parametric forms of the ellipse, the helix, and the line segment, where t ∈ [0, 1].

example, by �xing v the parametric form of the resulting curve is ~rv(u) = ~r(u, v). These
curves are called iso-parametric curves.

Let us select a point of a line and call the place vector of this point the place vector of
the line. Any other point of the line can be obtained by the translation of this point along
the same direction vector. Denoting the place vector by ~r0 and the direction vector by ~v, the
equation of the line is:

~r(t) = r0 + ~v · t, t ∈ (−∞,∞) . (14.2)

Two lines are said to be parallel if their direction vectors are parallel.
Instead of the complete line, we can also specify the points of a line segment if para-

meter t is restricted to an interval. For example, the equation of the line segment between
points ~r1,~r2 is:

~r(t) = ~r1 + (~r2 − ~r1) · t = ~r1 · (1 − t) + ~r2 · t, t ∈ [0, 1] . (14.3)

According to this de�nition, the points of a line segment are the convex-combinations of
the endpoints.

14.2.4. Normal vectors
In computer graphics we often need the normal vectors of the surfaces (i.e. the normal
vector of the tangent plane of the surface). Let us take an example. A mirror re�ects light
in a way that the incident direction, the normal vector, and the re�ection direction are in the
same plane, and the angle between the normal and the incident direction equals to the angle
between the normal and the re�ection direction. To carry out such and similar computations,
we need methods to obtain the normal of the surface.

The equation of the tangent plane is obtained as the �rst order Taylor approximation of
the implicit equation around point (x0, y0, z0):

f (x, y, z) = f (x0 + (x − x0), y0 + (y − y0), z0 + (z − z0)) ≈

f (x0, y0, z0) +
∂ f
∂x · (x − x0) +

∂ f
∂y · (y − y0) +

∂ f
∂z · (z − z0) .

Points (x0, y0, z0) and (x, y, z) are on the surface, thus f (x0, y0, z0) = 0 and f (x, y, z) = 0,
resulting in the following equation of the tangent plane:

∂ f
∂x · (x − x0) +

∂ f
∂y · (y − y0) +

∂ f
∂z · (z − z0) = 0 .

Comparing this equation to equation (14.1), we can realize that the normal vector of the

626 14. Computer graphics

tangent plane is

~n =

(
∂ f
∂x ,

∂ f
∂y ,

∂ f
∂z

)
= grad f . (14.4)

The normal vector of parametric surfaces can be obtained by examining the iso-
parametric curves. The tangent of curve ~rv(u) de�ned by �xing parameter v is obtained
by the �rst-order Taylor approximation:

~rv(u) = ~rv(u0 + (u − u0)) ≈ ~rv(u0) +
d~rv
du · (u − u0) = ~rv(u0) +

∂~r
∂u · (u − u0) .

Comparing this approximation to equation (14.2) describing a line, we conclude that the
direction vector of the tangent line is ∂~r/∂u. The tangent lines of the curves running on a
surface are in the tangent plane of the surface, making the normal vector perpendicular to
the direction vectors of these lines. In order to �nd the normal vector, both the tangent line
of curve ~rv(u) and the tangent line of curve ~ru(v) are computed, and their cross product is
evaluated since the result of the cross product is perpendicular to the multiplied vectors. The
normal of surface ~r(u, v) is then

~n =
∂~r
∂u ×

∂~r
∂v . (14.5)

14.2.5. Curve modelling
Parametric and implicit equations trace back the geometric design of the virtual world to
the solution of these equations. However, these equations are often not intuitive enough,
thus they cannot be used directly during design. It would not be reasonable to expect the
designer working on a human face or on a car to directly specify the equations of these
objects. Clearly, indirect methods are needed which require intuitive data from the designer
and de�ne these equations automatically. One category of these indirect approaches apply
control points. Another category of methods work with elementary building blocks (box,
sphere, cone, etc.) and with set operations.

Let us discuss �rst how the method based on control points can de�ne curves. Suppose
that the designer de�ned points ~r0,~r1, . . . ,~rm, and that parametric curve of equation ~r = ~r(t)
should be found which �follows� these points. For the time being, the curve is not required
to go through these control points.

We use the analogy of the centre of mass of mechanical systems to construct our curve.
Assume that we have sand of unit mass, which is distributed at the control points. If a control
point has most of the sand, then the centre of mass is close to this point. Controlling the
distribution of the sand as a function of parameter t to give the main in�uence to different
control points one after the other, the centre of mass will travel through a curve running
close to the control points.

Let us put weights B0(t), B1(t), . . . , Bm(t) at control points at parameter t. These weigh-
ting functions are also called the basis functions of the curve. Since unit weight is distribu-
ted, we require that for each t the following identity holds:

m∑

i=0
Bi(t) = 1 .

14.2. Description of point sets with equations 627

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
t

b0
b1
b2
b3

Figure 14.4. A Bézier curve de�ned by four control points and the respective basis functions (m = 3).

For some t, the curve is the centre of mass of this mechanical system:

~r(t) =

∑m
i=0 Bi(t) · ~ri∑m

i=0 Bi(t)
=

m∑

i=0
Bi(t) · ~ri .

Note that the reason of distributing sand of unit mass is that this decision makes the deno-
minator of the fraction equal to 1. To make the analogy complete, the basis functions cannot
be negative since the mass is always non negative. The centre of mass of a point system is
always in the convex hull1 of the participating points, thus if the basis functions are non
negative, then the curve remains in the convex hull of the control points.

The properties of the curves are determined by the basis functions. Let us now discuss
two popular basis function systems, namely the basis functions of the Bézier curves and the
B-spline curves.

Bézier curve
Pierre Bézier, a designer working at Renault, proposed the Bernstein polynomials as basis
functions. Bernstein polynomials can be obtained as the expansion of 1m = (t + (1 − t))m

according to binomial theorem:

(t + (1 − t))m =

m∑

i=0

(
m
i

)
· ti · (1 − t)m−i .

The basis functions of Bézier curves are the terms of this sum (i = 0, 1, . . . ,m):

BBezier
i,m (t) =

(
m
i

)
· ti · (1 − t)m−i . (14.6)

According to the introduction of Bernstein polynomials, it is obvious that they really
meet condition ∑m

i=0 Bi(t) = 1 and Bi(t) ≥ 0 in t ∈ [0, 1], which guarantees that Bézier curves

1The convex hull of a point system is by de�nition the minimal convex set containing the point system.

628 14. Computer graphics

lineáris bázisfüggvények

másodfokú bázisfüggvények

harmadfokú bázisfüggvények

lineáris simítás

lineáris simítás

bázisfüggvény
lineáris simítás

B (t)i,2

B (t)i,3

B (t)i,4

4

1

1

B (t)i,11

konstans bázisfüggvények

lineáris simítás
t t t t3 5 6

t6

t3 t5

t7 t8

t7

t0 1t 2t

1t

2t

t5

t5

Figure 14.5. Construction of B-spline basis functions. A higher order basis function is obtained by blending two
consecutive basis functions on the previous level using a linearly increasing and a linearly decreasing weighting,
respectively. Here the number of control points is 5, i.e. m = 4. Arrows indicate useful interval [tk−1, tm+1] where
we can �nd m + 1 number of basis functions that add up to 1. The right side of the �gure depicts control points
with triangles and curve points corresponding to the knot values by circles.

are always in the convex hulls of their control points. The basis functions and the shape of
the Bézier curve are shown in �gure 14.4. At parameter value t = 0 the �rst basis function is
1, while the others are zero, therefore the curve starts at the �rst control point. Similarly, at
parameter value t = 1 the curve arrives at the last control point. At other parameter values,
all basis functions are positive, thus they simultaneously affect the curve. Consequently, the
curve usually does not go through the other control points.

B-spline
The basis functions of the B-spline can be constructed applying a sequence of linear blen-
ding. A B-spline weights the m + 1 number of control points by (k− 1)-degree polynomials.
Value k is called the order of the curve, which expresses the smoothness of the curve. Let
us take a non-decreasing series of m + k + 1 parameter values, called the knot vector:

t = [t0, t1, . . . , tm+k], t0 ≤ t1 ≤ · · · ≤ tm+k .

By de�nition, the ith �rst order basis function is 1 in the ith interval, and zero elsewhere
(�gure 14.5):

BBS
i,1 (t) =

{
1, if ti ≤ t < ti+1 ,
0 otherwise .

Using this de�nition, m + k number of �rst order basis functions are established, which

14.2. Description of point sets with equations 629

are non-negative zero-degree polynomials that sum up to 1 for all t ∈ [t0, tm+k) parameters.
These basis functions have too low degree since the centre of mass is not even a curve, but
jumps from control point to control point.

The order of basis functions, as well as the smoothness of the curve, can be increased by
blending two consecutive basis functions with linear weighting (�gure 14.5). The �rst basis
function is weighted by linearly increasing factor (t − ti)/(ti+1 − ti) in domain ti ≤ t < ti+1,
where the basis function is non-zero. The next basis function, on the other hand, is scaled
by linearly decreasing factor (ti+2 − t)/(ti+2 − ti+1) in its domain ti+1 ≤ t < ti+2 where it is
non zero. The two weighted basis functions are added to obtain the tent-like second order
basis functions. Note that while a �rst order basis function is non-zero in a single interval,
the second order basis functions expand to two intervals. Since the construction makes a
new basis function from every pair of consecutive lower order basis functions, the number
of new basis functions is one less than that of the original ones. We have just m + k − 1
second order basis functions. Except for the �rst and the last �rst order basis functions, all
of them are used once with linearly increasing and once with linearly decreasing weighting,
thus with the exception of the �rst and the last intervals, i.e. in [t1, tm+k−1], the new basis
functions also sum up to 1.

The second order basis functions are �rst degree polynomials. The degree of basis func-
tions, i.e. the order of the curve, can be arbitrarily increased by the recursive application of
the presented blending method. The dependence of the next order basis functions on the
previous order ones is as follows:

BBS
i,k (t) =

(t − ti)BBS
i,k−1(t)

ti+k−1 − ti
+

(ti+k − t)BBS
i+1,k−1(t)

ti+k − ti+1
, if k > 1 .

Note that we always take two consecutive basis functions and weight them in their non-
zero domain (i.e. in the interval where they are non-zero) with linearly increasing factor
(t − ti)/(ti+k−1 − ti) and with linearly decreasing factor (ti+k − t)/(ti+k − ti+1), respectively.
The two weighted functions are summed to obtain the higher order, and therefore smoother
basis function. Repeating this operation (k− 1) times, k-order basis functions are generated,
which sum up to 1 in interval [tk−1, tm+1]. The knot vector may have elements that are the
same, thus the length of the intervals may be zero. Such intervals result in 0/0 like fractions,
which must be replaced by value 1 in the implementation of the construction.

The value of the ith k-order basis function at parameter t can be computed with the
following Cox-deBoor algorithm:

630 14. Computer graphics

p
0

p
1

p
2

c-1

c0

c1

c2

c3

cm

cm+1

p
m

Figure 14.6. A B-spline interpolation. Based on points ~p0, . . . , ~pm to be interpolated, control points ~c−1, . . . ,~cm+1
are computed to make the start and end points of the segments equal to the interpolated points.

B-S(i, k, t, t)
1 if k = 1 ¤ Trivial case.
2 then if ti ≤ t < ti+1
3 then return 1
4 else return 0
5 if ti+k−1 − ti > 0
6 then b1 ← (t − ti)/(ti+k−1 − ti) ¤ Previous with linearly increasing weight.
7 else b1 ← 1 ¤ Here: 0/0 = 1.
8 if ti+k − ti+1 > 0
9 then b2 ← (ti+k − t)/(ti+k − ti+1) ¤ Next with linearly decreasing weight.

10 else b2 ← 1 ¤ Here: 0/0 = 1.
11 B← b1 · B-(i, k − 1, t, t) + b2 · B-(i + 1, k − 1, t, t) ¤ Recursion.
12 return B

In practice, we usually use fourth-order basis functions (k = 4), which are third-degree
polynomials, and de�ne curves that can be continuously differentiated twice. The reason is
that bent rods and motion paths following the Newton laws also have this property.

While the number of control points is greater than the order of the curve, the basis
functions are non-zero only in a part of the valid parameter set. This means that a control
point affects just a part of the curve. Moving this control point, the change of the curve is
local. Local control is a very important property since the designer can adjust the shape of
the curve without destroying its general form.

A fourth-order B-spline usually does not go through its control points. If we wish to
use it for interpolation, the control points should be calculated from the points to be interpo-
lated. Suppose that we need a curve which visits points ~p0, ~p1, . . . , ~pm at parameter values
t0 = 0, t1 = 1, . . . , tm = m, respectively (�gure 14.6). To �nd such a curve, control points
[~c−1,~c0,~c1, . . . ,~cm+1] should be found to meet the following interpolation criteria:

~r(t j) =

m+1∑

i=−1
~ci · BBS

i,4 (t j) = ~p j, j = 0, 1, . . . ,m .

These criteria can be formalized as m + 1 linear equations with m + 3 unknowns, thus the
solution is ambiguous. To make the solution unambiguous, two additional conditions should
be imposed. For example, we can set the derivatives (for motion paths, the speed) at the start
and end points.

14.2. Description of point sets with equations 631

B-spline curves can be further generalized by de�ning the in�uence of the ith control
point as the product of B-spline basis function Bi(t) and additional weight wi of the control
point. The curve obtained this way is called the Non-Uniform Rational B-Spline, abbrevia-
ted as NURBS, which is very popular in commercial geometric modelling systems.

Using the mechanical analogy again, the mass put at the ith control point is wiBi(t), thus
the centre of mass is:

~r(t) =

∑m
i=0 wiBBS

i (t) · ~ri∑m
j=0 w jBBS

j (t)
=

m∑

i=0
BNURBS

i (t) · ~ri .

The correspondence between B-spline and NURBS basis functions is as follows:

BNURBS
i (t) =

wiBBS
i (t)

∑m
j=0 w jBBS

j (t)
.

Since B-spline basis functions are polynomials, NURBS basis functions are rational
functions. NURBS can describe quadratic curves (e.g. circle, ellipse, etc.) without any app-
roximation error.

14.2.6. Surface modelling
Parametric surfaces are de�ned by two variate functions ~r(u, v). Instead of specifying this
function directly, we can take �nite number of control points ~ri j which are weighted with
the basis functions to obtain the parametric function:

~r(u, v) =

n∑

i=0

m∑

j=0
~ri j · Bi j(u, v) . (14.7)

Similarly to curves, basis functions are expected to sum up to 1, i.e. ∑n
i=0

∑m
j=0 Bi j(u, v) = 1

everywhere. If this requirement is met, we can imagine that the control points have masses
Bi j(u, v) depending on parameters u, v, and the centre of mass is the surface point corres-
ponding to parameter pair u, v.

Basis functions Bi j(u, v) are similar to those of curves. Let us �x parameter v. Chan-
ging parameter u, curve ~rv(u) is obtained on the surface. This curve can be de�ned by the
discussed curve de�nition methods:

~rv(u) =

n∑

i=0
Bi(u) · ~ri , (14.8)

where Bi(u) is the basis function of the selected curve type.
Of course, �xing v differently we obtain another curve of the surface. Since a curve of

a given type is unambiguously de�ned by the control points, control points ~ri must depend
on the �xed v value. As parameter v changes, control point ~ri = ~ri(v) also runs on a curve,
which can be de�ned by control points ~ri,0,~ri,2, . . . ,~ri,m:

~ri(v) =

m∑

j=0
B j(v) · ~ri j .

632 14. Computer graphics

Figure 14.7. Iso-parametric curves of surface.

Substituting this into equation (14.8), the parametric equation of the surface is:

~r(u, v) = ~rv(u) =

n∑

i=0
Bi(u)


m∑

j=0
B j(v) · ~ri j

 =

n∑

i=0

m∑

j=0
Bi(u)B j(v) · ~ri j .

Unlike curves, the control points of a surface form a two-dimensional grid. The two-
dimensional basis functions are obtained as the product of one-variate basis functions para-
meterized by u and v, respectively.

14.2.7. Solid modelling with blobs
Free form solids � similarly to parametric curves and surfaces � can also be speci�ed by
�nite number of control points. For each control point ~ri, let us assign in�uence function
h(Ri), which expresses the in�uence of this control point at distance Ri = |~r − ~ri|. By de�-
nition, the solid contains those points where the total in�uence of the control points is not
smaller than threshold T (�gure 14.8):

f (~r) =

m∑

i=0
hi(Ri) − T ≥ 0, where Ri = |~r − ~ri| .

With a single control point a sphere can be modelled. Spheres of multiple control points are
combined together to result in an object having smooth surface (�gure 14.8). The in�uence
of a single point can be de�ned by an arbitrary decreasing function that converges to zero at
in�nity. For example, Blinn proposed the

hi(R) = ai · e−biR2

in�uence functions for his blob method.

14.2.8. Constructive solid geometry
Another type of solid modelling is constructive solid geometry (CSG for short), which
builds complex solids from primitive solids applying set operations (union, intersection,
difference) (�gures 14.9 and 14.10). Primitives usually include the box, the sphere, the cone,
the cylinder, the half-space, etc. whose implicit functions are known.

14.2. Description of point sets with equations 633

R

h(R)

T

összegzés kivonás

Figure 14.8. The in�uence decreases with the distance. Spheres of in�uence of similar signs increase, of different
signs decrease each other.

Figure 14.9. The operations of constructive solid geometry for a cone of implicit function f and for a sphere of
implicit function g: union (max(f , g)), intersection (min(f , g)), and difference (min(f ,−g)).

The results of the set operations can be obtained from the implicit functions of the solids
taking part of this operation:
• intersection of f and g: min(f , g);
• union of f and g: max(f , g).
• complement of f : − f .
• difference of f and g: min(f ,−g).

Implicit functions also allow to morph between two solids. Suppose that two objects,
for example, a box of implicit function f1 and a sphere of implicit function f2 need to
be morphed. To de�ne a new object, which is similar to the �rst object with percentage t
and to the second object with percentage (1 − t), the two implicit equations are weighted
appropriately:

f morph(x, y, z) = t · f1(x, y, z) + (1 − t) · f2(x, y, z).

Exercises

634 14. Computer graphics

Figure 14.10. Constructing a complex solid by set operations. The root and the leaf of the CSG tree represents the
complex solid, and the primitives, respectively. Other nodes de�ne the set operations (U: union, \: difference).

14.2-1 Find the parametric equation of a torus.
14.2-2 Prove that the fourth-order B-spline with knot-vector [0,0,0,0,1,1,1,1] is a Bézier
curve.
14.2-3 Give the equations for the surface points and the normals of the waving �ag and
waving water disturbed in a single point.
14.2-4 Prove that the tangents of a Bézier curve at the start and the end are the lines con-
necting the �rst two and the last two control points, respectively.
14.2-5 Give the algebraic forms of the basis functions of the second, the third, and the
fourth-order B-splines.
14.2-6 Develop an algorithm computing the path length of a Bézier curve and a B-spline.
Based on the path length computation move a point along the curve with uniform speed.

14.3. Geometry processing and tessellation algorithms
In section 14.2 we met free-form surface and curve de�nition methods. During image synt-
hesis, however, line segments and triangles play important roles. In this section we present
methods that bridge the gap between these two types of representations. These methods
convert geometric models to lines and triangles, or further process line and triangle models.
Line segments connected to each other in a way that the end point of a line segment is the
start point of the next one are called polylines. Triangles connected at edges, on the other
hand, are called meshes. Vectorization methods approximate free-form curves by polylines.
A polyline is de�ned by its vertices. Tessellation algorithms, on the other hand, approxi-
mate free-form surfaces by meshes. For illumination computation, we often need the nor-
mal vector of the original surface, which is usually stored with the vertices. Consequently, a
triangle mesh contains a list of triangles, where each triangle is given by three vertices and
three normals. Methods processing triangle meshes use other topology information as well,

14.3. Geometry processing and tessellation algorithms 635

(a) (b) (c)

Figure 14.11. Types of polygons. (a) simple; (b) complex, single connected; (c) multiply connected.

for example, which triangles share an edge or a vertex.

14.3.1. Polygon and polyhedron
De�nition 14.2 A polygon is a bounded part of the plane, i.e. it does not contain a line,
and is bordered by line segments. A polygon is de�ned by the vertices of the bordering
polylines.

De�nition 14.3 A polygon is single connected if its border is a single closed polyline
(�gure 14.11).

De�nition 14.4 A polygon is simple if it is single connected and the bordering polyline
does not intersect itself (�gure 14.11(a)).

For a point of the plane, we can detect whether or not this point is inside the polygon
by starting a half-line from this point and counting the number of intersections with the
boundary. If the number of intersections is an odd number, then the point is inside, otherwise
it is outside.

In the three-dimensional space we can form triangle meshes, where different triangles
are in different planes. In this case, two triangles are said to be neighbouring if they share
an edge.

De�nition 14.5 A polyhedron is a bounded part of the space, which is bordered by poly-
gons.

Similarly to polygons, a point can be tested for polyhedron inclusion by casting a half
line from this point and counting the number of intersections with the face polygons. If
the number of intersections is odd, then the point is inside the polyhedron, otherwise it is
outside.

14.3.2. Vectorization of parametric curves
Parametric functions map interval [tmin, tmax] onto the points of the curve. During vectori-
zation the parameter interval is discretized. The simplest discretization scheme generates N
evenly spaced parameter values ti = tmin + (tmax − tmin) · i/N (i = 0, 1, . . . ,N), and de�nes the
approximating polyline by the points obtained by substituting these parameter values into
parametric equation ~r(ti).

636 14. Computer graphics

r1

r3

r2

r0

r4

átló

fül

Figure 14.12. Diagonal and ear of a polygon.

14.3.3. Tessellation of simple polygons
Let us �rst consider the conversion of simple polygons to triangles. This is easy if the poly-
gon is convex since we can select an arbitrary vertex and connect it with all other vertices,
which decomposes the polygon to triangles in linear time. Unfortunately, this approach does
not work for concave polygons since in this case the line segment connecting two vertices
may go outside the polygon, thus cannot be the edge of one decomposing triangle.

Let us start with two de�nitions:

De�nition 14.6 The diagonal of a polygon is a line segment connecting two vertices and
is completely contained by the polygon (line segment ~r0 and ~r3 of �gure 14.12).

The diagonal property can be checked for a line segment connecting two vertices by trying
to intersect the line segment with all edges and showing that intersection is possible only at
the endpoints, and additionally showing that one internal point of the candidate is inside the
polygon. For example, this test point can be midpoint of the line segment.

De�nition 14.7 A vertex of the polygon is an ear if the line segment of the previous and
the next vertices is a diagonal (vertex ~r4 of �gure 14.12).

Clearly, only those vertices may be ears where the inner angle is not greater than 180 deg-
rees. Such vertices are called convex vertices.

For simple polygons the following theorems hold:

Theorem 14.8 A simple polygon always has a diagonal.

Proof. Let the vertex standing at the left end (having the minimal x coordinate) be ~ri, and
its two neighboring vertices be ~ri−1 and ~ri+1, respectively (�gure 14.13). Since ~ri is standing
at the left end, it is surely a convex vertex. If ~ri is an ear, then line segment (~ri−1,~ri+1) is a
diagonal (left of �gure 14.13), thus the theorem is proven for this case. Since ~ri is a convex
vertex, it is not an ear only if triangle ~ri−1, ~ri, ~ri+1 contains at least one polygon vertex
(right of �gure 14.13). Let us select from the contained vertices that vertex ~p which is the
farthest from the line de�ned by points ~ri−1,~ri+1. Since there are no contained points which
are farther from line (~ri−1,~ri+1) than ~p, no edge can be between points ~p and ~ri, thus (~p,~ri)
must be a diagonal.

Theorem 14.9 A simple polygon can always be decomposed to triangles with its diago-
nals. If the number of vertices is n, then the number of triangles is n − 2.

14.3. Geometry processing and tessellation algorithms 637

ri

ri+1

ri-1

átló

ri

ri+1

ri-1

átló

p

x

y

Figure 14.13. The proof of the existence of a diagonal for simple polygons.

Proof. This theorem is proven with induction. The theorem is obviously true when n =

3, i.e. when the polygon is a triangle. Let us assume that the statement is also true for
polygons having m (m = 3, . . . , n − 1) number of vertices, and consider a polygon with n
vertices. According to theorem 14.8, this polygon of n vertices has a diagonal, thus we can
subdivide this polygon into a polygon of n1 vertices and a polygon of n2 vertices, where
n1, n2 < n, and n1 + n2 = n + 2 since the vertices at the end of the diagonal participate
in both polygons. According to the assumption of the induction, these two polygons can
be separately decomposed to triangles. Joining the two sets of triangles, we can obtain the
triangle decomposition of the original polygon. The number of triangles is n1 − 2 + n2 − 2 =

n − 2.
The discussed proof is constructive thus it inspires a subdivision algorithm: let us �nd

a diagonal, subdivide the polygon along this diagonal, and continue the same operation for
the two new polygons.

Unfortunately the running time of such an algorithm is in Θ(n3) since the number of
diagonal candidates is Θ(n2), and the time needed by checking whether or not a line segment
is a diagonal is in Θ(n).

We also present a better algorithm, which decomposes a convex or concave polygon
de�ned by vertices ~r0,~r1, . . . ,~rn. This algorithm is called ear cutting. The algorithm looks
for ear triangles and cuts them until the polygon gets simpli�ed to a single triangle. The
algorithm starts at vertex ~r2. When a vertex is processed, it is �rst checked whether or not
the previous vertex is an ear. If it is not an ear, then the next vertex is chosen. If the previous
vertex is an ear, then the current vertex together with the two previous ones form a triangle
that can be cut, and the previous vertex is deleted. If after deletion the new previous vertex
has index 0, then the next vertex is selected as the current vertex.

The presented algorithm keeps cutting triangles until no more ears are left. The termi-
nation of the algorithm is guaranteed by the following two ears theorem:

Theorem 14.10 A simple polygon having at least four vertices always has at least two not
neighboring ears that can be cut independently.

Proof. The proof presented here has been given by Joseph O'Rourke. According to theorem
14.9, every simple polygon can be subdivided to triangles such that the edges of these tri-
angles are either the edges or the diagonals of the polygon. Let us make a correspondence
between the triangles and the nodes of a graph where two nodes are connected if and only
if the two triangles corresponding to these nodes share an edge. The resulting graph is con-
nected and cannot contain circles. Graphs of these properties are trees. The name of this
tree graph is the dual tree. Since the polygon has at least four vertices, the number of nodes

638 14. Computer graphics

r (v)

 v(u)

u

r

Figure 14.14. Tessellation of parametric surfaces.

in this tree is at least two. Any tree containing at least two nodes has at least two leaves2.
Leaves of this tree, on the other hand, correspond to triangles having an ear vertex.

According to the two ears theorem, the presented algorithm �nds an ear in O(n) steps.
Cutting an ear the number of vertices is reduced by one, thus the algorithm terminates in
O(n2) steps.

14.3.4. Tessellation of parametric surfaces
Parametric forms of surfaces map parameter rectangle [umin, umax] × [vmin, vmax] onto the
points of the surface.

In order to tessellate the surface, �rst the parameter rectangle is subdivided to triang-
les. Then applying the parametric equations for the vertices of the parameter triangles, the
approximating triangle mesh can be obtained. The simplest subdivision of the parametric
rectangle decomposes the domain of parameter u to N parts, and the domain of parameter v
to M intervals, resulting in the following parameter pairs:

[ui, v j] =

[
umin + (umax − umin) i

N , vmin + (vmax − vmin) j
M

]
.

Taking these parameter pairs and substituting them into the parametric equations, point
triplets ~r(ui, v j), ~r(ui+1, v j), ~r(ui, v j+1), and point triplets ~r(ui+1, v j), ~r(ui+1, v j+1), ~r(ui, v j+1)
are used to de�ne triangles.

The tessellation process can be made adaptive as well, which uses small triangles only
where the high curvature of the surface justi�es them. Let us start with the parameter rec-
tangle and subdivide it to two triangles. In order to check the accuracy of the resulting tri-
angle mesh, surface points corresponding to the edge midpoints of the parameter triangles
are compared to the edge midpoints of the approximating triangles. Formally the following
distance is computed (�gure 14.15):

∣∣∣∣∣∣~r
(u1 + u2

2 ,
v1 + v2

2

)
− ~r(u1, v1) + ~r(u2, v2)

2

∣∣∣∣∣∣ ,

where (u1, v1) and (u2, v2) are the parameters of the two endpoints of the edge.

2a leaf is a node connected by exactly one edge

14.3. Geometry processing and tessellation algorithms 639

hiba

Figure 14.15. Estimation of the tessellation error.

T csomópont

új T csomópont

rekurzív
felosztás

felosztás

Figure 14.16. T vertices and their elimination with forced subdivision.

A large distance value indicates that the triangle mesh poorly approximates the para-
metric surface, thus triangles must be subdivided further. This subdivision can be executed
by cutting the triangle to two triangles by a line connecting the midpoint of the edge of
the largest error and the opposing vertex. Alternatively, a triangle can be subdivided to four
triangles with its halving lines. The adaptive tessellation is not necessarily robust since it
can happen that the distance at the midpoint is small, but at other points is still quite large.

When the adaptive tessellation is executed, it may happen that one triangle is subdivided
while its neighbour is not, which results in a mesh where the previously shared edge is
tessellated in one of the triangles, thus has holes. Such problematic midpoints are called T
vertices (�gure 14.16).

If the subdivision criterion is based only on edge properties, then T vertices cannot show
up. However, if other properties are also taken into account, then T vertices may appear. In
such cases, T vertices can be eliminated by recursively forcing the subdivision also for those
neighbouring triangles that share subdivided edges.

14.3.5. Subdivision curves and meshes
This section presents algorithms that smooth polyline and mesh models. Smoothing means
that a polyline and a mesh are replaced by other polylines and meshes having less faceted
look.

Let us consider a polyline of vertices ~r0, . . . ,~rm. A smoother polyline is generated by
the following vertex doubling approach (�gure 14.17). Every line segment of the polyline
is halved, and midpoints ~h0, . . . ,~hm−1 are added to the polyline as new vertices. Then the

640 14. Computer graphics

=1/2 Σ =1/2 Σ +1/4Σ

ri+1

ri-1

ri
hi

hi-1
ri’

Figure 14.17. Construction of a subdivision curve: at each step midpoints are obtained, then the original vertices
are moved to the weighted average of neighbouring midpoints and of the original vertex.

=1/4 Σ =1/4 Σ +1/4Σ =1/2 +1/16 Σ +1/16 Σ

Figure 14.18. One smoothing step of the Catmull-Clark subdivision. First the face points are obtained, then the
edge midpoints are moved, and �nally the original vertices are re�ned according to the weighted sum of its neigh-
bouring edge and face points.

old vertices are moved taking into account their old position and the positions of the two
enclosing midpoints, applying the following weighting:

~r ′i =
1
2~ri +

1
4
~hi−1 +

1
4
~hi =

3
4~ri +

1
8~ri−1 +

1
8~ri+1 .

The new polyline looks much smoother. If we should not be satis�ed with the smoothness
yet, the same procedure can be repeated recursively. As can be shown, the result of the
recursive process converges to the B-spline curve.

The polyline subdivision approach can also be extended for smoothing three-
dimensional meshes. This method is called Catmull-Clark subdivision algorithm. Let us
consider a three-dimensional quadrilateral mesh (�gure 14.18). In the �rst step the midpo-
ints of the edges are obtained, which are called edge points. Then face points are generated
as the average of the vertices of each face polygon. Connecting the edge points with the face
points, we still have the original surface, but now de�ned by four times more quadrilaterals.
The smoothing step modi�es �rst the edge points setting them to the average of the verti-
ces at the ends of the edge and of the face points of those quads that share this edge. Then
the original vertices are moved to the weighted average of the face points of those faces
that share this vertex, and of edge points of those edges that are connected to this vertex.
The weight of the original vertex is 1/2, the weights of edge and face are 1/16. Again, this

14.3. Geometry processing and tessellation algorithms 641

Figure 14.19. Original mesh and its subdivision applying the smoothing step once, twice and three times, respec-
tively.

1/21/2

-1/16-w

-1/16-w
-1/16-w

-1/16-w

1/8+2w

1/8+2w

Figure 14.20. Generation of the new edge point with butter�y subdivision.

operation may be repeated until the surface looks smooth enough (�gure 14.19).
If we do not want to smooth the mesh at an edge or around a vertex, then the averaging

operation ignores the vertices on the other side of the edge to be preserved.
The Catmull-Clark subdivision surface usually does not interpolate the original vertices.

This drawback is eliminated by the butter�y subdivision, which works on triangle meshes.
First the butter�y algorithm puts new edge points close to the midpoints of the original
edges, then the original triangle is replaced by four triangles de�ned by the original vertices
and the new edge points (�gure 14.20). The position of the new edge points depend on the
vertices of those two triangles incident to this edge, and on those four triangles which share
edges with these two. The arrangement of the triangles affecting the edge point resembles
a butter�y, hence the name of this algorithm. The edge point coordinates are obtained as
a weighted sum of the edge endpoints multiplied by 1/2, the third vertices of the triangles
sharing this edge using weight 1/8 + 2w, and �nally of the other vertices of the additional
triangles with weight −1/16 − w. Parameter w can control the curvature of the resulting
mesh. Setting w = −1/16, the mesh keeps its original faceted look, while w = 0 results in
strong rounding.

642 14. Computer graphics

Figure 14.21. Possible intersections of the per-voxel tri-linear implicit surface and the voxel edges. From the
possible 256 cases, these 15 topologically equivalent cases can be identi�ed, from which the others can be obtained
by rotations. Grid points where the implicit function has the same sign are depicted by circles.

14.3.6. Tessellation of implicit surfaces
An implicit surface can be converted to a triangle mesh by �nding points on the surface
densely, i.e. generating points satisfying f (x, y, z) ≈ 0, then assuming the close points to be
vertices of the triangles.

First implicit function f is evaluated at the grid points of the Cartesian coordinate sys-
tem and the results are stored in a three-dimensional array, called voxel array. Let us call
two grid points as neighbours if two of their coordinates are identical and the difference in
their third coordinate is 1. The function is evaluated at the grid points and is assumed to be
linear between them. The normal vectors needed for shading are obtained as the gradient of
function f (equation 14.4), which are also interpolated between the grid points.

When we work with the voxel array, original function f is replaced by its tri-linear
approximation (tri-linear means that �xing any two coordinates the function is linear with
respect to the third coordinate). Due to the linear approximation an edge connecting two
neighbouring grid points can intersect the surface at most once since linear equations may
have at most one root. The density of the grid points should re�ect this observation, we have
to de�ne them so densely not to miss roots, that is, not to change the topology of the surface.

The method approximating the surface by a triangle mesh is called marching cubes
algorithm. This algorithm �rst decides whether a grid point is inside or outside of the solid
by checking the sign of the function. If two neighbouring grid points are of different type,
the surface must go between them. The intersection of the surface and the edge between
the neighbouring points, as well as the normal vector at the intersection are determined by
linear interpolation. If one grid point is at ~r1, the other is at ~r2, and implicit function f has

14.4. Containment algorithms 643

different signs at these points, then the intersection of the tri-linear surface and line segment
(~r1,~r2) is:

~ri = ~r1 · f (~r2)
f (~r2) − f (~r1) + ~r2 · f (~r1)

f (~r2) − f (~r1) ,

The normal vector here is:

~ni = grad f (~r1) · f (~r2)
f (~r2) − f (~r1) + grad f (~r2) · f (~r1)

f (~r2) − f (~r1) .

Having found the intersection points, triangles are de�ned using these points as vertices,
and the approximation surface becomes the resulting triangle mesh. When de�ning these
triangles, we have to take into account that a tri-linear surface may intersect the voxel edges
at most once. Such intersection occurs if the implicit function has different sign at the two
grid points. The number of possible variations of positive/negative signs at the 8 vertices of
a cube is 256, from which 15 topologically equivalent cases can be identi�ed (�gure 14.21).

The algorithm inspects grid points one by one and assigns the sign of the function to
them encoding negative sign by 0 and non-negative sign by 1. The resulting 8 bit code is a
number in 0�255 which identi�es the current case of intersection. If the code is 0, all voxel
vertices are outside the solid, thus no voxel surface intersection is possible. Similarly, if the
code is 255, the solid is completely inside, making the intersections impossible. To handle
other codes, a table can be built which describes where the intersections show up and how
they form triangles.

Exercises
14.3-1 Prove the two ears theorem by induction.
14.3-2 Develop an adaptive curve tessellation algorithm.
14.3-3 Prove that the Catmull-Clark subdivision curve and surface converge to a B-spline
curve and surface, respectively.
14.3-4 Build a table to control the marching cubes algorithm, which describes where the
intersections show up and how they form triangles.
14.3-5 Propose a marching cubes algorithm that does not require the gradients of the imp-
licit function, but estimates these gradients from the values of the implicit function.

14.4. Containment algorithms
When geometric models are processed, we often have to determine whether or not one
object contains points belonging to the other object. If only yes/no answer is needed, we
have a containment test problem. However, if the contained part also needs to be obtained,
the applicable algorithm is called clipping.

Containment test is often called as discrete time collision detection since if one object
contains points from the other, then the two objects must have been collided before. Of
course, checking collisions just at discrete time instances may miss certain collisions. To
handle the collision problem robustly, continuous time collision detection is needed which
also computes the time of the collision. Continuous time collision detection is based on
ray tracing (subsection 14.6). In this section we only deal with the discrete time collision
detection and the clipping of simple objects.

644 14. Computer graphics

kívül

pont

belül

poliéder

kívül
belül

kívül
belül

poliéder
konvex

konkáv 1 2

Figure 14.22. Polyhedron-point containment test. A convex polyhedron contains a point if the point is on that side
of each face plane where the polyhedron is. To test a concave polyhedron, a half line is cast from the point and the
number of intersections is counted. If the result is an odd number, then the point is inside, otherwise it is outside.

14.4.1. Point containment test
A solid de�ned by implicit function f contains those (x, y, z) points which satisfy inequality
f (x, y, z) ≥ 0. It means that point containment test requires the evaluation of the implicit
function and the inspection of the sign of the result.

Half space
Based on equation (14.1), points belonging to a half space are identi�ed by inequality

(~r − ~r0) · ~n ≥ 0, nx · x + ny · y + nz · z + d ≥ 0, (14.9)

where the normal vector is supposed to point inward.

Convex polyhedron
Any convex polyhedron can be constructed as the intersection of halfspaces incident to the
faces of the polyhedron (left of �gure 14.22). The plane of each face subdivides the space
into two parts, to an inner part where the polyhedron can be found, and to an outer part.
Let us test the point against the planes of the faces. If the points are in the inner part with
respect to all planes, then the point is inside the polyhedron. However, if the point is in the
outer part with respect to at least one plane, then the point is outside of the polyhedron.

Concave polyhedron
As shown in �gure 14.22, let us cast a half line from the tested point and count the number
of intersections with the faces of the polyhedron (the calculation of these intersections is
discussed in subsection 14.6). If the result is an odd number, then the point is inside, other-
wise it is outside. Because of numerical inaccuracies we might have difficulties to count the
number of intersections when the half line is close to the edges. In such cases, the simplest
solution is to �nd another half line and carry out the test with that.

Polygon
The methods proposed to test the point in polyhedron can also be used for polygons limiting
the space to the two-dimensional plane. For example, a point is in a general polygon if the

14.4. Containment algorithms 645

half line originating at this point and lying in the plane of the polygon intersects the edges
of the polygon odd times.

In addition to those methods, containment in convex polygons can be tested by adding
the angles subtended by the edges from the point. If the sum is 360 degrees, then the point
is inside, otherwise it is outside. For convex polygons, we can also test whether the point is
on the same side of the edges as the polygon itself. This algorithm is examined in details for
a particularly important special case, when the polygon is a triangle.

Triangle
Let us consider a triangle of vertices ~a, ~b and ~c, and point ~p lying in the plane of the triangle.
The point is inside the triangle if and only if it is on the same side of the boundary lines as
the third vertex. Note that cross product (~b − ~a) × (~p − ~a) has a different direction for point
~p lying on the different sides of oriented line ~ab, thus the direction of this vector can be
used to classify points (should point ~p be on line ~ab, the result of the cross product is zero).
During classi�cation the direction of (~b−~a)× (~p−~a) is compared to the direction of vector
~n = (~b − ~a) × (~c − ~a) where tested point ~p is replaced by third vertex ~c. Note that vector ~n
happens to be the normal vector of the triangle plane (�gure 14.23).

We can determine whether two vectors have the same direction (their angle is zero) or
they have opposite directions (their angle is 180 degrees) by computing their scalar product
and looking at the sign of the result. The scalar product of vectors of similar directions is
positive. Thus if scalar product ((~b − ~a) × (~p − ~a)) · ~n is positive, then point ~p is on the same
side of oriented line ~ab as ~c. On the other hand, if this scalar product is negative, then ~p and
~c are on the opposite sides. Finally, if the result is zero, then point ~p is on line ~ab. Point ~p is
inside the triangle if and only if all the following three conditions are met:

((~b − ~a) × (~p − ~a)) · ~n ≥ 0 ,
((~c − ~b) × (~p − ~b)) · ~n ≥ 0 ,
((~a − ~c) × (~p − ~c)) · ~n ≥ 0 .

(14.10)

This test is robust since it gives correct result even if � due to numerical precision
problems � point ~p is not exactly in the plane of the triangle as long as point ~p is in the
prism obtained by perpendicularly extruding the triangle from the plane.

The evaluation of the test can be speeded up if we work in the two-dimensional projec-
tions instead of the three-dimensional space. Let us project point ~p as well as the triangle
onto one of the coordinate planes. In order to increase numerical precision, that coordinate
plane should be selected on which the area of the projected triangle is maximal. Let us de-
note the Cartesian coordinates of the normal vector by (nx, ny, nz). If nz has the maximum
absolute value, then the projection of the maximum area is on coordinate plane xy. If nx or
ny had the maximum absolute value, then planes yz, or xz would be the right choice. Here
only the case of maximum nz is discussed.

First the order of vertices are changed in a way that when traveling from vertex ~a to
vertex ~b, vertex ~c is on the left side. Let us examine the equation of line ~ab:

by − ay

bx − ax
· (x − bx) + by = y .

646 14. Computer graphics

b

c

p

n
a-b a

-p a

-b a())(-p a

-a c -p c())(

-a c
-p c

x

x

Figure 14.23. Point in triangle containment test. The �gure shows that case when point ~p is on the left of oriented
lines ~ab and ~bc, and on the right of line ~ca, that is, when it is not inside the triangle.

1.eset: (b - a) > 0

a

a

a

a

b

b

b

b

c c

c c

vagy

vagy

x x

2.eset: (b - a) < 0x x

Figure 14.24. Point in triangle containment test on coordinate plane xy. Third vertex ~c can be either on the left
or on the right side of oriented line ~ab, which can always be traced back to the case of being on the left side by
exchanging the vertices.

According to �gure 14.24 point ~c is on the left of the line if cy is above the line at x = cx:
by − ay

bx − ax
· (cx − bx) + by < cy .

Multiplying both sides by (bx − ax), we get:

(by − ay) · (cx − bx) < (cy − by) · (bx − ax) .

In the second case the denominator of the slope of the line is negative. Point ~c is on the left
of the line if cy is below the line at x = cx :

by − ay

bx − ax
· (cx − bx) + by > cy .

When the inequality is multiplied with negative denominator (bx − ax), the relation is inver-
ted:

(by − ay) · (cx − bx) < (cy − by) · (bx − ax) .

14.4. Containment algorithms 647

csúcs behatolás él behatolás

Figure 14.25. Polyhedron-polyhedron collision detection. Only a part of collision cases can be recognized by
testing the containment of the vertices of one object with respect to the other object. Collision can also occur when
only edges meet, but vertices do not penetrate to the other object.

Note that in both cases we obtained the same condition. If this condition is not met, then
point ~c is not on the left of line ~ab, but is on the right. Exchanging vertices ~a and ~b in this
case, we can guarantee that ~c will be on the left of the new line ~ab. It is also important to
note that consequently point ~a will be on the left of line ~bc and point ~b will be on the left of
line ~ca.

In the second step the algorithm tests whether point ~p is on the left with respect to all
three boundary lines since this is the necessary and sufficient condition of being inside the
triangle:

(by − ay) · (px − bx) ≤ (py − by) · (bx − ax) ,
(cy − by) · (px − cx) ≤ (py − cy) · (cx − bx) ,
(ay − cy) · (px − ax) ≤ (py − ay) · (ax − cx) .

(14.11)

14.4.2. Polyhedron-polyhedron collision detection
Two polyhedra collide when a vertex of one of them meets a face of the other, and if they are
not bounced off, the vertex goes into the internal part of the other object (�gure 14.25). This
case can be recognized with the discussed containment test. All vertices of one polyhedron
is tested for containment against the other polyhedron. Then the roles of the two polyhedra
are exchanged.

Apart from the collision between vertices and faces, two edges may also meet without
vertex penetration (�gure 14.25). In order to recognize this case, all edges of one polyhedron
are tested against all faces of the other polyhedron. The test for an edge and a face is started
by checking whether or not the two endpoints of the edge are on opposite sides of the
plane, using inequality (14.9). If they are, then the intersection of the edge and the plane is
calculated, and �nally it is decided whether the face contains the intersection point.

Let us realize that the test of edge penetration and the containment of an arbitrary ver-
tex also include the case of vertex penetration. However, edge penetration without vertex
penetration happens less frequently, and the vertex penetration is easier to check, thus it is
still worth applying the vertex penetration test �rst.

Polyhedra collision detection tests each edge of one polyhedron against to each face of
the other polyhedron, which results in an algorithm of quadratic time complexity with res-
pect to the number of vertices of the polyhedra. Fortunately, the algorithm can be speeded
up applying bounding volumes (subsection 14.6.2). Let us assign a simple bounding object

648 14. Computer graphics

to each polyhedron. Popular choices are the spheres and the boxes. If the two bounding
volumes do not collide, then neither can the contained polyhedra collide. If the bounding
volumes penetrate each other, then one polyhedra is tested against the other bounding vo-
lume. If this test is also positive, then �nally the two polyhedra are tested. However, this last
test is rarely required, and most of the collision cases can be solved by bounding volumes.

14.4.3. Clipping algorithms
Clipping takes an object de�ning the clipping region and removes those points from another
other object which are outside the clipping region. Clipping may alter the type of the object,
which cannot be speci�ed by a similar equation after clipping. To avoid this, we allow only
those kinds of clipping regions and objects where the object type does not change. Let us
thus assume that the clipping region is a half space or a polyhedron, while the object to be
clipped is a point, a line segment or a polygon.

If the object to be clipped is a point, then containment can be tested with the algorithms
of the previous subsection. Based on the result of the containment test, the point is either
removed or preserved.

Clipping a line segment onto a half space
Let us consider a line segment of endpoints ~r1 and ~r2, and of equation ~r(t) = ~r1 · (1− t)+~r2 · t,
(t ∈ [0, 1]), and a half plane de�ned by the following equation derived from equation (14.1):

(~r − ~r0) · ~n ≥ 0, nx · x + ny · y + nz · z + d ≥ 0.

Three cases need to be distinguished:
1. If both endpoints of the line segment are in the half space, then all points of the line

segment are inside, thus the whole segment is preserved.
2. If both endpoints are out of the half space, then all points of the line segment are out,

thus the line segment should be completely removed.
3. If one of the endpoints is out, while the other is in, then the endpoint being out should

be replaced by the intersection point of the line segment and the boundary plane of the
half space. The intersection point can be calculated by substituting the equation of the
line segment into the equation of the boundary plane and solving the resulting equation
for the unknown parameter:

(~r1 · (1 − ti) + ~r2 · ti − ~r0) · ~n = 0, =⇒ ti =
(~r0 − ~r1) · ~n
(~r2 − ~r1) · ~n .

Substituting parameter ti into the equation of the line segment, the coordinates of the
intersection point can also be obtained.

Clipping a polygon onto a half space
This clipping algorithm tests �rst whether a vertex is inside or not. If the vertex is in, then
it is also the vertex of the resulting polygon. However, if it is out, it can be ignored. On the
other hand, the resulting polygon may have vertices other than the vertices of the original
polygon. These new vertices are the intersections of the edges and the boundary plane of

14.4. Containment algorithms 649

p

p

p

p

p
p

q

q

q

q

q

[1]

[4]

[3]

[5]

[4]
[0]

[0]

[3]

[1]

[2]

[2]
vágósík

Figure 14.26. Clipping of polygon ~p[0], . . . , ~p[5] results in polygon ~q[0], . . . , ~q[4]. The vertices of the resulting
polygon are the inner vertices of the original polygon and the intersections of the edges and the boundary plane.

the half space. Such intersection occurs when one endpoint is in, but the other is out. While
we are testing the vertices one by one, we should also check whether or not the next vertex
is on the same side as the current vertex (�gure 14.26).

Suppose that the vertices of the polygon to be clipped are given in array p =

〈~p[0], . . . , ~p[n − 1]〉, and the vertices of the clipped polygon is expected in array q =

〈~q[0], . . . , ~q[m − 1]〉. The number of the vertices of the resulting polygon is stored in va-
riable m. Note that the vertex followed by the ith vertex has usually index (i + 1), but not in
the case of the last, (n − 1)th vertex, which is followed by vertex 0. Handling the last vertex
as a special case is often inconvenient. This can be eliminated by extending input array p by
new element ~p[n] = ~p[0], which holds the element of index 0 once again.

Using these assumptions, the Sutherland-Hodgeman polygon clipping algorithm is:

S-H-P-C(p)
1 m← 0
2 for i← 0 to n − 1
3 do if ~p[i] is inside
4 then ~q[m]← ~p[i] ¤ The ith vertex is the vertex of the resulting polygon.
5 m← m + 1
6 if ~p[i + 1] is outside
7 then ~q[m]← E--(~p[i], ~p[i + 1])
8 m← m + 1
9 else if ~p[i + 1] is inside

10 then ~q[m]← E--(~p[i], ~p[i + 1])
11 m← m + 1
12 return q

Let us apply this algorithm for such a concave polygon which is expected to fall to
several pieces during clipping (�gure 14.27). The algorithm storing the polygon in a single
array is not able to separate the pieces and introduces even number of edges at parts where
no edge could show up.

These even number of extra edges, however, pose no problems if the interior of the

650 14. Computer graphics

dupla határvonal

páros számú
határ

Figure 14.27. When concave polygons are clipped, the parts that should fall apart are connected by even number
of edges.

polygon is de�ned as follows: a point is inside the polygon if and only if starting a half line
from here, the boundary polyline is intersected by odd number of times.

The presented algorithm is also suitable for clipping multiple connected polygons if the
algorithm is executed separately for each closed polyline of the boundary.

Clipping line segments and polygons on a convex polyhedron
As stated, a convex polyhedron can be obtained as the intersection of the half spaces de�ned
by the planes of the polyhedron faces (left of �gure 14.22). It means that the clipping on a
convex polyhedron can be traced back to a series of clipping steps on half spaces. The result
of one clipping step on a half plane is the input of clipping on the next half space. The �nal
result is the output of the clipping on the last half space.

Clipping a line segment on an AABB
Axis aligned bounding boxes, abbreviated as AABBs, play an important role in image synt-
hesis.

De�nition 14.11 A box aligned parallel to the coordinate axes is called AABB.
An AABB is speci�ed with the minimum and maximum Cartesian coordinates:
[xmin, ymin, zmin, xmax, ymax, zmax].

Although when an object is clipped on an AABB, the general algorithms clipping on
a convex polyhedron could also be used, the importance of AABBs is acknowledged by
developing algorithms specially tuned for this case.

When a line segment is clipped to a polyhedron, the algorithm would test the line seg-
ment with the plane of each face, and calculated intersection points may turn out to be un-
necessary later. We should thus �nd an appropriate order of planes which makes the number
of unnecessary intersection calculations minimal. A simple method implementing this idea
is the Cohen-Sutherland line clipping algorithm.

Let us assign code bit 1 to a point that is outside with respect to a clipping plane, and
code bit 0 if the point is inside with respect to this plane. Since an AABB has 6 sides,
we get 6 bits forming a 6-bit code word (�gure 14.28). The interpretation of code bits
C[0], . . . ,C[5] is the following:

C[0] =

{
1, x ≤ xmin,
0 otherwise. C[1] =

{
1, x ≥ xmax,
0 otherwise. C[2] =

{
1, y ≤ ymin ,
0 otherwise .

14.4. Containment algorithms 651

000000

100010

101000101000

010100

000000

00000001

1001

0101 0100

0010

0110

10101000

Figure 14.28. The 4-bit codes of the points in a plane and the 6-bit codes of the points in space.

C[3] =

{
1, y ≥ ymax,
0 otherwise. C[4] =

{
1, z ≤ zmin,
0 otherwise. C[5] =

{
1, z ≥ zmax ,
0 otherwise .

Points of code word 000000 are obviously inside, points of other code words are outside
(�gure 14.28). Let the code words of the two endpoints of the line segment be C1 and C2,
respectively. If both of them are zero, then both endpoints are inside, thus the line segment
is completely inside (trivial accept). If the two code words contain bit 1 at the same location,
then none of the endpoints are inside with respect to the plane associated with this code bit.
This means that the complete line segment is outside with respect to this plane, and can
be rejected (trivial reject). This examination can be executed by applying the bitwise AND
operation on code words C1 and C2 (with the notations of the C programming language C1
& C2), and checking whether or not the result is zero. If it is not zero, there is a bit where
both code words have value 1.

Finally, if none of the two trivial cases hold, then there must be a bit which is 0 in one
code word and 1 in the other. This means that one endpoint is inside and the other is outside
with respect to the plane corresponding to this bit. The line segment should be clipped on
this plane. Then the same procedure should be repeated starting with the evaluation of the
code bits. The procedure is terminated when the conditions of either the trivial accept or the
trivial reject are met.

The Cohen-Sutherland line clipping algorithm returns the endpoints of the clipped line
by modifying the original vertices and indicates with �true� return value if the line is not
completely rejected:

652 14. Computer graphics

C-S-L-C(~r1,~r2)
1 C1 ← codeword of ~r1 ¤ Code bits by checking the inequalities.
2 C2 ← codeword of ~r2
3 while 

4 do if C1 = 0 AND C2 = 0
5 then return  ¤ Trivial accept: inner line segment exists.
6 if C1 & C2 , 0
7 then return  ¤ Trivial reject: no inner line segment exists.
8 f ← index of the �rst bit where C1 and C2 differ
9 ~ri ← intersection of line segment (~r1, ~r2) and the plane of index f

10 Ci ← codeword of ~ri
11 if C1[f] = 1
12 then ~r1 ← ~ri
13 C1 ← Ci ¤ ~r1 is outside w.r.t. plane f .
14 else ~r2 ← ~ri
15 C2 ← Ci ¤ ~r2 is outside w.r.t. plane f .

Exercises
14.4-1 Propose approaches to reduce the quadratic complexity of polyhedron-polyhedron
collision detection.
14.4-2 Develop a containment test to check whether a point is in a CSG-tree .
14.4-3 Develop an algorithm clipping one polygon onto a concave polygon.
14.4-4 Find an algorithm computing the bounding sphere and the bounding AABB of a
polyhedron.
14.4-5 Develop an algorithm that tests the collision of two triangles in the plane.
14.4-6 Generalize the Cohen-Sutherland line clipping algorithm to convex polyhedron clip-
ping region.
14.4-7 Propose a method for clipping a line segment on a sphere.

14.5. Translation, distortion, geometric transformations
Objects in the virtual world may move, get distorted, grow or shrink, that is, their equations
may also depend on time. To describe dynamic geometry, we usually apply two functions.
The �rst function selects those points of space, which belong to the object in its reference
state. The second function maps these points onto points de�ning the object in an arbitrary
time instance. Functions mapping the space onto itself are called transformations. A trans-
formation maps point ~r to point ~r ′ = T (~r). If the transformation is invertible, we can also
�nd the original for some transformed point ~r ′ using inverse transformation T −1(~r ′).

If the object is de�ned in its reference state by implicit equation f (~r) ≥ 0, then the
equation of the transformed object is

{~r ′ : f (T −1(~r ′)) ≥ 0} , (14.12)

since the originals belong to the set of points of the reference state.

14.5. Translation, distortion, geometric transformations 653

Parametric equations de�ne the Cartesian coordinates of the points directly. Thus the
transformation of parametric surface ~r = ~r(u, v) requires the transformations of its points

~r ′(u, v) = T (~r(u, v)) . (14.13)

Similarly, the transformation of curve ~r = ~r(t) is:

~r ′(t) = T (~r(t)) . (14.14)

Transformation T may change the type of object in the general case. It can happen,
for example, that a simple triangle or a sphere becomes a complicated shape, which are
hard to describe and handle. Thus it is worth limiting the set of allowed transformations.
Transformations mapping planes onto planes, lines onto lines and points onto points are
particularly important. In the next subsection we consider the class of homogenous linear
transformations, which meet this requirement.

14.5.1. Projective geometry and homogeneous coordinates
So far the construction of the virtual world has been discussed using the means of the Eucli-
dean geometry, which gave us many important concepts such as distance, parallelism, angle,
etc. However, when the transformations are discussed in details, many of these concepts are
unimportant, and can cause confusion. For example, parallelism is a relationship of two lines
which can lead to singularities when the intersection of two lines is considered. Therefore,
transformations are discussed in the context of another framework, the projective geometry.

The axioms of projective geometry turn around the problem of parallel lines by igno-
ring the concept of parallelism altogether, and state that two different lines always have an
intersection. To cope with this requirement, every line is extended by a �point in in�nity�
such that two lines have the same extra point if and only if the two lines are parallel. The
extra point is called the ideal point. The projective space contains the points of the Eucli-
dean space (these are the so called affine points) and the ideal points. An ideal point �glues�
the �ends� of an Euclidean line, making it topologically similar to a circle. Projective geo-
metry preserves that axiom of the Euclidean geometry which states that two points de�ne a
line. In order to make it valid for ideal points as well, the set of lines of the Euclidean space
is extended by a new line containing the ideal points. This new line is called the ideal line.
Since the ideal points of two lines are the same if and only if the two lines are parallel, the
ideal lines of two planes are the same if and only if the two planes are parallel. Ideal lines
are on the ideal plane, which is added to the set of planes of the Euclidean space. Having
made these extensions, no distinction is needed between the affine and ideal points. They
are equal members of the projective space.

Introducing analytic geometry we noted that everything should be described by num-
bers in computer graphics. Cartesian coordinates used so far are in one to one relationship
with the points of Euclidean space, thus they are inappropriate to describe the points of the
projective space. For the projective plane and space, we need a different algebraic base.

Projective plane
Let us consider �rst the projective plane and �nd a method to describe its points by numbers.
To start, a Cartesian coordinate system x, y is set up in this plane. Simultaneously, another

654 14. Computer graphics

h=1

[x h,y h,h] egyenes

[X ,Y ,0] ponth h

. .

Xh

Yh

h

[x,y,1]

[X ,Y ,h] ponth h

Figure 14.29. The embedded model of the projective plane: the projective plane is embedded into a three-
dimensional Euclidean space, and a correspondence is established between points of the projective plane and
lines of the embedding three-dimensional Euclidean space by �tting the line to the origin of the three-dimensional
space and the given point.

Cartesian system Xh,Yh, h is established in the three-dimensional space embedding the plane
in a way that axes Xh,Yh are parallel to axes x, y, the plane is perpendicular to axis h, the
origin of the Cartesian system of the plane is in point (0, 0, 1) of the three-dimensional space,
and the points of the plane satisfy equation h = 1. The projective plane is thus embedded
into a three-dimensional Euclidean space where points are de�ned by Descartes-coordinates
(�gure 14.29). To describe a point of the projective plane by numbers, a correspondence is
found between the points of the projective plane and the points of the embedding Euclidean
space. An appropriate correspondence assigns that line of the Euclidean space to either
affine or ideal point P of the projective plane which is de�ned by the origin of the coordinate
system of the space and point P.

Points of a line in the Euclidean space can be given by parametric equation [t · Xh, t ·
Yh, t · h] where t is a free real parameter. If point P is an affine point of the projective plane,
then the corresponding line is not parallel with plane h = 1 (i.e. h is not constant zero).
Such line intersects the plane of equation h = 1 at point [Xh/h,Yh/h, 1], thus the Cartesian
coordinates of point P in planar coordinate system x, y are (Xh/h,Yh/h). On the other hand,
if point P is ideal, then the corresponding line is parallel to the plane of equation h = 1 (i.e.
h = 0). The direction of the ideal point is given by vector (Xh,Yh).

The presented approach assigns three dimensional lines and eventually [Xh,Yh, h] trip-
lets to both the affine and the ideal points of the projective plane. These triplets are called
the homogenous coordinates of a point in the projective plane. Homogeneous coordinates
are enclosed by brackets to distinguish them from Cartesian coordinates.

A three-dimensional line crossing the origin and describing a point of the projective
plane can be de�ned by its arbitrary point except from the origin. Consequently, all three
homogeneous coordinates cannot be simultaneously zero, and homogeneous coordinates
can be freely multiplied by the same non-zero scalar without changing the described point.
This property justi�es the name �homogenous�.

It is often convenient to select that triplet from the homogeneous coordinates of an
affine point, where the third homogeneous coordinate is 1 since in this case the �rst two
homogeneous coordinates are identical to the Cartesian coordinates:

Xh = x, Yh = y, h = 1 . (14.15)

From another point of view, Cartesian coordinates of an affine point can be converted to

14.5. Translation, distortion, geometric transformations 655

homogenous coordinates by extending the pair by a third element of value 1.
The embedded model also provides means to de�ne the equations of the lines and

line segments of the projective space. Let us select two different points on the projective
plane and specify their homogeneous coordinates. The two points are different if homoge-
neous coordinates [X1

h ,Y1
h , h1] of the �rst point cannot be obtained as a scalar multiple of

homogeneous coordinates [X2
h ,Y2

h , h2] of the other point. In the embedding space, triplet
[Xh,Yh, h] can be regarded as Cartesian coordinates, thus the equation of the line �tted to
points [X1

h ,Y1
h , h1] and [X2

h ,Y2
h , h2] is:

Xh(t) = X1
h · (1 − t) + X2

h · t ,
Yh(t) = Y1

h · (1 − t) + Y2
h · t , (14.16)

h(t) = h1 · (1 − t) + h2 · t .
If h(t) , 0, then the affine points of the projective plane can be obtained by projecting
the three-dimensional space onto the plane of equation h = 1. Requiring the two points be
different, we excluded the case when the line would be projected to a single point. Hence
projection maps lines to lines. Thus the presented equation really identi�es the homogene-
ous coordinates de�ning the points of the line. If h(t) = 0, then the equation expresses the
ideal point of the line.

