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Preface

I recommend with a special pleasure into the attention of the Readers the book Algorithms
of Informatics, carefully edited by Antal Iványi. Computer algorithms form a very impor-
tant and quickly developing branch of informatics. Design and analysis of big computer
nets, large scienti�c computations and simulations, economic planning, data protection and
cryptography and many other applications require effective, carefully planned and precisely
analysed algorithms.

Many years ago we wrote a small book with Péter Gács under the title Algorithms. The
three volumes of the book Algorithms of Computer Science show into how multifold and
and branching off area developed the given topic. It gives a special happiness that so many
excellent representative of Hungarian informatics have cooperated to create this book. It is
obvious for me that this book will be one of the most important source-book of students,
researchers and computer users for a long time.

Redmond, April 15, 2005

László Lovász



Introduction



1. Algebra

First, in this chapter, we will discuss some of the basic concepts of algebra, such as �elds,
vector spaces and polynomials (Section 1.1). Our main focus will be the study of polyno-
mial rings in one variable. These polynomial rings play a very important rôle in constructive
applications. After this, we will outline the theory of �nite �elds, putting a strong emphasis
on the problem of constructing them (Section 1.2) and on the problem of factoring poly-
nomials over such �elds (Section 1.3). Then we will study lattices and discuss the Lenstra-
Lenstra-Lovász algorithm which can be used to �nd short lattice vectors (Section 1.4). We
will present a polynomial time algorithm for the factorisation of polynomials with rational
coefficients; this was the �rst notable application of the Lenstra-Lenstra-Lovász algorithm
(Section 1.5).

1.1. Fields, vector spaces, and polynomials
In this section we will overview some important concepts related to rings and polynomials.

1.1.1. Ring theoretic concepts
We recall some de�nitions introduced in Chapters 31-33 of the textbook Introduction to
Algorithms. In the sequel all cross references to Chapters 31-33 refer to results in that book.

Reference
to New
Algorithms.

A set S with at least two elements is called a ring, if it has two binary operations, the
addition, denoted by the + sign, and the multiplication, denoted by the · sign. The elements
of S form an abelian group with respect to the addition, and they form a monoid (that is,
a semigroup with an identity), whose identity element is denoted by 1, with respect to the
multiplication. We assume that 1 , 0. Further, the distributive properties also hold: for
arbitrary elements a, b, c ∈ S we have

a · (b + c) = a · b + a · c and

(b + c) · a = b · a + c · a .
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Being an abelian group with respect to the addition means that the operation is asso-
ciative, commutative, it has an identity element (denoted by 0), and every element has an
inverse with respect to this identity. More precisely, these requirements are the following:
associative property: for all triples a, b, c ∈ S we have (a + b) + c = a + (b + c);
commutative property: for all pairs a, b ∈ S we have a + b = b + a;
existence of the identity element: for the zero element 0 of S and for all elements a of S ,
we have a + 0 = 0 + a = a;
existence of the additive inverse: for all a ∈ S there exists b ∈ S , such that a + b = 0.
It is easy to show that each of the elements a in S has a unique inverse. We usually denote
the inverse of an element a by −a.

Concerning the multiplication, we require that it must be associative and that the mul-
tiplicative identity should exist. The identity of a ring S is the multiplicative identity of S .
The usual name of the additive identity is zero. We usually omit the · sign when writing the
multiplication, for example we usually write ab instead of a · b.

Example 1.1 Rings.
(i) The set Z of integers with the usual operations + and ·.
(ii) The set Zm of residue classes modulo m with respect to the addition and multiplication modulo m.
(iii) The set Rn×n of (n × n)-matrices with real entries with respect to the addition and multiplication
of matrices.

Let S 1 and S 2 be rings. A map φ : S 1 → S 2 is said to be a homomorphism, if φ
preserves the operations, in the sense that φ(a±b) = φ(a)±φ(b) and φ(ab) = φ(a)φ(b) holds
for all pairs a, b ∈ S 1. A homomorphism φ is called an isomorphism, if φ is a one-to-one
correspondence, and the inverse is also a homomorphism. We say that the rings S 1 and S 2
are isomorphic, if there is an isomorphism between them. If S 1 and S 2 are isomorphic rings,
then we write S 1 � S 2. From an algebraic point of view, isomorphic rings can be viewed as
identical.

For example the map φ : Z → Z6 which maps an integer to its residue modulo 6 is a
homomorphism: φ(13) = 1, φ(5) = 5, φ(22) = 4, etc.

A useful and important ring theoretic construction is the direct sum. The direct sum of
the rings S 1 and S 2 is denoted by S 1⊕S 2. The underlying set of the direct sum is S 1×S 2, that
is, the set of ordered pairs (s1, s2) where si ∈ S i. The operations are de�ned componentwise:
for si, ti ∈ S i we let

(s1, s2) + (t1, t2) := (s1 + t1, s2 + t2) and
(s1, s2) · (t1, t2) := (s1 · t1, s2 · t2) .

Easy calculation shows that S 1 ⊕ S 2 is a ring with respect to the operations above. This
construction can easily be generalised to more than two rings. In this case, the elements of
the direct sum are the k-tuples, where k is the number of rings in the direct sum, and the
operations are de�ned componentwise.

Fields
A ring F is said to be a �eld, if its non-zero elements form an abelian group with respect
to the multiplication. The multiplicative inverse of a non-zero element a is usually denoted
a−1.

The best-known examples of �elds are the the sets of rational numbers, real numbers,
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and complex numbers with respect to the usual operations. We usually denote these �elds
by Q, R, C, respectively.

Another important class of �elds consists of the �elds Fp of p-elements where p is a
prime number. The elements of Fp are the residue classes modulo p, and the operations are
the addition and the multiplication de�ned on the residue classes. The distributive property
can easily be derived from the distributivity of the integer operations. By Theorem 33.12,
Fp is a group with respect to the addition, and, by Theorem 33.13, the set F∗p of non-zeroReference to

NA! elements of Fp is a group with respect to the multiplication. In order to prove this latter
claim, we need to use that p is a prime number.

Characteristic, prime �eld
In an arbitrary �eld, we may consider the set of elements of the form m · 1, that is, the set of
elements that can be written as the sum 1 + · · · + 1 of m copies of the multiplicative identity
where m is a positive integer. Clearly, one of the two possibilities must hold:
(a) none of the elements m · 1 is zero;
(b) m · 1 is zero for some m ≥ 1.

In case (a) we say that F is a �eld with characteristic zero. In case (b) the characteristic
of F is the smallest m ≥ 1 such that m · 1 = 0. In this case, the number m must be a prime,
for, if m = rs, then 0 = m · 1 = rs · 1 = (r · 1)(s · 1), and so either r · 1 = 0 or s · 1 = 0.

Suppose that P denotes the smallest sub�eld of F that contains 1. Then P is said to be
the prime �eld of F. In case (a) the sub�eld P consists of the elements (m · 1)(s · 1)−1 where
m is an integer and s is a positive integer. In this case, P is isomorphic to the �eld Q of
rational numbers. The identi�cation is obvious: (m · 1)(s · 1)−1 ↔ m/s.

In case (b) the characteristic is a prime number, and P is the set of elements m · 1 where
0 ≤ m < p. In this case, P is isomorphic to the �eld Fp of residue classes modulo p.

Vector spaces
Let F be a �eld. An additively written abelian group V is said to be a vector space over F, or
simply an F-vector space, if for all elements a ∈ F and v ∈ V , an element av ∈ V is de�ned
(in other words, F acts on V) and the following hold:

a(u + v) = au + av, (a + b)u = au + bu ,

a(bu) = (ab)u, 1u = u .

Here a, b are arbitrary elements of F, the elements u, v are arbitrary in V , and the element 1
is the multiplicative identity of F.

The space of (m × n)-matrices over F is an important example of vector spaces. Their
properties are studied in Chapter 31.reference to

NA A vector space V over a �eld F is said to be �nite-dimensional if there is a collection
{v1, . . . , vn} of �nitely many elements in V such that each of the elements v ∈ V can be
written as a linear combination v = a1v1 + · · ·+ anvn for some a1, . . . , an ∈ F. Such a set {vi}
is called a generating set of V . The cardinality of the smallest generating set of V is referred
to as the dimension of V over F, denoted dimF V . In a �nite-dimensional vector space, a
generating system containing dimF V elements is said to be a basis.

A set {v1, . . . , vk} of elements of a vector space V is said to be linearly independent,
if, for a1, . . . , ak ∈ F, the equation 0 = a1v1 + · · · + akvk implies a1 = · · · = ak = 0.
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It is easy to show that a basis in V is a linearly independent set. An important property of
linearly independent sets is that such a set can be extended to a basis of the vector space. The
dimension of a vector space coincides with the cardinality of its largest linearly independent
set.

A non-empty subset U of a vector space V is said to be a subspace of V , if it is an
(additive) subgroup of V , and au ∈ U holds for all a ∈ F and u ∈ U. It is obvious that a
subspace can be viewed as a vector space.

The concept of homomorphisms can be de�ned for vector spaces, but in this context we
usually refer to them as linear maps. Let V1 and V2 be vector spaces over a common �eld
F. A map φ : V1 → V2 is said to be linear, if, for all a, b ∈ F and u, v ∈ V1, we have

φ(au + bv) = aφ(u) + bφ(v) .

The linear mapping φ is an isomorphism if φ is a one-to-one correspondence and its in-
verse is also a homomorphism. Two vector spaces are said to be isomorphic if there is an
isomorphism between them.

Lemma 1.1 Suppose that φ : V1 → V2 is a linear mapping. Then U = φ(V1) is a subspace
in V2. If φ is one-to-one, then dimF U = dimF V1. If, in this case, dimF V1 = dimF V2 < ∞,
then U = V2 and the mapping φ is an isomorphism.

Proof. As
φ(u) ± φ(v) = φ(u ± v) and aφ(u) = φ(au),

we obtain that U is a subspace. Further, it is clear that the images of the elements of a
generating set of V1 form a generating set for U. Let us now suppose that φ is one-to-one.
In this case, the image of a linearly independent subset of V1 is linearly independent in V2.
It easily follows from these observations that the image of a basis of V1 is a basis of U, and
so dimF U = dimF V1. If we assume, in addition, that dimF V2 = dimF V1, then a basis of U
is also a basis of V2, as it is a linearly independent set, and so it can be extended to a basis
of V2. Thus U = V2 and the mapping φ must be a one-to-one correspondence. It is easy to
see, and is left to the reader, that φ−1 is a linear mapping.

The direct sum of vector spaces can be de�ned similarly to the direct sum of rings.
The direct sum of the vector spaces V1 and V2 is denoted by V1 ⊕ V2. The underlying set
of the direct sum is V1 × V2, and the addition and the action of the �eld F are de�ned
componentwise. It is easy to see that

dimF (V1 ⊕ V2) = dimF V1 + dimF V2 .

Finite multiplicative subgroups of �elds
Let F be a �eld and let G ⊆ F be a �nite multiplicative subgroup of F. That is, the set G
contains �nitely many elements of F, each of which is non-zero, G is closed under multipli-
cation, and the multiplicative inverse of an element of G also lies in G. We aim to show that
the group G is cyclic, that is, G can be generated by a single element. The main concepts
related to cyclic groups can be found in Section 33.3.4. Recall that the order ord(a) of an Reference to

NAelement a ∈ G is the smallest positive integer k such that ak = 1.
The cyclic group generated by an element a is denoted by 〈a〉. Clearly, |〈a〉| = ord(a),

and an element ai generates the group 〈a〉 if and only if i and n are relatively prime. Hence
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the group 〈a〉 has exactly φ(n) generators where φ is Euler's totient function (see 33.3.2). Reference to
NA!The following identity is valid for an arbitrary integer n:

∑

d|n
φ(d) = n.

Here the summation index d runs through all positive divisors of n. In order to verify this
identity, consider all the rational numbers i/n with 1 ≤ i ≤ n. The number of these is exactly
n. After simplifying these fractions, they will be of the form j/d where d is a positive divisor
of n. A �xed denominator d will occur exactly φ(d) times.

Theorem 1.2 Suppose that F is a �eld and let G be a �nite multiplicative subgroup of F.
Then there exists an element a ∈ G such that G = 〈a〉.

Proof. Suppose that |G| = n. Lagrange's theorem (Theorem 33.15) implies that the order ofReference to
NA! an element b ∈ G is a divisor of n. We claim, for an arbitrary d, that there are at most φ(d)

elements in F with order d. The elements with order d are roots of the polynomial xd − 1. If
F has an element b with order d, then, by Lemma 1.5, xd − 1 = (x − b)(x − b2) · · · (x − bd)
(the lemma will be veri�ed later). Therefore all the elements of F with order d are contained
in the group 〈b〉, which, in turn, contains exactly φ(d) elements of order d.

If G had no element of order n, then the order of each of the elements of G would be a
proper divisor of n. In this case, however, using the identity above and the fact that φ(n) > 0,
we obtain

n = |G| ≤
∑

d|n, d<n
φ(d) < n ,

which is a contradiction.

1.1.2. Polynomials
Suppose that F is a �eld and that a0, . . . , an are elements of F. Recall that an expression of
the form

f = f (x) = a0 + a1x + a2x2 + · · · + anxn,

where x is an indeterminate, is said to be a polynomial over F (see Chapter 32). The scalarsReference to
NA! ai are the coefficients of the polynomial f . The degree of the zero polynomial is zero, while

the degree of a non-zero polynomial f is the largest index j such that a j , 0. The degree of
f is denoted by deg f .

The set of all polynomials over F in the indeterminate x is denoted by F[x]. If

f = f (x) = a0 + a1x + a2x2 + · · · + anxn

and
g = g(x) = b0 + b1x + b2x2 + · · · + bnxn

are polynomials with degree not larger than n, then their sum is de�ned as the polynomial

h = h(x) = f + g = c0 + c1x + c2x2 + · · · + cnxn

whose coefficients are ci = ai + bi.
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The product f g of the polynomials f and g is de�ned as the polynomial

f g = d0 + d1x + d2x2 + · · · + d2nx2n

with degree at most 2n whose coefficients are given by the equations d j =
∑ j

k=0 akb j−k.
On the right-hand side of these equations, the coefficients with index greater than n are
considered zero. Easy computation shows that F[x] is a commutative ring with respect to
these operations. It is also straightforward to show that F[x] has no zero divisors, that is,
whenever f g = 0, then either f = 0 or g = 0.

Division with remainder and divisibility
The ring F[x] of polynomials over F is quite similar, in many ways, to the ring Z of inte-
gers. One of their similar features is that the procedure of division with remainder can be
performed in both rings.

Lemma 1.3 Let f (x), g(x) ∈ F[x] be polynomials such that g(x) , 0. Then there there
exist polynomials q(x) and r(x) such that

f (x) = q(x)g(x) + r(x) ,

and either r(x) = 0 or deg r(x) < deg g(x). Moreover, the polynomials q and r are uniquely
determined by these conditions.

Proof. We verify the claim about the existence of the polynomials q and r by induction on
the degree of f . If f = 0 or deg f < deg g, then the assertion clearly holds. Let us suppose,
therefore, that deg f ≥ deg g. Then subtracting a suitable multiple q∗(x)g(x) of g from f ,
we obtain that the degree of f1(x) = f (x) − q∗(x)g(x) is smaller than deg f (x). Then, by the
induction hypothesis, there exist polynomials q1 and r1 such that

f1(x) = q1(x)g(x) + r1(x)

and either r1 = 0 or deg r1 < deg g. It is easy to see that, in this case, the polynomials
q(x) = q1(x) + q∗(x) and r(x) = r1(x) are as required.

It remains to show that the polynomials q and r are unique. Let Q and R be polynomials,
possibly different from q and r, satisfying the assertions of the lemma. That is, f (x) =

Q(x)g(x) + R(x), and so (q(x) − Q(x))g(x) = R(x) − r(x). If the polynomial on the left-hand
side is non-zero, then its degree is at least deg g, while the degree of the polynomial on the
right-hand side is smaller than deg g. This, however, is not possible.

Let R be a commutative ring with a multiplicative identity and without zero divisors, and
set R∗ := R \ {0}. The ring R is said to be a Euclidean ring if there is a function φ : R∗ → N
such that φ(ab) ≥ φ(a)φ(b), for all a, b ∈ R∗; and, further, if a ∈ R, b ∈ R∗, then there are
elements q, r ∈ R such that a = qb + r, and if r , 0, then φ(r) < φ(b). The previous lemma
shows that F[x] is a Euclidean ring where the rôle of the function φ is played by the degree
function.

The concept of divisibility in F[x] can be de�ned similarly to the de�nition of the cor-
responding concept in the ring of integers. A polynomial g(x) is said to be a divisor of
a polynomial f (x) (the notation is g | f ), if there is a polynomial q(x) ∈ F[x] such that
f (x) = q(x)g(x). The non-zero elements of F, which are clearly divisors of each of the poly-
nomials, are called the trivial divisors or units. A non-zero polynomial f (x) ∈ F[x] is said
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to be irreducible, if whenever f (x) = q(x)g(x) with q(x), g(x) ∈ F[x], then either q or g is a
unit.

Two polynomials f , g ∈ F[x] are called associates, if there is some u ∈ F∗ such that
f (x) = ug(x).

Using Lemma 1.3, one can easily prove the unique factorisation theorem in the ring of
polynomials following the argument of the proof of the corresponding theorem in the ring
of integers (see Section 33.1). The rôle of the absolute value of integers is played by theReference to

NA! degree of polynomials.

Theorem 1.4 An arbitrary polynomial 0 , f ∈ F[x] can be written in the form

f (x) = uq1(x)e1 · · · qr(x)er ,

where u ∈ F∗ is a unit, the polynomials qi ∈ F[x] are pairwise non-associate and irredu-
cible, and, further, the numbers ei are positive integers. Furthermore, this decomposition is
essentially unique in the sense that whenever

f (x) = UQ1(x)d1 · · ·Qs(x)ds

is another such decomposition, then r = s, and, after possibly reordering the factors Qi, the
polynomials qi and Qi are associates, and moreover di = ei for all 1 ≤ i ≤ r.

Two polynomials are said to be relatively prime, if they have no common irreducible divi-
sors.

A scalar a ∈ F is a root of a polynomial f ∈ F[x], if f (a) = 0. Here the value f (a) is
obtained by substituting a into the place of x in f (x).

Lemma 1.5 Suppose that a ∈ F is a root of a polynomial f (x) ∈ F[x]. Then there exists a
polynomial g(x) ∈ F[x] such that f (x) = (x − a)g(x). Hence the polynomial f may have at
most deg f roots.

Proof. By Lemma 1.3, there exists g(x) ∈ F[x] and r ∈ F such that f (x) = (x − a)g(x) + r.
Substituting a for x, we �nd that r = 0. The second assertion now follows by induction on
deg f from the fact that the roots of g are also roots of f .

The cost of the operations with polynomials
Suppose that f (x), g(x) ∈ F[x] are polynomials of degree at most n. Then the polyno-
mials f (x) ± g(x) can obviously be computed using O(n) �eld operations. The product
f (x)g(x) can be obtained, using its de�nition, by O(n2) �eld operations. If the Fast Fou-
rier Transform can be performed over F, then the multiplication can be computed using
only O(n lg n) �eld operations (see Theorem 32.2). For general �elds, the cost of the fas-Reference to

NA! test known multiplication algorithms for polynomials (for instance the Schönhage-Strassen-
method) is O(n lg n lg lg n), that is, Õ(n) �eld operations.

The division with remainder, that is, determining the polynomials q(x) and r(x) for
which f (x) = q(x)g(x) + r(x) and either r(x) = 0 or deg r(x) < deg g(x), can be performed
using O(n2) �eld operations following the straightforward method outlined in the proof of
Lemma 1.3. There is, however, an algorithm (the Sieveking-Kung algorithm) for the same
problem using only Õ(n) steps. The details of this algorithm are, however, not discussed
here.
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Congruence, residue class ring
Let f (x) ∈ F[x] with deg f = n > 0, and let g, h ∈ F[x]. We say that g is congruent to
h modulo f , or simply g ≡ h (mod f ), if f divides the polynomial g − h. This concept
of congruence is similar to the corresponding concept introduced in the ring of integers
(see 33.3.2). It is easy to see from the de�nition that the relation ≡ is an equivalence relation Reference to

NA!on the set F[x]. Let [g] f (or simply [g] if f is clear from the context) denote the equivalence
class containing g. From Lemma 1.3 we obtain immediately, for each g, that there is a
unique r ∈ F[x] such that [g] = [r], and either r = 0 (if f divides g) or deg r < n. This
polynomial r is called the representative of the class [g]. The set of equivalence classes is
traditionally denoted by F[x]/( f ).

Lemma 1.6 Let f , f1, f2, g1, g2 ∈ F[x] and let a ∈ F. Suppose that f1 ≡ f2 (mod f ) and
g1 ≡ g2 (mod f ). Then

f1 + g1 ≡ f2 + g2 (mod f ) ,
f1g1 ≡ f2g2 (mod f ) ,

and
a f1 ≡ a f2 (mod f ) .

Proof. The �rst congruence is valid, as

( f1 + g1) − ( f2 + g2) = ( f1 − f2) + (g1 − g2),

and the right-hand side of this is clearly divisible by f . The second and the third congruences
follow similarly from the identities

f1g1 − f2g2 = ( f1 − f2)g1 + (g1 − g2) f2

and
a f1 − a f2 = a( f1 − f2),

respectively.
The previous lemma makes it possible to de�ne the sum and the product of two congru-

ence classes [g] f and [h] f as [g] f + [h] f := [g + h] f and [g] f [h] f := [gh] f , respectively. The
lemma claims that the sum and the product are independent of the choice of the congruence
class representatives. The same way, we may de�ne the action of F on the set of congruence
classes: we set a[g] f := [ag] f .

Theorem 1.7 Suppose that f (x) ∈ F[x] and that deg f = n > 0.
(i) The set of residue classes F[x]/( f ) is a commutative ring with an identity under the
operations + and · de�ned above.
(ii) The ring F[x]/( f ) contains the �eld F as a subring, and it is an n-dimensional vector
space over F. Further, the residue classes [1], [x], . . . , [xn−1] form a basis of F[x]/( f ).
(iii) If f is an irreducible polynomial in F[x], then F[x]/( f ) is a �eld.

Proof. (i) The fact that F[x]/( f ) is a ring follows easily from the fact that F[x] is a ring. Let
us, for instance, verify the distributive property:

[g]([h1]+[h2]) = [g][h1 +h2] = [g(h1 +h2)] = [gh1 +gh2] = [gh1]+[gh2] = [g][h1]+[g][h2] .



14 1. Algebra

The zero element of F[x]/( f ) is the class [0], the additive inverse of the class [g] is the class
[−g], while the multiplicative identity element is the class [1]. The details are left to the
reader.

(ii) The set {[a] | a ∈ F} is a subring isomorphic to F. The correspondence is obvious:
a ↔ [a]. By part (i), F[x]/( f ) is an additive Abelian group, and the action of F satis�es the
vector space axioms. This follows from the fact that the polynomial ring is itself a vector
space over F. Let us, for example, verify the distributive property:

a([h1] + [h2]) = a[h1 + h2] = [a(h1 + h2)] = [ah1 + ah2] = [ah1] + [ah2] = a[h1] + a[h2] .

The other properties are left to the reader.
We claim that the classes [1], [x], . . . , [xn−1] are linearly independent. For, if

[0] = a0[1] + a1[x] + · · · + an−1[xn−1] = [a0 + a1x + · · · + an−1xn−1] ,

then a0 = · · · = an−1 = 0, as the zero polynomial is the unique polynomial with degree
less than n that is divisible by f . On the other hand, for a polynomial g, the degree of the
class representative of [g] is less than n. Thus the class [g] can be expressed as a linear
combination of the classes [1], [x], . . . , [xn−1]. Hence the classes [1], [x], . . . , [xn−1] form a
basis of F[x]/( f ), and so dimF F[x]/( f ) = n.

(iii) Suppose that f is irreducible. First we show that F[x]/( f ) has no zero divisors.
If [0] = [g][h] = [gh], then f divides gh, and so f divides either g or h. That is, either
[g] = 0 or [h] = 0. Suppose now that g ∈ F[x] with [g] , [0]. We claim that the classes
[g][1], [g][x], . . . , [g][xn−1] are linearly independent. Indeed, an equation [0] = a0[g][1] +

· · · + an−1[g][xn−1] implies [0] = [g][a0 + · · · + an−1xn−1], and, in turn, it also yields that
a0 = · · · = an−1 = 0. Therefore the classes [g][1], [g][x], . . . , [g][xn−1] form a basis of
F[x]/( f ). Hence there exist coefficients bi ∈ F for which

[1] = b0[g][1] + · · · + bn−1[g][xn−1] = [g][b0 + · · · + bn−1xn−1] .

Thus we �nd that the class [0] , [g] has a multiplicative inverse, and so F[x]/( f ) is a �eld,
as required.

We note that the converse of part (iii) of the previous theorem is also true, and its proof
is left to the reader (Exercise 1.1-1.).

Example 1.2 We usually represent the elements of the residue class ring F[x]/( f ) by their representa-
tives, which are polynomials with degree less than deg f .

1. Suppose that F = F2 is the �eld of two elements, and let f (x) = x3 + x + 1. Then the ring
F[x]/( f ) has 8 elements, namely

[0], [1], [x], [x + 1], [x2], [x2 + 1], [x2 + x], [x2 + x + 1].

Practically speaking, the addition between the classes is the is addition of polynomials. For instance

[x2 + 1] + [x2 + x] = [x + 1] .

When computing the product, we compute the product of the representatives, and substitute it (or
reduce it) with its remainder after dividing by f . For instance,

[x2 + 1] · [x2 + x] = [x4 + x3 + x2 + x] = [x + 1] .
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The polynomial f is irreducible over F2, since it has degree 3, and has no roots. Hence the residue
class ring F[x]/( f ) is a �eld.

2. Let F = R and let f (x) = x2 − 1. The elements of the residue class ring are the classes of the
form [ax + b] where a, b ∈ R. The ring F[x]/( f ) is not a �eld, since f is not irreducible. For instance,
[x + 1][x − 1] = [0].

Lemma 1.8 Let L be a �eld containing a �eld F and let α ∈ L.
(i) If L is �nite-dimensional as a vector space over F, then there is a non-zero polynomial
f ∈ F[x] such that α is a root of f .
(ii) Assume that there is a polynomial f ∈ F[x] with f (α) = 0, and let g be such a polynomial
with minimal degree. Then the polynomial g is irreducible in F[x]. Further, if h ∈ F[x] with
h(α) = 0 then g is a divisor of h.

Proof. (i) For a sufficiently large n, the elements 1, α, . . . , αn are linearly dependent over F.
A linear dependence gives a polynomial 0 , f ∈ F[x] such that f (α) = 0.

(ii) If g = g1g2, then, as 0 = g(α) = g1(α)g2(α), the element α is a root of either g1 or
g2. As g was chosen to have minimal degree, one of the polynomials g1, g2 is a unit, and so
g is irreducible. Finally, let h ∈ F[x] such that h(α) = 0. Let q, r ∈ F[x] be the polynomials
as in Lemma 1.3 for which h(x) = q(x)g(x)+r(x). Substituting α for x into the last equation,
we obtain r(α) = 0, which is only possible if r = 0.

De�nition 1.9 The polynomial g ∈ F[x] in the last lemma is said to be a minimal polyno-
mial of α.

It follows from the previous lemma that the minimal polynomial is unique up to a scalar
multiple. It will often be helpful to assume that the leading coefficient (the coefficient of the
term with the highest degree) of the minimal polynomial g is 1.

Corollary 1.10 Let L be a �eld containing F, and let α ∈ L. Suppose that f ∈ F[x] is
irreducible and that f (α) = 0. Then f is a minimal polynomial of α.

Proof. Suppose that g is a minimal polynomial of α. By the previous lemma, g | f and g is
irreducible. This is only possible if the polynomials f and g are associates.

Let L be a �eld containing F and let α ∈ L. Let F(α) denote the smallest sub�eld of L
that contains F and α.

Theorem 1.11 Let L be a �eld containing F and let α ∈ L. Suppose that f ∈ F[x] is
a minimal polynomial of α. Then the �eld F(α) is isomorphic to the �eld F[x]/( f ). More
precisely, there exists an isomorphism φ : F[x]/( f ) → F(α) such that φ(a) = a, for all
a ∈ F, and φ([x] f ) = α. The map φ is also an isomorphism of vector spaces over F, and so
dimF F(α) = deg f .

Proof. Let us consider the map ψ : F[x] → L, which maps a polynomial g ∈ F[x] into
g(α). This is clearly a ring homomorphism, and ψ(F[x]) ⊆ F(α). We claim that ψ(g) = ψ(h)
if and only if [g] f = [h] f . Indeed, ψ(g) = ψ(h) holds if and only if ψ(g − h) = 0, that is,
if g(α) − h(α) = 0, which, by Lemma 1.8, is equivalent to f | g − h, and this amounts to
saying that [g] f = [h] f . Suppose that φ is the map F[x]/( f ) → F(α) induced by ψ, that
is, φ([g] f ) := ψ(g). By the argument above, the map φ is one-to-one. Routine computation
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shows that φ is a ring, and also a vector space, homomorphism. As F[x]/( f ) is a �eld, its
homomorphic image φ(F[x]/( f )) is also a �eld. The �eld φ(F[x]/( f )) contains F and α, and
so necessarily φ(F[x]/( f )) = F(α).

Euclidean algorithm and the greatest common divisor
Let f (x), g(x) ∈ F[x] be polynomials such that g(x) , 0. Set f0 = f , f1 = g and de�ne the
polynomials qi and fi using division with reminder as follows:

f0(x) = q1(x) f1(x) + f2(x) ,

f1(x) = q2(x) f2(x) + f3(x) ,
...

fk−2(x) = qk−1(x) fk−1(x) + fk(x) ,

fk−1(x) = qk(x) fk(x) + fk+1(x) .

Note that if 1 < i < k then deg fi+1 is smaller than deg fi. We form this sequence of polyno-
mials until we obtain that fk+1 = 0. By Lemma 1.3, this de�nes a �nite process. Let n be the
maximum of deg f and deg g. As, in each step, we decrease the degree of the polynomials,
we have k ≤ n + 1. The computation outlined above is usually referred to as the Euclidean
algorithm. A version of this algorithm for the ring of integers is described in Section 33.2.Reference to

NA! We say that the polynomial h(x) is the greatest common divisor of the polynomials
f (x) and g(x), if h(x) | f (x), h(x) | g(x), and, if a polynomial h1(x) is a divisor of f and g,
then h1(x) is a divisor of h(x). The usual notation for the greatest common divisor of f (x)
and g(x) is gcd( f (x), g(x)). It follows from Theorem 1.4 that gcd( f (x), g(x)) exists and it is
unique up to a scalar multiple.

Theorem 1.12 Suppose that f (x), g(x) ∈ F[x] are polynomials, that g(x) , 0, and let n be
the maximum of deg f and deg g. Assume, further, that the number k and the polynomial fk
are de�ned by the procedure above. Then
(i) gcd( f (x), g(x)) = fk(x).
(ii) There are polynomials F(x), G(x) with degree at most n such that

fk(x) = F(x) f (x) + G(x)g(x) . (1.1)

(iii) With a given input f , g, the polynomials F(x), G(x), fk(x) can be computed using O(n3)
�eld operations in F.

Proof. (i) Going backwards in the Euclidean algorithm, it is easy to see that the polyno-
mial fk divides each of the fi, and so it divides both f and g. The same way, if a polyno-
mial h(x) divides f and g, then it divides fi, for all i, and, in particular, it divides fk. Thus
gcd( f (x), g(x)) = fk(x).

(ii) The claim is obvious if f = 0, and so we may assume without loss of generality that
f , 0. Starting at the beginning of the Euclidean sequence, it is easy to see that there are
polynomials Fi(x), Gi(x) ∈ F[x] such that

Fi(x) f (x) + Gi(x)g(x) = fi(x). (1.2)
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We observe that (1.2) also holds if we substitute Fi(x) by its remainder F∗i (x) after dividing
by g and substitute Gi(x) by its remainder G∗i (x) after dividing by f . In order to see this, we
compute

F∗i (x) f (x) + G∗i (x)g(x) ≡ fi(x) (mod f (x)g(x)),
and notice that the degree of the polynomials on both sides of this congruence is smaller
than (deg f )(deg g). This gives

F∗i (x) f (x) + G∗i (x)g(x) = fi(x).

(iii) Once we determined the polynomials fi−1, fi, F∗i and G∗i , the polynomials fi+1, F∗i+1
and G∗i+1 can be obtained using O(n2) �eld operations in F. Initially we have F∗1 = 1 and
G∗2 = −q1. As k ≤ n + 1, the claim follows.

Remark. Traditionally, the Euclidean algorithm is only used to compute the greatest
common divisor. The version that also computes the polynomials F(x) and G(x) in (1.1) is
usually called the extended Euclidean algorithm. In Chapter ?? the reader can �nd a discus-
sion of the Euclidean algorithm for polynomials. It is relatively easy to see that the polyno-
mials fk(x), F(x), and G(x) in (1.1) can, in fact, be computed using O(n2) �eld operations.
The cost of the asymptotically best method is Õ(n).

The derivative of a polynomial is often useful when investigating multiple factors. The
derivative of the polynomial

f (x) = a0 + a1x + a2x2 + · · · + anxn ∈ F[x]

is the polynomial
f ′(x) = a1 + 2a2x + · · · + nanxn−1 .

It follows immediately from the de�nition that the map f (x) 7→ f ′(x) is an F-linear mapping
F[x] → F[x]. Further, for f (x), g(x) ∈ F[x] and a ∈ F, the equations ( f (x) + g(x))′ =

f ′(x) + g′(x) and (a f (x))′ = a f ′(x) hold. The derivative of a product can be computed using
the Leibniz rule: for all f (x), g (x) ∈ F[x] we have ( f (x)g(x))′ = f ′(x)g(x) + f (x)g′(x). As
the derivation is a linear map, in order to show that the Leibniz rule is valid, it is enough to
verify it for polynomials of the form f (x) = xi and g(x) = x j. It is easy to see that, for such
polynomials, the Leibniz rule is valid.

The derivative f ′(x) is sensitive to multiple factors in the irreducible factorisation of
f (x).

Lemma 1.13 Let F be an arbitrary �eld, and assume that f (x) ∈ F[x] and f (x) = uk(x)v(x)
where u(x), v(x) ∈ F[x]. Then uk−1(x) divides the derivative f ′(x) of the polynomial f (x).

Proof. Using induction on k and the Leibniz rule, we �nd (uk(x))′ = kuk−1(x)u′(x). Thus,
applying the Leibniz rule again, f ′(x) = uk−1(x)(ku′(x)v(x) + uk(x)v′(x)). Hence uk−1(x) |
f ′(x).

In many cases the converse of the last lemma also holds.

Lemma 1.14 Let F be an arbitrary �eld, and assume that f (x) ∈ F[x] and f (x) = u(x)v(x)
where the polynomials u(x) and v(x) are relatively prime. Suppose further that u′(x) , 0
(for instance F has characteristic 0 and u(x) is non-constant). Then the derivative f ′(x) is
not divisible by u(x).
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Proof. By the Leibniz rule, f ′(x) = u(x)v′(x) + u′(x)v(x) ≡ u′(x)v(x) (mod u(x)). Since
deg u′(x) is smaller than deg u(x), we obtain that u′(x) is not divisible by u(x), and neither is
the product u′(x)v(x), as u(x) and v(x) are relatively prime.

The Chinese remainder theorem for polynomials
Using the following theorem, the ring F[x]/( f ) can be assembled from rings of the form
F[x]/(g) where g | f .
Theorem 1.15 (Chinese remainder theorem for polynomials) Let f1, . . . , fk ∈ F[x] pair-
wise relatively prime polynomials with positive degree and set f = f1 · · · fk. Then the rings
F[x]/( f ) and F[x]/( f1)⊕· · ·⊕F[x]/( fk) are isomorphic. The mapping realizing the isomorp-
hism is

φ : [g] f 7→ ([g] f1 , . . . , [g] fk ), g ∈ F[x] .
Proof. First we note that the map φ is well-de�ned. If h ∈ [g] f , then h = g + f ∗ f , which
implies that h and g give the same remainder after division by the polynomial fi, that is,
[h] fi = [g] fi .

The mapping φ is clearly a ring homomorphism, and it is also a linear mapping between
two vector spaces over F. The mapping φ is one-to-one; for, if φ([g]) = φ([h]), then φ([g −
h]) = (0, . . . , 0), that is, fi | g − h (1 ≤ i ≤ k), which gives f | g − h and [g] = [h].

The dimensions of the vector spaces F[x]/( f ) and F[x]/( f1) ⊕ · · · ⊕ F[x]/( fk) coincide:
indeed, both spaces have dimension deg f . Lemma 1.1 implies that φ is an isomorphism
between vector spaces. It only remains to show that φ−1 preserves the multiplication; this,
however, is left to the reader.

Exercises
1.1-1 Let f ∈ F[x] be polynomial. Show that the residue class ring F[x]/( f ) has no zero
divisors if and only if f is irreducible.
1.1-2 Let R be a commutative ring with an identity. A subset I ⊆ R is said to be an ideal, if
I is an additive subgroup, and a ∈ I, b ∈ R imply ab ∈ I. Show that R is a �eld if and only if
its ideals are exactly {0} and R.
1.1-3 Let a1, . . . , ak ∈ R. Let (a1, . . . , ak) denote the smallest ideal in R that contains the
elements ai. Show that (a1, . . . , ak) always exists, and it consists of the elements of the form
b1a1 + b2a2 + · · · + bkak where b1, . . . , bk ∈ R.
1.1-4 A commutative ring R with an identity and without zero divisors is said to be a
principal ideal domain if, for each ideal I of R, there is an element a ∈ I such that (using
the notation of the previous exercise) I = (a). Show that Z and F[x] where F is a �eld, are
principal ideal domains.
1.1-5 Suppose that S is a commutative ring with an identity, that I an ideal in S , and that
a, b ∈ S . De�ne a relation on S as follows: a ≡ b (mod I) if and only if a − b ∈ I. Verify
the following:
a.) The relation ≡ is an equivalence relation on S .
b.) Let [a]I denote the equivalence class containing an element a, and let S/I denote the set
of equivalence classes. Set [a]I + [b]I := [a + b]I , and [a]I[b]I := [ab]I . Show that, with
respect to these operations, S/I is a commutative ring with an identity. Hint: Follow the
argument in the proof of Theorem 1.7.
1.1-6 Let F be a �eld and let f (x), g(x) ∈ F[x] such that gcd( f (x), g(x)) = 1. Show that
there exists a polynomial h(x) ∈ F[x] such that h(x)g(x) ≡ 1 (mod f (x)). Hint: Use the
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Euclidean algorithm.

1.2. Finite fields
Finite �elds, that is, �elds with a �nite number of elements, play an important rôle in mat-
hematics and in several of its application areas, for instance, in computing. They are also
fundamental in many important constructions. In this section we summarise the most im-
portant results in the theory of �nite �elds, putting an emphasis on the problem of their
construction.

In this section p denotes a prime number, and q denotes a power of p with a positive
integer exponent.

Theorem 1.16 Suppose that F is a �nite �eld. Then there is a prime number p such that the
prime �eld of F is isomorphic to Fp (the �eld of residue classes modulo p). Further, the �eld
F is a �nite dimensional vector space over Fp, and the number of its elements is a power of
p. In fact, if dimFp F = d, then |F| = pd.

Proof. The characteristic of Fmust be a prime, say p, as a �eld with characteristic zero must
have in�nitely many elements. Thus the prime �eld P of F is isomorphic to Fp. Since P is
a sub�eld, the �eld F is a vector space over P. Let α1, . . . , αd be a basis of F over P. Then
each α ∈ F can be written uniquely in the form ∑d

j=1 aiαi where ai ∈ P. Hence |F| = pd.
In a �eld F, the set of non-zero elements (the multiplicative group of F) is denoted by

F∗. From Theorem 1.2 we immediately obtain the following result.

Theorem 1.17 If F is a �nite �eld, then its multiplicative group F∗ is cyclic.

A generator of the group F∗ is said to be a primitive element. If |F| = q and α is a
primitive element of F, then the elements of F are 0, α, α2, . . . , αq−1 = 1.

Corollary 1.18 Suppose that F is a �nite �eld with order pd and let α be a primitive ele-
ment of F. Let g ∈ Fp[x] be a minimal polynomial of α over Fp. Then g is irreducible in
Fp[x], the degree of g is d, and F is isomorphic to the �eld Fp[x]/(g).

Proof. Since the element α is primitive in F, we have F = Fp(α). The rest of the lemma
follows from Lemma 1.8 and from Theorem 1.11.

Theorem 1.19 Let F be a �nite �eld with order q. Then
(i) (Fermat's little theorem) If β ∈ F∗, then βq−1 = 1.
(ii) If β ∈ F, then βq = β.

Proof. (i) Suppose that α ∈ F∗ is a primitive element. Then we may choose an integer i such
that β = αi. Therefore

βq−1 = (αi)q−1 = (αq−1)i = 1i = 1.

(ii) Clearly, if β = 0 then this claim is true, while, for β , 0, the claim follows from
part (i).
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Theorem 1.20 Let F be a �eld with q elements. Then

xq − x =
∏

α∈F
(x − α) .

Proof. By Theorem 1.19 and Lemma 1.5, the product on the right-hand side is a divisor of
the polynomial xq − x ∈ F[x]. Now the assertion follows, as the degrees and the leading
coefficients of the two polynomials in the equation coincide.

Corollary 1.21 Arbitrary two �nite �elds with the same number of elements are isomorp-
hic.

Proof. Suppose that q = pd, and that both K and L are �elds with q elements. Let β be a
primitive element in L. Then Corollary 1.18 implies that a minimal polynomial g(x) ∈ Fp[x]
of β over Fp is irreducible (in Fp[x]) with degree d. Further, L � Fp[x]/(g(x)). By Lemma 1.8
and Theorem 1.19, the minimal polynomial g is a divisor of the polynomial xq− x. Applying
Theorem 1.20 to K, we �nd that the polynomial xq − x, and also its divisor g(x), can be
factored as a product of linear terms in K[x], and so g(x) has at least one root α in K. As
g(x) is irreducible in Fp[x], it must be a minimal polynomial of α (see Corollary 1.10), and
so Fp(α) is isomorphic to the �eld Fp[x]/(g(x)). Comparing the number of elements in Fp(α)
and in K, we �nd that Fp(α) = K, and further, that K and L are isomorphic.

In the sequel, we let Fq denote the �eld with q elements, provided it exists. In order to
prove the existence of such a �eld for each prime-power q, the following two facts will be
useful.

Lemma 1.22 If p is a prime number and j is an integer such that 0 < j < p, then p |
(p

j

)
.

Proof. On the one hand, the number
(p

j

)
is an integer. On the other hand,

(p
j

)
= p(p −

1) · · · (p − j + 1)/ j! is a fraction such that, for 0 < j < p, its numerator is divisible by p, but
its denominator is not.

Lemma 1.23 Let R be a commutative ring and let p be a prime such that pr = 0 for all
r ∈ R. Then the map Φp : R→ R mapping r 7→ rp is a ring homomorphism.

Proof. Suppose that r, s ∈ R. Clearly,

Φp(rs) = (rs)p = rpsp = Φp(r)Φp(s) .

By the previous lemma,

Φp(r + s) = (r + s)p =

p∑

j=0

(
p
j

)
rp− js j = rp + sp = Φp(r) + Φp(s) .

We obtain in the same way that Φp(r − s) = Φp(r) − Φp(s).
The homomorphism Φp in the previous lemma is called the Frobenius endomorphism.

Theorem 1.24 Assume that the polynomial g(x) ∈ Fq[x] is irreducible, and, for a positive
integer d, it is a divisor of the polynomial xqd − x. Then the degree of g(x) divides d.
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Proof. Let n be the degree of g(x), and suppose, by contradiction, that d = tn + s where
0 < s < n. The assumption that g(x) | xqd − x can be rephrased as xqd ≡ x (mod g(x)).
However, this means that, for an arbitrary polynomial u(x) =

∑N
i=0 uixi ∈ Fq[x], we have

u(x)qd
=

N∑

i=0
uqd

i xiqd
=

N∑

i=0
ui(xqd )i ≡

N∑

i=0
uixi = u(x) (mod g(x)).

Note that we applied Lemma 1.23 to the ring R = Fq[x]/(g(x)), and Theorem 1.19 to Fq.
The residue class ring Fq[x]/(g(x)) is isomorphic to the �eld Fqn , which has qn elements.
Let u(x) ∈ Fq[x] be a polynomial for which u(x) (mod g(x)) is a primitive element in the
�eld Fqn . That is, u(x)qn−1 ≡ 1 (mod g(x)), but u(x) j . 1 (mod g(x)) for j = 1, . . . , qn − 2.
Therefore,

u(x) ≡ u(x)qd
= u(x)qtn+s

= (u(x)qnt )qs ≡ u(x)qs (mod g(x)) ,
and so u(x)(u(x)qs−1−1) ≡ 0 (mod g(x)). Since the residue class ring Fq[x]/(g(x)) is a �eld,
u(x) . 0 (mod g(x)), but we must have u(x)qs−1 ≡ 1 (mod g(x)). As 0 ≤ qs − 1 < qn − 1,
this contradicts to the primitivity of u(x) (mod g(x)).

Theorem 1.25 For an arbitrary prime p and positive integer d, there exists a �eld with pd

elements.

Proof. We use induction on d. The claim clearly holds if d = 1. Now let d > 1 and let r be a
prime divisor of d. By the induction hypothesis, there is a �eld with q = p(d/r) elements. By
Theorem 1.24, each of the irreducible factors, in Fq[x], of the the polynomial f (x) = xqr − x
has degree either 1 or r. Further, f ′(x) = (xqr − x)′ = −1, and so, by Lemma 1.13, f (x) is
square-free. Over Fq, the number of linear factors of f (x) is at most q, and so is the degree
of their product. Hence there exist at least (qr − q)/r ≥ 1 polynomials with degree r that are
irreducible in Fq[x]. Let g(x) be such a polynomial. Then the �eld Fq[x]/(g(x)) is isomorphic
to the �eld with qr = pd elements.

Corollary 1.26 For each positive integer d, there is an irreducible polynomial f ∈ Fp[x]
with degree d.

Proof. Take a minimal polynomial over Fp of a primitive element in Fpd .
A little bit later, in Theorem 1.31, we will prove a stronger statement: a random poly-

nomial in Fp[x] with degree d is irreducible with high probability.

Sub�elds of �nite �elds
The following theorem describes all sub�elds of a �nite �eld.

Theorem 1.27 The �eld F = Fpn contains a sub�eld isomorphic to Fpk , if and only if k | n.
In this case, there is exactly one sub�eld in F that is isomorphic to Fpk .

Proof. The condition that k | n is necessary, since the larger �eld is a vector space over the
smaller �eld, and so pn = (pk)l must hold with a suitable integer l.

Conversely, suppose that k | n, and let f ∈ Fp[x] be an irreducible polynomial with
degree k. Such a polynomial exists by Corollary 1.26. Let q = pk. Applying Theorem 1.19,
we obtain, in Fp[x]/( f ), that xq ≡ x (mod f ), which yields xpn

= xql ≡ x (mod f ). Thus f
must be a divisor of the polynomial xpn − x. Using Theorem 1.20, we �nd that f has a root
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α in F. Now we may prove in the usual way that the sub�eld Fp(α) is isomorphic to Fpk .
The last assertion is valid, as the elements of Fq are exactly the roots of xq − x (Theo-

rem 1.20), and this polynomial can have, in an arbitrary �eld, at most q roots.

The structure of irreducible polynomials
Next we prove an important property of the irreducible polynomials over �nite �elds.

Theorem 1.28 Assume that Fq ⊆ F are �nite �elds, and let α ∈ F. Let f ∈ Fq[x] be the
minimal polynomial of α over Fq with leading coefficient 1, and suppose that deg f = d.
Then

f (x) = (x − α)(x − αq) · · · (x − αqd−1 ).
Moreover, the elements α, αq, . . . , αqd−1 are pairwise distinct.

Proof. Let f (x) = a0 + a1x + · · · + xd. If β ∈ F with f (β) = 0, then, using Lemma 1.23 and
Theorem 1.19, we obtain

0 = f (β)q = (a0 + a1β + · · · + βd)q = aq
0 + aq

1β
q + · · · + βdq = a0 + a1β

q + · · · + βqd = f (βq).

Thus βq is also a root of f .
As α is a root of f , the argument in the previous paragraph shows that so are the ele-

ments α, αq, . . . , αqd−1 . Hence it suffices to show, that they are pairwise distinct. Suppose,
by contradiction, that αqi

= αq j and that 0 ≤ i < j < d. Let β = αqi and let l = j − i. By
assumption, β = βql , which, by Lemma 1.8, means that f (x) | xql − x. From Theorem 1.24,
we obtain, in this case, that d | l, which is a contradiction, as l < d.

This theorem shows that a polynomial f which is irreducible over a �nite �eld cannot
have multiple roots. Further, all the roots of f can be obtained from a single root taking q-th
powers repeatedly.

Automorphisms
In this section we characterise certain automorphisms of �nite �elds.

De�nition 1.29 Suppose that Fq ⊆ F are �nite �elds. The map Ψ : F → F is an Fq-
automorphism of the �eld F, if it is an isomorphism between rings, and Ψ(a) = a holds for
all a ∈ Fq.

Recall that the map Φ = Φq : F→ F is de�ned as follows: Φ(α) = αq where α ∈ F.
Theorem 1.30 The set of Fq-automorphisms of the �eld F = Fqd is formed by the maps
Φ,Φ2, . . . ,Φd = id.
Proof. By Lemma 1.23, the map Φ : F → F is a ring homomorphism. The map Φ is
obviously one-to-one, and hence it is also an isomorphism. It follows from Theorem 1.19,
that Φ leaves the elements Fq �xed. Thus the maps Φ j are Fq-automorphisms of F.

Suppose that f (x) = a0 + a1x + · · · + xd ∈ Fq[x], and β ∈ F with f (β) = 0, and that Ψ is
an Fq-automorphism of F. We claim that Ψ(β) is a root of f . Indeed,

0 = Ψ( f (β)) = Ψ(a0) + Ψ(a1)Ψ(β) + · · · + Ψ(β)d = f (Ψ(β)) .

Let β be a primitive element of F and assume now that f ∈ Fq[x] is a minimal polyno-
mial of β. By the observation above and by Theorem 1.28, Ψ(β) = βq j , with some 0 ≤ j < d,
that is, Ψ(β) = Φ j(β). Hence the images of a generating element of F under the automorp-
hisms Ψ and Φ j coincide, which gives Ψ = Φ j.
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The construction of �nite �elds
Let q = pn. By Theorem 1.7 and Corollary 1.26, the �eld Fq can be written in the form
F[x]/( f ), where f ∈ F[x] is an irreducible polynomial with degree n. In practical appli-
cations of �eld theory, for example in computer science, this is the most common method
of constructing a �nite �eld. Using, for instance, the polynomial f (x) = x3 + x + 1 in
Example 1.2., we may construct the �eld F8. The following theorem shows that we have a
good chance of obtaining an irreducible polynomial by a random selection.

Theorem 1.31 Let f (x) ∈ Fq[x] be a uniformly distributed random polynomial with degree
k > 1 and leading coefficient 1. (Being uniformly distributed means that the probability of
choosing f is 1/qk.) Then f is irreducible over Fq with probability at least 1/k − 1/qk/2.