If parameter t has an arbitrary real value, then the points of a line are de�ned. If para-
meter t is restricted to interval [0, 1], then we obtain the line segment de�ned by the two
endpoints.

Projective space
We could apply the same method to introduce homogeneous coordinates of the projective
space as we used to de�ne the homogeneous coordinates of the projective plane, but this
approach would require the embedding of the three-dimensional projective space into a
four-dimensional Euclidean space, which is not intuitive. We would rather discuss another
construction, which works in arbitrary dimensions. In this construction, a point is described
as the centre of mass of a mechanical system. To identify a point, let us place weight Xh
at reference point ~p1, weight Yh at reference point ~p2, weight Zh at reference point ~p3, and
weight w at reference point ~p4. The centre of mass of this mechanical system is:

~r =
Xh · ~p1 + Yh · ~p2 + Zh · ~p3 + w · ~p4

Xh + Yh + Zh + w .

Let us denote the total weight by h = Xh + Yh + Zh + w. By de�nition, elements of quadruple
[Xh,Yh,Zh, h] are the homogeneous coordinates of the centre of mass.

To �nd the correspondence between homogeneous and Cartesian coordinates, the rela-
tionship of the two coordinate systems (the relationship of the basis vectors and the origin
of the Cartesian coordinate system and of the reference points of the homogeneous coordi-
nate system) must be established. Let us assume, for example, that the reference points of
the homogenous coordinate system are in points (1,0,0), (0,1,0), (0,0,1), and (0,0,0) of the
Cartesian coordinate system. The centre of mass (assuming that total weight h is not zero)
is expressed in Cartesian coordinates as follows:

~r[Xh,Yh,Zh, h] =
1
h · (Xh · (1, 0, 0) + Yh · (0, 1, 0) + Zh · (0, 0, 1) + w · (0, 0, 0)) =

(Xh
h ,

Yh
h ,

Zh
h

)
.

656 14. Computer graphics

Hence the correspondence between homogeneous coordinates [Xh,Yh,Zh, h] and Cartesian
coordinates (x, y, z) is (h , 0):

x =
Xh
h , y =

Yh
h , z =

Zh
h . (14.17)

The equations of lines in the projective space can be obtained either deriving them
from the embedding four-dimensional Cartesian space, or using the centre of mass analogy:

Xh(t) = X1
h · (1 − t) + X2

h · t ,
Yh(t) = Y1

h · (1 − t) + Y2
h · t ,

Zh(t) = Z1
h · (1 − t) + Z2

h · t , (14.18)
h(t) = h1 · (1 − t) + h2 · t .

If parameter t is restricted to interval [0, 1], then we obtain the equation of the projective
line segment.

To �nd the equation of the projective plane, the equation of the Euclidean plane is
considered (equation 14.1). The Cartesian coordinates of the points on a plane satisfy the
following implicit equation

nx · x + ny · y + nz · z + d = 0 .

Using the correspondence between the Cartesian and homogenous coordinates (equation
14.17) we still describe the points of the Euclidean plane but now with homogenous coor-
dinates:

nx · Xh
h + ny · Yh

h + nz · Zh
h + d = 0 .

Let us multiply both sides of this equation by h, and add those points to the plane which have
h = 0 coordinate and satisfy this equation. With this step the set of points of the Euclidean
plane is extended with the ideal points, that is, we obtained the set of points belonging to
the projective plane. Hence the equation of the projective plane is a homogenous linear
equation:

nx · Xh + ny · Yh + nz · Zh + d · h = 0 , (14.19)
or in matrix form:

[Xh,Yh,Zh, h] ·



nx
ny
nz
d


= 0 . (14.20)

Note that points and planes are described by row and column vectors, respectively. Both the
quadruples of points and the quadruples of planes have the homogeneous property, that is,
they can be multiplied by non-zero scalars without altering the solutions of the equation.

14.5.2. Homogenous linear transformations
Transformations de�ned as the multiplication of the homogenous coordinate vector of a
point by a constant 4 × 4 T matrix are called homogeneous linear transformations:

[X′h,Y ′h,Z′h, h′] = [Xh,Yh,Zh, h] · T . (14.21)

14.5. Translation, distortion, geometric transformations 657

Theorem 14.12 Homogeneous linear transformations map points to points.

Proof. A point can be de�ned by homogeneous coordinates in form λ · [Xh,Yh,Zh, h], where
λ is an arbitrary, non-zero constant. The transformation results in λ · [X′h,Y ′h,Z′h, h′] = λ ·
[Xh,Yh,Zh, h] ·T when a point is transformed, which are the λ-multiples of the same vector,
thus the result is a single point in homogeneous coordinates.

Note that due to the homogeneous property, homogeneous transformation matrix T is
not unambiguous, but can be freely multiplied by non-zero scalars without modifying the
realized mapping.

Theorem 14.13 Invertible homogeneous linear transformations map lines to lines.

Proof. Let us consider the parametric equation of a line:

[Xh(t),Yh(t),Zh(t), h(t)] = [X1
h ,Y1

h ,Z1
h , h1] · (1 − t) + [X2

h ,Y2
h ,Z2

h , h2] · t, t = (−∞,∞) ,

and transform the points of this line by multiplying the quadruples with the transformation
matrix:

[X′h(t),Y ′h(t),Z′h(t), h′(t)] = [Xh(t),Yh(t),Zh(t), h(t)] · T

= [X1
h ,Y1

h ,Z1
h , h1] · T · (1 − t) + [X2

h ,Y2
h ,Z2

h , h2] · T · t

= [X1
h
′
,Y1

h
′
,Z1

h
′
, h1′] · (1 − t) + [X2

h
′
,Y2

h
′
,Z2

h
′
, h2′] · t ,

where [X1
h
′
,Y1

h
′
,Z1

h
′
, h1′] and [X2

h
′
,Y2

h
′
,Z2

h
′
, h2′] are the transformations of [X1

h ,Y1
h ,Z1

h , h1]
and [X2

h ,Y2
h ,Z2

h , h2], respectively. Since the transformation is invertible, the two points are
different. The resulting equation is the equation of a line �tted to the transformed points.

We note that if we had not required the invertibility of the the transformation, then it
could have happened that the transformation would have mapped the two points to the same
point, thus the line would have degenerated to single point.

If parameter t is limited to interval [0, 1], then we obtain the equation of the projective
line segment, thus we can also state that a homogeneous linear transformation maps a line
segment to a line segment. Even more generally, a homogeneous linear transformation maps
convex combinations to convex combinations. For example, triangles of the projective plane
are mapped to triangles.

However, we have to be careful when we try to apply this theorem in the Euclidean
plane or space. Let us consider a line segment as an example. If coordinate h has different
sign at the two endpoints, then the line segment contains an ideal point. Such projective
line segment can be intuitively imagined as two half lines and an ideal point sticking the
�endpoints� of these half lines at in�nity, that is, such line segment is the complement of the
line segment we are accustomed to. It may happen that before the transformation coordinates
h of the endpoints have similar sign, that is, the line segment meets our intuitive image about
Euclidean line segments, but after the transformation, coordinates h of the endpoints will
have different sign. Thus the transformation wraps around our line segment.

Theorem 14.14 Invertible linear transformations map planes to planes.

658 14. Computer graphics

Proof. The originals of transformed points [X′h,Y ′h,Z′h, h′] de�ned by [Xh,Yh,Zh, h] =

[X′h,Y ′h,Z′h, h′] · T−1 are on a plane, thus satisfy the original equation of the plane:

[Xh,Yh,Zh, h] ·



nx
ny
nz
d


= [X′h,Y ′h,Z′h, h′] · T−1 ·



nx
ny
nz
d


= 0 .

Due to the associativity of matrix multiplication, the transformed points also satisfy equation

[X′h,Y ′h,Z′h, h′] ·



n′x
n′y
n′z
d′


= 0 ,

which is also a plane equation, where


n′x
n′y
n′z
d′


= T−1 ·



nx
ny
nz
d


.

This result can be used to obtain the normal vector of a transformed plane.
An important subclass of homogeneous linear transformations is the set of affine trans-

formations, where the Cartesian coordinates of the transformed point are linear functions
of the original Cartesian coordinates:

[x′, y′, z′] = [x, y, z] · A + [px, py, pz] , (14.22)

where vector ~p describes translation, A is a matrix of size 3 × 3 and expresses rotation,
scaling, mirroring, etc., and their arbitrary combination. For example, the rotation around
axis (tx, ty, tz), (|(tx, ty, tz)| = 1) by angle φ is given by the following matrix

A =


(1 − t2

x) cos φ + t2
x txty(1 − cos φ) + tz sin φ txtz(1 − cos φ) − ty sin φ

tytx(1 − cos φ) − tz sin φ (1 − t2
y) cos φ + t2

y txtz(1 − cos φ) + tx sin φ
tztx(1 − cos φ) + ty sin φ tzty(1 − cos φ) − tx sin φ (1 − t2

z) cos φ + t2
z

 .

This expression is known as the Rodrigues formula.
Affine transformations map the Euclidean space onto itself, and transform parallel lines

to parallel lines. Affine transformations are also homogeneous linear transformations since
equation (14.22) can also be given as a 4×4 matrix operation, having changed the Cartesian
coordinates to homogeneous coordinates by adding a fourth coordinate of value 1:

[x′, y′, z′, 1] = [x, y, z, 1] ·



A11 A12 A13 0
A21 A22 A23 0
A31 A32 A33 0
px py pz 1


= [x, y, z, 1] · T . (14.23)

A further specialization of affine transformations is the set of congruence transforma-
tions (isometries) which are distance and angle preserving.

14.6. Rendering with ray tracing 659

Theorem 14.15 In a congruence transformation the rows of matrix A have unit length and
are orthogonal to each other.

Proof. Let us use the property that a congruence is distance and angle preserving for the
case when the origin and the basis vectors of the Cartesian system are transformed. The
transformation assigns point (px, py, pz) to the origin and points (A11 + px, A12 + py, A13 +

pz), (A21 + px, A22 + py, A23 + pz), and (A31 + px, A32 + py, A33 + pz) to points (1, 0, 0),
(0, 1, 0), and (0, 0, 1), respectively. Because the distance is preserved, the distances between
the new points and the new origin are still 1, thus |A11, A12, A13| = 1, |A21, A22, A23| = 1,
and |A31, A32, A33| = 1. On the other hand, because the angle is also preserved, vectors
(A11, A12, A13), (A21, A22, A23), and (A31, A32, A33) are also perpendicular to each other.

Exercises
14.5-1 Using the Cartesian coordinate system as an algebraic basis, prove the axioms of the
Euclidean geometry, for example, that two points de�ne a line, and that two different lines
may intersect each other at most at one point.
14.5-2 Using the homogenous coordinates as an algebraic basis, prove an axiom of the pro-
jective geometry stating that two different lines intersect each other in exactly one point.
14.5-3 Prove that homogeneous linear transformations map line segments to line segments
using the centre of mass analogy.
14.5-4 How does an affine transformation modify the volume of an object?
14.5-5 Give the matrix of that homogeneous linear transformation which translates by vec-
tor ~p.
14.5-6 Prove the Rodrigues formula.
14.5-7 A solid de�ned by equation f (~r) ≥ 0 in time t = 0 moves with uniform constant
velocity ~v. Let us �nd the equation of the solid at an arbitrary time instance t.
14.5-8 Prove that if the rows of matrix A are of unit length and are perpendicular to each
other, then the affine transformation is a congruence. Show that for such matrices A−1 = AT .

14.5-9 Give that homogeneous linear transformation which projects the space from point ~c
onto a plane of normal ~n and place vector ~r0.
14.5-10 Show that �ve point correspondences unambiguously identify a homogeneous li-
near transformation if no four points are co-planar.

14.6. Rendering with ray tracing
When a virtual world is rendered, we have to identify the surfaces visible in different direc-
tions from the virtual eye. The set of possible directions is de�ned by a rectangle shaped
window which is decomposed to a grid corresponding to the pixels of the screen (�gure
14.30). Since a pixel has a unique colour, it is enough to solve the visibility problem in a
single point of each pixel, for example, in the points corresponding to pixel centres.

The surface visible at a direction from the eye can be identi�ed by casting a half line,
called ray, from the eye at that direction and identifying its intersection closest to the eye
position. This operation is called ray tracing.

Ray tracing has many applications. For example, shadow computation tests whether or

660 14. Computer graphics

Figure 14.30. Ray tracing

not a point is occluded from the light source, which requires a ray to be sent from the point
at the direction of the light source and the determination whether this ray intersects any
surface closer than the light source. Ray tracing is also used by collision detection since a
point moving with constant and uniform speed collides that surface which is �rst intersected
by the ray describing the motion of the point.

A ray is de�ned by the following equation:

~ray(t) = ~s + ~v · t, (t > 0) , (14.24)

where ~s is the place vector of the ray origin, ~v is the direction of the ray, and ray parameter
t characterizes the distance from the origin. Let us suppose that direction vector ~v has unit
length. In this case parameter t is the real distance, otherwise it would only be proportional to
the distance3. If parameter t is negative, then the point is behind the eye and is obviously not
visible. The identi�cation of the closest intersection with the ray means the determination
of the intersection point having the smallest, positive ray parameter. In order to �nd the
closest intersection, the intersection calculation is tried with each surface, and the closest is
retained. This algorithm is presented in the followings:

3In collision detection ~v is not a unit vector, but the velocity of the moving point since this makes ray parameter t
express the collision time.

14.6. Rendering with ray tracing 661

R-F-I(~s,~v)
1 t ← tmax ¤ initialization to the maximum size in the virtual world.
2 for each object o
3 do to ←R-S-I(~s,~v) ¤ negative if no intersection exists.
4 if 0 ≤ to < t ¤ is the new intersection closer?
5 then t ← to ¤ ray parameter of the closest intersection so far.
6 ovisible ← o ¤ closest object so far.
7 if t < tmax then ¤ has been intersection at all?
8 then ~x← ~s + ~v · t ¤ intersection point using the ray equation.
9 return t, ~x, ovisible

10 else return �no intersection� ¤ no intersection.

This algorithm inputs the ray de�ned by origin ~s and direction ~v, and outputs the ray
parameter of the intersection in variable t, the intersection point in ~x, and the visible object
in ovisible. The algorithm calls function R-- for each object, which de-
termines the intersection of the ray and the given object, and indicates with a negative return
value if no intersection exists. Function R-- should be implemented
separately for each surface type.

14.6.1. Ray-surface intersection calculation
The identi�cation of the intersection between a ray and a surface requires the solution of an
equation. The intersection point is both on the ray and on the surface, thus it can be obtai-
ned by inserting the ray equation into the equation of the surface and solving the resulting
equation for the unknown ray parameter.

Intersection calculation for implicit surfaces
For implicit surfaces of equation f (~r) = 0, the intersection can be calculated by solving the
following scalar equation for t: f (~s + ~v · t) = 0 .

Let us take the example of quadrics that include the sphere, the ellipsoid, the cylinder,
the cone, the paraboloid, etc. The implicit equation of a general quadric contains a quadratic
form:

[x, y, z, 1] ·Q ·



x
y
z
1


= 0 ,

where Q is a 4× 4 matrix. Substituting the ray equation into the equation of the surface, we
obtain

[sx + vx · t, sy + vy · t, sz + vz · t, 1] ·Q ·



sx + vx · t
sy + vy · t
sz + vz · t

1


= 0 .

Rearranging the terms, we get a second order equation for unknown parameter t:

t2 · (v ·Q · vT) + t · (s ·Q · vT + v ·Q · sT) + (s ·Q · sT) = 0 ,

662 14. Computer graphics

where v = [vx, vy, vz, 0] and s = [sx, sy, sz, 1].
This equation can be solved using the solution formula of second order equations. Now

we are interested in only the real and positive roots. If two such roots exist, then the smaller
one corresponds to the intersection closer to the origin of the ray.

Intersection calculation for parametric surfaces
The intersection of parametric surface ~r = ~r(u, v) and the ray is calculated by �rst solving
the following equation for unknown parameters u, v, t

~r(u, v) = ~s + t · ~v ,

then checking whether or not t is positive and parameters u, v are inside the allowed para-
meter range of the surface.

Roots of non-linear equations are usually found by numeric methods. On the other
hand, the surface can also be approximated by a triangle mesh, which is intersected by the
ray. Having obtained the intersection on the coarse mesh, the mesh around this point is
re�ned, and the intersection calculation is repeated with the re�ned mesh.

Intersection calculation for a triangle
To compute the ray intersection for a triangle of vertices ~a, ~b, and ~c, �rst the ray intersection
with the plane of the triangle is found. Then it is decided whether or not the intersection
point with the plane is inside the triangle. The normal and a place vector of the triangle
plane are ~n = (~b − ~a) × (~c − ~a), and ~a, respectively, thus points ~r of the plane satisfy the
following equation:

~n · (~r − ~a) = 0 . (14.25)

The intersection of the ray and this plane is obtained by substituting the ray equation
(equation (14.24)) into this plane equation, and solving it for unknown parameter t. If root t∗
is positive, then it is inserted into the ray equation to get the intersection point with the plane.
However, if the root is negative, then the intersection is behind the origin of the ray, thus
is invalid. Having a valid intersection with the plane of the triangle, we check whether this
point is inside the triangle. This is a containment problem, which is discussed in subsection
14.4.1.

Intersection calculation for an AABB
The surface of an AABB, that is an axis aligned block, can be subdivided to 6 rectangular
faces, or alternatively to 12 triangles, thus its intersection can be solved by the algorithms
discussed in the previous subsections. However, realizing that in this special case the three
coordinates can be handled separately, we can develop more efficient approaches. In fact, an
AABB is the intersection of an x-stratum de�ned by inequality xmin ≤ x ≤ xmax, a y-stratum
de�ned by ymin ≤ y ≤ ymax and a z-stratum of inequality zmin ≤ z ≤ zmax. For example, the
ray parameter of the intersection with the x-stratum is:

t1
x =

xmin − sx
vx

, t2
x =

xmax − sx
vx

.

The smaller of the two parameter values corresponds to the entry at the stratum, while the
greater to the exit. Let us denote the ray parameter of the entry by tin, and the ray parameter

14.6. Rendering with ray tracing 663

of the exit by tout. The ray is inside the x-stratum while the ray parameter is in [tin, tout].
Repeating the same calculation for the y and z-strata as well, three ray parameter intervals
are obtained. The intersection of these intervals determine when the ray is inside the AABB.
If parameter tout obtained as the result of intersecting the strata is negative, then the AABB
is behind the eye, thus no ray�AABB intersection is possible. If only tin is negative, then the
ray starts at an internal point of the AABB, and the �rst intersection is at tout. Finally, if tin
is positive, then the ray enters the AABB from outside at parameter tin.

The computation of the unnecessary intersection points can be reduced by applying the
Cohen � Sutherland line clipping algorithm (subsection 14.4.3). First, the ray is replaced by
a line segment where one endpoint is the origin of the ray, and the other endpoint is an
arbitrary point on the ray which is farther from the origin than any object of the virtual
world.

14.6.2. Speeding up the intersection calculation
A naive ray tracing algorithm tests each object for a ray to �nd the closest intersection.
If there are N objects in the space, the running time of the algorithm is Θ(N) both in the
average and in the worst case. The storage requirement is also linear in terms of the number
of objects.

The method would be speeded up if we could exclude certain objects from the intersec-
tion test without testing them one by one. The reasons of such exclusion include that these
objects are �behind� the ray or �not in the direction of the ray�. Additionally, the speed
is also expected to improve if we can terminate the search having found an intersection
supposing that even if other intersections exist, they are surely farther than the just found
intersection point. To make such decisions safely, we need to know the arrangement of ob-
jects in the virtual world. This information is gathered during the pre-processing phase. Of
course, pre-processing has its own computational cost, which is worth spending if we have
to trace a lot of rays.

Bounding volumes
One of the simplest ray tracing acceleration technique uses bounding volumes. The boun-
ding volume is a shape of simple geometry, typically a sphere or an AABB, which comp-
letely contains a complex object. When a ray is traced, �rst the bounding volume is tried
to be intersected. If there is no intersection with the bounding volume, then neither can the
contained object be intersected, thus the computation time of the ray intersection with the
complex object is saved. The bounding volume should be selected in a way that the ray
intersection is computationally cheap, and it is a tight container of the complex object.

The application of bounding volumes does not alter the linear time complexity of the
naive ray tracing. However, it can increase the speed by a scalar factor.

On the other hand, bounding volumes can also be organized in a hierarchy putting
bounding volumes inside bigger bounding volumes recursively. In this case the ray tracing
algorithm traverses this hierarchy, which is possible in sub-linear time.

Space subdivision with uniform grids
Let us �nd the AABB of the complete virtual world and subdivide it by an axis aligned
uniform grid of cell sizes (cx, cy, cz) (�gure 14.31).

664 14. Computer graphics

c

c

x

y

c /vx x c /vy y

v

(x ,y ,z)min min min

Figure 14.31. Partitioning the virtual world by a uniform grid. The intersections of the ray and the coordinate
planes of the grid are at regular distances cx/vx,cy/vy, and cz/vz, respectively.

In the preprocessing phase, for each cell we identify those objects that are at least par-
tially contained by the cell. The test of an object against a cell can be performed using a
clipping algorithm (subsection 14.4.3), or simply checking whether the cell and the AABB
of the object overlap.

U-G-C()
1 Compute the minimum corner of the AABB (xmin, ymin, zmin) and cell sizes (cx, cy, cz)
2 for each cell c
3 do object list of cell c← empty
4 for each object o ¤ register objects overlapping with this cell.
5 do if cell c and the AABB of object o overlap
6 then add object o to object list of cell c

During ray tracing, cells intersected by the ray are visited in the order of their distance
from the ray origin. When a cell is processed, only those objects need to be tested for
intersection which overlap with this cell, that is, which are registered in this cell. On the
other hand, if an intersection is found in the cell, then intersections belonging to other cells
cannot be closer to the ray origin than the found intersection. Thus the cell marching can be
terminated. Note that when an object registered in a cell is intersected by the ray, we should
also check whether the intersection point is also in this cell.

We might meet an object again in other cells. The number of ray�surface intersection
can be reduced if the results of ray�surface intersections are stored with the objects and are
reused when needed again.

As long as no ray�surface intersection is found, the algorithm traverses those cells
which are intersected by the ray. Indices X,Y,Z of the �rst cell are computed from ray
origin ~s, minimum corner (xmin, ymin, zmin) of the grid, and sizes (cx, cy, cz) of the cells:

14.6. Rendering with ray tracing 665

U-G-E-C(~s)
1 X ← I((sx − xmin)/cx)
2 Y ← I((sy − ymin)/cy)
3 Z ← I((sz − zmin)/cz)
4 return X,Y,Z

The presented algorithm assumes that the origin of the ray is inside the subspace cove-
red by the grid. Should this condition not be met, then the intersection of the ray and the
scene AABB is computed, and the ray origin is moved to this point.

The initial values of ray parameters tx, ty, tz are computed as the intersection of the ray
and the coordinate planes by the U---- algorithm:

U-G-R-P-I(~s,~v, X,Y,Z)
1 if vx > 0
2 then tx ← (xmin + (X + 1) · cx − sx)/vx
3 else if vx < 0
4 then tx ← (xmin + X · cx − sx)/vx
5 else tx ← tmax ¤ The maximum distance.
6 if vy > 0
7 then ty ← (ymin + (Y + 1) · cy − sy)/vy
8 else if vy < 0
9 then ty ← (ymin + Y · cy − sy)/vy

10 else ty ← tmax
11 if vz > 0
12 then tz ← (zmin + (Z + 1) · cz − sz)/vz
13 else if vz < 0
14 then tz ← (zmin + Z · cz − sz)/vz
15 else tz ← tmax
16 return tx, ty, tz

The next cell of the sequence of the visited cells is determined by the 3D line drawing
algorithm (3DDDA algorithm). This algorithm exploits the fact that the ray parameters of
the intersection points with planes perpendicular to axis x (and similarly to axes y and z) are
regularly placed at distance cx/vx (cy/vy, and cz/vz, respectively), thus the ray parameter of
the next intersection can be obtained with a single addition (�gure 14.31). Ray parameters tx,
ty, and tz are stored in global variables, and are incremented by constant values. The smallest
from the three ray parameters of the coordinate planes identi�es the next intersection with
the cell.

The following algorithm computes indices X,Y,Z of the next intersected cell, and up-
dates ray parameters tx, ty, tz:

666 14. Computer graphics

U-G-N-C(X,Y,Z, tx, ty, tz)
1 if tx = min(tx, ty, tz) ¤ Next intersection is on the plane perpendicular to axis x.
2 then X ← X + sgn(vx) ¤ function sgn(x) returns the sign.
3 tx ← tx + cx/|vx|
4 else if ty = min(tx, ty, tz) ¤ Next intersection is on the plane perpendicular to axis y.
5 then Y ← Y + sgn(vy)
6 ty ← ty + cy/|vy|
7 else if tz = min(tx, ty, tz) ¤ Next intersection is on the plane perpendicular to axis z.
8 then Z ← Z + sgn(vz)
9 tz ← tz + cz/|vz|

To summarize, a complete ray tracing algorithm is presented, which exploits the uni-
form grid generated during preprocessing and computes the ray�surface intersection closest
to the ray origin. The minimum of ray parameters assigned to the coordinate planes, vari-
able tout, determines the distance as far as the ray is inside the cell. This parameter is used
to decide whether or not a ray-surface intersection is really inside the cell.

R-F-I--U-G(~s,~v)
1 (X,Y,Z)← U-G-E-C(~s)
2 (tx, ty, tz)← U-G-R-P-I(~s,~v, X,Y,Z)
3 while X,Y,Z are inside the grid
4 do tout ← min(tx, ty, tz) ¤ Here is the exit from the cell.
5 t ← tout ¤ Initialization: no intersection yet.
6 for each object o registered in cell (X,Y,Z)
7 do to ←R--(~s,~v, o) ¤ Negative: no intersection.
8 if 0 ≤ to < t ¤ Is the new intersection closer?
9 then t ← to ¤ The ray parameter of the closest intersection so far.

10 ovisible ← o ¤ The �rst intersected object.
11 if t < tout ¤ Was intersection in the cell?
12 then ~x← ~s + ~v · t ¤ The position of the intersection.
13 return t, ~x, ovisible ¤ Termination.
14 U---(X,Y,Z, tx, ty, tz) ¤ 3DDDA.
15 return �no intersection�

Time and storage complexity of the uniform grid algorithm
The preprocessing phase of the uniform grid algorithm tests each object with each cell, thus
runs in Θ(N · C) time where N and C are the numbers of objects and cells, respectively.
In practice, the resolution of the grid is set to make C proportional to N since in this case,
the average number of objects per cell becomes independent of the total number of objects.
Such resolution makes the preprocessing time quadratic, that is Θ(N2). We note that sorting
objects before testing them against cells may reduce this complexity, but this optimization
is not crucial since not the preprocessing but the ray tracing time is critical. Since in the
worst case all objects may overlap with each cell, the storage space is also in O(N2).

14.6. Rendering with ray tracing 667

The ray tracing time can be expressed by the following equation:

T = To + NI · TI + NS · TS , (14.26)

where To is the time needed to identify the cell containing the origin of the ray, NI is the
number of ray�surface intersection tests until the �rst intersection is found, TI is the time
required by a single ray�surface intersection test, NS is the number of visited cells, and TS
is the time needed to step onto the next cell.

To �nd the �rst cell, the coordinates of the ray origin should be divided by the cell sizes,
and the cell indices are obtained by rounding the results. This step thus runs in constant
time. A single ray�surface intersection test also requires constant time. The next cell is
determined by the 3DDDA algorithm in constant time as well. Thus the complexity of the
algorithm depends only on the number of intersection tests and the number of the visited
cells.

Considering a worst case scenario, a cell may contain all objects, requiring O(N) in-
tersection test with N objects. In the worst case the ray tracing has linear complexity. This
means that the uniform grid algorithm needs quadratic preprocessing time and storage, but
solves the ray tracing problem still in linear time as the naive algorithm, which is quite
disappointing. However, uniform grids are still worth using since worst case scenarios are
very unlikely. The fact is that classic complexity measures describing the worst case charac-
teristics are not appropriate to compare the naive algorithm and the uniform grid based ray
tracing. For a reasonable comparison, the probabilistic analysis of the algorithms is needed.

Probabilistic model of the virtual world
To carry out the average case analysis, the scene model, i.e. the probability distribution of
the possible virtual world models must be known. In practical situations, this probability
distribution is not available, therefore it must be estimated. If the model of the virtual world
were too complicated, we would not be able to analytically determine the average, i.e. the
expected running time of the ray tracing algorithm. A simple, but also justi�able model is
the following: Objects are spheres of the same radius r, and sphere centres are uniformly
distributed in space.

Since we are interested in the asymptotic behavior when the number of objects is really
high, uniform distribution in a �nite space would not be feasible. On the other hand, the
boundary of the space would pose problems. Thus, instead of dealing with a �nite object
space, the space should also be expanded as the number of objects grows to sustain constant
average spatial object density. This is a classical method in probability theory, and its known
result is the Poisson point process.

De�nition 14.16 A Poisson point process N(A) counts the number of points in subset A of
space in a way that
• N(A) is a Poisson distribution of parameter ρV(A), where ρ is a positive constant called

�intensity� and V(A) is the volume of A, thus the probability that A contains exactly k
points is

Pr {N(A) = k} =
(ρV(A))k

k! · e−ρV(A) ,

and the expected number of points in volume V(A) is ρV(A);

668 14. Computer graphics

jelölt tér

metszési tér

Figure 14.32. Encapsulation of the intersection space by the cells of the data structure in a uniform subdivision
scheme. The intersection space is a cylinder of radius r. The candidate space is the union of those spheres that may
overlap a cell intersected by the ray.

• for disjoint A1, A2, . . . , An sets random variables N(A1),N(A2), . . . ,N(An) are indepen-
dent.

Using the Poisson point process, the probabilistic model of the virtual world is:
1. The object space consists of spheres of the same radius r.
2. The sphere centres are the realizations of a Poisson point process of intensity ρ.

Having constructed a probabilistic virtual world model, we can start the analysis of the
candidate algorithms assuming that the rays are uniformly distributed in space.

Calculation of the expected number of intersections
Looking at �gure 14.32 we can see a ray that passes through certain cells of the space
partitioning data structure. The collection of those sphere centres where the sphere would
have an intersection with a cell is called the candidate space associated with this cell.

Only those spheres of radius r can have intersection with the ray whose centres are in
a cylinder of radius r around the ray. This cylinder is called the intersection space (�gure
14.32). More precisely, the intersection space also includes two half spheres at the bottom
and at the top of the cylinder, but these will be ignored.

As the ray tracing algorithm traverses the data structure, it examines each cell that is
intersected by the ray. If the cell is empty, then the algorithm does nothing. If the cell is
not empty, then it contains, at least partially, a sphere which is tried to be intersected. This
intersection succeeds if the centre of the sphere is inside the intersection space and fails if it
is outside.

The algorithm should try to intersect objects that are in the candidate space, but this
intersection will be successful only if the object is also contained by the intersection space.
The probability of the success s is the ratio of the projected areas of the intersection space
and the candidate space associated with this cell.

From the probability of the successful intersection in a non-empty cell, the probability
that the intersection is found in the �rst, second, etc. cells can also be computed. Assuming
statistical independence, the probabilities that the �rst, second, third, etc. intersection is the
�rst successful intersection are s, (1 − s)s, (1 − s)2s, etc., respectively. This is a geometric
distribution with expected value 1/s. Consequently, the expected number of the ray�object

14.6. Rendering with ray tracing 669

intersection tests is:
E[NI] =

1
s . (14.27)

If the ray is parallel to one of the sides, then the projected size of the candidate space is
c2 + 4cr + r2π where c is the edge size of a cell and r is the radius of the spheres. The other
extreme case happens when the ray is parallel to the diagonal of the cubic cell, where the
projection is a rounded hexagon having area

√
3c2 + 6cr + r2π. The success probability is

then:
r2π√

3c2 + 6cr + r2π
≤ s ≤ r2π

c2 + 4cr + r2π
.

According to equation (14.27), the average number of intersection calculations is the recip-
rocal of this probability:

1
π

(c
r

)2
+

4
π

c
r + 1 ≤ E [NI] ≤

√
3
π

(c
r

)2
+

6
π

c
r + 1 . (14.28)

Note that if the size of the cell is equal to the diameter of the sphere (c = 2r), then

3.54 < E [NI] < 7.03 .

This result has been obtained assuming that the number of objects converges to in�nity. The
expected number of intersection tests, however, remains �nite and relatively small.

Calculation of the expected number of cell steps
In the following analysis the conditional expected value theorem will be used. An appropri-
ate condition is the length of the ray segment between its origin and the closest intersection.
Using its probability density pt∗(t) as a condition, the expected number of visited cells NS
can be written in the following form:

E[NS] =

∞∫

0

E[NS |t∗ = t] · pt∗(t) dt ,

where t∗ is the length of the ray and pt∗ is its probability density.
Since the intersection space is a cylinder if we ignore the half spheres around the be-

ginning and the end, its total volume is r2πt. Thus the probability that intersection occurs
before t is:

Pr {t∗ < t} = 1 − e−ρr2πt .

Note that this function is the cumulative probability distribution function of t∗. The proba-
bility density can be computed as its derivative, thus we obtain:

pt∗(t) = ρr2π · e−ρr2πt .

The expected length of the ray is then:

E[t∗] =

∞∫

0

t · ρr2π · e−ρr2πt dt =
1

ρr2π
. (14.29)

670 14. Computer graphics

In order to simplify the analysis, we shall assume that the ray is parallel to one of the
coordinate axes. Since all cells have the same edge size c, the number of cells intersected
by a ray of length t can be estimated as E[NS |t∗ = t] ≈ t/c + 1. This estimation is quite
accurate. If the the ray is parallel to one of the coordinate axes, then the error is at most 1.
In other cases the real value can be at most

√
3 times the given estimation. The estimated

expected number of visited cells is then:

E [NS] ≈
∞∫

0

(t
c + 1

)
· ρr2π · e−ρr2πt dt =

1
cρr2π

+ 1 . (14.30)

For example, if the cell size is similar to the object size (c = 2r), and the expected number
of sphere centres in a cell is 0.1, then E [NS] ≈ 14. Note that the expected number of visited
cells is also constant even for in�nite number of objects.

Expected running time and storage space
We concluded that the expected numbers of required intersection tests and visited cells are
asymptotically constant, thus the expected time complexity of the uniform grid based ray
tracing algorithm is constant after quadratic preprocessing time. The value of the running
time can be controlled by cell size c according to equations (14.28) and (14.30). Smaller
cell sizes reduce the average number of intersection tests, but increase the number of visited
cells.

According to the probabilistic model, the average number of objects overlapping with a
cell is also constant, thus the storage is proportional to the number of cells. Since the number
of cells is set proportional to the number of objects, the expected storage complexity is also
linear unlike the quadratic worst-case complexity.

The expected constant running time means that asymptotically the running time is inde-
pendent of the number of objects, which explains the popularity of the uniform grid based
ray tracing algorithm, and also the popularity of the algorithms presented in the next sub-
sections.

Octree
Uniform grids require many unnecessary cell steps. For example, the empty spaces are not
worth partitioning into cells, and two cells are worth separating only if they contain different
objects. Adaptive space partitioning schemes are based on these recognitions. The space can
be partitioned adaptively following a recursive approach. This results in a hierarchical data
structure, which is usually a tree. The type of this tree is the base of the classi�cation of
such algorithms.

The adaptive scheme discussed in this subsection uses an octal tree (octree for short),
where non-empty nodes have 8 children. An octree is constructed by the following algo-
rithm:
• For each object, an AABB is found, and object AABBs are enclosed by a scene AABB.

The scene AABB is the cell corresponding to the root of the octree.
• If the number of objects overlapping with the current cell exceeds a prede�ned thres-

hold, then the cell is subdivided to 8 cells of the same size by halving the original cell
along each coordinate axis. The 8 new cells are the children of the node corresponding
to the original cell. The algorithm is recursively repeated for the child cells.

14.6. Rendering with ray tracing 671

1
2

3

1

1 2 2 1

3 1

I II

IIIIV

Figure 14.33. A quadtree partitioning the plane, whose three-dimensional version is the octree. The tree is const-
ructed by halving the cells along all coordinate axes until a cell contains �just a few� objects, or the cell sizes gets
smaller than a threshold. Objects are registered in the leaves of the tree.

• The recursive tree building procedure terminates if the depth of the tree becomes to big,
or when the number of objects overlapping with a cell is smaller than the threshold.

The result of this construction is an octree (�gure 14.33). Overlapping objects are re-
gistered in the leaves of this tree.

When a ray is traced, those leaves of the tree should be traversed which are intersected
by the ray, and ray�surface intersection test should be executed for objects registered in
these leaves:

R-F-I--O(~s,~v)
1 ~q← intersection of the ray and the scene AABB
2 while ~q is inside of the scene AABB ¤ Traversal of the tree.
3 cell← O-C-S(octree root, ~q)
4 tout ← ray parameter of the intersection of the cell and the ray
5 t ← tout ¤ Initialization: no ray-surface intersection yet.
6 for each object o registered in cell
7 do to ←R-S-I(~s,~v) ¤ Negative if no intersection exists.
8 if 0 ≤ to < t ¤ Is the new intersection closer?
9 then t ← to ¤ Ray parameter of the closest intersection so far.

10 ovisible ← o ¤ First intersected object so far.
11 if t < tout ¤ Has been intersection at all ?
12 then ~x← ~s + ~v · t ¤ Position of the intersection.
13 return t, ~x, ovisible
14 ~q← ~s + ~v · (tout + ε) ¤ A point in the next cell.
15 return �no intersection�

The identi�cation of the next cell intersected by the ray is more complicated for octrees
than for uniform grids. The O-C-S algorithm determines that leaf cell which

672 14. Computer graphics

contains a given point. At each level of the tree, the coordinates of the point are compared to
the coordinates of the centre of the cell. The results of these comparisons determine which
child contains the point. Repeating this test recursively, we arrive at a leaf sooner or later.

In order to identify the next cell intersected by the ray, the intersection point of the
ray and the current cell is computed. Then, ray parameter tout of this intersection point is
increased �a little� (this little value is denoted by ε in algorithm R-F-I-
-O). The increased ray parameter is substituted into the ray equation, resulting in
point ~q that is already in the next cell. The cell containing this point can be identi�ed with
O--.

Cells of the octree may be larger than the allowed minimal cell, therefore the octree
algorithm requires less number of cell steps than the uniform grid algorithm working on
the minimal cells. However, larger cells reduce the probability of the successful intersection
tests since in a large cell it is less likely that a random ray intersecting the cell also intersects
a contained object. Smaller successful intersection probability, on the other hand, results in
greater expected number of intersection tests, which affects the performance negatively. It
also means that non-empty octree cells are worth subdividing until the minimum cell size
is reached even if the cell contains just a single object. Following this strategy, the size of
the non-empty cells are similar, thus the results of the complexity analysis made for the
uniform grid remain to be applicable to the octree as well. Since the probability of the
successful intersection depends on the size of the non-empty cells, the expected number of
needed intersection tests is still given by inequality (14.28). It also means that when the
minimal cell size of an octree equals to the cell size of a uniform grid, then the expected
number of intersection tests is equal in the two algorithms.

The advantage of the ocree is the ability to skip empty spaces, which reduces the number
of cell steps. Its disadvantage is, however, that the time of the next cell identi�cation is not
constant. This identi�cation requires the traversal of the tree. If the tree construction is
terminated when a cell contains small number of objects, then the number of leaf cells is
proportional to the number of objects. The depth of the tree is in O(lg N), so is the time
needed to step onto the next cell.

kd-tree
An octree adapts to the distribution of the objects. However, the partitioning strategy of
octrees always halves the cells without taking into account where the objects are, thus the
adaptation is not perfect. Let us consider a partitioning scheme which splits a cell into two
cells to make the tree balanced. Such method builds a binary tree which is called binary
space partitioning tree,, abbreviated as BSP-tree. If the separating plane is always perpen-
dicular to one of the coordinate axes, then the tree is called kd-tree.

The separating plane of a kd-tree node can be placed in many different ways:
• the spatial median method subdivides the cell into two similar cells.

• the object median method �nds the separation plane to have the same number of objects
in the two child cells.

• the cost driven method estimates the average computation time needed when a cell is
processed during ray tracing, and minimizes this value by placing the separation plane.
An appropriate cost model suggests to separate the cell to make the probabilities of the
ray�surface intersection of the two cells similar.

14.6. Rendering with ray tracing 673

1
2

3

1

2 3

I

II

Figure 14.34. A kd-tree. A cell containing �many� objects are recursively subdivided to two cells with a plane that
is perpendicular to one of the coordinate axes.

The probability of the ray-surface intersection can be computed using a fundamental
theorem of the integral geometry:

Theorem 14.17 If convex solid A contains another convex solid B, then the probability that
a uniformly distributed line intersects solid B provided that the line intersected A equals to
the ratio of the surface areas of objects B and A.

According to this theorem the cost driven method �nds the separation plane to equalize
the surface areas in the two children.

Let us now present a general kd-tree construction algorithm. Parameter cell identi�es
the current cell, depth is the current depth of recursion, and coordinate stores the orienta-
tion of the current separating plane. A cell is associated with its two children (cell.right and
cell.left), and its left-lower-closer and right-upper-farther corners (cell.min and cell.max).
Cells also store the list of those objects which overlap with the cell. The orientation of the
separation plane is determined by a round-robin scheme implemented by function R-
 providing a sequence like (x, y, z, x, y, z, x, . . .). When the following recursive algo-
rithm is called �rst, it gets the scene AABB in variable cell and the value of variable depth
is zero:

674 14. Computer graphics

K-T-C(cell, depth, coordinate)
1 if the number of objects overlapping with cell is small or depth is large
2 then return
3 AABB of cell.left and AABB of cell.right← AABB of cell
4 if coordinate = x
5 then cell.right.min.x← x perpendicular separating plane of cell
6 cell.left.max.x← x perpendicular separating plane of cell
7 else if coordinate = y
8 then cell.right.min.y← y perpendicular separating plane of cell
9 cell.left.max.y← y perpendicular separating plane of cell

10 else if coordinate = z
11 then cell.right.min.z← z perpendicular separating plane of cell
12 cell.left.max.z← z perpendicular separating plane of cell
13 for each object o of cell
14 do if object o is in the AABB of cell.left
15 then assign object o to the list of cell.left
16 if object o is in the AABB of cell.right
17 then assign object o to the list of cell.right
18 K-T-C(cell.left, depth + 1,R-R(coordinate))
19 K-T-C(cell.right, depth + 1,R-R(coordinate))

Now we discuss an algorithm that traverses the constructed kd-tree and �nds the visible
object. First we have to test whether the origin of the ray is inside the scene AABB. If
it is not, the intersection of the ray and the scene AABB is computed, and the origin of
the ray is moved there. The identi�cation of the cell containing the ray origin requires the
traversal of the tree. During the traversal the coordinates of the point are compared to the
coordinates of the separating plane. This comparison determines which child should be
processed recursively until a leaf node is reached. If the leaf cell is not empty, then objects
overlapping with the cell are intersected with the ray, and the intersection closest the origin
is retained. The closest intersection is tested to see whether or not it is inside the cell (since
an object may overlap in more than one cells, it can also happen that the intersection is
in another cell). If the intersection is in the current cell, then the needed intersection has
been found, and the algorithm can be terminated. If the cell is empty, or no intersection
is found in the cell, then the algorithm should proceed with the next cell. To identify the
next cell, the ray is intersected with the current cell identifying the ray parameter of the
exit point. Then the ray parameter is increased �a little� to make sure that the increased ray
parameter corresponds to a point in the next cell. The algorithm keeps repeating these steps
as it process the cells of the tree.

This method has the disadvantage that the cell search always starts at the root, which
results in the repetitive traversals of the same nodes of the tree.

This disadvantage can be eliminated by putting the cells to be visited into a stack, and
backtracking only to the point where a new branch should be followed. When the ray arrives
at a node having two children, the algorithm decides the order of processing the two child
nodes. Child nodes are classi�ed as �near� and �far� depending on whether or not the child
cell is on the same side of the separating plane as the origin of the ray. If the ray intersects

14.6. Rendering with ray tracing 675

only the �near� child, then the algorithm processes only that subtree which originates at this
child. If the ray intersects both children, then the algorithm pushes the �far� node onto the
stack and starts processing the �near� node. If no intersection exists in the �near� node, then
the stack is popped to obtain the next node to be processed.

The notations of the ray tracing algorithm based on kd-tree traversal are shown by �gure
14.35. The algorithm is the following:

R-F-I---T(root, ~s,~v)
1 (tin, tout)← R-AABB-I(~s,~v, root) ¤ Intersection with the scene AABB.
2 if no intersection
3 then return �no intersection�
4 P(root, tin, tout)
5 while the stack is not empty ¤ Visit all nodes.
6 do P(cell, tin, tout)
7 while cell is not a leaf
8 do coordinate← orientation of the separating plane of the cell
9 d ← cell.right.min[coordinate] − ~s[coordinate]

10 t ← d/~v[coordinate] ¤ Ray parameter of the separating plane.
11 if d > 0 ¤ Is ~s on the left side of the separating plane?
12 then (near, far)← (cell.left, cell.right) ¤ Left.
13 else (near, far)← (cell.right, cell.left) ¤ Right.
14 if t > tout or t < 0
15 then cell← near ¤ The ray intersects only the near cell.
16 else if t < tin
17 then cell← far ¤ The ray intersects only the far cell.
18 else P(far, t, tout) ¤ The ray intersects both cells.
19 cell← near ¤ First near is intersected.
20 tout ← t ¤ The ray exists at t from the near cell.

¤ If the current cell is a leaf.
21 t ← tout ¤ Maximum ray parameter in this cell.
22 for each object o of cell
23 do to ←R-S-I(~s,~v) ¤ Negative if no intersection exists.
24 if tin ≤ to < t ¤ Is the new intersection closer to the ray origin?
25 then t ← to ¤ The ray parameter of the closest intersection so far.
26 ovisible ← o ¤ The object intersected closest to the ray origin.
27 if t < tout ¤ Has been intersection at all in the cell?
28 then ~x← ~s + ~v · t ¤ The intersection point.
29 return t, ~x, ovisible ¤ Intersection has been found.
30 return �no intersection� ¤ No intersection.

Similarly to the octree algorithm, the likelihood of successful intersections can be inc-
reased by continuing the tree building process until all empty spaces are cut (�gure 14.36).

Our probabilistic world model contains spheres of same radius r, thus the non-empty
cells are cubes of edge size c = 2r. Unlike in uniform grids or octrees, the separating planes
of kd-trees are not independent of the objects. Kd-tree splitting planes are rather tangents

676 14. Computer graphics

bal jobb

t t

t

be

ki

d

jelölések

jobb
d

bal jobb
d

bal jobb

ttki

t > tki

d > 0 d < 0

bal jobb

t

t < 0

bal jobb

t

tbe

t < tbe

s

v

bal
s

s

s

s

s

Figure 14.35. Notations and cases of algorithm R-F-I---T. tin, tout, and t are the ray
parameters of the entry, exit and the separation plane, respectively. d is the signed distance between the ray origin
and the separation plane.

Figure 14.36. Kd-tree based space partitioning with empty space cutting.

of the objects. This means that we do not have to be concerned with partially overlapping
spheres since a sphere is completely contained by a cell in a kd-tree. The probability of the
successful intersection is obtained applying theorem 14.17. In the current case, the contai-
ning convex solid is a cube of edge size 2r, the contained solid is a sphere of radius r, thus
the intersection probability is:

s =
4r2π

6a2 =
π

6 .

The expected number of intersection tests is then:

E [NI] =
6
π
≈ 1.91 .

We can conclude that the kd-tree algorithm requires the smallest number of ray�surface
intersection tests according to the probabilistic model.

Exercises

14.7. Incremental rendering 677

14.6-1 Prove that the expected number of intersection tests is constant in all those ray tra-
cing algorithms which process objects in the order of their distance from the ray origin.
14.6-2 Propose a ray intersection algorithm for subdivision surfaces.
14.6-3 Develop a ray intersection method for B-spline surfaces.
14.6-4 Develop a ray intersection algorithm for CSG models assuming that the ray�
primitive intersection tests are already available.
14.6-5 Propose a ray intersection algorithm for transformed objects assuming that the al-
gorithm computing the intersection with the non-transformed objects is available (hints:
transform the ray).

14.7. Incremental rendering
Rendering requires the identi�cation of those surface points that are visible through the pi-
xels of the virtual camera. Ray tracing solves this visibility problem for each pixel indepen-
dently, thus it does not reuse visibility information gathered at other pixels. The algorithms
of this section, however, exploit such information using the following simple techniques:

1. They simultaneously attack the visibility problem for all pixels, and handle larger parts
of the scene at once.

2. Where feasible, they exploit the incremental concept which is based on the recognition
that the visibility problem becomes simpler to solve if the solution at the neighbouring
pixel is taken into account.

3. They solve each task in that coordinate system which makes the solution easier. The
scene is transformed from one coordinate system to the other by homogeneous linear
transformations.

4. They minimize unnecessary computations, therefore remove those objects by clipping
in an early stage of rendering which cannot be projected onto the window of the camera.
Homogeneous linear transformations and clipping may change the type of the surface

except for points, line segments and polygons 4. Therefore, before rendering is started, each
shape is approximated by points, line segments, and meshes (subsection 14.3).

Steps of incremental rendering are shown in �gure 14.37. Objects are de�ned in their
reference state, approximated by meshes, and are transformed to the virtual world. The time
dependence of this transformation is responsible for object animation. The image is taken
from the camera taken about the virtual world, which requires the identi�cation of those
surface points that are visible from the camera, and their projection onto the window plane.
The visibility and projection problems could be solved in the virtual world as happens in
ray tracing, but this would require the intersection calculations of general lines and poly-
gons. Visibility and projection algorithms can be simpli�ed if the scene is transformed to
a coordinate system, where the X,Y coordinates of a point equal to the coordinates of that
pixel onto which this point is projected, and the Z coordinate can be used to decide which
point is closer if more than one surfaces are projected onto the same pixel. Such coordinate
system is called the screen coordinate system. In screen coordinates the units of axes X and

4Although Bézier and B-Spline curves and surfaces are invariant to affine transformations, and NURBS is invariant
even to homogeneous linear transformations, but clipping changes these object types as well.

678 14. Computer graphics

(a) Modelling (b) Tessellation

(c) Modelling transform (d) Camera transform

(e) Perspective transform (f) Clipping

(g) Hidden surface elimination (h) Projection and shading

Figure 14.37. Steps of incremental rendering. (a) Modelling de�nes objects in their reference state. (b) Shapes
are tessellated to prepare for further processing. (c) Modelling transform places the object in the world coordinate
system. (d) Camera transform translates and rotates the scene to get the eye to be at the origin and to look parallel
with axis −z. (e) Perspective transform converts projection lines meeting at the origin to parallel lines, that is, it
maps the eye position onto an ideal point. (f) Clipping removes those shapes and shape parts, which cannot be
projected onto the window. (g) Hidden surface elimination removes those surface parts that are occluded by other
shapes. (h) Finally, the visible polygons are projected and their projections are �lled with their visible colours.

14.7. Incremental rendering 679

lookat

x

y

z

uv

w

b

f

eye
p

p

up

fov

Figure 14.38. Parameters of the virtual camera: eye position ~eye, target ~lookat, and vertical direction ~up, from
which camera basis vectors ~u,~v, ~w are obtained, front fp and back bp clipping planes, and vertical �eld of view fov
(the horizontal �eld of view is computed from aspect ratio aspect).

Y are equal to the pixel size. Since it is usually not worth computing the image on higher
accuracy than the pixel size, coordinates X,Y are integers. Because of performance reasons,
coordinate Z is also often integer. Screen coordinates are denoted by capital letters.

The transformation taking to the screen coordinate system is de�ned by a sequence of
transformations, and the elements of this sequence are discussed separately. However, this
transformation is executed as a single multiplication with a 4 × 4 transformation matrix
obtained as the product of elementary transformation matrices.

14.7.1. Camera transform
Rendering is expected to generate an image from a camera de�ned by eye position (~eye)
(the focal point of the camera), looking target (~lookat) where the camera looks at, and by
vertical direction ~up (�gure 14.38).

Camera parameter fov de�nes the vertical �eld of view, aspect is the ratio of the width
and the height of the window, fp and bp are the distances of the front and back clipping
planes from the eye, respectively. These clipping planes allow to remove those objects that
are behind, too close to, or too far from the eye.

We assign a coordinate system, i.e. three orthogonal unit basis vectors to the camera.
Horizontal basis vector ~u = (ux, uy, uz), vertical basis vector ~v = (vx, vy, vz), and basis vector
~w = (wx, wy, wz) pointing to the looking direction are obtained as follows:

~w =
~eye − ~lookat
| ~eye − ~lookat|

, ~u =
~up × ~w
| ~up × ~w| , ~v = ~w × ~u .

The camera transform translates and rotates the space of the virtual world in order
to get the camera to move to the origin, to look at direction axis −z, and to have vertical
direction parallel to axis y, that is, this transformation maps unit vectors ~u,~v, ~w to the basis
vectors of the coordinate system. Transformation matrix Tcamera can be expressed as the
product of a matrix translating the eye to the origin and a matrix rotating basis vectors

680 14. Computer graphics

y

z

y

z

fp bp fp bp

Figure 14.39. The normalizing transform sets the �eld of view to 90 degrees.

~u,~v, ~w of the camera to the basis vectors of the coordinate system:

[x′, y′, z′, 1] = [x, y, z, 1] · Tcamera = [x, y, z, 1] · Ttranslation · Trotation , (14.31)

where

Ttranslation =



1 0 0 0
0 1 0 0
0 0 1 0
−eyex −eyey −eyez 1


, Trotation =



ux vx wx 0
uy vy wy 0
uz vz wz 0
0 0 0 1


.

Let us note that the columns of the rotation matrix are vectors ~u,~v, ~w. Since these vectors
are orthogonal, it is easy to see that this rotation maps them to coordinate axes x, y, z. For
example, the rotation of vector ~u is:

[ux, uy, uz, 1] · Trotation = [~u · ~u, ~u · ~v, ~u · ~w, 1] = [1, 0, 0, 1] .

14.7.2. Normalizing transform
In the next step the viewing pyramid containing those points which can be projected onto
the window is normalized making the �eld of view equal to 90 degrees (�gure 14.39).

Normalization is a simple scaling transform:

Tnorm =



1/(tan(fov/2) · aspect) 0 0 0
0 1/ tan(fov/2) 0 0
0 0 1 0
0 0 0 1


.

14.7.3. Perspective transform
The perspective transform distorts the virtual world to allow the replacement of the pers-
pective projection by parallel projection during rendering.

After the normalizing transform, the points potentially participating in rendering are in-
side a symmetrical �nite frustum of pyramid (�gure 14.39). The perspective transform maps
this frustum onto a cube, converting projection lines crossing the origin to lines parallel to
axis z (�gure 14.40).

14.7. Incremental rendering 681

y

z

y

z
1

1

-1

-1
fp bp

Figure 14.40. The perspective transform maps the �nite frustum of pyramid de�ned by the front and back clipping
planes, and the edges of the window onto an axis aligned, origin centred cube of edge size 2.

Perspective transform is expected to map point to point, line to line, but to map the
eye position to in�nity. It means that perspective transform cannot be a linear transform of
Cartesian coordinates. Fortunately, homogenous linear transforms also map point to point,
line to line, and are able to handle points at in�nity with �nite coordinates. Let us thus try
to �nd the perspective transform in the form of a homogeneous linear transform de�ned by
a 4 × 4 matrix:

Tpersp =



t11 t12 t13 t14
t21 t22 t23 t24
t31 t32 t33 t34
t41 t42 t43 t44


.

Figure 14.40 shows a line (projection ray) and its transform. Let mx and my be the x/z
and the y/z slopes of the line, respectively. This line is de�ned by equation [−mx ·z,−my ·z, z]
in the normalized camera space. The perspective transform maps this line to a �horizontal�
line crossing point [mx,my, 0] and being parallel to axis z. Let us examine the intersection
points of this line with the front and back clipping planes, that is, let us substitute (− fp) and
(−bp) into parameter z of the line equation. The transformation should map these points to
[mx,my,−1] and [mx,my, 1], respectively.

The perspective transformation of the point on the �rst clipping plane is:
[
mx · fp,my · fp,− fp, 1

]
· Tpersp =

[
mx,my,−1, 1

]
· λ ,

where λ is an arbitrary, non-zero scalar since the point de�ned by homogeneous coordinates
does not change if the homogenous coordinates are simultaneously multiplied by a non-zero
scalar. Setting λ to fp, we get:

[
mx · fp,my · fp,− fp, 1

]
· Tpersp =

[
mx · fp,my · fp,− fp, fp

]
. (14.32)

Note that the �rst coordinate of the transformed point equals to the �rst coordinate of
the original point on the clipping plane for arbitrary mx, my, and fp values. This is possible
only if the �rst column of matrix Tpersp is [1, 0, 0, 0]T . Using the same argument for the
second coordinate, we can conclude that the second column of the matrix is [0, 1, 0, 0]T .
Furthermore, in equation (14.32) the third and the fourth homogeneous coordinates of the
transformed point are not affected by the �rst and the second coordinates of the original
point, requiring t13 = t14 = t23 = t24 = 0. The conditions on the third and the fourth

682 14. Computer graphics

homogeneous coordinates can be formalized by the following equations:

− fp · t33 + t43 = − fp, − fp · t34 + t44 = fp .

Applying the same procedure for the intersection point of the projection line and the
back clipping plane, we can obtain other two equations:

−bp · t33 + t43 = bp, −bp · t34 + t44 = bp .

Solving this system of linear equations, the matrix of the perspective transform can be exp-
ressed as:

Tpersp =



1 0 0 0
0 1 0 0
0 0 −(fp + bp)/(bp − fp) −1
0 0 −2 · fp · bp/(bp − fp) 0


.

Since perspective transform is not affine, the fourth homogeneous coordinate of the
transformed point is usually not 1. If we wish to express the coordinates of the transformed
point in Cartesian coordinates, the �rst three homogeneous coordinates should be divided
by the fourth coordinate. Homogeneous linear transforms map line segment to line segment
and triangle to triangle, but it may happen that the resulting line segment or triangle con-
tains ideal points (subsection 14.5.2). The intuition behind the homogeneous division is a
traveling from the projective space to the Euclidean space, which converts a line segment
containing an ideal point to two half lines. If just the two endpoints of the line segment
is transformed, then it is not unambiguous whether the two transformed points need to be
connected by a line segment or the complement of this line segment should be considered
as the result of the transformation. This ambiguity is called the wrap around problem.

The wrap around problem does not occur if we can somehow make sure that the original
shape does not contain points that might be mapped onto ideal points. Examining the matrix
of the perspective transform we can conclude that the fourth homogeneous coordinate of the
transformed point will be equal to the −z coordinate of the original point. Ideal points having
zero fourth homogeneous coordinate (h = 0) may thus be obtained transforming the points
of plane z = 0, i.e. the plane crossing the origin and parallel to the window. However, if the
shapes are clipped onto a �rst clipping plane being in front of the eye, then these points are
removed. Thus the solution of the wrap around problem is the execution of the clipping step
before the homogeneous division.

14.7.4. Clipping in homogeneous coordinates
The purpose of clipping is to remove all shapes that either cannot be projected onto the
window or are not between the front and back clipping planes. To solve the wrap around
problem, clipping should be executed before the homogeneous division. The clipping boun-
daries in homogeneous coordinates can be obtained by transforming the screen coordinate
AABB back to homogeneous coordinates. In screen coordinates, i.e. after homogeneous
division, the points to be preserved by clipping meet the following inequalities:

− 1 ≤ X = Xh/h ≤ 1, −1 ≤ Y = Yh/h ≤ 1, −1 ≤ Z = Zh/h ≤ 1 . (14.33)

On the other hand, points that are in front of the eye after camera transform have nega-
tive z coordinates, and the perspective transform makes the fourth homogeneous coordinate

14.7. Incremental rendering 683

h equal to −z in normalized camera space. Thus the fourth homogeneous coordinate of
points in front of the eye is always positive. Let us thus add condition h > 0 to the set of
conditions of inequalities (14.33). If h is positive, then inequalities (14.33) can be multiplied
by h, resulting in the de�nition of the clipping region in homogeneous coordinates:

− h ≤ Xh ≤ h, −h ≤ Yh ≤ h, −h ≤ Zh ≤ h . (14.34)

Points can be clipped easily, since we should only test whether or not the conditions
of inequalities (14.34) are met. Clipping line segments and polygons, on the other hand,
requires the computation of the intersection points with the faces of the clipping boundary,
and only those parts should be preserved which meet inequalities (14.34).

Clipping algorithms using Cartesian coordinates were discussed in subsection 14.4.3.
Those methods can also be applied in homogeneous coordinates with two exceptions.
Firstly, for homogeneous coordinates, inequalities (14.34) de�ne whether a point is in or
out. Secondly, intersections should be computed using the homogeneous coordinate equati-
ons of the line segments and the planes.

Let us consider a line segment with endpoints [X1
h ,Y1

h ,Z1
h , h1] and [X2

h ,Y2
h ,Z2

h , h2]. This
line segment can be an independent shape or an edge of a polygon. Here we discuss the
clipping on half space of equation Xh ≤ h (clipping methods on other half spaces are very
similar). Three cases need to be distinguished:
1. If both endpoints of the line segment are inside, that is X1

h ≤ h1 and X2
h ≤ h2, then the

complete line segment is in, thus is preserved.
2. If both endpoints are outside, that is X1

h > h1 and X2
h > h2, then all points of the line

segment are out, thus it is completely eliminated by clipping.
3. If one endpoint is outside, while the other is in, then the intersection of the line segment

and the clipping plane should be obtained. Then the endpoint being out is replaced by
the intersection point. Since the points of a line segment satisfy equation (14.19), while
the points of the clipping plane satisfy equation Xh = h, parameter ti of the intersection
point is computed as:

Xh(ti) = h(ti) =⇒ X1
h ·(1−ti)+X2

h ·ti = h1·(1−ti)+h2·ti =⇒ ti =
X1

h − h1

X1
h − X2

h + h2 − h1 .