Proof. First we estimate the number of elements α ∈ Fqk for which Fq(α) = Fqk . We claim
that the number of such elements is at least

|Fqk | −
∑

r|k
|Fqk/r | ,

where the summation runs for the distinct prime divisors r of k. Indeed, if α does not ge-
nerate, over Fq, the �eld Fqk , then it is contained in a maximal sub�eld of Fqk , and these
maximal sub�elds are, by Theorem 1.27, exactly the �elds of the form Fqk/r . The number
of distinct prime divisors of k are at most lg k, and so the number of such elements α is at
least qk − (lg k)qk/2. The minimal polynomials with leading coefficients 1 over Fq of such
elements α have degree k and they are irreducible. Such a polynomial is a minimal poly-
nomial of exactly k elements α (Theorem 1.28). Hence the number of distinct irreducible
polynomials with degree k and leading coefficient 1 in Fq[x] is at least

qk

k −
(lg k)qk/2

k ≥ qk

k − qk/2 ,

from which the claim follows.
If, having Fq, we would like to construct one of its extensions Fqk , then it is worth

selecting a random polynomial

f (x) = a0 + a1x + · · · + ak−1xk−1 + xk ∈ Fq[x].

In other words, we select uniformly distributed random coefficients a0, . . . , ak−1 ∈ Fq inde-
pendently. The polynomial so obtained is irreducible with a high probability (in fact, with
probability at least 1/k− ε if qk is large). Further, in this case, we also have Fq[x]/( f ) � Fqk .
We expect that we will have to select about k polynomials before we �nd an irreducible one.

We have seen in Theorem 1.2 that �eld extensions can be obtained using irreducible
polynomials. It is often useful if these polynomials have some further nice properties. The
following lemma claims the existence of such polynomials.

Lemma 1.32 Let r be a prime. In a �nite �eld Fq there exists an element which is not an
r-th power if and only if q ≡ 1 (mod r). If b ∈ Fq is such an element, then the polynomial
xr − b is irreducible in Fq[x], and so Fq[x]/(xr − b) is a �eld with qr elements.

Proof. Suppose �rst that r - q−1 and let s be a positive integer such that sr ≡ 1 (mod q−1).
If b ∈ Fq such that b , 0, then (bs)r = bsr = bbsr−1 = b, while if b = 0, then b = 0r. Hence,



24 1. Algebra

in this case, each of the elements of Fq is an r-th power.
Next we assume that r | q−1, and we let a be a primitive element in Fq. Then, in Fq, the

r-th powers are exactly the following 1 + (q − 1)/r elements: 0, (ar)0, (ar)1, . . . , (ar)(q−1)/r−1.
Suppose now that rs | q − 1, but rs+1 - q − 1. Then the order of an element b ∈ Fq \ {0}
is divisible by rs if and only if b is not an r-th power. Let b be such an element, and let
g(x) ∈ Fq[x] be an irreducible factor of the polynomial xr − b. Suppose that the degree
of g(x) is d; clearly, d ≤ r. Then K = Fq[x]/(g(x)) is a �eld with qd elements and, in K,
the equation [x]r = b holds. Therefore the order of [x] is divisible by rs+1. Consequently,
rs+1 | qd −1. As q−1 is not divisible by rs+1, we have r | (qd −1)/(q−1) = 1+q+ · · ·+qd−1.
In other words 1 + q + . . .+ qd−1 ≡ 0 (mod r). On the other hand, as q ≡ 1 (mod r), we �nd
1 + q + · · · + qd−1 ≡ d (mod r), and hence d ≡ 0 (mod r), which, since 0 < d ≤ r, can only
happen if d = r.

In certain cases, we can use the previous lemma to boost the probability of �nding an
irreducible polynomial.

Proposition 1.33 Let r be a prime such that r | q − 1. Then, for a random element b ∈ F∗q,
the polynomial xr − b is irreducible in Fq[x] with probability at least 1 − 1/r.

Proof. Under the conditions, the r-th powers in F∗q constitute the cyclic subgroup with order
(q − 1)/r. Thus a random element b ∈ F∗q is an r-th power with probability 1/r, and hence
the assertion follows from Lemma 1.32.

Remark. Assume that r | (q − 1), and, if r = 2, then assume also that 4 | (q − 1). In
this case there is an element b in Fq that is not an r-th power. We claim that that the residue
class [x] is not an r-th power in Fq[x]/(xr − b) � Fr

q. Indeed, by the argument in the proof of
Lemma 1.32, it suffices to show that r2 - (qr − 1)/(q − 1). By our assumptions, this is clear
if r = 2. Now assume that r > 2, and write q ≡ 1 + rt (mod r2). Then, for all integers i ≥ 0,
we have qi ≡ 1 + irt (mod r2), and so, by the assumptions,

qr − 1
q − 1 = 1 + q + · · · + qr−1 ≡ r +

r(r − 1)
2 rt ≡ r (mod r2) .

Exercises
1.2-1 Show that the polynomial xq+1 − 1 can be factored as a product of linear factors over
the �eld Fq2 .
1.2-2 Show that the polynomial f (x) = x4 + x + 1 is irreducible over F2, that is,
F2[x]/( f ) � F16. What is the order of the element [x] f in the residue class ring? Is it true
that the element [x] f is primitive in F16?
1.2-3 Determine the irreducible factors of x31 − 1 over the �eld F2.
1.2-4 Determine the sub�elds of F36 .
1.2-5 Let a and b be positive integers. Show that there exists a �nite �eld K containing Fq
such that Fqa ⊆ K and Fqb ⊆ K. What can we say about the number of elements in K?
1.2-6 Show that the number of irreducible polynomials with degree k and leading coeffici-
ent 1 over Fq is at most qk/k.
1.2-7 (a) Let F be a �eld, let V be an n-dimensional vector space over F, and let A : V → V
be a linear transformation whose minimal polynomial coincides with its characteristic poly-
nomial. Show that there exists a vector v ∈ V such that the images v, Av, . . . , An−1v are
linearly independent.
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(b) A set S = {α, αq, . . . , αqd−1 } is said to be a normal basis of Fqd over Fq, if α ∈ Fqd and S
is a linearly independent set over Fq. Show that Fqd has a normal basis over Fq. Hint: Show
that a minimal polynomial of the Fq-linear map Φ : Fqd → Fqd is xd − 1, and use part (a).

1.3. Factoring polynomials over finite fields
One of the problems that we often have to solve when performing symbolic computation is
the factorisation problem. Factoring an algebraic expression means writing it as a product
of simpler expressions. Experience shows that this can be very helpful in the solution of
a large variety of algebraic problems. In this section, we consider a class of factorisation
algorithms that can be used to factor polynomials in one variable over �nite �elds.

The input of the polynomial factorisation problem is a polynomial f (x) ∈ Fq[x]. Our
aim is to compute a factorisation

f = f e1
1 f e2

2 · · · f es
s (1.3)

of f where the polynomials f1, . . . , fs are pairwise relatively prime and irreducible over Fq,
and the exponents ei are positive integers. By Theorem 1.4, f determines the polynomials
fi and the exponents ei essentially uniquely.

Example 1.3 Let p = 23 and let

f (x) = x6 − 3x5 + 8x4 − 11x3 + 8x2 − 3x + 1 .

Then it is easy to compute modulo 23 that

f (x) = (x2 − x + 10)(x2 + 5x + 1)(x2 − 7x + 7) .

None of the factors x2 − x + 10, x2 + 5x + 1, x2 − 7x + 7 has a root in F23, and so they are necessarily
irreducible in F23[x].

The factorisation algorithms are important computational tools, and so they are imple-
mented in most of the computer algebra systems (Mathematica, Maple, etc). These algo-
rithms are often used in the area of error-correcting codes and in cryptography.

Our aim in this section is to present some of the basic ideas and building blocks that can
be used to factor polynomials over �nite �elds. We will place an emphasis on the existence
of polynomial time algorithms. The discussion of the currently best known methods is,
however, outside the scope of this book.

1.3.1. Square-free factorisation
The factorisation problem in the previous section can efficiently be reduced to the special
case when the polynomial f to be factored is square-free; that is, in (1.3), ei = 1 for all i.
The basis of this reduction is Lemma 1.13 and the following simple result. Recall that the
derivative of a polynomial f (x) is denoted by f ′(x).

Lemma 1.34 Let f (x) ∈ Fq[x] be a polynomial. If f ′(x) = 0, then there exists a polynomial
g(x) ∈ Fq[x] such that f (x) = g(x)p.
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Proof. Suppose that f (x) =
∑n

i=0 aixi. Then f ′(x) =
∑n

i=1 aiixi−1. If the coefficient aii is
zero in Fq then either ai = 0 or p | i. Hence, if f ′(x) = 0 then f (x) can be written as
f (x) =

∑k
j=0 b jxp j. Let q = pd; then choosing c j = bpd−1

j , we have cp
j = bpd

j = b j, and so
f (x) = (∑k

j=0 c jx j)p.
If f ′(x) = 0, then, using the previous lemma, a factorisation of f (x) into square-free

factors can be obtained from that of the polynomial g(x), which has smaller degree. On
the other hand, if f ′(x) , 0, then, by Lemma 1.13, the polynomial f (x)/ gcd( f (x), f ′(x))
is already square-free and we only have to factor gcd( f (x), f ′(x)) into square-free factors.
The division of polynomials and computing the greatest common divisor can be performed
in polynomial time, by Theorem 1.12. In order to compute the polynomial g(x), we need
the solutions, in Fq, of equations of the form yp = a with a ∈ Fq. If q = ps, then y =

aps−1 is a solution of such an equation, which, using fast exponentiation (repeated squaring,
see 33.6.1), can be obtained in polynomial time.Reference to

NA! One of the two reduction steps can always be performed if f is divisible by a square of
a polynomial with positive degree.

Usually a polynomial can be written as a product of square-free factors in many different
ways. For the sake of uniqueness, we de�ne the square-free factorisation of a polynomial
f ∈ F[x] as the factorisation

f = f e1
1 · · · f es

s ,

where e1 < · · · < es are integers, and the polynomials fi are relatively prime and square-
free. Hence we collect together the irreducible factors of f with the same multiplicity. The
following algorithm computes a square-free factorisation of f . Besides the observations we
made in this section, we also use Lemma 1.14. This lemma, combined with Lemma 1.13,
guarantees that the product of the irreducible factors with multiplicity one of a polynomial
f over a �nite �eld is f / gcd( f , f ′).

S-F-F( f )
1 g← f
2 S ← ∅
3 m← 1
4 i← 1
5 while deg g , 0
6 do if g′ = 0
7 then g← p√g
8 i← i · p
9 else h← g/ gcd(g, g′)

10 g← g/h
11 if deg h , 0
12 then S ← S ∪ (h,m)
13 m← m + i
14 return S

The degree of the polynomial g decreases after each execution of the main loop, and
the subroutines used in this algorithm run in polynomial time. Thus the method above can
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be performed in polynomial time.

1.3.2. Distinct degree factorisation
Suppose that f is a square-free polynomial. Now we factor f as

f (x) = h1(x)h2(x) · · · ht(x) , (1.4)

where, for i = 1, . . . , t, the polynomial hi(x) ∈ Fq[x] is a product of irreducible polynomials
with degree i. Though this step is not actually necessary for the solution of the factorisation
problem, it is worth considering, as several of the known methods can efficiently exploit the
structure of the polynomials hi. The following fact serves as the starting point of the distinct
degree factorisation.

Theorem 1.35 The polynomial xqd − x is the product of all the irreducible polynomials
f ∈ Fq[x], each of which is taken with multiplicity 1, that have leading coefficient 1 and
whose degree divides d.

Proof. As (xqd − x)′ = −1, all the irreducible factors of this polynomial occur with multip-
licity one. If f ∈ Fq[x] is irreducible and divides xqd − x, then, by Theorem 1.24, the degree
of f divides d.

Conversely, let f ∈ Fq[x] be an irreducible polynomial with degree k such that k | d.
Then, by Theorem 1.27, f has a root in Fqd , which implies f | xqd − x.

The theorem offers an efficient method for computing the polynomials hi(x). First we
separate h1 from f , and then, step by step, we separate the product of the factors with higher
degrees.

D-D-F( f )
1 F ← f
3 for i← 1 to deg f
4 do hi ← gcd(F, xqi − x)
7 F ← F/hi
8 return h1, . . . , hdeg f

If, in this algorithm, the polynomial F(x) is constant, then we may stop, as the further
steps will not give new factors. As the polynomial xqi − x may have large degree, computing
gcd(F(x), xqi − x) must be performed with particular care. The important idea here is that
the residue xqi (mod F(x)) can be computed using fast exponentiation.

The algorithm outlined above is suitable for testing whether a polynomial is irredu-
cible, which is one of the important problems that we encounter when constructing �nite
�elds. The algorithm presented here for distinct degree factorisation can solve this prob-
lem efficiently. For, it is obvious that a polynomial f with degree k is irreducible, if, in the
factorisation (1.4), we have hk(x) = f (x).

The following algorithm for testing whether a polynomial is irreducible is somewhat
more efficient than the one sketched in the previous paragraph and handles correctly also
the inputs that are not square-free.
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I-T( f )
1 n← deg f
2 if xpn

. x (mod f )
3 then return "no"
4 for the prime divisors r of n
5 do if xpn/r ≡ x (mod f )
6 then return "no"
7 return "yes"

In lines 2 and 5, we check whether n is the smallest among the positive integers k for
which f divides xqk − x. By Theorem 1.35, this is equivalent to the irreducibility of f . If f
survives the test in line 2, then, by Theorem 1.35, we know that f is square-free and k must
divide n. Using at most lg n + 1 fast exponentiations modulo f , we can thus decide if f is
irreducible.

Theorem 1.36 If the �eld Fq is given and k > 1 is an integer, then the �eld Fqk can be
constructed using a randomised Las Vegas algorithm which runs in time polynomial in lg q
and k.

Proof. The algorithm is the following.

F-F-C(qk)
1 for i← 0 to k − 1
2 do ai ← a random element (uniformly distributed) of Fq
3 f ← xk +

∑k−1
i=0 aixi

4 if I-T( f ) = "yes"
5 then return Fq[x]/( f )
6 else return "fail"

In lines 1�3, we choose a uniformly distributed random polynomial with leading co-
efficient 1 and degree k. Then, in line 4, we efficiently check if f (x) is irreducible. By
Theorem 1.31, the polynomial f is irreducible with a reasonably high probability.

1.3.3. The Cantor-Zassenhaus algorithm
In this section we consider the special case of the factorisation problem in which q is odd
and the polynomial f (x) ∈ Fq[x] is of the form

f = f1 f2 · · · fs, (1.5)

where the fi are pairwise relatively prime irreducible polynomials in Fq[x] with the same
degree d, and we also assume that s ≥ 2. Our motivation for investigating this special case is
that a square-free distinct degree factorisation reduces the general factorisation problem to
such a simpler problem. If q is even, then Berlekamp's method, presented in Section 1.3.4,
gives a deterministic polynomial time solution. There is a variation of the method discussed
in the present section that works also for even q; see Exercise 1-2..The second

dot after
Exercise 18-2
comes from a
macro!
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Lemma 1.37 Suppose that q is odd. Then there are (q2 − 1)/2 pairs (c1, c2) ∈ Fq × Fq such
that exactly one of c(q−1)/2

1 and c(q−1)/2
2 is equal to 1.

Proof. Suppose that a is a primitive element in Fq; that is, aq−1 = 1, but ak , 1 for 0 < k <
q−1. Then Fq \{0} = {as|s = 0, . . . , q−2}, and further, as

(
a(q−1)/2

)2
= 1, but a(q−1)/2 , 1, we

obtain that a(q−1)/2 = −1. Therefore as(q−1)/2 = (−1)s, and so half of the element c ∈ Fq \ {0}
give c(q−1)/2 = 1, while the other half give c(q−1)/2 = −1. If c = 0 then clearly c(q−1)/2 = 0.
Thus there are ((q − 1)/2)((q + 1)/2) pairs (c1, c2) such that c(q−1)/2

1 = 1, but c(q−1)/2
2 , 1,

and, obviously, we have the same number of pairs for which the converse is valid. Thus the
number of pairs that satisfy the condition is (q − 1)(q + 1)/2 = (q2 − 1)/2.
Theorem 1.38 Suppose that q is odd and the polynomial f (x) ∈ Fq[x] is of the form (1.5)
and has degree n. Choose a uniformly distributed random polynomial u(x) ∈ Fq[x] with
degree less than n. (That is, choose pairwise independent, uniformly distributed scalars
u0, . . . , un−1, and consider the polynomial u(x) =

∑n−1
i=0 uixi.) Then, with probability at least

(q2d − 1)/(2q2d) ≥ 4/9, the greatest common divisor

gcd(u(x)
qd−1

2 − 1, f (x))

is a proper divisor of f (x).
Proof. The element u(x) (mod fi(x)) corresponds to an element of the residue class �eld
F[x]/( fi(x)) � Fqd . By the Chinese remainder theorem (Theorem 1.15), choosing the poly-
nomial u(x) uniformly implies that the residues of u(x) modulo the factors fi(x) are inde-
pendent and uniformly distributed random polynomials. By Lemma 1.37, the probability
that exactly one of the residues of the polynomial u(x)(qd−1)/2 − 1 modulo f1(x) and f2(x) is
zero is precisely (q2d − 1)/(2q2d). In this case the greatest common divisor in the theorem
is indeed a divisor of f . For, if u(x)(qd−1)/2 − 1 ≡ 0 (mod f1(x)), but this congruence is not
valid modulo f2(x), then the polynomial u(x)(qd−1)/2 − 1 is divisible by the factor f1(x), but
not divisible by f2(x), and so its greatest common divisor with f (x) is a proper divisor of
f (x). The function

q2d − 1
2q2d =

1
2 −

1
2q2d

is strictly increasing in qd, and it takes its smallest possible value if qd is the smallest odd
prime-power, namely 3. The minimum is, thus, 1/2 − 1/18 = 4/9.

The previous theorem suggests the following randomised Las Vegas polynomial time
algorithm for factoring a polynomial of the form (1.5) to a product of two factors.

C-Z-O( f , d)
1 n← deg f
2 for i← 0 to n − 1
3 do ui ← a random element (uniformly distributed) of Fq
4 u← ∑n−1

i=0 uixi

5 g← gcd(u(qd−1)/2 − 1, f )
6 if 0 < deg g < deg f
7 then return(g, f /g)
8 else return "fail"
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If one of the polynomials in the output is not irreducible, then, as it is of the form (1.5),
it can be fed, as input, back into the algorithm. This way we obtain a polynomial time
randomised algorithm for factoring f .

In the computation of the greatest common divisor, the residue u(x)(qd−1)/2 (mod f (x))
should be computed using fast exponentiation.

Now we can conclude that the general factorisation problem (1.3) over a �eld with odd
order can be solved using a randomised polynomial time algorithm.

1.3.4. Berlekamp's algorithm
Here we will describe an algorithm that reduces the problem of factoring polynomials to the
problem of searching through the underlying �eld or its prime �eld. We assume that

f (x) = f e1
1 (x) · · · f es

s (x) ,

where the fi(x) are pairwise non-associate, irreducible polynomials in Fq[x], and also that
deg f (x) = n. The Chinese remainder theorem (Theorem 1.15) gives an isomorphism bet-
ween the rings Fq[x]/( f ) and

Fq[x]/( f e1
1 ) ⊕ · · · ⊕ Fq[x]/( f es

s ).

The isomorphism is given by the following map:

[u(x)] f ↔ ([u(x)] f e1
1
, . . . , [u(x)] f es

s ) ,

where u(x) ∈ Fq[x].
The most important technical tools in Berlekamp's algorithm are the p-th and q-th po-

wer maps in the residue class ring Fq[x]/( f (x)). Taking p-th and q-th powers on both sides
of the isomorphism above given by the Chinese remainder theorem, we obtain the following
maps:

[u(x)]p ↔ ([u(x)p] f e1
1
, . . . , [u(x)p] f es

s ) , (1.6)

[u(x)]q ↔ ([u(x)q] f e1
1
, . . . , [u(x)q] f es

s ) . (1.7)

The Berlekamp subalgebra B f of the polynomial f = f (x) is the subring of the residue
class ring Fq[x]/( f ) consisting of the �xed points of the q-th power map. Further, the abso-
lute Berlekamp subalgebra A f of f consists of the �xed points of the p-th power map. In
symbols,

B f = {[u(x)] f ∈ Fq[x]/( f ) : [u(x)q] f = [u(x)] f } ,

A f = {[u(x)] f ∈ Fq[x]/( f ) : [u(x)p] f = [u(x)] f } .

It is easy to see that A f ⊆ B f . The term subalgebra is used here, because both types of
Berlekamp subalgebras are subrings in the residue class ring Fq[x]/( f (x)) (that is they are
closed under addition and multiplication modulo f (x)), and, in addition, B f is also linear
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subspace over Fq, that is, it is closed under multiplication by the elements of Fq. The absolute
Berlekamp subalgebra A f is only closed under multiplication by the elements of the prime
�eld Fp.

The Berlekamp subalgebra B f is a subspace, as the map u 7→ uq − u (mod f (x)) is an
Fq-linear map of Fq[x]/g(x) into itself, by Lemma 1.23 and Theorem 1.19. Hence a basis of
B f can be computed as a solution of a homogeneous system of linear equations over Fq, as
follows.

For all i ∈ {0, . . . , n − 1}, compute the polynomial hi(x) with degree at most n − 1 that
satis�es xiq − xi ≡ hi(x) (mod f (x)). For each i, such a polynomial hi can be determined by
fast exponentiation using O(lg q) multiplications of polynomials and divisions with remain-
der. Set hi(x) =

∑n
j=0 hi jx j. The class [u] f of a polynomial u(x) =

∑n−1
i=0 uixi with degree less

than n lies in the Berlekamp subalgebra if and only if
n−1∑

i=0
uihi(x) = 0 ,

which, considering the coefficient of x j for j = 0, . . . , n − 1, leads to the following system
of n homogeneous linear equations in n variables:

n−1∑

i=0
hi jui = 0, ( j = 0, . . . , n − 1) .

Similarly, computing a basis of the absolute Berlekamp subalgebra over Fp can be car-
ried out by solving a system of nd homogeneous linear equations in nd variables over the
prime �eld Fp, as follows. We represent the elements of Fq in the usual way, namely using
polynomials with degree less than d in Fp[y]. We perform the operations modulo g(y), where
g(y) ∈ Fp[y] is an irreducible polynomial with degree d over the prime �eld Fp. Then the
polynomial u[x] ∈ Fq[x] of degree less than n can be written in the form

n−1∑

i=0

d−1∑

j=0
ui jy jxi,

where ui j ∈ Fp. Let, for all i ∈ {0, . . . , n−1} and for all j ∈ {0, . . . , d−1}, hi j(x) ∈ Fq[x] be the
unique polynomial with degree at most (n− 1) for which hi j(x) ≡ (y jxi)p − y jxi (mod f (x)).
The polynomial hi j(x) is of the form ∑n−1

k=0
∑d−1

l=0 hkl
i jylxk. The criterion for being a member of

the absolute Berlekamp subalgebra of [u] with u[x] =
∑n−1

i=0
∑d−1

j=0 ui jy jxi is

n−1∑

i=0

d−1∑

j=0
ui jhi j(x) = 0 ,

which, considering the coefficients of the monomials ylxk, is equivalent to the following
system of equations:

n−1∑

i=0

d−1∑

j=0
hkl

i jui j = 0 (k = 0, . . . , n − 1, l = 0, . . . , d − 1) .

This is indeed a homogeneous system of linear equations in the variables ui j. Systems of
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linear equations over �elds can be solved in polynomial time (see Section 31.4), the opera-
tions in the ring Fq[x]/( f (x)) can be performed in polynomial time, and the fast exponenti-
ation also runs in polynomial time. Thus the following theorem is valid.Reference to

NA!
Theorem 1.39 Let f ∈ Fq[x]. Then it is possible to compute the Berlekamp subalgebras
B f ≤ Fq[x]/( f (x)) and A f ≤ Fq[x]/( f (x)), in the sense that an Fq-basis of B f and Fp-basis
of A f can be obtained, using polynomial time deterministic algorithms.

By (1.6) and (1.7),

B f = {[u(x)] f ∈ Fq[x]/( f ) : [uq(x)] f ei
i

= [u(x)] f ei
i

(i = 1, . . . , s)} (1.8)

and
A f = {[u(x)] f ∈ Fq[x]/( f ) : [up(x)] f ei

i
= [u(x)] f ei

i
(i = 1, . . . , s)} . (1.9)

The following theorem shows that the elements of the Berlekamp subalgebra can be
characterised by their Chinese remainders.

Theorem 1.40

B f = {[u(x)] f ∈ Fq[x]/( f ) : ∃ci ∈ Fq such that [u(x)] f ei
i

= [ci] f ei
i

(i = 1, . . . , s)}

and

A f = {[u(x)] f ∈ Fq[x]/( f ) : ∃ci ∈ Fp such that [u(x)] f ei
i

= [ci] f ei
i

(i = 1, . . . , s)} .

Proof. Using the Chinese remainder theorem, and equations (1.8), (1.9), we are only requi-
red to prove that

uq(x) ≡ u(x) (mod ge(x))⇐⇒ ∃c ∈ Fq such that u(x) ≡ c (mod ge(x)) ,

and

up(x) ≡ u(x) (mod ge(x))⇐⇒ ∃c ∈ Fp such that u(x) ≡ c (mod ge(x))

where g(x) ∈ Fq[x] is an irreducible polynomial, u(x) ∈ Fq[x] is an arbitrary polynomial
and e is a positive integer. In both of the cases, the direction ⇐ is a simple consequence
of Theorem 1.19. As Fp = {a ∈ Fq | ap = a}, the implication ⇒ concerning the absolute
Berlekamp subalgebra follows from that concerning the Berlekamp subalgebra, and so it
suffices to consider the latter.

The residue class ring Fq[x]/(g(x)) is a �eld, and so the polynomial xq − x has at most
q roots in Fq[x]/(g(x)). However, we already obtain q distinct roots from Theorem 1.19,
namely the elements of Fq (the constant polynomials modulo g(x)). Thus

uq(x) ≡ u(x) (mod g(x))⇐⇒ ∃c ∈ Fq such that u(x) ≡ c (mod g(x)) .

Hence, if uq(x) ≡ u(x) (mod ge(x)), then u(x) is of the form u(x) = c + h(x)g(x) where
h(x) ∈ Fq[x]. Let N be an arbitrary positive integer. Then

u(x) ≡ uq(x) ≡ uqN (x) ≡ (c + h(x)g(x))qN ≡ c + h(x)qN g(x)qN ≡ c (mod gqN (x)) .
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If we choose N large enough so that qN ≥ e holds, then, by the congruence above, u(x) ≡ c
(mod ge(x)) also holds.

An element [u(x)] f of B f or A f is said to be non-trivial if there is no element c ∈ Fq such
that u(x) ≡ c (mod f (x)). By the previous theorem and the Chinese remainder theorem, this
holds if and only if there are i, j such that ci , c j. Clearly a necessary condition is that s > 1,
that is, f (x) must have at least two irreducible factors.

Lemma 1.41 Let [u(x)] f be a non-trivial element of the Berlekamp subalgebra B f . Then
there is an element c ∈ Fq such that the polynomial gcd(u(x)− c, f (x)) is a proper divisor of
f (x). If [u(x)] f ∈ A f , then there exists such an element c in the prime �eld Fp.

Proof. Let i and j be integers such that ci , c j ∈ Fq, u(x) ≡ ci (mod f ei
i (x)), and u(x) ≡ c j

(mod f e j
j (x)). Then, choosing c = ci, the polynomial u(x) − c is divisible by f ei

i (x), but not
divisible by f e j

j (x). If, in addition, u(x) ∈ A f , then also c = ci ∈ Fp.
Assume that we have a basis of A f at hand. At most one of the basis elements can be

trivial, as a trivial element is a scalar multiple of 1. If f (x) is not a power of an irreducible
polynomial, then there will surely be a non-trivial basis element [u(x)] f , and so, using the
idea in the previous lemma, f (x) can be factored two factors.

Theorem 1.42 A polynomial f (x) ∈ Fq[x] can be factored with a deterministic algorithm
whose running time is polynomial in p, deg f , and lg q.

Proof. It suffices to show that f can be factored to two factors within the given time bound.
The method can then be repeated.

B-D( f )
1 S ← a basis of A f
2 if |S | > 1
3 then u← a non-trivial element of S
4 for c ∈ Fp
5 do g← gcd(u − c, f )
6 if 0 < deg g < deg f
7 then return (g, f /g)
8 else return "a power of an irreducible"

In the �rst stage, in line 1, we determine a basis of the absolute Berlekamp subalgebra.
The cost of this is polynomial in deg f and lg q. In the second stage (lines 2�8), after taking
a non-trivial basis element [u(x)] f , we compute the greatest common divisors gcd(u(x) −
c, f (x)) for all c ∈ Fp. The cost of this is polynomial in p and deg f .

If there is no non-trivial basis-element, then A f is 1-dimensional and f is the e1-th
power of the irreducible polynomial f1 where f1 and e1 can, for instance, be determined
using the ideas presented in Section 1.3.1.

The time bound in the previous theorem is not polynomial in the input size, as it contains
p instead of lg p. However, if p is small compared to the other parameters (for instance
in coding theory we often have p = 2), then the running time of the algorithm will be
polynomial in the input size.

Corollary 1.43 Suppose that p can be bounded by a polynomial function of deg f and
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lg q. Then the irreducible factorisation of f can be obtained in polynomial time.

The previous two results are due to E. R. Berlekamp. The most important open problem
in the area discussed here is the existence of a deterministic polynomial time method for
factoring polynomials. The question is mostly of theoretical interest, since the randomised
polynomial time methods, such as the a Cantor -Zassenhaus algorithm, are very efficient in
practice.

Berlekamp's randomised algorithm
We can obtain a good randomised algorithm using Berlekamp subalgebras. Suppose that q
is odd, and, as before, f ∈ Fq[x] is the polynomial to be factored.

Let [u(x)] f be a random element in the Berlekamp subalgebra B f . An argument, similar
to the one in the analysis of the Cantor-Zassenhaus algorithm shows that, provided f (x) has
at least two irreducible factors, the greatest common divisor gcd(u(x)(q−1)/2 − 1, f (x)) is a
proper divisor of f (x) with probability at least 4/9. Now we present a variation of this idea
that uses less random bits: instead of choosing a random element from B f , we only choose
a random element from Fq.

Lemma 1.44 Suppose that q is odd and let a1 and a2 be two distinct elements of Fq. Then
there are at least (q−1)/2 elements b ∈ Fq such that exactly one of the elements (a1+b)(q−1)/2

and (a2 + b)(q−1)/2 is 1.

Proof. Using the argument at the beginning of the proof of Lemma 1.37, one can easily see
that there are (q− 1)/2 elements in the set Fq \ {1} whose (q− 1)/2-th power is −1. It is also
quite easy to check, for a given element c ∈ Fq \ {1}, that there is a unique b , −a2 such that
c = (a1 + b)/(a2 + b). Indeed, the required b is the solution of a linear equation.

By the above, there are (q − 1)/2 elements b ∈ Fq \ {−a2} such that
(

a1 + b
a2 + b

)(q−1)/2
= −1 .

For such a b, one of the elements (a1 + b)(q−1)/2 and (a2 + b)(q−1)/2 is equal to 1 and the other
is equal to −1.

Theorem 1.45 Suppose that q is odd and the polynomial f (x) ∈ Fq[x] has at least two
irreducible factors in Fq[x]. Let u(x) be a non-trivial element in the Berlekamp subalgebra
B f . If we choose a uniformly distributed random element b ∈ Fq, then, with probability at
least (q − 1)/(2q) ≥ 1/3, the greatest common divisor gcd((u(x) + b)(q−1)/2 − 1, f (x)) is a
proper divisor of the polynomial f (x).

Proof. Let f (x) =
∏s

i=1 f ei
i (x), where the factors fi(x) are pairwise distinct irreducible poly-

nomials. The element [u(x)] f is a non-trivial element of the Berlekamp subalgebra, and so
there are indices 0 < i, j ≤ s and elements ci , c j ∈ Fq such that u(x) ≡ ci (mod f ei

i (x)) and
u(x) ≡ c j (mod f e j

j (x)). Using Lemma 1.44 with a1 = ci and a2 = c j, we �nd, for a random
element b ∈ Fq, that the probability that exactly one of the elements (ci + b)(q−1)/2 − 1 and
(c j + b)(q−1)/2 − 1 is zero is at least (q − 1)/(2q). If, for instance, (ci + b)(q−1)/2 − 1 = 0, but
(c j + b)(q−1)/2 − 1 , 0, then (u(x) + b)(q−1)/2 −1 ≡ 0 (mod f ei

i (x)) but (u(x) + b)(q−1)/2 −1 , 0
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(mod f e j
j (x)), that is, the polynomial (u(x) + b)(q−1)/2 − 1 is divisible by f ei

i (x), but not divi-
sible by f e j

j (x). Thus the greatest common divisor gcd( f (x), (u(x) + b)(q−1)/2 − 1) is a proper
divisor of f .

The quantity (q − 1)/(2q) = 1/2 − 1/(2q) is a strictly increasing function in q, and so it
takes its smallest value for the smallest odd prime-power, namely 3. The minimum is 1/3.

The previous theorem gives the following algorithm for factoring a polynomial to two
factors.

B-R( f )
1 S ← a basis of B f
2 if |S | > 1
3 then u← a non-trivial elements of S
4 c← a random element (uniformly distributed) of Fq
5 g← gcd((u − c)(q−1)/2 − 1, f )
6 if 0 < deg g < deg f
7 then return (g, f /g)
8 else return "fail"
9 else return "a power of an irreducible"

Exercises
1.3-1 Let f (x) ∈ Fp[x] be an irreducible polynomial, and let α be an element of the �eld
Fp[x]/( f (x)). Give a polynomial time algorithm for computing α−1. Hint: Use the result of
Exercise 1.1-6.
1.3-2 Let f (x) = x7 + x6 + x5 + x4 + x3 + x2 + x + 1 ∈ F2[x]. Using the D-D-
F algorithm, determine the factorisation (1.4) of f .
1.3-3 Follow the steps of the Cantor-Zassenhaus algorithm to factor the polynomial x2 +

2x + 9 ∈ F11[x].
1.3-4 Let f (x) = x2 − 3x + 2 ∈ F5[x]. Show that F5[x]/( f (x)) coincides with the absolute
Berlekamp subalgebra of f , that is, A f = F5[x]/( f (x)).
1.3-5 Let f (x) = x3 − x2 + x − 1 ∈ F7[x]. Using Berlekamp's algorithm, determine the
irreducible factors of f : �rst �nd a non-trivial element in the Berlekamp subalgebra A f ,
then use it to factor f .

1.4. Lattice reduction
Our aim in the rest of this chapter is to present the Lenstra-Lenstra-Lovász algorithm for
factoring polynomials with rational coefficients. First we study a geometric problem, which
is interesting also in its own right, namely �nding short lattice vectors. Finding a shortest
non-zero lattice vector is hard: by a result of Ajtai, if this problem could be solved in poly-
nomial time with a randomised algorithm, then so could all the problems in the complexity
class NP. For a lattice with dimension n, the lattice reduction method presented in this
chapter outputs, in polynomial time, a lattice vector whose length is not greater than 2(n−1)/4

times the length of a shortest non-zero lattice vector.
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1.4.1. Lattices
First, we recall a couple of concepts related to real vector spaces. Let Rn denote the collec-
tion of real vectors of length n. It is routine to check that Rn is a vector space over the �eld
R. The scalar product of two vectors u = (u1, . . . , un) and v = (v1, . . . , vn) in Rn is de�ned
as the number (u, v) = u1v1 +u2v2 + · · ·+unvn. The quantity |u| = √(u, u) is called the length
of the vector u. The vectors u and v are said to be orthogonal if (u, v) = 0. A basis b1, . . . , bn
of the space Rn is said to be orthonormal, if, for all i, (bi, bi) = 1 and, for all i and j such
that i , j, we have (bi, b j) = 0.

The rank and the determinant of a real matrix, and de�nite matrices are discussed in
Section 31.1.Reference to

NA!
De�nition 1.46 A set L ⊆ Rn is said to be a lattice, if L is a subgroup with respect to
addition, and L is discrete, in the sense that each bounded region of Rn contains only �nitely
many points of L. The rank of the lattice L is the dimension of the subspace generated by
L. Clearly, the rank of L coincides with the cardinality of a maximal linearly independent
subset of L. If L has rank n, then L is said to be a full lattice. The elements of L are called
lattice vectors or lattice points.

De�nition 1.47 Let b1, . . . , br be linearly independent elements of a lattice L ⊆ Rn. If
all the elements of L can be written as linear combinations of the elements b1, . . . , br with
integer coefficients, then the collection b1, . . . , br is said to be a basis of L.

In this case, as the vectors b1, . . . , br are linearly independent, all vectors of Rn can uniquely
be written as real linear combinations of b1, . . . , br.

By the following theorem, the lattices are precisely those additive subgroups of Rn that
have bases.

Theorem 1.48 Let b1, . . . , br be linearly independent vectors in Rn and let L be the set of
integer linear combinations of b1, . . . , br. Then L is a lattice and the vectors b1, . . . , br form
a basis of L. Conversely, if L is a lattice in Rn, then it has a basis.

Proof. Obviously, L is a subgroup, that is, it is closed under addition and subtraction. In
order to show that it is discrete, let us assume that n = r. This assumption means no loss
of generality, as the subspace spanned by b1, . . . , br is isomorphic to Rr. In this case, φ :
(α1, . . . , αn) 7→ α1b1 + . . .+αnbn is an invertible linear map of Rn onto itself. Consequently,
both φ and φ−1 are continuous. Hence the image of a discrete set under φ is also discrete.
As L = φ(Zn), it suffices to show that Zn is discrete in Rn. This, however, is obvious: if K
is a bounded region in Rn, then there is a positive integer ρ, such that the absolute value of
each of the coordinates of the elements of K is at most ρ. Thus Zn has at most (2bρc + 1)n

elements in K.
The second assertion is proved by induction on n. If L = {0}, then we have nothing to

prove. Otherwise, by discreteness, there is a shortest non-zero vector, b1 say, in L. We claim
that the vectors of L that lie on the line {λb1 | λ ∈ R} are exactly the integer multiples of
b1. Indeed, suppose that λ is a real number and consider the vector λb1 ∈ L. As usual, {λ}
denotes the fractional part of λ. Then 0 , |{λ}b1| < |b1|, yet {λ}b1 = λb1− [λ]b1, that is {λ}b1
is the difference of two vectors of L, and so is itself in L. This, however, contradicts to the
fact that b1 was a shortest non-zero vector in L. Thus our claim holds.
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The claim veri�ed in the previous paragraph shows that the theorem is valid when n = 1.
Let us, hence, assume that n > 1. We may write an element of Rn as the sum of two vectors,
one of them is parallel to b1 and the other one is orthogonal to b1:

v = v∗ +
(v, b1)
(b1, b1)b1 .

Simple computation shows that (v∗, b1) = 0, and the map v 7→ v∗ is linear. Let L∗ = {v∗|v ∈
L}. We show that L∗ is a lattice in the subspace, or hyperplane, H � Rn−1 formed by the
vectors orthogonal to b1. The map v 7→ v∗ is linear, and so L∗ is closed under addition
and subtraction. In order to show that it is discrete, let K be a bounded region in H. We
are required to show that only �nitely many points of L∗ are in K. Let v ∈ L be a vector
such that v∗ ∈ K. Let λ be the integer that is closest to the number (v, b1)/(b1, b1) and let
v′ = v− λb1. Clearly, v′ ∈ L and v′∗ = v∗. Further, we also have that |(v′, b1)/(b1, b1)| = |(v−
λb1, b1)/(b1, b1)| ≤ 1/2, and so the vector v′ lies in the bounded region K × {µb1 : − 1/2 ≤
µ ≤ 1/2}. However, there are only �nitely many vectors v′ ∈ L in this latter region, and so
K also has only �nitely many lattice vectors v∗ = v′∗ ∈ L∗.

We have, thus, shown that L∗ is a lattice in H, and, by the induction hypothesis, it has
a basis. Let b2, . . . , br ∈ L be lattice vectors such that the vectors b∗2, . . . , b∗r form a basis of
the lattice L∗. Then, for an arbitrary lattice vector v ∈ L, the vector v∗ can be written in the
form ∑r

i=2 λib∗i where the coefficients λi are integers. Then v′ = v−∑r
i=2 λibi ∈ L and, as the

map v 7→ v∗ is linear, we have v′∗ = 0. This, however, implies that v′ is a lattice vector on
the line λb1, and so v′ = λ1b1 with some integer λ1. Therefore v =

∑r
i=1 λibi, that is, v is an

integer linear combination of the vectors b1, . . . , br. Thus the vectors b1, . . . , br form a basis
of L.

A lattice L is always full in the linear subspace spanned by L. Thus, without loss of
generality, we will consider only full lattices, and, in the sequel, by a lattice we will always
mean a full lattice .

Example 1.4 Two familiar lattices in R2:
1. The square lattice is the lattice in R2 with basis b1 = (1, 0), b2 = (0, 1).
2. The triangular lattice is the lattice with basis b1 = (1, 0), b2 = (1/2, (

√
3)/2).

The following simple fact will often be used.

Lemma 1.49 Let L be a lattice in Rn, and let b1, . . . , bn be a basis of L. If we reorder the
basis vectors b1, . . . , bn, or if we add to a basis vector an integer linear combination of the
other basis vectors, then the collection so obtained will also form a basis of L.

Proof. Straightforward.
Let b1, . . . , bn be a basis in L. The Gram matrix of b1, . . . , bn is the matrix B = (Bi j)

with entries Bi j = (bi, b j). The matrix B is positive de�nite, since it is of the form AT A where
A is a full-rank matrix (see Theorem 31.6). Consequently, det B is a positive real number. Reference to

NA!
Lemma 1.50 Let b1, . . . , bn and w1, . . . ,wn be bases of a lattice L and let B and W be the
matrices Bi j = (bi, b j) and Wi j = (wi,w j). Then the determinants of B and W coincide.

Proof. For all i = 1, . . . , n, the vector wi is of the form wi =
∑n

j=1 αi jb j where the αi j are
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integers. Let A be the matrix with entries Ai j = αi j. Then, as

(wi,w j) = (
n∑

k=1
αikbk,

n∑

l=1
α jlbl) =

n∑

k=1
αik

n∑

l=1
(bk, bl)α jl,

we have W = ABAT , and so det W = det B(det A)2. The number det W/ det B = (det A)2 is a
non-negative integer, since the entries of A are integers. Swapping the two bases, the same
argument shows that det B/ det W is also a non-negative integer. This can only happen if
det B = det W.

De�nition 1.51 (The determinant of a lattice). The determinant of a lattice L is det L =√
det B where B is the Gram matrix of a basis of L.

By the previous lemma, det L is independent of the choice of the basis. The quantity
det L has a geometric meaning, as det L is the volume of the solid body, the so-called paral-
lelepiped, formed by the vectors {∑n

i=1 αibi : 0 ≤ α1, . . . , αn ≤ 1}.

Remark 1.52 Assume that the coordinates of the vectors bi in an orthonormal basis of Rn

are αi1, . . . , αin (i = 1, . . . , n). Then the Gram matrix B of the vectors b1, . . . , bn is B = AAT

where A is the matrix Ai j = αi j. Consequently, if b1, . . . , bn is a basis of a lattice L, then
det L = | det A|.

Proof. The assertion follows from the equations (bi, b j) =
∑n

k=1 αikα jk.

1.4.2. Short lattice vectors
We will need a fundamental result in convex geometry. In order to prepare for this, we
introduce some simple notation. Let H ⊆ Rn. The set H is said to be centrally symmetric,
if v ∈ H implies −v ∈ H. The set H is convex, if u, v ∈ H implies λu + (1 − λ)v ∈ H for all
0 ≤ λ ≤ 1.

Theorem 1.53 (Minkowski's Convex Body Theorem). Let L be a lattice inRn and let K ⊆
Rn be a centrally symmetric, bounded, closed, convex set. Suppose that the volume of K is
at least 2n det L. Then K ∩ L , {0}.

Proof. By the conditions, the volume of the set (1/2)K := {(1/2)v : v ∈ K} is at least det L.
Let b1, . . . , bn be a basis of the lattice L and let P = {∑n

i=1 αibi : 0 ≤ α1, . . . , αn < 1} be
the corresponding half-open parallelepiped. Then each of the vectors in Rn can be written
uniquely in the form x + z where x ∈ L and z ∈ P. For an arbitrary lattice vector x ∈ L, we
let

Kx = (1/2)K ∩ (x + P) = (1/2)K ∩ {x + z : z ∈ P} .
As the sets (1/2)K and P are bounded, so is the set

(1/2)K − P = {u − v : u ∈ (1/2) · K, v ∈ P} .

As L is discrete, L only has �nitely many points in (1/2)K − P; that is, Kx = ∅, except for
�nitely many x ∈ L. Hence S = {x ∈ L : Kx , ∅} is a �nite set, and, moreover, the set
(1/2)K is the disjoint union of the sets Kx (x ∈ S ). Therefore, the total volume of these sets
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is at least det L. For a given x ∈ S , we set Px = Kx − x = {z ∈ P : x + z ∈ (1/2)K}. Consider
the closure P and Px of the sets P and Px, respectively:

P =


n∑

i=1
αibi : 0 ≤ α1, . . . , αn ≤ 1



and Px =
{
z ∈ P : x + z ∈ (1/2)K

}
. The total volume of the closed sets Px ⊆ P is at least as

large as the volume of the set P, and so these sets cannot be disjoint: there are x , y ∈ S
and z ∈ P such that z ∈ Px ∩ Py, that is, x + z ∈ (1/2)K and y + z ∈ (1/2)K. As (1/2) · K
is centrally symmetric, we �nd that −y − z ∈ (1/2) · K. As (1/2)K is convex, we also have
(x−y)/2 = ((x+z)+(−y−z))/2 ∈ (1/2)K. Hence x−y ∈ K. On the other hand, the difference
x − y of two lattice points lies in L \ {0}.

Minkowski's theorem is sharp. For, let ε > 0 be an arbitrary positive number, and let
L = Zn be the lattice of points with integer coordinates in Rn. Let K be the set of vectors
(v1, . . . , vn) ∈ Rn for which −1 + ε ≤ vi ≤ 1 − ε (i = 1, . . . , n). Then K is bounded, closed,
convex, centrally symmetric with respect to the origin, its volume is (1 − ε)n2n det L, yet
L ∩ K = {0}.

Corollary 1.54 Let L be a lattice in Rn. Then L has a lattice vector v , 0 whose length is
at most

√
n n√det L.

Proof. Let K be the following centrally symmetric cube with side length s = 2 n√det L:

K = {(v1, . . . , vn) ∈ Rn : − s/2 ≤ vi ≤ s/2, i = 1, . . . , n} .

The volume of the cube K is exactly 2n det L, and so it contains a non-zero lattice vector.
However, the vectors in K have length at most

√
n n√det L.

We remark that, for n > 1, we can �nd an even shorter lattice vector, if we replace the
cube in the proof of the previous assertion by a suitable ball.

1.4.3. Gauss' algorithm for two-dimensional lattices
Our goal is to design an algorithm that �nds a non-zero short vector in a given lattice. In
this section we consider this problem for two-dimensional lattices, which is the simplest
non-trivial case. Then there is an elegant, instructive, and efficient algorithm that �nds short
lattice vectors. This algorithm also serves as a basis for the higher-dimensional cases. Let L
be a lattice with basis b1, b2 in R2.

G(b1, b2)
1 (a, b)← (b1, b2)
2 forever
3 do b← the shortest lattice vector on the line b − λa
4 if |b| < |a|
5 then b↔ a
6 else return (a, b)

In order to analyse the procedure, the following facts will be useful.
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Lemma 1.55 Suppose that a and b are two linearly independent vectors in the plane R2,
and let L be the lattice generated by them. The vector b is a shortest non-zero vector of L
on the line b − λa if and only if

|(b, a)/(a, a)| ≤ 1/2 . (1.10)

Proof. We write b as the sum of a vector parallel to a and a vector orthogonal to a:

b = (b, a)/(a, a)a + b∗ . (1.11)

Then, as the vectors a and b∗ are orthogonal,

|b − λa|2 =

∣∣∣∣∣∣
(

(b, a)
(a, a) − λ

)
a + b∗

∣∣∣∣∣∣
2

=

(
(b, a)
(a, a) − λ

)2
|a|2 + |b∗|2 .

This quantity takes its smallest value for the integer λ that is the closest to the number
(b, a)/(a, a). Hence λ = 0 gives the minimal value if and only if (1.10) holds.

Lemma 1.56 Suppose that the linearly independent vectors a and b form a basis for a
lattice L ⊆ R2 and that inequality (1.10) holds. Assume, further, that

|b|2 ≥ (3/4)|a|2 . (1.12)

Write b, as in (1.11), as the sum of the vector ((b, a)/(a, a))a, which is parallel to a, and the
vector b∗ = b − ((b, a)/(a, a))a, which is orthogonal to a. Then

|b∗|2 ≥ (1/2)|a|2 . (1.13)

Further, either b or a is a shortest non-zero vector in L.

Proof. By the assumptions,

|a|2 ≤ 4
3 |b|

2 =
4
3 |b
∗|2 +

4
3 ((b, a)/(a, a))2 |a|2 ≤ 4

3 |b
∗|2 + (1/3)|a|2 .

Rearranging the last displayed line, we obtain |b∗|2 ≥ (1/2)|a|2.
The length of a vector 0 , v = αa + βb ∈ L can be computed as

|αa + βb|2 = |βb∗|2 + (α + β(b, a)/(a, a))2 |a|2 ≥ β2|b∗|2 ≥ (1/2)β2|a|2,

which implies |v| > |a| whenever |β| ≥ 2. If β = 0 and α , 0, then |v| = |α| · |a| ≥ |a|.
Similarly, α = 0 and β , 0 gives |v| = |β| · |b| ≥ |b|. It remains to consider the case when
α , 0 and β = ±1. As | − v| = |v|, we may assume that β = 1. In this case, however, v is of
the form v = b − λa (λ = −α), and, by Lemma 1.55, the vector b is a shortest lattice vector
on this line.

Theorem 1.57 Let v be a shortest non-zero lattice vector in L. Then Gauss' algorithm
terminates after O(1 + lg(|b1|/|v|)) iterations, and the resulting vector a is a shortest non-
zero vector in L.
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Proof. First we verify that, during the course of the algorithm, the vectors a and b will
always form a basis for the lattice L. If, in line 3, we replace b by a vector of the form
b′ = b− λa, then, as b = b′ + λa, the pair a, b′ remains a basis of L. The swap in line 5 only
concerns the order of the basis vectors. Thus a and b is always a basis of L, as we claimed.

By Lemma 1.55, inequality (1.10) holds after the �rst step (line 3) in the loop, and so
we may apply Lemma 1.56 to the scenario before lines 4�5. This shows that if none of a and
b is shortest, then |b|2 ≤ (3/4)|a|2. Thus, except perhaps for the last execution of the loop,
after each swap in line 5, the length of a is decreased by a factor of at least

√
3/4. Thus we

obtain the bound for the number of executions of the loop. Lemma 1.56 implies also that
the vector a at the end is a shortest non-zero vector in L.

Gauss' algorithm gives an efficient polynomial time method for computing a shortest
vector in the lattice L ⊆ R2. The analysis of the algorithm gives the following interesting
theoretical consequence.

Corollary 1.58 Let L be a lattice in R2, and let a be a shortest non-zero lattice vector in
L. Then |a|2 ≤ (2/

√
3) det L.

Proof. Let b be a vector in L such that b is linearly independent of a and (1.10) holds. Then

|a|2 ≤ |b|2 = |b∗|2 +

(
(b, a)
(a, a)

)2
|a|2 ≤ |b∗|2 +

1
4 |a|

2 ,

which yields (3/4)|a|2 ≤ |b∗|2. The area of the fundamental parallelogram can be computed
using the well-known formula

area = base · height,

and so det L = |a||b∗|. The number |b∗| can now be bounded by the previous inequality.