Substituting parameter ti into the equation of the line segment, homogeneous coordina-
tes [Xi

h,Y i
h,Zi

h, hi] of the intersection point are obtained.
Clipping may introduce new vertices. When the vertices have some additional features,

for example, the surface colour or normal vector at these vertices, then these additional
features should be calculated for the new vertices as well. We can use linear interpolation.
If the values of a feature at the two endpoints are I1 and I2, then the feature value at new
vertex [Xh(ti),Yh(ti),Zh(ti), h(ti)] generated by clipping is I1 · (1 − ti) + I2 · ti.

14.7.5. Viewport transform
Having executed the perspective transform, the Cartesian coordinates of the visible points
are in [−1, 1]. These normalized device coordinates should be further scaled and translated
according to the resolution of the screen and the position of the viewport where the image is

684 14. Computer graphics

expected. Denoting the left-bottom corner pixel of the screen viewport by (Xmin,Ymin), the
right-top corner by (Xmax,Ymax), and Z coordinates expressing the distance from the eye are
expected in (Zmin,Zmax), the matrix of the viewport transform is:

Tviewport =



(Xmax − Xmin)/2 0 0 0
0 (Ymax − Ymin)/2 0 0
0 0 (Zmax − Zmin)/2 0

(Xmax + Xmin)/2 (Ymax + Ymin)/2 (Zmax + Zmin)/2 1


.

Coordinate systems after the perspective transform are left handed, unlike the coor-
dinate systems of the virtual world and the camera, which are right handed. Left handed
coordinate systems seem to be unusual, but they meet our natural expectation that the sc-
reen X coordinates grow from left to right, the Y coordinates from bottom to top and, the Z
coordinates grow with the distance from the virtual observer.

14.7.6. Rasterization algorithms
After clipping, homogeneous division, and viewport transform, shapes are in the screen
coordinate system where a point of coordinates (X,Y,Z) can be assigned to a pixel by ext-
racting the �rst two Cartesian coordinates (X,Y).

Rasterization works in the screen coordinate system and identi�es those pixels which
have to be coloured to approximate the projected shape. Since even simple shapes can cover
many pixels, rasterization algorithms should be very fast, and should be appropriate for
hardware implementation.

Line drawing
Let the endpoints of a line segment be (X1,Y1) and (X2,Y2) in screen coordinates. Let us
further assume that while we are going from the �rst endpoint toward the second, both
coordinates are growing, and X is the faster changing coordinate, that is,

∆X = X2 − X1 ≥ ∆Y = Y2 − Y1 ≥ 0 .

In this case the line segment is moderately ascending. We discuss only this case, other cases
can be handled by exchanging the X,Y coordinates and replacing additions by substractions.

Line drawing algorithms are expected to �nd pixels that approximate a line in a way that
there are no holes and the approximation is not fatter than necessary. In case of moderately
ascending line segments this means that in each pixel column exactly one pixel should be
�lled with the colour of the line. This coloured pixel is the one closest to the line in this
column. Using the following equation of the line

y = m · X + b, where m =
Y2 − Y1
X2 − X1

, and b = Y1 − X1 · Y2 − Y1
X2 − X1

, (14.35)

in pixel column of coordinate X the pixel closest to the line has Y coordinate that is equal
to the rounding of m · x + b. Unfortunately, the determination of Y requires a �oating point
multiplication, addition, and a rounding operation, which are too slow.

In order to speed up line drawing, we apply a fundamental trick of computer graphics,
the incremental concept. The incremental concept is based on the recognition that it is

14.7. Incremental rendering 685

usually simpler to evaluate a function y(X + 1) using value y(X) than computing it from
X. Since during line drawing the columns are visited one by one, when column (X + 1) is
processed, value y(X) is already available. In case of a line segment we can write:

y(X + 1) = m · (X + 1) + b = m · X + b + m = y(X) + m .

Note that the evaluation of this formula requires just a single �oating point addition (m
is less than 1). This fact is exploited in digital differential analyzator algorithms (DDA-
algorithms). The DDA line drawing algorithm is then:

DDA-L-D(X1,Y1, X2,Y2, colour)
1 m← (Y2 − Y1)/(X2 − X1)
2 y← Y1
3 for X ← X1 to X2
4 do Y ← R(y)
5 P-W(X,Y, colour)
6 y← y + m

Further speedups can be obtained using �xed point number representation. This me-
ans that the product of the number and 2T is stored in an integer variable, where T is the
number of fractional bits. The number of fractional bits should be set to exclude cases when
the rounding errors accumulate to an incorrect result during long iteration sequences. If the
longest line segment covers L columns, then the minimum number of fractional bits gua-
ranteeing that the accumulated error is less than 1 is log2 L. Thanks to clipping only lines
�tting to the screen are rasterized, thus L is equal to the maximum screen resolution.

The performance and simplicity of the DDA line drawing algorithm can still be imp-
roved. On the one hand, the software implementation of the DDA algorithm requires shift
operations to realize truncation and rounding operations. On the other hand�once for every
line segment�the computation of slope m involves a division which is computationally ex-
pensive. Both problems are solved in the Bresenham line drawing algorithm.

Let us denote the vertical, signed distance of the line segment and the closest pixel
centre by s, and the vertical distance of the line segment and the pixel centre just above the
closest pixel by t (�gure 14.41). As the algorithm steps onto the next pixel column, values
s and t change and should be recomputed. While the new s and t values satisfy inequality
s < t, that is, while the lower pixel is still closer to the line segment, the shaded pixel of the
next column is in the same row as in the previous column. Introducing error variable e = s−t,
the row of the shaded pixel remains the same until this error variable is negative (e < 0). As
the pixel column is incremented, variables s, t, e are updated using the incremental formulae
(∆X = X2 − X1, ∆Y = Y2 − Y1):

s(X + 1) = s(X) +
∆Y
∆X , t(X + 1) = t(X) − ∆Y

∆X =⇒ e(X + 1) = e(X) + 2 ∆Y
∆X .

These formulae are valid if the closest pixel in column (X + 1) is in the same row as in
column X. If stepping to the next column, the upper pixel gets closer to the line segment
(error variable e becomes positive), then variables s, t, e should be recomputed for the new

686 14. Computer graphics

t(X) t(X+1)

s(X) s(X+1)

t(X)

t(X+1)

s(X)

s(X+1)

X

Y

1

Figure 14.41. Notations of the Bresenham algorithm: s is the signed distance between the closest pixel centre and
the line segment along axis Y , which is positive if the line segment is above the pixel centre. t is the distance along
axis Y between the pixel centre just above the closest pixel and the line segment.

closest row and for the pixel just above it. The formulae describing this case are as follows:

s(X + 1) = s(X) +
∆Y
∆X − 1, t(X + 1) = t(X) − ∆Y

∆X + 1 =⇒ e(X + 1) = e(X) + 2
(
∆Y
∆X − 1

)
.

Note that s is a signed distance which is negative if the line segment is below the closest
pixel centre, and positive otherwise. We can assume that the line starts at a pixel centre, thus
the initial values of the control variables are:

s(X1) = 0, t(X1) = 1 =⇒ e(X1) = s(X1) − t(X1) = −1 .

This algorithm keeps updating error variable e and steps onto the next pixel row when
the error variable becomes positive. In this case, the error variable is decreased to have a
negative value again. The update of the error variable requires a non-integer addition and
the computation of its increment involves a division, similarly to the DDA algorithm. It
seems that this approach is not better than the DDA.

Let us note, however, that the sign changes of the error variable can also be recognized
if we examine the product of the error variable and a positive number. Multiplying the error
variable by ∆X we obtain decision variable E = e·∆X. In case of moderately ascending lines
the decision and error variables change their sign simultaneously. The incremental update
formulae of the decision variable can be obtained by multiplying the update formulae of
error variable by ∆X:

E(X + 1) =


E(X) + 2∆Y , if Y is not incremented ,

E(X) + 2(∆Y − ∆X), if Y needs to be incremented .

The initial value of the decision variable is E(X1) = e(X1) · ∆X = −∆X.
The decision variable starts at an integer value and is incremented by integers in each

step, thus it remains to be an integer and does not require fractional numbers at all. The com-
putation of the increments need only integer additions or subtractions and multiplications

14.7. Incremental rendering 687

X

Y

X X10

X

Y

q[0]

q[1]

q[2]

q[3]

X X10 X3 X2

q[0]

q[1]

q[2]

q[3]

Figure 14.42. Polygon �ll. Pixels inside the polygon are identi�ed scan line by scan line.

by 2.
The complete Bresenham line drawing algorithm is:

B-L-D(X1,Y1, X2,Y2, colour)
1 ∆X ← X2 − X1
2 ∆Y ← Y2 − Y1
3 (dE+, dE−)← (2(∆Y − ∆X), 2∆Y)
4 E ← −∆X
5 Y ← Y1
6 for X ← X1 to X2
7 do if E ≤ 0
8 then E ← E + dE− ¤ The line stays in the current pixel row.
9 else E ← E + dE+ ¤ The line steps onto the next pixel row.

10 Y ← Y + 1
11 P-W(X,Y, colour)

The fundamental idea of the Bresenham algorithm was the replacement of the fractional
error variable by an integer decision variable in a way that the conditions used by the algo-
rithm remained equivalent. This approach is also called the method of invariants, which is
useful in many rasterization algorithms.

Polygon �ll
The input of an algorithm �lling single connected polygons is the array of vertices
~q[0], . . . , ~q[m − 1] (this array is usually the output of the polygon clipping algorithm). Edge
e of the polygon connects vertices ~q[e] and ~q[e + 1]. The last vertex needs not be treated
in a special way if the �rst vertex is put again after the last vertex in the array. Multiply
connected polygons are de�ned by more than one closed polylines, thus are speci�ed by
more than one vertex arrays.

The �lling is executed by processing a horizontal pixel row called scan line at a time.
For a single scan line, the pixels belonging to the interior of the polygon can be found by the
following steps. First the intersections of the polygon edges and the scan line are calculated.

688 14. Computer graphics

XY

X(Y) X(Y+1) X(Y+2)

∆X/∆Y ∆X/∆Y

Y+1

Y+2

Figure 14.43. Incremental computation of the intersections between the scan lines and the edges. Coordinate X
always increases with the reciprocal of the slope of the line.

YAET ∆X/∆Y
max

X Y ∆X/∆Y
max

X

Figure 14.44. The structure of the active edge table.

Then the intersection points are sorted in the ascending order of their X coordinates. Finally,
pixels between the �rst and the second intersection points, and between the third and the
fourth intersection points, or generally between the (2i + 1)th and the (2i + 2)th intersection
points are set to the colour of the polygon (�gure 14.42). This algorithm �lls those pixels
which can be reached from in�nity by crossing the polygon boundary odd number of times.

The computation of the intersections between scan lines and polygon edges can be
speeded up using the following observations:
1. An edge and a scan line can have intersection only if coordinate Y of the scan line is

between the minimum and maximum Y coordinates of the edge. Such edges are the
active edges. When implementing this idea, an active edge table (AET for short) is
needed which stores the currently active edges.

2. The computation of the intersection point of a line segment and the scan line requires
�oating point multiplication, division, and addition, thus it is time consuming. Applying
the incremental concept, however, we can also obtain the intersection point of the edge
and a scan line from the intersection point with the previous scan line using a single,
�xed-point addition (�gure 14.43).
When the incremental concept is exploited, we realize that coordinate X of the intersec-

tion with an edge always increases by the same amount when scan line Y is incremented.
If the edge endpoint having the larger Y coordinate is (Xmax,Ymax) and the endpoint having
the smaller Y coordinate is (Xmin,Ymin), then the increment of the X coordinate of the in-
tersection is ∆X/∆Y , where ∆X = Xmax − Xmin and ∆Y = Ymax − Ymin. This increment is
usually not an integer, hence increment ∆X/∆Y and intersection coordinate X should be
stored in non-integer, preferably �xed-point variables. An active edge is thus represented
by a �xed-point increment ∆X/∆Y , the �xed-point coordinate value of intersection X, and
the maximum vertical coordinate of the edge (Ymax). The maximum vertical coordinate is
needed to recognize when the edge becomes inactive.

Scan lines are processed one after the other. First, the algorithm determines which edges
become active for this scan line, that is, which edges have minimum Y coordinate being

14.7. Incremental rendering 689

equal to the scan line coordinate. These edges are inserted into the active edge table. The
active edge table is also traversed and those edges whose maximum Y coordinate equals
to the scan line coordinate are removed (note that this way the lower end of an edge is
supposed to belong to the edge, but the upper edge is not). Then the active edge table is
sorted according to the X coordinates of the edges, and the pixels between each pair of
edges are �lled. Finally, the X coordinates of the intersections in the edges of the active
edge table are prepared for the next scan line by incrementing them by the reciprocal of the
slope ∆X/∆Y .

P-F(polygon, colour)
1 for Y ← 0 to Ymax
2 do for each edge of polygon ¤ Put activated edges into the AET.
3 do if edge.ymin = Y
4 then P-AET(edge)
5 for each edge of the AET ¤ Remove deactivated edges from the AET.
6 do if edge.ymax ≤ Y
7 then D--AET(edge)
8 S-AET ¤ Sort according to X.
9 for each pair of edges (edge1, edge2) of the AET

10 do for X ← R(edge1.x) to R(edge2.x)
11 do P-W(X,Y, colour)
11 for each edge in the AET ¤ Incremental concept.
12 do edge.x← edge.x + edge.∆X/∆Y

The algorithm works scan line by scan line and �rst puts the activated edges
(edge.ymin = Y) to the active edge table. The active edge table is maintained by three
operations. Operation P-AET(edge) computes variables (Ymax,∆X/∆Y, X) of an edge and
inserts this structure into the table. Operation D--AET removes an item from the
table when the edge is not active any more (edge.ymax ≤ Y). Operation S-AET sorts the
table in the ascending order of the X value of the items. Having sorted the lists, every two
consecutive items form a pair, and the pixels between the endpoints of each of these pairs
are �lled. Finally, the X coordinates of the items are updated according to the incremental
concept.

14.7.7. Incremental visibility algorithms
The three-dimensional visibility problem is solved in the screen coordinate system. We can
assume that the surfaces are given as triangle meshes.

Z-buffer algorithm
The z-buffer algorithm �nds that surface for each pixel, where the Z coordinate of the visible
point is minimal. For each pixel we allocate a memory to store the minimum Z coordinate
of those surfaces which have been processed so far. This memory is called the z-buffer or
the depth-buffer.

When a triangle of the surface is rendered, all those pixels are identi�ed which fall into

690 14. Computer graphics

the interior of the projection of the triangle by a triangle �lling algorithm. As the �lling
algorithm process a pixel, the Z coordinate of the triangle point visible in this pixel is obtai-
ned. If this Z value is larger than the value already stored in the z-buffer, then there exists an
already processed triangle that is closer than the current triangle in this given pixel. Thus the
current triangle is occluded in this pixel and its colour should not be written into the raster
memory. However, if the new Z value is smaller than the value stored in the z-buffer, then
the current triangle is the closest so far, and its colour and Z coordinate should be written
into the pixel and the z-buffer, respectively.

The z-buffer algorithm is then:

Z-()
1 for each pixel p ¤ Clear screen.
2 do P-W(p, background-colour)
3 z-buffer[p]← maximum value after clipping
4 for each triangle o ¤ Rendering.
5 do for each pixel p of triangle o
6 do Z ← coordinate Z of that point o which projects onto pixel p
7 if Z < z-buffer[p]
8 then P-W(p, colour of triangle o in this point)
9 z-buffer[p]← Z

When the triangle is �lled, the general polygon �lling algorithm of the previous section
could be used. However, it is worth exploiting the special features of the triangle. Let us sort
the triangle vertices according to their Y coordinates and assign index 1 to the vertex of the
smallest Y coordinate and index 3 to the vertex of the largest Y coordinate. The third vertex
gets index 2. Then let us cut the triangle into two pieces with scan line Y2. After cutting we
obtain a �lower� triangle and an �upper� triangle. Let us realize that in such triangles the �rst
(left) and the second (right) intersections of the scan lines are always on the same edges, thus
the administration of the polygon �lling algorithm can be signi�cantly simpli�ed. In fact,
the active edge table management is not needed anymore, only the incremental intersection
calculation should be implemented. The classi�cation of left and right intersections depend
on whether (X2,Y2) is on the right or on the left side of the oriented line segment from
(X1,Y1) to (X3,Y3). If (X2,Y2) is on the left side, the projected triangle is called left oriented,
and right oriented otherwise.

When the details of the algorithm is introduced, we assume that the already re-indexed
triangle vertices are

~r1 = [X1,Y1,Z1], ~r2 = [X2,Y2,Z2], ~r3 = [X3,Y3,Z3].

The rasterization algorithm is expected to �ll the projection of this triangle and also to
compute the Z coordinate of the triangle in every pixel (�gure 14.45).

The Z coordinate of the triangle point visible in pixel X,Y is computed using the equa-
tion of the plane of the triangle (equation (14.1)):

nX ·X +nY ·Y +nZ ·Z +d = 0, where ~n = (~r2−~r1)× (~r3−~r1) and d = −~n ·~r1 . (14.36)

Whether the triangle is left oriented or right oriented depends on the sign of the Z coordinate

14.7. Incremental rendering 691

n
r =(X , Y , Z)3 3 33

r =(X , Y , Z)2 2 2 2

r =(X , Y , Z)1 1 11

Z(X,Y)

X

 Y

X,Y

Figure 14.45. A triangle in the screen coordinate system. Pixels inside the projection of the triangle on plane XY
need to be found. The Z coordinates of the triangle in these pixels are computed using the equation of the plane of
the triangle.

(X ,Y ,Z)1 1 1

(X ,Y ,Z)

(X ,Y ,Z)2

3

22

3 3

X

Y

Z

Z = Z(X,Y)

YZsδ

Y
X eδ

X Zδ

Y
Xsδ

Figure 14.46. Incremental Z coordinate computation for a left oriented triangle.

of the normal vector of the plane. If nZ is negative, then the triangle is left oriented. If it is
negative, then the triangle is right oriented. Finally, when nZ is zero, then the projections
maps the triangle onto a line segment, which can be ignored during �lling.

Using the equation of the plane, function Z(X,Y) expressing the Z coordinate corres-
ponding to pixel X,Y is:

Z(X,Y) = −nX · X + nY · Y + d
nZ

. (14.37)

According to the incremental concept, the evaluation the Z coordinate can take advantage
of the value of the previous pixel:

Z(X + 1,Y) = Z(X,Y) − nX
nZ

= Z(X,Y) + δZX . (14.38)

Since increment δZX is constant for the whole triangle, it needs to be computed only
once. Thus the calculation of the Z coordinate in a scan line requires just a single addition
per pixel. The Z coordinate values along the edges can also be obtained incrementally from
the respective values at the previous scan line (�gure 14.46). The complete incremental

692 14. Computer graphics

ablak ablak ablak ablak

poligon
poligon poligon

poligon

(a) (b) (c) (d)

Figure 14.47. Polygon�window relations:: (a) distinct; (b) surrounding ; (c) intersecting; (d) contained.

algorithm which renders a lower left oriented triangle is (the other cases are very similar):

Z-B-L-T(X1,Y1,Z1, X2,Y2,Z2, X3,Y3,Z3, colour)
1 ~n← ((X2,Y2,Z2) − (X1,Y1,Z1)) × ((X3,Y3,Z3) − (X1,Y1,Z1)) ¤ Normal vector.
2 δZX ← −nX/nZ ¤ Z increment.
3 (δXs

Y , δZ s
Y , δXe

Y)← ((X2 − X1)/(Y2 − Y1), (Z2 − Z1)/(Y2 − Y1), (X3 − X1)/(Y3 − Y1))
4 (Xleft, Xright,Zleft)← (X1, X1,Z1)
5 for Y ← Y1 to Y2
6 do Z ← Zleft
7 for X ← R(Xleft) to R(Xright) ¤ One scan line.
8 if Z < z-buffer[X,Y] ¤ Visibility test.
9 then P-W(X,Y, colour)

10 z-buffer[X,Y]← Z
11 Z ← Z + δZX
12 (Xleft, Xright,Zleft)← (Xleft + δXs

Y , Xright + δXe
Y ,Zleft + δZ s

Y) ¤ next scan line.

This algorithm simultaneously identi�es the pixels to be �lled and computes the Z co-
ordinates with linear interpolation. Linear interpolation requires just a single addition when
a pixel is processed. This idea can also be used for other features as well. For example, if
the colour of the triangle vertices are available, the colour of the internal points can be set to
provide smooth transitions applying linear interpolation. Note also that the addition to com-
pute the feature value can also be implemented by a special purpose hardware. Graphics
cards have a great number of such interpolation units.

The z-buffer algorithm �lls triangles one by one, thus requires Θ(N · P) time, where N
is the number of triangles and P is the number of pixels on screen. In practice, however, the
algorithm is since if there are more triangles in the virtual world due to higher tessellation
levels, then their projected sizes are smaller, making the running time Θ(P).

Warnock algorithm
If a pixel of the image corresponds to a given object, then its neighbours usually correspond
to the same object, that is, visible parts of objects appear as connected territories on the
screen. This is a consequence of object coherence and is called image coherence.

If the situation is so fortunate � from a labor saving point of view � that a polygon in the
object scene obscures all the others and its projection onto the image plane covers the image
window completely, then we have to do no more than simply �ll the image with the colour

14.7. Incremental rendering 693

of the polygon. If no polygon edge falls into the window, then either there is no visible
polygon, or some polygon covers it completely. The window is �lled with the background
colour in the �rst case, and with the colour of the closest polygon in the second case. If at
least one polygon edge falls into the window, then the solution is not so simple. In this case,
using a divide-and-conquer approach, the window is subdivided into four quarters, and each
subwindow is searched recursively for a simple solution.

The basic form of the algorithm called Warnock algorithm rendering a rectangular
window with screen coordinates X1,Y1 (lower left corner) and X2,Y2 (upper right corner) is
this:

W(X1,Y1, X2,Y2)
1 if X1 , X2 or Y1 , Y2 ¤ Is the window larger than a pixel?
2 then if at least one edge projects onto the window ¤ Subdivision and recursion.
3 then W(X1,Y1, (X1 + X2)/2, (Y1 + Y2)/2)
4 W(X1, (Y1 + Y2)/2, (X1 + X2)/2,Y2)
5 W((X1 + X2)/2,Y1, X2, (Y1 + Y2)/2)
6 W((X1 + X2)/2, (Y1 + Y2)/2, X2,Y2)
7 return

¤ Trivial case: window (X1,Y1, X2,Y2) is homogeneous.
8 polygon← the polygon visible in pixel ((X1 + X2)/2, (Y1 + Y2)/2)
9 if no visible polygon

10 then �ll rectangle (X1,Y1, X2,Y2) with the background colour
11 else �ll rectangle (X1,Y1, X2,Y2) with the colour of polygon

Note that the algorithm can handle non-intersecting polygons only. The algorithm can
be accelerated by �ltering out those distinct polygons which can de�nitely not be seen in
a given subwindow at a given step. Furthermore, if a surrounding polygon appears at a
given stage, then all the others behind it can be discarded, that is all those which fall onto
the opposite side of it from the eye. Finally, if there is only one contained or intersecting
polygon, then the window does not have to be subdivided further, but the polygon (or rather
the clipped part of it) is simply drawn. The price of saving further recurrence is the use of a
scan-conversion algorithm to �ll the polygon.

Painter's algorithm
If we simply scan convert polygons into pixels and draw the pixels onto the screen without
any examination of distances from the eye, then each pixel will contain the colour of the
last polygon falling onto that pixel. If the polygons were ordered by their distance from the
eye, and we took the farthest one �rst and the closest one last, then the �nal picture would
be correct. Closer polygons would obscure farther ones � just as if they were painted an
opaque colour. This method, is really known as the painter's algorithm.

The only problem is that the order of the polygons necessary for performing the pain-
ter's algorithm is not always simple to compute. We say that a polygon P does not obscure
another polygon Q if none of the points of Q is obscured by P. To have this relation, one of
the following conditions should hold
1. Polygons P and Q do not overlap in Z range, and the minimum Z coordinate of polygon

694 14. Computer graphics

P is greater than the maximum Z coordinate of polygon Q.

2. The bounding rectangle of P on the XY plane does not overlap with that of Q.

3. Each vertex of P is farther from the viewpoint than the plane containing Q.

4. Each vertex of Q is closer to the viewpoint than the plane containing P.

5. The projections of P and Q do not overlap on the XY plane.

All these conditions are sufficient. The difficulty of their test increases, thus it is worth
testing the conditions in the above order until one of them proves to be true. The �rst step is
the calculation of an initial depth order. This is done by sorting the polygons according to
their maximal Z value into a list. Let us �rst take the polygon P which is the last item on the
resulting list. If the Z range of P does not overlap with any of the preceding polygons, then P
is correctly positioned, and the polygon preceding P can be taken instead of P for a similar
examination. Otherwise P overlaps a set {Q1, . . . ,Qm} of polygons. The next step is to try
to check whether P does not obscure any of the polygons in {Q1, . . . ,Qm}, that is, that P is
at its right position despite the overlapping. If it turns out that P obscures Q for a polygon
in the set {Q1, . . . ,Qm}, then Q has to be moved behind P in the list, and the algorithm
continues stepping back to Q. Unfortunately, this algorithm can run into an in�nite loop in
case of cyclic overlapping. Cycles can also be resolved by cutting. In order to accomplish
this, whenever a polygon is moved to another position in the list, we mark it. If a marked
polygon Q is about to be moved again, then � assuming that Q is a part of a cycle � Q is
cut into two pieces Q1,Q2, so that Q1 does not obscure P and P does not obscure Q2, and
only Q1 is moved behind P.

BSP-tree
Binary space partitioning divides �rst the space into two halfspaces, the second plane di-
vides the �rst halfspace, the third plane divides the second halfspace, further planes split
the resulting volumes, etc. The subdivision can well be represented by a binary tree, the
so-called BSP-tree illustrated in �gure 14.48. The kd-tree discussed in subsection 14.6.2 is
also a special version of BSP-trees where the splitting planes are parallel with the coordinate
planes. The BSP-tree of this subsection, however, uses general planes.

The �rst splitting plane is associated with the root node of the BSP-tree, the second and
third planes are associated with the two children of the root, etc. For our application, not
so much the planes, but rather the polygons de�ning them, will be assigned to the nodes
of the tree, and the set of polygons contained by the volume is also necessarily associated
with each node. Each leaf node will then contain either no polygon or one polygon in the
associated set.

The BSP-- algorithm for creating the BSP-tree for a set S of polygons
uses the following notations. A node of the binary tree is denoted by node, the polygon asso-
ciated with the node by node.polygon, and the two child nodes by node.left and node.right,
respectively. Let us consider a splitting plane of normal ~n and place vector ~r0. Point ~r be-
longs to the positive (right) subspace of this plane if the sign of scalar product ~n · (~r − ~r0) is
positive, otherwise it is in the negative (left) subspace. The BSP construction algorithm is:

14.7. Incremental rendering 695

P1

P2

P4

P3 P1

P2 P3

P4 null

Figure 14.48. A BSP-tree. The space is subdivided by the planes of the contained polygons.

BSP-T-C(S)
1 Create a new node
2 if S is empty or contains just a single polygon
3 then node.polygon← S
4 node.left← null
5 node.right← null
6 else node.polygon← one polygon from list S
7 Remove polygon node.polygon from list S
8 S + ← polygons of S which overlap with the positive subspace of node.polygon
9 S − ← polygons of S which overlap with the negative subspace of node.polygon

10 node.right← BSP-Tree-Construction(S +)
11 node.left← BSP-Tree-Construction(S −)
12 return node

The size of the BSP-tree, i.e. the number of polygons stored in it, is on the one hand
highly dependent on the nature of the object scene, and on the other hand on the �choice
strategy� used when one polygon from list S is selected.

Having constructed the BSP-tree the visibility problem can be solved by traversing the
tree in the order that if a polygon obscures another than it is processed later. During such
a traversal, we determine whether the eye is at the left or right subspace at each node, and
continue the traversal in the child not containing the eye. Having processed the child not
containing the eye, the polygon of the node is drawn and �nally the child containing the eye
is traversed recursively.

Exercises
14.7-1 Implement the complete Bresenham algorithm that can handle not only moderately
ascending but arbitrary line segments.
14.7-2 The presented polygon �lling algorithm tests each edges at a scan line whether it
becomes active here. Modify the algorithm in a way that such tests are not executed at each
scan line, but only once.
14.7-3 Implement the complete z-buffer algorithm that renders left/righ oriented, up-
per/lower triangles.
14.7-4 Improve the presented Warnock algorithm and eliminate further recursions when
only one edge is projected onto the subwindow.

696 14. Computer graphics

14.7-5 Apply the BSP-tree for discrete time collision detection.
14.7-6 Apply the BSP-tree as a space partitioning structure for ray tracing.

Problems

14-1. Ray tracing renderer
Implement a rendering system applying the ray tracing algorithm. Objects are de�ned by
triangle meshes and quadratic surfaces, and are associated with diffuse re�ectivities. The
virtual world also contains point light sources. The visible colour of a point is proportional
to the diffuse re�ectivity, the intensity of the light source, the cosine of the angle between the
surface normal and the illumination direction (Lambert's law), and inversely proportional
with the distance of the point and the light source. To detect whether or not a light source is
not occluded from a point, use the ray tracing algorithm as well.
14-2. Continuous time collision detection with ray tracing
Using ray tracing develop a continuous time collision detection algorithm which computes
the time of collision between a moving and rotating polyhedron and a still half space. App-
roximate the motion of a polygon vertex by a uniform, constant velocity motion in small
intervals dt.
14-3. Incremental rendering system
Implement a three-dimensional renderer based on incremental rendering. The modelling and
camera transforms can be set by the user. The objects are given as triangle meshes, where
each vertex has colour information as well. Having transformed and clipped the objects, the
z-buffer algorithm should be used for hidden surface removal. The colour at the internal
points is obtained by linear interpolation from the vertex colors.

Chapter notes
The elements of Euclidean, analytic and projective geometry are discussed in the books of
Maxwell [82, 83] and Coxeter [36]. The application of projective geometry in computer
graphics is presented in Herman's dissertation [65] and Krammer's paper [74]. Curve and
surface modelling is the main focus of computer aided geometric design (CAD, CAGD),
which is discussed by Gerald Farin [49], and Rogers and Adams [95]. Geometric models
can also be obtained measuring real objects, as proposed by reverse engineering methods
[116]. Implicit surfaces can be studied by reading Bloomenthal's work [18]. Solid modelling
with implicit equations is also booming thanks to the emergence of functional representa-
tion methods (F-Rep), which are surveyed at http://cis.k.hosei.ac.jp/�F-rep. Blobs have been
�rst proposed by Blinn [17]. Later the exponential in�uence function has been replaced by
polynomials [125], which are more appropriate when roots have to be found in ray tracing.

Geometric algorithms give solutions to geometric problems such as the creation of con-
vex hulls, clipping, containment test, tessellation, point location, etc. This �eld is discussed
in the books of Preparata and Shamos [93] and of Marc de Berg [37, 38]. The triangulation
of general polygons is still a difficult topic despite to a lot of research efforts. Practical trian-
gulation algorithms run in O(n lg n) [38, 100, 129], but Chazelle [26] proposed an optimal

14. Megjegyzések a fejezethez 697

algorithm having linear time complexity. The presented proof of the two ears theorem has
originally been given by Joseph O'Rourke [88]. Subdivision surfaces have been proposed
and discussed by Catmull and Clark [25], Warren and Heimer [118], and by Brian Sharp
[102, 101]. The butter�y subdivision approach has been published by Dyn et al. [44]. The
Sutherland-Hodgeman polygon clipping algorithm is taken from [104].

Collision detection is one of the most critical problems in computer games [107] since
it prevents objects to �y through walls and it is used to decide whether a bullet hits an enemy
or not. Collision detection algorithms are reviewed by Jiménez, Thomas and Torras [67].

Glassner's book [56] presents many aspects of ray tracing algorithms. The 3D DDA
algorithm has been proposed by Fujimoto et al. [54]. Many papers examined the complexity
of ray tracing algorithms. It has been proven that for N objects, ray tracing can be solved
in O(lg N) time [37, 108], but this is theoretical rather than practical result since it requires
Ω(N4) memory and preprocessing time, which is practically unacceptable. In practice, the
discussed heuristic schemes are preferred, which are better than the naive approach only in
the average case. Heuristic methods have been analyzed by probabilistic tools by Márton
[108] , who also proposed the probabilistic scene model used in this chapter as well. We can
read about heuristic algorithms, especially about the efficient implementation of the kd-tree
based ray tracing in Havran's dissertation [62]. A particularly efficient solution is given in
Szécsi's paper [106].

The probabilistic tools, such as the Poisson point process can be found in the books of
Karlin and Taylor [68] and Lamperti [77]. The cited fundamental law of integral geometry
can be found in the book of Santaló [98].

The geoinformatics application of quadtrees and octrees are also discussed in chapter
16 of this book.

The algorithms of incremental image synthesis are discussed in many computer grap-
hics textbooks [51]. Visibility algorithms have been compared in [105, 109]. The painter's
algorithm has been proposed by Newell et al. [87]. Fuchs examined the construction of
minimal depth BSP-trees [53]. The source of the Bresenham algorithm is [20].

Graphics cards implement the algorithms of incremental image synthesis, including
transformations, clipping, z-buffer algorithm, which are accessible through graphics libra-
ries (OpenGL, DirectX). Current graphics hardware includes two programmable processors,
which enables the user to modify the basic rendering pipeline. Furthermore, this �exibility
allows non graphics problems to be solved on the graphics hardware. The reason of using
the graphics hardware for non graphics problems is that graphics cards have much higher
computational power than CPUs. We can read about such algorithms in the ShaderX or in
the GPU Gems [50] series or visiting the http://www.gpgpu.org web page.

15. Relational Database Design

16. Relational Database Design

16.1. Introduction
The relational datamodel was introduced by Codd in 1970. It is the most widely used
datamodel�extended with the possibilities of the World Wide Web�because of its simp-
licity and �exibility. The main idea of the relational model is that data is organised in re-
lational tables, where rows correspond to individual records and columns to attributes. A
relational schema consists of one or more relations and their attribute sets. In the present
chapter only schemata consisting of one relation are considered for the sake of simplicity.
In contrast to the mathematical concept of relations, in the relational schema the order of
the attributes is not important, always sets of attributes are considered instead of lists. Every
attribute has an associated domain that is a set of elementary values that the attribute can
take values from. As an example, consider the following schema.

Employee(Name,Mother's name,Social Security Number,Post,Salary)

The domain of attributes Name and Mother's name is the set of �nite character strings
(more precisely its subset containing all possible names). The domain of Social Security
Number is the set of integers satisfying certain formal and parity check requirements.
The attribute Post can take values from the set {Director,Section chief,System integra-
tor,Programmer,Receptionist,Janitor,Handyman}. An instance of a schema R is a relation r
if its columns correspond to the attributes of R and its rows contain values from the domains
of attributes at the attributes' positions. A typical row of a relation of the Employee schema
could be

(John Brown,Camille Parker,184-83-2010,Programmer,$172,000)

There can be dependencies between different data of a relation. For example, in an instance
of the Employee schema the value of Social Security Number determines all other values
of a row. Similarly, the pair (Name,Mother's name) is a unique identi�er. Naturally, it may
occur that some set of attributes do not determine all attributes of a record uniquely, just
some of its subsets.

A relational schema has several integrity constraints attached. The most important kind
of these is functional dependency. Let U and V be two sets of attributes. V functionally
depends on U, U → V in notation, means that whenever two records are identical in the

700 16. Relational Database Design

attributes belonging to U, then they must agree in the attribute belonging to V , as well.
Throughout this chapter the attribute set {A1, A2, . . . , Ak} is denoted by A1A2 . . . Ak for the
sake of convenience.

16.1. Example. Functional dependencies Consider the schema

R(Pprofessor,Subject,Room,Student,Grade,Time).

The meaning of an individual record is that a given student got a given grade of a given subject that was
taught by a given professor at a given time slot. The following functional dependencies are satis�ed.

Su→P: One subject is taught by one professor.
PT→R: A professor teaches in one room at a time.
StT→R: A student attends a lecture in one room at a time.
StT→Su: A student attends a lecture of one subject at a time.
SuSt→G: A student receives a unique �nal grade of a subject.

In Example 16.1. the attribute set StT uniquely determines the values of all other att-
ributes, furthermore it is minimal such set with respect to containment. This kind attribute
sets are called keys. If all attributes are functionally dependent on a set of attributes X, then
X is called a superkey. It is clear that every superkey contains a key and that any set of
attributes containing a superkey is also a superkey.

16.2. Functional dependencies
Some functional dependencies valid for a given relational schema are known already in
the design phase, others are consequences of these. The StT→P dependency is implied by
the StT→Su and Su→P dependencies in Example 16.1.. Indeed, if two records agree on
attributes St and T, then they must have the same value in attribute Su. Agreeing in Su and
Su→P implies that the two records agree in P, as well, thus StT→P holds.

De�nition 16.1 Let R be a relational schema, F be a set of functional dependencies over
R. The functional dependency U → V is logically implied by F, in notation F |= U → V, if
each instance of R that satis�es all dependencies of F also satis�es U → V. The closure of
a set F of functional dependencies is the set F+ given by

F+ = {U → V : F |= U → V}.

16.2.1. Armstrong-axioms
In order to determine keys, or to understand logical implication between functional depen-
dencies, it is necessary to know the closure F+ of a set F of functional dependencies, or for
a given X → Z dependency the question whether it belongs to F+ must be decidable. For
this, inference rules are needed that tell that from a set of functional dependencies what ot-
hers follow. The Armstrong-axioms form a system of sound and complete inference rules.
A system of rules is sound if only valid functional dependencies can be derived using it. It
is complete, if every dependency X → Z that is logically implied by the set F is derivable

16.2. Functional dependencies 701

from F using the inference rules.
A-

(A1) Re�exivity Y ⊆ X ⊆ R implies X → Y .
(A2) Augmentation If X → Y , then for arbitrary Z ⊆ R, XZ → YZ holds.
(A3) Transitivity If X → Y and Y → Z hold, then X → Z holds, as well.

16.2. Example. Derivation by the Armstrong-axioms Let R = ABCD and F = {A→ C, B→ D}, then
AB is a key:
1. A→ C is given.
2. AB→ ABC 1. is augmented by (A2) with AB.
3. B→ D is given.
4. ABC → ABCD 3. is augmented by (A2) with ABC.
5. AB→ ABCD transitivity (A3) is applied to 2. and 4..
Thus it is shown that AB is superkey. That it is really a key, follows from algorithm C(R, F, X).

There are other valid inference rules besides (A1)�(A3). The next lemma lists some, the
proof is left to the Reader (Exercise 16.2-5.).

Lemma 16.2
1. Union rule {X → Y, X → Z} |= X → YZ.
2. Pseudo transitivity {X → Y,WY → Z} |= XW → YZ.
3. Decomposition If X → Y holds and Z ⊆ Y, then X → Z holds, as well.

The soundness of system (A1)�(A3) can be proven by easy induction on the length of
the derivation. The completeness will follow from the proof of correctness of algorithm
C(R, F, X) by the following lemma. Let X+ denote the closure of the set of attributes
X ⊆ R with respect to the family of functional dependencies F, that is X+ = {A ∈ R : X →
A follows from F by the Armstrong-axioms}.
Lemma 16.3 The functional dependency X → Y follows from the family of functional
dependencies F by the Armstrong-axioms iff Y ⊆ X+.

Proof. Let Y = A1A2 . . . An where Ai's are attributes, and assume that Y ⊆ X+. X → Ai
follows by the Armstrong-axioms for all i by the de�nition of X+. Applying the union rule
of Lemma 16.2 X → Y follows. On the other hand, assume that X → Y can be derived
by the Armstrong-axioms. By the decomposition rule of Lemma 16.2 X → Ai follows by
(A1)�(A3) for all i. Thus, Y ⊆ X+.

16.2.2. Closures
Calculation of closures is important in testing equivalence or logical implication between
systems of functional dependencies. The �rst idea could be that for a given family F of
functional dependencies in order to decide whether F |= {X → Y}, it is enough to calculate
F+ and check whether {X → Y} ∈ F+ holds. However, the size of F+ could be exponential

702 16. Relational Database Design

in the size of input. Consider the family F of functional dependencies given by

F = {A→ B1, A→ B2, . . . , A→ Bn}.

F+ consists of all functional dependencies of the form A → Y , where Y ⊆ {B1, B2, . . . , Bn},
thus |F+| = 2n. Nevertheless, the closure X+ of an attribute set X with respect to F can be de-
termined in linear time of the total length of functional dependencies in F. The following is
an algorithm that calculates the closure X+ of an attribute set X with respect to F. The input
consists of the schema R, that is a �nite set of attributes, a set F of functional dependencies
de�ned over R, and an attribute set X ⊆ R.

C(R,F,X)
1 X(0) ← X
2 i← 0
3 G ← F ¤ Functional dependencies not used yet.
4 repeat
5 X(i+1) ← X(i)

6 for all Y → Z in G
7 do if Y ⊆ X(i)

8 then X(i+1) ← X(i+1) ∪ Z
9 G ← G \ {Y → Z}

10 i← i + 1
11 until X(i−1) = X(i)

It is easy to see that the attributes that are put into any of the X(j)'s by C(R,F,X)
really belong to X+. The harder part of the correctness proof of this algorithm is to show
that each attribute belonging to X+ will be put into some of the X(j)'s.

Theorem 16.4 C(R,F,X) correctly calculates X+.

Proof. First we prove by induction that if an attribute A is put into an X(j) during
C(R,F,X), then A really belongs to X+.
Base case: j = 0. I this case A ∈ X and by re�exivity (A1) A ∈ X+.
Induction step: Let j > 0 and assume that X(j−1) ⊆ X+. A is put into X(j), because there is
a functional dependency Y → Z in F, where Y ⊆ X(j−1) and A ∈ Z. By induction, Y ⊆ X+

holds, which implies using Lemma 16.3 that X → Y holds, as well. By transitivity (A3)
X → Y and Y → Z implies X → Z. By re�exivity (A1) and A ∈ Z, Z → A holds. Applying
transitivity again, X → A is obtained, that is A ∈ X+.

On the other hand, we show that if A ∈ X+, then A is contained in the result of
C(R,F,X). Suppose in contrary that A ∈ X+, but A < X(i), where X(i) is the result
of C(R,F,X). By the stop condition in line 9 this means X(i) = X(i+1). An instance r
of the schema R is constructed that satis�es every functional dependency of F, but X → A
does not hold in r if A < X(i). Let r be the following two-rowed relation:

Attributes of X(i) Other attributes
︷ ︸︸ ︷
1 1 . . . 1

︷ ︸︸ ︷
1 1 . . . 1

1 1 . . . 1 0 0 . . . 0

16.2. Functional dependencies 703

Let us suppose that the above r violates a U → V functional dependency of F, that is
U ⊆ X(i), but V is not a subset of X(i). However, in this case C(R,F,X) could not have
stopped yet, since X(i) , X(i+1).

A ∈ X+ implies using Lemma 16.3 that X → A follows from F by the Armstrong-
axioms. (A1)�(A3) is a sound system of inference rules, hence in every instance that satis�es
F, X → A must hold. However, the only way this could happen in instance r is if A ∈ X(i).

Let us observe that the relation instance r given in the proof above provides the comp-
leteness proof for the Armstrong-axioms, as well. Indeed, the closure X+ calculated by
C(R,F,X) is the set of those attributes for which X → A follows from F by the
Armstrong-axioms. Meanwhile, for every other attribute B, there exist two rows of r that
agree on X, but differ in B, that is F |= X → B does not hold.

The running tome of C(R,F,X) is O(n2), where n is the length of he input. Indeed,
in the repeat � until loop of lines 4�11 every not yet used dependency is checked, and the
body of the loop is executed at most |R \ X| + 1 times, since it is started again only if
X(i−1) , X(i), that is a new attribute is added to the closure of X. However, the running time
can be reduced to linear with appropriate bookkeeping.

1. For every yet unused W → Z dependency of F it is kept track of how many attributes
of W are not yet included in the closure (i[W,Z]).

2. For every attribute A those yet unused dependencies are kept in a doubly linked list LA
whose left side contains A.

3. Those not yet used dependencies W → Z are kept in a linked list J, whose left side W's
every attribute is contained in the closure already, that is for which i[W,Z] = 0.

It is assumed that the family of functional dependencies F is given as a set of attribute
pairs (W,Z), representing W → Z. The L-C(R,F,X) algorithm is a modi�cation
of C(R,F,X) using the above bookkeeping, whose running time is linear. R is the
schema, F is the given family of functional dependencies, and we are to determine the
closure of attribute set X.

Algorithm L-C(R,F,X) consists of two parts. In the initialisation phase
(lines 1�13) the lists are initialised. The loops of lines 2�5 and 6�8, respectively, take
O(∑(W,Z)∈F |W |) time. The loop in lines 9�11 means O(|F|) steps. If the length of the in-
put is denoted by n, then this is O(n) steps altogether.

During the execution of lines 14�23, every functional dependency (W,Z) is exa-
mined at most once, when it is taken off from list J. Thus, lines 15�16 and 23 take
at most |F| steps. The running time of the loops in line 17�22 can be estimated by
observing that the sum ∑ i[W,Z] is decreased by one in each execution, hence it takes
O(∑ i0[W,Z]) steps, where i0[W,Z] is the i[W,Z] value obtained in the initialisation
phase. However, ∑ i0[W,Z] ≤ ∑

(W,Z)∈F |W |, thus lines 14�23 also take O(n) time in total.

704 16. Relational Database Design

L-(R,F,X)
1 ¤ Initialisation phase.
2 for all (W,Z) ∈ F
3 do for all A ∈ W
4 do add (W,Z) to list LA
5 i[W,Z]← 0
6 for all A ∈ R \ X
7 do for all (W,Z) of list LA
8 do i[W,Z]← i[W,Z] + 1
9 for all (W,Z) ∈ F

10 do if i[W,Z] = 0
11 then add (W,Z) to list J
12 X+ ← X
13 ¤ End of initialisation phase.
14 while J is nonempty
15 do (W,Z)← head(J)
16 delete (W,Z) from list J
17 for all A ∈ Z \ X+

18 do for all (W,Z) of list LA
19 do i[W,Z]← i[W,Z] − 1
20 if i[W,Z] = 0
21 then add (W,Z) to list J
22 delete (W,Z)from list LA
23 X+ ← X+ ∪ Z
24 return X+

16.2.3. Minimal cover
Algorithm L-C(R,F,X) can be used to test equivalence of systems of depen-
dencies. Let F and G be two families of functional dependencies. F and G are said to be
equivalent, if exactly the same functional dependencies follow from both, that is F+ = G+.
It is clear that it is enough to check for all functional dependencies X → Y in F whether it
belongs to G+, and vice versa, for all W → Z in G, whether it is in F+. Indeed, if some of
these is not satis�ed, say X → Y is not in G+, then surely F+ , G+. On the other hand, if all
X → Y are in G+, then a proof of a functional dependency U → V from F+ can be obtained
from dependencies in G in such a way that to the derivation of the dependencies X → Y of
F from G, the derivation of U → V from F is concatenated. In order to decide that a depen-
dency X → Y from F is in G+, it is enough to construct the closure X+(G) of attribute set X
with respect to G using L-C(R,G,X), then check whether Y ⊆ X+(G) holds. The
following special functional dependency system equivalent with F is useful.

De�nition 16.5 The system of functional dependencies G is a minimal cover of the family
of functional dependencies F iff G is equivalent with F, and

16.2. Functional dependencies 705

1. functional dependencies of G are in the form X → A, where A is an attribute and A < X,
2. no functional dependency can be dropped from G, i.e., (G − {X → A})+ & G+,
3. the left sides of dependencies in G are minimal, that is X → A ∈ G, Y & X =⇒

((G − {X → A}) ∪ {Y → A})+ , G+.

Every set of functional dependencies have a minimal cover, namely algorithm M-
(R, F) constructs one.

M-(R, F)
1 G ← ∅
2 for all X → Y ∈ F
3 do for all A ∈ Y − X
4 do G ← G ∪ X → A
5 ¤ Each right hand side consists of a single attribute.
6 for all X → A ∈ G
7 do while there exists B ∈ X : A ∈ (X − B)+(G)
8 X ← X − B
9 ¤ Each left hand side is minimal.

10 for all X → A ∈ G
11 do if A ∈ X+(G − {X → A})
12 then G ← G − {X → A}
13 ¤ No redundant dependency exists.

After executing the loop of lines 2�4, the right hand side of each dependency in G con-
sists of a single attribute. The equality G+ = F+ follows from the union rule of Lemma 16.2
and the re�exivity axiom. Lines 6�8 minimise the left hand sides. In line 11 it is checked
whether a given functional dependency of G can be removed without changing the closure.
X+(G − {X → A}) is the closure of attribute set X with respect to the family of functional
dependencies G − {X → A}.
Proposition 16.6 M-(R, F) calculates a minimal cover of F.

Proof. It is enough to show that during execution of the loop in lines 10�12, no functional
dependency X → A is generated whose left hand side could be decreased. Indeed, if a
X → A dependency would exist, such that for some Y & X Y → A ∈ G+ held, then
Y → A ∈ G′+ would also hold, where G′ is the set of dependencies considered when X → A
is checked in lines 6�8. G ⊆ G′, which implies G+ ⊆ G′+ (see Exercise 16.2-1.). Thus, X
should have been decreased already during execution of the loop in lines 6�8.

16.2.4. Keys
In database design it is important to identify those attribute sets that uniquely determine the
data in individual records.

De�nition 16.7 Let (R, F) be a relational schema. The set of attributes X ⊆ R is called
a superkey, if X → R ∈ F+. A superkey X is called a key, if it is minimal with respect to
containment, that is no proper subset Y & X is key.

706 16. Relational Database Design

The question is how the keys can be determined from (R, F)? What makes this problem
hard is that the number of keys could be super exponential function of the size of (R, F).
In particular, Yu and Johnson constructed such relational schema, where |F| = k, but the
number of keys is k!. Békéssy and Demetrovics gave a beautiful and simple proof of the
fact that starting from k functional dependencies, at most k! key can be obtained. (This was
independently proved by Osborne and Tompa.)

The proof of Békéssy and Demetrovics is based on the operation ∗ they introduced,
which is de�ned for functional dependencies.

De�nition 16.8 Let e1 = U → V and e2 = X → Y be two functional dependencies. The
binary operation ∗ is de�ned by

e1 ∗ e2 = U ∪ ((R − V) ∩ X)→ V ∪ Y.

Some properties of operation ∗ is listed, the proof is left to the Reader (Exercise 16.2-3.).
Operation ∗ is associative, furthermore it is idempotent in the sense that if e = e1∗e2∗· · ·∗ek
and e′ = e ∗ ei for some 1 ≤ i ≤ k, then e′ = e.

Proposition 16.9 (Békéssy and Demetrovics). Let (R, F) be a relational schema and let
F = {e1, e2, . . . , ek} be a listing of the functional dependencies. If X is a key, then X → R =

eπ1 ∗eπ2 ∗ . . .∗eπs ∗d, where (π1, π2, . . . , πs) is an ordered subset of the index set {1, 2, . . . , k},
and d is a trivial dependency in the form D→ D.

Proposition 16.9 bounds in some sense the possible sets of attributes in the search for keys.
The next proposition gives lower and upper bounds for the keys.

Proposition 16.10 Let (R, F) be a relational schema and let F = {Ui → Vi : 1 ≤ i ≤ k}.
Let us assume without loss of generality that Ui∩Vi = ∅. LetU =

⋃k
i=1 Ui andV =

⋃k
i=1 Vi.

If K is a key in the schema (R, F), then

HL = R −V ⊆ K ⊆ (R −V) ∪U = HU .

The proof is not too hard, it is left as an exercise for the Reader (Exercise 16.2-4.). The
algorithm L-(R, F) that lists the keys of the schema (R, F) is based on the bounds of
Proposition 16.10. The running time can be bounded by O(n!), but one cannot expect any
better, since to list the output needs that much time in worst case.

16.3. Decomposition of relational schemata 707

L-(R, F)
1 ¤ LetU andV be as de�ned in Proposition 16.10
2 if U ∩V = ∅
3 then return R −V
4 ¤ R −V is the only key.
5 if (R −V)+ = R
6 then return R −V
7 ¤ R −V is the only key.
8 K ← ∅
9 for all permutations A1, A2, . . . Ah of the attributes ofU ∩V

10 do K ← (R −V) ∪U
11 for i← 1 to h
12 do Z ← K − Ai
13 if Z+ = R
14 then K ← Z
15 K ← K ∪ {K}
16 return K

Exercises
16.2-1 Let R be a relational schema and let F and G be families of functional dependencies
over R.Show that

a. F ⊆ F+.
b. (F+)+

= F+.
c. If F ⊆ G, then F+ ⊆ G+.

Formulate and prove similar properties of the closure X+ � with respect to F � of an attribute
set X.
16.2-2 Derive the functional dependency AB → F from the set of dependencies G =

{AB→ C, A→ D,CD→ EF} using Armstrong-axioms (A1)�(A3).
16.2-3 Show that operation ∗ is associative, furthermore if for functional dependencies
e1, e2, . . . , ek we have e = e1 ∗ e2 ∗ · · · ∗ ek and e′ = e ∗ ei for some 1 ≤ i ≤ k, then e′ = e.
16.2-4 Prove Proposition 16.10.
16.2-5 Prove the union, pseudo transitivity and decomposition rules of Lemma 16.2.

16.3. Decomposition of relational schemata
A decomposition of a relational schema R = {A1, A2, . . . , An} is a collection ρ =

{R1,R2, . . . ,Rk} of subsets of R such that

R = R1 ∪ R2 ∪ · · · ∪ Rk.

The Ri's need not be disjoint, in fact in most application they must not be. One important
motivation of decompositions is to avoid anomalies.

16.3. Example. Anomalies Consider the following schema

708 16. Relational Database Design

SUPPLIER-INFO(SNAME,ADDRESS,ITEM,PRICE)

This schema encompasses the following problems:
1. Redundancy. The address of a supplier is recorded with every item it supplies.
2. Possible inconsistency (update anomaly). As a consequence of redundancy, the address of a

supplier might be updated in some records and might not be in some others, hence the supplier
would not have a unique address, even though it is expected to have.

3. Insertion anomaly. The address of a supplier cannot be recorded if it does not supply anything
at the moment. One could try to use NULL values in attributes ITEM and PRICE, but would it
be remembered that it must be deleted, when a supplied item is entered for that supplier? More
serious problem that SNAME and ITEM together form a key of the schema, and the NULL values
could make it impossible to search by an index based on that key.

4. Deletion anomaly This is the opposite of the above. If all items supplied by a supplier are deleted,
then as a side effect the address of the supplier is also lost.

All problems mentioned above are eliminated if schema SUPPLIER-INFO is replaced by two sub-
schemata:

SUPPLIER(SNAME,ADDRESS),
SUPPLIES(SNAME,ITEM,PRICE).

In this case each suppliers address is recorded only once, and it is not necessary that the supplier
supplies a item in order its address to be recorded. For the sake of convenience the attributes are
denoted by single characters S (SNAME), A (ADDRESS), I (ITEM), P (PRICE).

Question is that is it correct to replace the schema S AIP by S A and S IP? Let r be
and instance of schema S AIP. It is natural to require that if S A and S IP is used, then the
relations belonging to them are obtained projecting r to S A and S IP, respectively, that is
rS A = πS A(r) and rS IP = πS IP(r). rS A and rS IP contains the same information as r, if r can
be reconstructed using only rS A and rS IP. The calculation of r from rS A and rS IP can bone
by the natural join operator.

De�nition 16.11 The natural join of relations ri of schemata Ri (i = 1, 2, . . . n) is the
relation s belonging to the schema ∪n

i=1Ri, which consists of all rows µ that for all i there
exists a row νi of relation ri such that µ[Ri] = νi[Ri]. In notation s =1n

i=1ri.

16.4. Example. Let R1 = AB, R2 = BC, r1 = {ab, a′b′, ab′′} and r2{bc, bc′, b′c′′}. The natural join of
r1 and r2 belongs to the schema R = ABC, and it is the relation r1 1 r2 = {abc, abc′, a′b′c′′}.

If s is the natural join of rS A and rS IP, that is s = rS A 1 rS IP, then πS A(s) = rS A és
πS IP(s) = rS IP by Lemma 16.12. If r , s, then the original relation could not be reconstruc-
ted knowing only rS A and rS IP.

16.3.1. Lossless join
Let ρ = {R1,R2, . . . ,Rk} be a decomposition of schema R, furthermore let F be a family of
functional dependencies over R. The decomposition ρ is said to have lossless join property
(with respect to F), if every instance r of R that satis�es F also satis�es

r = πR1 (r) 1 πR2 (r) 1 · · · 1 πRk (r).

16.3. Decomposition of relational schemata 709

That is, relation r is the natural join of its projections to attribute sets Ri, i = 1, 2, . . . , k.
For a decomposition ρ = {R1,R2, . . . ,Rk}, let mρ denote the the mapping which assigns to
relation r the relation mρ(r) =1k

i=1 πRi (r). Thus, the lossless join property with respect to a
family of functional dependencies means that r = mρ(r) for all instances r that satisfy F.

Lemma 16.12 Let ρ = {R1,R2, . . . ,Rk} be a decomposition of schema R, and let r be an
arbitrary instance of R. Furthermore, let ri = πRi (r). Then

1. r ⊆ mρ(r).

2. If s = mρ(r), then πRi (s) = ri.

3. mρ(mρ(r)) = mρ(r).

The proof is left to the Reader (Exercise 16.3-7.).

16.3.2. Checking the lossless join property
It is relatively not hard to check that a decomposition ρ = {R1,R2, . . . ,Rk} of schema R has
the lossless join property. The essence of algorithm J-(R,F,ρ) is the following.
A k × n array T is constructed, whose column j corresponds to attribute A j, while row i
corresponds to schema Ri. T [i, j] = 0 if A j ∈ Ri, otherwise T [i, j] = i.

The following step is repeated until there is no more possible change in the array. Con-
sider a functional dependency X → Y from F. If a pair of rows i and j agree in all attributes
of X, then their values in attributes of Y are made equal. More precisely, if one of the values
in an attribute of Y is 0, then the other one is set to 0, as well, otherwise it is arbitrary which
of the two values is set to be equal to the other one. If a symbol is changed, then each of its
occurrences in that column must be changed accordingly. If at the end of this process there
is an all 0 row in T , then the decomposition has the lossless join property, otherwise, it is
lossy.

710 16. Relational Database Design

J-(R,F,ρ)
1 ¤ Initialisation phase.
2 for i← 1 to |ρ|
3 do for j← 1 to |R|
4 do if A j ∈ Ri
5 then T [i, j]← 0
6 else T [i, j]← i
7 ¤ End of initialisation phase.
8 S ← T
9 repeat

10 T ← S
11 for all {X → Y} ∈ F
12 do for i← 1 to |ρ| − 1
13 do for j← i + 1 to |R|
14 do if for all Ah in X (S [i, h] = S [j, h])
15 then E(i, j, S ,Y)
16 until S = T
17 if there exist an all 0 row in S
18 then return �Lossless join�
19 else return �Lossy join�

Procedure E(i, j, S ,Y) makes the appropriate symbols equal.

E(i, j, S ,Y)
1 for Al ∈ Y
2 do if S [i, l] · S [j, l] = 0
3 then
4 for d ← 1 to k
5 do if S [d, l] = S [i, l] ∨ S [d, l] = S [j, l]
6 then S [d, l]← 0
7 else
8 for d ← 1 to k
9 do if S [d, l] = S [j, l]

10 then S [d, l]← S [i, l]

16.5. Example. Checking lossless join property Let R = ABCDE, R1 = AD, R2 = AB, R3 = BE,
R4 = CDE, R5 = AE, furthermore let the functional dependencies be {A→ C, B→ C,C → D,DE →
C,CE → A}. The initial array is shown on Figure 16.1(a). Using A → C values 1,2,5 in column
C can be equated to 1. Then applying B → C value 3 of column C again can be changed to 1. The
result is shown on Figure 16.1(b). Now C → D can be used to change values 2,3,5 of column D to
0. Then applying DE → C (the only nonzero) value 1 of column C can be set to 0. Finally, CE → A
makes it possible to change values 3 and 4 in column A to be changed to 0. The �nal result is shown
on Figure 16.1(c). The third row consists of only zeroes, thus the decomposition has the lossless join
property.

It is clear that the running time of algorithm J-(R,F,ρ) is polynomial in the length

16.3. Decomposition of relational schemata 711

A B C D E
0 1 1 0 1
0 0 2 2 2
3 0 3 3 0
4 4 0 0 0
0 5 5 5 0

(a)
A B C D E
0 1 1 0 1
0 0 1 2 2
3 0 1 3 0
4 4 0 0 0
0 5 1 5 0

(b)
A B C D E
0 1 0 0 1
0 0 0 2 2
0 0 0 0 0
0 4 0 0 0
0 5 0 0 0

(c)

Figure 16.1. Application of J-(R,F,ρ).

of the input. The important thing is that it uses only the schema, not the instance r belonging
to the schema. Since the size of an instance is larger than the size of the schema by many
orders of magnitude, the running time of an algorithm using the schema only is negligible
with respect to the time required by an algorithm processing the data stored.
Theorem 16.13 Procedure J-(R,F,ρ) correctly determines whether a given decom-
position has the lossless join property.
Proof. Let us assume �rst that the resulting array T contains no all zero row. T itself can be
considered as a relational instance over the schema R. This relation satis�es all functional
dependencies from F, because the algorithm �nished since there was no more change in the
table during checking the functional dependencies. It is true for the starting table that its
projections to every Ri's contain an all zero row, and this property does not change during
the running of the algorithm, since a 0 is never changed to another symbol. It follows, that
the natural join mρ(T) contains the all zero row, that is T , mρ(T). Thus the decomposition
is lossy. The proof of the other direction is only sketched.