1.4.4. A Gram-Schmidt orthogonalisation and weak reduction
Let b1, . . . , bn be a linearly independent collection of vectors in Rn. For an index i with
i ∈ {1, . . . , n}, we let b∗i denote the component of bi that is orthogonal to the subspace
spanned by b1, . . . , bi−1. That is,

bi = b∗i +

i−1∑

j=1
λi jb j ,

where
(b∗i , b j) = 0 for j = 1, . . . , i − 1 .

Clearly b∗1 = b1. The vectors b∗1, . . . , b∗i−1 span the same subspace as the vectors b1, . . . , bi−1,
and so, with suitable coefficients µi j, we may write

bi = b∗i +

i−1∑

j=1
µi jb∗j , (1.14)

and
(b∗i , b∗j) = 0, if j , i .
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By the latter equations, the vectors b∗1, . . . , b∗i−1, b∗i form an orthogonal system, and so

µi j =
(bi, b∗j)
(b∗j , b∗j)

( j = 1, . . . , i − 1) . (1.15)

The set of the vectors b∗1, . . . , b∗n is said to be the Gram-Schmidt orthogonalisation of
the vectors b1, . . . , bn.

Lemma 1.59 Let L ⊆ Rn be a lattice with basis b1, . . . , bn. Then

det L =

n∏

i=1
|b∗i | .

Proof. Set µii = 1 and µi j = 0, if j > i. Then b∗i =
∑n

k=1 µikbk, and so

(b∗i , b∗j) =

n∑

k=1
µik

n∑

l=1
(bk, bl)µ jl,

that is, B∗ = MBMT where B and B∗ are the Gram matrices of the collections b1, . . . , bn
and b∗1, . . . , b∗n, respectively, and M is the matrix with entries µi j. The matrix M is a lower
triangular matrix with ones in the main diagonal, and so det M = det MT = 1. As B∗ is a
diagonal matrix, we obtain ∏n

i=1 |b∗i |2 = det B∗ = (det M)(det B)(det MT ) = det B.

Corollary 1.60 (Hadamard inequality). ∏n
i=1 |bi| ≥ det L.

Proof. The vector bi can be written as the sum of the vector b∗i and a vector orthogonal to
b∗i , and hence |b∗i | ≤ |bi|.

The vector b∗i is the component of bi orthogonal to the subspace spanned by the vectors
b1, . . . , bi−1. Thus b∗i does not change if we subtract a linear combination of the vectors
b1, . . . , bi−1 from bi. If, in this linear combination, the coefficients are integers, then the new
sequence b1, . . . , bn will be a basis of the same lattice as the original. Similarly to the �rst
step of the loop in Gauss' algorithm, we can make the numbers µi j in (1.15) small. The input
of the following procedure is a basis b1, . . . , bn of a lattice L.

W-R(b1, . . . , bn)
1 for j← n − 1 downto 1
2 do for i← j + 1 to n
3 bi ← bi − λb j, where λ is the integer nearest the number (bi, b∗j)/(b∗j , b∗j)
4 return (b1, . . . , bn)

De�nition 1.61 (Weakly reduced basis). A basis b1, . . . , bn of a lattice is said to be weakly
reduced if the coefficients µi j in (1.15) satisfy

|µi j| ≤ 1
2 for 1 ≤ j < i ≤ n .

Lemma 1.62 The basis given by the procedure W-R is weakly reduced.
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Proof. By the remark preceding the algorithm, we obtain that the vectors b∗1, . . . , b∗n never
change. Indeed, we only subtract linear combinations of vectors with index less than i from
bi. Hence the inner instruction does not change the value of (bk, b∗l ) with k , i. The values
of the (bi, b∗l ) do not change for l > j either. On the other hand, the instruction achieves,
with the new bi, that the inequality |µi j| ≤ 1/2 holds:

|(bi − λb∗j , b∗j)| = |(bi, b∗j) − λ(b∗j , b∗j)| = |(bi, b∗j) − λ(b∗j , b∗j)| ≤
1
2(b∗j , b∗j) .

By the observations above, this inequality remains valid during the execution of the proce-
dure.

1.4.5. Lovász-reduction
First we de�ne, in an arbitrary dimension, a property of the bases that usually turns out to
be useful. The de�nition will be of a technical nature. Later we will see that these bases
are interesting, in the sense that they consist of short vectors. This property will make them
widely applicable.

De�nition 1.63 A basis b1, . . . , bn of a lattice L is said to be (Lovász-)reduced if
• it is weakly reduced,
and, using the notation introduced for the Gram-Schmidt orthogonalisation,
• |b∗i |2 ≤ (/3)|b∗i+1 + µi+1,ib∗i |2 for all 1 ≤ i < n.

Let us observe the analogy of the conditions above to the inequalities that we have seen
when investigating Gauss' algorithm. For i = 1, a = b1 and b = b2, being weakly reduced
ensures that b is a shortest vector on the line b−λa. The second condition is equivalent to the
inequality |b|2 ≥ (3/4)|a|2, but here it is expressed in terms of the Gram-Schmidt basis. For
a general index i, the same is true, if a plays the rôle of the vector bi, and b plays the rôle of
the component of the vector bi+1 that is orthogonal to the subspace spanned by b1, . . . , bi−1.

L́-R(b1, . . . , bn)
1 forever
2 do (b1, . . . , bn)←W-R(b1, . . . , bn)
3 �nd an index i for which the second condition of being reduced is violated
4 if there is such an i
5 then bi ↔ bi+1
6 else return (b1, . . . , bn)

Theorem 1.64 Suppose that in the lattice L ⊆ Rn each of the pairs of the lattice vectors
has an integer scalar product. Then the swap in the 5th line of the L́-R occurs
at most lg4/3(B1 · · · Bn−1) times where Bi is the upper left (i× i)-subdeterminant of the Gram
matrix of the initial basis b1, . . . , bn.

Proof. The determinant Bi is the determinant of the Gram matrix of b1, . . . , bi, and,
by the observations we made at the discussion of the Gram-Schmidt orthogonalisation,
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Bi =
∏i

j=1 |b∗j |2. This, of course, implies that Bi = Bi−1|b∗i |2 for i > 1. By the above, the
procedure W-R cannot change the vectors b∗i , and so it does not change the
product ∏n−1

j=1 B j either. Assume, in line 5 of the procedure, that a swap bi ↔ bi+1 takes
place. Observe that, unless j = i, the sets {b1, . . . , b j} do not change, and neither do the
determinants B j. The rôle of the vector b∗i is taken over by the vector b∗i+1 + µi,i+1bi, whose
length, because of the conditions of the swap, is at most

√
3/4 times the length of b∗i . That

is, the new Bi is at most 3/4 times the old. By the observation above, the new value of
B =

∏n−1
j=1 B j will also be at most 3/4 times the old one. Then the assertion follows from the

fact that the quantity B remains a positive integer.

Corollary 1.65 Under the conditions of the previous theorem, the cost of the procedure
L́-R is at most O(n5 lg nC) arithmetic operations with rational numbers where
C is the maximum of 2 and the quantities |(bi, b j)| with i, j = 1, . . . , n.

Proof. It follows from the Hadamard inequality that

Bi ≤
i∏

j=1

√
(b1, b j)2 + . . . + (bi, b j)2 ≤ (

√
iC)i ≤ (

√
nC)n .

Hence B1 · · · Bn−1 ≤ (
√

nC)n(n−1) and lg4/3(B1 . . . Bn−1) = O(n2 lg nC). By the previous the-
orem, this is the number of iterations in the algorithm. The cost of the Gram�Schmidt ort-
hogonalisation is O(n3) operations, and the cost of weak reduction is O(n2) scalar product
computations, each of which can be performed using O(n) operations (provided the vectors
are represented by their coordinates in an orthogonal basis).

One can show that the length of the integers that occur during the run of the algorithm
(including the numerators and the denominators of the fractions in the Gram�Schmidt ort-
hogonalisation) will be below a polynomial bound.

1.4.6. Properties of reduced bases
Theorem 1.67 of this section gives a summary of the properties of reduced bases that turn
out to be useful in their applications. We will �nd that a reduced basis consists of relatively
short vectors. More precisely, |b1| will approximate, within a constant factor depending only
on the dimension, the length of a shortest non-zero lattice vector.

Lemma 1.66 Let us assume that the vectors b1, . . . , bn form a reduced basis of a lattice L.
Then, for 1 ≤ j ≤ i ≤ n,

(b∗i , b∗i ) ≥ 2 j−i(b∗j , b∗j) . (1.16)

In particular,

(b∗i , b∗i ) ≥ 21−i(b∗1, b∗1) . (1.17)

Proof. Substituting a = b∗i , b = b∗i+1 + ((bi+1, b∗i ))/((b∗i , b∗i )b∗i ), Lemma 1.56 gives, for all
1 ≤ i < n, that

(b∗i+1, b∗i+1) ≥ (1/2)(b∗i , b∗i ) .
Thus, inequality (1.16) follows by induction.

Now we can formulate the fundamental theorem of reduced bases.
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Theorem 1.67 Assume that the vectors b1, . . . , bn form a reduced basis of a lattice L. Then

(i) |b1| ≤ 2(n−1)/4(det L)(1/n).
(ii) |b1| ≤ 2(n−1)/2|b| for all lattice vectors 0 , b ∈ L. In particular, the length of b1 is not

greater than 2(n−1)/2 times the length of a shortest non-zero lattice vector.
(iii) |b1| · · · |bn| ≤ 2(n(n−1))/4 det L.

Proof. (i) Using inequality (1.17),

(det L)2 =

n∏

i=1
(b∗i , b∗i ) ≥

n∏

i=1
(21−i(b1, b1)) = 2

−n(n−1)
2 (b1, b1)n ,

and so assertion (i) holds.
(ii) Let b =

∑n
i=1 zibi ∈ L with zi ∈ Z be a lattice vector. Assume that z j is the last

non-zero coefficient and write b j = b∗j + v where v is a linear combination of the vectors
b1, . . . , b j−1. Hence b = z jb∗j + w where w lies in the subspace spanned by b1, . . . , b j−1. As
b∗j is orthogonal to this subspace,

(b, b) = z2
j(b∗j , b∗j) + (w,w) ≥ (b∗j , b∗j) ≥ 21− j(b1, b1) ≥ 21−n(b1, b1) ,

and so assertion (ii) is valid.
(iii) First we show that (bi, bi) ≤ 2i−1(b∗i , b∗i ). This inequality is obvious if i = 1, and so

we assume that i > 1. Using the decomposition (1.14) of the vector bi and the fact that the
basis is weakly reduced, we obtain that

(bi, bi) =

i∑

j=1


(bi, b∗j)
(b∗j , b∗j)


2

(b∗j , b∗j) ≤ (b∗i , b∗i ) +
1
4

i−1∑

j=1
(b∗j , b∗j) ≤ (b∗i , b∗i ) +

1
4

i−1∑

j=1
2i− j(b∗i , b∗i )

≤ (2i−2 + 1)(b∗i , b∗i ) ≤ 2i−1(b∗i , b∗i ) .

Multiplying these inequalities for i = 1, . . . , n,
n∏

i=1
(bi, bi) ≤

n∏

i=1
2i−1(b∗i , b∗i ) = 2

n(n−1)
2

n∏

i=1
(b∗i , b∗i ) = 2

n(n−1)
2 (det L)2 ,

which is precisely the inequality in (iii).
It is interesting to compare assertion (i) in the previous theorem and Corollary 1.54 after

Minkowski's theorem. Here we obtain a weaker bound for the length of b1, but this vector
can be obtained by an efficient algorithm. Essentially, the existence of the basis that satis�es
assertion (iii) was �rst shown by Hermite using the tools in the proofs of Theorems 1.48
and 1.67. Using a Lovász-reduced basis, the cost of �nding a shortest vector in a lattice with
dimension n is at most polynomial in the input size and in 3n2 ; see Exercise 1.4-4..

Exercises
1.4-1 The triangular lattice is optimal. Show that the bound in Corollary 1.58 is sharp.
More precisely, let L ⊆ R2 be a full lattice and let 0 , a ∈ L be a shortest vector in L. Verify
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that the inequality |a|2 = (2/
√

3) det L holds if and only if L is similar to the triangular
lattice.
1.4-2 The denominators of the Gram-Schmidt numbers. Let us assume that the Gram matrix
of a basis b1, . . . , bn has only integer entries. Show that the numbers µi j in (1.15) can be
written in the form µi j = ζi j/

∏ j−1
k=1 Bk where the ζi j are integers and Bk is the determinant of

the Gram matrix of the vectors b1, . . . , bk.
1.4-3 The length of the vectors in a reduced basis. Let b1, . . . , bn be a reduced basis of
a lattice L and let us assume that the numbers (bi, bi) are integers. Give an upper bound
depending only on n and det L for the length of the vectors bi. More precisely, prove that

|bi| ≤ 2
n(n−1)

4 det L .

1.4-4 The coordinates of a shortest lattice vector. Let b1, . . . , bn be a reduced basis of a
lattice L. Show that each of the shortest vectors in L is of the form ∑ zibi where zi ∈ Z and
|zi| ≤ 3n. Consequently, for a bounded n, one can �nd a shortest non-zero lattice vector in
polynomial time.

Hint: Assume, for some lattice vector v =
∑ zibi, that |v| ≤ |b1|. Let us write v in the

basis b∗1, . . . , b∗n:

v =

n∑

j=1
(z j +

n∑

i= j+1
µi jzi)b∗j .

It follows from the assumption that each of the components of v (in the orthogonal basis) is
at most as long as b1 = b∗1: ∣∣∣∣∣∣∣∣

z j +

n∑

i= j+1
µi jzi

∣∣∣∣∣∣∣∣
≤ |b

∗
1|
|b∗j |

.

Use then the inequalities |µi j| ≤ 1/2 and (1.17).

1.5. Factoring polynomials in Q[x]
In this section we study the problem of factoring polynomials with rational coefficients. The
input of the factorisation problem is a polynomial f (x) ∈ Q[x]. Our goal is to compute a
factorisation

f = f e1
1 f e2

2 · · · f es
s , (1.18)

where the polynomials f1, . . . , fs are pairwise relatively prime, and irreducible over Q, and
the numbers ei are positive integers. By Theorem 1.4, f determines, essentially uniquely,
the polynomials fi and the exponents ei.

1.5.1. Preparations
First we reduce the problem (1.18) to another problem that can be handled more easily.

Lemma 1.68 We may assume that the polynomial f (x) has integer coefficients and it has
leading coefficient 1.



1.5. Factoring polynomials in Q[x] 47

Proof. Multiplying by the common denominator of the coefficients, we may assume that
f (x) = a0 + a1x + · · · + anxn ∈ Z[x]. Performing the substitution y = anx, we obtain the
polynomial

g(y) = an
n−1 f

(
y
an

)
= yn +

n−1∑

i=0
an−i−1

n aiyi,

which has integer coefficients and its leading coefficient is 1. Using a factorisation of g(y),
a factorisation of f (x) can be obtained efficiently.

Primitive polynomials, Gauss' lemma

De�nition 1.69 A polynomial f (x) ∈ Z[x] is said to be primitive, if the greatest common
divisor of its coefficients is 1.

A polynomial f (x) ∈ Z[x] \ {0} can be written in a unique way as the product of an
integer and a primitive polynomial in Z[x]. Indeed, if a is the greatest common divisor of
the coefficients, then f (x) = a(1/a) f (x). Clearly, (1/a) f (x) is a primitive polynomial with
integer coefficients.

Lemma 1.70 (Gauss' Lemma). If u(x), v(x) ∈ Z[x] are primitive polynomials, then so is
the product u(x)v(x).

Proof. We argue by contradiction and assume that p is a prime number that divides all the
coefficients of uv. Set u(x) =

∑n
i=0 uixi, v(x) =

∑m
j=0 v jx j and let i0 and j0 be the smallest

indices such that p - ui0 and p - v j0 . Let k0 = i0 + j0 and consider the coefficient of xk0 in
the product u(x)v(x). This coefficient is

∑

i+ j=k0

uiv j = ui0 v j0 +

i0−1∑

i=0
uivk0−i +

j0−1∑

j=0
uk0− jv j .

Both of the sums on the right-hand side of this equation are divisible by p, while ui0 v j0
is not, and hence the coefficient of xk0 in u(x)v(x) cannot be divisible by p after all. This,
however, is a contradiction.

Proposition 1.71 Let us assume that g(x), h(x) ∈ Q[x] are polynomials with rational
coefficients and leading coefficient 1 such that the product g(x)h(x) has integer coefficients.
Then the polynomials g(x) and h(x) have integer coefficients.

Proof. Let us multiply g(x) and h(x) by the least common multiple cg and ch, respectively,
of the denominators of their coefficients. Then the polynomials cgg(x) and chh(x) are pri-
mitive polynomials with integer coefficients. Hence, by Gauss' Lemma, so is the product
cgchg(x)h(x) = (cgg(x))(chh(x)). As the coefficients of g(x)h(x) are integers, each of its co-
efficients is divisible by the integer cgch. Hence cgch = 1, and so cg = ch = 1. Therefore
g(x) and h(x) are indeed polynomials with integer coefficients.

One can show similarly, for a polynomial f (x) ∈ Z[x], that factoring f (x) in Z[x] is
equivalent to factoring the primitive part of f (x) in Q[x] and factoring an integer, namely
the greatest common divisor of the coefficients
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Mignotte's bound
As we work over an in�nite �eld, we have to pay attention to the size of the results in our
computations.

De�nition 1.72 The norm of a polynomial f (x) =
∑n

i=0 aixi ∈ C[x] with complex coeffici-
ents is the real number || f (x)|| = √∑n

i=0 |ai|2.

The inequality maxn
i=0 |ai| ≤ || f (x)|| implies that a polynomial f (x) with integer coeffici-

ents can be described using O(n lg || f (x)||) bits.

Lemma 1.73 Let f (x) ∈ C[x] be a polynomial with complex coefficients. Then, for all
c ∈ C, we have

||(x − c) f (x)|| = ||(cx − 1) f (x)|| ,
where c is the usual conjugate of the complex number c.

Proof. Let us assume that f (x) =
∑n

i=0 aixi and set an+1 = a−1 = 0. Then

(x − c) f (x) =

n+1∑

i=0
(ai−1 − cai)xi ,

and hence

||(x − c) f (x)||2 =

n+1∑

i=0
|ai−1 − cai|2 =

n+1∑

i=0
(|ai−1|2 + |cai|2 − ai−1cai − ai−1cai)

= || f (x)||2 + |c|2|| f (x)||2 −
n+1∑

i=0
(ai−1cai + ai−1cai) .

Performing similar computations with the right-hand side of the equation in the lemma, we
obtain that

(cx − 1) f (x) =

n+1∑

i=0
(cai−1 − ai)xi ,

and so

||(cx − 1) f (x)||2 =

n+1∑

i=0
|cai−1 − ai|2 =

n+1∑

i=0
(|cai−1|2 + |ai|2 − cai−1ai − cai−1ai)

= || f (x)||2 + |c|2|| f (x)||2 −
n+1∑

i=0
(ai−1cai + ai−1cai) .

The proof of the lemma is now complete.

Theorem 1.74 (Mignotte). Let us assume that the polynomials f (x), g(x) ∈ C[x] have
complex coefficients and leading coefficient 1 and that g(x)| f (x). If deg(g(x)) = m, then
||g(x)|| ≤ 2m|| f (x)||.
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Proof. By the fundamental theorem of algebra, f (x) =
∏n

i=1(x − αi) where α1, . . . , αn are
the complex roots of the polynomial f (x) (with multiplicity). Then there is a subset I ⊆
{1, . . . , n} such that g(x) =

∏
i∈I(x − αi). First we claim, for an arbitrary set J ⊆ {1, . . . , n},

that ∏

i∈J
|αi| ≤ || f (x)|| . (1.19)

If J contains an integer i with αi = 0, then this inequality will trivially hold. Let us hence
assume that αi , 0 for every i ∈ J. Set J = {1, . . . , n} \ J and h(x) =

∏
i∈J(x − αi). Applying

Lemma 1.73 several times, we obtain that

|| f (x)|| = ||
∏

i∈J
(x − αi)h(x)|| = ||

∏

i∈J
(αix − 1)h(x)|| = |

∏

i∈J
αi| · ||u(x)|| ,

where u(x) =
∏

i∈J(x − 1/αi)h(x). As the leading coefficient of u(x) is 1, ||u(x)|| ≥ 1, and so

|
∏

i∈J
αi| = |

∏

i∈J
αi| = || f (x)||/||u(x)|| ≤ || f (x)|| .

Let us express the coefficients of g(x) using its roots:

g(x) =
∏

i∈I
(x − αi) =

∑

J⊆I

(−1)|J|
∏

j∈J
α jxm−|J|



=

m∑

i=0
(−1)m−i


∑

J⊆I,|J|=m−i

∏

j∈J
α j

 xi .

For an arbitrary polynomial t(x) = t0 + · · · + tk xk, the inequality ||t(x)|| ≤ |t0| + · · · + |tk | is
valid. Therefore, using inequality (1.19), we �nd that

||g(x)|| ≤
m∑

i=0

∣∣∣∣∣∣∣∣
∑

J⊆I,|J|=m−i

∏

j∈J
α j

∣∣∣∣∣∣∣∣

≤
∑

J⊆I

∣∣∣∣∣∣∣∣
∏

j∈J
α j

∣∣∣∣∣∣∣∣
≤ 2m|| f (x)|| .

The proof is now complete.

Corollary 1.75 The bit size of the irreducible factors in Q[x] of an f (x) ∈ Z[x] with lea-
ding coefficient 1 is polynomial in the bit size of f (x).

Resultant and good reduction
Let F be an arbitrary �eld, and let f (x), g(x) ∈ F[x] be polynomials with degree n and m,
respectively: f = a0 +a1x+. . .+anxn, g = b0 +b1x+. . .+bmxm where an , 0 , bm. We recall
the concept of the resultant from Chapter ??. The resultant of f and g is the determinant of



50 1. Algebra

the ((m + n) × (m + n))-matrix

M =



a0 a1 a2 a3 · · · an
a0 a1 a2 · · · an−1 an

. . .
. . .

. . .
. . .

. . .
. . .

a0 a1 · · · an−2 an−1 an
b0 b1 · · · bm−1 bm

b0 b1 · · · bm−1 bm
b0 b1 · · · bm−1 bm

. . .
. . .

. . .
. . .

. . .

b0 b1 · · · bm−1 bm.



. (1.20)

The matrix above is usually referred to as the Sylvester matrix. The blank spaces in the
Sylvester matrix represent zero entries.

The resultant provides information about the common factors of f and g. One can use
it to express, particularly elegantly, the fact that two polynomials are relatively prime:

gcd( f (x), g(x)) = 1⇔ Res( f , g) , 0 . (1.21)

Corollary 1.76 Let f (x) = a0 + a1x + · · · + anxn ∈ Z[x] be a square-free (in Q[x]), non-
constant polynomial. Then Res( f (x), f ′(x)) is an integer. Further, assume that p is a prime
not dividing nan. Then the polynomial f (x) (mod p) is square-free in Fp[x] if and only if p
does not divide Res( f (x), f ′(x)).

Proof. The entries of the Sylvester matrix corresponding to f (x) and f ′(x) are integers,
and so is its determinant. The polynomial f has no multiple roots over Q, and so, by Exer-
cise 1.5-1., gcd( f (x), f ′(x)) = 1, which gives, using (1.21), that Res( f (x), f ′(x)) , 0. Let
F(x) denote the polynomial f reduced modulo p. Then it follows from our assumptions that
Res(F(x), F′(x)) is precisely the residue of Res( f (x), f ′(x)) modulo p. By Exercise 1.5-1.,
the polynomial F(x) is square-free precisely when gcd(F(x), F′(x)) = 1, which is equi-
valent to Res(F(x), F′(x)) , 0. This amounts to saying that p does not divide the integer
Res( f (x), f ′(x)).

Corollary 1.77 If f (x) ∈ Z[x] is a square-free polynomial with degree n, then there is a
prime p = O((n lg n + 2n lg || f ||)2) (that is, the absolute value of p is polynomial in the bit
size of f ) such that the polynomial f (x) (mod p) is square-free in Fp[x].

Proof. By the Prime Number Theorem (Theorem 33.37), for large enough K, the product of
the primes in the interval [1,K] is at least 2(0.9K/ ln K).Reference to

NA! Set K =
((n + 1) lg n + 2n lg || f ||)2. If K is large enough, then

p1 · · · pl ≥ 2(0.9K/ ln K) > 2
√

K ≥ nn+1|| f ||2n ≥ nn+1|| f ||2n−1|an| (1.22)

where p1, . . . , pl are primes not larger than K, and an is the leading coefficient of f .
Let us suppose, for the primes p1, . . . , pl, that f (x) (mod pi) is not square-free in Fpi [x].

Then the product p1 · · · pl divides Res( f (x), f ′(x)) · nan, and so

p1 · · · pl ≤ |Res( f , f ′)| · |nan| ≤ || f ||n−1 · || f ′||n · |nan| ≤ nn+1|| f ||2n−1|an| .
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(In the last two inequalities, we used the Hadamard inequality, and the fact that || f ′(x)|| ≤
n|| f (x)||.) This contradicts to inequality (1.22), which must be valid because of the choice of
K.

We note that using the Prime Number Theorem more carefully, one can obtain a stronger
bound for p.

Hensel lifting
We present a general procedure that can be used to obtain, given a factorisation modulo a
prime p, a factorisation modulo pN of a polynomial with integer coefficients.

Theorem 1.78 (Hensel's lemma). Suppose that f (x), g(x), h(x) ∈ Z[x] are polynomi-
als with leading coefficient 1 such that f (x) ≡ g(x)h(x) (mod p), and, in addition, g(x)
(mod p) and h(x) (mod p) are relatively prime in Fp[x]. Then, for an arbitrary positive
integer t, there are polynomials gt(x), ht(x) ∈ Z[x] such that
• both of the leading coefficients of gt(x) and ht(x) are equal to 1,
• gt(x) ≡ g(x) (mod p) and ht(x) ≡ h(x) (mod p),
• f (x) ≡ gt(x)ht(x) (mod pt).
Moreover, the polynomials gt(x) and ht(x) satisfying the conditions above are unique modulo
pt.

Proof. From the conditions concerning the leading coefficients, we obtain that deg f (x) =

deg g(x)+deg h(x), and, further, that deg gt(x) = deg g(x) and deg ht(x) = deg h(x), provided
the suitable polynomials gt(x) and ht(x) indeed exist. The existence is proved by induction
on t. In the initial step, t = 1 and the choice g1(x) = g(x) and h1(x) = h(x) is as required.

The induction step t → t + 1: let us assume that there exist polynomials gt(x) and ht(x)
that are well-de�ned modulo pt and satisfy the conditions. If the polynomials gt+1(x) and
ht+1(x) exist, then they must satisfy the conditions imposed on gt(x) and ht(x). As gt(x)
and ht(x) are unique modulo pt, we may write gt+1(x) = gt(x) + ptδg(x) and ht+1(x) =

ht(x)+ptδh(x) where δg(x) and δh(x) are polynomials with integer coefficients. The condition
concerning the leading coefficients guarantees that deg δg(x) < deg g(x) and that deg δh(x) <
deg h(x).

By the induction hypothesis, f (x) = gt(x)ht(x) + ptλ(x) where λ(x) ∈ Z[x]. The obser-
vations about the degrees of the polynomials gt(x) and ht(x) imply that the degree of λ(x) is
smaller than deg f (x). Now we may compute that

gt+1(x)ht+1(x) − f (x) = gt(x)ht(x) − f (x) + ptht(x)δg(x) + ptgt(x)δh(x) + p2tδg(x)δh(x)
≡ −ptλ(x) + ptht(x)δg(x) + ptgt(x)δh(x) (mod p2t) .

As 2t > t + 1, the congruence above holds modulo pt+1. Thus gt+1(x) and ht+1(x) satisfy the
conditions if and only if

ptht(x)δg(x) + ptgt(x)δh(x) ≡ ptλ(x) (mod pt+1) .

This, however, amounts to saying, after cancelling pt from both sides, that

ht(x)δg(x) + gt(x)δh(x) ≡ λ(x) (mod p).
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Using the congruences gt(x) ≡ g(x) (mod p) and ht(x) ≡ h(x) (mod p) we obtain that this
is equivalent to the congruence

h(x)δg(x) + g(x)δh(x) ≡ λ(x) (mod p). (1.23)

Considering the inequalities deg δg(x) < deg gt(x) and deg δh(x) < deg ht(x) and the fact
that in Fp[x] the polynomials g(x) (mod p) and h(x) (mod p) are relatively prime, we �nd
that equation (1.23) can be solved uniquely in Fp[x]. For, if u(x) and v(x) form a solution to
u(x)g(x) + v(x)h(x) ≡ 1 (mod p), then, by Theorem 1.12, the polynomials

δg(x) = v(x)λ(x) (mod g(x)) ,

and

δh(x) = u(x)λ(x) (mod h(x))

form a solution of (1.23). The uniqueness of the solution follows from the bounds on the
degrees, and from the fact that g(x) (mod p) and h(x) (mod p) relatively prime. The details
of this are left to the reader.

Corollary 1.79 Assume that p, and the polynomials f (x), g(x), h(x) ∈ Z[x] satisfy the
conditions of Hensel's lemma. Set deg f = n and let N be a positive integer. Then the
polynomials gN(x) and hN(x) can be obtained using O(Nn2) arithmetic operations modulo
pN .

Proof. The proof of Theorem 1.78 suggests the following algorithm.

H-L ( f , g, h, p,N)
1 (u(x), v(x))← is a solution, in Fp[x], of u(x)g(x) + v(x)h(x) ≡ 1 (mod p)
2 (G(x),H(x))← (g(x), h(x))
3 for t ← 1 to N − 1
4 do λ(x)← ( f (x) −G(x) · H(x))/pt

5 δg(x)← v(x)λ(x) reduced modulo g(x) (in Fp[x])
6 δh(x)← u(x)λ(x) reduced modulo h(x) (in Fp[x])
7 (G(x),H(x))← (G(x) + ptδg(x),H(x) + ptδh(x)) (in (Z/(pt+1))[x])
8 return (G(x),H(x))

The polynomials u and v can be obtained using O(n2) operations in Fp (see Theo-
rem 1.12 and the remark following it). An iteration t → t + 1 consists of a constant number
of operations with polynomials, and the cost of one run of the main loop is O(n2) operations
(modulo p and pt+1). The total cost of reaching t = N is O(Nn2) operations.

1.5.2. The Berlekamp-Zassenhaus algorithm
The factorisation problem (1.18) was efficiently reduced to the case in which the polynomial
f has integer coefficients and leading coefficient 1. We may also assume that f (x) has no
multiple factors in Q[x]. Indeed, in our case f ′(x) , 0, and so the possible multiple factors
of f can be separated using the idea that we already used over �nite �elds as follows. By
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Lemma 1.13, the polynomial g(x) = f (x)/( f (x), f ′(x)) is already square-free, and, using
Lemma 1.14, it suffices to �nd its factors with multiplicity one. From Proposition 1.71, we
can see that g(x) has integer coefficients and leading coefficient 1. Computing the greatest
common divisor and dividing polynomials can be performed efficiently, and so the reduc-
tion can be carried out in polynomial time. (In the computation of the greatest common
divisor, the intermediate expression swell can be avoided using the techniques presented in
Chapter ??.)

In the sequel we assume that the polynomial

f (x) = xn +

n−1∑

i=0
aixi ∈ Z[x]

we want to factor is square-free, its coefficients are integers, and its leading coefficient is 1.
The fundamental idea of the Berlekamp-Zassenhaus algorithm is that we compute the

irreducible factors of f (x) modulo pN where p is a suitably chosen prime and N is large
enough. If, for instance, pN > 2 · 2n−1|| f ||, and we have already computed the coefficients of
a factor modulo pN , then, by Mignotte's theorem, we can obtain the coefficients of a factor
in Q[x].

From now on, we will also assume that p is a prime such that the polynomial f (x)
(mod p) is square-free in Fp[x]. Using linear search such a prime p can be found in poly-
nomial time (Corollary 1.77). One can even assume that p is polynomial in the bit size of
f (x).

The irreducible factors in Fp[x] of the polynomial f (x) (mod p) can be found using
Berlekamp's deterministic method (Theorem 1.42). Let g1(x), . . . , gr(x) ∈ Z[x] be polyno-
mials, all with leading coefficient 1, such that the gi(x) (mod p) are the irreducible factors
of the polynomial f (x) (mod p) in Fp[x].

Using the technique of Hensel's lemma (Theorem 1.78) and Corollary 1.79, the system
g1(x), . . . , gr(x) can be lifted modulo pN . To simplify the notation, we assume now that
g1(x), . . . , gr(x) ∈ Z[x] are polynomials with leading coefficients 1 such that

f (x) ≡ g1(x) · · · gr(x) (mod pN)

and the gi(x) (mod p) are the irreducible factors of the polynomial f (x) (mod p) in Fp[x].
Let h(x) ∈ Z[x] be an irreducible factor with leading coefficient 1 of the polynomial

f (x) in Q[x]. Then there is a uniquely determined set I ⊆ {1, . . . , r} for which

h(x) ≡
∏

i∈I
gi(x) (mod pN) .

Let N be the smallest integer such that pN ≥ 2 ·2n−1|| f (x)||. Mignotte's bound shows that the
polynomial ∏i∈I gi(x) (mod pN) on the right-hand side, if its coefficients are represented by
the residues with the smallest absolute values, coincides with h.

We found that determining the irreducible factors of f (x) is equivalent to �nding mi-
nimal subsets I ⊆ {1, . . . , r} for which there is a polynomial h(x) ∈ Z[x] with leading
coefficient 1 such that h(x) ≡ ∏

i∈I gi(x) (mod pN), the absolute values of the coefficients
of h(x) are at most 2n−1|| f (x)||, and, moreover, h(x) divides f (x). This can be checked by
examining at most 2r−1 sets I. The cost of examining a single I is polynomial in the size of
f .
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To summarise, we obtained the following method to factor, in Q[x], a square-free poly-
nomial f (x) with integer coefficients and leading coefficient 1.

B-Z( f )
1 p← a prime p such that f (x) (mod p) is square-free in Fp[x]

and p = O((n lg n + 2n lg || f ||)2)
2 {g1, . . . , gr} ← the irreducible factors of f (x) (mod p) in Fp[x]

(using Berlekamp's deterministic method)
3 N ← blogp(2deg f · || f ||)c + 1
4 {g1, . . . , gr} ← the Hensel lifting of the system {g1, . . . , gr} modulo pN

5 I← the collection of minimal subsets I , ∅ of {1, . . . r} such that
gI ←∏

i∈I gi reduced modulo pN divides f
6 return {∏i∈I gi : I ∈ I}

Theorem 1.80 Let f (x) = xn +
∑n−1

i=0 aixi ∈ Z[x] be a square-free polynomial with integer
coefficients and leading coefficient 1, and let p be a prime number such that the polynomial
f (x) (mod p) is square-free in Fp[x] and p = O((n lg n + 2n lg || f ||)2). Then the irreducible
factors of the polynomial f in Q[x] can be obtained by the Berlekamp-Zassenhaus algo-
rithm. The cost of this algorithm is polynomial in n, lg || f (x)|| and 2r where r is the number
of irreducible factors of the polynomial f (x) (mod p) in Fp[x].

Example 1.5 (Swinnerton-Dyer polynomials) Let

f (x) =
∏

(x ±
√

2 ±
√

3 ± · · · ± √pl) ∈ Z[x] ,

where 2, 3, . . . , pl are the �rst l prime numbers, and the product is taken over all possible 2l combina-
tions of the signs + and −. The degree of f (x) is n = 2l, and one can show that it is irreducible in Q[x].
On the other hand, for all primes p, the polynomial f (x) (mod p) is the product of factors with degree
at most 2. Therefore these polynomials represent hard cases for the Berlekamp-Zassenhaus algorithm,
as we need to examine about 2n/2−1 sets I to �nd out that f is irreducible.

1.5.3. The LLL algorithm
Our goal in this section is to present the Lenstra-Lenstra-Lovász algorithm (LLL algorithm)
for factoring polynomials f (x) ∈ Q[x]. This was the �rst polynomial time method for sol-
ving the polynomial factorisation problem over Q. Similarly to the Berlekamp-Zassenhaus
method, the LLL algorithm starts with a factorisation of f modulo p and then uses Hensel
lifting. In the �nal stages of the work, it uses lattice reduction to �nd a proper divisor of
f , provided one exists. The powerful idea of the LLL algorithm is that it replaced the se-
arch, which may have exponential complexity, in the Berlekamp-Zassenhaus algorithm by
an efficient lattice reduction.

Let f (x) ∈ Z[x] be a square-free polynomial with leading coefficient 1 such that deg f =

n > 1, and let p be a prime such that the polynomial f (x) (mod p) is square free in Fp[x]
and p = O((lg n + 2n lg || f ||)2).
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Lemma 1.81 Suppose that f (x) ≡ g0(x)v(x) (mod pN) where g0(x) and v(x) are polyno-
mials with integer coefficients and leading coefficient 1. Let g(x) ∈ Z[x] with deg g(x) =

m < n and assume that g(x) ≡ g0(x)u(x) (mod pN) for some polynomial u(x) such that u(x)
has integer coefficients and deg u(x) = deg g(x) − deg g0(x). Let us further assume that
||g(x)||n|| f (x)||m < pN . Then gcd( f (x), g(x)) , 1 in Q[x].

Proof. Let d = deg v(x). By the assumptions,

f (x)u(x) ≡ g0(x)u(x)v(x) ≡ g(x)v(x) (mod pN) .

Suppose that u(x) = α0 +α1x+ . . .+αm−1xm−1 and v(x) = β0 +β1x+ . . .+βn−1xn−1. (We know
that βd = 1. If i > d, then βi = 0, and similarly, if j > deg u(x), then α j = 0.) Rewriting the
congruence, we obtain

xdg(x) +
∑

j,d
β jx jg(x) −

∑

i
αixi f (x) ≡ 0 (mod pN) .

Considering the coefficient vectors of the polynomials x jg(x) and xi f (x), this congruence
amounts to saying that adding to the (m + d)-th row of the Sylvester matrix (1.20) a suitable
linear combination of the other rows results in a row in which all the elements are divisible
by pN . Consequently, det M ≡ 0 (mod pN). The Hadamard inequality (Corollary 1.60)
yields that | det M| ≤ || f ||m||g||n < pN , but this can only happen if det M = 0. However,
det M = Res( f (x), g(x)), and so, by (1.21), gcd( f (x), g(x)) , 1.

The application of lattice reduction
Set

N = dlogp(22n2 || f (x)||2n)e = O(n2 + n lg || f (x)||) .
Further, we let g0(x) ∈ Z[x] be a polynomial with leading coefficient 1 such that g0(x)
(mod pN) is an irreducible factor of f (x) (mod pN). Set d = deg g0(x) < n. De�ne the set L
as follows:

L = {g(x) ∈ Z[x] : deg g(x) ≤ n − 1, ∃h(x) ∈ Z[x], with g ≡ hg0 (mod pN)} . (1.24)

Clearly, L is closed under addition of polynomials. We identify a polynomial with deg-
ree less than n with its coefficient vector of length n. Under this identi�cation, L becomes a
lattice in Rn. Indeed, it is not too hard to show (Exercise 1.5-2.) that the polynomials

pN1, pN x, . . . , pN xd−1, g0(x), xg0(x), . . . , xn−d−1g0(x) ,

or, more precisely, their coefficient vectors, form a basis of L.

Theorem 1.82 Let g1(x) ∈ Z[x] be a polynomial with degree less than n such that the
coefficient vector of g1(x) is the �rst element in a Lovász-reduced basis of L. Then f (x) is
irreducible in Q[x] if and only if gcd( f (x), g1(x)) = 1.

Proof. As g1(x) , 0, it is clear that gcd( f (x), g1(x)) = 1 whenever f (x) is irreducible. In
order to show the implication in the other direction, let us assume that f (x) is reducible and
let g(x) be a proper divisor of f (x) such that g(x) (mod p) is divisible by g0(x) (mod p) in



56 1. Algebra

Fp[x]. Using Hensel's lemma (Theorem 1.78), we conclude that g(x) (mod pN) is divisible
by g0(x) (mod pN), that is, g(x) ∈ L. Mignotte's theorem (Theorem 1.74) shows that

||g(x)|| ≤ 2n−1|| f (x)|| .

Now, if we use the properties of reduced bases (second assertion of Theorem 1.67), then we
obtain

||g1(x)|| ≤ 2(n−1)/2||g(x)|| < 2n||g(x)|| ≤ 22n|| f (x)|| ,
and so

||g1(x)||n|| f (x)||deg g1 ≤ ||g1(x)||n|| f (x)||n < 22n2 || f (x)||2n ≤ pN .

We can hence apply Lemma 1.81, which gives gcd(g1(x), f (x)) , 1.
Based on the previous theorem, the LLL algorithm can be outlined as follows (we only

give a version for factoring to two factors). The input is a square-free polynomial f (x) ∈
Z[x] with integer coefficients and leading coefficient 1 such that deg f = n > 1.

LLL-P-F( f )
1 p← a prime p such that f (x) (mod p) is square-free in Fp[x]

and p = O((n lg n + 2n lg || f ||)2)
2 w(x)← an irreducible factor f (x) (mod p) in Fp[x]

(using Berlekamp's deterministic method)
3 if deg w = n
4 then return "irreducible"
5 else N ← dlogp((22n2 || f (x)||2n)e = O(n2 + n lg(|| f (x)||)
6 (g0, h0)← H-L( f ,w, f /w (mod p), p,N)
7 (b1, . . . , bn)← a basis of the lattice L ⊆ Rn in (1.24)
8 (g1, . . . , gn)← L́-R(b1, . . . , bn)
9 f ∗ ← gcd( f , g1)

10 if deg f ∗ > 0
11 then return ( f ∗, f / f ∗)
12 else return "irreducible"

Theorem 1.83 Using the LLL algorithm, the irreducible factors in Q[x] of a polynomial
f ∈ Q[x] can be obtained deterministically in polynomial time.

Proof. The general factorisation problem, using the method introduced at the discussion of
the Berlekamp-Zassenhaus procedure, can be reduced to the case in which the polynomial
f (x) ∈ Z[x] is square-free and has leading coefficient 1. By the observations made there, the
steps in lines 1�7 can be performed in polynomial time. In line 8, the Lovász reduction can
be carried out efficiently (Corollary 1.65). In line 9, we may use a modular version of the
Euclidean algorithm to avoid intermediate expression swell (see Chapter ??).

The correctness of the method is asserted by Theorem 1.82. The LLL algorithm can
be applied repeatedly to factor the polynomials in the output, in case they are not already
irreducible.

One can show that the Hensel lifting costs O(Nn2) = O(n4 + n3 lg || f ||) operations
with moderately sized integers. The total cost of the version of the LLL algorithm above
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is O(n5 lg(pN)) = O(n7 + n6 lg || f ||).

Exercises
1.5-1 Let F be a �eld and let 0 , f (x) ∈ F[x]. The polynomial f (x) has no irreducible
factors with multiplicity greater than one if and only if gcd( f (x), f ′(x)) = 1. Hint: In one
direction, one can use Lemma 1.13, and use Lemma 1.14 in the other.
1.5-2 Show that the polynomials

pN1, pN x, . . . , pN xd−1, g0(x), xg0(x), . . . , xn−d−1g0(x)

form a basis of the lattice in (1.24). Hint: It suffices to show that the polynomials pN x j

(d ≤ j < n) can be expressed with the given polynomials. To show this, divide pN x j by
g0(x) and compute the remainder.

Problems

1-1. The trace in �nite �elds
Let Fqk ⊇ Fq be �nite �elds. The de�nition of the trace map tr = trk,q on Fqk is as follows:

if α ∈ Fqk then
tr(α) = α + αq + · · · + αqk−1

.

(a) Show that the map tr is Fq-linear and its image is precisely Fq. Hint: Use the fact that
tr is de�ned using a polynomial with degree qk−1 to show that tr is not identically zero.

(b) Let (α, β) be a uniformly distributed random pair of elements from Fqk × Fqk . Then the
probability that tr(α) , tr(β) is 1 − 1/q.

1-2. The Cantor-Zassenhaus algorithm for �elds of characteristic 2
Let F = F2m and let f (x) ∈ F[x] be a polynomial of the form

f = f1 f2 · · · fs, (1.25)

where the fi are pairwise relatively prime and irreducible polynomials with degree d in F[x].
Also assume that s ≥ 2.
(a) Let u(x) ∈ F[x] be a uniformly distributed random polynomial with degree less than

deg f . Then the greatest common divisor

gcd(u(x) + u2(x) + · · · + u2md−1 (x), f (x))

is a proper divisor of f (x) with probability at least 1/2.
Hint: Apply the previous exercise taking q = 2 and k = md, and follow the argument in
Theorem 1.38.

(b) Using part (a), give a randomised polynomial time method for factoring a polynomial
of the form (1.25) over F.
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1-3. Divisors and zero divisors
Let F be a �eld. The ring R is said to be an F-algebra (in case F is clear from the context,

R is simply called an algebra), if R is a vector space over F, and (ar)s = a(rs) = r(as) holds
for all r, s ∈ S and a ∈ F. It is easy to see that the rings F[x] and F[x]/( f ) are F-algebras.

Let R be a �nite-dimensional F-algebra. For an arbitrary r ∈ R, we may consider the
map Lr : R → R de�ned as Lr(s) = rs for s ∈ R. The map Lr is F-linear, and so we may
speak about its minimal polynomial mr(x) ∈ F[x], its characteristic polynomial kr(x) ∈ F[x],
and its trace Tr(r) = Tr(Lr). In fact, if U is an ideal in R, then U is an invariant subspace
of Lr, and so we can restrict Lr to U, and we may consider the minimal polynomial, the
characteristic polynomial, and the trace of the restriction.
(a) Let f (x), g(x) ∈ F[x] with deg f > 0. Show that the residue class [g(x)] is a zero divisor

in the ring F[x]/( f ) if and only if f does not divide g and gcd( f (x), g(x)) , 1.
(b) Let R be an algebra over F, and let r ∈ R be an element with minimal polynomial f (x).

Show that if f is not irreducible over F, then R contains a zero divisor. To be precise, if
f (x) = g(x)h(x) is a non-trivial factorisation (g, h ∈ F[x]), then g(r) and h(r) form a pair
of zero divisors, that is, both of them are non-zero, but their product is zero.

1-4. Factoring polynomials over algebraic number �elds
(a) Let F be a �eld with characteristic zero and let R be a �nite-dimensional F-algebra with

an identity element. Let us assume that R = S 1 ⊕ S 2 where S 1 and S 2 are non-zero
F-algebras. Let r1, . . . , rk be a basis of R over F. Show that there is a j such that mr j (x)
is not irreducible in F[x].
Hint: This exercise is for readers who are familiar with the elements of linear algebra.
Let us assume that the minimal polynomial of r j is the irreducible polynomial m(x) =

xd − a1xd−1 + · · · + ad. Let ki(x) be the characteristic polynomial of Lr j on the invariant
subspace Ui (for i ∈ {1, 2}). Here U1 and U2 are the sets of elements of the form (s1, 0)
and (0, s2), respectively where si ∈ S i. Because of our conditions, we can �nd suitable
exponents di such that ki(x) = m(x)di . This implies that the trace Ti(r j) of the map Lr j

on the subspace Ui is Ti(r j) = dia1. Set ei = dimF Ui. Obviously, ei = did, which gives
T1(r j)/e1 = T2(r j)/e2. If the assertion of the exercise is false, then the latter equation
holds for all j, and so, as the trace is linear, it holds for all r ∈ R. This, however, leads
to a contradiction: if r = (1, 0) ∈ S 1 ⊕ S 2 (1 denotes the unity in S 1), then clearly
T1(r) = e1 and T2(r) = 0.

(b) Let F be an algebraic number �eld, that is, a �eld of the form Q(α) where α ∈ C, and
there is an irreducible polynomial g(x) ∈ Z[x] such that g(α) = 0. Let f (x) ∈ F[x]
be a square-free polynomial and set R = F[x]/( f ). Show that R is a �nite-dimensional
algebra over Q. More precisely, if deg g = m and deg f = n, then the elements of the
form αi[x] j (0 ≤ i < m, 0 ≤ j < n) form a basis over Q.

(c) Show that if f is reducible over F, then there are Q-algebras S 1, S 2 such that R �
S 1 ⊕ S 2.
Hint: Use the Chinese remainder theorem .

(d) Consider the polynomial g above and suppose that a �eld F and a polynomial f ∈
F[x] are given. Assume, further, that f is square-free and is not irreducible over F.
The polynomial f can be factored to the product of two non-constant polynomials in
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polynomial time.

Hint: By the previous remarks, the minimal polynomial m(y) over Q of at least one of
the elements αi[x] j (0 ≤ i ≤ m, 0 ≤ j ≤ n) is not irreducible in Q[y]. Using the LLL
algorithm, m(y) can be factored efficiently in Q[y]. From a factorisation of m(y), a zero
divisor of R can be obtained, and this can be used to �nd a proper divisor of f in F[x].

Chapter notes
The abstract algebraic concepts discussed in this chapter can be found in many textbooks;
see, for instance, Hungerford's book [27].

The theory of �nite �elds and the related algorithms are the theme of the excellent
books by Lidl and Niederreiter [36] and Shparlinski [57].

Our main algorithmic topics, namely the factorisation of polynomials and lattice reduc-
tion are thoroughly treated in the book by von zur Gathen and Gerhard [16]. We recommend
the same book to the readers who are interested in the efficient methods to solve the basic
problems concerning polynomials. Theorem 8.23 of that book estimates the cost of multip-
lying polynomials by the Schönhage-Strassen method, while Corollary 11.6 is concerned
with the cost of the asymptotically fast implementation of the Euclidean algorithm. Ajtai's
result about shortest lattice vectors was published in [3].

The method by Kaltofen and Shoup is a randomised algorithm for factoring polyno-
mials over �nite �elds, and currently it has one of the best time bounds among the known
algorithms. The expected number of Fq-operations in this algorithm is O(n1.815 lg q) where
n = deg f . Further competitive methods were suggested by von zur Gathen and Shoup, and
also by Huang and Pan. The number of operations required by the latter is O(n1.80535 lg q),
if lg q < n0.00173. Among the deterministic methods, the one by von zur Gathen and Shoup is
the current champion. Its cost is Õ(n2 + n3/2s + n3/2s1/2 p1/2) operations in Fq where q = ps.
An important related problem is constructing the �eld Fqn . The fastest randomised method
is by Shoup. Its cost is O∼(n2 + n lg q). For �nding a square-free factorisation, Yun gave an
algorithm that requires Õ(n) + O(n lg(q/p)) �eld operations in Fq.

The best methods to solve the problem of lattice reduction and that of factoring poly-
nomials over the rationals use modular and numerical techniques. After slightly modifying
the de�nition of reduced bases, an algorithm using Õ(n3.381 lg2 C) bit operations for the for-
mer problem was presented by Storjohann. (We use the original de�nition introduced in the
paper by Lenstra, Lenstra and Lovász [35].) We also mention Schönhage's method using
Õ(n6 + n4 lg2 l) bit operations for factoring polynomials with integer coefficients (l is the
length of the coefficients).

Besides factoring polynomials with rational coefficients, lattice reduction can also be
used to solve lots of other problems: to break knapsack cryptosystems and random number
generators based on linear congruences, simultaneous Diophantine approximation, to �nd
integer linear dependencies among real numbers (this problem plays an important rôle in
experiments that attempt to �nd mathematical identities). These and other related problems
are discussed in the book [16].