Logic, domain calculus is used. The necessary de�nitions can be found in the books of
Abiteboul, Hull and Vianu, or Ullman, respectively. Imagine that variable a j is written in
place of zeroes, and bi j is written in place of i's in column j, and J-(R,F,ρ) is run in
this setting. The resulting table contains row a1a2 . . . an, which corresponds to the all zero
row. Every table can be viewed as a shorthand notation for the following domain calculus
expression

{a1a2 . . . an | (∃b11) . . . (∃bkn) (R(w1) ∧ · · · ∧ R(wk))} , (16.1)

712 16. Relational Database Design

where wi is the ith row of T . If T is the starting table, then formula (16.1) de�nes mρ exactly.
As a justi�cation note that for a relation r, mρ(r) contains the row a1a2 . . . an iff r contains
for all i a row whose jth coordinate is a j if A j is an attribute of Ri, and arbitrary values
represented by variables bil in the other attributes.

Consider an arbitrary relation r belonging to schema R that satis�es the dependencies
of F. The modi�cations (equating symbols) of the table done by J-(R,F,ρ) do not
change the set of rows obtained from r by (16.1), if the modi�cations are done in the for-
mula, as well. Intuitively it can be seen from the fact that only such symbols are equated in
(16.1), that can only take equal values in a relation satisfying functional dependencies of F.
The exact proof is omitted, since it is quiet tedious.

Since in the result table of J-(R,F,ρ) the all a's row occurs, the domain calculus
formula that belongs to this table is of the following form:

{a1a2 . . . an | (∃b11) . . . (∃bkn) (R(a1a2 . . . an) ∧ · · ·)} . (16.2)

It is obvious that if (16.2) is applied to relation r belonging to schema R, then the result will
be a subset of r. However, if r satis�es the dependencies of F, then (16.2) calculates mρ(r).
According to Lemma 16.12, r ⊆ mρ(r) holds, thus if r satis�es F, then (16.2) gives back r
exactly, so r = mρ(r), that is the decomposition has the lossless join property.
Procedure J-(R,F,ρ) can be used independently of the number of parts occurring in
the decomposition. The price of this generality is paid in the running time requirement.
However, if R is to be decomposed only into two parts, then C(R,F,X) or L-
(R,F,X) can be used to obtain the same result faster, according to the next theorem.

Theorem 16.14 Let ρ = (R1,R2) be a decomposition of R, furthermore let F be a set of
functional dependencies. Decomposition ρ has the lossless join property with respect to F
iff

(R1 ∩ R2)→ (R1 − R2) or (R1 ∩ R2)→ (R2 − R1) .
These dependencies need not be in F, it is enough if they are in F+.

Proof. The starting table in procedure J-(R,F,ρ) is the following:

R1 ∩ R2 R1 − R2 R2 − R1
row of R1 00 . . . 0 00 . . . 0 11 . . . 1
row of R2 00 . . . 0 22 . . . 2 00 . . . 0

(16.3)

It is not hard to see using induction on the number of steps done by J-(R,F,ρ) that if
the algorithm changes both values of the column of an attribute A to 0, then A ∈ (R1 ∩ R2)+.
This is obviously true at the start. If at some time values of column A must be equated, then
by lines 11�14 of the algorithm, there exists {X → Y} ∈ F, such that the two rows of the
table agree on X, and A ∈ Y . By the induction assumption X ⊆ (R1 ∩ R2)+ holds. Applying
Armstrong-axioms (transitivity and re�exivity), A ∈ (R1 ∩ R2)+ follows.

On the other hand, let us assume that A ∈ (R1 ∩ R2)+, that is (R1 ∩ R2) → A. Then
this functional dependency can be derived from F using Armstrong-axioms. By induction
on the length of this derivation it can be seen that procedure J-(R,F,ρ) will equate
the two values of column A, that is set them to 0. Thus, the row of R1 will be all 0 iff
(R1 ∩ R2)→ (R2 − R1), similarly, the row of R2 will be all 0 iff (R1 ∩ R2)→ (R1 − R2).

16.3. Decomposition of relational schemata 713

16.3.3. Dependency preserving decompositions
The lossless join property is important so that a relation can be recovered from its projecti-
ons. In practice, usually not the relation r belonging to the underlying schema R is stored,
but relations ri = r[Ri] for an appropriate decomposition ρ = (R1,R2, . . . ,Rk), in order to
avoid anomalies. The functional dependencies F of schema R are integrity constraints of
the database, relation r is consistent if it satis�es all prescribed functional dependencies.
When during the life time of the database updates are executed, that is rows are inserted
into or deleted from the projection relations, then it may happen that the natural join of the
new projections does not satisfy the functional dependencies of F. It would be too costly
to join the projected relations � and then project them again � after each update to check
the integrity constraints. However, the projection of the family of functional dependencies
F to an attribute set Z can be de�ned: πZ(F) consists of those functional dependencies
{X → Y} ∈ F+, where XY ⊆ Z. After an update, if relation ri is changed, then it is relati-
vely easy to check whether πRi (F) still holds. Thus, it would be desired if family F would
be logical implication of the families of functional dependencies πRi (F) i = 1, 2, . . . , k. Let
πρ(F) =

⋃k
i=1 πRi (F).

De�nition 16.15 The decomposition ρ is said to be dependency preserving, if

πρ(F)+ = F+.

Note that πρ(F) ⊆ F+, hence πρ(F)+ ⊆ F+ always holds. Consider the following example.

16.6. Example. Let R = (City,Street,Zip code) be the underlying schema, furthermore let F = {CS →
Z,Z → C} be the functional dependencies. Let the decomposition ρ be ρ = (CZ, S Z). This has the
lossless join property by Theorem 16.14. πρ(F) consists of Z → C besides the trivial dependencies.
Let R1 = CZ and R2 = S Z. Two rows are inserted into each of the projections belonging to schemata
R1 and R2, respectively, so that functional dependencies of the projections are satis�ed:

R1 C Z
Fort Wayne 46805
Fort Wayne 46815

R2 S Z
Coliseum Blvd 46805
Coliseum Blvd 46815

In this case R1 and R2 satisfy the dependencies prescribed for them separately, however in R1 1 R2
the dependency CS → Z does not hold.

It is true as well, that none of the decompositions of this schema preserves the dependency CS →
Z. Indeed, this is the only dependency that contains Z on the right hand side, thus if it is to be preserved,
then there has to be a subschema that contains C, S , Z, but then the decomposition would not be proper.
This will be considered again when decomposition into normal forms is treated.

Note that it may happen that decomposition ρ preserves functional dependencies, but
does not have the lossless join property. Indeed, let R = ABCD, F = {A → B,C → D}, and
let the decomposition be ρ = (AB,CD).

Theoretically it is very simple to check whether a decomposition ρ = (R1,R2, . . .Rk) is
dependency preserving. Just F+ needs to be calculated, then projections need to be taken,
�nally one should check whether the union of the projections is equivalent with F. The main
problem with this approach is that even calculating F+ may need exponential time.

Nevertheless, the problem can be solved without explicitly determining F+. Let G =

πρ(F). G will not be calculated, only its equivalence with F will be checked. For this end,

714 16. Relational Database Design

it needs to be decidable for all functional dependencies {X → Y} ∈ F that if X+ is taken
with respect to G, whether it contains Y . The trick is that X+ is determined without full
knowledge of G by repeatedly taking the effect to the closure of the projections of F onto
the individual Ri's. That is, the concept of S -operation on an attribute set Z is introduced,
where S is another set of attributes: Z is replaced by Z∪((Z ∩ S)+ ∩ S), where the closure is
taken with respect to F. Thus, the closure of the part of Z that lies in S is taken with respect
to F, then from the resulting attributes those are added to Z, which also belong to S .

It is clear that the running time of algorithm P(ρ, F) is polynomial in the length
of the input. More precisely, the outermost for loop is executed at most once for each depen-
dency in F (it may happen that it turns out earlier that some dependency is not preserved).
The body of the repeat�until loop in lines 3�7. requires linear number of steps, it is exe-
cuted at most |R| times. Thus, the body of the for loop needs quadratic time, so the total
running time can be bounded by the cube of the input length.

P(ρ, F)
1 for all (X → Y) ∈ F
2 do Z ← X
3 repeat
4 W ← Z
5 for i← 1 to k
6 do Z ← Z ∪ (L-(R, F,Z ∩ Ri) ∩ Ri)
7 until Z = W
8 if Y * Z
9 then return �Not dependency preserving�

10 return �Dependency preserving�

16.7. Example. Consider the schema R = ABCD, let the decomposition be ρ = {AB, BC,CD}, and
dependencies be F = {A→ B, B→ C,C → D,D→ A}. That is, by the visible cycle of the dependen-
cies, every attribute determines all others. Since D and A do not occur together in the decomposition
one might think that the dependency D → A is not preserved, however this intuition is wrong. The
reason is that during the projection to AB, not only the dependency A→ B is obtained, but B→ A, as
well, since not F, but F+ is projected. Similarly, C → B and D→ C are obtained, as well, but D→ A
is a logical implication of these by the transitivity of the Armstrong axioms. Thus it is expected that
P(ρ, F) claims that D→ A is preserved.

Start from the attribute set Y = {D}. There are three possible operations, the AB-operation, the
BC-operation and the CD-operation. The �rst two obviously does not add anything to {D}+, since
{D} ∩ {A, B} = {D} ∩ {B,C} = ∅, that is the closure of the empty set should be taken, which is empty
(in the present example). However, using the CD-operation:

Z = {D} ∪ (({D} ∩ {C,D})+ ∩ {C,D})

= {D} ∪ ({D}+ ∩ {C,D})

= {D} ∪ ({A, B,C,D} ∩ {C,D})
= {C,D}.

In the next round using the BC-operation the actual Z = {C,D} is changed to Z = {B,C,D}, �nally
applying the AB-operation on this, Z = {A, B,C,D} is obtained. This cannot change, so procedure

16.3. Decomposition of relational schemata 715

P(ρ, F) stops. Thus, with respect to the family of functional dependencies

G = πAB(F) ∪ πBC(F) ∪ πCD(F),

{D}+ = {A, B,C,D} holds, that is G |= D→ A. It can be checked similarly that the other dependencies
of F are in G+ (as a fact in G).

Theorem 16.16 The procedure P(ρ, F) determines correctly whether the decom-
position ρ is dependency preserving.

Proof. It is enough to check for a single functional dependency X → Y whether whether the
procedure decides correctly if it is in G+. When an attribute is added to Z in lines 3�7, then
Functional dependencies from G are used, thus by the soundness of the Armstrong-axioms
if P(ρ, F) claims that X → Y ∈ G+, then it is indeed so.

On the other hand, if X → Y ∈ G+, then L-(R, F, X) (run by G as input)
adds the attributes of Y one-by-one to X. In every step when an attribute is added, some
functional dependency U → V of G is used. This dependency is in one of πRi (F)'s, since
G is the union of these. An easy induction on the number of functional dependencies used
in procedure L-(R, F, X) shows that sooner or later Z becomes a subset of U,
then applying the Ri-operation all attributes of V are added to Z.

16.3.4. Normal forms
The goal of transforming (decomposing) relational schemata into normal forms is to avoid
the anomalies described in the previous section. Normal forms of many different strengths
were introduced in the course of evolution of database theory, here only the Boyce-Codd
normal formát (BCNF) and the third, furthermore fourth normal form (3NF and 4NF) are
treated in detail, since these are the most important ones from practical point of view.

Boyce-Codd normal form

De�nition 16.17 Let R be relational schema, F be a family of functional dependencies
over R. (R, F) is said to be in Boyce-Codd normal form if X → A ∈ F+ and A * X implies
that A is a superkey.

The most important property of BCNF is that it eliminates redundancy. This is based on the
following theorem whose proof is left to the Reader as an exercise (Exercise 16.3-8.).

Theorem 16.18 Schema (R, F) is in BCNF iff for arbitrary attribute A ∈ R and key X ⊂ R
there exists no Y ⊆ R, for which X → Y ∈ F+; Y → X < F+; Y → A ∈ F+ and A < Y.

In other words, Theorem 16.18 states that �BCNF ⇐⇒ There is no transitive dependence
on keys�. Let us assume that a given schema is not in BCNF, for example C → B and
B → A hold, but B → C does not, then the same B value could occur besides many dif-
ferent C values, but at each occasion the same A value would be stored with it, which is
redundant. Formulating somewhat differently, the meaning of BCNF is that (only) using
functional dependencies an attribute value in a row cannot be predicted from other attribute

716 16. Relational Database Design

values. Indeed, assume that there exists a schema R, in which the value of an attribute can be
determined using a functional dependency by comparison of two rows. That is, there exists
two rows that agree on an attribute set X, differ on the set Y and the value of the remaining
(unique) attribute A can be determined in one of the rows from the value taken in the other
row.

X Y A
x y1 a
x y2 ?

If the value ? can be determined by a functional dependency, then this value can only be a,
the dependency is Z → A, where Z is an appropriate subset of X. However, Z cannot be a
superkey, since the two rows are distinct, thus R is not in BCNF.

3NF
Although BCNF helps eliminating anomalies, it is not true that every schema can be de-
composed into subschemata in BCNF so that the decomposition is dependency preserving.
As it was shown in Example 16.6., no proper decomposition of schema CS Z preserves the
CS → Z dependency. At the same time, the schema is clearly not in BCNF, because of the
Z → C dependency.

Since dependency preserving is important because of consistency checking of a data-
base, it is practical to introduce a normal form that every schema has dependency preserving
decomposition into that form, and it allows minimum possible redundancy. An attribute is
called prime attribute, if it occurs in a key.

De�nition 16.19 The schema (R, F) is in third normal form, if whenever X → A ∈ F+,
then either X is a superkey, or A is a prime attribute.

The schema S AIP of Example 16.3. with the dependencies S I → P and S → A is not in
3NF, since S I is the only key and so A is not a prime attribute. Thus, functional dependency
S → A violates the 3NF property.

3NF is clearly weaker condition than BCNF, since �or A is a prime attribute� occurs in
the de�nition. The schema CS Z in Example 16.6. is trivially in 3NF, because every attribute
is prime, but it was already shown that it is not in BCNF.

Testing normal forms
Theoretically every functional dependency in F+ should be checked whether it violates the
conditions of BCNF or 3NF, and it is known that F+ can be exponentially large in the size of
F. Nevertheless, it can be shown that if the functional dependencies in F are of the form that
the right hand side is a single attribute always, then it is enough to check violation of BCNF,
or 3NF respectively, for dependencies of F. Indeed, let X → A ∈ F+ be a dependency
that violates the appropriate condition, that is X is not a superkey and in case of 3NF, A is
not prime. X → A ∈ F+ ⇐⇒ A ∈ X+. In the step when C(R,F,X) puts A into
X+ (line 8) it uses a functional dependency Y → A from F that Y ⊂ X+ and A < Y . This
dependency is non-trivial and A is (still) not prime. Furthermore, if Y were a superkey, than
by R = Y+ ⊆ (X+)+ = X+, X would also be a superkey. Thus, the functional dependency
Y → A from F violates the condition of the normal form. The functional dependencies
easily can be checked in polynomial time, since it is enough to calculate the closure of the
left hand side of each dependency. This �nishes checking for BCNF, because if the closure

16.3. Decomposition of relational schemata 717

of each left hand side is R, then the schema is in BCNF, otherwise a dependency is found that
violates the condition. In order to test 3NF it may be necessary to decide about an attribute
whether it is prime or not. However this problem is NP-complete, see Problem 16-4..

Lossless join decomposition into BCNF
Let (R, F) be a relational schema (where F is the set of functional dependencies). The
schema is to be decomposed into union of subschemata R1,R2, . . . ,Rk, such that the de-
composition has the lossless join property, furthermore each Ri endowed with the set of
functional dependencies πRi (F) is in BCNF. The basic idea of the decomposition is simple:

• If (R, F) is in BCNF, then ready.
• If not, it is decomposed into two proper parts (R1,R2), whose join is lossless.
• Repeat the above for R1 and R2.
In order to see that this works one has to show two things:
• If (R, F) is not in BCNF, then it has a lossless join decomposition into smaller parts.
• If a part of a lossless join decomposition is further decomposed, then the new decom-

position has the lossless join property, as well.

Lemma 16.20 Let (R, F) be a relational schema (where F is the set of functional de-
pendencies), ρ = (R1,R2, . . . ,Rk) be a lossless join decomposition of R. Furthermore,
let σ = (S 1, S 2) be a lossless join decomposition of R1 with respect to πR1 (F). Then
(S 1, S 2,R2, . . . ,Rk) is a lossless join decomposition of R.

The proof of Lemma 16.20 is based on the associativity of natural join. The details are left
to the Reader (Exercise 16.3-9.).

This can be applied for a simple, but unfortunately exponential time algorithm that
decomposes a schema into subschemata of BCNF property. The projections in lines 4�
5 of N̈-BCNF(S ,G) may be of exponential size in the length of the input. In order to
decompose schema (R, F), the procedure must be called with parameters R, F. Procedure
N̈-BCNF(S ,G) is recursive, S is the actual schema with set of functional dependencies
G. It is assumed that the dependencies in G are of the form X → A, where A is a single
attribute.

N̈-BCNF(S ,G)
1 while there exists {X → A} ∈ G, that violates BCNF
2 do S 1 ← {XA}
3 S 2 ← S − A
4 G1 ← πS 1 (G)
5 G2 ← πS 2 (G)
6 return (N̈-BCNF(S 1,G1),N̈-BCNF(S 2,G2))
7 return S

However, if the algorithm is allowed overdoing things, that is to decompose a schema
even if it is already in BCNF, then there is no need for projecting the dependencies. The
procedure is based on the following two lemmae.

718 16. Relational Database Design

Lemma 16.21

1. A schema of only two attributes is in BCNF.

2. If R is not in BCNF, then there exists two attributes A and B in R, such that (R−AB)→ A
holds.

Proof. If the schema consists of two attributes, R = AB, then there are at most two possible
non-trivial dependencies, A → B and B → A. It is clear, that if some of them holds, then
the left hand side of the dependency is a key, so the dependency does not violate the BCNF
property. However, if none of the two holds, then BCNF is trivially satis�ed.

On the other hand, let us assume that the dependency X → A violates the BCNF pro-
perty. Then there must exists an attribute B ∈ R − (XA), since otherwise X would be a
superkey. For this B, (R − AB)→ A holds.

Let us note, that the converse of the second statement of Lemma 16.21 is not true. It
may happen that a schema R is in BCNF, but there are still two attributes {A, B} that satisfy
(R − AB) → A. Indeed, let R = ABC, F = {C → A,C → B}. This schema is obviously in
BCNF, nevertheless (R − AB) = C → A.

The main contribution of Lemma 16.21 is that the projections of functional dependen-
cies need not be calculated in order to check whether a schema obtained during the proce-
dure is in BCNF. It is enough to calculate (R− AB)+ for pairs {A, B} of attributes, which can
be done by L-(R, F, X) in linear time, so the whole checking is polynomial (cu-
bic) time. However, this requires a way of calculating (R−AB)+ without actually projecting
down the dependencies. The next lemma is useful for this task.

Lemma 16.22 Let R2 ⊂ R1 ⊂ R and let F be the set of functional dependencies of scheme
R. Then

πR2 (πR1 (F)) = πR2 (F).

The proof is left for the Reader (Exercise 16.3-10.). The method of lossless join BCNF
decomposition is as follows. Schema R is decomposed into two subschemata. One is XA that
is in BCNF, satisfying X → A. The other subschema is R − A, hence by Theorem 16.14 the
decomposition has the lossless join property. This is applied recursively to R− A, until such
a schema is obtained that satis�es property 2 of Lemma 16.21. The lossless join property of
this recursively generated decomposition is guaranteed by Lemma 16.20.

16.3. Decomposition of relational schemata 719

P-BCNF(R, F)
1 Z ← R
2 ¤ Z is the schema that is not known to be in BCNF during the procedure.
3 ρ← ∅
4 while there exist A, B in Z, such that A ∈ (Z − AB)+ and |Z| > 2
5 do Let A and B be such a pair
6 E ← A
7 Y ← Z − B
8 while there exist C,D in Y , such that C ∈ (Z −CD)+

9 do Y ← Y − D
10 E ← C
11 ρ← ρ ∪ {Y}
12 Z ← Z − E
13 ρ← ρ ∪ {Z}
14 return ρ

The running time of P-BCNF(R, F) is polynomial, in fact it can be bounded
by O(n5), as follows. During each execution of the loop in lines 4�12 the size of Z is decre-
ased by at least one, so the loop body is executed at most n times. (Z − AB)+ is calculated
in line 4 for at most O(n2) pairs that can be done in linear time using L- that
results in O(n3) steps for each execution of the loop body. In lines 8�10 the size of Y is dec-
reased in each iteration, so during each execution of lines 3�12, they give at most n iteration.
The condition of the command while of line 8 is checked for O(n2) pairs of attributes, each
checking is done in linear time. The running time of the algorithm is dominated by the time
required by lines 8�10 that take n · n · O(n2) · O(n) = O(n5) steps altogether.

Dependency preserving decomposition into 3NF
We have seen already that its is not always possible to decompose a schema into subsche-
mata in BCNF so that the decomposition is dependency preserving. Nevertheless, if only
3NF is required then a decomposition can be given using M-(R, F). Let R be a
relational schema and F be the set of functional dependencies. Using M-(R, F)
a minimal cover G of F is constructed. Let G = {X1 → A1, X2 → A2, . . . , Xk → Ak}.
Theorem 16.23 The decomposition ρ = (X1A1, X2A2, . . . , XkAk) is dependency preserving
decomposition of R into subschemata in 3NF.

Proof. Since G+ = F+ and the functional dependency Xi → Ai is in πRi (F), the decomposi-
tion preserves every dependency of F. Let us suppose indirectly, that the schema Ri = XiAi
is not in 3NF, that is there exists a dependency U → B that violates the conditions of 3NF.
This means that the dependency is non-trivial and U is not a superkey in Ri and B is not
a prime attribute of Ri. There are two cases possible. If B = Ai, then using that U is not a
superkey U & Xi follows. In this case the functional dependency U → Ai contradicts to that
Xi → Ai was a member of minimal cover, since its left hand side could be decreased. In the
case when B , Ai, B ∈ Xi holds. B is not prime in Ri, thus Xi is not a key, only a superkey.
However, then Xi would contain a key Y such that Y & Xi. Furthermore, Y → Ai would hold,
as well, that contradicts to the minimality of G since the left hand side of Xi → Ai could be
decreased. If the decomposition needs to have the

720 16. Relational Database Design

lossless join property besides being dependency preserving, then ρ given in Theorem 16.23
is to be extended by a key X of R. Although it was seen before that it is not possible to list
all keys in polynomial time, one can be obtained in a simple greedy way, the details are left
to the Reader (Exercise 16.3-11.).

Theorem 16.24 Let (R, F) be a relational schema, and let G = {X1 → A1, X2 →
A2, . . . , Xk → Ak} be a minimal cover of F. Furthermore, let X be a key in (R, F). Then
the decomposition τ = (X, X1A1, X2A2, . . . , XkAk) is a lossless join and dependency preser-
ving decomposition of R into subschemata in 3NF.

Proof. It was shown during the proof of Theorem 16.23 that the subschemata Ri = XiAi
are in 3NF for i = 1, 2, . . . , k. There cannot be a non-trivial dependency in the subschema
R0 = X, because if it were, then X would not be a key, only a superkey.

The lossless join property of τ is shown by the use of J-(R,G, ρ) procedure.
Note that it is enough to consider the minimal cover G of F. More precisely, we show that
the row corresponding to X in the table will be all 0 after running J-(R,G, ρ). Let
A1, A2, . . . , Am be the order of the attributes of R − X as C(R,G,X) inserts them into
X+. Since X is a key, every attribute of R − X is taken during C(R,G,X). It will be
shown by induction on i that the element in row of X and column of Ai is 0 after running
J-(R,G, ρ).

The base case of i = 0 is obvious. Let us suppose that the statement is true for i−
and consider when and why Ai is inserted into X+. In lines 6�8 of C(R,G,X) such a
functional dependency Y → Ai is used where Y ⊆ X ∪ {A1, A2, . . . , Ai−1}. Then Y → Ai ∈ G,
YAi = R j for some j. The rows corresponding to X and YAi = R j agree in columns of X
(all 0 by the induction hypothesis), thus the entries in column of Ai are equated by J-
(R,G, ρ). This value is 0 in the row corresponding to YAi = R j, thus it becomes 0 in the
row of X, as well.

It is interesting to note that although an arbitrary schema can be decomposed into sub-
schemata in 3NF in polynomial time, nevertheless it is NP-complete to decide whether a
given schema (R, F) is in 3NF, see Problem 16-4.. However, the BCNF property can be de-
cided in polynomial time. This difference is caused by that in order to decide 3NF property
one needs to decide about an attribute whether it is prime. This latter problem requires the
listing of all keys of a schema.

16.3.5. Multivalued dependencies

16.8. Example. Besides functional dependencies, some other dependencies hold in Example 16.1., as
well. There can be several lectures of a subject in different times and rooms. Part of an instance of the
schema could be the following.

Professor Subject Room Student Grade Time
Caroline Doubt�re Analysis MA223 John Smith A− Monday 8�10
Caroline Doubt�re Analysis CS456 John Smith A− Wednesday 12�2
Caroline Doubt�re Analysis MA223 Ching Lee A+ Monday 8�10
Caroline Doubt�re Analysis CS456 Ching Lee A+ Wednesday 12�2

A set of values of Time and Room attributes, respectively, belong to each given value of Subject, and
all other attribute values are repeated with these. Sets of attributes SR and StG are independent, that

16.3. Decomposition of relational schemata 721

is their values occur in each combination.

The set of attributes Y is said to be multivalued dependent on set of attributes X, in
notation X � Y , if for every value on X, there exists a set of values on Y that is not dependent
in any way on the values taken in R − X − Y . The precise de�nition is as follows.

De�nition 16.25 The relational schema R satis�es the multivalued dependency X � Y,
if for every relation r of schema R and arbitrary tuples t1, t2 of r that satisfy t1[X] = t2[X],
there exists tuples t3, t4 ∈ r such that
• t3[XY] = t1[XY]
• t3[R − XY] = t2[R − XY]
• t4[XY] = t2[XY]
• t4[R − XY] = t1[R − XY]
holds.1

In Example 16.8. S�TR holds.

Remark 16.26 Functional dependency is equality generating dependency, that is from the
equality of two objects it deduces the equality of other other two objects. On the other hand,
multivalued dependency is tuple generating dependency, that is the existence of two rows
that agree somewhere implies the existence of some other rows.

There exists a sound and complete axiomatisation of multivalued dependencies similar to
the Armstrong-axioms of functional dependencies. Logical implication and inference can
be de�ned analogously. The multivalued dependency X � Y is logically implied by the set
M of multivalued dependencies, in notation M |= X � Y , if every relation that satis�es all
dependencies of M also satis�es X � Y .

Note, that X → Y implies X � Y . The rows t3 and t4 of De�nition 16.25 can be
chosen as t3 = t2 and t4 = t1, respectively. Thus, functional dependencies and multivalued
dependencies admit a common axiomatisation. Besides Armstrong-axioms (A1)�(A3), �ve
other are needed. Let R be a relational schema.

(A4) Complementation: {X � Y} |= X � (R − X − Y).
(A5) Extension: If X � Y holds, and V ⊆ W, then WX � VY .
(A6) Transitivity: {X � Y,Y � Z} |= X � (Z − Y).
(A7) {X → Y} |= X � Y .
(A8) If X � Y holds, Z ⊆ Y , furthermore for some W disjoint from Y W → Z holds,
then X → Z is true, as well.

Beeri, Fagin and Howard proved that (A1)�(A8) is sound and complete system of axioms for
functional and Multivalued dependencies together. Proof of soundness is left for the Reader
(Exercise 16.3-12.), the proof of the completeness exceeds the level of this book. The rules
of Lemma 16.2 are valid in exactly the same way as when only functional dependencies
were considered. Some further rules are listed in the next Proposition.

1It would be enough to require the existence of t3, since the existence of t4 would follow. However, the symmetry
of multivalued dependency is more apparent in this way.

722 16. Relational Database Design

Proposition 16.27 The followings are true for multivalued dependencies.
1. Union rule: {X � Y, X � Z} |= X � YZ.
2. Pseudotransitivity: {X � Y,WY � Z} |= WX � (Z −WY).
3. Mixed pseudotransitivity: {X � Y, XY → Z} |= X → (Z − Y).
4. Decomposition rule for multivalued dependencies: ha X � Y and X � Z holds, then

X � (Y ∩ Z), X � (Y − Z) and X � (Z − Y) holds, as well.

Th proof of Proposition 16.27 is left for the Reader (Exercise 16.3-13.).

Dependency basis
Important difference between functional dependencies and multivalued dependencies is that
X → Y immediately implies X → A for all A in Y , however X � A is deduced by the
decomposition rule for multivalued dependencies from X � Y only if there exists a set of
attributes Z such that X � Z and Z ∩ Y = A, or Y − Z = A. Nevertheless, the following
theorem is true.

Theorem 16.28 Let R be a relational schema, X ⊂ R be a set of attributes. Then there
exists a partition Y1,Y2, . . . , Yk of the set of attributes R − X such that for Z ⊆ R − X the
multivalued dependency X � Z holds if and only if Z is the union of some Yi's.

Proof. We start from the one-element partition W1 = R−X. This will be re�ned successively,
while the property that X � Wi holds for all Wi in the actual decomposition, is kept. If
X � Z and Z is not a union of some of the Wi's, then replace every Wi such that neither
Wi ∩ Z nor Wi − Z is empty by Wi ∩ Z and Wi − Z. According to the decomposition rule
of Proposition 16.27, both X � (Wi ∩ Z) and X � (Wi − Z) hold. Since R − X is �nite,
the re�nement process terminates after a �nite number of steps, that is for all Z such that
X � Z holds, Z is the union of some blocks of the partition. In order to complete the proof
one needs to observe only that by the union rule of Proposition 16.27, the union of some
blocks of the partition depends on X in multivalued way.

De�nition 16.29 The partition Y1,Y2, . . . , Yk constructed in Theorem 16.28 from a set D of
functional and multivalued dependencies is called the dependency basis of X (with respect
to D).

16.9. Example. Consider the familiar schema

R(Professor,Subject,Room,Student,Grade,Time)

of Examples 16.1. and 16.8.. Su�RT was shown in Example 16.8.. By the complementation rule
Su�PStG follows. Su→P is also known. This implies by axiom (A7) that Su�P. By the decompo-
sition rule Su�Stg follows. It is easy to see that no other one-element attribute set is determined by
Su via multivalued dependency. Thus, the dependency basis of Su is the partition{P,RT,StG}.

We would like to compute the set D+ of logical consequences of a given set D of functional
and multivalued dependencies. One possibility is to apply axioms (A1)�(A8) to extend the
set of dependencies repeatedly, until no more extension is possible. However, this could
be an exponential time process in the size of D. One cannot expect any better, since it

16.3. Decomposition of relational schemata 723

was shown before that even D+ can be exponentially larger than D. Nevertheless, in many
applications it is not needed to compute the whole set D+, one only needs to decide whether
a given functional dependency X → Y or multivalued dependency X � Y belongs to D+

or not. In order to decide about a multivalued dependency X � Y , it is enough to compute
the dependency basis of X, then to check whether Z − X can be written as a union of some
blocks of the partition. The following is true.

Theorem 16.30 (Beeri). In order to compute the dependency basis of a set of attributes
X with respect to a set of dependencies D, it is enough to consider the following set M of
multivalued dependencies:
1. All multivalued dependencies of D and
2. for every X → Y in D the set of multivalued dependencies X � A1, X � A2, . . . , X �

Ak, where Y = A1A2 . . . Ak, and the Ai's are single attributes.

The only thing left is to decide about functional dependencies based on the dependency
basis. C(R,F,X) works correctly only if multivalued dependencies are not considered.
The next theorem helps in this case.

Theorem 16.31 (Beeri). Let us assume that A < X and the dependency basis of X with
respect to the set M of multivalued dependencies obtained in Theorem 16.30 is known.
X → A holds if and only if
1. A forms a single element block in the partition of the dependency basis, and
2. There exists a set Y of attributes that does not contain A, Y → Z is an element of the

originally given set of dependencies D, furthermore A ∈ Z.

Based on the observations above, the following polynomial time algorithm can be given to
compute the dependency basis of a set of attributes X.

D-(R, M, X)
1 S ← {R − X} ¤ The collection of sets in the dependency basis is S.
2 repeat
3 for all V � W ∈ M
4 do if there exists Y ∈ S such that Y ∩W , ∅ ∧ Y ∩ V = ∅
5 then S ← S − {{Y}} ∪ {{Y ∩W}, {Y −W}}
6 until S does not change
7 return S

It is immediate that if S changes in lines 3�5. of D-(R,M, X), then some
block of the partition is cut by the algorithm. This implies that the running time is a poly-
nomial function of the sizes of M and R. In particular, by careful implementation one can
make this polynomial to O(|M| · |R|3), see Problem 16-5..

Fourth normal form 4NF
The Boyce-Codd normal form can be generalised to the case where multivalued dependen-
cies are also considered besides functional dependencies, and one needs to get rid of the
redundancy caused by them.

724 16. Relational Database Design

De�nition 16.32 Let R be a relational schema, D be a set of functional and multivalued
dependencies over R. R is in fourth normal form (4NF), if for arbitrary multivalued depen-
dency X � Y ∈ D+ for which Y * X and R , XY, holds that X is superkey in R.

Observe that 4NF=⇒BCNF. Indeed, if X → A violated the BCNF condition, then A < X,
furthermore XA could not contain all attributes of R, because that would imply that X is a
superkey. However, X → A implies X � A by (A8), which in turn would violate the 4NF
condition.

Schema R together with set of functional and multivalued dependencies D can be de-
composed into ρ = (R1,R2, . . . ,Rk), where each Ri is in 4NF and the decomposition has the
lossless join property. The method follows the same idea as the decomposition into BCNF
subschemata. If schema S is not in 4NF, then there exists a multivalued dependency X � Y
in the projection of D onto S that violates the 4NF condition. That is, X is not a superkey in
S , Y neither is empty, nor is a subset of X, furthermore the union of X and Y is not S . It can
be assumed without loss of generality that X and Y are disjoint, since X � (Y−X) is implied
by X � Y using (A1), (A7) and the decomposition rule. In this case S can be replaced by
subschemata S 1 = XY and S 2 = S − Y , each having a smaller number of attributes than S
itself, thus the process terminates in �nite time.

Two things has to be dealt with in order to see that the process above is correct.
• Decomposition S 1, S 2 has the lossless join property.
• How can the projected dependency set πS (D) be computed?
The �rst problem is answered by the following theorem.

Theorem 16.33 The decomposition ρ = (R1,R2) of schema R has the lossless join property
with respect to a set of functional and multivalued dependencies D iff

(R1 ∩ R2)� (R1 − R2).

Proof. The decomposition ρ = (R1,R2) of schema R has the lossless join property iff for any
relation r over the schema R that satis�es all dependencies from D holds that if µ and ν are
two tuples of r, then there exists a tuple ϕ satisfying ϕ[R1] = µ[R1] and ϕ[R2] = ν[R2], then
it is contained in r. More precisely, ϕ is the natural join of the projections of µ on R1 and of
ν on R2, respectively, which exist iff µ[R1 ∩ R2] = ν[R1 ∩ R2]. Thus the fact that ϕ is always
contained in r is equivalent with that (R1 ∩ R2)� (R1 − R2).

To compute the projection πS (D) of the dependency set D one can use the following
theorem of Aho, Beeri and Ullman. πS (D) is the set of multivalued dependencies that are
logical implications of D and use attributes of S only.

Theorem 16.34 (Aho, Beeri és Ullman). πS (D) consists of the following dependencies:
• For all X → Y ∈ D+, if X ⊆ S , then X → (Y ∩ S) ∈ πS (D).
• For all X � Y ∈ D+, if X ⊆ S , then X � (Y ∩ S) ∈ πS (D).
Other dependencies cannot be derived from the fact that D holds in R.

Unfortunately this theorem does not help in computing the projected dependencies in poly-
nomial time, since even computing D+ could take exponential time. Thus, the algorithm of
4NF decomposition is not polynomial either, because the 4NF condition must be checked
with respect to the projected dependencies in the subschemata. This is in deep contrast with

16.3. Decomposition of relational schemata 725

the case of BCNF decomposition. The reason is, that to check BCNF condition one does
not need to compute the projected dependencies, only closures of attribute sets need to be
considered according to Lemma 16.21.

Exercises
16.3-1 Are the following inference rules sound?

a. If XW → Y and XY → Z, then X → (Z −W).
b. If X � Y and Y � Z, then X � Z.
c. If X � Y and XY → Z, then X → Z.

16.3-2 Prove Theorem 16.30, that is show the following. Let D be a set of functional and
multivalued dependencies, and let m(D) = {X � Y : X � Y ∈ D} ∪ {X � A : A ∈
Y for some X → Y ∈ D}. Then

a. D |= X → Y =⇒ m(D) |= X � Y , and
b. D |= X � Y ⇐⇒ m(D) |= X � Y .

Hint. Use induction on the inference rules to prove b.
16.3-3 Consider the database of an investment �rm, whose attributes are as follows: B
(stockbroker), O (office of stockbroker), I (investor), S (stock), A (amount of stocks of
the investor), D (dividend of the stock). The following functional dependencies are valid:
S → D, I → B, IS → A, B→ O.

a. Determine a key of schema R = BOIS AD.
b. How many keys are in schema R?
c. Give a lossless join decomposition of R into subschemata in BCNF.
d. Give a dependency preserving and lossless join decomposition of R into subschemata
in 3NF.

16.3-4 The schema R of Exercise 16.3-3. is decomposed into subschemata S D, IB, IS A
and BO. Does this decomposition have the lossless join property?
16.3-5 Assume that schema R of Exercise 16.3-3. is represented by IS A, IB, S D and
IS O subschemata. Give a minimal cover of the projections of dependencies given in Exer-
cise 16.3-3.. Exhibit a minimal cover for the union of the sets of projected dependencies. Is
this decomposition dependency preserving?
16.3-6 Let the functional dependency S → D of Exercise 16.3-3. be replaced by the multi-
valued dependency S � D. That is , D represents the stock's dividend �history�.

a. Compute the dependency basis of I.
b. Compute the dependency basis of BS .
c. Give a decomposition of R into subschemata in 4NF.

16.3-7 Consider the decomposition ρ = {R1,R2, . . . ,Rk} of schema R. Let ri = πRi (r),
furthermore mρ(r) =1k

i=1πRi (r). Prove:

726 16. Relational Database Design

a. r ⊆ mρ(r).
b. If s = mρ(r), then πRi (s) = ri.
c. mρ(mρ(r)) = mρ(r).

16.3-8 Prove that schema (R, F) is in BCNF iff for arbitrary A ∈ R and key X ⊂ R, it holds
that there exists no Y ⊆ R, for which X → Y ∈ F+; Y → X < F+; Y → A ∈ F+ and A < Y .
16.3-9 Prove Lemma 16.20.
16.3-10 Let us assume that R2 ⊂ R1 ⊂ R and the set of functional dependencies of schema
R is F. Prove that πR2 (πR1 (F)) = πR2 (F).
16.3-11 Give a O(n2) running time algorithm to �nd a key of the relational schema (R, F).
Hint. Use that R is superkey and each superkey contains a key. Try to drop attributes from
R one-by-one and check whether the remaining set is still a key.
16.3-12 Prove that axioms (A1)�(A8) are sound for functional and multivalued dependen-
cies.
16.3-13 Derive the four inference rules of Proposition 16.27 from axioms (A1)�(A8).

16.4. Generalised dependencies
Two such dependencies will be discussed in this section that are generalizations of the pre-
vious ones, however cannot be axiomatised with axioms similar to (A1)�(A8).

16.4.1. Join dependencies
Theorem 16.33 states that multivalued dependency is equivalent with that some decompo-
sition the schema into two parts has the lossless join property. Its generalisation is the join
dependency.

De�nition 16.35 Let R be a relational schema and let R =
⋃k

i=1 Xi. The relation r belon-
ging to R is said to satisfy the join dependency

1[X1, X2, . . . , Xk]

if
r =1k

i=1πXi (r).

In this setting r satis�es multivalued dependency X � Y iff it satis�es the join dependency
1[XY, X(R − Y)]. The join dependency 1[X1, X2, . . . , Xk] expresses that the decomposition
ρ = (X1, X2, . . . , Xk) has the lossless join property. One can de�ne the �fth normal form,
5NF.

De�nition 16.36 The relational schema R is in �fth normal form, if it is in 4NF and has
no non-trivial join dependency.

The �fth normal form has theoretical signi�cance primarily. The schemata used in practice
usually have primary keys. Using that the schema could be decomposed into subschemata
of two attributes each, where one of the attributes is a superkey in every subschema.

16.4. Generalised dependencies 727

16.10. Example. Consider the database of clients of a bank (Client-
number,Name,Address,accountBalance). Here C is unique identi�er, thus the schema could be
decomposed into (CN,CA,CB), which has the lossless join property. However, it is not worth doing
so, since no storage place can be saved, furthermore no anomalies are avoided with it.

There exists an axiomatisation of a dependency system if there is a �nite set of infe-
rence rules that is sound and complete, i.e. logical implication coincides with being deri-
vable by using the inference rules. For example, the Armstrong-axioms give an axiomatisa-
tion of functional dependencies, while the set of rules (A1)�(A8) is the same for functional
and multivalued dependencies considered together. Unfortunately, the following negative
result is true.

Theorem 16.37 The family of join dependencies has no �nite axiomatisation.

In contrary to the above, Abiteboul, Hull and Vianu show in their book that the logical
implication problem can be decided by an algorithm for the family of functional and join
dependencies taken together. The complexity of the problem is as follows.

Theorem 16.38

• It is NP-complete to decide whether a given join dependency is implied by another given
join dependency and a functional dependency.

• It is NP-hard to decide whether a given join dependency is implied by given set of
multivalued dependencies.

16.4.2. Branching dependencies
A generalisation of functional dependencies is the family of branching dependencies. Let
us assume that A, B ⊂ R and there exists no q + 1 rows in relation r over schema R, such
that they contain at most p distinct values in columns of A, but all q + 1 values are pairwise
distinct in some column of B. Then B is said to be (p, q)-dependent on A, in notation A

p,q−−→
B. In particular, A 1,1−−→ B holds if and only if functional dependency A→ B holds.

16.11. Example.
Consider the database of the trips of an international transport truck.

• One trip: four distinct countries.
• One country has at most �ve neighbours.
• There are 30 countries to be considered.
Let x1, x2, x3, x4 be the attributes of the countries reached in a trip. In this case xi

1,1−−→ xi+1 does not
hold, however another dependency is valid:

xi
1,5−−→ xi+1.

The storage space requirement of the database can be signi�cantly reduced using these dependencies.
The range of each element of the original table consists of 30 values, names of countries or some
codes of them (5 bits each, at least). Let us store a little table (30 × 5 × 5 = 750 bits) that contains a
numbering of the neighbours of each country, which assigns to them the numbers 0,1,2,3,4 in some
order. Now we can replace attribute x2 by these numbers (x∗2), because the value of x1 gives the starting

728 16. Relational Database Design

country and the value of x∗2 determines the second country with the help of the little table. The same
holds for the attribute x3, but we can decrease the number of possible values even further, if we give
a table of numbering the possible third countries for each x1, x2 pair. In this case, the attribute x∗3 can
take only 4 different values. The same holds for x4, too. That is, while each element of the original
table could be encoded by 5 bits, now for the cost of two little auxiliary tables we could decrease the
length of the elements in the second column to 3 bits, and that of the elements in the third and fourth
columns to 2 bits.

The (p, q)-closure of an attribute set X ⊂ R can be de�ned:

Cp,q(X) = {A ∈ R : X
p,q−−→ A}.

In particular, C1,1(X) = X+. In case of branching dependencies even such basic questions
are hard as whether there exists an Armstrong-relation for a given family of dependencies.

De�nition 16.39 Let R be a relational schema, F be a set of dependencies of some depen-
dency family F de�ned on R. A relation r over schema R is Armstrong-relation for F, if the
set of dependencies from F that r satis�es is exactly F, that is F = {σ ∈ F : r |= σ}.
Armstrong proved that for an arbitrary set of functional dependencies F there exists
Armstrong-relation for F+. The proof is based on the three properties of closures of att-
ributes sets with respect to F, listed in Exercise 16.2-1. For branching dependencies only
the �rst two holds in general.

Lemma 16.40 Let 0 < p ≤ q, furthermore let R be a relational schema. For X,Y ⊆ R one
has
1. X ⊆ Cp,q(X) and
2. X ⊆ Y =⇒ Cp,q(X) ⊆ Cp,q(Y).

There exists such C : 2R → 2R mapping and natural numbers p, q that there exists no
Armstrong-relation for C in the family if (p, q)-dependencies.

Grant Minker investigated numerical dependencies that are similar to branching de-
pendencies. For attribute sets X,Y ⊆ R the dependency X k−→ Y holds in a relation r over
schema R if for every tuple value taken on the set of attributes X, there exists at most k dis-
tinct tuple values taken on Y . This condition is stronger than that of X 1,k−−→ Y , since the latter
only requires that in each column of Y there are at most k values, independently of each
other. That allows k|Y−X| different Y projections. Numerical dependencies were axiomatised
in some special cases, based on that Katona showed that branching dependencies have no �-
nite axiomatisation. It is still an open problem whether logical implication is algorithmically
decidable amongst branching dependencies.

Exercises
16.4-1 Prove Theorem 16.38.
16.4-2 Prove Lemma 16.40.
16.4-3 Prove that if p = q, then Cp,p

(
Cp,p(X)

)
= Cp,p(X) holds besides the two properties

of Lemma 16.40.
16.4-4 A C : 2R → 2R mapping is called a closure, if it satis�es the two properties of

16. Problems 729

Lemma 16.40 and and the third one of Exercise 16.4-3.. Prove that if C : 2R → 2R is a
closure, and F is the family of dependencies de�ned by X → Y ⇐⇒ Y ⊆ C(X), then
there exists an Armstrong-relation for F in the family of (1, 1)-dependencies (functional
dependencies) and in the family of (2, 2)-dependencies, respectively.
16.4-5 Let C be the closure de�ned by

C(X) =

{
X, if |X| < 2
R otherwise.

Prove that there exists no Armstrong-relation for C in the family of (n, n)-dependencies, if
n > 2.

Problems
16-1. External attributes

Maier calls attribute A an external attribute in the functional dependency X → Y with
respect to the family of dependencies F over schema R, if the following two conditions
hold:
1. (F − {X → Y}) ∪ {X → (Y − A)} |= X → Y , or
2. (F − {X → Y}) ∪ {(X − A)→ Y} |= X → Y .
Design an O(n2) running time algorithm, whose input is schema (R, F) and output is a set
of dependencies G equivalent with F that has no external attributes.
16-2. The order of the elimination steps in the construction of minimal cover is important
In the procedure M-(R, F) the set of functional dependencies was changed in
two ways: either by dropping redundant dependencies, or by dropping redundant attributes
from the left hand sides of the dependencies. If the latter method is used �rst, until there
is no more attribute that can be dropped from some left hand side, then the �rst method,
this way a minimal cover is obtained really, according to Proposition 16.6. Prove that if the
�rst method applied �rst and then the second, until there is no more possible applications,
respectively, then the obtained set of dependencies is not necessarily a minimal cover of F.

16-3. BCNF subschema
Prove that the following problem is coNP-complete: Given a relational schema R with set
of functional dependencies F, furthermore S ⊂ R, decide whether (S , πS (F)) is in BCNF.
16-4. 3NF is hard to recognise

Let (R, F) be a relational schema, where F is the system of functional dependencies.
The k size key problem is the following: given a natural number k, determine whether there
exists a key of size at most k.
The prime attribute problem is the following: for a given A ∈ R, determine whether it is a
prime attribute.
a. Prove that the k size key problem is NP-complete. Hint. Reduce the vertex cover prob-

lem to the prime attribute problem.
b. Prove that the prime attribute problem is NP-complete by reducing the k size key prob-

lem to it.

730 16. Relational Database Design

c. Prove that determining whether the relational schema (R, F) is in 3NF is NP-complete.
Hint. Reduce the prime attribute problem to it.

16-5. Running time of D-

Give an implementation of procedure D-, whose running time is O(|M| · |R|3).

Chapter notes
The relational data model was introduced by Codd [28] in 1970. Functional dependencies
were treated in his paper of 1972 [32], their axiomatisation was completed by Armstrong
[5]. The logical implication problem for functional dependencies were investigated by Be-
eri and Bernstein [11], furthermore Maier [80]. Maier also treats the possible de�nitions of
minimal covers, their connections and the complexity of their computations in that paper.
Maier, Mendelzon and Sagiv found method to decide logical implications among general
dependencies [81]. Beeri, Fagin and Howard proved that axiom system (A1)�(A8) is so-
und and complete for functional and multivalued dependencies taken together [13]. Yu and
Johnson [128] constructed such relational schema, where |F| = k and the number of keys
is k!. Békéssy and Demetrovics [16] gave a simple and beautiful proof for the statement,
that from k functional dependencies at most k! keys can be obtained, thus Yu and Johnson's
construction is extremal.

Armstrong-relations were introduced and studied by Fagin [47, 48], furthermore by
Beeri, Fagin, Dowd and Statman [12].

Multivalued dependencies were independently discovered by Zaniolo [130], Fagin [46]
and Delobel [39].

The necessity of normal forms was recognised by Codd while studying update anoma-
lies [30, 31]. The Boyce-Codd normal form was introduced in [29]. The de�nition of the
third normal form used in this chapter was given by Zaniolo [131]. Complexity of decom-
position into subschemata in certain normal forms was studied by Lucchesi and Osborne
[79], Beeri and Bernstein [11], furthermore Tsou and Fischer [112].

Theorems 16.30 and 16.31 are results of Beeri [10]. Theorem 16.34 is from a paper of
Aho, Beeri és Ullman [3].

Theorems 16.37 and 16.38 are from the book of Abiteboul, Hull and Vianu [1], the
non-existence of �nite axiomatisation of join dependencies is Petrov's result [91].

Branching dependencies were introduced by Demetrovics, Katona and Sali, they
studied existence of Armstrong-relations and the size of minimal Armstrong-relations
[40, 41, 42, 96]. Katona showed that there exists no �nite axiomatisation of branching de-
pendencies in (ICDT'92 Berlin, invited talk) but never published.

Possibilities of axiomatisation of numerical dependencies were investigated by Grant
and Minker [58, 59].

Good introduction of the concepts of this chapter can be found in the books of Abite-
boul, Hull and Vianu [1], Ullman [114] furthermore Thalheim [111], respectively.

17. Human-Computer Interaction

18. Memory Management

19. Scientific computing

This title refers to a fast developing interdisciplinary area between mathematics, computers
and applications. The subject is also often called as Computational Science and Enginee-
ring. Its aim is the efficient use of computer algorithms to solve engineering and scienti�c
problems. One can say with a certain simpli�cation that our subject is related to numerical
mathematics, software engineering, computer graphics and applications. Here we can deal
only with some basic elements of the subject such as the fundamentals of the �oating po-
int computer arithmetic, error analysis, the basic numerical methods of linear algebra and
related mathematical software.

19.1. Floating point arithmetic and error analysis
19.1.1. Classical error analysis
Let x be the exact value and let a be an approximation of x (a ≈ x). The error of the
approximation a is de�ned by the formula ∆a = x − a (sometimes with opposite sign). The
quantity δa ≥ 0 is called an (absolute) error (bound) of approximation a, if |x − a| = |∆a| ≤
δa. For example, the error of the approximation

√
2 ≈ 1.41 is at most 0.01. In other words,

the error bound of the approximation is 0.01. The quantities x and a (and accordingly ∆a
and δa) may be vectors or matrices. In such cases the absolute value and relation operators
must be understood componentwise. We also measure the error by using matrix and vector
norms. In such cases, the quantity δa ∈ R is an error bound, if the inequality ‖∆a‖ ≤ δa
holds.

The absolute error bound can be irrelevant in many cases. For example, an approxi-
mation with error bound 0.05 has no value in estimating a quantity of order 0.001. The
goodness of an approximation is measured by the relative error δa/ |x| (δa/ ‖x‖ for vec-
tors and matrices), which compares the error bound to the approximated quantity. Since the
exact value is generally unknown, we use the approximate relative error δa/ |a| (δa/ ‖a‖).
The committed error is proportional to the quantity (δa)2, which can be neglected, if the
absolute value (norm) of x and a is much greater than (δa)2. The relative error is often
expressed in percentages.

In practice, the (absolute) error bound is used as a substitute for the generally unknown
true error.

734 19. Scienti�c computing

In the classical error analysis we assume input data with given error bounds, exact com-
putations (operations) and seek for the error bound of the �nal result. Let x and y be exact
values with approximations a and b, respectively. Assume that the absolute error bounds
of approximations a and b are δa and δb, respectively. Using the classical error analysis
approach we obtain the following error bounds for the four basic arithmetic operations:

δ (a + b) = δa + δb, δ(a + b)
|a + b| = max

{
δa
|a| ,

δb
|b|

}
(ab > 0) ,

δ (a − b) = δa + δb, δ(a − b)
|a − b| =

δa + δb
|a − b| (ab > 0) ,

δ (ab) ≈ |a| δb + |b| δa δ(ab)
|ab| ≈

δa
|a| +

δb
|b| (ab , 0) ,

δ(a/b) ≈ |a| δb + |b| δa
|b|2

δ(a/b)
|a/b| ≈

δa
|a| +

δb
|b| (ab , 0) .

We can see that the division with a number near to 0 can make the absolute error ar-
bitrarily big. Similarly, if the result of subtraction is near to 0, then its relative error can
become arbitrarily big. One has to avoid these cases. Especially the subtraction operation
can be quite dangerous.

19.1. Example. Calculate the quantity
√

1996 − √1995 with approximations
√

1996 ≈ 44.67 and√
1995 ≈ 44.66 whose common absolute and relative error bounds are 0.01 and 0.022%, respectively.

One obtains the approximate value
√

1996 − √1995 ≈ 0.01, whose relative error bound is

0.01 + 0.01
0.01 = 2,

that is 200%. The true relative error is about 10.66%. Yet it is too big, since it is approximately 5×102

times bigger than the relative error of the initial data. We can avoid the subtraction operation by using
the following trick

√
1996 −

√
1995 =

1996 − 1995√
1996 +

√
1995

=
1√

1996 +
√

1995
≈ 1

89.33 ≈ 0.01119.

Here the nominator is exact, while the absolute error of the denominator is 0.02. Hence the relative
error (bound) of the quotient is about 0.02/89.33 ≈ 0.00022 = 0.022%. The latter result is in agree-
ment with the relative error of the initial data and it is substantially smaller than the one obtained with
direct subtraction operation.

The �rst order error terms of twice differentiable functions can be obtained by their �rst
order Taylor polynomial:

δ (f (a)) ≈
∣∣∣ f ′(a)

∣∣∣ δa, f : R→ R,

δ (f (a)) ≈
n∑

i=1

∣∣∣∣∣
∂ f (a)
∂xi

∣∣∣∣∣ δai, f : Rn → R.

The numerical sensitivity of functions at a given point is characterized by the condition
number, which is the ratio of the relative errors of approximate function value and the input

19.1. Floating point arithmetic and error analysis 735

Figure 19.1. Forward and backward error

data (the Jacobian matrix of functions F : Rn → Rm is denoted by F′(a) at the point a ∈ Rn):

c(f , a) =
| f ′(a)| |a|
| f (a)| , f : R→ R,

c(F, a) =
‖a‖ ‖F′(a)‖
‖F(a)‖ , F : Rn → Rm.

We can consider the condition number as the magni�cation number of the input rela-
tive error. Therefore the functions is considered numerically stable (or well-conditioned)
at the point a, if c (f , a) is �small�. Otherwise f is considered as numerically unstable
(ill-conditioned). The condition number depends on the point a. A function can be well-
conditioned at point a, while it is ill-conditioned at point b. The term �small� is relative. It
depends on the problem, the computer and the required precision.

The condition number of matrices can be de�ned as the upper bound of a function
condition number. Let us de�ne the mapping F : Rn → Rn by the solution of the equation
Ay = x (A ∈ Rn×n, det(A) , 0), that is, let F(x) = A−1x . Then F′ ≡ A−1 and

c(F, a) =
‖a‖

∥∥∥A−1
∥∥∥∥∥∥A−1a

∥∥∥ =
‖Ay‖

∥∥∥A−1
∥∥∥

‖y‖ ≤ ‖A‖
∥∥∥A−1∥∥∥ (Ay = a) .

The upper bound of the right side is called the condition number of the matrix A. This
bound is sharp, since there exists a vector a ∈ Rn such that c(F, a) = ‖A‖

∥∥∥A−1
∥∥∥.

19.1.2. Forward and backward errors
Let us investigate the calculation of the function value f (x). If we calculate the approxi-
mation �y instead of the exact value y = f (x), then the forward error ∆y = �y − y. If for a
value x + ∆x the equality �y = f (x + ∆x) holds, that is, �y is the exact function value of the
perturbed input data �x = x + ∆x, then ∆x is called the backward error. The connection of
the two concepts is shown on the Figure 19.1.

The continuous line shows exact value, while the dashed one indicates computed value.
The analysis of the backward error is called the backward error analysis . If there exist
more than one backward error, then the estimation of the smallest one is the most important.

An algorithm for computing the value y = f (x) is called backward stable, if for any x it
gives a computed value �y with small backward error ∆x. Again, the term �small� is relative
to the problem environment.

The connection of the forward and backward errors is described by the approximate

736 19. Scienti�c computing

thumb rule

δ�y
|y| / c (f , x) δ �x

|x| , (19.1)

which means that

relatíve forward error ≤ condition number × relative backward error.

This inequality indicates that the computed solution of an ill-conditioned problem may
have a big relative forward error. An algorithm is said to be forward stable if the forward
error is small. A forward stable method is not necessarily backward stable. If the forward
error and the condition number are small, then the algorithm is forward stable.

19.2. Example. Consider the function f (x) = log x the condition number of which is c (f , x) = c (x) =

1/
∣∣∣log x

∣∣∣. For x ≈ 1 the condition number c (f , x) is big. Therefore the relative forward error is big for
x ≈ 1.

19.1.3. Rounding errors and floating point arithmetic
The classical error analysis investigates only the effects of the input data errors and assumes
exact arithmetic operations. The digital computers however are representing the numbers
with a �nite number of digits, the arithmetic computations are carried out on the elements
of a �nite set F of such numbers and the results of operations belong to F. Hence the
computer representation of the numbers may add further errors to the input data and the
results of arithmetic operations may also be subject to further rounding. If the result of
operation belongs to F, then we have the exact result. Otherwise we have three cases:

(i) rounding to representable (nonzero) number;
(ii) under�ow (rounding to 0);
(iii) over�ow (in case of results whose moduli too large).
The most of the scienti�c-engineering calculations are done in �oating point arithmetic

whose generally accepted model is the following:

De�nition 19.1 The set of �oating point numbers is given by

F(β, t, L,U) =

=
{
±m × βe | 1

β
≤ m < 1, m = 0.d1d2 . . . dt, L ≤ e ≤ U

}
∪ {0} ,

where
- β is the base (or radix) of the number system,
- m is the mantissa in the number system with base β,
- e is the exponent,
- t is the length of mantissa (the precision of arithmetic),
- L is the smallest exponent (under�ow exponent),
- U is the biggest exponent (over�ow exponent).

19.1. Floating point arithmetic and error analysis 737

The parameters of the three most often used number systems are indicated in the follo-
wing table

Name β Machines
binary 2 most computer

decimal 10 most calculators
hexadecimal 16 IBM mainframe computers

The mantissa can be written in the form

m = 0.d1d2 . . . dt =
d1
β

+
d2
β2 + · · · + dt

βt . (19.2)

We can observe that condition 1/β ≤ m < 1 implies the inequality 1 ≤ d1 ≤ β − 1 for the
�rst digit d1. The remaining digits must satisfy 0 ≤ di ≤ β−1 (i = 2, . . . , t). Such arithmetic
systems are called normalized. The zero digit and the dot is not represented. If β = 2, then
the �rst digit is 1, which is also unrepresented. Using the representation (19.2) we can give
the set F = F(β, t, L,U) in the form

F =

{
±

(
d1
β

+
d2
β2 + · · · + dt

βt

)
βe | L ≤ e ≤ U

}
∪ {0} , (19.3)

where 0 ≤ di ≤ β − 1 (i = 1, . . . , t) and 1 ≤ d1.

19.3. Example. The set F (2, 3,−1, 2) contains 33 elements and its positive elements are given by
{

1
4 ,

5
16 ,

6
16 ,

7
16 ,

1
2 ,

5
8 ,

6
8 ,

7
8 , 1,

10
8 ,

12
8 ,

14
8 , 2, 20

8 , 3, 28
8

}
.

The elements of F are not equally distributed on the real line. The distance of two
consecutive numbers in [1/β, 1]∩ F is β−t. Since the elements of F are of the form ±m× βe,
the distance of two consecutive numbers in F is changing with the exponent. The maximum
distance of two consecutive �oating point numbers is βU−t, while the minimum distance is
βL−t.

For the mantissa we have m ∈ [1/β, 1 − 1/βt] , since

1
β
≤ m =

d1
β

+
d2
β2 + · · · + dt

βt ≤
β − 1
β

+
β − 1
β2 + · · · + β − 1

βt = 1 − 1
βt .

Using this observation we can easily prove the following result on the range of �oating
point numbers.

Theorem 19.2 If a ∈ F, a , 0, then ML ≤ |a| ≤ MU , where

ML = βL−1, MU = βU(1 − β−t).

Let a, b ∈ F and denote � any of the four arithmetic operations (+,−, ∗, /). The follo-
wing cases are possible:

(1) a�b ∈ F (exact result),
(2) |a�b| > MU (arithmetic over�ow),
(3) 0 < |a�b| < ML (arithmetic under�ow),

738 19. Scienti�c computing

(4) a�b < F, ML < |a�b| < MU (not representable result).
In the last two cases the �oating point arithmetic is rounding the result a�b to the

nearest �oating point number in F. If two consecutive �oating point numbers are equally
distant from a�b, then we generally round to the greater number. For example, in a �ve digit
decimal arithmetic, the number 2.6457513 is rounded to the number 2.6458.

Let G = [−MU , MU]. It is clear that F ⊂ G. Let x ∈ G. The f l (x) denotes an element of
F nearest to x. The mapping x→ f l (x) is called rounding. The quantity |x − f l (x)| is called
the rounding error. If f l (x) = 1, then the rounding error is at most β1−t/2. The quantity
u = β1−t/2 is called the unit roundoff . The quantity u is the relative error bound of f l (x).

Theorem 19.3 If x ∈ G, then

f l(x) = x(1 + ε), |ε| ≤ u.

Proof. Without loss of generality we can assume that x > 0. Let m1β
e, m2β

e ∈ F be two
consecutive numbers such that

m1β
e ≤ x ≤ m2β

e.

Either 1/β ≤ m1 < m2 ≤ 1− β−t or 1− β−t = m1 < m2 = 1 holds. Since m2 −m1 = β−t holds
in both cases, we have

| f l (x) − x| ≤ |m2 − m1|
2 βe =

βe−t

2
either f l (x) = m1β

e or f l (x) = m2β
e. It follows that

| f l (x) − x|
|x| ≤ | f l (x) − x|

m1βe ≤ βe−t

2m1βe =
β−t

2m1
≤ 1

2β
1−t = u.

Hence f l (x) − x = λxu, where |λ| ≤ 1. A simple arrangement yields

f l (x) = x(1 + ε) (ε = λu)

Since |ε| ≤ u, we proved the claim.
Thus we proved that the relative error of the rounding is bounded in �oating point

arithmetic and the bound is the unit roundoff u.
Another quantity used to measure the rounding errors is the so called the machine

epsilon εM = 2u = β1−t (εM = 2u). The number εM is the distance of 1 and its nearest
neighbor greater than 1. The following algorithm determines εM in the case of binary base.

M-E

1 x← 1
2 while 1 + x > 1
3 do x← x/2
4 εM ← 2x
5 return εM

In the MATLAB system εM ≈ 2.2204 × 10−16.
For the results of �oating point arithmetic operations we assume the following (standard

model):
f l(a�b) = (a�b) (1 + ε) , |ε| ≤ u (a, b ∈ F) . (19.4)

19.1. Floating point arithmetic and error analysis 739

The IEEE arithmetic standard satis�es this assumption. It is an important consequence
of the assumption that for a�b , 0 the relative error of arithmetic operations satis�es

| f l(a�b) − (a�b)|
|a�b| ≤ u.

Hence the relative error of the �oating point arithmetic operations is small.
There exist computer �oating point arithmetics that do not comply with the standard

model (19.4). The usual reason for this is that the arithmetic lacks a guard digit in subtrac-
tion. For simplicity we investigate the subtraction 1−0.111 in a three digit binary arithmetic.
In the �rst step we equate the exponents:

2 × 0 . 1 0 0
− 2 × 0 . 0 1 1 1 .

If the computation is done with four digits, the result is the following

21 × 0 . 1 0 0
− 21 × 0 . 0 1 1 1

21 × 0 . 0 0 0 1
,

from which the normalized result is 2−2 × 0.100. Observe that the subtracted number is
unnormalized. The temporary fourth digit of the mantissa is called a guard digit. Without a
guard digit the computations are the following:

21 × 0 . 1 0 0
− 21 × 0 . 0 1 1

21 × 0 . 0 0 1
.

Hence the normalized result is 2−1 × 0.100 with a relative error of 100%. Several CRAY
computers and pocket calculators lack guard digits.

Without the guard digit the �oating point arithmetic operations satisfy only the weaker
conditions

f l (x ± y) = x (1 + α) ± y (1 + β) , |α| , |β| ≤ u, (19.5)
f l (x�y) = (x�y) (1 + δ) , |δ| ≤ u, � = ∗, / . (19.6)

Assume that we have a guard digit and the arithmetic complies with standard model
(19.4). Introduce the following notations:

|z| = [|z1| , . . . , |zn|]T (z ∈ Rn) , (19.7)

|A| =
[∣∣∣ai j

∣∣∣
]m,n
i, j=1

(A ∈ Rm×n) , (19.8)

A ≤ B⇔ ai j ≤ bi j
(A, B ∈ Rm×n) . (19.9)

The following results hold:
∣∣∣∣ f l

(
xT y

)
− xT y

∣∣∣∣ ≤ 1.01nu |x|T |y| (nu ≤ 0.01) , (19.10)

740 19. Scienti�c computing

f l (αA) = αA + E (|E| ≤ u |αA|) , (19.11)

f l (A + B) = (A + B) + E (|E| ≤ u |A + B|) , (19.12)

f l (AB) = AB + E
(
|E| ≤ nu |A| |B| + O

(
u2

))
, (19.13)

where E denotes the error (matrix) of the actual operation.
The standard �oating point arithmetics have many special properties. It is an important

property that the addition is not associative because of the rounding.

19.4. Example. If a = 1, b = c = 3 × 10−16, then using MATLAB and AT386 type PC we obtain

1.000000000000000e + 000 = (a + b) + c , a + (b + c) = 1.000000000000001e + 000.

We can have a similar result on Pentium1 machine with the choice b = c = 1.15 × 10−16.

The example also indicates that for different (numerical) processors may produce diffe-
rent computational results for the same calculations. The commutativity can also be lost in
addition. Consider the computation of the sum ∑n

i=1 xi. The usual algorithm is the recursive
summation.

R-S(n, x)
1 s← 0
2 for i← 1 to n
3 do s← s + xi
4 return s

19.5. Example. Compute the sum

sn = 1 +

n∑

i=1

1
i2 + i

for n = 4999. The recursive summation algorithm (and MATLAB) gives the result

1.999800000000002e + 000.

If the summation is done in the reverse (increasing) order, then the result is

1.999800000000000e + 000.

If the two values are compared with the exact result sn = 2−1/(n + 1), then we can see that the second
summation gives better result. In this case the sum of smaller numbers gives signi�cant digits to the
�nal result unlike in the �rst case.

The last example indicates that the summation of a large number of data varying in
modulus and sign is a complicated task. The following algorithm of W. Kahan is one of the
most interesting procedures to solve the problem.

19.1. Floating point arithmetic and error analysis 741

C-S(n, x)
1 s← 0
2 e← 0
3 for i← 1 to n
4 do t ← s
5 y← xi + e
6 s← t + y
7 e← (t − s) + y
8 return s

19.1.4. The floating point arithmetic standard
The ANSI/IEEE Standard 754-1985 of a binary (β = 2) �oating point arithmetic system
was published in 1985. The standard speci�es the basic arithmetic operations, comparisons,
rounding modes, the arithmetic exceptions and their handling, and conversion between the
different arithmetic formats. The square root is included as a basic operation. The standard
does not deal with the exponential and transcendent functions. The standard de�nes two
main �oating point formats:

Type Size Mantissa e u [ML, MU] ≈
Single 32 bits 23 + 1 bits 8 bits 2−24 ≈ 5.96 × 10−8 10±38

Double 64 bits 52 + 1 bits 11 bits 2−53 ≈ 1.11 × 10−16 10±308

In both formats one bit is reserved as a sign bit. Since the �oating point numbers are norma-
lized and the �rst digit is always 1, this bit is not stored. This hidden bit is denoted by the

�+1� in the table.
The arithmetic standard contains the handling of arithmetic exceptions.

Exception type Example Default result
Invalid operation 0/0, 0 ×∞,

√−1 NaN (Not a Number)
Over�ow |x�y| > MU ±∞
Divide by zero Finite nonzero/0 ±∞
Under�ow 0 < |x�y| < ML Subnormal numbers
Inexact f l (x�y) , x�y Correctly rounded result

(The numbers of the form ±m × βL−t, 0 < m < βt−1 are called subnormal numbers.) The
IEEE arithmetic is a closed system. Every arithmetic operations has a result, whether it is
expected mathematically or not. The exceptional operations raise a signal and continue. The
arithmetic standard conforms with the standard model (19.4).

The �rst hardware implementation of the IEEE standard was the Intel 8087 mathemati-
cal coprocessor. Since then it is generally accepted and used.

Remark. In the single precision we have about 7 signi�cant digit precision in the decimal
system. For double precision we have approximately 16 digit precision in decimals. There
also exists an extended precision format of 80 bits, where t = 63 and the exponential has 15
bits.

Exercises

742 19. Scienti�c computing

19.1-1 The measured values of two resistors are R1 = 110.2 ± 0.3Ω and R2 = 65.6 ± 0.2Ω.
We connect the two resistors parallel and obtain the circuit resistance Re = R1R2/(R1 +

R2). Calculate the relative error bounds of the initial data and the approximate value of the
resistance Re. Evaluate the absolute and relative error bounds δRe and δRe/Re, respectively
in the following three ways:
(i) Estimate �rst δRe using only the absolute error bounds of the input data, then estimate
the relative error bound δRe/Re.
(ii) Estimate �rst the relative error bound δRe/Re using only the relative error bounds of the
input data, then estimate the absolute error bound δRe.
(iii) Consider the circuit resistance as a two variable function Re = F (R1,R2).

19.1-2 Assume that
√

2 is calculated with the absolute error bound 10−8. The following
two expressions are theoretically equal:
(i) 1/

(
1 +
√

2
)6 ;

(ii) 99 − 70
√

2.
Which expression can be calculated with less relative error and why?

19.1-3 Consider the arithmetic operations as two variable functions of the form f (x, y) =

x�y, where � ∈ {+,−, ∗, /}.
(i) Derive the error bounds of the arithmetic operations from the error formula of two vari-
able functions.
(ii) Derive the condition numbers of these functions. When are they ill-conditioned?
(iii) Derive error bounds for the power function assuming that both the base and the expo-
nent have errors. What is the result if the exponent is exact?
(iv) Let y = 16x2, x ≈ a and y ≈ b = 16a2. Determine the smallest and the greatest value of
a as a function of x such that the relative error bound of b should be at most 0.01.

19.1-4 Assume that the number C = EXP(4π2/
√

83) (= 76.1967868 . . .) is calculated in a
24 bit long mantissa and the exponential function is also calculated with 24 signi�cant bits.
Estimate the absolute error of the result. Estimate the relative error without using the actual
value of C.

19.1-5 Consider the emph�oating point number set F(β, t, L,U) and show that
(i) Every arithmetic operation can result arithmetic over�ow;
(ii) Every arithmetic operation can result arithmetic under�ow.

19.1-6 Show that the following expressions are numerically unstable for x ≈ 0:
(i) (1 − cos x)/ sin2 x;
(ii) sin(100π + x) − sin(x);
(iii) 2 − sin x − cos x − e−x.
Calculate the values of the above expressions for x = 10−3, 10−5, 10−7 and estimate the error.
Manipulate the expressions into numerically stable ones and estimate the error as well.

19.1-7 How many elements does the set F = F (β, t, L,U) have? How many subnormal
numbers can we �nd?

19.2. Linear systems of equations 743

19.1-8 If x, y ≥ 0, then (x + y) /2 ≥ √xy and equality holds if and only if x = y. Is it
true numerically? Check the inequality experimentally for various data (small and large
numbers, numbers close to each other or different in magnitude).

19.2. Linear systems of equations
The general form of linear algebraic systems with n unknowns and m equations is given by

a11x1 + · · · + a1 jx j + · · · + a1nxn = b1
...

ai1x1 + · · · + ai jx j + · · · + ainxn = bi
...

am1x1 + · · · + am jx j + · · · + amnxn = bm

(19.14)

This system can be written in the more compact form

Ax = b, (19.15)

where
A =

[
ai j

]m,n
i, j=1
∈ Rm×n, x ∈ Rn, b ∈ Rm.

The systems is called underdetermined if m < n. For m > n, the systems is called overde-
termined. Here we investigate only the case m = n, when the coefficient matrix A is square.
We also assume that the inverse matrix A−1 exists (or equivalently det (A) , 0). Under this
assumption the linear system Ax = b has exactly one solution: x = A−1b.

19.2.1. Direct methods for solving linear systems
Triangular linear systems

De�nition 19.4 The matrix A = [ai j]n
i, j=1 is upper triangular if ai j = 0 for all i > j. The

matrix A is lower triangular if ai j = 0 for all i < j.

For example the general form of the upper triangular matrices is the following:


∗ ∗ · · · · · · ∗
0 ∗ ...
...

. . .
. . .

...
...

. . . ∗ ∗
0 · · · · · · 0 ∗



.

We note that the diagonal matrices are both lower and upper triangular. It is easy to show that
det(A) = a11a22 . . . ann holds for the upper or lower triangular matrices. It is easy to solve
linear systems with triangular coefficient matrices. Consider the following upper triangular

744 19. Scienti�c computing

Figure 19.2. Gaussian elimination.

linear system:
a11x1+ · · · +a1ixi+ · · · +a1nxn = b1

. . .
...

...
...

aiixi+ · · · +ainxn = bi
. . .

...
...

annxn = bn

This can be solved by the so called back substitution algorithm.

B-S(A, b, n)
1 xn ← bn/ann
2 for i← n − 1 downto 1
3 do xi ← (bi −∑n

j=i+1 ai jx j)/aii
4 return x

The solution of lower triangular systems is similar.

The Gauss method
The Gauss method or Gaussian elimination (GE) consists of two phases:
I. The linear system Ax = b is transformed to an equivalent upper triangular system using
elementary operations (see Figure 19.2).
II. The obtained upper triangular system is then solved by the back substitution algorithm.

The �rst phase is often called the elimination or forward phase. The second phase of GE
is called the backward phase. The elementary operations are of the following three types:

1. Add a multiple of one equation to another equation.
2. Interchange two equations.
3. Multiply an equation by a nonzero constant.
The elimination phase of GE is based on the following observation. Multiply equation

k by γ , 0 and subtract it from equation i:

(ai1 − γak1) x1 + · · · +
(
ai j − γak j

)
x j + · · · + (ain − γakn) xn = bi − γbk.

If ak j , 0, then by choosing γ = ai j/ak j, the coefficient of x j becomes 0 in the new equivalent
equation, which replaces equation i. Thus we can eliminate variable x j (or coefficient ai j)
from equation i.

The Gauss method eliminates the coefficients (variables) under the main diagonal of

19.2. Linear systems of equations 745

A in a systematic way. First variable x1 is eliminated from equations i = 2, . . . , n using
equation 1, then x2 is eliminated from equations i = 3, . . . , n using equation 2, and so on.

Assume that the unknowns are eliminated in the �rst (k − 1) columns under the main
diagonal and the resulting linear system has the form

a11x1+ · · · · · · +a1k xk + · · · + a1nxn = b1
. . .

...
...

...
. . .

...
...

...
akk xk + · · · + aknxn = bk
...

...
...

aik xk + · · · + ainxn = bi
...

...
...

ank xk + · · · + annxn = bn

If akk , 0, then multiplying row k by γ and subtracting it from equation i we obtain

(aik − γakk)xk + (ai,k+1 − γak,k+1)xk+1 + · · · + (ain − γakn)xn = bi − γbk.

Since aik − γakk = 0 for γ = aik/akk, we eliminated the coefficient aik (variable xk) from
equation i > k. Repeating this process for i = k + 1, . . . , n we can eliminate the coefficients
under the main diagonal entry akk. Next we denote by A [i, j] the element ai j of matrix A
and by A [i, j : n] the vector

[
ai j, ai, j+1, . . . , ain

]
. The Gauss method has the following form

(where the pivoting discussed later is also included):

G-M(A, b)
1 ¤ Forward phase:
2 n← rows[A]
3 for k ← 1 to n − 1
4 do { pivoting and interchange of rows and columns}
5 for i← k + 1 to n
6 do γik ← A [i, k] /A [k, k]
7 A [i, k + 1 : n]← A [i, k + 1 : n] − γik ∗ A [k, k + 1 : n]
8 bi ← bi − γikbk
9 ¤ Backward phase: see the back substitution algorithm.

10 return x

The algorithm overwrites the original matrix A and vector b. It does not write however
the zero entries under the main diagonal since these elements are not necessary for the
second phase of the algorithm. Hence the lower triangular part of matrix A can be used to
store information for the LU decomposition of matrix A.

The above version of the Gauss method can be performed only if the elements akk
occurring in the computation are not zero. For this and numerical stability reasons we use
the Gaussian elimination with pivoting.

746 19. Scienti�c computing

The Gauss method with pivoting
If akk = 0, then we can interchange row k with another row, say i, so that the new entry
(aki) at position (k, k) should be nonzero. If this is not possible, then all the coefficients
akk, ak+1,k, . . . , ank are zero and det (A) = 0. In the latter case Ax = b has no unique solution.
The element akk is called the kth pivot element. We can always select new pivot elements by
interchanging the rows. The selection of the pivot element has a great in�uence on the relia-
bility of the computed results. The simple fact that we divide by the pivot element indicates
this in�uence. We recall that δ(a/b) is proportional to 1/ |b|2. It is considered advantageous
if the pivot element is selected so that it has the greatest possible modulus. The process
of selecting the pivot element is called pivoting. We mention the following two pivoting
processes.

Partial pivoting: At the kth step, interchange the rows of the matrix so the largest
remaining element, say aik, in the kth column is used as pivot. After the pivoting we have

|akk | = max
k≤i≤n
|aik | .

Complete pivoting: At the kth step, interchange both the rows and columns of the
matrix so that the largest element, say ai j, in the remaining matrix is used as pivot After the
pivoting we have

|akk | = max
k≤i, j≤n

∣∣∣ai j
∣∣∣ .

Note that the interchange of two columns implies the interchange of the corresponding
unknowns. The signi�cance of pivoting is well illustrated by the following

19.6. Example. The exact solution of the linear system

10−17 x + y = 1
x + y = 2

is x = 1/(1−10−17) and y = 1−10−17/(1−10−17). The MATLAB program gives the result x = 1, y = 1
and this is the best available result in standard double precision arithmetic. Solving this system with
the Gaussian elimination without pivoting (also in double precision) we obtain the catastrophic result
x = 0 and y = 1. Using partial pivoting with the Gaussian elimination we obtain the best available
numerical result x = y = 1.

Remark 19.5 Theoretically we do not need pivoting in the following cases: 1. If A is sym-
metric and positive de�nite (A ∈ Rn×n is positive de�nite⇔ xT Ax > 0, ∀x ∈ Rn, x , 0). 2.
If A is diagonally dominant in the following sense:

|aii| >
∑

j,i

∣∣∣ai j
∣∣∣ (1 ≤ i ≤ n) .

In case of symmetric and positive de�nite matrices we use the Cholesky method which is a
special version of the Gauss-type methods.

During the Gaussian elimination we obtain a sequence of equivalent linear systems

A(0)x = b(0) → A(1)x = b(1) → · · · → A(n−1)x = b(n−1),

19.2. Linear systems of equations 747

where
A(0) = A, A(k) =

[
a(k)

i j

]n
i, j=1

.

Note that matrices A(k) are stored in the place of A = A(0). The last coefficient matrix of
phase I has the form

A(n−1) =



a(0)
11 a(0)

12 · · · a(0)
1n

0 a(1)
22 · · · a(1)

2n
...

. . .
...

0 · · · · · · a(n−1)
nn


,

where a(k−1)
kk is the kth pivot element. The growth factor of pivot elements is given by

ρ = ρn = max
1≤k≤n

∣∣∣a(k−1)
kk /a(0)

11
∣∣∣ .

Wilkinson proved that the error of the computed solution is proportional to the growth factor
ρ and the bounds

ρ ≤ √n
(
2 · 3 1

2 · · · n 1
n−1

) 1
2 ∼ cn 1

2 n 1
4 log(n)

and
ρ ≤ 2n−1

hold for complete and partial pivoting, respectively. Wilkinson conjectured that ρ ≤ n for
complete pivoting. This has been proved by researchers for small values of n. Statistical
investigations on random matrices (n ≤ 1024) indicate that the average of ρ is Θ

(
n2/3

)
for

the partial pivoting and Θ
(
n1/2

)
for the complete pivoting. Hence the case ρ > n hardly

occurs in the statistical sense.
We remark that Wilkinson constructed a linear system on which ρ = 2n−1 for the partial

pivoting. Hence Wilkinson's bound for ρ is sharp in the case of partial pivoting. There
also exist examples of linear systems concerning discretizations of differential and integral
equations, where ρ is increasing exponentially if Gaussian elimination is used with partial
pivoting.

The growth factor ρ can be very large, if the Gaussian elimination is used without
pivoting. For example, ρ = ρ4 (A) = 1.23 × 105, if

A =



1.7846 −0.2760 −0.2760 −0.2760
−3.3848 0.7240 −0.3492 −0.2760
−0.2760 −0.2760 1.4311 −0.2760
−0.2760 −0.2760 −0.2760 0.7240


.

Operations counts
The Gauss method gives the solution of the linear system Ax = b (A ∈ Rn×n) in a �nite
number of steps and arithmetic operations (+,−, ∗, /). The amount of necessary arithmetic
operations is an important characteristic of the direct linear system solvers, since the CPU
time is largely proportional to the number of arithmetic operations. It was also observed
that the number of additive and multiplicative operations are nearly the same in the nume-
rical algorithms of linear algebra. For measuring the cost of such algorithms C.B. Moler
introduced the concept of �op.

748 19. Scienti�c computing

De�nition 19.6 One (old) �op is the computational work necessary for the operation s =

s+ x∗y (1 addition + 1 multiplication). One (new) �op is the computational work necessary
for any of the arithmetic operations +,−, ∗, /.

The new �op can be used if the computational time of additive and multiplicative ope-
rations are approximately the same. Two new �ops equals to one old �op. Here we use the
notion of old �op.

For the Gauss method a simple counting gives the number of additive and multiplicative
operations.

Theorem 19.7 The computational cost of the Gauss method is n3/3 + Θ(n2) �ops.

V.V. Klyuyev and N. Kokovkin-Shcherbak proved that if only elementary row and co-
lumn operations (multiplication of row or column by a number, interchange of rows or
columns, addition of a multiple of row or column to another row or column) are allowed,
then the linear system Ax = b cannot be solved in less than n3/3 + Ω(n2) �ops.

Using fast matrix inversion procedures we can solve the n × n linear system Ax = b in
O(n2.808) �ops. These theoretically interesting algorithms are not used in practice since they
are considered as numerically unstable.

The LU-decomposition
In many cases it is easier to solve a linear system if the coefficient matrix can be decomposed
into the product of two triangular matrices.

De�nition 19.8 The matrix A ∈ Rn×n has an LU-decomposition, if A = LU, where L ∈
Rn×n is lower and U ∈ Rn×n is upper triangular matrix.

The LU-decomposition is not unique. If a nonsingular matrix has an LU-
decomposition, then it has a particular LU-decomposition, where the main diagonal of a
given component matrix consists of 1's. Such triangular matrices are called unit (upper or
lower) triangular matrices. The LU decomposition is unique, if L is set to be lower unit
triangular or U is set to be unit upper triangular.

The LU-decomposition of nonsingular matrices is closely related to the Gaussian elimi-
nation method. If A = LU, where L is unit lower triangular, then lik = γik (i > k), where γik
is given by the Gauss algorithm. The matrix U is the upper triangular part of the matrix we
obtain at the end of the forward phase. The matrix L can also be derived from this matrix,
if the columns of the lower triangular part are divided by the corresponding main diagonal
elements. We remind that the �rst phase of the Gaussian elimination does not annihilate
the matrix elements under the main diagonal. It is clear that a nonsingular matrix has LU-
decomposition if and only if a(k−1)

kk , 0 holds for each pivot element for the Gauss method
without pivoting.

De�nition 19.9 A matrix P ∈ Rn×n whose every row and column has one and only one
non-zero element, that element being 1, is called a permutation matrix.

In case of partial pivoting we permute the rows of the coefficient matrix (multiply A by
a permutation matrix on the left) so that a(k−1)

kk , 0 (k = 1, . . . , n) holds for a nonsingular
matrix. Hence we have

19.2. Linear systems of equations 749

Theorem 19.10 If A ∈ Rn×n is nonsingular then there exists a permutation matrix P such
that PA has an LU-decomposition.

The the algorithm of LU-decomposition is essentially the Gaussian elimination method.
If pivoting is used then the interchange of rows must also be executed on the elements under
the main diagonal and the permutation matrix P must be recorded. A vector containing the
actual order of the original matrix rows is obviously sufficient for this purpose.

The LU- and Cholesky-methods
Let A = LU and consider the equation Ax = b. Since Ax = LUx = L(Ux) = b, we can
decompose Ax = b into the equivalent linear system Ly = b and Ux = b, where L is lower
triangular and U is upper triangular.

LU-M(A, b)
1 Determine the LU-decomposition A = LU.
2 Solve Ly = b.
3 Solve Ux = y.
4 return x

Remark. In case of partial pivoting we obtain the decomposition �A = PA = LU and we
set �b = Pb instead of b.

In the �rst phase of the Gauss method we produce decomposition A = LU and the
equivalent linear system Ux = L−1b with upper triangular coefficient matrix. The latter is
solved in the second phase. In the LU-method we decompose the �rst phase of the Gauss
method into two steps. In the �rst step we obtain only the decomposition A = LU. In the
second step we produce the vector y = L−1b. The third step of the algorithm is identical with
the second phase of the original Gauss method.

The LU-method is especially advantageous if we have to solve several linear systems
with the same coefficient matrix:

Ax = b1, Ax = b2, . . . , Ax = bk.

In such a case we determine the LU-decomposition of matrix A only once, and then we
solve the linear systems Lyi = bi, Uxi = yi (xi, yi,bi ∈ Rn, i = 1, . . . , k). The computational
cost of this process is n3/3 + kn2 + Θ (kn) �ops.

The inversion of a matrix A ∈ Rn×n can be done as follows:
1. Determine the LU-decomposition A = LU. .
2. Solve Lyi = ei, Uxi = yi (ei is the ith unit vector i = 1, . . . , n).

The inverse of A is given by A−1 = [x1, . . . , xn]. The computational cost of the algorithm is
4n3/3 + Θ

(
n2

)
�ops.

The LU-method with pointers
This implementation of the LU-method is known since the 60's. Vector P contains the in-
dices of the rows. At the start we set P [i] = i (1 ≤ i ≤ n). When exchanging rows we
exchange only those components of vector P that correspond to the rows.

750 19. Scienti�c computing

LU-M--P(A, b)
1 n← rows[A]
2 P← [1, 2, . . . , n]
3 for k ← 1 to n − 1
4 do compute index t such that |A [P [t] , k]| = maxk≤i≤n |A [P [i] , k]| .
5 if k < t
6 then exchange the components P [k] and P [t].
7 for i← k + 1 to n
8 do A [P [i] , k]← A [P [i] , k] /A [P [k] , k]
9 A [P [i] , k + 1 : n]← A [P [i] , k + 1 : n] − A [P [i] , k] ∗ A [P [k] , k + 1 : n]

10 for i← 1 to n
11 do s← 0
12 for j← 1 to i − 1
13 do s← s + A [P [i] , j] ∗ x [j]
14 x [i]← b[P[i]] − s
15 for i← n downto 1
16 do s← 0
17 for j← i + 1 to n
18 s← s + A [P [i] , j] ∗ x [j]
19 x [i]← (x [i] − s) /A [P [i] , i]
20 return x

If A ∈ Rn×n is symmetric and positive de�nite, then it can be decomposed in the
form A = LLT , where L is lower triangular matrix. The LLT -decomposition is called the
Cholesky-decomposition . In this case we can save approximately half of the storage place
for A and half of the computational cost of the LU-decomposition (LLT -decomposition).
Let

A =



a11 · · · a1n
a21 · · · a2n
...

...
an1 · · · ann


=



l11 0 · · · 0

l21 l22
. . .

...
...

...
. . . 0

ln1 ln2 · · · lnn





l11 l21 · · · ln1
0 l22 · · · ln2
...

. . .
. . .

...
0 · · · 0 lnn


.

Observing that only the �rst k elements may be nonzero in the kth column of LT we obtain
that

akk = l2k1 + l2k2 + · · · + l2k,k−1 + l2kk,

aik = li1lk1 + li2lk2 + · · · + li,k−1lk,k−1 + liklkk (i = k + 1, . . . , n) .

This gives the formulae

lkk = (akk −
k−1∑

j=1
l2k j)1/2,

lik = (aik −
k−1∑

j=1
li jlk j)/lkk (i = k + 1, . . . , n) .

19.2. Linear systems of equations 751

Using the notation ∑k
j=i s j = 0 (k < i) we can formulate the Cholesky-method as follows.

C-M(A)
1 n← rows[A]
2 for k ← 1 to n
3 do akk ← (akk −∑k−1

j=1 a2
k j)1/2

4 for i← k + 1 to n
5 do aik ← (aik −∑k−1

j=1 ai jak j)/akk
6 return A

The lower triangular part of A contains L. The computational cost of the algorithm is
n3/6 + Θ(n2) �ops and n square roots. The algorithm, which can be considered as a special
case of the Gauss-methods, does not require pivoting, at least in principle.

The LU- and Cholesky-methods on banded matrices
It often happens that linear systems have banded coefficient matrices.

De�nition 19.11 Matrix A ∈ Rn×n is banded with lower bandwidth p and upper bandwidth
q if

ai j = 0, if i > j + p or j > i + q.

The possibly non-zero elements ai j (i − p ≤ j ≤ i + q) form a band like structure.
Schematically A has the form

A =



a11 a12 · · · · · · a1,1+q 0 · · · · · · 0

a21 a22
. . .

...
...

. . .
. . .

...

a1+p,1
. . .

. . . 0

0 . . .
. . . an−q,n

...
. . .

. . .
...

...
. . .

. . .
...

...
. . .

. . . an−1,n
0 · · · · · · · · · 0 an,n−p · · · an,n−1 ann



.

The banded matrices yield very efficient algorithms if p and q are signi�cantly less than
n. If a banded matrix A with lower bandwidth p and upper bandwidth q has an LU-
decomposition, then both L and U are banded with lower bandwidth p and upper bandwidth
q, respectively.

Next we give the LU-method for banded matrices in three parts.

752 19. Scienti�c computing

T-LU-D--B-M(A, n, p, q)
1 for k ← 1 to n − 1
2 do for i← k + 1 to min {k + p, n}
3 do aik ← aik/akk
4 for j← k + 1 to min {k + q, n}
5 do ai j ← ai j − aikak j
6 return A

Entry ai j is overwritten by li j, if i > j and by ui j, if i ≤ j. The computational cost of is
c (p, q) �ops, where

c (p, q) =

{
npq − 1

2 pq2 − 1
6 p3 + pn, p ≤ q

npq − 1
2 qp2 − 1

6 q3 + qn, p > q

The following algorithm overwrites b by the solution of equation Ly = b.

S      (L, b, n, p)
1 for i← 1 to n
2 do bi ← bi −∑i−1

j=max{1,i−p} li jb j
3 return b

The total cost of the algorithm is np− p2/2 �ops. The next algorithm overwrites vector
b by the solution of Ux = b.

S--B-U-T-S(U, b, n, q)
1 for i← n downto 1
2 do bi ←

(
bi −∑min{i+q,n}

j=i+1 ui jb j
)
/uii

3 return b

The computational cost is n (q + 1) − q2/2 �ops.
Assume that A ∈ Rn×n is symmetric, positive de�nite and banded with lower bandwidth

p. The banded version of the Cholesky-methods is given by

C---B-M(A, n, p)
1 for i← 1 to n
2 do for j← max {1, i − p} to i − 1
3 do ai j ←

(
ai j −∑ j−1

k=max{1,i−p} aika jk
)
/a j j

4 aii ←
(
aii −∑i−1

k=max{1,i−p} a2
ik

)1/2

5 return A

The elements ai j are overwritten by li j (i ≥ j). The total amount of work is given by(
np2/2

)
−

(
p3/3

)
+ (3/2)

(
np − p2

)
�ops és n square roots.

Remark. If A ∈ Rn×n has lower bandwidth p and upper bandwidth q and partial pivoting
takes place, then the upper bandwidth of U increases up to �q = p + q.

19.2. Linear systems of equations 753

19.2.2. Iterative methods for linear systems
There are several iterative methods for solving linear systems of algebraic equations. The
best known iterative algorithms are the classical Jacobi-, the Gauss-Seidel- and the relaxa-
tion methods. The greatest advantage of these iterative algorithms is their easy implemen-
tation to large systems. At the same time they usually have slow convergence. However for
parallel computers the multisplitting iterative algorithms seem to be efficient.

Consider the iteration

xi = Gxi−1 + b (i = 1, 2, . . .)

where G ∈ Rn×n és x0, b ∈ Rn. It is known that {xi}∞i=0 converges for all x0, b ∈ Rn if and only
if the spectral radius of G satis�es ρ (G) < 1 (ρ (G) = max |λ| | λ is an eigenvalue of G). In
case of convergence xi → x∗ = (I −G)−1 b, that is we obtain the solution of the equation
(I −G) x = b. The speed of convergence depends on the spectral radius ρ (G). Smaller the
spectral radiusρ (G), faster the convergence.

Consider now the linear system
Ax = b,

where A ∈ Rn×n is nonsingular. The matrices Ml,Nl, El ∈ Rn×n form a multisplitting of A if
(i) A = Mi − Ni, i = 1, 2, . . . , L,
(ii) Mi is nonsingular, i = 1, 2, . . . , L,
(iii) Ei is non-negative diagonal matrix, i = 1, 2, . . . , L,
(iv) ∑L

i=1 Ei = I.
Let x0 ∈ Rn be a given initial vector. The multisplitting iterative method is the following.

M-I(x0, b, L, Ml,Nl, El, l = 1, . . . , L)
1 i← 0
2 while exit condition=

3 do i← i + 1
4 for l← 1 to L
5 do Mlyl ← Nlxi−1 + b
6 xi ← ∑L

l=1 Elyl
7 return xi

It is easy to show that yl = M−1
l Nlxi−1 + M−1

l b and

xi =

L∑

l=1
Elyl =

L∑

l=1
ElM−1

l Nlxi−1 +

L∑

l=1
ElM−1

l b

= Hxi−1 + c.

Thus the condition of convergence is ρ (H) < 1. The multisplitting iteration is a true parallel
algorithm because we can solve L linear systems parallel in each iteration (synchronized
parallelism). The bottleneck of the algorithm is the computation of iterate xi.

The selection of matrices Mi and Ei is such that the solution of the linear system Miy = c
should be cheap. Let S 1, S 2, . . . , S L be a partition of {1, . . . , n}, that is S i , ∅, S i ∩ S j = ∅
(i , j) and ∪L

i=1S i = {1, . . . , n}. Furthermore let S i ⊆ Ti ⊆ {1, . . . , n} (i = 1, . . . , L) be such

754 19. Scienti�c computing

that S l , Tl for at least one l.
The non-overlapping block Jacobi splitting of A is given by

Ml =
[
M(l)

i j

]n
i, j=1

, M(l)
i j =


ai j, if i, j ∈ S l
aii, if i = j
0, otherwise

,

Nl = Ml − A,

El =
[
E(l)

i j

]n
i, j=1

, E(l)
i j =

{
1, if i = j ∈ S l
0, otherwise

for l = 1, . . . , L.
De�ne now the simple splitting

A = M − N,

where M is nonsingular,

M =
[
Mi j

]n
i, j=1

, Mi j =

{
ai j, if i, j ∈ S l for some l ∈ {1, . . . , n}
0, otherwise .

It can be shown that
H =

L∑

l=1
ElM−1

l Nl = M−1N

holds for the non-overlapping block Jacobi multisplitting.
The overlapping block Jacobi multisplitting of A is de�ned by

M̃l =
[
M̃(l)

i j

]n
i, j=1

, M̃(l)
i j =


ai j, if i, j ∈ Tl
aii, if i = j
0, otherwise

,

Ñl = M̃l − A,

ẽl =
[
ẽ(l)

i j

]n
i, j=1

, E(l)
ii = 0, if i < Tl

for l = 1, . . . , L.
A nonsingular matrix A ∈ Rn×n is called an M-matrix, if ai j ≤ 0 (i , j) and all the

elements of A−1 are nonnegative.

Theorem 19.12 Assume that A ∈ Rn×n is nonsingular M-matrix, {Mi,Ni, Ei}Li=1 is a non-
overlapping,

{
M̃i, Ñi, Ei

}L
i=1 is an overlapping block Jacobi multisplitting of A, where the

weighting matrices Ei are the same. The we have

ρ
(
H̃

)
≤ ρ (H) < 1,

where H =
∑L

l=1 ElM−1
l Nl and H̃ =

∑L
l=1 ElM̃−1

l Ñl .

19.2. Linear systems of equations 755

We can observe that both iteration procedures are convergent and the convergence of
the overlapping multisplitting is not slower than that of the non-overlapping procedure.
The theorem remains true if we use block Gauss-Seidel multisplittings instead of the block
Jacobi multisplittings. In this case we replace the above de�ned matrices Mi and M̃i with
their lower triangular parts.

The multisplitting algorithm has multi-stage and asynchronous variants as well.

19.2.3. Error analysis of linear algebraic systems
We analyze the direct and inverse errors. We use the following notations and concepts. The
exact (theoretical) solution of Ax = b is denoted by x, while any approximate solution is
denoted by �x. The direct error of the approximate solution is given by ∆x = �x − x. The
quantity r = r (y) = Ay − b is called the residual error. For the exact solution r (x) = 0,
while for the approximate solution

r (�x) = A �x − b = A (�x − x) = A∆x.

We use various models to estimate the inverse error. In the most general case we assume
that the computed solution �x satis�es the linear system �A �x = �b, where �A = A + ∆A and
�b = b + ∆b. The quantities ∆A and ∆b are called the inverse errors.

One has to distinguish between the sensitivity of the problem and the stability of the
solution algorithm. By sensitivity of a problem we mean the sensitivity of the solution to
changes in the input parameters (data). By the stability (or sensitivity) of an algorithm we
mean the in�uence of computational errors on the computed solution. We measure the sensi-
tivity of a problem or algorithm in various ways. One such characterization is the condition
number�condition number�, which compares the relative errors of the input and output va-
lues.

The following general principles are used when applying any algorithm:
- We use only stable or well-conditioned algorithms.
- We cannot solve an unstable (ill-posed or ill-conditioned) problem with a general

purpose algorithm, in general.

Sensitivity analysis
Assume that we solve the perturbed equation

A �x = b + ∆b (19.16)

instead of the original Ax = b. Let x̂ = x + ∆x and investigate the differene of the two
solutions.

Theorem 19.13 If A is nonsingular and b , 0, then
‖∆x‖
‖x‖ ≤ cond(A)‖∆b‖

‖b‖ = cond(A)‖r (�x)‖
‖b‖ , (19.17)

where cond(A) = ‖A‖
∥∥∥A−1

∥∥∥ is the condition number of A.

Here we can see that the condition number of A may strongly in�uence the relative
error of the perturbed solution x̂. A linear algebraic system is said to be well-conditioned

756 19. Scienti�c computing

if cond(A) is small, and ill-conditioned, if cond(A) is big. It is clear that the terms �small�
and �big� are relative and the condition number depends on the norm chosen. We identify
the applied norm if it is essential for some reason. For example cond∞ (A) = ‖A‖∞

∥∥∥A−1
∥∥∥∞.

The next example gives possible geometric characterization of the condition number.

19.7. Example. The linear system

1000x1 + 999x2 = b1
999x1 + 998x2 = b2

is ill-conditioned (cond∞(A) = 3.99 × 106). The two lines, whose meshpoint de�nes the system, are
almost parallel. Therefore if we perturb the right hand side, the new meshpoint of the two lines will
be far from the previous meshpoint.

The inverse error is ∆b in the sensitivity model under investigation. Theorem 19.13
gives an estimate of the direct error which conforms with the thumb rule. It follows that we
can expect a small relative error of the perturbed solution x̂, if the condition number of A is
small.

19.8. Example. Consider the linear system Ax = b with

A =

[
1 + ε 1

1 1

]
, b =

[
1
1

]
, x =

[
0
1

]
.

Let �x =

[
2
−1

]
. Then r =

[
2ε
0

]
and ‖r‖∞ / ‖b‖∞ = 2ε, but ‖ �x − x‖∞ / ‖x‖∞ = 2.

Consider now the perturbed linear system

(A + ∆A) �x = b (19.18)

instead of Ax = b. It can be proved that for this perturbation model there exist more than
one inverse errors�inverse error� among which ∆A = −r (x̂) x̂T /x̂T x̂ is the inverse error with
minimal spectral norm, provided that x̂, r (x̂) , 0.

The following theorem establish that for small relative residual error the relative inverse
error is also small.

Theorem 19.14 Assume that �x , 0 is the approximate solution of Ax = b, det (A) , 0 and
b , 0. If ‖r (�x)‖2 / ‖b‖2 = α < 1, the the matrix ∆A = −r (�x) �xT/ �xT �x satis�es (A + ∆A) �x = b
and ‖∆A‖2 / ‖A‖2 ≤ α/ (1 − α).

If the relative inverse error and the condition number of A are small, then the relative
residual error is small.

Theorem 19.15 If r (�x)=A �x − b, (A + ∆A) �x=b, A , 0, b , 0 and cond (A) ‖∆A‖
‖A‖ <1, then

‖r (�x)‖
‖b‖ ≤

cond(A) ‖∆A‖
‖A‖

1 − cond(A) ‖∆A‖
‖A‖

. (19.19)

19.2. Linear systems of equations 757

If A is ill-conditioned, then Theorem 19.15 is not true.

19.9. Example. Let A =

[
1 + ε 1

1 1 − ε
]
, ∆A =

[
0 0
0 ε2

]
and b =

[
1
−1

]
, (0 < ε � 1). Then

cond∞ (A) = (2 + ε)2 /ε2 ≈ 4/ε2 and ‖∆A‖∞ / ‖A‖∞ = ε2/ (2 + ε) ≈ ε2/2. Let

�x = (A + ∆A)−1 b =
1
ε3

[
2 − ε + ε2

−2 − ε
]
≈

[
2/ε3

−2/ε3

]
.

Then r (�x) = A �x − b =

[
0

2/ε + 1

]
and ‖r (�x)‖∞ / ‖b‖∞ = 2/ε + 1, which is not small.

In the most general case we solve the perturbed equation

(A + ∆A) �x = b + ∆b (19.20)

instead of Ax = b. The following general result holds.

Theorem 19.16 If A is nonsingular, cond (A) ‖∆A‖
‖A‖ < 1 and b , 0, then

‖∆x‖
‖x‖ ≤

cond(A)
(‖∆A‖
‖A‖ +

‖∆b‖
‖b‖

)

1 − cond(A) ‖∆A‖
‖A‖

. (19.21)

This theorem implies the following �thumb rule�.
Thumb rule. Assume that Ax = b. If the entries of A and b are accurate to about s decimal
places and cond(A) ∼ 10t, where t < s, then the entries of the computed solution are
accurate to about s − t decimal places.

The assumption cond(A) ‖∆A‖ / ‖A‖ < 1 of Theorem 19.16 guarantees that that matrix
A + ∆A is nonsingular. The inequality cond(A) ‖∆A‖ / ‖A‖ < 1 is equaivalent with the
inequality ‖∆A‖ < 1

‖A−1‖ and the distance of A from the nearest singular matrix is just
1/

∥∥∥A−1
∥∥∥. Thus we can give a new characterization of the condition number:

1
cond (A) = min

A+∆A is singular

‖∆A‖
‖A‖ . (19.22)

Thus if a matrix is ill-conditioned, then it is close to a singular matrix. Earlier we de�ned
the condition numbers of matrices as the condition number of the mapping F (x) = A−1x.

Let us introduce the following de�nition.

De�nition 19.17 A linear system solver is said to be weakly stable on a matrix class H, if
for all well-conditioned A ∈ H and for all b, the computed solution x̂ of the linear system
Ax = b has small relative error ‖ �x − x‖ / ‖x‖.

Putting together Theorems 19.13�19.16 we obtain the following.

Theorem 19.18 (Bunch). A linear system solver is weakly stable on a matrix class H, if
for all well-conditioned A ∈ H and for all b, the computed solution x̂ of the linear system
Ax = b satis�es any of the following conditions:
(1) ‖ �x − x‖ / ‖x‖ is small;
(2) ‖r (�x)‖ / ‖b‖ is small;
(3) There exists ∆A such that (A + ∆A) �x = b and ‖∆A‖ / ‖A‖ are small.

758 19. Scienti�c computing

The estimate of Theorem 19.16 can be used in practice if we know estimates of ∆b,∆A
and cond(A). If no estimates are available, then we can only make a posteriori error estima-
tes.

In the following we study the componentwise error estimates. We �rst give an estimate
for the absolute error of the approximate solution using the components of the inverse error.

Theorem 19.19 (Bauer, Skeel). Let A ∈ Rn be nonsingular and assume that the approxi-
mate solution x̂ of Ax = b satis�es the linear system (A + E) x̂ = b + e. If S ∈ Rn×n , s ∈ Rn

and ε > 0 are such that S ≥ 0, s ≥ 0, |E| ≤ εS , |e| ≤ εs and ε
∥∥∥∣∣∣A−1

∣∣∣ S
∥∥∥∞ < 1, then

∥∥∥x̂ − x
∥∥∥∞ ≤

ε
∥∥∥∣∣∣A−1

∣∣∣ (S |x| + s)
∥∥∥∞

1 − ε
∥∥∥∣∣∣A−1

∣∣∣ S
∥∥∥∞

. (19.23)

If e = 0 (s = 0), S = |A| and

kr (A) =
∥∥∥∣∣∣A−1∣∣∣ |A|

∥∥∥∞ < 1, (19.24)

then we obtain the estimate ∥∥∥x̂ − x
∥∥∥∞ ≤

εkr (A)
1 − εkr (A) . (19.25)

The quantity kr (A) is said to be Skeel-norm , although it is not a norm in the earlier de�ned
sense. The Skeel-norm satis�es the inequality

kr (A) ≤ cond∞ (A) = ‖A‖∞
∥∥∥A−1∥∥∥∞ . (19.26)

Therefore the above estimate is not worse than the traditional one that uses the standard
condition number.

The inverse error can be estimated componentwise by the following result of Oettli and
Prager. Let A, δA ∈ Rn×n and b, δb ∈ Rn. Assume that δA ≥ 0 and δb ≥ 0. Furthermore let

D =
{
∆A ∈ Rn×n : |∆A| ≤ δA}

, G = {∆b ∈ Rn : |∆b| ≤ δb} .

Theorem 19.20 (Oettli, Prager). The computed solution �x satis�es a perturbed equation
(A + ∆A) �x = b + ∆b with ∆A ∈ D and ∆b ∈ G, if

|r (�x)| = |A �x − b| ≤ δA | �x| + δb. (19.27)

We do not need the condition number to apply this theorem. In practice the entries δA
and δb are proportional to the machine epsilon.

Theorem 19.21 (Wilkinson). The approximate solution x̂ of Ax = b obtained by the Gauss
method in �oating point arithmetic satis�es the perturbed linear equation

(A + ∆A) x̂ = b (19.28)

with
‖∆A‖∞ ≤ 8n3ρn ‖A‖∞ u + O(u2), (19.29)

where ρn denotes the groth factor of the pivot elements and u is the unit roundoff.

19.2. Linear systems of equations 759

Since ρn is small in practice, the realtive error

‖∆A‖∞
‖A‖∞

≤ 8n3ρnu + O(u2)

is also small. Therefore Theorem19.18 implies that the Gauss method is weakly stable both
for full and partial pivoting.

Wilkinson's theorem implies that

cond∞(A)‖∆A‖∞
‖A‖∞

≤ 8n3ρncond∞ (A) u + O
(
u2

)
.

For a small condition number we can assume that 1−cond∞(A) ‖∆A‖∞ / ‖A‖∞ ≈ 1. Using
Theorems 19.21 and 19.16 (case ∆b = 0) we obtain the following estimate of the direct
error: ‖∆x‖∞

‖x‖∞
≤ 8n3ρncond∞ (A) u. (19.30)

The obtained result supports the thumb rule in the case of the Gauss method.

19.10. Example. Consider the following linear system whose coefficients can be represented exactly:

888445x1 + 887112x2 = 1,
887112x1 + 885781x2 = 0.

Here cond(A)∞ is big, but cond∞(A)‖∆A‖∞/‖A‖∞ is negligible. The exact solution of the problem
is x1 = 885781, x2 = −887112. The MATLAB gives the approximate solution �x1 = 885827.23,
�x2 = −887158.30 with the relative error

‖x − �x‖∞
‖x‖∞

= 5.22 × 10−5.

Since s ≈ 16 and cond (A)∞ ≈ 3.15×1012, the result essentially corresponds to the Wilkinson theorem
or the thumb rule. The Wilkinson theorem gives the bound

‖∆A‖∞ ≤ 1.26 × 10−8

for the inverse error. If we use the Oettli-Prager theorem with the choice δA = εM |A| and δb = εM |b|,
then we obtain the estimate |r (�x)| ≤ δA | �x| + δb. Since ‖|δA|‖∞ = 3.94 × 10−10, this estimate is better
than that of Wilkinson.

Scaling and preconditioning
Several matrices that occur in applications are ill-conditioned if their order n is large. For
example the famous Hilbert-matrix

Hn =

[
1

i + j − 1

]n

i, j=1
(19.31)

has cond2 (Hn) ≈ e3.5n, if n→ ∞. There exist 2n × 2n matrices with integer entries that can
be represented exactly in standard IEEE754 �oating point arithmetic while their condition
number is approximately 4 × 1032n.

We have two main techniques to solve linear systems with large condition numbers.

760 19. Scienti�c computing

Either we use multiple precision arithmetic or decrease the condition number. There are
two known forms of decreasing the condition number.

1. Scaling We replace the linear system Ax = b with the equation

(RAC) y = (Rb) , (19.32)

where R and C are diagonal matrices.
We apply the Gauss method to this scaled system and get the solution y. The quantity

x = Cy de�nes the requested solution. If the condition number of the matrix RAC is smaller
then we expect a smaller error in y and consequently in x. Various strategies are given to
choose the scaling matrices R and C. One of the best known strategies is the balancing
which forces every column and row of RAC to have approximately the same norm. For
example, if

�D = diag


1∥∥∥aT
1
∥∥∥2
, . . . ,

1∥∥∥aT
n
∥∥∥2



where aT
i is the ith row vector of A, the Euclidean norms of the rows of �DA will be 1 and the

estimate
cond2

(
�DA

)
≤ √n min

D∈D+

cond2 (DA)

holds with D+ =
{diag (d1, . . . , dn) | d1, . . . , dn > 0}. This means that �D optimally scales the

rows of A in an approximate sense.
The next example shows that the scaling may lead to bad results.

19.11. Example. Consider the matrix

A =


ε/2 1 1
1 1 1
1 1 2



for 0 < ε � 1. It is easy to show that cond∞ (A) = 12. Let

R = C =


2/
√
ε 0 0

0
√
ε/2 0

0 0
√
ε/2

 .

Then the scaled matrix

RAR =


2 1 1
1 ε/4 ε/4
1 ε/4 ε/2

 ,

has the condition number cond∞ (RAR) = 32/ε, which a very large value for small ε.

2. Preconditioning The preconditioning is very close to scaling. We rewrite the linear
system Ax = b with the equivalent form

Ãx = (MA) x = Mb = �b, (19.33)

where matrix M is such that cond
(
M−1A

)
is smaller and Mz = y is easily solvable.

The preconditioning is often used with iterative methods on linear systems with sym-
metric and positive de�nite matrices.

19.2. Linear systems of equations 761

A posteriori error estimates
The a posteriori estimate of the error of an approximate solution is necessary to get some
information on the reliability of the obtained result. There are plenty of such estimates. Here
we show three estimates whose computational cost is Θ

(
n2

)
�ops. This cost is acceptable

when comparing to the cost of direct or iterative methods (Θ
(
n3

)
or Θ

(
n2

)
per iteration

step).

The estimate of the direct error with the residual error

Theorem 19.22 (Auchmuty). Let x̂ be the approximate solution of Ax = b. Then

‖x − �x‖2 =
c ‖r(�x)‖22∥∥∥AT r(�x)

∥∥∥2
,

where c ≥ 1.

The error constant c depends on A and the direction of error vector �x − x. Furthermore

1
2cond2 (A) ≈ C2 (A) =

1
2

(
cond2 (A) +

1
cond2 (A)

)
≤ cond2 (A) .

The error constant c takes the upper value C2 (A) only in exceptional cases. The com-
putational experiments indicate that the average value of c grows slowly with the order of
A and it depends more strongly on n than the condition number of A. The following experi-
mental estimate ∥∥∥x − x̂

∥∥∥2 / 0.5 dim (A)
∥∥∥r (x̂)

∥∥∥2
2 /

∥∥∥AT r (x̂)
∥∥∥2 (19.34)

seems to hold with a high degree of probability.

The LINPACK estimate of
∥∥∥A−1

∥∥∥
The famous LINPACK program package uses the following process to estimate

∥∥∥A−1
∥∥∥.

We solve the linear systems AT y = d and Aw = y. Then the estimate of
∥∥∥A−1

∥∥∥ is given by
∥∥∥A−1∥∥∥ ≈ ‖w‖‖y‖

(
≤

∥∥∥A−1∥∥∥
)
. (19.35)

Since
‖w‖
‖y‖ =

∥∥∥∥A−1
(
A−T d

)∥∥∥∥∥∥∥A−T d
∥∥∥ ,

we can interpret the process as an application of the power method of the eigenvalue prob-
lem. The estimate can be used with the 1−, 2− and∞-norms. The entries of vector d are ±1
possibly with random signs.

If the linear system Ax = b is solved by the LU-method, then the solution of further
linear systems costs Θ(n2) �ops per system. Thus the total cost of the LINPACK estimate
remains small. Having the estimate

∥∥∥A−1
∥∥∥ we can easily estimate cond(A) and the error of

the approximate solution (cf. Theorem 19.16 or the thumb rule). We remark that several
similar processes are known in the literature.

762 19. Scienti�c computing

The Oettli-Prager estimate of the inverse error
We use the Oettli-Prager theorem in the following form. Let r (�x) = A �x−b be the residual

error, E ∈ Rn×n and f ∈ Rn are given such that E ≥ 0 and f ≥ 0. Let

ω = max
i

|r (�x)i|
(E | �x| + f)i

,

where 0/0 is set to 0-nak, ρ/0 is set to ∞, if ρ , 0. Symbol (y)i denotes the ith component
of the vector y. If ω , ∞, then there exist a matrix ∆A and a vector ∆b for which

|∆A| ≤ ωE, |∆b| ≤ ω f

holds and
(A + ∆A) �x = b + ∆b.

Moreover ω is the smallest number for which ∆A and ∆b exist with the above properties.
The quantity ω measures the relative inverse error in terms of E and f . If for a given E, f
and �x, the quantity ω is small, then the perturbed problem (and its solution) are close to the
original problem (and its solution). In practice, the choice E = |A| and f = |b| is preferred

Iterative re�nement
Denote by �x the approximate solution of Ax = b and let r(y) = Ay−b be the residual error at
the point y. The precision of the approximate solution �x can be improved with the following
method.

I-R(A, b, �x, tol)
1 k ← 1
2 x1 ← �x
3 �d ← inf
4 while =

∥∥∥ �d
∥∥∥ / ‖xk‖ > tol

5 do r ← Axk − b
6 Compute the approximate solution �d of Ad = r with the LU-method.
7 xk+1 ← xk − �d
8 k ← k + 1
9 return xk

There are other variants of this process. We can use other linear solvers instead of the
LU-method.

Let η be the smallest bound of relative inverse error with

(A + ∆A) �x = b + ∆b, |∆A| ≤ η |A| , |∆b| ≤ η |b| .
Furthermore let

σ (A, x) = max
k

(|A| |x|)k /min
k

(|A| |x|)k , min
k

(|A| |x|)k > 0.

Theorem 19.23 (Skeel). If kr
(
A−1

)
σ (A, x) ≤ c1 < 1/εM , then for sufficiently large k we

have
(A + ∆A) xk = b + ∆b, |∆A| ≤ 4ηεM |A| , |∆b| ≤ 4ηεM |b| . (19.36)

19.2. Linear systems of equations 763

This result often holds after the �rst iteration, i.e. for k = 2. Jankowski and Woznia-
kowski investigated the iterative re�nement for any method φ which produces an approxi-
mate solution x̂ with relative error less than 1. They showed that the iterative re�nement
improves the precision of the approximate solution even in single precision arithmetic and
makes method φ to be weakly stable.

Exercises
19.2-1 Prove Theorem 19.7.

19.2-2 Consider the linear systems Ax = b and Bx = b, where

A =

[
1 1/2

1/2 1/3

]
, B =

[
1 −1/2

1/2 1/3

]

and b ∈ R2. Which equation is more sensitive to the perturbation of b? What should be
the relative error of b in the more sensitive equation in order to get the solutions of both
equations with the same precision?

19.2-3 Let χ = 3/229, ζ = 214 and

A =


χζ −ζ ζ
ζ−1 ζ−1 0
ζ−1 −χζ−1 ζ−1

 , b =


1

1 + ε
1

 .

Solve the linear systems Ax = b for ε = 10−1, 10−3, 10−5, 10−7, 10−10. Explain the results.

19.2-4 Let A be a 10 × 10 matrix and choose the band matrix consisting of the main and
the neighboring two subdiagonals of A as a preconditioning matrix. How much does the
condition number of A improves if (i) A is a random matrix; (ii) A is a Hilbert matrix?

19.2-5 Let

A =


1/2 1/3 1/4
1/3 1/4 1/5
1/4 1/5 1/6

 ,

and assume that ε is the common error bound of every component of b ∈ R3. Give the
sharpest possible error bounds for the solution [x1, x2, x3]T of the equation Ax = b and for
the sum (x1 + x2 + x3).

19.2-6 Consider the linear system Ax = b with the approximate solution �x.
(i) Give an error bound for �x, if (A + E) �x = b holds exactly and both A and A + E is
nonsingular.
(ii) Let

A =


10 7 8

7 5 6
8 6 10

 , b =


25
18
24


and consider the solution of Ax = b. Give (if possible) a relative error bound for the entries
of A such that the integer part of every solution component remains constant within the
range of this relative error bound.

764 19. Scienti�c computing

19.3. Eigenvalue problems
The set of complex n-vectors will be denoted by Cn. Similarly, Cm×n denotes the set of
complex m × n matrices.

De�nition 19.24 Let A ∈ Cn×n be an arbitrary matrix. The number λ ∈ C is the eigenvalue
of A if there is vector x ∈ Cn (x , 0) such that

Ax = λx. (19.37)

Vector x is called the (right) eigenvector of A that belongs to the eigenvalue λ.

Equation Ax = λx can be written in the equivalent form (A−λI)x = 0, where I is the unit
matrix of appropriate size. The latter homogeneous linear system has a nonzero solution x
if and only if

φ(λ) = det(A − λI) = det





a11 − λ a12 . . . a1n
a21 a22 − λ . . . a2n
...

...
. . .

...
an1 an2 . . . ann − λ




= 0 . (19.38)

Equation (19.38) is called the characteristic equation of matrix A. The roots of this equation
are the eigenvalues of matrix A. Expanding det (A − λI) we obtain a polynomial of degree
n:

φ(λ) = (−1)n(λn − p1λ
n−1 − . . . − pn−1λ − pn).

This polynomial called the characteristic polynomial of A. It follows from the fundamental
theorem of algebra that any matrix A ∈ Cn×n has exactly n eigenvalues with multiplicities.
The eigenvalues may be complex or real. Therefore one needs to use complex arithme-
tic for eigenvalue calculations. If the matrix is real and the computations are done in real
arithmetic, the complex eigenvalues and eigenvectors can be determined only with special
techniques.

If x , 0 is an eigenvector, t ∈ C (t , 0), then tx is also eigenvector. The number
of linearly independent eigenvectors that belong to an eigenvalue λk does not exceed the
multiplicity of λk in the characteristic equation (19.38). The eigenvectors that belong to
different eigenvalues are linearly independent.

The following results give estimates for the size and location of the eigenvalues.

Theorem 19.25 Let λ be any eigenvalue of matrix A. The upper estimate |λ| ≤ ‖A‖ holds
in any induced matrix norm.

Theorem 19.26 (Gersgorin). Let A ∈ Cn×n,

ri =

n∑

j=1, j,i

∣∣∣ai j
∣∣∣ (i = 1, . . . , n)

and
Di = {z ∈ C| |z − aii| ≤ ri} (i = 1, . . . , n) .

Then for any eigenvalue λ of A we have λ ∈ ∪n
i=1Di.

19.3. Eigenvalue problems 765

For certain matrices the solution of the characteristic equation (19.38) is very easy. For
example, if A is a triangular matrix, then its eigenvalues are entries of the main diagonal. In
most cases however the computation of all eigenvalues and eigenvectors is a very difficult
task. Those transformations of matrices that keeps the eigenvalues unchanged have practi-
cal signi�cance for this problem. Later we see that the eigenvalue problem of transformed
matrices is simpler.

De�nition 19.27 The matrices A, B ∈ Cn×n are similar if there is a matrix T such that
B = T−1AT. The mapping A→ T−1AT is said to be similarity transformation of A.

Theorem 19.28 Assume that det(T) , 0. Then the eigenvalues of A and B = T−1AT are
the same. If x is the eigenvector of A, then y = T−1x is the eigenvector of B.

Similar matrices have the same eigenvalues.
The difficulty of the eigenvalue problem also stems from the fact that the eigenvalues

and eigenvectors are very sensitive (unstable) to changes in the matrix entries. The eigenva-
lues of A and the perturbed matrix A + δA may differ from each other signi�cantly. Besides
the multiplicity of the eigenvalues may also change under perturbation. The following the-
orems and examples show the very sensitivity of the eigenvalue problem.

Theorem 19.29 (Ostrowski, Elsner). For every eigenvalue λi of matrix A ∈ Cn×n there
exists an eigenvalue µk of the perturbed matrix A + δA such that

|λi − µk | ≤ (2n − 1) (‖A‖2 + ‖A + δA‖2)1− 1
n ‖δA‖

1
n
2 .

We can observe that the eigenvalues are changing continuously and the size of change
is proportional to the nth root of ‖δA‖2.