A further exciting application area is the numerical solution of Diophantine equations.
One can read about these developments in in the books by Smart [62] and Gaál [14]. The
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difficulty of �nding a shortest lattice vector was veri�ed in Ajtai's paper [3].
Finally we remark that the practical implementations of the polynomial methods in-

volving lattice reduction are not competitive with the implementations of the Berlekamp-
Zassenhaus algorithm, which, in the worst case, has exponential complexity. Nevertheless,
the basis reduction performs very well in practice: in fact it is usually much faster than its
theoretically proven speed. For some of the problems in the application areas listed above,
we do not have another useful method.

The work of the authors was supported in part by grants T042481 and T042706 of the
Hungarian Scienti�c Research Fund.



2. Automata and Formal Languages

Automata and formal languages play an important role in projecting and realizing compilers.
In the �rst section grammars and formal languages are de�ned. The different grammars
and languages are discussed based on Chomsky hierarchy. In the second section we deal in
detail with the �nite automata and the languages accepted by them, while in the third section
the pushdown automata and the corresponding accepted languages are discussed. Finally,
references from a rich bibliography are given.

2.1. Languages and grammars
A �nite and nonempty set of symbols is called an alphabet. The elements of an alphabet
are letters, but sometimes are named also symbols. E.g. the set Σ = {a, b, c, d, 0, 1, σ} is an
alphabet, with the letters a, b, c, d, 0, 1 and σ.

With the letters of an alphabet words are composed. If a1, a2, . . . , an ∈ Σ, n ≥ 0, then
a1a2 . . . an a Σ is a word over the alphabet Σ (the letters ai are not necessary distinct). The
number of letters of a word, with their multiplicities, constitutes the length of the word. If
w = a1a2 . . . an, then the length of w is |w| = n. If n = 0, then the word is an empty word,
which will be denoted by ε (sometimes λ in other books). The set of words over the alphabet
Σ will be denoted by Σ∗:

Σ∗ =
{a1a2 . . . an | a1, a2, . . . , an ∈ Σ, n ≥ 0} .

For the set of nonempty words over Σ the notation Σ+ = Σ∗ \ {ε} will be used. The set of
words of length n over Σ will be denoted by Σn, and Σ0 = {ε}. Then

Σ∗ = Σ0 ∪ Σ1 ∪ · · · ∪ Σn ∪ · · · and Σ+ = Σ1 ∪ Σ2 ∪ · · · ∪ Σn ∪ · · · .
The words u = a1a2 . . . am and v = b1b2 . . . bn are equal (i.e. u = v), if m = n and ai =

bi, i = 1, 2, . . . , n.
We de�ne in Σ∗ the binary operation called concatenation. The concatenation (or pro-

duct) of the words u = a1a2 . . . am and v = b1b2 . . . bn is the word uv = a1a2 . . . amb1b2 . . . bn.
It is clear that |uv| = |u| + |v|. This operation is associative but not commutative. Its neutral
element is ε, because εu = uε = u for all u ∈ Σ∗. Σ∗ with the concatenation is a monoid.

We introduce the power operation. If u ∈ Σ∗, then u0 = ε, and un = un−1u for n ≥ 1.
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The reversal (or mirror image) of the word u = a1a2 . . . an is u−1 = anan−1 . . . a1. The
reversal of u sometimes is denoted by uR or �u. It is clear that

(
u−1

)−1
= u and (uv)−1 =

v−1u−1.
Word v is a pre�x of the word u if there exists a word z such that u = vz. If z , ε then v

is a proper pre�x of u. Similarly v is a suffix of u if there exists a word x such that u = xv.
The proper suffix can also be de�ned. Word v is a subword of the word u if there are words
p and q such that u = pvq. If pq , ε then v is a proper subword.

A subset L of Σ∗ is called a language over the alphabet Σ. Sometimes this is called a
formal language because the words are here considered without any meanings. Note that ∅
is the empty language while {ε} is a language which contains the empty word.

2.1.1. Operations on languages
If L, L1, L2 are languages over Σ we de�ne the following operations
• union

L1 ∪ L2 = {u ∈ Σ∗ | u ∈ L1 or u ∈ L2} ,
• intersection

L1 ∩ L2 = {u ∈ Σ∗ | u ∈ L1 and u ∈ L2} ,
• difference

L1 \ L2 = {u ∈ Σ∗ | u ∈ L1 and u < L2} ,
• complement

L = Σ∗ \ L ,
• multiplication

L1L2 = {uv | u ∈ L1, v ∈ L2} ,
• power

L0 = {ε}, Ln = Ln−1L, if n ≥ 1 ,
• iteration or star operation

L∗ =

∞⋃

i=0
Li = L0 ∪ L ∪ L2 ∪ · · · ∪ Li ∪ · · · ,

• mirror
L−1 = {u−1 | u ∈ L}

We will use also the notation L+

L+ =

∞⋃

i=1
Li = L ∪ L2 ∪ · · · ∪ Li ∪ · · · .

The union, product and iteration are called regular operations.

2.1.2. Specifying languages
Languages can be speci�ed in several ways. For example a language can be speci�ed using

1) the enumeration of its words,
2) a property, such that all words of the language have this property but other word have

not,
3) a grammar.

Specifying languages by listing their elements
For example the following are languages
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L1 = {ε, 0, 1},
L2 = {a, aa, aaa, ab, ba, aba}.

Even if we cannot enumerate the elements of an in�nite set in�nite languages can be spe-
ci�ed by enumeration if after enumerating the �rst some elements we can continue the
enumeration using a rule. The following is such a language

L3 = {ε, ab, aabb, aaabbb, aaaabbbb, . . .}.

Specifying languages by properties
The following sets are languages

L4 = {anbn | n = 0, 1, 2, . . .},
L5 = {uu−1 | u ∈ Σ∗},
L6 = {u ∈ {a, b}∗ | na(u) = nb(u)},

where na(u) denotes the number of letters a in word u and nb(u) the number of letters b.

Specifying languages by grammars
De�ne the generative grammar or shortly the grammar.

De�nition 2.1 A grammar is an ordered quadruple G = (N,T, P, S ), where
• N is the alphabet of variables (or nonterminal symbols),
• T is the alphabet of terminal symbols, where N ∩ T = ∅,
• P ⊆ (N∪T )∗N(N∪T )∗×(N∪T )∗ is a �nite set, that is P is the �nite set of productions

of the form (u, v) , where u, v ∈ (N ∪ T )∗ and u contains at least a nonterminal symbol,
• S ∈ N is the start symbol.

Remarks. Instead of the notation (u, v) sometimes u→ v is used.
In the production u → v or (u, v) word u is called the left-hand side of the production

while v the right-hand side. If for a grammar there are more than one production with the
same left-hand side, then these production

u→ v1, u→ v2, . . . , u→ vr can be written as u→ v1 | v2 | . . . | vr .

We de�ne on the set (N ∪ T )∗ the relation called direct derivation

u =⇒ v, if u = p1 pp2, v = p1qp2 and (p, q) ∈ P .

In fact we replace in u an appearance of the subword p by q and we get v. Another notations
for the same relation can be ` or |=.

If we want to emphasize the used grammar G, then the notation =⇒ can be replaced
by =⇒

G
. Relation ∗

=⇒ is the re�exive and transitive closure of =⇒, while +
=⇒ denotes its

transitive closure. Relation ∗
=⇒ is called a derivation.

From the de�nition of a re�exive and transitive relation we can deduce the following:
u

∗
=⇒ v, if there exist the words w0,w1, . . . ,wn ∈ (N ∪ T )∗, n ≥ 0 and u = w0, w0 =⇒ w1,

w1 =⇒ w2, . . . ,wn−1 =⇒ wn, wn = v. This can be written shortly u = w0 =⇒ w1 =⇒
w2 =⇒ . . . =⇒ wn−1 =⇒ wn = v. If n = 0 then u = v. The same way we can de�ne the
relation u

+
=⇒ v except that n ≥ 1 always, so at least one direct derivation will de used.

De�nition 2.2 The language generated by grammar G = (N,T, P, S ) is the set
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L(G) = {u ∈ T ∗ | S ∗
=⇒ u} .

So L(G) contains all words over the alphabet T which can be derived from the start symbol
S using the productions from P.

Example 2.1 Let G = (N, T, P, S ) where
N = {S },
T = {a, b},
P = {S → aS b, S → ab}.

It is easy to see than L(G) = {anbn | n ≥ 1} because

S =⇒
G

aS b =⇒
G

a2S b2 =⇒
G
· · · =⇒

G
an−1S bn−1 =⇒

G
anbn ,

where up to the last but one replacement the �rst production (S → aS b) was used, while at the last
replacement the production S → ab. This derivation can be written S

∗
=⇒

G
anbn. Therefore anbn can

be derived from S for all n and no other words can be derived from S .

De�nition 2.3 Two grammars G1 and G2 are equivalent, and this is denoted by G1 � G2
if L(G1) = L(G2).

Example 2.2 The following two grammars are equivalent because both of them generate the language
{anbncn | n ≥ 1}.
G1 = (N1,T, P1, S 1), where

N1 = {S 1, X,Y}, T = {a, b, c},
P1 = {S 1 → abc, S 1 → aXbc, Xb→ bX, Xc→ Ybcc, bY → Yb, aY → aaX, aY → aa}.

G2 = (N2,T, P2, S 2), where
N2 = {S 2, A, B,C},
P2 = {S 2 → aS 2BC, S 2 → aBC, CB→ BC, aB→ ab, bB→ bb, bC → bc, cC → cc}.

First let us prove by mathematical induction that for n ≥ 2 S 1
∗

=⇒
G1

an−1Ybncn. If n = 2 then

S 1 =⇒
G1

aXbc =⇒
G1

abXc =⇒
G1

abYbcc =⇒
G1

aYb2c2 .

The inductive hypothesis is S 1
∗

=⇒
G1

an−2Ybn−1cn−1. We use production aY → aaX, then (n − 1) times
production Xb → bX, and then production Xc → Ybcc, afterwards again (n − 1) times production
bY → Yb. Therefore

S 1 =⇒
G1

an−2Ybn−1cn−1 =⇒
G1

an−1Xbn−1cn−1 ∗
=⇒
G1

an−1bn−1Xcn−1 =⇒
G1

an−1bn−1Ybcn ∗
=⇒
G1

an−1Ybncn .

If now we use production aY → aa we get S 1
∗

=⇒
G1

anbncn for n ≥ 2, but S 1 =⇒
G1

abc by the production
S 1 → abc, so anbncn ∈ L(G1) for any n ≥ 1. We have to prove in addition that using the productions
of the grammar we cannot derive only words of the form anbncn. It is easy to see that a successful
derivation (which ends in a word containing only terminals) can be obtained only in the presented
way.
Similarly for n ≥ 2

S 2 =⇒
G2

aS 2BC
∗

=⇒
G2

an−1S 2(BC)n−1 =⇒
G2

an(BC)n ∗
=⇒
G2

anBnCn



2.1. Languages and grammars 65

=⇒
G2

anbBn−1Cn ∗
=⇒
G2

anbnCn =⇒
G2

anbncCn−1 ∗
=⇒
G2

anbncn .

Here orderly were used the productions S 2 → aS 2BC (n − 1 times), S 2 → aBC, CB → BC (n − 1
times), aB → ab, bB → bb (n − 1 times), bC → bc, cC → cc (n − 1 times). But S 2 =⇒

G2
aBC =⇒

G2

abC =⇒
G2

abc, So S 2
∗

=⇒
G2

anbncn, n ≥ 1. It is also easy to see than other words cannot be derived using
grammar G2.
The grammars

G3 = ({S }, {a, b}, {S → aS b, S → ε}, S ) and
G4 = ({S }, {a, b}, {S → aS b, S → ab}, S )

are not equivalent because L(G3) \ {ε} = L(G4).

Theorem 2.4 Not all languages can be generated by grammars.

Proof. We encode grammars for the proof as words on the alphabet {0, 1}. For a given
grammar G = (N,T, P, S ) let N = {S 1, S 2, . . . , S n}, T = {a1, a2, . . . , am} and S = S 1. The
encoding is the following:

the code of S i is 10 11 . . . 11︸   ︷︷   ︸
i times

01, the code of ai is 100 11 . . . 11︸   ︷︷   ︸
i times

001 .

In the code of the grammar the letters are separated by 000, the code of the arrow is 0000,
and the productions are separated by 00000.

It is enough, of course, to encode the productions only. For example, consider the gram-
mar

G = ({S }, {a, b}, {S → aS b, S → ab}, S ).
The code of S is 10101, the code of a is 1001001, the code of b is 10011001. The code of
the grammar is

10101︸︷︷︸ 0000 1001001︸    ︷︷    ︸ 000 10101︸︷︷︸ 000 10011001︸      ︷︷      ︸ 00000 10101︸︷︷︸ 0000 1001001︸    ︷︷    ︸ 000

10011001︸      ︷︷      ︸ .

From this encoding results that the grammars with terminal alphabet T can be enu-
merated 1 as G1,G2, . . . ,Gk, . . . , and the set of these grammars is a denumerable in�nite
set.

Consider now the set of all languages over T denoted by LT = {L | L ⊆ T ∗}, that
is LT = P(T ∗). The set T ∗ is denumerable because its words can be ordered. Let this or-
der s0, s1, s2, . . ., where s0 = ε. We associate to each language L ∈ LT an in�nite binary
sequence b0, b1, b2, . . . the following way:

bi =

{
1, if si ∈ L
0, if si < L i = 0, 1, 2, . . . .

It is easy to see that the set of all such binary sequences is not denumerable, because each
sequence can be considered as a positive number less than 1 using its binary representation

1Let us suppose that in the alphabet {0, 1} there is a linear order <, let us say 0 < 1. The words which are codes
of grammars can be enumerated by ordering them �rst after their lengths, and inside the equal length words,
alphabetically, using the order of their letters. But we can use equally the lexicographic order, which means that
u < v (u is before v) if u is a proper pre�x of v or there exists the decompositions u = xay and v = xby′, where x,
y, y′ are subwords, a and b letters with a < b.
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(The decimal point is considered to be before the �rst digit). Conversely, to each positive
number less than 1 in binary representation a binary sequence can be associated. So, the
cardinality of the set of in�nite binary sequences is equal to cardinality of interval [0, 1],
which is of continuum power. Therefore the set LT is of continuum cardinality. Now to each
grammar with terminal alphabet T associate the corresponding generated language over T .
Since the cardinality of the set of grammars is denumerable, there will exist a language from
LT , without associated grammar, a language which cannot be generated by a grammar.

2.1.3. Chomsky hierarchy of grammars and languages
Putting some restrictions on the form of productions, four type of grammars can be distin-
guished.

De�nition 2.5 De�ne for a grammar G = (N,T, P, S ) the following four types.
A grammar G is of type 0 (phrase-structure grammar) if there are no restrictions on

productions.
A grammar G is of type 1 (context-sensitive grammar) if all of its productions are of

the form αAγ → αβγ, where A ∈ N, α, γ ∈ (N ∪T )∗, β ∈ (N ∪T )+. A production of the form
S → ε can also be accepted if the start symbol S does not occur in the right-hand side of
any production.

A grammar G is of type 2 (context-free grammar) if all of its productions are of the
form A → β, where A ∈ N, β ∈ (N ∪ T )+. A production of the form S → ε can also be
accepted if the start symbol S does not occur in the right-hand side of any production.

A grammar G is of type 3 (regular grammar) if its productions are of the form A→ aB
or A→ a, where a ∈ T and A, B ∈ N. A production of the form S → ε can also be accepted
if the start symbol S does not occur in the right-hand side of any production.

If a grammar G is of type i then language L(G) is also of type i.

This classi�cation was introduced by Noam Chomsky.
A language L is of type i (i = 0, 1, 2, 3) if there exists a grammar G of type i which

generates the language L, so L = L(G).
Denote by Li (i = 0, 1, 2, 3) the class of the languages of type i. Can be proved that

L0 ⊃ L1 ⊃ L2 ⊃ L3 .

By the de�nition of different type of languages, the inclusions (⊇) are evident, but the strict
inclusions (⊃) must be proved.

Example 2.3 We give an example for each type of context-sensitive, context-free and regular gram-
mars.
Context-sensitive grammar. G1 = (N1,T1, P1, S 1), where N1 = {S 1, A, B,C}, T1 = {a, 0, 1}.

Elements of P1 are:
S 1 → ACA,
AC → AACA | ABa | AaB,
B → AB | A,
A → 0 | 1.

Language L(G1) contains words of the form uav with u, v ∈ {0, 1}∗ and |u| , |v|.
Context-free grammar. G2 = (N2, T2, P2, S ), where N2 = {S , A, B}, T2 = {+, ∗, (, ), a}.

Elements of P2 are:
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S → S + A | A,
A → A ∗ B | B,
B → (S ) | a.

Language L(G2) contains algebraic expressions which can be correctly built using letter a, ope-
rators + and ∗ and brackets.
Regular grammar. G3 = (N3, T3, P3, S 3), where N3 = {S 3, A, B}, T3 = {a, b}.

Elements of P3 are:
S 3 → aA
A → aB | a
B → aB | bB | a | b.

Language L(G3) contains words over the alphabet {a, b} with at least two letters a at the begin-
ning.

It is easy to prove that any �nite language is regular. The productions will be done to
generate all words of the language. For example, if u = a1a2 . . . an is in the language, then
we introduce the productions: S → a1A1, A1 → a2A2, . . . An−2 → an−1An−1, An−1 → an,
where S is the start symbol of the language and A1, . . . , An−1 are distinct nonterminals.
We de�ne such productions for all words of the language using different nonterminals for
different words, excepting the start symbol S . If the empty word is also an element of the
language, then the production S → ε is also considered.

The empty set is also a regular language, because the regular grammar G =

({S }, {a}, {S → aS }, S ) generates it.

Eliminating unit productions
A production of the form A→ B is called a unit production, where A, B ∈ N. Unit produc-
tions can be eliminated from a grammar in such a way that the new grammar will be of the
same type and equivalent to the �rst one.

Let G = (N,T, P, S ) be a grammar with unit productions. De�ne an equivalent grammar
G′ = (N,T, P′, S ) without unit productions. The following algorithm will construct the
equivalent grammar.

E--(G,G')
1 if the unit productions A→ B and B→ C are in P put also

the unit production A→ C in P while P can be extended,
2 if the unit production A→ B and the production B→ α (α < N) are in P

put also the production A→ α in P,
3 let P′ be the set of productions of P except unit productions.

Clearly, G and G′ are equivalent. If G is of type i ∈ {0, 1, 2, 3} then G′ is also of type i.

Example 2.4 Use the above algorithm in the case of the grammar G =
({S , A, B,C}, {a, b}, P, S ),

where P contains
S → A, A→ B, B→ C, C → B, D→ C,
S → B, A→ D, C → Aa,

A→ aB,
A→ b.

Using the �rst step of the algorithm, we get the following new unit productions:
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S → D (because of S → A and A→ D),
S → C (because of S → B and B→ C),
A→ C (because of A→ B and B→ C),
B→ B (because of B→ C and C → B),
C → C (because of C → B and B→ C),
D→ B (because of D→ C and C → B).

In the second step of the algorithm will be considered only productions with A or C in the right-hand
side, since productions A → aB, A → b and C → Aa can be used (the other productions are all unit
productions). We get the following new productions:

S → aB (because of S → A and A→ aB),
S → b (because of S → A and A→ b),
S → Aa (because of S → C and C → Aa),
A→ Aa (because of A→ C and C → Aa),
B→ Aa (because of B→ C and C → Aa).

The new grammar G′ =
({S , A, B,C}, {a, b}, P′, S ) will have the productions:

S → b, A→ b, B→ Aa, C → Aa,
S → aB, A→ aB,
S → Aa A→ Aa,

Grammars in normal forms
A grammar is to be said a grammar in normal form if its productions have no terminal
symbols in the left-hand side.

We need the following notions. For alphabets Σ1 and Σ2 a homomorphism is a function
h : Σ∗1 → Σ∗2 for which h(u1u2) = h(u1)h(u2), ∀u1, u2 ∈ Σ∗1. It is easy to see that for arbitrary
u = a1a2 . . . an ∈ Σ∗1 value h(u) is uniquely determined by the restriction of h on Σ1, because
h(u) = h(a1)h(a2) . . . h(an).

If a homomorphism h is a bijection then h an isomorphism.

Theorem 2.6 To any grammar an equivalent grammar in normal form can be associated.

Proof.
Grammars of type 2 and 3 have in left-hand side of any productions only a nonterminal,

so they are in normal form. The proof has to be done for grammars of type 0 and 1 only.
Let G = (N,T, P, S ) be the original grammar and we de�ne the grammar in normal form

as G′ = (N′,T, P′, S ).
Let a1, a2, . . . , ak be those terminal symbols which occur in the left-hand side of pro-

ductions. We introduce the new nonterminals A1, A2, . . . , Ak. The following notation will be
used: T1 = {a1, a2, . . . , ak}, T2 = T \ T1, N1 = {A1, A2, . . . , Ak} and N′ = N ∪ N1.

De�ne the isomorphism h : N ∪ T −→ N′ ∪ T2, where

h(ai) = Ai, if ai ∈ T1,
h(X) = X, if X ∈ N ∪ T2

De�ne the set P′ of production as

P′ =
{
h(α)→ h(β)

∣∣∣ (α→ β) ∈ P
}
∪

{
Ai −→ ai

∣∣∣ i = 1, 2, . . . , k
}

In this case α ∗
=⇒

G
β if and only if h(α) ∗

=⇒
G′

h(β). From this the theorem immediately
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results because S
∗

=⇒
G

u ⇔ S = h(S ) ∗
=⇒
G′

h(u) = u.

Example 2.5 Let G = ({S ,D, E}, {a, b, c, d, e}, P, S ), where P contains
S → aebc | aDbc
Db → bD
Dc → Ebccd
bE → Eb
aE → aaD | aae

In the left-hand side of productions the terminals a, b, c occur, therefore consider the new nonter-
minals A, B,C, and include in P′ also the new productions A→ a, B→ b and C → c.

Terminals a, b, c will be replaced by nonterminals A, B,C respectively, and we get the set P′ as
S → AeBC | ADBC
DB → BD
DC → EBCCd
BE → EB
AE → AAD | AAe
A → a
B → b
C → c.

Let us see what words can be generated by this grammars. It is easy to see that aebc ∈ L(G′),
because S =⇒ AeBC

∗
=⇒ aebc.

S =⇒ ADBC =⇒ ABDC =⇒ ABEBCCd =⇒ AEBBCCd =⇒ AAeBBCCd
∗

=⇒ aaebbccd, so
aaebbccd ∈ L(G′).

We prove, using the mathematical induction, that S
∗

=⇒ An−1EBnC(Cd)n−1 for n ≥ 2. For n = 2
this is the case, as we have seen before. Continuing the derivation we get S

∗
=⇒ An−1EBnC(Cd)n−1 =⇒

An−2AADBnC(Cd)n−1 ∗
=⇒ AnBnDC(Cd)n−1 =⇒ AnBnEBCCd(Cd)n−1 ∗

=⇒ AnEBn+1CCd(Cd)n−1 =

AnEBn+1C(Cd)n, and this is what we had to prove.
But S

∗
=⇒ An−1EBnC(Cd)n−1 =⇒ An−2AAeBnC(Cd)n−1 ∗

=⇒ anebnc(cd)n−1. So anebnc(cd)n−1 ∈
L(G′), n ≥ 1. These words can be generated also in G.

2.1.4. Extended grammars
In this subsection extended grammars of type 1, 2 and 3 will be presented.

Extended grammar of type 1. All productions are of the form α → β, where |α| ≤ |β|,
excepted possibly the production S → ε.

Extended grammar of type 2. All productions are of the form A→ β, where A ∈ N, β ∈
(N ∪ T )∗.

Extended grammar of type 3. All productions are of the form A → uB or A → u,
Where A, B ∈ N, u ∈ T ∗.

Theorem 2.7 To any extended grammar an equivalent grammar of the same type can be
associated.

Proof. Denote by Gext the extended grammar and by G the corresponding equivalent gram-
mar of the same type.

Type 1. De�ne the productions of grammar G by rewriting the productions α → β,
where |α| ≤ |β| of the extended grammar Gext in the form γ1δγ2 → γ1γγ2 allowed in the
case of grammar G by the following way.
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Let X1X2 . . . Xm → Y1Y2 . . . Yn (m ≤ n) be a production of Gext, which is not in
the required form. Add to the set of productions of G the following productions, where
A1, A2, . . . , Am are new nonterminals:

X1X2 . . . Xm → A1X2X3 . . . Xm
A1X2 . . . Xm → A1A2X3 . . . Xm

. . .
A1A2 . . . Am−1Xm → A1A2 . . . Am−1Am
A1A2 . . . Am−1Am → Y1A2 . . . Am−1Am
Y1A2 . . . Am−1Am → Y1Y2 . . . Am−1Am

. . .
Y1Y2 . . . Ym−2Am−1Am → Y1Y2 . . . Ym−2Ym−1Am
Y1Y2 . . . Ym−1Am → Y1Y2 . . . Ym−1YmYm+1 . . . Yn.

Furthermore, add to the set of productions of G without any modi�cation the producti-
ons of Gext which are of permitted form, i.e. γ1δγ2 → γ1γγ2.

Inclusion L(Gext) ⊆ L(G) can be proved because each used production of Gext in a
derivation can be simulated by productions G obtained from it. Furthermore, since the pro-
ductions of G can be used only in the prescribed order, we could not obtain other words, so
L(G) ⊆ L(Gext) also is true.

Type 2. Let Gext = (N,T, P, S ). Productions of form A → ε have to be eliminated, only
S → ε can remain, if S doesn't occur in the right-hand side of productions. For this de�ne
the following sets:

U0 = {A ∈ N | (A→ ε) ∈ P}
Ui = Ui−1 ∪ {A ∈ N | (A→ w) ∈ P, w ∈ U+

i−1}.
Since for i ≥ 1 we have Ui−1 ⊆ Ui, Ui ⊆ N and N is a �nite set, there must exists such

a k for which Uk−1 = Uk. Let us denote this set as U. It is easy to see that a nonterminal A
is in U if and only if A

∗
=⇒ ε. (In addition ε ∈ L(Gext) if and only if S ∈ U.)