19.12. Example. Consider the following perturbed Jordan matrix of the size r × r:


µ 1 0 . . . 0

0 µ 1
. . .

...
...

. . .
. . .

. . . 0

0
. . . µ 1

ε 0 . . . 0 µ



.

The characteristic equation is (λ − µ)r = ε, which gives the r different eigenvalues

λs = µ + ε1/r (cos (2sπ/r) + i sin (2sπ/r)) (s = 0, . . . , r − 1)

instead of the original eigenvalue µ with multiplicity r. The size of change is ε1/r, which corresponds
to Theorem (19.29). If |µ| ≈ 1, r = 16 and ε = εM ≈ 2.2204 × 10−16, then the perturbation size of the
eigenvalues is ≈ 0.1051. This is a signi�cant change relative to the input perturbation ε.

For special matrices and perturbations we may have much better perturbation bounds.

Theorem 19.30 (Bauer, Fike). Assume that A ∈ Cn×n is diagonalizable , that is a matrix X
exists such that X−1AX = diag(λ1, . . . , λn). Denote µ an eigenvalue of A + δA. Then

min
1≤i≤n

|λi − µ| ≤ cond2(X) ‖δA‖2 . (19.39)

766 19. Scienti�c computing

This result is better than that of Ostrowski and Elsner. Nevertheless cond2 (X), which
is generally unknown, can be very big.

The eigenvalues are continuous functions of the matrix entries. This is also true for the
normalized eigenvectors if the eigenvalues are simple. The following example shows that
this property does not hold for multiple eigenvalues.

19.13. Example. Let

A (t) =

[
1 + t cos (2/t) −t sin (2/t)
−t sin (2/t) 1 − t cos (2/t)

]
(t , 0) .

The eigenvalues of A (t) are λ1 = 1 + t and λ2 = 1 − t. Vector [sin (1/t) , cos (1/t)]T is the eigenvector
belonging to λ1. Vector [cos (1/t) ,− sin (1/t)]T is the eigenvector belonging to λ2. If t → 0, then

A (t)→ I =

[
1 0
0 1

]
, λ1, λ2 → 1,

while the eigenvectors do not have limit.

We study the numerical solution of the eigenvalue problem in the next section. Unfor-
tunately it is very difficult to estimate the goodness of numerical approximations. From the
fact that Ax − λx = 0 holds with a certain error we cannot conclude anything in general.

19.14. Example. Consider the matrix

A (ε) =

[
1 1
ε 1

]
,

where ε ≈ 0 is small. The eigenvalues of A (ε) are 1 ± √ε, while the corresponding eigenvectors are
[1,±√ε]T . Let µ = 1 be an approximation of the eigenvalues and let x = [1, 0]T be the approximate
eigenvector. Then

‖Ax − µx‖2 =

∥∥∥∥∥∥
[

0
ε

]∥∥∥∥∥∥2
= ε.

If ε = 10−10, then the residual error under estimate the true error 10−5 by �ve order.

Remark 19.31 We can de�ne the condition number of eigenvalues for simple eigenva-
lues:

ν (λ1) ≈ ‖x‖2 ‖y‖2∣∣∣xHy
∣∣∣ ,

where x and y are the right and left eigenvectors, respectively. For multiple eigenvalues the
condition number is not �nite.

19.3.1. Iterative solutions of the eigenvalue problem
We investigate only the real eigenvalues and eigenvectors of real matrices. The methods
under consideration can be extended to the complex case with appropriate modi�cations.

19.3. Eigenvalue problems 767

The power method
This method is due to von Mieses. Assume that A ∈ Rn×n has exactly n different real eigenva-
lues. Then the eigenvectors x1, . . . , xn belonging to the corresponding eigenvalues λ1, . . . , λn
are linearly independent. Assume that the eigenvalues satisfy the condition

|λ1| > |λ2| ≥ . . . ≥ |λn|

and let v(0) ∈ Rn be a given vector. This vector is a unique linear combination of the ei-
genvectors, that is v(0) = α1x1 + α2x2 + . . . + αnxn. Assume that α1 , 0 and compute the
sequence v(k) = Av(k−1) = Akv(0) (k = 1, 2, . . .). The initial assumptions imply that

v(k) = Av(k−1) = A(α1λ
k−1
1 x1 + α2λ

k−1
2 x2 + . . . + αnλ

k−1
n xn)

= α1λ
k
1x1 + α2λ

k
2x2 + . . . + αnλ

k
nxn

= λk
1

(
α1x1 + α2

(
λ2
λ1

)k
x2 + . . . + αn

(
λn
λ1

)k
xn

)
.

Let y ∈ Rn be an arbitrary vector such that yT x1 , 0. Then

yT Av(k)

yT v(k) =
yT v(k+1)

yT v(k) =

λk+1
1

(
α1yT x1 +

∑n
i=2 αi

(
λi
λ1

)k+1
yT xi

)

λk
1

(
α1yT x1 +

∑n
i=2 αi

(
λi
λ1

)k
yT xi

) → λ1 .

Given the initial vector v(0) ∈ Rn, the power method has the following form.

P-M(A, v(0))
1 k ← 0
2 while exit condition = 

3 do k ← k + 1
4 z(k) ← Av(k−1)

5 Select vector y such that yT v(k−1) , 0
6 γk ← yT z(k)/yT v(k−1)

7 v(k) ← z(k)/
∥∥∥z(k)

∥∥∥∞
8 return γk, v(k)

It is clear that
v(k) → x1, γk → λ1.

The convergence v(k) → x1 here means that
(
v(k), x1

)
]
→ 0, that is the action line of v(k) tends

to the action line of x1. There are various strategies to select y. We can select y = ei, where
i is de�ned by

∣∣∣v(k)
i

∣∣∣ =
∥∥∥v(k)

∥∥∥∞. If we select y = v(k−1), then γk = v(k−1)T Av(k−1)/
(
v(k−1)T v(k−1)

)

will be identical with the Rayleigh quotient R
(
v(k−1)

)
. This choice gives an approximation

of λ1 that have the minimal residual norm (Example 19.14. shows that this choice is not
necessarily the best option).

The speed of convergence depends on the quotient |λ2/λ1|. The method is very sensitive
to the choice of the initial vector v(0). If α1 = 0, then the process does not converge to
the dominant eigenvalue λ1. For certain matrix classes the power method converges with
probability 1 if the initial vector v(0) is randomly chosen. In case of complex eigenvalues or
multiple λ1 we have to use modi�cations of the algorithm. The speed of convergence can be

768 19. Scienti�c computing

accelerated if the method is applied to the shifted matrix A−σI, where σ is an appropriately
chosen number. The shifted matrix A−σI has the eigenvalues λ1−σ, λ2−σ, . . . , λn−σ and
the corresponding convergence factor |λ2 − σ| / |λ1 − σ|. The latter quotient can be made
smaller than |λ2/λ1| with the proper selection of σ.

The usual exit condition of the power method is

‖Ek‖2 =
‖rk‖2∥∥∥v(k)

∥∥∥2
=

∥∥∥Av(k) − γkv(k)
∥∥∥2∥∥∥v(k)

∥∥∥2
≤ ε.

If we simultaneously apply the power method to the transposed matrix AT and wk =(
AT

)k
w0, then the quantity

ν (λ1) ≈
∥∥∥w(k)

∥∥∥2

∥∥∥v(k)
∥∥∥2∣∣∣wT

k vk
∣∣∣

gives an estimate for the condition number of λ1 (see Remark 19.31). In such a case we use
the exit condition

ν (λ1) ‖Ek‖2 ≤ ε.
The power method is very useful for large sparse matrices. It is often used to determine

the largest and the smallest eigenvalue. We can approximate the smallest eigenvalue as fol-
lows. The eigenvalues of A−1 are 1/λ1, . . . , 1/λn. The eigenvalue 1/λn will be the eigenvalue
with the largest modulus. We can approximate this value by applying the power method to
A−1. This requires only a small modi�cation of the algorithm. We replace line 4. with the
following:

Solve equation Az(k) = v(k−1) for z(k)

The modi�ed algorithm is called the inverse power method. It is clear that γk → 1/λn
and v(k) ⇀ xn hold under appropriate conditions. If we use the LU-method to solve Az(k) =

v(k−1), we can avoid the inversion of A.
If the inverse power method is applied to the shifted matrix A−µI, then the eigenvalues

of (A − µI)−1 are (λi − µ)−1. If µ approaches, say, to λt, then λi − µ → λi − λt. Hence the
inequality

|λt − µ|−1 > |λi − µ|−1 (i , t)

holds for the eigenvalues of the shifted matrix. The speed of convergence is determined by
the quotient

q = |λt − µ| / {max |λi − µ|} .
If µ is close enough to λt, then q is very small and the inverse power iteration converges
very fast. This property can be exploited in the calculation of approximate eigenvectors if
an approximate eigenvalue, say µ, is known. Assuming that det (A − µI) , 0, we apply the
inverse power method to the shifted matrix A − µI. In spite of the fact that matrix A − µI
is nearly singular and the linear equation (A − µI) z(k) = v(k) cannot be solved with high
precision, the algorithm gives very often good approximations of the eigenvectors.

Finally we note that in principle the von Mieses method can be modi�ed to determine
all eigenvalues and eigenvectors.

19.3. Eigenvalue problems 769

Orthogonalization processes
We need the following de�nition and theorem.

De�nition 19.32 The matrix Q ∈ Rn×n is said to be orthogonal if QT Q = I.

Theorem 19.33 (QR-decomposition). Every matrix A ∈ Rn×m having linearly independent
column vectors can be decomposed in the product form A = QR, where Q is orthogonal and
R is upper triangular matrix.

We note that the QR-decomposition can be applied for solving linear systems of equa-
tions, similarly to the LU-decomposition. If the QR-decomposition of A is known, then the
equation Ax = QRx = b can be written in the equivalent form Rx = QT b. Thus we have to
solve only an upper triangular linear system.

There are several methods to determine the QR-decomposition of a matrix. In practice
the Givens-, the Householder- and the MGS-methods are used.

The MGS (Modi�ed Gram-Schmidt) method is a stabilized, but algebraically equiva-
lent version of the classical Gram-Schmidt orthogonalization algorithm. The basic problem
is the following: We seek for an orthonormal basis

{
q j

}m
j=1

of the subspace

L {a1, . . . , am} =


m∑

j=1
λ ja j | λ j ∈ R, j = 1, . . . ,m

 ,

where a1, . . . , am ∈ Rn (m ≤ n) are linearly independent vectors. That is we determine the
linearly independent vectors q1, . . . , qm such that

qT
i q j = 0 (i , j) , ‖qi‖2 = 1 (i = 1, . . . ,m)

and
L {a1, . . . , am} = L {q1, . . . , qm} .

The basic idea of the classical Gram-Schmidt method is the following:
Let r11 = ‖a1‖2 and q1 = a1/r11. Assume that vectors q1, . . . , qk−1 are already computed

and orthonormal. Assume that vector �qk = ak −∑k−1
j=1 r jkq j is such that �qk ⊥ qi, that is �qT

k qi =

aT
k qi−∑k−1

j=1 r jkqT
j qi = 0 holds for i = 1, . . . , k−1. Since q1, . . . , qk−1 are orthonormal, qT

j qi =

0 (i , j) and rik = aT
k qi (i = 1, . . . , k − 1). After normalization we obtain qk = �qk/ ‖ �qk‖2.

The algorithm is formalized as follows.

CGS-(m, a1, . . . , am)
1 for k ← 1 to m
2 do for i← 1 to k − 1
3 do rik ← aT

k ai
4 ak ← ak − rikai
5 rkk ← ‖ak‖2
6 ak ← ak/rkk
7 return a1, . . . , am

770 19. Scienti�c computing

The algorithm overwrites vectors ai by the orthonormal vectors qi. The connection with
the QR-decomposition follows from the relation ak =

∑k−1
j=1 r jkq j + rkkqk. Since

a1 = q1r11,
a2 = q1r12 + q2r22,
a3 = q1r13 + q2r23 + q3r33,

...
am = q1r1m + q2r2m + . . . + qmrmm,

we can write that

A = [a1, . . . , am] =
[q1, . . . , qm

]
︸ ︷︷ ︸

Q



r11 r12 r13 . . . r1m
0 r22 r23 . . . r2m
0 0 r33 . . . r3m
...

...
...

. . .
...

0 0 0 . . . rmm


︸ ︷︷ ︸

R

= QR .

The numerically stable MGS method is given in the following form

MGS-(m, a1, . . . , am)
1 for k ← 1 to m
2 do rkk ← ‖ak‖2
3 ak ← ak/rkk
4 for j← k + 1 to m
5 do rk j ← aT

j ak
6 a j ← a j − rk jak
7 return a1, . . . , am

The algorithm overwrites vectors ai by the orthonormal vectors qi. The MGS method is
more stable than the CGS algorithm. Björck proved that for m = n the computed matrix �Q
satis�es

�QT �Q = I + E, ‖E‖2 � cond (A) u,

where u is the unit roundoff.

The QR-method
Today the QR-method is the most important numerical algorithm to compute all eigenvalues
of a general matrix. It can be shown that the QR-method is a generalization of the power
method. The basic idea of the method is the following: Starting from A1 = A we compute the
sequence Ak+1 = Q−1

k AkQk = QT
k AkQk, where Qk is orthogonal, Ak+1 is orthogonally similar

to Ak (A) and the lower triangular part of Ak tends to a diagonal matrix, whose entries will be
the eigenvalues of A. Here Qk is the orthogonal factor of the QR-decomposition Ak = QkRk.
Therefore Ak+1 = QT

k (QkRk)Qk = RkQk. The basic algorithm is given in the following form.

19.3. Eigenvalue problems 771

QR-M(A)
1 k ← 1
2 A1 ← A
3 while exit condition=

4 do Compute the QR-decomposition Ak = QkRk
5 Ak+1 ← RkQk
6 k ← k + 1
7 return Ak

The following result holds.
Theorem 19.34 (Parlett). If the matrix A is diagonalizable, X−1AX =diag(λ1, λ2, . . . , λn),
the eigenvalues satisfy

|λ1| > |λ2| > . . . > |λn| > 0
and X has an LU-decomposition, then the lower triangular part of Ak converges to a dia-
gonal matrix whose entries are the eigenvalues of A.

In general, matrices Ak do not necessarily converge to a given matrix. If A has p eigen-
values of the same modulus, the form of matrices Ak converge to the form



× ×
0 . . .

×
0 0 ∗ · · · ∗

...
...

∗ · · · ∗
0 0 ×

. . .

0 0 ×



, (19.40)

where the entries of the submatrix denoted by ∗ do not converge. However the eigenvalues
of this submatrix will converge. This submatrix can be identi�ed and properly handled.
A real matrix may have real and complex eigenvalues. If there is a complex eigenvalues,
than there is a corresponding conjugate eigenvalue as well. For pairs of complex conjugated
eigenvalues p is at least 2. Hence the sequence Ak will show this phenomenon .

The QR-decomposition is very expensive. Its cost is Θ(n3) �ops for general n × n mat-
rices. If A has upper Hessenberg form, the cost of QR-decomposition is Θ(n2) �ops.
De�nition 19.35 The matrix A ∈ Rn×n has upper Hessenberg form, , if

A =



a11 . . . a1n
a21

0 a32
...

... 0 . . .

. . . an−1,n−2 an−1,n−1 an−1,n
0 . . . 0 an,n−1 ann



.

772 19. Scienti�c computing

The following theorem guarantees that if A has upper Hessenberg form, then every Ak
of the QR-method has also upper Hessenberg form.

Theorem 19.36 If A has upper Hessenberg form and A = QR, then RQ has also upper
Hessenberg form.

We can transform a matrix A to a similar matrix of upper Hessenberg form in many
ways. One of the cheapest ways, that costs about 5/6n3 �ops, is based on the Gauss eli-
mination method. Considering the advantages of the upper Hessenberg form the efficient
implementation of the QR-method requires �rst the similarity transformation of A to upper
Hessenberg form.

The convergence of the QR-method, similarly to the power method, depends on the
quotients |λi+1/λi|. The eigenvalues of the shifted matrix A−σI are λ1−σ, λ2−σ, . . . , λn−σ.
The corresponding eigenvalue ratios are |(λi+1 − σ) / (λi − σ)|. A proper selection of σ can
fasten the convergence.

The usual form of the QR-method includes the transformation to upper Hessenberg
form and the shifting.

SQR-M(A)
1 H1 ← U−1AU (H1 is of upper Hessenberg form)
2 k ← 1
3 while exit condition=

4 do Compute the QR-decomposition Hk − σkI = QkRk
5 Hk+1 ← RkQk + σkI
6 k ← k + 1
7 return Hk

In practice the QR-method is used in shifted form. There are various strategies to select
σi. The most often used selection is given by σk = h(k)

nn

(
Hk =

[
h(k)

i j

]n
i, j=1

)
.

The eigenvectors of A can also be determined by the QR-method. For this we refer to
the literature.

Exercises
19.3-1 Apply the power method to the matrix A =

[
1 1
0 2

]
with the initial vector v(0) =

[
1
1

]
. What is the result of the 20th step?

19.3-2 Apply the power method, the inverse power method and the QR-method to the mat-
rix 

−4 −3 −7
2 3 2
4 2 7

 .

19.3-3 Apply the shifted QR-method to the matrix of the previous exercise with the choice
σi = σ (σ is �xed).

19.4. Numerical program libraries and software tools 773

19.4. Numerical program libraries and software tools
We have plenty of devices and tools that support efficient coding and implementation of nu-
merical algorithms. One aim of such developments is to free the programmers from writing
the programs of frequently occurring problems. This is usually done by writing safe, reli-
able and standardized routines that can be downloaded from (public) program libraries. We
just mention the LINPACK, EISPACK, LAPACK, VISUAL NUMERICS (former IMSL)
and NAG libraries. Another way of developments is to produce software that work as a pro-
gramming language and makes the programming very easy. Such software systems are the
MATLAB and the SciLab.

19.4.1. Standard linear algebra subroutines
The main purpose of the BLAS (Basic Linear Algebra Subprograms) programs is the stan-
dardization and efficient implementation the most frequent matrix-vector operations. Alt-
hough the BLAS routines were published in FORTRAN they can be accessed in optimized
machine code form as well. The BLAS routines have three levels:

- BLAS 1 (1979),
- BLAS 2 (1988),
- BLAS 3 (1989).
These levels corresponds to the computation cost of the implemented matrix operati-

ons. The BLAS routines are considered as the best implementations of the given matrix
operations. The selection of the levels and individual BLAS routines strongly in�uence the
efficiency of the program. A sparse version of BLAS also exists.

We note that the BLAS 3 routines were developed mainly for block parallel algorithms.
The standard linear algebra packages LINPACK, EISPACK and LAPACK are built from
BLAS routines. The parallel versions can be found in the SCALAPACK package. These
programs can be found in the public NETLIB library:

http:/www.netlib.org/index.html

BLAS 1 routines
Let α ∈ R, x, y ∈ Rn. The BLAS 1 routines are the programs of the most important vector
operations (z = αx, z = x+y, dot = xT y), the computation of ‖x‖2, the swapping of variables,
rotations and the saxpy operation which is de�ned by

z = αx + y.
The word saxpy means that �scalar alpha x plus y�. The saxpy operation is implemented in
the following way.

S(α, x, y)
1 n← elements [x]
2 for i← 1 to n
3 do z [i] = αx [i] + y [i]
4 return z

The saxpy is a software driven operation. The cost of BLAS 1 routines is Θ (n) �ops.

774 19. Scienti�c computing

BLAS 2 routines
The matrix-vector operations of BLAS 2 requires Θ

(
n2

)
�ops. These operations are y =

αAx + βy, y = Ax, y = A−1x, y = AT x, A ← A + xyT and their variants. Certain operations
work only with triangular matrices. We analyze two operations in detail. The �outer or
dyadic product� update

A← A + xyT (A ∈ Rm×n, x ∈ Rm, y ∈ Rn)

can be implemented in two ways.
The rowwise or �i j� variant:

O-P-U-V �� (A, x, y)
1 m← rows[A]
2 for i← 1 to m
3 do A [i, :]← A [i, :] + x [i] yT

4 return A

The notation �:� denotes all allowed indices. In our case this means the indices 1 ≤ j ≤
n. Thus A [i, :] denotes the ith row of matrix A.

The columnwise or � ji� variant:

O-P-U-V ��(A, x, y)
1 n← columns[A]
2 for j← 1 to n
3 do A [:, j]← A [:, j] + y [j] x
4 return A

Here A [:, j] denotes the jth column of matrix A. Observe that both variants are based
on the saxpy operation.

The gaxpy operation is de�ned by

z = y + Ax (x ∈ Rn, y ∈ Rm, A ∈ Rm×n) .
The word gaxpy means that �general A x plus y�. The gaxpy operation is also software
driven and implemented in the following way:

G(A, x, y)
1 n← columns[A]
2 z← y
3 for j← 1 to n
4 do z← z + x [j] A [:, j]
5 return z

Observe that the computation is done columnwise and the gaxpy operation is essentially
a generalized saxpy.

BLAS 3 routines
These routines are the implementations of Θ

(
n3

)
matrix-matrix and matrix-vector operati-

19.4. Numerical program libraries and software tools 775

ons such as the operations C ← αAB + βC, C ← αABT + βC, B ← αT−1B (T is upper
triangular) and their variants. BLAS 3 operations can be implemented in several forms.
For example, the matrix product C = AB can be implemented at least in three ways. Let
A ∈ Rm×r, B ∈ Rr×n.

M-P-D-V(A, B)
1 m← rows[A]
2 r ← columns[A]
3 n← columns[B]
4 C [1 : m, 1 : n]← 0
5 for i← 1 to m
6 do for j← 1 to n
7 do for k ← 1 to r
8 do C [i, j]← C [i, j] + A [i, k] B [k, j]
9 return C

This algorithm computes ci j as the dot (inner) product of the ith row of A and the jth
column of B. This corresponds to the original de�nition of matrix products.

Now let A, B and C be partitioned columnwise as follows

A = [a1, . . . , ar] (ai ∈ Rm) ,
B = [b1, . . . , bn] (bi ∈ Rr) ,
C = [c1, . . . , cn] (ci ∈ Rm) .

Then we can write c j as the linear combination of the columns of A, that is

c j =

r∑

k=1
bk jak (j = 1, . . . , n) .

Hence the product can be implemented with saxpy operations.

M-P-G-V(A, B)
1 m← rows[A]
2 r ← columns[A]
3 n← columns[B]
4 C [1 : m, 1 : n]← 0
5 for j← 1 to n
6 do for k ← 1 to r
7 do for i← 1 to m
8 do C [i, j]← C [i, j] + A [i, k] B [k, j]
9 return C

The following equivalent form of the � jki�-algorithm shows that it is indeed a gaxpy
based process.

776 19. Scienti�c computing

M-P--G-C(A, B)
1 m← rows[A]
2 n← columns[B]
3 C [1 : m, 1 : n]← 0
4 for j← 1 to n
5 do C [:, j] = gaxpy (A, B [:, j] ,C [:, j])
6 return C

Consider now the partitions A = [a1, . . . , ar] (ai ∈ Rm) and

B =



bT
1
...

bT
r

 (bi ∈ Rn) .

Then C = AB =
∑r

k=1 akbT
k .

M-P-O-P-V(A, B)
1 m← rows[A]
2 r ← columns[A]
3 n← columns[B]
4 C [1 : m, 1 : n] = 0
5 for k ← 1 to r
6 do for j← 1 to n
7 do for i← 1 to m
8 C [i, j]← C [i, j] + A [i, k] B [k, j]
9 return C

The inner loop realizes a saxpy operation: it gives the multiple of ak to the jth column
of matrix C.

19.4.2. Mathematical software
These are those programming tools that help easy programming in concise (possibly mat-
hematical) form within an integrated program development system. Such systems were de-
veloped primarily for solving mathematical problems. By now they have been extended so
that they can be applied in many other �elds. For example, Nokia uses MATLAB in the tes-
ting and quality control of mobile phones. We give a short review on MATLAB in the next
section. We also mention the widely used MAPLE, DERIVE and MATEMATICA systems.

The MATLAB system
The MATLAB software was named after the expression MATrix LABoratory. The name
indicates that the matrix operations are very easy to make. The initial versions of MATLAB
had only one data type: the complex matrix. In the later versions high dimension arrays,
cells, records and objects also appeared. The MATLAB can be learned quite easily and even
a beginner can write programs for relatively complicated problems.

The coding of matrix operations is similar to their standard mathematical form. For

19. Problems 777

example if A and B are two matrices of the same size, then their sum is given by the com-
mand C = A + B. As a programming language the MATLAB contains only four control
structures known from other programing languages:

� the simple statement Z =expression,
� the if statement of the form

if expression, commands {else/elseif commands} end,
� the for loop of the form

for the values of the loop variable, commands end
� the while loop of the form

while expression, commands end.
The MATLAB has an extremely large number of built in functions that help efficient pro-
gramming. We mention the following ones as a sample.

� max(A) selects the maximum element in every column of A,
� [v, s] =eig(A) returns the approximate eigenvalues and eigenvectors of A,
� The command A\b returns the numerical solution of the linear system Ax = b.
The entrywise operations and partitioning of matrices can be done very efficiently in

MATLAB. For example, the statement

A([2, 3], :) = 1./A([3, 2], :)

exchange the second and third rows of A while it takes the reciprocal of each element.
The above examples only illustrate the possibilities and easy programming of MAT-

LAB. These examples require much more programming effort in other languages, say e.g.
in PASCAL. The built in functions of MATLAB can be easily supplemented by other pro-
grams.

The higher number versions of MATLAB include more and more functions and special
libraries (tool boxes) to solve special problems such as optimization, statistics and so on.

There is a built in automatic technique to store and handle sparse matrices that makes
the MATLAB competitive in solving large computational problems. The recent versions of
MATLAB offer very rich graphic capabilities as well. There is an extra interval arithmetic
package that can be downloaded from the WEB site

http:/www.ti3.tu-harburg.de\%7Erump\intlab

There is a possibility to build certain C and FORTRAN programs into MATLAB. Finally
we mention that the system has an extremely well written help system.

Problems

19-1. Without over�ow
Write a MATLAB program that computes the norm ‖x‖2 =

(∑n
i=1 x2

i

)1/2 without over�ow in
all cases when the result does not make over�ow. It is also required that the error of the �nal
result can not be greater than that of the original formula.
19-2. Estimate

Equation x3 − 3.330000x2 + 3.686300x − 1.356531 = 0 has the solution x1 = 1.01. The

778 19. Scienti�c computing

perturbed equation x3 − 3.3300x2 + 3.6863x− 1.3565 = 0 has the solutions y1, y2, y3. Give
an estimate for the perturbation mini |x1 − yi|.
19-3. Double word length
Consider an arithmetic system that has double word length such that every number repre-
sented with 2t digits are stored in two t digit word. Assume that the computer can only add
numbers with t digits. Furthermore assume that the machine can recognize over�ow.
(i) Find an algorithm that add two positive numbers of 2t digit length.
(ii) If the representation of numbers requires the sign digit for all numbers, then modify
algorithm (i) so that it can add negative and positive numbers both of the same sign. We can
assume that the sum does not over�ow.
19-4. Auchmuty theorem
Write a MATLAB program for the Auchmuty error estimate (see Theorem 19.22) and per-
form the following numerical testing.
(i) Solve the linear systems Ax = bi, where A ∈ Rn×n is a given matrix, bi = Ayi, yi ∈ Rn

(i = 1, . . . ,N) are random vectors such that ‖yi‖∞ ≤ β. Compare the true errors ‖x̃i − yi‖,
(i = 1, . . . ,N) and the estimated errors ES Ti = ‖r(x̃i)‖22 /

∥∥∥AT r(x̃i)
∥∥∥2, where x̃i is the appro-

ximate solution of Ax = bi. What is the minimum, maximum and average of numbers ci?
Use graphic for the presentation of the results. Suggested values are n ≤ 200, β = 200 and
N = 40.
(ii) Analyze the effect of condition number and size.
(iii) Repeat problems (i) and (ii) using LINPACK and BLAS.
19-5. Hilbert matrix
Consider the linear system Ax = b, where b = [1, 1, 1, 1]T and A is the fourth order Hilbert
matrix, that is ai, j = 1/(i + j). A is ill-conditioned. The inverse of A is approximated by

B =



202 −1212 2121 −1131
−1212 8181 −15271 8484

2121 −15271 29694 −16968
−1131 8484 −16968 9898


.

Thus an x0 approximation of the true solution x is given by x0 = Bb. Although the true
solution is also integer x0 is not an acceptable approximation. Apply the iterative re�nement
with B instead of A−1 to �nd an acceptable integer solution.
19-6. Consistent norm
Let ‖A‖ be a consistent norm and consider the linear system Ax = b
(i) Prove that if A + ∆A is singular, then cond(A) ≥ ‖A‖ / ‖∆A‖.
(ii) Show that for the 2-norm equality holds in (i), if ∆A = −bxT /(bt x) and

∥∥∥A−1
∥∥∥2 ‖b‖2 =∥∥∥A−1b

∥∥∥2.
(iii) Using the result of (i) give a lower bound to cond∞(A), if

A =


1 −1 1
−1 ε ε

1 ε ε

 .

19-7. Cholesky-method

19. Megjegyzések a fejezethez 779

Use the Cholesky-method to solve the linear system Ax = b, where

A =



5.5 0 0 0 0 3.5
0 5.5 0 0 0 1.5
0 0 6.25 0 3.75 0
0 0 0 5.5 0 0.5
0 0 3.75 0 6.25 0

3.5 1.5 0 0.5 0 5.5



, b =



1
1
1
1
1
1



.

Also give the exact Cholesky-decomposition A = LLT and the true solution of Ax = b.
The approximate Cholesky-factor L̃ satis�es the relation �L �LT = A + F. It can proved that
in a �oating point arithmetic with t-digit mantissa and base β the entries of F satisfy the
inequality

∣∣∣ fi, j
∣∣∣ ≤ ei, j, where

E = β1−t



11 0 0 0 0 3.5
0 11 0 0 0 1.5
0 0 0 0 0 0
0 0 0 11 0 0.5
0 0 0 0 0 0

3.5 1.5 0 0.5 0 11



.

Give a bound for the relative error of the approximate solution �x, if β = 16 and t = 14
(IBM3033).
19-8. Bauer-Fike theorem
Let

A =



10 10
9 10

8 10
. . .

. . .

2 10
ε 1



(i) Analyze the perturbation of the eigenvalues for ε = 10−5, 10−6, 10−7, 0.
(ii) Compare the estimate of Bauer-Fike theorem to the matrix A = A(0).
19-9. Eigenvalues

Using the MATLAB eig routine compute the eigenvalues of B = AAT for various (random)
matrices A ∈ Rn×n and order n. Also compute the eigenvalues of the perturbed matrices
B + Ri, where Ri are random matrices with entries from the interval

[
−10−5, 10−5

]
(i =

1, . . . ,N). What is the maximum perturbation of the eigenvalues? How precise is the Bauer-
Fike estimate? Suggested values are N = 10 and 5 ≤ n ≤ 200. How do the results depend on
the condition number and the order n? Display the maximum perturbations and the Bauer-
Fike estimates graphically.

Chapter notes
The a posteriori error estimates of linear algebraic systems are not completely reliable.
Demmel, Diament és Malajovich [43] showed that for the Θ

(
n2

)
number estimators there

780 19. Scienti�c computing

are always cases when the estimate is unreliable (the error of the estimate exceeds a given
order). The �rst appearance of the iterative improvement is due to Fox, Goodwin, Turing
and Wilkinson (1946). The experiences show that the decrease of the residual error is not
monotone.

Young [127], Hageman and Young [?] give an excellent survey of the theory and app-
lication of iterative methods. Barett, Berry et al. [7] give a software oriented survey of the
subject. Frommer [52] concentrates on the parallel computations.

The convergence of the QR-method is a delicate matter. It is analyzed in great depth and
much better results than Theorem 19.34 exist in the literature. There are QR-like methods
that involve double shifting. Batterson [9] showed that there exists a 3×3 Hessenberg matrix
with complex eigenvalues such that convergence cannot be achieved even with multiple
shifting.

Several other methods are known for solving the eigenvalue problems (see, e.g. [121],
[119]). The LR-method is one of the best known ones. It is very effective on positive de�nite
Hermitian matrices. The LR-method computes the Cholesky-decomposition Ak = LL∗ and
sets Ak+1 = L∗L.

20. Semi-structured databases

The use of the internet and the development of the theory of databases mutually affect each
other. The contents of web sites are usually stored by databases, while the web sites and the
references between them can also be considered a database which has no �xed schema in
the usual sense. The contents of the sites and the references between sites are described by
the sites themselves, therefore we can only speak of semi-structured data, which can be best
characterized by directed labeled graphs. In case of semi-structured data, recursive methods
are used more often for giving data structures and queries than in case of classical relational
databases. Different problems of databases, e.g. restrictions, dependencies, queries, distri-
buted storage, authorities, uncertainty handling, must all be generalized according to this.
Semi-structuredness also raises new questions. Since queries not always form a closed sys-
tem like they do in case of classical databases, that is, the applicability of queries one after
another depends on the type of the result obtained, therefore the problem of checking types
becomes more emphasized.

The theoretical establishment of relational databases is closely related to �nite model-
ling theory, while in case of semi-structured databases, automata, especially tree automata
are most important.

20.1. Semi-structured data and XML
By semi-structured data we mean a directed rooted labeled graph. The root is a special node
of the graph with no entering edges. The nodes of the graph are objects distinguished from
each other using labels. The objects are either atomic or complex. Complex objects are
connected to one or more objects by directed edges. Values are assigned to atomic objects.
Two different models are used: either the vertices or the edges are labeled. The latter one is
more general, since an edge-labeled graph can be assigned to all vertex-labeled graphs in
such a way that the label assigned to the edge is the label assigned to its endpoint. This way
we obtain a directed labeled graph for which all inward directed edges from a vertex have the
same label. Using this transformation, all concepts, de�nitions and statements concerning
edge-labeled graphs can be rewritten for vertex-labeled graphs.

The following method is used to gain a vertex-labeled graph from an edge-labeled
graph. If edge (u, v) has label c, then remove this edge, and introduce a new vertex w with

782 20. Semi-structured databases

Figure 20.1. Edge-labeled graph assigned to a vertex-labeled graph.

Figure 20.2. An edge-labeled graph and the corresponding vertex-labeled graph.

label c, then add edges (u,w) and (w, v). This way we can obtain a vertex-labeled graph of
m + n nodes and 2m edges from an edge-labeled graph of n vertices and m edges. There-
fore all algorithms and cost bounds concerning vertex-labeled graphs can be rewritten for
edge-labeled graphs.

Since most books used in practice use vertex-labeled graphs, we will also use vertex-
labeled graphs in this chapter.

The XML (eXtensible Markup Language) language was originally designed to describe
embedded ordered labeled elements, therefore it can be used to represent trees of semi-
structured data. In a wider sense of the XML language, references between the elements can
also be given, thus arbitrary semi-structured data can be described using the XML language.

The medusa.inf.elte.hu/forbidden site written in XML language is as follows. We can
obtain the vertex-labeled graph of Figure 20.3 naturally from the structural characteristics
of the code.

20.2. Schemas and simulations 783

Figure 20.3. The graph corresponding to the XML �le �forbidden�.

<HTML>

<HEAD>

<TITLE>403 Forbidden</TITLE>

</HEAD>

<BODY>

<H1>Forbidden</H1>

You don't have permission to access /forbidden.
<ADDRESS>Apache Server at medusa.inf.elte.hu </ADDRESS>

</BODY>

</HTML>

Exercises
20.1-1 Give a vertex-labeled graph that represents the structure and formatting of this chap-
ter.
20.1-2 How many different directed vertex-labeled graphs exist with n vertices, m edges
and k possible labels? How many of these graphs are not isomorphic? What values can be
obtained for n = 5, m = 7 and k = 2?
20.1-3 Consider a tree in which all children of a given node are labeled with different num-
bers. Prove that the nodes can be labeled with pairs (av, bv), where av and bv are natural
numbers, in such a way that
a. av < bv for every node v.
b. If u is a descendant of v, then av < au < bu < bv.
c. If u and v are siblings and number(u) < number(v), then bu < av.

20.2. Schemas and simulations
In case of relational databases, schemas play an important role in coding and querying data,
query optimization and storing methods that increase efficiency. When working with semi-

784 20. Semi-structured databases

Figure 20.4. A relational database in the semi-structured model.

structured databases, the schema must be obtained from the graph. The schema restricts the
possible label strings belonging to the paths of the graph.

Figure 20.4 shows the relational schemas with relations R(A, B,C) and Q(C,D), res-
pectively, and the corresponding semi-structured description. The labels of the leaves of
the tree are the components of the tuples. The directed paths leading from the root to the
values contain the label strings database.R.tuple.A, database.R.tuple.B, database.R.tuple.C,
database.Q.tuple.C, database.Q.tuple.D. This can be considered the schema of the semi-
structured database. Note that the schema is also a graph, as it can be seen on Figure 20.5.
The disjoint union of the two graphs is also a graph, on which a simulation mapping can
be de�ned as follows. This way we create a connection between the original graph and the
graph corresponding to the schema.

De�nition 20.1 Let G = (V, E, A, label()) be a vertex-labeled directed graph, where V
denotes the set of nodes, E the set of edges, A the set of labels, and label(v) is the label
belonging to node v. Denote by E−1(v) = {u | (u, v) ∈ E} the set of the start nodes of the
edges leading to node v. A binary relation s (s ⊆ V × V) is a simulation, if, for s(u, v),
i) label(u) = label(v) and
ii) for all u′ ∈ E−1(u) there exists a v′ ∈ E−1(v) such that s(u′, v′)
Node v simulates node u, if there exists a simulation s such that s(u, v). Node u and node v
are similar, u ≈ v, if u simulates v and v simulates u.

It is easy to see that the empty relation is a simulation, that the union of simulations is
a simulation, that there always exists a maximal simulation and that similarity is an equiva-
lence relation. We can write E instead of E−1 in the above de�nition, since that only means
that the direction of the edges of the graph is reversed.

20.2. Schemas and simulations 785

Figure 20.5. The schema of the semi-structured database given in Figure 20.4.

We say that graph D simulates graph S if there exists a mapping f : VS 7→ VD such that
the relation (v, f (v)) is a simulation on the set VS × VD.

Two different schemas are used, a lower bound and an upper bound. If the data graph
D simulates the schema graph S , then S is a lower bound of D. Note that this means that
all label strings belonging to the directed paths in S appear in D at some directed path. If S
simulates D, then S is an upper bound of D. In this case, the label strings of D also appear
in S .

In case of semi-structured databases, the schemas which are greatest lower bounds or
lowest upper bounds play an important role.

A map between graphs S and D that preserves edges is called a morphism. Note that f
is a morphism if and only if D simulates S . To determine whether a morphism from D to
S exists is an NP-complete problem. We will see below, however, that the calculation of a
maximal simulation is a PTIME problem.

Denote by sim(v) the nodes that simulate v. The calculation of the maximal simulation
is equivalent to the determination of all sets sim(v) for v ∈ V . First, our naive calculation
will be based on the de�nition.

N-M-S(G)
1 for all v ∈ V
2 do sim(v)← {u ∈ V | label(u) = label(v)}
3 while ∃ u, v,w ∈ V : v ∈ E−1(u) ∧ w ∈ sim(u) ∧ E−1(w) ∩ sim(v) = ∅
4 do sim(u)← sim(u) \ {w}
5 return {sim(u) | u ∈ V}

Proposition 20.2 The algorithm N-M-S computes the maximal simu-
lation in O(m2n3) time if m ≥ n.

Proof. Let us start with the elements of sim(u). If an element w of sim(u) does not simulate
u by de�nition according to edge (v, u), then we remove w from set sim(u). In this case, we
say that we improved set sim(u) according to edge (v, u). If set sim(u) cannot be improved

786 20. Semi-structured databases

according to any of the edges, then all elements of sim(u) simulate u. To complete the proof,
notice that the while cycle consists of at most n2 iterations.

The efficiency of the algorithm can be improved using special data structures. First,
introduce a set sim-candidate(u), which contains sim(u), and of the elements of whom we
want to �nd out whether they simulate u.

I-M-S(G)
1 for all v ∈ V
2 do sim-candidate(u)← V
3 if E−1(v) = ∅
4 then sim(v)← {u ∈ V | label(u) = label(v)}
5 else sim(v)← {u ∈ V | label(u) = label(v) ∧ E−1(u) , ∅}
6 while ∃ v ∈ V : sim(v) , sim-candidate(v)
7 do removal-candidate← E(sim-candidate(v)) \ E(sim(v))
8 for all u ∈ E(v)
9 do sim(u)← sim(u) \ removal-candidate

10 sim-candidate(v)← sim(v)
11 return {sim(u) | u ∈ V}

The while cycle of the improved algorithm possesses the following invariant characte-
ristics.

I1: ∀ v ∈ V : sim(v) ⊆ sim-candidate(v).
I2: ∀ u, v,w ∈ V : (v ∈ E−1(u) ∧ w ∈ sim(u)) ⇒ (E−1(w) ∩ sim-candidate(v) , ∅).

When improving the set sim(u) according to edge (v, u), we check whether an ele-
ment w ∈ sim(u) has parents in sim(v). It is sufficient to check that for the elements of
sim-candidate(v) instead of sim(v) because of I2. Once an element w′ ∈ sim-candidate(v) \
sim(v) was chosen, it is removed from set sim-candidate(v).

We can further improve the algorithm if we do not compute the set removal-candidate
in the iterations of the while cycle but refresh the set dynamically.

20.2. Schemas and simulations 787

E-M-S(G)
1 for all v ∈ V
2 do sim-candidate(v)← V
3 if E−1(v) = ∅
4 then sim(v)← {u ∈ V | label(u) = label(v)}
5 else sim(v)← {u ∈ V | label(u) = label(v) ∧ E−1(u) , ∅}
6 removal-candidate(v)← E(V) \ E(sim(v))
7 while ∃ v ∈ V : removal-candidate(v) , ∅
8 do for all u ∈ E(v)
9 do for all w ∈ removal-candidate(v)

10 do if w ∈ sim(u)
11 then sim(u)← sim(u) \ {w}
12 for all w′′ ∈ E(w)
13 do if E−1(w′′) ∩ sim(u) = ∅
14 then removal-candidate(u)← removal-candidate(u) ∪ {w′′}
15 sim-candidate(v)← sim(v)
16 removal-candidate(v)← ∅
17 return {sim(u) | u ∈ V}

The above algorithm possesses the following invariant characteristic with respect to the
while cycle.

I3: ∀ v ∈ V: removal-candidate(v) = E(sim-candidate(v)) \ E(sim(v)).

Use an n × n array as a counter for the realization of the algorithm. Let the va-
lue counter[w′′, u] be the nonnegative integer |E−1(w′′) ∩ sim(u)|. The initial values of
the counter are set in O(mn) time. When element w is removed from set sim(u), the va-
lues counter[w′′, u] must be decreased for all children w′′ of w. By this we ensure that
the innermost if condition can be checked in constant time. At the beginning of the al-
gorithm, the initial values of the sets sim(v) are set in O(n2) time if m ≥ n. The setting
of sets removal-candidate(v) takes altogether O(mn) time. For arbitrary nodes v and w, if
w ∈ removal-candidate(v) is true in the i-th iteration of the while cycle, then it will be false
in the j-th iteration for j > i. Since w ∈ removal-candidate(v) implies w < E(sim(v)), the
value of sim-candidate(v) in the j-th iteration is a subset of the value of sim(v) in the i-th
iteration, and we know that invariant I3 holds. Therefore w ∈ sim(u) can be checked in∑

v
∑

w |E(v)| = O(mn) time. w ∈ sim(u) is true at most once for all nodes w and u, since
once the condition holds, we remove w from set sim(u). This implies that the computation
of the outer if condition of the while cycle takes ∑

v
∑

w(1 + |E(v)|) = O(mn) time.
Thus we have proved the following proposition.

Proposition 20.3 The algorithm E-M-S computes the maximal si-
mulation in O(mn) time if m ≥ n.

If the inverse of a simulation is also a simulation, then it is called a bisimulation. The
empty relation is a bisimulation, and there always exist a maximal bisimulation. The maxi-
mal bisimulation can be computed more efficiently than the simulation. The maximal bisi-
mulation can be computed in O(m lg n) time using the PT algorithm. In case of edge-labeled

788 20. Semi-structured databases

graphs, the cost is O(m lg(m + n)).
We will see that bisimulations play an important role in indexing semi-structured data-

bases, since the quotient graph of a graph with respect to a bisimulation contains the same
label strings as the original graph. Note that in practice, instead of simulations, the so-called
DTD descriptions are also used as schemas. DTD consists of data type de�nitions formula-
ted in regular language.

Exercises
20.2-1 Show that simulation does not imply bisimulation.
20.2-2 De�ne the operation turn-tree for a directed, not necessarily acyclic, vertex-labeled
graph G the following way. The result of the operation is a not necessarily �nite graph G′,
the vertices of which are the directed paths of G starting from the root, and the labels of
the paths are the corresponding label strings. Connect node p1 with node p2 by an edge if
p1 can be obtained from p2 by deletion of its endpoint. Prove that G and turn-tree(G) are
similar with respect to the bisimulation.

20.3. Queries and indexes
The information stored in semi-structured databases can be retrieved using queries. For this,
we have to �x the form of the questions, so we give a query language, and then de�ne
the meaning of questions, that is, the query evaluation with respect to a semi-structured
database. For efficient evaluation we usually use indexes. The main idea of indexing is that
we reduce the data stored in the database according to some similarity principle, that is, we
create an index that re�ects the structure of the original data. The original query is executed
in the index, then using the result we �nd the data corresponding to the index values in the
original database. The size of the index is usually much smaller than that of the original
database, therefore queries can be executed faster. Note that the inverted list type index used
in case of classical databases can be integrated with the schema type indexes introduced
below. This is especially advantageous when searching XML documents using keywords.

First we will get acquainted with the query language consisting of regular expressions
and the index types used with it.

De�nition 20.4 Given a directed vertex-labeled graph G = (V, E, root,Σ, label, id, value),
where V denotes the set of vertices, E ⊆ V × V the set of edges and Σ the set of labels. Σ

contains two special labels, ROOT and VALUE. The label of vertex v is label(v), and the
identi�er of vertex v is id(v). The root is a node with label ROOT, and from which all nodes
can be reached via directed paths. If v is a leaf, that is, if it has no outgoing edges, then its
label is VALUE, and value(v) is the value corresponding to leaf v. Under the term path we
always mean a directed path, that is, a sequence of nodes n0, . . . , np such that there is an
edge from ni to ni+1 if 0 ≤ i ≤ p−1. A sequence of labels l0, . . . , lp is called a label sequence
or simple expression. Path n0, . . . , np �ts to the label sequence l0, . . . , lp if label(ni) = li for
all 0 ≤ i ≤ p.

We de�ne regular expressions recursively.

De�nition 20.5 Let R ::= ε | Σ | _ | R.R | R|R | (R) | R? | R∗, where R is a regular expression,

20.3. Queries and indexes 789

and ε is the empty expression, _ denotes an arbitrary label, . denotes succession, | is the
logical OR operation, ? is the optional choice, and * means �nite repetition. Denote by
L(R) the regular language consisting of the label sequences determined by R. Node n �ts
to a label sequence if there exists a path from the root to node n such that �ts to the label
sequence. Node n �ts to the regular expression R if there exists a label sequence in the
language L(R), to which node n �ts. The result of the query on graph G determined by the
regular expression R is the set R(G) of nodes that �t to expression R.

Since we are always looking for paths starting from the root when evaluating regular
expressions, the �rst element of the label sequence is always ROOT, which can therefore be
omitted.

Note that the set of languages L(R) corresponding to regular expressions is closed under
intersection, and the problem whether L(R) = ∅ is decidable.

The result of the queries can be computed using the nondeterministic automaton AR
corresponding to the regular expression R. The algorithm given recursively is as follows.

N-E(G, AR)
1 Visited← ∅ ¤ If we were in node u in state s,

then (u, s) was put in set Visited.
2 T (root(G), starting-state(AR))

T(u, s)
1 if (u, s) ∈ Visited
2 then return result[u, s]
3 Visited← Visited ∪ {(u, s)}
4 result[u, s]← ∅
5 for all s ε−→ s′ ¤ If we get to state s′ from state s by reading sign ε.
6 do if s' ∈ �nal-state(AR)
7 then result[u, s]← {u} ∪ result[u, s]
8 result[u, s]← result[u, s] ∪ T(u, s′)
9 for all s label(u)−→ s′ ¤ If we get to state s′ from state s by reading sign label(u).

10 do if s′ ∈ �nal-state(AR)
11 then result[u, s]← {u} ∪ result[u, s]
12 for all v, where (u, v) ∈ E(G) ¤ Continue the traversal for the

children of node u recursively.
13 do result[u, s]← result[u, s] ∪ T(v, s′)
14 return result[u, s]

Proposition 20.6 Given a regular query R and a graph G, the calculation cost of R(G) is
a polynomial of the number of edges of G and the number of different states of the �nite
nondeterministic automaton corresponding to R.

Proof. The sketch of the proof is the following. Let AR be the �nite nondeterministic auto-
maton corresponding to R. Denote by |AR| the number of states of AR. Consider the breadth-
�rst traversal corresponding to the algorithm T of graph G with m edges, starting

790 20. Semi-structured databases

from the root. During the traversal we get to a new state of the automaton according to the
label of the node, and we store the state reached at the node for each node. If the �nal state
of the automaton is acceptance, then the node is a result. During the traversal, we sometimes
have to step back on an edge to ensure we continue to places we have not seen yet. It can be
proved that during a traversal every edge is used at most once in every state, so this is the
number of steps performed by that automaton. This means O(|AR|m) steps altogether, which
completes the proof.

Two nodes of graph G are indistinguishable with regular expressions if there is no
regular R for which one of the nodes is among the results and the other node is not. Of
course, if two nodes cannot be distinguished, then their labels are the same. Let us categorize
the nodes in such a way that nodes with the same label are in the same class. This way we
produce a partition P of the set of nodes, which is called the basic partition. It can also
be seen easily that if two nodes are indistinguishable, then it is also true for the parents.
This implies that the set of label sequences corresponding to paths from the root to the
indistinguishable nodes is the same. Let L(n) = {l0, . . . , lp | n �ts to the label sequence
l0, . . . , lp} for all nodes n. Nodes n1 and n2 are indistinguishable if and only if L(n1) = L(n2).
If the nodes are assigned to classes in such a way that the nodes having the same value
L(n) are arranged to the same class, then we get a re�nement P′ of partition P. For this
new partition, if a node n is among the results of a regular query R, then all nodes from the
equivalence class of n are also among the results of the query.

De�nition 20.7 Given a graph G = (V, E, root,Σ, label, id, value) and a partition P
of V that is a re�nement of the basic partition, that is, for which the nodes belon-
ging to the same equivalence class have the same label. Then the graph I(G) =

(P, E′, root',Σ, label', id′, value') is called an index. The nodes of the index graph are the
equivalence classes of partition P, and (I, J) ∈ E′ if and only if there exist i ∈ I and j ∈ J
such that (i, j) ∈ E. If I ∈ P, then id′(I) is the identi�er of index node I, label'(I) = label(n),
where n ∈ I, and root' is the equivalence class of partition P that contains the root of G. If
label(I) = VALUE, then label'(I) = {value(n) | n ∈ I}.

Given a partition P of set V , denote by class(n) the equivalence class of P that contains
n for n ∈ V . In case of indexes, the notation I(n) can also be used instead of class(n).

Note that basically the indexes can be identi�ed with the different partitions of the
nodes, so partitions can also be called indexes without causing confusion. Those indexes
will be good that are of small size and for which the result of queries is the same on the
graph and on the index. Indexes are usually given by an equivalence relation on the nodes,
and the partition corresponding to the index consists of the equivalence classes.

De�nition 20.8 Let P be the partition for which n,m ∈ I for a class I if and only if L(n) =

L(m). Then the index I(G) corresponding to P is called a naive index.

In case of naive indexes, the same language L(n) is assigned to all elements n of class I
in partition P, which will be denoted by L(I).

Proposition 20.9 Let I be a node of the naive index and R a regular expression. Then
I ∩ R(G) = ∅ or I ⊆ R(G).

Proof. Let n ∈ I ∩ R(G) and m ∈ I. Then there exists a label sequence l0, . . . , lp in L(R) to

20.3. Queries and indexes 791

which n �ts, that is, l0, . . . , lp ∈ L(n). Since L(n) = L(m), m also �ts to this label sequence,
so m ∈ I ∩ R(G).

N-I-E(G,R)
1 let IG be the naive index of G
2 Q← ∅
3 for all I ∈ N-E(IG, AR)
4 do Q← Q ∪ I
5 return Q

Proposition 20.10 Set Q produced by the algorithm N-I-E is equal to
R(G).

Proof. Because of the previous proposition either all elements of a class I are among the
results of a query or none of them.

Using naive indexes we can evaluate queries, but, according to the following proposi-
tion, not efficiently enough. The proposition was proved by Stockmeyer and Meyer in 1973.

Proposition 20.11 The creation of the naive index IG needed in the algorithm N-I-
E is PSPACE-complete.

The other problem with using naive indexes is that the sets L(I) are not necessary dis-
joint for different I, which might cause redundancy in storing.

Because of the above we will try to �nd a re�nement of the partition corresponding to
the naive index, which can be created efficiently and can still be used to produce R(G).

De�nition 20.12 Index I(G) is safe if for any n ∈ V and label sequence l0, . . . , lp such that
n �ts to the label sequence l0, . . . , lp in graph G, class(n) �ts to the label sequence l0, . . . , lp
in graph I(G). Index I(G) is exact if for any class I of the index and label sequence l0, . . . , lp
such that I �ts to the label sequence l0, . . . , lp in graph I(G), arbitrary node n ∈ I �ts to the
label sequence l0, . . . , lp in graph G.

Safety means that the nodes belonging to the result we obtain by evaluation using the
index contain the result of the regular query, that is, R(G) ⊆ R(I(G)), while exactness means
that the evaluation using the index does not provide false results, that is, R(I(G)) ⊆ R(G).
Using the de�nitions of exactness and of the edges of the index the following proposition
follows.

Proposition 20.13 1. Every index is safe.
2. The naive index is safe and exact.

If I is a set of nodes of G, then the language L(I), to the label strings of which the
elements of I �t, was de�ned using graph G. If we wish to indicate this, we use the notation
L(I,G). However, L(I) can also be de�ned using graph I(G), in which I is a node. In this
case, we can use the notation L(I, I(G)) instead of L(I), which denotes all label sequences
to which node I �ts in graph I(G). L(I,G) = L(I, I(G)) for safe and exact indexes, so in this
case we can write L(I) for simplicity. Then L(I) can be computed using I(G), since the size

792 20. Semi-structured databases

of I(G) is usually smaller than that of G.
Arbitrary index graph can be queried using the algorithm N-E. After that

join the index nodes obtained. If we use an exact index, then the result will be the same as
the result we would have obtained by querying the original graph.

I-E(G, I(G), AR)
1 let I(G) be the index of G
2 Q← ∅
3 for all I ∈ N-E(I(G), AR)
4 do Q← Q ∪ I
5 return Q

First, we will de�ne a safe and exact index that can be created efficiently, and is based
on the similarity of nodes. We obtain the 1-index this way. Its size can be decreased if we
only require similarity locally. The A(k)-index obtained this way lacks exactness, therefore
using the algorithm I-E we can get results that do not belong to the result of
the regular query R, so we have to test our results to ensure exactness.

De�nition 20.14 Let ≈ be an equivalence relation on set V such that, for u ≈ v,
i) label(u) = label(v),
ii) if there is an edge from node u′ to node u, then there exists a node v′ for which there is
an edge from node v′ to node v and u′ ≈ v′.
iii) if there is an edge from node v′ to node v, then there exists a node u′ for which there is
an edge from node u′ to node u and u′ ≈ v′.
The above equivalence relation is called a bisimulation. Nodes u and v of a graph are
bisimilar if and only if there exists a bisimulation ≈ such that u ≈ v.

De�nition 20.15 Let P be the partition consisting of the equivalence classes of a bisimu-
lation. The index de�ned using partition P is called 1-index.

Proposition 20.16 The 1-index is a re�nement of the naive index. If the labels of the ingo-
ing edges of the nodes in graph G are different, that is, label(x) , label(x′) for x , x′ and
(x, y), (x′, y) ∈ E, then L(u) = L(v) if and only if u and v are bisimilar.

Proof. label(u) = label(v) if u ≈ v. Let node u �t to the label sequence l0, . . . , lp, and let
u′ be the node corresponding to label lp−1. Then there exists a v′ such that u′ ≈ v′ and
(u′, u), (v′, v) ∈ E. u′ �ts to the label sequence l0, . . . , lp−1, so, by induction, v′ also �ts to the
label sequence l0, . . . , lp−1, therefore v �ts to the label sequence l0, . . . , lp. So, if two nodes
are in the same class according to the 1-index, then they are in the same class according to
the naive index as well.

To prove the second statement of the proposition, it is enough to show that the naive
index corresponds to a bisimulation. Let u and v be in the same class according to the naive
index. Then label(u) = label(v). If (u′, u) ∈ E, then there exists a label sequence l0, . . . , lp
such that the last two nodes corresponding to the labels are u′ and u. Since we assumed that
the labels of the parents are different, L(u) = L′ ∪ L′′, where L′ and L′′ are disjoint, and L′
= {l0, . . . , lp | u′ �ts to the sequence l0, . . . , lp−1, and lp = label(u)}, while L′′ = L(u) \ L′.
Since L(u) = L(v), there exists a v′ such that (v′, v) ∈ E and label(u′) = label(v′). L′ =

20.3. Queries and indexes 793

{l0, . . . , lp | v′ �ts to the sequence l0, . . . , lp−1, and lp = label(v)} because of the different
labels of the parents, so L(u′) = L(v′), and u′ ≈ v′ by induction, therefore u ≈ v.

Proposition 20.17 The 1-index is safe and exact.

Proof. If xp �ts to the label sequence l0, . . . , lp in graph G because of nodes x0, . . . , xp,
then, by the de�nition of the index graph, there exists an edge from class(xi) to class(xi+1),
0 ≤ i ≤ p − 1, that is, class(xp) �ts to the label sequence l0, . . . , lp in graph I(G). To
prove exactness, assume that Ip �ts to the label sequence l0, . . . , lp in graph I(G) because
of I0, . . . , Ip. Then there are u′ ∈ Ip−1, u ∈ Ip such that u′ ≈ v′ and (v′, v) ∈ E, that is,
v′ ∈ Ip−1. We can see by induction that v′ �ts to the label sequence l0, . . . , lp−1 because
of nodes x0, . . . , xp−2, v′, but then v �ts to the label sequence l0, . . . , lp because of nodes
x0, . . . , xp−2, v′, v in graph G.

If we consider the bisimulation in case of which all nodes are assigned to different par-
titions, then the graph I(G) corresponding to this 1-index is the same as graph G. Therefore
the size of I(G) is at most the size of G, and we also have to store the elements of I for
the nodes I of I(G), which means we have to store all nodes of G. For faster evaluation of
queries we need to �nd the smallest 1-index, that is, the coarsest 1-index. It can be checked
that x and y are in the same class according to the coarsest 1-index if and only if x and y are
bisimilar.

1-I-E(G,R)
1 let I1 be the coarsest 1-index of G
2 return I-E(G, I1, AR)

In the �rst step of the algorithm, the coarsest 1-index has to be given. This can be
reduced to �nding the coarsest stable partition, what we will discuss in the next section of
this chapter. Thus using the efficient version of the PT-algorithm, the coarsest 1-index can
be found with computation cost O(m lg n) and space requirement O(m + n), where n and m
denote the number of nodes and edges of graph G, respectively.

Since graph I1 is safe and exact, it is sufficient to evaluate the query in graph I1, that is,
to �nd the index nodes that �t to the regular expression R. Using Proposition 20.6, the cost
of this is a polynomial of the size of graph I1.

The size of I1 can be estimated using the following parameters. Let p be the number of
different labels in graph G, and k the diameter of graph G, that is, the length of the longest
directed path. (No node can appear twice in the directed path.) If the graph is a tree, then
the diameter is the depth of the tree. We often create websites that form a tree of depth d,
then we add a navigation bar consisting of q elements to each page, that is, we connect each
node of the graph to q chosen pages. It can be proved that in this case the diameter of the
graph is at most d + q(d − 1). In practice, d and q are usually very small compared to the
size of the graph. The proof of the following proposition can be found in the paper of Milo
and Suciu.

Proposition 20.18 Let the number of different labels in graph G be at most p, and let
the diameter of G be less than k. Then the size of the 1-index I1 de�ned by an arbitrary
bisimulation can be bounded from above with a bound that only depends on k and p but
does not depend on the size of G.

794 20. Semi-structured databases

Exercises
20.3-1 Show that the index corresponding to the maximal simulation is between the 1-index
and the naive index with respect to re�nement. Give an example that shows that both inclu-
sions are proper.
20.3-2 Denote by Is(G) the index corresponding to the maximal simulation. Does
Is(Is(G)) = Is(G) hold?
20.3-3 Represent graph G and the state transition graph of the automaton corresponding to
the regular expression R with relational databases. Give an algorithm in a relational query
language, for example in PL/SQL, that computes R(G).

20.4. Stable partitions and the PT-algorithm
Most index structures used for efficient evaluation of queries of semi-structured databases
are based on a partition of the nodes of a graph. The problem of creating indexes can often
be reduced to �nding the coarsest stable partition.

De�nition 20.19 Let E be a binary relation on the �nite set V, that is, E ⊆ V × V. Then
V is the set of nodes, and E is the set of edges. For arbitrary S ⊆ V, let E(S) = {y | ∃x ∈
S , (x, y) ∈ E} and E−1(S) = {x | ∃ y ∈ S , (x, y) ∈ E}. We say that B is stable with respect to
S for arbitrary S ⊆ V and B ⊆ V, if B ⊆ E−1(S) or B ∩ E−1(S) = ∅. Let P be a partition of
V, that is, a decomposition of V into disjoint sets, or in other words, blocks. Then P is stable
with respect to S , if all blocks of P are stable with respect to S . P is stable with respect to
partition P′, if all blocks of P are stable with respect to all blocks of P′. If P is stable with
respect to all of its blocks, then partition P is stable. Let P and Q be two partitions of V. Q
is a re�nement of P, or P is coarser than Q, if every block of P is the union of some blocks
of Q. Given V, E and P, the coarsest stable partition is the coarsest stable re�nement of P,
that is, the stable re�nement of P that is coarser than any other stable re�nement of P.

Note that stability is sometimes de�ned the following way. B is stable with respect to S
if B ⊆ E(S) or B ∩ E(S) = ∅. This is not a major difference, only the direction of the edges
is reversed. So in this case stability is de�ned with respect to the binary relation E−1 instead
of E, where (x, y) ∈ E−1 if and only if (y, x) ∈ E, since (E−1)−1(S) = {x | ∃ y ∈ S , (x, y) ∈
E−1)} = {x | ∃ y ∈ S , (y, x) ∈ E} = E(S).

Let |V | = n and |E| = m. We will prove that there always exists a unique solution of
the problem of �nding the coarsest stable partition, and there is an algorithm that �nds the
solution in O(m lg n) time with space requirement O(m + n). This algorithm was published
by R. Paige and R. E. Tarjan in 1987, therefore it will be called the PT-algorithm.

The main idea of the algorithm is that if a block is not stable, then it can be split into
two in such a way that the two parts obtained are stable. First we will show a naive method.
Then, using the properties of the split operation, we will increase its efficiency by continuing
the procedure with the smallest part.

De�nition 20.20 Let E be a binary relation on V, S ⊆ V and Q a partition of V. Further-
more, let split(S ,Q) be the re�nement of Q which is obtained by splitting all blocks B of Q

20.4. Stable partitions and the PT-algorithm 795

that are not disjoint from E−1(S), that is, B ∩ E−1(S) , ∅ and B \ E−1(S) , ∅. In this case,
add blocks B ∩ E−1(S) and B \ E−1(S) to the partition instead of B. S is a splitter of Q if
split(S ,Q) , Q.

Note that Q is not stable with respect to S if and only if S is a splitter of Q.
Stability and splitting have the following properties, the proofs are left to the Reader.

Proposition 20.21 Let S and T be two subsets of V, while P and Q two partitions of V.
Then
1. Stability is preserved under re�nement, that is, if Q is a re�nement of P, and P is stable
with respect to S , then Q is also stable with respect to S .
2. Stability is preserved under uni�cation, that is, if P is stable with respect to both S and
T , then P is stable with respect to S ∪ T.
3. The split operation is monotonic in its second argument, that is, if P is a re�nement of Q,
then split(S , P) is a re�nement of split(S ,Q).
4. The split operation is commutative in the following sense. For arbitrary S , T and P,
split(S , split(T, P)) = split(T, split(S , P)), and the coarsest partition of P that is stable with
respect to both S and T is split(S , split(T, P)).

In the naive algorithm, we re�ne partition Q starting from partition P, until Q is stable
with respect to all of its blocks. In the re�ning step, we seek a splitter S of Q that is a union
of some blocks of Q. Note that �nding a splitter among the blocks of Q would be sufficient,
but this more general way will help us in improving the algorithm.

N-PT(V, E, P)
1 Q← P
2 while Q is not stable
3 do let S be a splitter of Q that is the union of some blocks of Q
4 Q← split(S ,Q)
5 return Q

Note that the same set S cannot be used twice during the execution of the algorithm,
since stability is preserved under re�nement, and the re�ned partition obtained in step 4 is
stable with respect to S . The union of the sets S used can neither be used later, since stability
is also preserved under uni�cation. It is also obvious that a stable partition is stable with
respect to any S that is a union of some blocks of the partition. The following propositions
can be proved easily using these properties.

Proposition 20.22 In any step of the algorithm N-PT, the coarsest stable re�nement
of P is a re�nement of the actual partition stored in Q.

Proof. The proof is by induction on the number of times the cycle is executed. The case
Q = P is trivial. Suppose that the statement holds for Q before using the splitter S . Let R be
the coarsest stable re�nement of P. Since S consists of blocks of Q, and, by induction, R is
a re�nement of Q, therefore S is the union of some blocks of R. R is stable with respect to
all of its blocks and the union of any of its blocks, thus R is stable with respect to S , that is,
R = split(S ,R). On the other hand, using that the split operation is monotonic, split(S ,R) is
a re�nement of split(S ,Q), which is the actual value of Q.

796 20. Semi-structured databases

Proposition 20.23 The algorithm N-PT determines the unique coarsest stable re�ne-
ment of P, while executing the cycle at most n − 1 times.

Proof. The number of blocks of Q is obviously at least 1 and at most n. Using the split
operation, at least one block of Q is divided into two, so the number of blocks increases.
This implies that the cycle is executed at most n−1 times. Q is a stable re�nement of P when
the algorithm terminates, and, using the previous proposition, the coarsest stable re�nement
of P is a re�nement of Q. This can only happen if Q is the coarsest stable re�nement of P.

Proposition 20.24 If we store the set E−1({x}) for all elements x of V, then the cost of the
algorithm N-PT is at most O(mn).

Proof. We can assume, without restricting the validity of the proof, that there are no sinks
in the graph, that is, every node has outgoing edges. Then 1 ≤ |E({x})| for arbitrary x in V .
Consider a partition P, and split all blocks B of P. Let B′ be the set of the nodes of B that
have at least one outgoing edge. Then B′ = B ∩ E−1(V). Now let B′′ = B \ E−1(V), that is,
the set of sinks of B. Set B′′ is stable with respect to arbitrary S , since B′′ ∩ E−1(S) = ∅,
so B′′ does not have to be split during the algorithm. Therefore, it is enough to examine
partition P′ consisting of blocks B′ instead of P, that is, a partition of set V ′ = E−1(V).
By adding blocks B′′ to the coarsest stable re�nement of P′ we obviously get the coarsest
stable re�nement of P. This means that there is a preparation phase before the algorithm
in which P′ is obtained, and a processing phase after the algorithm in which blocks B′′ are
added to the coarsest stable re�nement obtained by the algorithm. The cost of preparation
and processing can be estimated the following way. V ′ has at most m elements. If, for all x
in V we have E−1({x}), then the preparation and processing requires O(m + n) time.

From now on we will assume that 1 ≤ |E({x})| holds for arbitrary x in V , which implies
that n ≤ m. Since we store sets E−1({x}), we can �nd a splitter among the blocks of partition
Q in O(m) time. This, combined with the previous proposition, means that the algorithm can
be performed in O(mn) time.

The algorithm can be executed more efficiently using a better way of �nding splitter
sets. The main idea of the improved algorithm is that we work with two partitions besides
P, Q and a partition X that is a re�nement of Q in every step such that Q is stable with
respect to all blocks of X. At the start, let Q = P and let X be the partition consisting only
one block, set V . The re�ning step of the algorithm is repeated until Q = X.

PT(V, E, P)
1 Q← P
2 X ← {V}
3 while X , Q
4 do let S be a block of X that is not a block of Q,

and B a block of Q in S for which |B| ≤ |S |/2
5 X ← (X \ {S }) ∪ {B, S \ B}
6 Q← split(S \ B, split(B,Q))
7 return Q

20.4. Stable partitions and the PT-algorithm 797

Proposition 20.25 The result of the PT-algorithm is the same as that of algorithm N-
PT.

Proof. At the start, Q is a stable re�nement of P with respect to the blocks of X. In step 5,
a block of X is split, thus we obtain a re�nement of X. In step 6, by re�ning Q using splits
we ensure that Q is stable with respect to two new blocks of X. The properties of stability
mentioned in Proposition 20.21 and the correctness of algorithm N-PT imply that the
PT-algorithm also determines the unique coarsest stable re�nement of P.

In some cases one of the two splits of step 6 can be omitted. A sufficient condition is
that E is a function of x.

Proposition 20.26 If |E({x})| = 1 for all x in V, then step 6 of the PT-algorithm can be
exchanged with Q← split(B,Q).

Proof. Suppose that Q is stable with respect to a set S which is the union of some blocks of
Q. Let B be a block of Q that is a subset of S . It is enough to prove that split(B,Q) is stable
with respect to (S \ B). Let B1 be a block of split(B,Q). Since the result of a split according
to B is a stable partition with respect to B, either B1 ⊆ E−1(B) or B1 ⊆ E−1(S) \ E−1(B).
Using |E({x})| = 1, we get B1 ∩ E−1(S \ B) = ∅ in the �rst case, and B1 ⊆ E−1(S \ B) in the
second case, which means that we obtained a stable partition with respect to (S \ B).

Note that the stability of a partition with respect to S and B generally does not imply
that it is also stable with respect to (S \ B). If this is true, then the execution cost of the
algorithm can be reduced, since the only splits needed are the ones according to B because
of the reduced sizes.

The two splits of step 6 can cut a block into four parts in the general case. According to
the following proposition, one of the two parts gained by the �rst split of a block remains
unchanged at the second split, so the two splits can result in at most three parts. Using this,
the efficiency of the algorithm can be improved even in the general case.

Proposition 20.27 Let Q be a stable partition with respect to S , where S is the union of
some blocks of Q, and let B be a block of Q that is a subset of S . Furthermore, let D be a
block of Q that is cut into two (proper) parts D1 and D2 by the operation split(B,Q) in such
a way that none of these is the empty set. Suppose that block D1 is further divided into the
nonempty sets D11 and D12 by split(S \ B, split(B,Q)). Then
1. D1 = D ∩ E−1(B) and D2 = D \ D1 if and only if D ∩ E−1(B) , ∅ and D \ E−1(B) , ∅.
2. D11 = D1 ∩ E−1(S \ B) and D12 = D1 \ D11 if and only if D1 ∩ E−1(S \ B) , ∅ and
D1 \ E−1(S \ B) , ∅.
3. The operation split(S \ B, split(B,Q)) leaves block D2 unchanged.
4. D12 = D1 ∩ (E−1(B) \ E−1(S \ B)).

Proof. The �rst two statements follow using the de�nition of the split operation. To prove
the third statement, suppose that D2 was obtained from D by a proper decomposition. Then
D∩E−1(B) , ∅, and since B ⊆ S , D∩E−1(S) , ∅. All blocks of partition Q, including D, are
stable with respect to S , which implies D ⊆ E−1(S). Since D2 ⊆ D, D2 ⊆ E−1(S)\E−1(B) =

E−1(S \ B) using the �rst statement, so D2 is stable with respect to the set S \ B, therefore a
split according to S \ B does not divide block D2. Finally, the fourth statement follows from
D1 ⊆ E−1(B) and D12 = D1 \ E−1(S \ B).

798 20. Semi-structured databases

Denote by counter(x, S) the number of nodes in S that can be reached from x, that
is, counter(x, S) = |S ∩ E({x})|. Note that if B ⊆ S , then E−1(B) \ E−1(S \ B) = {x ∈
E−1(B) | counter(x, B) = counter(x, S)}.

Since sizes are always halved, an arbitrary x in V can appear in at most lg n+1 different
sets B that were used for re�nement in the PT-algorithm. In the following, we will give
an execution of the PT algorithm in which the determination of the re�nement according
to block B in steps 5 and 6 of the algorithm costs O(|B| + ∑

y∈B |E−1({y})|). Summing this
for all blocks B used in the algorithm and for all elements of these blocks, we get that the
complexity of the algorithm E-PT is at most O(m lg n). To give such a realization of
the algorithm, we have to choose good data structures for the representation of our data.

• Attach node x to all edges (x, y) of set E, and attach the list {(x, y) | (x, y) ∈ E} to all
nodes y. Then the cost of reading set E−1({y}) is proportional to the size of E−1({y}).

• Let partition Q be a re�nement of partition X. Represent the blocks of the two partitions
by records. A block S of partition X is simple if it consists of one block of Q, otherwise
it is compound.

• Let C be the list of all compound blocks in partition X. At start, let C = {V}, since V is
the union of the blocks of P. If P consists of only one block, then P is its own coarsest
stable re�nement, so no further computation is needed.

• For any block S of partition P, let Q-blocks(S) be the double-chained list of the blocks
of partition Q the union of which is set S . Furthermore, store the values counter(x, S)
for all x in set E−1(S) to which one pointer points from all edges (x, y) such that y is an
element of S . At start, the value assigned to all nodes x is counter(x,V) = |E({x})|, and
make a pointer to all nodes (x, y) that points to the value counter(x,V).

• For any block B of partition Q, let X-block(B) be the block of partition X in which B
appears. Furthermore, let size(B) be the cardinality of B, and elements(B) the double-
chained list of the elements of B. Attach a pointer to all elements that points to the block
of Q in which this element appears. Using double chaining any element can be deleted
in O(1) time.

Using the proof of Proposition 20.24, we can suppose that n ≤ m without restricting the
validity. It can be proved that in this case the space requirement for the construction of such
data structures is O(m).

20.4. Stable partitions and the PT-algorithm 799

E-PT(V, E, P)
1 if |P| = 1
2 then return P
3 Q← P
4 X ← {V}
5 C ← {V} ¤ C is the list of the compound blocks of X.
6 while C , ∅
7 do let S be an element of C
8 let B be the smaller of the �rst two elements of S
9 C ← C \ {S }

10 X ← (X \ {S }) ∪ {{B}, S \ {B}}
11 S ← S \ {B}
12 if |S | > 1
13 then C ← C ∪ {S }
14 Generate set E−1(B) by reading the edges (x, y) of set E for which y

is an element of B, and for all elements x of this set, compute the value
counter(x, B).

15 Find blocks D1 = D ∩ E−1(B) and D2 = D \ D1 for all blocks
D of Q by reading set E−1(B)

16 By reading all edges (x, y) of set E for which y is an element of B,
create set E−1(B) \ E−1(S \ B) checking the condition
counter(x, B) = counter(x, S)

17 Reading set E−1(B) \ E−1(S \ B), for all blocks D of Q,
determine the sets D12 = D1 ∩ (E−1(B) \ E−1(S \ B))
and D11 = D1 \ D12

18 for all blocks D of Q for which D11 , ∅, D12 , ∅ and D2 , ∅
19 do if D is a simple block of X
20 then C ← C ∪ {D}
21 Q← (Q \ {D}) ∪ {D11,D12,D2}
22 Compute the value counter(x, S) by reading

the edges (x, y) of E for which y is an element of B.
23 return Q

Proposition 20.28 The algorithm E-PT determines the coarsest stable re�nement
of P. The computation cost of the algorithm is O(m lg n), and its space requirement is O(m+

n).

Proof. The correctness of algorithm follows from the correctness of the PT-algorithm and
Proposition 20.27. Because of the data structures used, the computation cost of the steps
of the cycle is proportional to the number of edges examined and the number of elements
of block B, which is O(|B| + ∑

y∈B |E−1({y})|) altogether. Sum this for all blocks B used
during the re�nement and all elements of these blocks. Since the size of B is at most half
the size of S , arbitrary x in set V can be in at most lg n + 1 different sets B. Therefore, the
total computation cost of the algorithm is O(m lg n). It can be proved easily that a space of
O(m + n) size is enough for the storage of the data structures used in the algorithm and their
maintenance.

800 20. Semi-structured databases

Note that the algorithm could be further improved by contracting some of its steps but
that would only decrease computation cost by a constant factor.

Let G−1 = (V, E−1) be the graph that can be obtained from G by changing the direction
of all edges of G. Consider a 1-index in graph G determined by the bisimulation ≈. Let I
and J be two classes of the bisimulation, that is, two nodes of I(G). Using the de�nition of
bisimulation, J ⊆ E(I) or E(I) ∩ J = ∅. Since E(I) = (E−1)−1(I), this means that J is stable
with respect to I in graph G−1. So the coarsest 1-index of G is the coarsest stable re�nement
of the basic partition of graph G−1.

Corollary 20.29 The coarsest 1-index can be determined using the algorithm E-
PT. The computation cost of the algorithm is at most O(m lg n), and its space requirement
is at most O(m + n).

Exercises
20.4-1 Prove Proposition 29.21.
20.4-2 Partition P is size-stable with respect to set S if |E({x})∩ S | = |E({y})∩ S | for arbit-
rary elements x, y of a block B of P. A partition is size-stable if it is size-stable with respect
to all its blocks. Prove that the coarsest size-stable re�nement of an arbitrary partition can
be computed in O(m lg n) time.
20.4-3 The 1-index is minimal if no two nodes I and J with the same label can be cont-
racted, since there exists a node K for which I ∪ J is not stable with respect to K. Give an
example that shows that the minimal 1-index is not unique, therefore it is not the same as
the coarsest 1-index.
20.4-4 Prove that in case of an acyclic graph, the minimal 1-index is unique and it is the
same as the coarsest 1-index.

20.5. A(k)-indexes
In case of 1-indexes, nodes of the same class �t to the same label sequences starting from
the root. This means that the nodes of a class cannot be distinguished by their ancestors.
Modifying this condition in such a way that indistinguishability is required only locally, that
is, nodes of the same class cannot be distinguished by at most k generations of ancestors, we
obtain an index that is coarser and consists of less classes than the 1-index. So the size of the
index decreases, which also decreases the cost of the evaluation of queries. The 1-index was
safe and exact, which we would like to preserve, since these guarantee that the result we get
when evaluating the queries according to the index is the result we would have obtained by
evaluating the query according to the original graph. The A(k)-index is also safe, but it is
not exact, so this has to be ensured by modi�cation of the evaluation algorithm.

De�nition 20.30 The k-bisimulation ≈k is anequivalence relation on the nodes V of a
graph de�ned recursively as
i) u ≈0 v if and only if label(u) = label(v),
ii) u ≈k v if and only if u ≈k−1 v and if there is an edge from node u′ to node u, then there
is a node v′ from which there is an edge to node v and u′ ≈k−1 v′, also, if there is an edge
from node v′ to node v, then there is a node u′ from which there is an edge to node u and

20.5. A(k)-indexes 801

u′ ≈k−1 v′.
In case u ≈k v u and v are k-bisimilar. The classes of the partition according to the A(k)-
index are the equivalence classes of the k-bisimulation.

The �A� in the notation refers to the word �approximative�.
Note that the partition belonging to k = 0 is the basic partition, and by increasing k we

re�ne this, until the coarsest 1-index is reached.
Denote by L(u, k,G) the label sequences of length at most k to which u �ts in graph G.

The following properties of the A(k)-index can be easily checked.

Proposition 20.31
1. If u and v are k-bisimilar, then L(u, k,G) = L(v, k,G).
2. If I is a node of the A(k)-index and u ∈ I, then L(I, k, I(G)) = L(u, k,G).
3. The A(k)-index is exact in case of simple expressions of length at most k.
4. The A(k)-index is safe.
5. The (k + 1)-bisimulation is a (not necessarily proper) re�nement of the k-bisimulation.

The A(k)-index compares the k-distance half-neighbourhoods of the nodes which con-
tain the root, so the equivalence of the nodes is not affected by modi�cations outside this
neighbourhood, as the following proposition shows.

Proposition 20.32 Suppose that the shortest paths from node v to nodes x and y contain
more than k edges. Then adding or deleting an edge from u to v does not change the k-
bisimilarity of x and y.

We use a modi�ed version of the PT-algorithm for creating the A(k)-index. Generally,
we can examine the problem of approximation of the coarsest stable re�nement.

De�nition 20.33 Let P be a partition of V in the directed graph G = (V, E), and let
P0, P1, . . . , Pk be a sequence of partitions such that P0 = P and Pi+1 is the coarsest re-
�nement of Pi that is stable with respect to Pi. In this case, partition Pk is the k-step appro-
ximation of the coarsest stable re�nement of P.

Note that every term of sequence Pi is a re�nement of P, and if Pk = Pk−1, then Pk is the
coarsest stable re�nement of P. It can be checked easily that an arbitrary approximation of
the coarsest stable re�nement of P can be computed greedily, similarly to the PT-algorithm.
That is, if a block B of Pi is not stable with respect to a block S of Pi−1, then split B according
to S , and consider the partition split(S , Pi) instead of Pi.

N-A(V, E, P, k)
1 P0 ← P
2 for i← 1 to k
3 do Pi ← Pi−1
4 for all S ∈ Pi−1such that split(S , Pi) , Pi
5 do Pi ← split(S , Pi)
6 return Pk

802 20. Semi-structured databases

Note that the algorithm N-A could also be improved similarly to the
PT-algorithm.

Algorithm N-A can be used to compute the A(k)-index, all we have to
notice is that the partition belonging to the A(k)-index is stable with respect to the partition
belonging to the A(k − 1)-index in graph G−1. It can be shown that the computation cost of
the A(k)-index obtained this way is O(km), where m is the number of edges in graph G.

A(k)-I-E(G, AR, k)
1 let Ik be the A(k)-index of G
2 Q← I-E(G, Ik, AR)
3 for all u ∈ Q
4 do if L(u) ∩ L(AR) = ∅
5 then Q← Q \ {u}
6 return Q

The A(k)-index is safe, but it is only exact for simple expressions of length at most k, so
in step 4, we have to check for all elements u of set Q whether it satis�es query R, and we
have to delete those from the result that do not �t to query R. We can determine using a �nite
nondeterministic automaton whether a given node satis�es expression R as in Proposition
20.6, but the automaton has to run in the other way. The number of these checks can be
reduced according to the following proposition, the proof of which is left to the Reader.

Proposition 20.34 Suppose that in the graph Ik belonging to the A(k)-index, index node I
�ts to a label sequence that ends with s = l0, . . . , lp, p ≤ k − 1. If all label sequences of
the form s'.s that start from the root satisfy expression R in graph G, then all elements of I
satisfy expression R.

Exercises
20.5-1 Denote by Ak(G) the A(k)-index of G. Determine whether Ak(Al(G)) = Ak+l(G).
20.5-2 Prove Proposition 20.31.
20.5-3 Prove Proposition 20.32.
20.5-4 Prove Proposition 20.34.
20.5-5 Prove that the algorithm N- generates the coarsest k-step stable
approximation.
20.5-6 Let A = {A0, A1, . . . , Ak} be a set of indexes, the elements of which are A(0)-, A(1)-,
. . . , A(k)-indexes, respectively. A is minimal, if by uniting any two elements of Ai, Ai is not
stable with respect to Ai−1, 1 ≤ i ≤ k. Prove that for arbitrary graph, there exists a unique
minimal A the elements of which are coarsest A(i)-indexes, 0 ≤ i ≤ k.

20.6. D(k)- and M(k)-indexes
When using A(k)-indexes, the value of k must be chosen appropriately. If k is too large, the
size of the index will be too big, and if k is too small, the result obtained has to be checked
too many times in order to preserve exactness. Nodes of the same class are similar locally,
that is, they cannot be distinguished by their k distance neighbourhoods, or, more precisely,

20.6. D(k)- and M(k)-indexes 803

by the paths of length at most k leading to them. The same k is used for all nodes, even
though there are less important nodes. For instance, some nodes appear very rarely in results
of queries in practice, and only the label sequences of the paths passing through them are
examined. There is no reason for using a better re�nement on the less important nodes. This
suggests the idea of using the dynamic D(k)-index, which assigns different values k to the
nodes according to queries. Suppose that a set of queries is given. If there is an R.a.b and an
R.a.b.c query among them, where R and R′ are regular queries, then a partition according to
at least 1-bisimulation in case of nodes with label b, and according to at least 2-bisimulation
in case of nodes with label c is needed.

De�nition 20.35 Let I(G) be the index graph belonging to graph G, and to all index node
I assign a nonnegative integer k(I). Suppose that the nodes of block I are k(I)-bisimilar. Let
the values k(I) satisfy the following condition: if there is an edge from I to J in graph I(G),
then k(I) ≥ k(J) − 1. The index I(G) having this property is called a D(k)-index.

The �D� in the notation refers to the word �dynamic�. Note that the A(k)-index is a
special case of the D(k)-index, since in case of A(k)-indexes, the elements belonging to any
index node are exactly k-bisimilar.

Since classi�cation according to labels, that is, the basic partition is an A(0)-index, and
in case of �nite graphs, the 1-index is the same as an A(k)-index for some k, these are also
special cases of the D(k)-index. The D(k)-index, just like any other index, is safe, so it is
sufficient to evaluate the queries on them. Results must be checked to ensure exactness.
The following proposition states that exactness is guaranteed for some queries, therefore
checking can be omitted in case of such queries.

Proposition 20.36 Let I1, I2, . . . , Is be a directed path in the D(k)-index, and suppose
that k(I j) ≥ j − 1 if 1 ≤ j ≤ s. Then all elements of Is �t to the label sequence label(I1),
label(I2), . . . , label(Is).

Proof. The proof is by induction on s. The case s = 1 is trivial. By the inductive assumption,
all elements of Is−1 �t to the label sequence label(I1), label(I2), . . . , label(Is−1). Since there
is an edge from node Is−1 to node Is in graph I(G), there exist u ∈ Is and v ∈ Is−1 such that
there is an edge from v to u in graph G. This means that u �ts to the label sequence label(I1),
label(I2), . . . , label(Is) of length s − 1. The elements of Is are at least (s − 1)-bisimilar,
therefore all elements of Is �t to this label sequence.

Corollary 20.37 The D(k)-index is exact with respect to label sequence l0, . . . , lm if k(I) ≥
m for all nodes I of the index graph that �t to this label sequence.

When creating the D(k)-index, we will re�ne the basic partition, that is, the A(0)-index.
We will assign initial values to the classes consisting of nodes with the same label. Suppose
we use t different values. Let K0 be the set of these values, and denote the elements of K0 by
k1 > k2 > . . . > kt. If the elements of K0 do not satisfy the condition given in the D(k)-index,
then we increase them using the algorithm W-C, starting with the greatest value,
in such a way that they satisfy the condition. Thus, the classes consisting of nodes with the
same label will have good k values. After this, we re�ne the classes by splitting them, until
all elements of a class are k-bisimilar, and assign this k to all terms of the split. During this
process the edges of the index graph must be refreshed according to the partition obtained

804 20. Semi-structured databases

by re�nement.

W-C(G, K0)
1 K ← ∅
2 K1 ← K0
3 while K1 , ∅
4 do for all I, where I is a node of the A(0)-index and k(I) = max(K1)
5 do for all J, where J is a node of the A(0)-index and there is an edge from J to I
6 k(J)← max(k(J),max(K1) − 1)
7 K ← K ∪ {max(K1)}
8 K1 ← {k(A) | A is a node of the A(0)-index } \ K
9 return K

It can be checked easily that the computation cost of the algorithm W-C is
O(m), where m is the number of edges of the A(0)-index.

D(k)-I-C(G,K0)
1 let I(G) be the A(0)-index belonging to graph G, let VI be the set of nodes of I(G),

let EI be the set of edges of I(G)
2 K ←W-C(G,K0) ¤ Changing the initial weights

according to the condition of the D(k)-index.
3 for k ← 1 to max(K)
4 do for all I ∈ VI
5 do if k(I) ≥ k
6 then for all J, where (J, I) ∈ EI
7 do VI ← (VI \ {I}) ∪ {I ∩ E(J), I \ E(J)}
8 k(I ∩ E(J))← k(I)
9 k(I \ E(J))← k(I)

10 EI ← {(A, B) | A, B ∈ VI ,∃ a ∈ A,∃ b ∈ B, (a, b) ∈ E}
11 I(G)← (VI , EI)
12 return I(G)

In step 7, a split operation is performed. This ensures that the classes consisting of
(k − 1)-bisimilar elements are split into equivalence classes according to k-bisimilarity. It
can be proved that the computation cost of the algorithm D(k)-I-C is at most
O(km), where m is the number of edges of graph G, and k = max(K0).

In some cases, the D(k)-index results in a partition that is too �ne, and it is not efficient
enough for use because of its huge size. Over-re�nement can originate in the following.
The algorithm D(k)-I-C assigns the same value k to the nodes with the same
label, although some of these nodes might be less important with respect to queries, or
appear more often in results of queries of length much less than k, so less �neness would
be enough for these nodes. Based on the value k assigned to a node, the algorithm W-
C will not decrease the value assigned to the parent node if it is greater than k − 1.
Thus, if these parents are not very signi�cant nodes considering frequent queries, then this
can cause over-re�nement. In order to avoid over-re�nement, we introduce the M(k)-index
and the M∗(k)-index, where the �M� refers to the word �mixed�, and the �*� shows that

20.6. D(k)- and M(k)-indexes 805

not one index is given but a �nite hierarchy of gradually re�ned indexes. The M(k)-index is
a D(k)-index the creation algorithm of which not necessarily assigns nodes with the same
label to the same k-bisimilarity classes.

Let us �rst examine how a D(k)-index I(G) = (VI , EI) must be modi�ed if the initial
weight kI of index node I is increased. If k(I) ≥ kI , then I(G) does not change. Otherwise,
to ensure that the conditions of the D(k)-index on weights are satis�ed, the weights on the
ancestors of I must be increased recursively until the weight assigned to the parents is at least
kI − 1. Then, by splitting according to the parents, the �neness of the index nodes obtained
will be at least kI , that is, the elements belonging to them will be at least kI-bisimilar. This
will be achieved using the algorithm W-I.

W-I(I, kI , I(G))
1 if k(I) ≥ kI
2 then return I(G)
3 for all (J, I) ∈ EI
4 do I(G)←W-I(J, kI − 1, I(G))
5 for all (J, I) ∈ EI
6 do VI ← (VI \ {I}) ∪ {I ∩ E(J), I \ E(J)}
7 EI ← {(A, B) | A, B ∈ VI ,∃ a ∈ A,∃ b ∈ B, (a, b) ∈ E}
8 I(G)← (VI , EI)
9 return I(G)

The following proposition can be easily proved, and with the help of this we will be
able to achieve the appropriate �neness in one step, so we will not have to increase step by
step anymore.

Proposition 20.38 u ≈k v if and only if u ≈0 v, and if there is an edge from node u′ to
node u, then there is a node v′, from which there is an edge to node v and u′ ≈k−1 v′, and,
conversely, if there is an edge from node v′ to node v, then there is a node u′, from which
there is an edge to node u and u′ ≈k−1 v′.

Denote by FRE the set of simple expressions, that is, the label sequences determined
by the frequent regular queries. We want to achieve a �neness of the index that ensures that
it is exact on the queries belonging to FRE. For this, we have to determine the signi�cant
nodes, and modify the algorithm D(k)-I-C in such a way that the not signi�cant
nodes and their ancestors are always deleted at the re�ning split.

Let R ∈ FRE be a frequent simple query. Denote by S and T the set of nodes that �t to
R in the index graph and data graph, respectively, that is S = R(I(G)) and T = R(G). Denote
by k(I) the �neness of index node I in the index graph I(G), then the nodes belonging to I
are at most k(I)-bisimilar.

806 20. Semi-structured databases

R(R, S ,T)
1 for all I ∈ S
2 do I(G)← R-I-N(I, length(R), I ∩ T)
3 while ∃ I ∈ VI such that k(I) < length(R) and I �ts to R
4 do I(G)←W-I(I, length(R), I(G))
5 return I(G)

The re�nement of the index nodes will be done using the following algorithm. First, we
re�ne the signi�cant parents of index node I recursively. Then we split I according to its
signi�cant parents in such a way that the �neness of the new parts is k. The split parts of I
are kept in set H. Lastly, we unite those that do not contain signi�cant nodes, and keep the
original �neness of I for this united set.

R-I-N(I, k, signi�cant-nodes)
1 if k(I) ≥ k
2 then return I(G)
3 for all (J, I) ∈ EI
4 do signi�cant-parents← E−1(signi�cant-nodes) ∩ J
5 if signi�cant-parents , ∅
6 then R-I-N(J, k − 1, signi�cant-parents)
7 k-previous← k(I)
8 H ← {I}
9 for all (J, I) ∈ EI

10 do if E−1(signi�cant-parents) ∩ J , ∅
11 then for all F ∈ H
12 do VI ← (VI \ {F}) ∪ {F ∩ E(J), F \ E(J)}
13 EI ← {(A, B) | A, B ∈ VI ,∃ a ∈ A,∃ b ∈ B, (a, b) ∈ E}
14 k(F ∩ E(J))← k
15 k(F \ E(J))← k
16 I(G)← (VI , EI)
17 H ← (H \ {F}) ∪ {F ∩ E(J), F \ E(J)}
18 remaining← ∅
19 for all F ∈ H
20 do if signi�cant-nodes ∩ F = ∅
21 then remaining← remaining ∪ F
22 VI ← (VI \ {F})
23 VI ← VI ∪ {remaining}
24 EI ← {(A, B) | A, B ∈ VI ,∃ a ∈ A,∃ b ∈ B, (a, b) ∈ E}
25 k(remaining)← k-previous
26 I(G)← (VI , EI)
27 return I(G)

The algorithm R re�nes the index graph I(G) according to a frequent simple exp-
ression in such a way that it splits an index node into not necessarily equally �ne parts, and

20.6. D(k)- and M(k)-indexes 807

thus avoids over-re�nement. If we start from the A(0)-index, and create the re�nement for
all frequent queries, then we get an index graph that is exact with respect to frequent que-
ries. This is called the M(k)-index. The set FRE of frequent queries might change during
the process, so the index must be modi�ed dynamically.

De�nition 20.39 The M(k)-index is a D(k)-index created using the following M(k)-I-
C algorithm.

M(k)-I-C(G,FRE)
1 I(G)← the A(0) index belonging to graph G
2 VI ← the nodes of I(G)
3 for all I ∈ VI
4 do k(I)← 0
5 EI ← the set of edges of I(G)
6 for all R ∈ FRE
7 do I(G)← R(R, R(I(G)), R(G))
8 return I(G)

The M(k)-index is exact with respect to frequent queries. In case of a not frequent query,
we can do the following. The M(k)-index is also a D(k)-index, therefore if an index node
�ts to a simple expression R in the index graph I(G), and the �neness of the index node is at
least the length of R, then all elements of the index node �t to the query R in graph G. If the
�neness of the index node is less, then for all of its elements, we have to check according to
N-E whether it is a solution in graph G.

When using the M(k)-index, over-re�nement is the least if the lengths of the frequent
simple queries are the same. If there are big differences between the lengths of frequent
queries, then the index we get might be too �ne for the short queries. Create the sequence
of gradually �ner indexes with which we can get from the A(0)-index to the M(k)-index in
such a way that, in every step, the �neness of parts obtained by splitting an index node is
greater by at most one than that of the original index node. If the whole sequence of indexes
is known, then we do not have to use the �nest and therefore largest index for the evaluation
of a simple query, but one whose �neness corresponds to the length of the query.

De�nition 20.40 The M∗(k)-index is a sequence of indexes I0, I1, . . . , Ik such that
1. Index Ii is an M(i)-index, where i = 0, 1, . . . , k.
2. The �neness of all index nodes in Ii is at most i, where i = 0, 1, . . . , k.
3. Ii+1 is a re�nement of Ii, where i = 0, 1, . . . , k − 1.
4. If node J of index Ii is split in index Ii+1, and J′ is a set obtained by this split, that is,

J′ ⊆ J, then k(J) ≤ k(J′) ≤ k(J) + 1.
5. Let J be a node of index Ii, and k(J) < i. Then k(J) = k(J′) for i < i′ and for all J′ index

nodes of Ii′ such that J′ ⊆ J.

It follows from the de�nition that in case of M∗(k)-indexes I0 is the A(0)-index. The
last property says that if the re�nement of an index node stops, then its �neness will not

808 20. Semi-structured databases

change anymore. The M∗(k)-index possesses the good characteristics of the M(k)-index,
and its structure is also similar: according to frequent queries the index is further re�ned if
it is necessary to make it exact on frequent queries, but now we store and refresh the coarser
indexes as well, not only the �nest.

When representing the M∗(k)-index, we can make use of the fact that if an index node
is not split anymore, then we do not need to store this node in the new indexes, it is enough
to refer to it. Similarly, edges between such nodes do not have to be stored in the sequence
of indexes repeatedly, it is enough to refer to them. Creation of the M∗(k)-index can be done
similarly to the M(k)-I-C algorithm. The detailed description of the algorithm
can be found in the paper of He and Yang.

With the help of the M∗(k)-index, we can use several strategies for the evaluation of
queries. Let R be a frequent simple query.

The simplest strategy is to use the index the �neness of which is the same as the length
of the query.

M∗(k)-I-N-E(G, FRE, R)
1 {I0, I1 ,. . . , Ik}← the M∗(k)-index corresponding to graph G
2 h← length(R)
3 return I-E(G, Ih, AR)

The evaluation can also be done by gradually evaluating the longer pre�xes of the query
according to the index the �neness of which is the same as the length of the pre�x. For the
evaluation of a pre�x, consider the partitions of the nodes found during the evaluation of
the previous pre�x in the next index and from these, seek edges labeled with the following
symbol. Let R = l0, l1, . . . ,lh be a simple frequent query, that is, length(R) = h.

20.7. Branching queries 809

M∗(k)-I-E-T--B(G, FRE, R)
1 {I0, I1, . . . , Ik}← the M∗(k)-index corresponding to graph G
2 R0 ← l0
3 H0 ← ∅
4 for all C ∈ EI0 (root(I0)) ¤ The children of the root in graph I0.
5 do if label(C) = l0
6 then H0 ← H0 ∪ {C}
7 for j← 1 to length(R)
8 do H j ← ∅
9 R j ← R j−1.l j

10 H j−1 ← M∗(k)-I-E-T--B(G,FRE, R j−1)
11 for all A ∈ H j−1 ¤ Node A is a node of graph I j−1.
12 do if A = ∪Bm, where Bm ∈ VI j ¤ The partition of node A in graph I j.
13 then for minden Bm
14 do for all C ∈ EI j (Bm) ¤ For all children of

Bm in graph I j.
15 do if label(C) = l j
16 then H j ← H j ∪ {C}
17 return Hh

Our strategy could also be that we �rst �nd a subsequence of the label sequence cor-
responding to the simple query that contains few nodes, that is, its selectivity is large. Then
�nd the �tting nodes in the index corresponding to the length of the subsequence, and using
the sequence of indexes see how these nodes are split into new nodes in the �ner index
corresponding to the length of the query. Finally, starting from these nodes, �nd the no-
des that �t to the remaining part of the original query. The detailed form of the algorithm
M∗(k)-I-P-E is left to the Reader.

Exercises
20.6-1 Find the detailed form of the algorithm M∗(k)-I-P-E . What
is the cost of the algorithm?
20.6-2 Prove Proposition 20.38.
20.6-3 Prove that the computation cost of the algorithm W-C is O(m), where
m is the number of edges of the A(0)-index.

20.7. Branching queries
With the help of regular queries we can select the nodes of a graph that are reached from
the root by a path the labels of which �t to a given regular pattern. A natural generalization
is to add more conditions that the nodes of the path leading to the node have to satisfy. For
example, we might require that the node can be reached by a label sequence from a node
with a given label. Or, that a node with a given label can be reached from another node
by a path with a given label sequence. We can take more of these conditions, or use their
negation or composition. To check whether the required conditions hold, we have to step not

810 20. Semi-structured databases

only forward according to the direction of the edges, but sometimes also backward. In the
following, we will give the description of the language of branching queries, and introduce
the forward-backward indexes. The forward-backward index which is safe and exact with
respect to all branching queries is called FB-index. Just like the 1-index, this is also usually
too large, therefore we often use an FB(f , b, d)-index instead, which is exact if the length
of successive forward steps is at most f , the length of successive backward steps is at most
b, and the depth of the composition of conditions is at most d. In practice, values f , b and
d are usually small. In case of queries for which the value of one of these parameters is
greater than the corresponding value of the index, a checking step must be added, that is,
we evaluate the query on the index, and only keep those nodes of the resulted index nodes
that satisfy the query.

If there is a directed edge from node n to node m, then this can be denoted by n/m or
m\n. If node m can be reached from node n by a directed path, then we can denote that by
n//m or m\\n. (Until now we used . instead of /, so // represents the regular expression _*
or * in short.)

From now on, a label sequence is a sequence in which separators are the forward signs
(/, //) and the backward signs (\, \\). A sequence of nodes �t to a label sequence if the
relation of successive nodes is determined by the corresponding separator, and the labels of
the nodes come according to the label sequence.

There are only forward signs in forward label sequences, and only backward signs in
backward label sequences.

Branching queries are de�ned by the following grammar .

branching_query ::= forward_label sequence [or_expression] forward_sign branching_expression
| forward_label_sequence [or_expression]
| forward_label_sequence

or_expression ::= and_expression or or_expression
| and_expressnion

and_expression ::= branching_condition and and_expression
| not_branching_condition and and_expression
| branching_condition
| not_branching_condition

not_branching_condition ::= not branching_condition
branching_condition ::= condition_label_sequence [or_expression] branching_condition

| condition_label_sequence [or_expression]
| condition_label_sequence

condition_label_sequence ::= forward_sign label_sequence
| backward_sign label_sequence

In branching queries, a condition on a node with a given label holds if there exists a
label sequence that �ts to the condition. For example, the root//a/b[\c//d and not \e/ f]/g
query seeks nodes with label g such that the node can be reached from the root in such a
way that the labels of the last two nodes are a and b, furthermore, there exists a parent of
the node with label b whose label is c, and among the descendants of the node with label c
there is one with label d, but it has no children with label e that has a parent with label f .

If we omit all conditions written between signs [] from a branching query, then we get
the main query corresponding to the branching query. In our previous example, this is the

20.7. Branching queries 811

query root//a/b/g. The main query always corresponds to a forward label sequence.
A directed graph can be assigned naturally to branching queries. Assign nodes with

the same label to the label sequence of the query, in case of separators / and \, connect the
successive nodes with a directed edge according to the separator, and in case of separators //

and \\, draw the directed edge and label it with label // or \\. Finally, the logic connectives
are assigned to the starting edge of the corresponding condition as a label. Thus, it might
happen that an edge has two labels, for example // and �and�. Note that the graph obtained
cannot contain a directed cycle because of the de�nition of the grammar.

A simple degree of complexity of the query can be de�ned using the tree obtained.
Assign 0 to the nodes of the main query and to the nodes from which there is a directed
path to a node of the main query. Then assign 1 to the nodes that can be reached from the
nodes with sign 0 on a directed path and have no sign yet. Assign 2 to the nodes from which
a node with sign 1 can be reached and have no sign yet. Assign 3 to the nodes that can be
reached from nodes with sign 2 and have no sign yet, etc. Assign 2k + 1 to the nodes that
can be reached from nodes with sign 2k and have no sign yet, then assign 2k +2 to the nodes
from which nodes with sign 2k + 1 can be reached and have no sign yet. The value of the
greatest sign in the query is called the depth of the tree. The depth of the tree shows how
many times the direction changes during the evaluation of the query, that is, we have to seek
children or parents according to the direction of the edges. The same query could have been
given in different ways by composing the conditions differently, but it can be proved that the
value de�ned above does not depend on that, that is why the complexity of a query was not
de�ned as the number of conditions composed.

The 1-index assigns the nodes into classes according to incoming paths, using bisimu-
lations. The concept of stability used for computations was descendant-stability. A set A
of the nodes of a graph is descendant-stable with respect to a set B of nodes if A ⊆ E(B)
or A ∩ E(B) = ∅, where E(B) is the set of nodes that can be reached by edges from B. A
partition is stable if any two elements of the partition are descendant-stable with respect to
each other. The 1-index is the coarsest descendant-stable partition that assigns nodes with
the same label to same classes, which can be computed using the PT-algorithm. In case of
branching queries, we also have to go backwards on directed edges, so we will need the
concept of ancestor-stability as well. A set A of nodes of a graph is ancestor-stable with
respect to a set B of the nodes if A ⊆ E−1(B) or A ∩ E−1(B) = ∅, where E−1(B) denotes the
nodes from which a node of B can be reached.

De�nition 20.41 The FB-index is the coarsest re�nement of the basic partition that is
ancestor-stable and descendant-stable.

Note that if the direction of the edges of the graph is reversed, then an ancestor-stable
partition becomes a descendant-stable partition and vice versa, therefore the PT-algorithm
and its improvements can be used to compute the coarsest ancestor-stable partition. We will
use this in the following algorithm. We start with classes of nodes with the same label,
compute the 1-index corresponding to this partition, then reverse the direction of the edges,
and re�ne this by computing the 1-index corresponding to this. When the algorithm stops,
we get a re�nement of the initial partition that is ancestor-stable and descendant-stable at
the same time. This way we obtain the coarsest such partition. The proof of this is left to the
Reader.

812 20. Semi-structured databases

FB-I-C(V, E)
1 P← A(0) ¤ Start with classes of nodes with the same label.
2 while P changes
3 do P← PT (V, E−1, P) ¤ Compute the 1-index.
4 P← PT (V, E, P) ¤ Reverse the direction of edges, and

¤ compute the 1-index.
5 return P

The following corollary follows simply from the two stabilities.
Corollary 20.42 The FB-index is safe and exact with respect to branching queries.
The complexity of the algorithm can be computed from the complexity of the PT-algorithm.
Since P is always the re�nement of the previous partition, in the worst case re�nement is
done one by one, that is, we always take one element of a class and create a new class
consisting of that element. So in the worst case, the cycle is repeated O(n) times. Therefore,
the cost of the algorithm is at most O(mn lg n).

The partition gained by executing the cycle only once is called the F+B-index, the
partition obtained by repeating the cycle twice is the F+B+F+B-index, etc.

The following proposition can be proved easily.

Proposition 20.43 The F+B+F+B+· · ·+F+B-index, where F+B appears d times, is safe
and exact with respect to the branching queries of depth at most d.

Nodes of the same class according to the FB-index cannot be distinguished by bran-
ching queries. This restriction is usually too strong, therefore the size of the FB-index is
usually much smaller than the size of the original graph. Very long branching queries are
seldom used in practice, so we only require local equivalence, similarly to the A(k)-index,
but now we will describe it with two parameters depending on what we want to restrict: the
length of the directed paths or the length of the paths with reversed direction. We can also
restrict the depth of the query. We can introduce the FB(f , b, d)-index, with which such rest-
ricted branching queries can be evaluated exactly. We can also evaluate branching queries
that do not satisfy the restrictions, but then the result must be checked.

FB(f , b, d)-I-C(V, E, f , b, d)
1 P← A(0) ¤ start with classes of nodes with the same label.
2 for i← 1 to d
3 do P← N-A(V , E−1, P, f) ¤ Compute the A(f)-index.
4 P← N-A(V , E, P, b) ¤ Reverse the direction of the edges, and

¤ compute the A(b)-index.
5 return P

The cost of the algorithm, based on the computation cost of the A(k)-index, is at most
O(dm max(f , b)), which is much better than the computation cost of the FB-index, and the
index graph obtained is also usually much smaller.

The following proposition obviously holds for the index obtained.

20.8. Index refresh 813

Proposition 20.44 The FB(f , b, d)-index is safe and exact for the branching queries in
which the length of forward-sequences is at most f , the length of backward-sequences is at
most b, and the depth of the tree corresponding to the query is at most d.

As a special case we get that the FB(∞,∞,∞)-index is the FB-index, the FB(∞,∞, d)-
index is the F+B+· · ·+F+B-index, where F+B appears d times, the FB(∞, 0, 1)-index is the
1-index, and the FB(k, 0, 1)-index is the A(k)-index.

Exercises
20.7-1 Prove that the algorithm FB-I-C produces the coarsest ancestor-stable
and descendant-stable re�nement of the basic partition.
20.7-2 Prove Proposition 20.44.

20.8. Index refresh
In database management we usually have three important aspects in mind. We want space
requirement to be as small as possible, queries to be as fast as possible, and insertion, dele-
tion and modi�cation of the database to be as quick as possible. Generally, a result that is
good with respect to one of these aspects is worse with respect to another aspect. By adding
indexes of typical queries to the database, space requirement increases, but in return we can
evaluate queries on indexes which makes them faster. In case of dynamic databases that are
often modi�ed we have to keep in mind that not only the original data but also the index has
to be modi�ed accordingly. The most costly method which is trivially exact is that we create
the index again after every modi�cation to the database. It is worth seeking procedures to
get the modi�ed indexes by smaller modi�cations to those indexes we already have.

Sometimes we index the index or its modi�cation as well. The index of an index is also
an index of the original graph, although formally it consists of classes of index nodes, but
we can unite the elements of the index nodes belonging to the same class. It is easy to see
that by that we get a partition of the nodes of the graph, that is, an index.

In the following, we will discuss those modi�cations of semi-structured databases when
a new graph is attached to the root and when a new edges is added to the graph, since these
are the ones we need when creating a new website or a new reference.

Suppose that I(G) is the 1-index of graph G. Let H be a graph that has no common
node with G. Denote by I(H) the 1-index of H. Let F = G + H be the graph obtained by
uniting the roots of G and H. We want to create I(G+H) using I(G) and I(H). The following
proposition will help us.

Proposition 20.45 Let I(G) be the 1-index of graph G, and let J be an arbitrary re�nement
of I(G). Then I(J) = I(G).

Proof. Let u and v be two nodes of G. We have to show that u and v are bisimilar in G with
respect to the 1-index if and only if J(u) and J(v) are bisimilar in the index graph I(G) with
respect to the 1-index of I(G). Let u and v be bisimilar in G with respect to the 1-index.
We will prove that there is a bisimulation according to which J(u) and J(v) are bisimilar
in I(G). Since the 1-index is the partition corresponding to the coarsest bisimulation, the
given bisimulation is a re�nement of the bisimulation corresponding to the 1-index, so J(u)

814 20. Semi-structured databases

and J(v) are also bisimilar with respect to the bisimulation corresponding to the 1-index of
I(G). Let J(a) ≈′ J(b) if and only if a and b are bisimilar in G with respect to the 1-index.
Note that since J is a re�nement of I(G), all elements of J(a) and J(b) are bisimilar in G
if J(a) ≈′ J(b). To show that the relation ≈′ is a bisimulation, let J(u′) be a parent of J(u),
where u′ is a parent of u1, and u1 is an element of J(u). Then u1, u and v are bisimilar in G,
so there is a parent v′ of v for which u′ and v′ are bisimilar in G. Therefore J(v′) is a parent
of J(v), and J(u′) ≈′ J(v′). Since bisimulation is symmetric, relation ≈′ is also symmetric.
We have proved the �rst part of the proposition.

Let J(u) and J(v) be bisimilar in I(G) with respect to the 1-index of I(G). It is sufficient
to show that there is a bisimulation on the nodes of G according to which u and v are
bisimilar. Let a ≈′ b if and only if J(a) ≈ J(b) with respect to the 1-index of I(G). To prove
bisimilarity, let u′ be a parent of U. Then J(u′) is also a parent of J(u). Since J(u) and J(v)
are bisimilar if u ≈′ v, there is a parent J(v′′) of J(v) for which J(u′) and J(v′′) are bisimilar
with respect to the 1-index of I(G), and v′′ is a parent of an element v1 of J(v). Since v and
v1 are bisimilar, there is a parent v′ of v such that v′ and v′′ are bisimilar. Using the �rst part
of the proof, it follows that J(v′) and J(v′′) are bisimilar with respect to the 1-index of I(G).
Since bisimilarity is transitive, J(u′) and J(v′) are bisimilar with respect to the 1-index of
I(G), so u′ ≈′ v′. Since relation ≈′ is symmetric by de�nition, we get a bisimulation.

As a consequence of this proposition, I(G + H) can be created with the following algo-
rithm for disjoint G and H.

G-1-I(G, H)
1 PG ← AG(0) ¤ PG is the basic partition according to labels.
2 PH ← AH(0) ¤ PH is the basic partition according to labels.
3 I1 ← PT (VG, E−1

G , PG) ¤ I1 is the 1-index of G.
4 I2 ← PT (VH , E−1

H , PH) ¤ I2 is the 1-index of H.
5 J ← I1 + I2 ¤ The 1-indexes are joined at the roots.
6 PJ ← AJ(0) ¤ PJ is the basic partition according to labels.
7 I ← PT (VJ , E−1

J , PJ) ¤ I is the 1-index of J.
8 return I

To compute the cost of the algorithm, suppose that the 1-index I(G) of G is given. Then
the cost of the creation of I(G + H) is O(mH lg nH + (mI(H) + mI(G)) lg(nI(G) + nI(H))), where
n and m denote the number of nodes and edges of the graph, respectively.

To prove that the algorithm works, we only have to notice that I(G)+I(H) is a re�nement
of I(G+H) if G and H are disjoint. This also implies that index I(G)+ I(H) is safe and exact,
so we can use this as well if we do not want to �nd the minimal index. This is especially
useful if new graphs are added to our graph many times. In this case we use the lazy method,
that is, instead of computing the minimal index for every pair, we simply sum the indexes
of the addends and then minimize only once.

Proposition 20.46 Let I(Gi) be the 1-index of graph Gi, i = 1, . . . , k, and let the graphs be
disjoint. Then I(G1 + · · · + Gk) = I(I(G1) + · · · + I(Gk)) for the 1-index I(G1 + · · · + Gk) of
the union of the graphs joined at the roots.

In the following we will examine what happens to the index if a new edge is added to the

20.8. Index refresh 815

graph. Even an operation like this can have signi�cant effects. It is not difficult to construct
a graph that contains two identical subgraphs at a distant of 2 from the root which cannot be
contracted because of a missing edge. If we add this critical edge to the graph, then the two
subgraphs can be contracted, and therefore the size of the index graph decreases to about
the half of its original size.

Suppose we added a new edge to graph G from u to v. Denote the new graph by G′, that
is, G′ = G + (u, v). Let partition I(G) be the 1-index of G. If there was an edge from I(u) to
I(v) in I(G), then the index graph does not have to be modi�ed, since there is a parent of the
elements of I(v), that is, of all elements bisimilar to v, in I(u) whose elements are bisimilar
to u. Therefore I(G′) = I(G).

If there was no edge from I(u) to I(v), then we have to add this edge, but this might
cause that I(v) will no longer be stable with respect to I(u). Let Q be the partition we get
from I(G) by splitting I(v) in such a way that v is in one part and the other elements of I(v)
are in the other, and leaving all other classes of the partition unchanged. Q de�nes its edges
the usual way, that is, if there is an edge from an element of a class to an element of another
class, then we connect the two classes with an edge directed the same way.

Let partition X be the original I(G). Then Q is a re�nement of X, and Q is stable with
respect to X according to G′. Note that the same invariant property appeared in the PT-
algorithm for partitions X and Q. Using Proposition 20.45 it is enough to �nd a re�nement
of I(G′). If we can �nd an arbitrary stable re�nement of the basic partition of G′, then,
since the 1-index is the coarsest stable partition, this will be a re�nement of I(G′). X is a
re�nement of the basic partition, that is, the partition according to labels, and so is Q. So
if Q is stable, then we are done. If it is not, then we can stabilize it using the PT-algorithm
by starting with the above partitions X and Q. First we have to examine those classes of the
partition that contain a children of v, because these might lost their stability with respect to
the two new classes gained by the split. The PT-algorithm stabilizes these by splitting them,
but because of this we now have to check their children, since they might have lost stability
because of the split, etc. We can obtain a stable re�nement using this stability-propagator
method. Since we only walk through the nodes that can be reached from v, this might not
be the coarsest stable re�nement. We have shown that the following algorithm computes the
1-index of the graph G + (u, v).

816 20. Semi-structured databases

E-1-I(G, (u, v))
1 PG ← AG(0) ¤ PG is the basic partition according to labels.
2 I ← PT (VG, E−1

G , PG) ¤ I is the 1-index of G.
3 G′ ← G + (u, v) ¤ Add edge (u, v).
4 if (I(u), I(v)) ∈ EI ¤ If there was an edge from I(u) to I(v),

then no modi�cation is needed.
5 then return I
6 I′ ← {v} ¤ Split I(v).
7 I′′ ← I(v) \ {v}
8 X ← I ¤ X is the old partition.
9 EI ← EI ∪ {(I(u), I(v))} ¤ Add an edge from I(u) to I(v).

10 Q← (I \ {I(v)}) ∪ {I′, I′′} ¤ Replace I(v) with I′ and I′′.
11 E ← EQ ¤ Determine the edges of Q.
12 J ← PT (VG′ , E−1

G′ , PG′ , X,Q) ¤ Execute the PT-algorithm starting with X and Q.
13 J ← PT (VJ , E−1

J , PJ) ¤ J is the coarsest stable re�nement.
14 return J

Step 13 can be omitted in practice, since the stable re�nement obtained in step 12 is
a good enough approximation of the coarsest stable partition, there is only 5% difference
between them in size.

In the following we will discuss how FB-indexes and A(k)-indexes can be refreshed.
The difference between FB-indexes and 1-indexes is that in the FB-index, two nodes are
in the same similarity class if not only the incoming but also the outgoing paths have the
same label sequences. We saw that in order to create the FB-index we have to execute the
PT-algorithm twice, using it on the graph with the edges reversed at the second time. The
FB-index can be refreshed similarly to the 1-index. The following proposition can be proved
similarly to Proposition 20.45, therefore we leave it to the Reader.

Proposition 20.47 Let I(G) be the FB-index of graph G, and let J be an arbitrary re�ne-
ment of I(G). Denote by I(J) the FB-index of J. Then I(J) = I(G).

As a consequence of the above proposition, the FB-index of G + H can be created using
the following algorithm for disjoint G and H.

G-FB-I(G, H)
1 I1 ← FB-I-C(VG, EG) ¤ I1 is the FB-index of G.
2 I2 ← FB-I-C(VH , EH) ¤ I2 is the FB-index of H.
3 J ← I1 + I2 ¤ Join the FB-indexes at their roots.
4 I ← FB-I-C(VJ , EJ) ¤ I is the FB-index of J.
5 return I

When adding edge (u, v), we must keep in mind that stability can be lost in both di-
rections, so not only I(v) but also I(u) has to be split into {v}, (I \ {v}) and {u}, (I(u) \ {u}),
respectively. Let X be the partition before the modi�cation, and Q the partition obtained

20.8. Index refresh 817

after the splits. We start the PT-algorithm with X and Q in step 3 of the algorithm FB-I-
C. When stabilizing, we will now walk through all descendants of v and all ancestors
of u.

E-FB-I(G, (u, v))
1 I ← FB--(VG, EG) ¤ I is the FB-index of G.
2 G′ ← G + (u, v) ¤ Add edge (u, v).
3 if (I(u), I(v)) ∈ EI ¤ If there was an edge from I(u) to I(v),

then no modi�cation is needed.
4 then return I
5 I1 ← {v} ¤ Split I(v).
6 I2 ← I(v) \ {v}
7 I3 ← {u} ¤ Split I(u).
8 I4 ← I(u) \ {u}
9 X ← I ¤ X is the old partition.

10 EI ← EI ∪ {(I(u), I(v))} ¤ Add an edge form I(u) to I(v).
11 Q← (I \ {I(v), I(u)}) ∪ {I1, I2, I3, I4} ¤ Replace I(v) with I1 and I2,

I(u) with I3 and I4.
12 E ← EQ ¤ Determine the edges of Q.
13 J ← FB-I-C(VG′ , EG′ , X,Q) ¤ Start the PT-algorithm with X and Q

in the algorithm FB-I-C.
14 J ← FB-I-C(VJ , EJ) ¤ J is the coarsest ancestor-stable

and descendant-stable re�nement.
15 return J

Refreshing the A(k)-index after adding an edge is different than what we have seen.
There is no problem with adding a graph though, since the following proposition holds, the
proof of which is left to the Reader.

Proposition 20.48 Let I(G) be the A(k)-index of graph G, and let J be an arbitrary re�ne-
ment of I(G). Denote by I(J) the A(k)-index of I(J). Then I(J) = I(G).

As a consequence of the above proposition, the A(k)-index of G + H can be created
using the following algorithm for disjoint G and H.

G-A(k)-I(G,H)
1 PG ← AG(0) ¤ PG is the basic partition according to labels.
2 I1 ← N-A(VG, E−1

G , PG, k) ¤ I1 is the A(k)-index of G.
3 PH ← AH(0) ¤ PH is the basic partition according to labels.
4 I2 ← N-A(VH , E−1

H , PH , k) ¤ I1 is the A(k)-index of H.
5 J ← I1 + I2 ¤ Join the A(k)-indexes.
6 PJ ← AJ(0) ¤ PJ is the basic partition according to labels.
7 I ← N-A(VJ , E−1

J , PJ , k) ¤ I is the A(k)-index of J.
8 return I

818 20. Semi-structured databases

If we add a new edge (u, v) to the graph, then, as earlier, �rst we split I(v) into two
parts, one of which is I′ = {v}, then we have to repair the lost k-stabilities walking through
the descendants of v, but only within a distant of k. What causes the problem is that the
A(k)-index contains information only about k-bisimilarity, it tells us nothing about (k − 1)-
bisimilarity. For example, let v1 be a child of v, and let k = 1. When stabilizing according
to the 1-index, v1 has to be detached from its class if there is an element in this class that
is not a children of v. This condition is too strong in case of the A(1)-index, and therefore
it causes too many unnecessary splits. In this case, v1 should only be detached if there is
an element in its class that has no 0-bisimilar parent, that is, that has the same label as v.
Because of this, if we refreshed the A(k)-index the above way when adding a new edge, we
would get a very bad approximation of the A(k)-index belonging to the modi�cation, so we
use a different method. The main idea is to store all A(i)-indexes not only the A(k)-index,
where i = 1, . . . , k. Yi et al. give an algorithm based on this idea, and creates the A(k)-index
belonging to the modi�cation. The given algorithms can also be used for the deletion of
edges with minor modi�cations, in case of 1-indexes and A(k)-indexes.

Exercises
20.8-1 Prove Proposition 20.47.
20.8-2 Give an algorithm for the modi�cation of the index when an edge is deleted from
the data graph. Examine different indexes. What is the cost of the algorithm?
20.8-3 Give algorithms for the modi�cation of the D(k)-index when the data graph is mo-
di�ed.

Problems

20-1. Implication problem regarding constraints
Let R and Q be regular expressions, x and y two nodes. Let predicate R(x, y) mean that y
can be reached from x by a label sequence that �ts to R. Denote by R ⊆ Q the constraint
∀x(R(root, x)→ Q(root, x)). R = Q if R ⊆ Q and Q ⊆ R. Let C be a �nite set of constraints,
and c a constraint.
a. Prove that the implication problem C |= c is a 2-EXPSPACE problem.
b. Denote by R ⊆ Q@u the constraint ∀v(R(u, v) → Q(u, v)). Prove that the implication

problem is undecidable with respect to this class.

20-2. Transformational distance of trees
Let the transformational distance of vertex-labeled trees be the minimal number of basic
operations with which a tree can be transformed to the other. We can use three basic opera-
tions: addition of a new node, deletion of a node, and renaming of a label.
a. Prove that the transformational distance of trees T and T ′ can be computed in

O(nT nT ′dT dT ′) time, with storage cost of O(nT nT ′), where nT is the number of nodes of
the tree and dT is the depth of the tree.

b. Let S and S ′ be two trees. Give an algorithm that generates all pairs (T,T ′), where T
and T ′ simulates graphs S and S ′, respectively, and the transformational distance of T
and T ′ is less then a given integer n. (This operation is called approximate join.)

20. Megjegyzések a fejezethez 819

20-3. Queries of distributed databases
A distributed database is a vertex-labeled directed graph the nodes of which are distributed
in m partitions (servers). The edges between different partitions are cross references. Com-
munication is by message broadcasting between the servers. An algorithm that evaluates
a query is efficient, if the number of communication steps is constant, that is, it does not
depend on the data and the query, and the size of the data transmitted during communica-
tion only depends on the size of the result of the query and the number of cross references.
Prove that an efficient algorithm can be given for the regular query of distributed databa-
ses in which the number of communication steps is 4, and the size of data transmitted is
O(n2) + O(k), where n is the size of the result of the query, and k is the number of cross
references. (Hint: Try to modify the algorithm N-E for this purpose.)

Chapter notes
This chapter examined those �elds of the world of semi-structured databases where the
morphisms of graphs could be used. Thus we discussed the creation of schemas and indexes
from the algorithmic point of view. The world of semi-structured databases and XML is
much broader than that. A short summary of the development, current issues and the pos-
sible future development of semi-structured databases can be found in the paper of Vianu
[115].

The paper of M. Henzinger, T. Henzinger and Kopke [64] discusses the computation of
the maximal simulation. They extend the concept of simulation to in�nite graphs that can
be represented efficiently (these are called effective graphs), and prove that for such graphs,
it can be determined whether two nodes are similar. In their paper, Corneil and Gotlieb
[34] deal with quotient graphs and the determination of isomorphism of graphs. Arenas and
Libkin [4] extend normal forms used in the relational model to XML documents. They show
that arbitrary DTD can be rewritten without loss as XNF, a normal form they introduced.

Buneman, Fernandez and Suciu [21] introduce a query language, the UnQL, based on
structural recursion, where the data model used is de�ned by bisimulation. Gottlob, Koch
and Pichler [57] examine the classes of the query language XPath with respect to comple-
xity and parallelization. For an overview of complexity problems we recommend the clas-
sical work of Garey and Johnson [55] and the paper of Stockmeyer and Meyer [103].

The PT-algorithm was �rst published in the paper of Paige and Tarjan [89]. The 1-
index based on bisimulations is discussed in detail by Milo and Suciu [85], where they also
introduce the 2-index, and as a generalization of this, the T-index

The A(k)-index was introduced by Kaushik, Shenoy, Bohannon and Gudes [69]. The
D(k)-index �rst appeared in the work of Chen, Lim and Ong [27]. The M(k)-index and the
M∗(k)-index, based on frequent queries, are the results of He and Yang [63]. FB-indexes of
branching queries were �rst examined by Kaushik, Bohannon, Naughton and Korth [71].

The algorithms of the modi�cations of 1-indexes, FB-indexes and A(k)-indexes were
summarized by Kaushik, Bohannon, Naughton and Shenoy [72]. The methods discussed
here are improved and generalized in the work of Yi, He, Stanoi and Yang [126]. Polyzotis
and Garafalakis use a probability model for the study of the selectivity of queries [92].

820 20. Semi-structured databases

Kaushik, Krishnamurthy, Naughton and Ramakrishnan [70] suggest the combined use of
structural indexes and inverted lists.

The book of Tucker [113] and the encyclopedia edited by Khosrow-Pour [73] deal with
the use of XML in practice.

The theory of XML has no literature in Hungarian yet, but several books discuss its
practical use [8, 19, 84].

Bibliography

[1] S. Abiteboul, V. Vianu. Foundations of Databases. Addison-Wesley, 1995. 730
[2] R. Ahlswede, B. Balkenhol, L. Khachatrian. Some properties of �x-free codes. In Proceedings of the 1st

International Seminarium on Coding Theory and Combinatorics, 1996, pp. 20�23. 618
[3] A. Aho, C. Beeri, J. D. Ullman. The theory of joins in relational databases. ACM Transactions on Database

Systems, 4(3):297�314, 1979. 730
[4] M. Arenas, L. Libkin. A normal form for XML documents. In Proceedings of the 21st Symposium on

Principles of Database Systems, 2002, pp. 85�96. 819
[5] W. Armstrong. Dependency structures of database relationships. In Proceedings of IFIP Congress, 580�

583. o. North Holland, 1974. 730
[6] B. Balkenhol, S. Kurtz. Universal data compression based on the Burrows-Wheeler transform: theory and

practice. IEEE Transactions on Computers, 49(10):1043�1053�953, 2000. 619
[7] R. Barett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozzo, C. Romine, H.

van der Vorst. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM,
1994. 780

[8] C. F. Bates. XML in Theory and Praxis. John Wiley & Sons, 2003. 820
[9] S. Batterson. Convergence of the shifted QR algorithm on 3 × 3 normal matrices. , 58, 1990. 780

[10] C. Beeri. On the membership problem for functional and multivalued dependencies in relational databases.
ACM Transactions on Database Systems, 5:241�259, 1980. 730

[11] C. Beeri, P. Bernstein. Computational problems related to the design of normal form relational schemas.
ACM Transactions on Database Systems, 4(1):30�59, 1979. 730

[12] C. Beeri, M. Dowd. On the structure of armstrong relations for functional dependencies. Journal of ACM,
31(1):30�46, 1984. 730

[13] C. Beeri, R. Fagin, J. Howard. A complete axiomatization for functional and multivalued dependencies. In
ACM SIGMOD Symposium on the Management of Data, 47�61. o., 1977. 730

[14] T. C. Bell, I. H. Witten, J. G. Cleary. Modeling for text compression. Communications of the ACM, 21:557�
591, 1989. 619

[15] T. C. Bell, I. H. Witten, J. G. Cleary. Text Compression. Prentice Hall, 1990. 619
[16] A. Békéssy, J. Demetrovics. Contribution to the theory of data base relations. Discrete Mathematics,

27(1):1�10, 1979. 730
[17] J. Blinn. A generalization of algebraic surface drawing. ACM Transactions on Graphics, 1(3):135�256,

1982. 696
[18] J. Bloomenthal. Introduction to Implicit Surfaces. Morgan Kaufmann Publishers, 1997. 696
[19] N. Bradley. The XML Companion (3. edition). Addison-Wesley, 2004. 820
[20] J. E. Bresenham. Algorithm for computer control of a digital plotter. IBM Systems Journal, 4(1):25�30,

1965. 697
[21] P. Buneman, M. Fernandez, D. Suciu. UnQL: a query language and algebra for semistructured data based

on structural recursion. The International Journal on Very Large Data Bases, 9(1):76�110, 2000. 819
[22] M. Burrows, D. J. Wheeler. A block-sorting lossless data compression algorithm. Research Report 124,

http://gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-rr-124.html, 1994. 619

http://www-rocq.inria.fr/~abitebou/�
http://www.aw.com/�
http://www.cs.toronto.edu/~marenas/�
http://www.cs.toronto.edu/~libkin/�
http://www.mathematik.uni-bielefeld.de/~bernhard/�
http://www.computer.org/tc/�
http://www.siam.org/�
http://homepages.shu.ac.uk/~cmscrb/�
http://www.wiley.com/�
http://portal.acm.org/browse_dl.cfm?linked=1&part=magazine&idx=J79&coll=portal&dl=ACM&CFID=10204809&CFTOKEN=31999750�
http://vig.prenhall.com/�
http://www.sztaki.hu/sztaki/afe/infodep/demetrovics.hu.jhtml�
file:www.acm.org/tog/.dvi�
file:www.mkp.com/.dvi�
http://www.aw.com/�
file:www.research.ibm.com/journal/sj/.dvi�
http://www.cis.upenn.edu/~peter/�
http://www.research.att.com/~mff/�
http://www.cs.washington.edu/homes/suciu/�
http://springerlink.metapress.com/app/home/journal.asp?wasp=6p8qd4wxrp6wvmehwkak&referrer=parent&backto=subject,139,142;�
http://gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-rr-124.html�

822 Bibliography

[23] Calgary. The Calgary/Canterbury Text Compression. ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.
corpus, 2004. 619

[24] Canterbury. The Canterbury Corpus. http://corpus.canterbury.ac.nz, 2004. 619
[25] E. Catmull, J. Clark. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-

Aided Design, 10:350�355, 1978. 697
[26] B. Chazelle. Triangulating a simple polygon in linear time. Discrete and Computational Geometry,

6(5):353�363, 1991. 696
[27] Q. Chen, A. Lim, K. W. Ong. An adaptive structural summary for graph-structured data. In Proceedings of

the 2003 ACM SIGMOD International Conference on Management of Data, 2003, pp. 134�144. 819
[28] E. F. Codd. A relational model of large shared data banks. Communications of the ACM, 13(6):377�387,

1970. 730
[29] E. F. Codd. Recent investigations in relational data base systems. In Information Processing 74.

North-Holland, pp. 1017�1021,1974. 730
[30] E. F. Codd. Normalized database structure: A brief tutorial. In ACM SIGFIDET Workshop on Data Desc-

ription, Access and Control, pp. 24�30, 1971. 730
[31] E. F. Codd. Further normalization of the data base relational model. In R. Rustin (szerkeszt�o), Courant

Computer Science Symposium 6: Data Base Systems. Prentice Hall, pp. 33�64, 1972. 730
[32] E. F. Codd. Relational completeness of database sublanguages. In Courant Computer Science Symposium

6: Data Base Systems. Prentice Hall, pp. 65�98, 1972, editor =. 730
[33] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction to Algorithms. The MIT Press/McGraw-

Hill, 2004 (Fifth corrected printing of 2. edition. 618
[34] D. G. Corneil, C. Gotlieb. An efficient algorithm for graph isomorphism. Journal of the ACM, 17(1):51�64,

1970. 819
[35] T. M. Cover, J. A. Thomas. Elements of Information Theory. John Wiley & Sons, 1991. 619
[36] H. S. M. Coxeter. Projective Geometry. University of Toronto Press, 1974 (2. edition). 696
[37] M. de Berg. Efficient Algorithms for Ray Shooting and Hidden Surface Removal. PhD thesis, Rijksuniver-

siteit te Utrecht, 1992. 696, 697
[38] M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf. Computational Geometry: Algorithms and

Applications. Springer-Verlag, 2000. 696
[39] C. Delobel. Normalization and hierarchical dependencies in the relational data model. ACM Transactions

on Database Systems, 3(3):201�222, 1978. 730
[40] J. Demetrovics, Gy. O. H. Katona, A. Sali. Minimal representations of branching dependencies. Discrete

Applied Mathematics, 40:139�153, 1992. 730
[41] J. Demetrovics, Gy. O. H. Katona, A. Sali. Minimal representations of branching dependencies. Acta Sci-

entiarum Mathematicorum (Szeged), 60:213�223, 1995. 730
[42] J. Demetrovics, Gy. O. H. Katona, A. Sali. Design type problems motivated by database theory. Journal of

Statistical Planning and Inference, 72:149�164, 1998. 730
[43] J. Demmel, D. Malajovich. On the complexity of computing error bounds. Foundations of Computational

Mathematics, 1:101�125, 2001. 779
[44] N. Dyn, J. Gregory, D. Levin. A butter�y subdivision scheme for surface interpolation with tension control.

ACM Transactions on Graphics, 9:160�169, 1990. 697
[45] M. Effros, K. Viswesvariah, S. Kulkarni, S. Verdú. Universal lossless source coding with the Burrows-

Wheeler transform. IEEE Transactions on Information Theory, 48(5):1061�1081, 2002. 619
[46] R. Fagin. Multivalued dependencies and a new normal form for relational databases. ACM Transactions on

Database Systems, 2:262�278, 1977. 730
[47] R. Fagin. Armstrong databases. In Proceedings of IBM Symposium on Mathematical Foundations of Com-

puter Science, 1982. 730
[48] R. Fagin. Horn clauses and database dependencies. Journal of ACM, 29(4):952�985, 1982. 730
[49] G. Farin. Curves and Surfaces for Computer Aided Geometric Design. Morgan Kaufmann Publishers, 1998.

696
[50] R. Fernando. GPUGems: Programming Techniques, Tips, and Tricks for Real-Time Graphics. Addison-

Wesley, 2004. 697
[51] J. D. Fooley, A., S. K. Feiner, J. F. Hughes. Computer Graphics: Principles and Practice. Addison-Wesley,

1990. 697

ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus�
ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus�
http://corpus.canterbury.ac.nz�
http://corpus.canterbury.ac.nz�
http://www.sciencedirect.com/science/journal/00104485�
file:link.springer.de/link/service/journals/00454/.dvi�
http://www.cs.wisc.edu/~qun/�
http://www.ieor.berkeley.edu/~lim/�
http://www.sis.pitt.edu/~mbsclass/hall_of_fame/codd.htm�
http://portal.acm.org/browse_dl.cfm?linked=1&part=magazine&idx=J79&coll=portal&dl=ACM&CFID=10204809&CFTOKEN=31999750�
http://www.sis.pitt.edu/~mbsclass/hall_of_fame/codd.htm�
file:www.elsevier.nl/.dvi�
http://www.sis.pitt.edu/~mbsclass/hall_of_fame/codd.htm�
http://www.sis.pitt.edu/~mbsclass/hall_of_fame/codd.htm�
http://www.prenhall.com/�
http://www.sis.pitt.edu/~mbsclass/hall_of_fame/codd.htm�
http://www.prenhall.com/�
http://www.cs.dartmouth.edu/~thc/�
http://theory.lcs.mit.edu/~cel/�
http://theory.lcs.mit.edu/~rivest/�
http://www.ieor.columbia.edu/~cliff/�
http://mitpress.mit.edu/main/home/default.asp?sid=C6EE87F7-92B7-4CC1-8035-E3AB8EAC0886�
file:www.mcgraw-hill.com/.dvi�
http://www.cs.toronto.edu/DCS/People/Faculty/dgc.html�
http://www.cs.toronto.edu/DCS/People/Faculty/ccg.html�
http://portal.acm.org/browse_dl.cfm?linked=1&part=journal&idx=J401&coll=portal&dl=ACM&CFID=10136019&CFTOKEN=486195�
http://www.wiley.com/�
http://www.springer.de/�
http://www.sztaki.hu/sztaki/afe/infodep/demetrovics.hu.jhtml�
http://www.renyi.hu/~ohkatona/�
http://www.renyi.hu/~sali/�
http://www.sciencedirect.com/science/journal/0166218X�
http://www.sztaki.hu/sztaki/afe/infodep/demetrovics.hu.jhtml�
http://www.renyi.hu/~ohkatona/�
http://www.renyi.hu/~sali/�
http://www.sztaki.hu/sztaki/afe/infodep/demetrovics.hu.jhtml�
http://www.renyi.hu/~ohkatona/�
http://www.renyi.hu/~sali/�
file:www.acm.org/tog/.dvi�
http://www.ieee.org/portal/index.jsp?pageID=corp_level1&path=pubs/transactions&file=tit.xml&xsl=generic.xsl�
http://eros.cagd.eas.asu.edu/~{ }farin/cagdbook/cagdbook.html�
file:www.mkp.com/.dvi�
http://developer.nvidia.com/object/gpu_gems_home.html�
http://www.aw.com/�
http://www.aw.com/�

Bibliography 823

[52] A. Frommer. Lösung linearer Gleichungssysteme auf Parallelrechnern. Vieweg Verlag, 1990. 780
[53] H. Fuchs, Z. M. Kedem, B. F. Naylor. On visible surface generation by a priory tree structures. In Computer

Graphics (SIGGRAPH '80 Proceedings), pp. 124�133, 1980. 697
[54] A. Fujimoto, T. Takayuki, I. Kansey. ARTS: accelerated ray-tracing system. IEEE Computer Graphics and

Applications, 6(4):16�26, 1986. 697
[55] M. R. Garey, D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.

H. Freeman, 1979. 819
[56] A. Glassner. An Introduction to Ray Tracing. Academic Press, 1989. 697
[57] G. Gottlob, C. Koch, R. Pichler. The complexity of XPath query evaluation. In Proceedings of the 22nd

Symposium on Principles of Database Systems, 2003, pp. 179�190. 819
[58] J. Grant, J. Minker. Inferences for numerical dependencies. Theoretical Computer Science, 41:271�287,

1985. 730
[59] J. Grant, J. Minker. Normalization and axiomatization for numerical dependencies. Information and Cont-

rol, 65:1�17, 1985. 730
[60] T. S. Han, K. Kobayashi. Mathematics of Information and Coding. American Mathematical Society, 2002.

619
[61] D. Hankerson, G. A. Harris, P. D. Johnson. Introduction to Information Theory and Data Compression.

CRC Press, 2003 (2. edition). 619
[62] V. Havran. Heuristic Ray Shooting Algorithms. PhD thesis, Czech Technical University, 2001. 697
[63] H. He, J. Yang. Multiresolution indexing of XML for frequent queries. In Proceedings of the 20th Interna-

tional Conference on Data Engineering, 2004, pp. 683�694. 819
[64] M. R. Henzinger, T. A. Henzinger, P. Kopke. Computing simulations on �nite and in�nite graphs. In Proce-

edings of the 36th Annual Symposium on Foundations of Computer Science. IEEE Computer Society Press,
1995, pp. 453�462. 819

[65] I. Herman. The Use of Projective Geometry in Computer Graphics. Springer-Verlag, 1991. 696
[66] D. A. Huffman. A method for the construction of minimum-redundancy codes. Proceedings of the IRE,

40(9):1098�1101, 1952. 618
[67] P. Jiménez, F. Thomas, C. Torras. 3D collision detection: A survey. Computers and Graphics, 25(2):269�

285, 2001. 697
[68] S. Karlin, M. T. Taylor. A First Course in Stochastic Processes. Academic Press, 1975. 697
[69] R. Kaushik, R. Krishnamurthy, J. F. Naughton, R. Ramakrishnan. Exploiting local similarity for indexing

paths in graph-structured data. In Proceedings of the 18th International Conference on Data Engineering.
819

[70] R. Kaushik, R. Shenoy, P. F. Bohannon, E. Gudes. On the integration of structure indexes and inverted lists.
In Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, 2004, pp.
779�790. 820

[71] R. R. Kaushik, P. Bohannon, J. F. Naughton, H. Korth. Covering indexes for branching path queries. In
Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data, 2002, pp. 133�
144. 819

[72] R. R. Kaushik, P. Bohannon, J. F. Naughton, H. Korth, P. Shenoy. Updates for structure indexes. In Procee-
dings of Very Large Data Bases, 2002, pp. 239�250. 819

[73] M. Khosrow-Pour (szerkeszt�o). Encyclopedia of Information Science and Technology, Vol. 1, Vol. 2, Vol. 3,
Vol. 4, Vol. 5. Idea Group Inc., 2005. 820

[74] G. Krammer. Notes on the mathematics of the PHIGS output pipeline. Computer Graphics Forum,
8(8):219�226, 1989. 696

[75] R. Krichevsky, V. Tro�mov. The performance of universal encoding. IEEE Transactions on Information
Theory, 27:199�207, 1981. 619

[76] S. Kurtz, B. Balkenhol. Space efficient linear time computation of the Burrows and Wheeler transformation.
in I. Althöfer, N. Cai, G. Dueck, L. Khachatrian, M. Pinsker, A. Sárközy, I. Wegener, Z. Zhang (editors)
Numbers, Information and Complexity. Kluwer Academic Publishers, 2000, pp. 375�383. 619

[77] J. Lamperti. Stochastic Processes. Springer-Verlag, 1972. 697
[78] G. Langdon. An introduction to arithmetic coding. IBM Journal of Research and Development, 28:135�

149, 1984. 618

file:www.vieweg.de/.dvi�
http://www.computer.org/cga/?SMIDENTITY=NO�
http://cm.bell-labs.com/cm/ms/former/mrg/�
http://www.research.att.com/~dsj/�
http://www.whfreeman.com/�
http://www.academicpress.com/�
http://www.dbai.tuwien.ac.at/staff/gottlob/�
http://www.dbai.tuwien.ac.at/staff/koch/�
http://www.logic.at/staff/reini/�
http://www.elsevier.nl/locate/tcs�
http://www.ams.org/�
http://www.cs.duke.edu/~haohe/�
http://www.cs.duke.edu/~junyang/�
http://www.cs.cornell.edu/Info/Department/Annual96/Faculty/MHenzinger.html�
http://www.henzinger.com/monika/�
http://www.ieee.org/organizations/pubs/press/�
http://www.springer.de/�
http://www.sciencedirect.com/science/journal/00978493�
http://www.academicpress.com/�
http://www.cs.wisc.edu/~raghav/�
http://www.cs.wisc.edu/~sekar/�
http://www.cs.wisc.edu/~naughton/naughton.html�
http://www.cs.wisc.edu/~raghu/�
http://www.cs.wisc.edu/~raghav/�
http://www.cs.washington.edu/homes/pshenoy/�
http://www.bell-labs.com/user/bohannon/�
http://www.cs.bgu.ac.il/~ehud/�
http://www.cs.wisc.edu/~raghav/�
http://www.bell-labs.com/user/bohannon/�
http://www.cs.wisc.edu/~naughton/naughton.html�
http://www.bell-labs.com/user/hfk/�
http://www.cs.wisc.edu/~raghav/�
http://www.bell-labs.com/user/bohannon/�
http://www.cs.wisc.edu/~naughton/naughton.html�
http://www.bell-labs.com/user/hfk/�
http://www.cs.washington.edu/homes/pshenoy/�
http://www.idea-group.com/encyclopedia/authors.asp?id=26&pub_id=4455�
http://www.idea-group.com/�
http://www.eg.org/EG/Publications/CGF�
http://www.ieee.org/portal/index.jsp?pageID=corp_level1&path=pubs/transactions&file=tit.xml&xsl=generic.xsl�
http://www.techfak.uni-bielefeld.de/~kurtz/�
http://www.mathematik.uni-bielefeld.de/~bernhard/�
http://www.minet.uni-jena.de/www/fakultaet/iam/personen/althofer.html�
http://ls2-www.informatik.uni-dortmund.de/~wegener/�
file:www.wkap.nl/.dvi�
http://www.springer.de/�
http://www.research.ibm.com/journal/�

824 Bibliography

[79] C. Lucchesi. Candidate keys for relations. Journal of of Computer and System Sciences, 17(2):270�279,
1978. 730

[80] D. Maier. Minimum covers in the relational database model. Journal of the ACM, 27(4):664�674, 1980.
730

[81] D. Maier, A. O. Mendelzon, Y. Sagiv. Testing implications of data dependencies. ACM Transactions on
Database Systems, 4(4):455�469, 1979. 730

[82] E. A. Maxwell. Methods of Plane Projective Geometry Based on the Use of General Homogenous Coordi-
nates. Cambridge University Press, 1946. 696

[83] E. A. Maxwell. General Homogenous Coordinates in Space of Three Dimensions. Cambridge University
Press, 1951. 696

[84] B. McLaughlin. Java and XML. O'Reilly, 2000. 820
[85] T. Milo, D. Suciu. Index structures for path expressions. Lecture Notes in Computer Science, Vol. 1540.

Springer-Verlag, 1999, pp. 277�295. 819
[86] M. Nelson, J. L. Gailly. The Data Compression Book. M&T Books, 1996. 619
[87] M. E. Newell, R. G. Newell, T. L. Sancha. A new approach to the shaded picture problem. In Proceedings

of the ACM National Conference, pp. 443�450, 1972. 697
[88] J. O'Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, 1987. 697
[89] R. Paige, R. Tarjan. Three partition re�nement algorithms. SIAM Journal on Computing, 16(6):973�989,

1987. 819
[90] R. Pasco. Source Coding Algorithms for Fast Data Compression. PhD thesis, Stanford University, 1976.

618
[91] S. Petrov. Finite axiomatization of languages for representation of system properties. Information Sciences,

47:339�372, 1989. 730
[92] N. Polyzotis, M. N. Garofalakis. Statistical synopses for graph-structured XML databases. In Proceedings

of the 2002 ACM SIGMOD international Conference on Management of Data, 2002, pp. 358�369. 819
[93] F. P. Preparata, M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, 1985. 696
[94] J. J. Rissanen. Generalized Kraft inequality and arithmetic coding. http://www.research.ibm.com/journal/

Journal of Research and Development, 20:198�203, 1976. 618
[95] D. F. Rogers, J. Adams. Mathematical Elements for Computer Graphics. McGraw-Hill Book Co., 1989.

696
[96] A. Sali, Sr., A. Sali. Generalized dependencies in relational databases. Acta Cybernetica, 13:431�438, 1998.

730
[97] D. Salomon. Data Compression. Springer-Verlag, 2004 (3. edition). 619
[98] L. A. Santaló. Integral Geometry and Geometric Probability. Addison-Wesley, 1976. 697
[99] K. Sayood. Introduction to Data Compression. Morgan Kaufman Publisher, 2000 (2. edition). 619

[100] R. Seidel. A simple and fast incremental randomized algorithm for computing trapezoidal decompositions
and for triangulating polygons. Computational Geometry: Theory and Applications, 1(1):51�64, 1991. 696

[101] B. Sharp. Implementing subdivision theory. Game Developer, 7(2):40�45, 2000. 697
[102] B. Sharp. Subdivision Surface theory. Game Developer, 7(1):34�42, 2000. 697
[103] L. Stockmeyer, A. R. Meyer. Word problems requiring exponential time. In Proceedings of the 28th Annual

ACM Symposium on Theory of Computing. ACM Press, 1973, pp. 1�9. 819
[104] I. Sutherland, G. Hodgeman. Reentrant polygon clipping. Communications of the ACM, 17(1):32�42, 1974.

697
[105] I. E. Sutherland, R. Sproull, R. Schumacker. A characterization of ten hidden-surface algorithms. Compu-

ting Surveys, 6(1):1�55, 1974. 697
[106] L. Szécsi. An effective kd-tree implementation. in j. lauder (editor) Graphics Programming Methods, pp.

315�326. Charles River Media, 2003. 697
[107] L. Szirmay-Kalos, Gy. Antal, F. Csonka. Háromdimenziós gra�ka, animáció és játékfejlesztés + CD (Three

Dimensional Graphics, Animation and Game Development). Computerbooks, 2003. 697
[108] L. Szirmay-Kalos, G. Márton. Worst-case versus average-case complexity of ray-shooting. Computing,

61(2):103�131, 1998. 697
[109] L. Szirmay-Kalos (editor). Theory of Three Dimensional Computer Graphics. Akadémiai Kiadó, 1995. 697

http://portal.acm.org/browse_dl.cfm?linked=1&part=journal&idx=J401&coll=portal&dl=ACM&CFID=10136019&CFTOKEN=486195�
http://uk.cambridge.org/�
http://uk.cambridge.org/�
http://www.oreilly.de�
http://www.math.tau.ac.il/~milo/�
http://www.cs.washington.edu/homes/suciu/�
http://www.link.springer.de/link/service/series/0558/index.htm�
http://www.springer.de/�
http://www.cs.nyu.edu/cs/faculty/paige/�
http://www.cs.princeton.edu/~ret/�
http://epubs.siam.org/sam-bin/dbq/toclist/SICOMP�
http://www.stanford.edu/�
http://www.cs.ucsc.edu/~alkis/�
http://www.bell-labs.com/user/minos/�
http://www.springer.de/ �
http://books.mcgraw-hill.com/�
http://www.renyi.hu/~sali/�
http://www.inf.u-szeged.hu/kutatas/actacybernetica/starthu.xml�
http://www.springer-ny.com/�
http://www.aw.com/�
file:www.mkp.com/.dvi�
file:Surface.dvi�
http://www.gdmag.com/homepage.htm�
http://www.gamasutra.com/features/20000411/sharp_01.htm�
http://www.gdmag.com/homepage.htm�
http://www.geocities.com/stockmeyer@sbcglobal.net/�
http://theory.lcs.mit.edu/~meyer/�
http://isbndb.com/d/publisher/acm_press.html�
http://portal.acm.org/browse_dl.cfm?linked=1&part=magazine&idx=J79&coll=portal&dl=ACM&CFID=10204809&CFTOKEN=31999750�
http://portal.acm.org/browse_dl.cfm?linked=1&part=journal&idx=J204&coll=portal&dl=ACM&CFID=21337647&CFTOKEN=70289378�
file:portal.acm.org/ citation.cfm?id=957187&dl=ACM&coll=portal&CFID=11111111&CFTOKEN=2222222�
http://www.charlesriver.com/Books/Features.aspx�
http://www.iit.bme.hu/~szirmay/szirmay.html�
http://www.computerbooks.hu/�
http://www.iit.bme.hu/~szirmay/szirmay.html�
http://link.springer-ny.com/link/service/journals/00607/index.htm�
http://www.iit.bme.hu/~szirmay/szirmay.html�
http://www.iit.bme.hu/~{ }szirmay�
http://www.akkrt.hu/�

Bibliography 825

[110] D. S. Taubman, M. W. Marcelin. JPEG 2000 � Image Compression, Fundamentals, Standards and Practice.
Society for Industrial and Applied Mathematics, 1983. 619

[111] B. Thalheim. Dependencies in Relational Databases. B. G. Teubner, 1991. 730
[112] D. M. Tsou, P. C. Fischer. Decomposition of a relation scheme into Boyce�Codd normal form. SIGACT

News, 14(3):23�29, 1982. 730
[113] A. Tucker. Handbook of Computer Science. Chapman & Hall/CRC, 2004. 820
[114] J. D. Ullman. Principles of Database and Knowledge Base Systems. Vol. 1. Computer Science Press, 1989

(2. edition). 730
[115] V. Vianu. A Web Odyssey: from Codd to XML. In Proceedings of the 20th Symposium on Principles of

Database Systems, 2001, pp. 1�5. 819
[116] T. Várady, R. R. Martin, J. Cox. Reverse engineering of geometric models - an introduction. Computer-

Aided Design, 29(4):255�269, 1997. 696
[117] G. Wallace. The JPEG still picture compression standard. Communications of the ACM, 34:30�44, 1991.

619
[118] J. Warren, H. Weimer. Subdivision Methods for Geometric Design: A Constructive Approach. Morgan

Kaufmann Publishers, 2001. 697
[119] D. Watkins. Bulge exchanges in algorithms of QR type. SIAM Journal on Matrix Analysis and Application,

19(4):1074�1096, 1998. 780
[120] D. Welsh. Codes and Cryptography. Oxford University Press, 1988. 618
[121] J. Wilkinson. Convergence of the LR, QR, and related algorithms. The Computer Journal, 8(1):77�84,

1965. 780
[122] F. M. J. Willems, Y. M. Shtarkov, T. J. Tjalkens. The context-tree weighting method: basic properties. IEEE

Transactions on Information Theory, 47:653�664, 1995. 619
[123] F. M. J. Willems, Y. M. Shtarkov, T. J. Tjalkens. The context-tree weighting method: basic properties. IEEE

Information Theory Society Newsletter, 1:1 and 20�27, 1997. 619
[124] I. H. Witten, R. M. Neal, J. G. Cleary. Arithmetic coding for sequential data compression. Communications

of the ACM, 30:520�540, 1987. 618
[125] G. Wyvill, C. McPheeters, B. Wyvill. Data structure for soft objects. The Visual Computer, 4(2):227�234,

1986. 696
[126] K. Yi, H. He, I. Stanoi, J. Yang. Incremental maintenance of XML structural indexes. In Proceedings of the

2004 ACM SIGMOD International Conference on Management of Data, 2004, pp. 491�502. 819
[127] D. M. Young. Iterative Solution of Large Linear Systems. Academic Press, 1971. 780
[128] C. Yu, D. Johnson. On the complexity of �nding the set of candidate keys for a given set of functional

dependencies. In Information Processing 74. North-Holland, pp. 580�583, 1974. 730
[129] B. Zalik, G. Clapworthy. A universal trapezoidation algorithms for planar polygons. Computers and

Graphics, 23(3):353�363, 1999. 696
[130] C. Zaniolo. Analysis and design of relational schemata for database systems. Technical Report UCLA�

Eng�7669, Department of Computer Science, University of California at Los Angeles, 1976. 730
[131] C. Zaniolo. A new normal form for the design of relational database schemata. ACM Transactions on

Database Systems, 7:489�499, 1982. 730
[132] J. Ziv, A. Lempel. A universal algorithm for sequential data compression. IEEE Transactions on

Information Theory, 23:337�343, 1977. 619
[133] J. Ziv, A. Lempel. Compression of individual sequences via variable-rate coding. IEEE Transactions on

Information Theory, 24:530�536, 1978. 619

http://www.siam.org/�
http://www.teubner.de/�
http://www.bowdoin.edu/~allen/�
http://www.chapmanhall.com/�
http://www.crcpress.com/�
http://www-db.stanford.edu/~ullman/�
http://www-cse.ucsd.edu/users/vianu/�
http://www.sciencedirect.com/science/journal/00104485�
http://portal.acm.org/browse_dl.cfm?linked=1&part=magazine&idx=J79&coll=portal&dl=ACM&CFID=10204809&CFTOKEN=31999750�
file:www.mkp.com/.dvi�
file:www.oup.co.uk/.dvi�
http://www3.oup.co.uk/computer_journal/�
http://www.ieee.org/portal/index.jsp?pageID=corp_level1&path=pubs/transactions&file=tit.xml&xsl=generic.xsl�
http://portal.acm.org/browse_dl.cfm?linked=1&part=magazine&idx=J79&coll=portal&dl=ACM&CFID=10204809&CFTOKEN=31999750�
http://springerlink.metapress.com/app/home/journal.asp?wasp=e2gpvvrqlq6mme2jqjft&referrer=parent&backto=linkingpublicationresults,1:100388,1�
http://www.cs.duke.edu/~yike/�
http://www.cs.duke.edu/~haohe/�
http://www.research.ibm.com/people/i/irs/�
http://www.cs.duke.edu/~junyang/�
http://www.cs.utexas.edu/users/young/�
file:www.academicpress.com/.dvi�
file:www.elsevier.nl/.dvi�
http://www.sciencedirect.com/science/journal/00978493�
http://www.ieee.org/portal/index.jsp?pageID=corp_level1&path=pubs/transactions&file=tit.xml&xsl=generic.xsl�
http://www.ieee.org/portal/index.jsp?pageID=corp_level1&path=pubs/transactions&file=tit.xml&xsl=generic.xsl�

Name index

A, Á
Abiteboul, Serge, 711, 727, 730, 821
Adams, J. A., 824
Ahlswede, Rudolf, 618, 821
Aho, Alfred V., 724, 730, 821
Althöfer, Ingo, 823
Antal, György, 824
Arenas, Marcelo, 819, 821
Armstrong, William Ward, 715, 728, 730, 821
Auchmuty, Giles, 761, 778

B
Balkenhol, Bernhard, 618, 821, 823
Barett, R., 780, 821
Bates, Chris, 821
Batterson, Steve, 780, 821
Bauer, F. L., 758, 765, 779
Beeri, Catriel, 721, 723, 724, 730, 821
Békéssy, András, 706, 730, 821
Bell, T. C., 821
Bernstein, Felix, 627
Bernstein, P. A., 730, 821
Berry, M., 780, 821
Bézier, Pierre (1910�1999), 627, 634
Björck, Ake, 770
Blinn, Jim, 632, 696, 821
Bloomenthal, J., 821
Bohannon, Philip, 819, 823
Boyce, Raymond F., 715, 730
Bradley, Neil, 821
Bresenham, Jack E., 685, 697, 821
Bunch, James R., 757
Buneman, Peter, 819, 821
Burrows, Michael, 586, 821

C
Cai, Ning, 823
Catmull, Edwin, 640, 697, 822
Chan, T. F., 821
Chazelle, Bernhard, 696, 822
Chen, Qun, 819, 822
Cholesky, André Louis, 746, 749�752, 779, 780
Clapworthy, Gordon, 825
Clark, James, 640, 697, 822
Cleary, J. G., 821, 825
Codd, Edgar F. (1923�2003), 699, 715, 730, 822

Cormen, Thomas H., 822
Corneil, Derek G., 819, 822
Cover, Thomas M., 822
Cox, J., 825
Cox, M. G., 629
Coxeter, Harold Scott MacDonald, 822

CS
Csonka, Ferenc, 824

D
de Berg, Marc, 696, 822
deBoor, Carl, 629
Delobel, C., 730, 822
Demetrovics, János, 706, 730, 821, 822
Demmel, J., 821, 822
Descartes, René (1596�1650), 622
Diament, B., 779
Donato, J., 821
Dongarra, Jack, 821
Dowd, M., 730, 821
Dömösi Pál, 583
Dueck, Gunter, 823
Dyn, Niva, 697, 822

E, É
Effros, Michelle, 822
Eijkhout, V., 821
Elias, Peter (1953�2001), 592
Elsner, Ludwig, 765, 766

F
Fagin, R., 721, 730, 821, 822
Fano, Richard M., 592
Farin, Gerald, 696, 822
Feiner, Steven K., 822
Fernandez, Mary, 819, 821
Fernando, Randoma, 822
Fischer, P. C., 730, 824
Foley, James D., 822
Fox, L., 780
Frommer, Andreas, 780, 823
Fuchs, Henri, 823
Fujimoto, A., 697, 823

Name index 827

G
Gailly, J. L., 824
Garey, Michael R., 819, 823
Garofalakis, Minos, 820, 824
Gauss, Johann Karl Friedrich (1777�1855), 744,

745, 747�749, 751, 753, 772
Gersgorin, S. A., 764
Givens, Wallace J., 769
Glassner, A. S., 823
Goodwin, E. T., 780
Gotlieb, Calvin C., 819, 822
Gottlob, Georg, 819, 823
Gram, Jorgen Pedersen, 769, 770
Grant, John, 728, 730, 823
Gregory, J., 822
Gudes, Ehud, 819, 823

H
Hageman, L. A., 780
Han, Te Sun, 823
Hankerson, D., 823
Harris G. A., 823
Havran, Vlastimil, 697, 823
He, Hao, 808, 818, 819, 823, 825
Henzinger, Monika Rauch, 819, 823
Henzinger, Thomas A., 819, 823
Herman, Iván, 696
Herman Iván, 823
Hessenberg, Gerhard, 771, 772, 780
Hilbert, David, 759, 763, 778
Hodgeman, G. W., 649, 697, 824
Householder, Alston Scott, 769
Howard, J. H., 721, 730, 821
Huffman, David A. (1925�1999), 593, 618, 823
Hughes, John F., 822
Hull, Richard, 711, 727, 730

I, Í
IeC Ðemel, J., 779

J
Jacobi, Carl Gustav Jacob (1804�1851), 753, 754
Jankowski, T., 763
Jiménez, P., 823
Johnson, D., 819
Johnson, D. T., 706, 730, 825
Johnson, P. D., 823
Jordan, Camille, 765

K
Kahan, W., 740
Kansei, I., 823
Karlin, Samuel, 697, 823
Katona, Gyula O. H., 728, 730, 822
Kaushik, Raghav, 819, 823
Kedem, Z. M., 823
Khachatrian, Levon G. (1954�2002), 618, 821, 823
Khosrow-Pour, Mehdi, 820, 823
Klyuyev, v. v., 748
Kobayashi, Kingo, 823
Koch, Christoph, 819, 823
Kokovkin-Shcherbak, N., 748
Kopke, Peter W., 819, 823
Korth, Henry F., 819, 823

Krammer, Gergely, 696, 823
Krichevsky, R. E., 600, 823
Krishnamurthy, Rajasekar, 820, 823
Kulkarni, S. R., 822
Kurtz, Stefan, 821, 823

L
Lambert, Johann Heinrich (1728�1777), 696
Lamperti, J., 697, 823
Langdon, G. G., Jr., 823
Leiserson, Charles E., 822
Lempel, Abraham, 586, 619, 825
Levin, D., 822
Libkin, Leonid, 819, 821
Lim, Andrew, 819, 822
Lucchesi, C. L., 730, 823

M
Maier, David, 729, 730, 824
Malajovich, Diement G., 779, 822
Marcelin, M. W., 824
Martin, Ralph R., 825
Márton, Gábor, 697, 824
Maxwell, E. A., 824
McLaughlin, Brett, 824
McPheeters, C., 825
Mendelzon, Alberto O., 730, 824
Meyer, A. R., 791, 819
Meyer, Albert R., 824
Milo, Tova, 793, 819, 824
Minker, Jack, 728, 730, 823
Moler, Cleve B., 747

N
Naughton, Jeffrey F., 819, 823
Naylor, B. F., 823
Neal, R. M., 825
Nelson, Mark, 824
Newell, M. E., 824
Newell, R. G., 824

O, Ó
O'Rourke, Joseph, 637, 697, 824
Oettli, W., 758, 762
Ong, Kian Win, 819, 822
Osborne, Sylvia L., 706
Ostrowski, Alexander R., 765, 766
Overmars, M., 822

P
Paige, Robert, 794, 819, 824
Parlett, Beresford, 771
Pasco, R., 618, 824
Petrov, S. V., 730, 824
Pichler, Reinhard, 819, 823
Pinsker, Mark S., 823
Poisson, Siméon-Denis (1781�1840), 667, 697
Polyzotis, Neoklis, 820, 824
Pozzo, R., 821
Prager, W., 758, 762

R

828 Name index

Ramakrishnan, Raghu, 820, 823
Rayleigh, John William Strutt, 767
Rissanen, J. J., 618, 824
Rivest, Ronald Lewis, 822
Rodrigues, Olinde, 658, 659
Rogers, D. F., 824
Romine, C., 821

S
Sagiv, Y., 730, 824
Sali, Attila, 730, 822, 824
Sali, Attila, Sr., 824
Salomon D., 824
Sancha, T. L., 824
Santaló, Luis A., 824
Sárközy, András, 823
Sayood, K., 824
Schmidt, Erhard, 769, 770
Schumacker, R. A., 824
Schwarzkopf, 822
Seidel, Philipp Ludwig, von (1821�1896), 753
Seidel, R., 824
Shannon, Claude Elwood (1916�2001), 592
Sharp, Brian, 697, 824
Shenoy, Pradeep, 819, 823
Shtarkov, Yuri M., 596, 619, 825
Skeel, Robert D., 758, 762
Sproull, R. F., 824
Stanoi, Ioana, 818, 819, 825
Statman, R., 730
Stein, Clifford, 822
Stockmeyer, Larry J., 791, 819, 824
Suciu, Dan, 793, 819, 821, 824
Sutherland, Ivan E., 649, 697, 824

SZ
Szécsi, László, 697, 824
Szirmay-Kalos, László, 824

T
Takayuki, T., 823
Tarjan, Robert Endre, 794, 819, 824
Taubman, D. S., 824
Taylor, Brook, 625, 734
Taylor, M. T., 697, 823
Thalheim, Bernhardt, 730, 824
Thomas, F., 823
Thomas, J. A., 822
Tjalkens, Tjalling J., 596, 619, 825
Tompa, Frank Wm., 706

Torras, C., 823
Tro�mov, V. K., 600, 823
Tsou, D. M., 730, 824
Tucker, Alan B., 820
Tucker, Allen B., 825
Turing, Alan, 780

U, Ú
Ullman, Jeffrey David, 711, 724, 730, 821, 825

V
van Dam, Andries, 822
van Kreveld, M., 822
Várady, T., 825
Verdú, Sergio, 822
Vianu, Victor, 711, 727, 730, 819, 821, 825
Visweswariah, K., 822
von Mieses, Richard, 767, 768
Vorst, H., van der, 821

W
Wallace, G. K., 825
Warnock, John, 693
Warren, Joe, 697, 825
Watkins, D. S., 825
Wegener, Ingo, 823
Weimer, Henrik, 697, 825
Welsh, Dominic, 825
Wheeler, David J., 586, 821
Wilkinson, James H., 747, 758, 759, 780, 825
Willems, Frans M. J., 596, 619, 825
Witten, I. H., 821, 825
Wozniakowski, T., 763
Wyvill, Brian, 825
Wyvill, Geaff, 825

Y
Yang, Jun, 808, 818, 819, 823, 825
Yi, Ke, 818, 819, 825
Young, David M., 825
Young, L. A., 780
Yu, C. T., 706, 730, 825

Z
Zalik, Bornt, 825
Zaniolo, C., 730, 825
Zhang, Zhen, 823
Ziv, Jacob, 586, 619, 825

Subject Index

A, Á
A(k)-index, 801, 812, 817
AABB, 650
absolute error, 742gy
active edge table, 688
AET, 688
affine point, 653
affine transformation, 658
A(k)-I-E, 802
analytic geometry, 621
ancestor-stable, 811
anomaly, 707, 715

deletion, 708
insertion, 708
redundancy, 708
update, 708

arithmetic coding, 596
arithmetic over�ow, 742gy
arithmetic under�ow, 742gy
Armstrong-axioms, 700, 707gy, 715
Armstrong-relation, 728
attribute, 699

external, 729fe
prime, 716, 729fe

axiomatisation, 727

B
B-S, 744
backward error, 735
backward error analysis, 735
backward label sequence, 810
backward stable, 735
balancing, 760
banded matrix, 751
basic partition, 790
basis function, 626
basis vector, 622
Bernstein-polinom, 627
Bézier curve, 627
Bézier-görbe, 634gy
binary space partitioning tree, 672
bisimilar, 792, 813
bisimulation, 792, 814
blob method, 632
block, 623
boundary surface, 623
bounding volume, 663

AABB, 663
hierarchikus, 663
sphere, 663

branching query, 809, 810
Bresenham algorithm, 685
B-L-D, 687
Bresenham line drawing algorithm, 687
B-spline, 628, 630

order, 628
BSP-tree, 672, 694
BSP-T-C, 695
Burrows-Wheeler transform, 609
butter�y subdivision, 641

C
camera transform, 679
Cartesian coordinate system, 622
Catmull-Clark subdivision, 640áb
Catmull-Clark subdivision algorithm, 640
CGS�, 769
characteristic equation, 764, 765
characteristic polynomial, 764
Cholesky-decomposition, 750, 779fe
C-D--B-M, 752
C-M, 751
chrominance, 613
classical error analysis, 734
classical Gram-Schmidt method, 769
clipping, 643, 648, 677, 682

line segments, 648
C, 702, 720, 728gy

of a set of attributes, 707gy
of a set of functional dependencies, 700, 701,

707gy
of set of attributes, 701, 702

C-S-L-C, 652
Cohen-Sutherland line clipping algorithm, 650
collision detection, 643, 660
C-S, 741
condition number, 734, 742gy, 763gy, 778fe
condition number of eigenvalues, 766
condition number of the matrix, 735
cone, 624
consistent norm, 778fe
constructive solid geometry, 632
context tree, 602
context-tree weighting algorithm, 603

830 Subject Index

convex combination, 624
convex-combination, 625
convex hull, 627
convex vertex, 636
coordinate, 622
cost driven method, 672
Cox-deBoor algorithm, 630
cross product, 622
curve, 624
cylinder, 624

CS
CSG, see constructive solid geometry
CSG tree, 634

D
D(k)-index, 803, 804
D(k)-I-C, 805
DDA, see digital differential analyzator algorithm
DDA-L-D, 685
decision variable, 686
decomposition

dependency preserving, 713
dependency preserving into 3NF, 719
lossless join, 708

into BCNF, 717
dependency

branching, 727
equality generating, 721
functional, 699

equivalent families, 704
minimal cover of a family of, 704

join, 726
multivalued, 721
numerical, 728
tuple generating, 721

dependency basis, 722
D-, 723, 730fe
depth-buffer, 689
depth of the tree, 811
descendant-stable, 811
diagonal, 636
diagonalizable, 765
digital differential analyzator algorithm, 685
discrete cosine transform, 614
Discrete Memoryless Source, 586
DMS, see Discrete Memoryless Source
domain, 699
domain calculus, 711
dot product, 621
DTD, 788
dual tree, 637
D(k)-I-C, 804

E, É
ear, 636
ear cutting, 637
E-1-I, 816
E-FB-I, 817
E--, 649
edge point, 640
E-M-S, 787
E-PT, 799
eigenvalue, 764, 779fe
ellipse, 625

entropy, 587
E, 710
equation of the line, 655

in homogeneous coordinates, 656
equation of the tangent plane, 625
error bound, 733, 742gy
exact, 791
external point, 623
eye position, 679

F
F+B+F+B-index, 812
F+B-index, 812
face point, 640
FB(f , b, d)-index, 810, 812
FB(f , b, d)-I-C, 812
FB-index, 810, 811, 816
FB-I-C, 812
�xed point number representation, 685
�oating point arithmetic, 736, 738, 740, 779fe
�oating point arithmetic system, 741
�oating point number set, 742gy
forward label sequence, 810
forward stable, 736
frequent regular queries, 805
functional representation, 696

G
G-M, 745
G, 774
grammar, 810
G-1-I, 814
G-A(k)-I, 817
G-FB-I, 816
growth factor of pivot elements, 747

H
helix, 625
homogeneous coordinate, 655
homogeneous linear transformations, 656
homogenous coordinates, 654
homogenous linear transformation, 653
Huffman algorithm, 593

I, Í
ideal line, 653
ideal plane, 653
ideal point, 653
I�divergence, 591
ill-conditioned, 735
image, 621
implicit equation, 623
I-M-S, 786
incremental concept, 677, 684, 688
index, 790
I-E, 792
indexing, 788
index of an index, 813
index refresh, 813
inference rules, 700

complete, 700
sound, 700

instance, 699
integral geometry, 673, 697

Subject Index 831

integrity constraint, 699, 713
internal point, 623
intersection calculation

plane, 662
triangle, 662

inverse power method, 768, 772gy
inversion of a matrix, 749
iso-parametric curve, 625
iterative re�nement, 778fe
I-R, 762

J
J-, 710, 711áb, 720
JPEG, 613

K
k-bisimilar, 801
k-bisimulation, 800
kd-tree, 672
K-T-C, 674
key, 700, 705, 716

primary, 726
knot vector, 628
Kraft's inequality, 589
Krichevsky-Tro�mov estimator, 601

L
label sequence, 788
lazy method, 814
left handed, 684
line, 625

direction vector, 625
equation, 625
place vector, 625

L-, 704, 714, 715, 718, 719
line segment, 625
L-, 707
local control, 630
logical implication, 700, 721
lossless join, 708
lower bound, 785
LU-decomposition, 748
LU-M, 749
LU-M--P, 749
luminance, 613

M
M(k)-index, 807
M(k)-I-C, 807
M∗(k)-index, 807
M∗(k)-I- N-E, 808
M∗(k)-I-P-E, 809
machine epsilon, 738
M-E, 738
main query, 810
marching cubes algorithm, 642
M-P-D-V, 775
M-P-G-V, 775
M-P-O-P-V, 776
M-P--G-C, 776
mesh, 634
method of invariants, 687
MGS-, 770
M-, 705, 719, 729fe
modelling of a source, 596

morphing, 633
move-to-front code, 611
M∗(k)-I-E-T--B, 809
M-I, 753

N
N -BCNF, 717
N-A, 801
N-E, 789
naive index, 790
N-I-E, 791
N-M-S, 785
N-PT, 795
natural join, 708, 717
noiseless coding theorem, 589
non-overlapping block Jacobi splitting, 754
normal form, 715

BCNF, 715, 729fe
Boyce-Codd, 715
5NF, 726
4NF, 715, 724
3NF, 715, 716, 719, 729fe

normalized, 737
numerically stable, 735, 742gy
numerically stable MGS method, 770
numerically unstable, 735, 742gy
NURBS, 631

O, Ó
object median method, 672
octree, 671
One (new), 748
One (old) �op, 748
1-index, 792, 813
1-I-E, 793
origin, 622
orthogonal, 621, 769
orthogonal: vector, 621
O-P-U-V �� , 774
O-P-U-V ��, 774
over�ow, 777fe
overlapping block Jacobi multisplitting, 754

P
painter's algorithm, 693, 697
parallel, 622
parallel: line, 625
parallel: plane, 623
parallel: vector, 622
parametric equation, 624
permutation matrix, 748
pivot element, 746
pixel, 621
Poisson point process, 667
polygon, 635
P-F, 689
polygon �ll algorithm, 687
polyhedron, 635
polyline, 634
P-BCNF, 719
power method, 772gy
P-M, 767
pre�x code, 588
P, 714
projective geometry, 653

832 Subject Index

projective line, 656
projective line segment, 656
projective plane, 656
projective space, 653
PT, 796
PT-, 793

Q
QR-method, 770, 772gy
QR-M, 771
quadric, 661
quadtree, 671gy
quantization, 615
query language, 788

R
rasterization, 684
ray, 659
R-F-I, 661
R-F-I---T, 675
R-F-I--O, 671
R-F-I--U-G, 666
Rayleigh quotient, 767
ray parameter, 660
ray tracing, 659
record, 699
R-S, 740
redundancy, 605
R, 806
R-I-N, 806
regular expression, 788
relational

schema, 699
decomposition of, 707

table, 699
relative error, 733, 742gy, 763gy
relative error bound, 738, 742gy
Rendering, 621
residual error, 755
reverse engineering, 696
right handed, 684
right hand rule, 622
Rodrigues formula, 658, 659gy
run-length coding, 616

S
safe, 791
S, 773
scan line, 687
screen coordinate system, 677
sensitivity of a problem, 755
shadow, 659
Shannon-Fano algorithm, 592
Shannon-Fano-Elias code, 592
shape, 621
shifted QR-method, 772gy
SQR-M(A), 772
similarity transformation, 765
simple, 635
simple expression, 788
simple polygon, 635
simulation, 784
single connected, 635
Skeel-norm, 758
solid, 623
S      ,

752
S--B-U-T-S,

752
space, 621
spatial median method, 672
sphere, 623, 624
split, 794
splitter, 795
stability (or sensitivity) of an algorithm, 755
stable, 794
subnormal number, 741, 742gy
superkey, 700, 705, 715
surface, 623
Sutherland-Hodgeman polygon clipping, 697
S-H-P-C, 649
Sutherland-Hodgeman polygon clipping algorithm,

649

T
tessellation, 634

adaptive, 638
T-LU-D--B-M, 752
3D DDA algorithm, 697
3D line drawing algorithm, 665
thumb rule, 757
torus, 623
transformation, 652
translation, 621
T, 789
triangle, 624

left oriented, 690
right oriented, 690

tri-linear approximation, 642
T vertex, 639
two ears theorem, 637, 697

U, Ú
UDC, see uniquely decipherable code
U-G-C, 664
U-G-E-C, 665
U-G-N-N, 666
U-G-R-P-I, 665
uniquely decipherable code, 587
unit (upper or lower) triangular, 748
unit roundoff, 738
upper bound, 785
upper Hessenberg form, 771

V
vector, 621
vector: absolute value, 621
vector: addition, 621
vector: cross product, 622
vector: dot product, 621
vector: multiplication with a scalar, 621
vectorization, 634
virtual world, 621
visibility problem, 689
von Mieses method , 768
voxel, 642

W
W, 693
Warnockalgorithm, 693

Subject Index 833

weakly stable, 757
W-C, 803, 804, 809gy
W-I, 805
well-conditioned, 735
wrap around problem, 682

X
XML, 782

Y
YCbCr-transform, 613

Z
Z-, 689, 690
z-buffer algorithm, 689
Z-B-L-T, 692
Ziv-Lempel coding, 606

Contents

13. Compression and Decompression (Ulrich Tamm) 585
13.1. Facts from information theory . 586

13.1.1. The discrete memoryless source 586
13.1.2. Pre�x codes . 587
13.1.3. Kraft's inequality and the noiseless coding theorem 589
13.1.4. Shannon-Fano-Elias codes and the Shannon-Fano algorithm 592
13.1.5. The Huffman coding algorithm . 593

13.2. Arithmetic coding and modelling . 596
13.2.1. Arithmetic coding . 596
13.2.2. Modelling . 600

Modelling of memoryless sources with The Krichevsky-Tro�mov
Estimator . 600

Models with known context tree 602
The context-tree weighting method 603

13.3. Ziv-Lempel coding . 606
13.3.1. LZ77 . 606
13.3.2. LZ78 . 607

13.4. The Burrows-Wheeler transform . 609
13.5. Image compression . 613

13.5.1. Representation of data . 613
13.5.2. The discrete cosine transform . 614
13.5.3. Quantization . 615
13.5.4. Coding . 616

14. Computer graphics algorithms (Szirmay-Kalos László) 621
14.1. Fundamentals of analytic geometry . 621

14.1.1. Cartesian coordinate system . 622
14.2. Description of point sets with equations 622

14.2.1. Solids . 623
14.2.2. Surfaces . 623
14.2.3. Curves . 624
14.2.4. Normal vectors . 625
14.2.5. Curve modelling . 626

Bézier curve . 627

Contents 835

B-spline . 628
14.2.6. Surface modelling . 631
14.2.7. Solid modelling with blobs . 632
14.2.8. Constructive solid geometry . 632

14.3. Geometry processing and tessellation algorithms 634
14.3.1. Polygon and polyhedron . 635
14.3.2. Vectorization of parametric curves 635
14.3.3. Tessellation of simple polygons 636
14.3.4. Tessellation of parametric surfaces 638
14.3.5. Subdivision curves and meshes . 639
14.3.6. Tessellation of implicit surfaces 642

14.4. Containment algorithms . 643
14.4.1. Point containment test . 644

Half space . 644
Convex polyhedron . 644
Concave polyhedron . 644
Polygon . 644
Triangle . 645

14.4.2. Polyhedron-polyhedron collision detection 647
14.4.3. Clipping algorithms . 648

Clipping a line segment onto a half space 648
Clipping a polygon onto a half space 648
Clipping line segments and polygons on a convex polyhedron . . . 650
Clipping a line segment on an AABB 650

14.5. Translation, distortion, geometric transformations 652
14.5.1. Projective geometry and homogeneous coordinates 653

Projective plane . 653
Projective space . 655

14.5.2. Homogenous linear transformations 656
14.6. Rendering with ray tracing . 659

14.6.1. Ray-surface intersection calculation 661
Intersection calculation for implicit surfaces 661
Intersection calculation for parametric surfaces 662
Intersection calculation for a triangle 662
Intersection calculation for an AABB 662

14.6.2. Speeding up the intersection calculation 663
Bounding volumes . 663
Space subdivision with uniform grids 663
Time and storage complexity of the uniform grid algorithm 666
Probabilistic model of the virtual world 667
Calculation of the expected number of intersections 668
Calculation of the expected number of cell steps 669
Expected running time and storage space 670
Octree . 670
kd-tree . 672

14.7. Incremental rendering . 677

836 Contents

14.7.1. Camera transform . 679
14.7.2. Normalizing transform . 680
14.7.3. Perspective transform . 680
14.7.4. Clipping in homogeneous coordinates 682
14.7.5. Viewport transform . 683
14.7.6. Rasterization algorithms . 684

Line drawing . 684
Polygon �ll . 687

14.7.7. Incremental visibility algorithms 689
Z-buffer algorithm . 689
Warnock algorithm . 692
Painter's algorithm . 693
BSP-tree . 694

15. Relational Database Design (János Demetrovics, Attila Sali) 698
16. Relational Database Design . 699

16.1. Introduction . 699
16.2. Functional dependencies . 700

16.2.1. Armstrong-axioms . 700
16.2.2. Closures . 701
16.2.3. Minimal cover . 704
16.2.4. Keys . 705

16.3. Decomposition of relational schemata . 707
16.3.1. Lossless join . 708
16.3.2. Checking the lossless join property 709
16.3.3. Dependency preserving decompositions 713
16.3.4. Normal forms . 715

Boyce-Codd normal form . 715
3NF . 716
Testing normal forms . 716
Lossless join decomposition into BCNF 717
Dependency preserving decomposition into 3NF 719

16.3.5. Multivalued dependencies . 720
Dependency basis . 722
Fourth normal form 4NF . 723

16.4. Generalised dependencies . 726
16.4.1. Join dependencies . 726
16.4.2. Branching dependencies . 727

17. Human-Computer Interaction (Ingo Althöfer, Stefan Schwarz) 731
18. Memory Management (Ádám Balogh, Antal Iványi) 732
19. Scienti�c Computations . 733

19.1. Floating point arithmetic and error analysis 733
19.1.1. Classical error analysis . 733
19.1.2. Forward and backward errors . 735
19.1.3. Rounding errors and �oating point arithmetic 736
19.1.4. The �oating point arithmetic standard 741

Contents 837

19.2. Linear systems of equations . 743
19.2.1. Direct methods for solving linear systems 743

Triangular linear systems . 743
The Gauss method . 744
The Gauss method with pivoting 746
Operations counts . 747
The LU-decomposition . 748
The LU- and Cholesky-methods 749
The LU-method with pointers . 749
The LU- and Cholesky-methods on banded matrices 751

19.2.2. Iterative methods for linear systems 753
19.2.3. Error analysis of linear algebraic systems 755

Sensitivity analysis . 755
Scaling and preconditioning . 759
A posteriori error estimates . 761

The estimate of the direct error with the residual error . . . 761
The LINPACK estimate of

∥∥∥A−1
∥∥∥ 761

The Oettli-Prager estimate of the inverse error 762
Iterative re�nement . 762

19.3. Eigenvalue problems . 764
19.3.1. Iterative solutions of the eigenvalue problem 766

The power method . 767
Orthogonalization processes . 769
The QR-method . 770

19.4. Numerical program libraries and software tools 773
19.4.1. Standard linear algebra subroutines 773

BLAS 1 routines . 773
BLAS 2 routines . 774
BLAS 3 routines . 774

19.4.2. Mathematical software . 776
The MATLAB system . 776

20. Semi-structured databases (Attila Kiss) . 781
20.1. Semi-structured data and XML . 781
20.2. Schemas and simulations . 783
20.3. Queries and indexes . 788
20.4. Stable partitions and the PT-algorithm . 794
20.5. A(k)-indexes . 800
20.6. D(k)- and M(k)-indexes . 802
20.7. Branching queries . 809
20.8. Index refresh . 813

Bibliography . 821
Name index . 826
Subject Index . 829