We de�ne the productions of G starting from the productions of Gext in the following
way. For each production A → α with α , ε of Gext add to the set of productions of G this
one and all productions which can be obtained from it by eliminating from α one or more
nonterminals which are in U, but only in the case when the right-hand side does not become
ε.

It in not difficult to see that this grammar G generates the same language as Gext does,
except the empty word ε. So, if ε < L(Gext) then the proof is �nished. But if ε ∈ L(Gext),
then there are two cases. If the start symbol S does not occur in any right-hand side of
productions, then by introducing the production S → ε, grammar G will generate also the
empty word. If S occurs in a production in the right-hand side, then we introduce a new
start symbol S ′ and the new productions S ′ → S and S ′ → ε. Now the empty word ε can
also be generated by grammar G.

Type 3. First we use for Gext the procedure de�ned for grammars of type 2 to elimi-
nate productions of the form A → ε. From the obtained grammar we eliminate the unit
productions using the algorithm E-- (see page 67).

In the obtained grammar for each production A→ a1a2 . . . anB, where B ∈ N ∪ {ε}, add
to the productions of G also the followings
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A → a1A1,
A1 → a2A2,

. . .
An−1 → anB,

where A1, A2, . . . , An−1 are new nonterminals. It is easy to prove that grammar G built in this
way is equivalent to Gext.

Example 2.6 Let Gext = (N,T, P, S ) be an extended grammar of type 1, where N = {S , B,C}, T =

{a, b, c} and P contains the following productions:
S → aS BC | aBC CB → BC
aB → ab bB → bb
bC → bc cC → cc .

The only production which is not context-sensitive is CB→ BC. Using the method given in the proof,
we introduce the productions:

CB → AB
AB → AD
AD → BD
BD → BC

Now the grammar G = ({S , A, B,C,D}, {a, b, c}, P′, S ) is context-sensitive, where the elements of P′
are

S → aS BC | aBC
CB → AB aB → ab
AB → AD bB → bb
AD → BD bC → bc
BD → BC cC → cc.

It can be proved that L(Gext) = L(G) = {anbncn | n ≥ 1}.

Example 2.7 Let Gext = ({S , B,C}, {a, b, c}, P, S ) be an extended grammar of type 2, where P contains:
S → aS c | B
B → bB | C
C → Cc | ε.

Then U0 = {C}, U1 = {B,C}, U3 = {S , B,C} = U. The productions of the new grammar are:
S → aS c | ac | B
B → bB | b | C
C → Cc | c.

The original grammar generates also the empty word and because S occurs in the right-hand side of
a production, a new start symbol and two new productions will be de�ned: S ′ → S , S ′ → ε. The
context-free grammar equivalent to the original grammar is G = ({S ′, S , B,C}, {a, b, c}, P′, S ′) with
the productions:

S ′ → S | ε
S → aS c | ac | B
B → bB | b | C
C → Cc | c.

Both of these grammars generate language {ambncp | p ≥ m ≥ 0, n ≥ 0}.

Example 2.8 Let Gext = ({S , A, B}, {a, b}, P, S ) be the extended grammar of type 3 under examination,
where P:

S → abA
A → bB
B → S | ε.
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First, we eliminate production B→ ε. Since U0 = U = {B}, the productions will be
S → abA
A → bB | b
B → S .

The latter production (which a unit production) can also be eliminated, by replacing it with B→ abA.
Productions S → abA and B → abA have to be transformed. Since, both productions have the same
right-hand side, it is enough to introduce only one new nonterminal and to use the productions S → aC
and C → bA instead of S → abA. Production B → abA will be replaced by B → aC. The new
grammar is G = ({S , A, B,C}, {a, b}, P′, S ), where P′:

S → aC
A → bB | b
B → aC
C → bA.

Can be proved that L(Gext) = L(G) = {(abb)n | n ≥ 1}.

2.1.5. Closure properties in the Chomsky-classes
We will prove the following theorem, by which the Chomsky-classes of languages are closed
under the regular operations, that is, the union and product of two languages of type i is also
of type i, the iteration of a language of type i is also of type i (i = 0, 1, 2, 3).

Theorem 2.8 The class Li (i = 0, 1, 2, 3) of languages is closed under the regular opera-
tions.

Proof. For the proof we will use extended grammars. Consider the extended grammars G1 =

(N1,T1, P1, S 1) and G2 = (N2,T2, P2, S 2) of type i each. We can suppose that N1 ∩ N2 = ∅.
Union. Let G∪ = (N1 ∪ N2 ∪ {S },T1 ∪ T2, P1 ∪ P2 ∪ {S → S 1, S → S 2}, S ).
We will show that L(G∪) = L(G1) ∪ L(G2). If i = 0, 2, 3 then from the assumption that

G1 and G2 are of type i follows by de�nition that G∪ also is of type i. If i = 1 and one
of the grammars generates the empty word, then we eliminate from G∪ the corresponding
production (possibly the both) S k → ε (k = 1, 2) and replace it by production S → ε.

Product. Let G× = (N1 ∪ N2 ∪ {S },T1 ∪ T2, P1 ∪ P2 ∪ {S → S 1S 2}, S ).
We will show that L(G×) = L(G1)L(G2). By de�nition, if i = 0, 2 then G× will be of the

same type. If i = 1 and there is production S 1 → ε in P1 but there is no production S 2 → ε
in P2 then production S 1 → ε will be replaced by S → S 2. We will proceed the same way
in the symmetrical case. If there is in P1 production S 1 → ε and in P2 production S 2 → ε
then they will be replaced by S → ε.

In the case of regular grammars (i = 3), because S → S 1S 2 is not a regular production,
we need to use another grammar G× = (N1 ∪N2,T1 ∪ T2, P′1 ∪ P2, S 1), where the difference
between P′1 and P1 lies in that instead of productions in the form A → u, u ∈ T ∗ in P′1 will
exist production of the form A→ uS 2.

Iteration. Let G∗ = (N1 ∪ {S },T1, P, S ).
In the case of grammars of type 2 let P = P1 ∪ {S → S 1S , S → ε}. Then G∗ also is of

type 2.
In the case of grammars of type 3, as in the case of product, we will change the pro-

ductions, that is P = P′1 ∪ {S → S 1, S → ε}, where the difference between P′1 and P1 lies
in that for each A → u (u ∈ T ∗) will be replaced by A → uS , and the others will be not
changed. Then G∗ also will be of type 3.
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The productions given in the case of type 2 are not valid for i = 0, 1, because when
applying production S → S 1S we can get the derivations of type S

∗
=⇒ S 1S 1, S 1

∗
=⇒ α1β1,

S 1
∗

=⇒ α2β2, where β1α2 can be a left-hand side of a production. In this case, replacing β1α2
by its right-hand side in derivation S

∗
=⇒ α1β1α2β2, we can generate a word which is not

in the iterated language. To avoid such situations, �rst let us assume that the language is in
normal form, i.e. the left-hand side of productions does not contain terminals (see page 68),
second we introduce a new nonterminal S ′, so the set of nonterminals now is N1 ∪ {S , S ′},
and the productions are the following:

P = P1 ∪ {S → ε, S → S 1S ′} ∪ {aS ′ → aS | a ∈ T1} .
Now we can avoid situations in which the left-hand side of a production can extend over
the limits of words in a derivation because of the iteration. The above derivations can be
used only by beginning with S =⇒ S 1S ′ and getting derivation S

∗
=⇒ α1β1S ′. Here we

can not replace S ′ unless the last symbol in β1 is a terminal symbol, and only after using a
production of the form aS ′ → aS .

It is easy to show that L(G∗) = L(G1)∗ for each type.

Exercises
2.1-1 Give a grammar which generates language L =

{uu−1 | u ∈ {a, b}∗} and determine its
type.
2.1-2 Let G = (N,T, P, S ) be an extended context-free grammar, where

N = {S , A,C,D}, T = {a, b, c, d, e},
P = {S → abCADe, C → cC, C → ε, D→ dD, D→ ε, A→ ε, A→ dDcCA}.

Give an equivalent context-free grammar.
2.1-3 Show that Σ∗ and Σ+ are regular languages over arbitrary alphabet Σ.
2.1-4 Give a grammar to generate language L =

{u ∈ {0, 1}∗ | n0(u) = n1(u)}, where n0(u)
represents the number of 0's in word u and n1(u) the number of 1's.
2.1-5 Give a grammar to generate all natural numbers.
2.1-6 Give a grammar to generate the following languages, respectively:

L1 = {anbmcp | n ≥ 1,m ≥ 1, p ≥ 1},
L2 = {a2n | n ≥ 1},
L3 = {anbm | n ≥ 0,m ≥ 0 },
L4 = {anbm | n ≥ m ≥ 1}.

2.1-7 Let G = (N,T, P, S ) be an extended grammar, where N = {S , A, B,C}, T = {a} and P
contains the productions:

S → BAB, BA→ BC, CA→ AAC, CB→ AAB, A→ a, B→ ε .
Determine the type of this grammar. Give an equivalent, not extended grammar with the
same type. What language it generates?

2.2. Finite automata and regular languages
Finite automata are computing models with input tape and a �nite set of states (Fig. 2.1).
Among the states some are called initial and some �nal. At the beginning the automaton
read the �rst letter of the input word written on the input tape. Beginning with an initial
state, the automaton read the letters of the input word one after another while change its
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a1 a2 a3 . . .

-

control unit

input tape

yes/no

6

an

Figure 2.1. Finite automaton.

states, and when after reading the last input letter the current state is a �nal one, we say that
the automaton accepts the given word. The set of words accepted by such an automaton is
called the language accepted (recognized) by the automaton.

De�nition 2.9 A nondeterministic �nite automaton (NFA) is a system A = (Q,Σ, E, I, F),
where
• Q is a �nite, nonempty set of states,
• Σ is the input alphabet,
• E is the set of transitions (or of edges), where E ⊆ Q × Σ × Q,
• I ⊆ Q is the set of initial states,
• F ⊆ Q is the set of �nal states.

An NFA is in fact a directed, labelled graph, whose vertices are the states and there is
a (directed) edge labelled with a from vertex p to vertex q if (p, a, q) ∈ E. Among vertices
some are initial and some �nal states. Initial states are marked by a small arrow entering the
corresponding vertex, while the �nal states are marked with double circles. If two vertices
are joined by two edges with the same direction then these can be replaced by only one edge
labelled with two letters. This graph can be called a transition graph.

Example 2.9 Let A = (Q,Σ, E, I, F), where Q = {q0, q1, q2}, Σ = {0, 1, 2},
E =

{(q0, 0, q0), (q0, 1, q1), (q0, 2, q2),
(q1, 0, q1), (q1, 1, q2), (q1, 2, q0),
(q2, 0, q2), (q2, 1, q0), (q2, 2, q1)}

I = {q0}, F = {q0}.
The automaton can be seen in Fig. 2.2.

In the case of an edge (p, a, q) vertex p is the start-vertex, q the end-vertex and a the
label. Now de�ne the notion of the walk as in the case of graphs. A sequence

(q0, a1, q1), (q1, a2, q2), . . . , (qn−2, an−1, qn−1), (qn−1, an, qn)

of edges of a NFA is a walk with the label a1a2 . . . an. If n = 0 then q0 = qn and a1a2 . . . an =

ε. Such a walk is called an empty walk. For a walk the notation

q0
a1−→ q1

a2−→ q2
a3−→ · · · an−1−→ qn−1

an−→ qn ,
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Figure 2.2. The �nite automaton of Example 2.9..
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Figure 2.3. Nondeterministic �nite automata.

will be used, or if w = a1a2 . . . an then we write shortly q0
w−→ qn. Here q0 is the start-vertex

and qn the end-vertex of the walk. The states in a walk are not necessary distinct.
A walk is productive if its start-vertex is an initial state and its end-vertex is a �nal state.

We say that an NFA accepts or recognizes a word if this word is the label of a productive
walk. The empty word ε is accepted by an NFA if there is an empty productive walk, i.e.
there is an initial state which is also a �nal state.

The set of words accepted by an NFA will be called the language accepted by this NFA.
The language accepted or recognized by NFA A is

L(A) =
{
w ∈ Σ∗ | ∃p ∈ I, ∃q ∈ F, ∃p w−→ q

}
.

The NFA A1 and A2 are equivalent if L(A1) = L(A2).
Sometimes it is useful the following transition function:

δ : Q × Σ→ P(Q), δ(p, a) = {q ∈ Q | (p, a, q) ∈ E} .
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δ 0 1
q0 {q1} ∅
q1 ∅ {q2}
q2 {q2} {q2}

A

δ 0 1
q0 {q0, q1} {q0}
q1 ∅ {q2}
q2 {q2} {q2}

B

Figure 2.4. Transition tables of the NFA in Fig. 2.3.

This function associate to a state p and input letter a the set of states in which the
automaton can go if its current state is p and the head is on input letter a.

Denote by |H| the cardinal (the number of elements) of H.2 An NFA is a deterministic
�nite automaton (DFA) if

|I| = 1 and |δ(q, a)| ≤ 1, ∀q ∈ Q, ∀a ∈ Σ .

In Fig. 2.2 a DFA can be seen.
Condition |δ(q, a)| ≤ 1 can be replaced by

(p, a, q) ∈ E, (p, a, r) ∈ E =⇒ q = r ,∀p, q, r ∈ Q,∀a ∈ Σ .

If for a DFA |δ(q, a)| = 1 for each state q ∈ Q and for each letter a ∈ Σ then it is called a
complete DFA.

Every DFA can be transformed in a complete DFA by introducing a new state,
which can be called a snare state. Let A = (Q,Σ, E, {q0}, F) be a DFA. An equivalent
and complete DFA will be A′ = (Q ∪ {s},Σ, E′, {q0}, F), where s is the new state and
E′ = E ∪ {(p, a, s) | δ(p, a) = ∅, p ∈ Q, a ∈ Σ

} ∪ {(s, a, s) | a ∈ Σ
}. It is easy to see

that L(A) = L(A′).
Using the transition function we can easily de�ne the transition table. The rows of this

table are indexed by the elements of Q, its columns by the elements of Σ. At the intersection
of row q ∈ Q and column a ∈ Σ we put δ(q, a). In the case of Fig. 2.2, the transition table is:

δ 0 1 2
q0 {q0} {q1} {q2}
q1 {q1} {q2} {q0}
q2 {q2} {q0} {q1}

The NFA in 2.3 are not deterministic: the �rst (automaton A) has two initial states, the
second (automaton B) has two transitions with 0 from state q0 (to states q0 and q1). The
transition table of these two automata are in Fig. 2.4. L(A) is set of words over Σ = {0, 1}
which do not begin with two zeroes (of course ε is in language), L(B) is the set of words
which contain 01 as a subword.

Eliminating inaccessible states
Let A = (Q,Σ, E, I, F) be a �nite automaton. A state is accessible if it is on a walk which

2The same notation is used for the cardinal of a set and length of a word, but this is no matter of confusion because
for word we use lowercase letters and for set capital letters. The only exception is δ(q, a), but this could not be
confused with a word.
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starts by an initial state. The following algorithm determines the inaccessible states building
a sequence U0, U1, U2, . . . of sets, where U0 is the set of initial states, and for any i ≥ 1 Ui
is the set of accessible states, which are at distance at most i from an initial state.

I-(A,U)
U0 ← I
i← 0
repeat

i← i + 1
for all q ∈ Ui−1 do

for all a ∈ Σ do
Ui ← Ui−1 ∪ δ(q, a)

endfor
endfor

until Ui = Ui−1
U ← Q \ Ui
return U

The inaccessible states of the automaton can be eliminated without changing the accepted
language.

If |Q| = n and |Σ| = m then the running time of the algorithm (the number of steps) in
the worst case is O(n2m), because the number of steps in the two embedded loops is at most
nm and in the loop repeat at most n.

Set U has the property that L(A) , ∅ if and only if U ∩ F , ∅. The above algorithm
can be extended by inserting the U ∩ F , ∅ condition to decide if language L(A) is or not
empty.

Eliminating nonproductive states
Let A = (Q,Σ, E, I, F) be a �nite automaton. A state is productive if it is on a walk which
ends in a terminal state. For �nding the productive states the following algorithm uses the
function δ−1:

δ−1 : Q × Σ→ P(Q), δ−1(p, a) = {q | (q, a, p) ∈ E}.
This function for a state p and a letter a gives the set of all states from which using this letter
a the automaton can go into the state p.

N-A,V)
V0 ← F
i← 0
repeat

i← i + 1
for all p ∈ Vi−1 do

for all a ∈ Σ do
Vi ← Vi−1 ∪ δ−1(p, a)

endfor
endfor

until Vi = Vi−1
V ← Q \ Vi
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return V

The nonproductive states of the automaton can be eliminated without changing the accepted
language.

If n is the number of states, m the number of letters in the alphabet, then the running
time of the algorithm is also O(n2m) as in the case of the algorithm I-.

The set V given by the algorithm has the property that L(A) , ∅ if and only if V ∩ I , ∅.
So, by a little modi�cation it can be used to decide if language L(A) is or not empty.

2.2.1. Transforming nondeterministic finite automata in deterministic finite
automata

As follows we will show that any NFA can be transformed in an equivalent DFA.

Theorem 2.10 For any NFA one may construct an equivalent DFA.

Proof. Let A = (Q,Σ, E, I, F) be an NFA. De�ne a DFA A = (Q,Σ, E, I, F), where
• Q = P(Q) \ ∅,
• edges of E are those triplets (S , a,R) for which R, S ∈ Q are not empty, a ∈ Σ and

R =
⋃

p∈S
δ(p, a),

• I = {I},
• F = {S ⊆ Q | S ∩ F , ∅}.
We prove that L(A) = L(A).
a) First prove that L(A) ⊆ L(A). Let w = a1a2 . . . ak ∈ L(A). Then there exists a walk

q0
a1−→ q1

a2−→ q2
a3−→ · · · ak−1−→ qk−1

ak−→ qk, q0 ∈ I, qk ∈ F.

Using the transition function δ of NFA A we construct the sets S 0 = {q0}, δ(S 0, a1) = S 1,
. . . δ(S k−1, ak) = S k. Then q1 ∈ S 1, . . . , qk ∈ S k and since qk ∈ F we get S k ∩ F , ∅, so
S k ∈ F. Thus, there exists a walk

S 0
a1−→ S 1

a2−→ S 2
a3−→ · · · ak−1−→ S k−1

ak−→ S k, S 0 ⊆ I, S k ∈ F.

There are sets S ′0, . . . , S ′k for which S ′0 = I, and for i = 0, 1, . . . , k we have S i ⊆ S ′i , and

S ′0
a1−→ S ′1

a2−→ S ′2
a3−→ · · · ak−1−→ S ′k−1

ak−→ S ′k

is a productive walk. Therefore w ∈ L(A). That is L(A) ⊆ L(A).
b) Now we show that L(A) ⊆ L(A). Let w = a1a2 . . . ak ∈ L(A). Then there is a walk

q0
a1−→ q1

a2−→ q2
a3−→ · · · ak−1−→ qk−1

ak−→ qk, q0 ∈ I, qk ∈ F.

Using the de�nition of F we have qk ∩ F , ∅, i.e. there exists qk ∈ qk ∩ F, that is by the
de�nitions of qk ∈ F and qk there is qk−1 such that (qk−1, ak, qk) ∈ E. Similarly, there are the
states qk−2, . . . , q1, q0 such that (qk−2, ak, qk−1) ∈ E, . . . , (q0, a1, q1) ∈ E, where q0 ∈ q0 = I,
thus, there is a walk

q0
a1−→ q1

a2−→ q2
a3−→ · · · ak−1−→ qk−1

ak−→ qk, q0 ∈ I, qk ∈ F,
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Figure 2.5. The equivalent DFA with NFA A in Fig. 2.3.

so L(A) ⊆ L(A).
In constructing DFA we can use the corresponding transition function δ:

δ(q, a) =


⋃

q∈q
δ(q, a)

 , ∀q ∈ Q,∀a ∈ Σ.

The empty set was excluded from the states, so we used here ∅ instead of {∅}.

Example 2.10 Apply Theorem 2.10 to transform NFA A in Fig. 2.3. Introduce the following notation
for the states of the DFA:

S 0 := {q0, q1}, S 1 := {q0}, S 2 := {q1}, S 3 := {q2},
S 4 := {q0, q2}, S 5 := {q1, q2}, S 6 := {q0, q1, q2} ,

where S 0 is the initial state. Using the transition function we get the transition table:

δ 0 1
S 0 {S 2} {S 3}
S 1 {S 2} ∅
S 2 ∅ {S 3}
S 3 {S 3} {S 3}
S 4 {S 5} {S 3}
S 5 {S 3} {S 3}
S 6 {S 5} {S 3}

This automaton contains many inaccessible states. By algorithm I- we determine the
accessible states of DFA:

U0 = {S 0}, U1 = {S 0, S 2, S 3}, U2 = {S 0, S 2, S 3} = U1 = U.
Initial state S 0 is also a �nal state. States S 2 and S 3 are �nal states. States S 1, S 4, S 5, S 6 are

inaccessible and can be removed from the DFA. The transition table of the resulted DFA is

δ 0 1
S 0 {S 2} {S 3}
S 2 ∅ {S 3}
S 3 {S 3} {S 3}

The corresponding transition graph is in Fig. 2.5.

The algorithm given in Theorem 2.10 can be simpli�ed. It is not necessary to consider
all subset of the set of states of NFA. The states of DFA A can be obtained successively.
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Begin with the state q0 = I and determine the states δ(q0, a) for all a ∈ Σ. For the newly
obtained states we determine the states accessible from them. This can be continued until
no new states arise.

In our previous example q0 := {q0, q1} is the initial state. From this we get
δ(q0, 0) = {q1}, where q1 := {q1}, δ(q0, 1) = {q2}, where q2 := {q2},
δ(q1, 0) = ∅, δ(q1, 1) = {q2},
δ(q2, 0) = {q2}, δ(q2, 1) = {q2}.

The transition table is
δ 0 1
q0 {q1} {q2}
q1 ∅ {q2}
q2 {q2} {q2}

which is the same (excepted the notation) as before.
The next algorithm will construct for an NFA A = (Q,Σ, E, I, F) the transition table M

of the equivalent DFA A = (Q,Σ, E, I, F), but without to determine the �nal states (which
can easily be included). Value of II(q,Q) in the algorithm is true if state q is already in Q
and is false otherwise. Let a1, a2, . . . , am be an ordered list of the letters of Σ.

N-(A,A)
1 q0 ← I
2 Q← {q0}
3 i← 0 ¤ i counts the rows.
4 k ← 0 ¤ k counts the states.
5 repeat
6 for j = 1, 2, . . . ,m ¤ j counts the columns.
7 do q←

⋃

p∈qi

δ(p, a j)

8 if q , ∅
9 then if II(q,Q)

10 then M[i, j]← {q}
11 else k ← k + 1
12 qk ← q
13 M[i, j]← {qk}
14 Q← Q ∪ {qk}
15 else M[i, j]← ∅
16 i← i + 1
17 until i = k + 1
18 return transition table M of A

Since loop repeat is executed as many times as the number of states of new automaton,
in worst case the running time can be exponential, because, if the number of states in NFA
is n, then DFA can have even 2n − 1 states. (The number of subsets of a set of n elements is
2n, including the empty set.)

Theorem 2.10 will have it that to any NFA one may construct an equivalent DFA. Con-
versely, any DFA is also an NFA by de�nition. So, the nondeterministic �nite automata
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accepts the same class of languages as the deterministic �nite automata.

2.2.2. Equivalence of deterministic finite automata
In this subsection we will use complete deterministic �nite automata only. In this case δ(q, a)
has a single element. In formulae, sometimes, instead of set δ(q, a) we will use its single
element. We introduce for a set A = {a} the function elem(A) which give us the single
element of set A, so elem(A) = a. Using walks which begin with the initial state and have
the same label in two DFA's we can determine the equivalence of these DFA's. If only one
of these walks ends in a �nal state, then they could not be equivalent.

Consider two DFA's over the same alphabet A = (Q,Σ, E, {q0}, F) and A′ =

(Q′,Σ, E′, {q′0}, F′). We are interested to determine if they are or not equivalent. We const-
ruct a table with elements of form (q, q′), where q ∈ Q and q′ ∈ Q′. Beginning with the
second column of the table, we associate a column to each letter of the alphabet Σ. If the
�rst element of the ith row is (q, q′) then at the cross of ith row and the column associated
to letter a will be the pair

(
elem(

δ(q, a)), elem(
δ′(q′, a))

)
.

. . . a . . .
. . . . . .

(q, q′)
(
elem(

δ(q, a)), elem(
δ′(q′, a))

)

. . . . . .

In the �rst column of the �rst row we put (q0, q′0) and complete the �rst row using the above
method. If in the �rst row in any column there occur a pair of states from which one is a
�nal state and the other not then the algorithm ends, the two automata are not equivalent. If
there is no such a pair of states, every new pair is written in the �rst column. The algorithm
continues with the next un�lled row. If no new pair of states occurs in the table and for each
pair both of states are �nal or both are not, then the algorithm ends and the two DFA are
equivalent.
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D-(A,A′)
1 write in the �rst column of the �rst row the pair (q0, q′0)
2 i← 0
3 repeat
4 i← i + 1
5 let (q, q′) be the pair in the �rst column of the ith row
6 for all a ∈ Σ

7 do write in the column associated to a in the ith row
the pair

(
elem(

δ(q, a)), elem(
δ′(q′, a))

)

8 if one state in
(
elem(

δ(q, a)), elem(
δ′(q′, a))

)
is �nal and the other not

9 then return 

10 else write pair
(
elem(

δ(q, a)), elem(
δ′(q′, a))

)
in the next empty row

of the �rst column, if not occurred already in the �rst column
11 until the �rst element of (i + 1)th row becomes empty
12 return 

If |Q| = n, |Q′| = n′ and |Σ| = m then taking into account that in worst case loop repeat
is executed nn′ times, loop for m times, the running time of the algorithm in worst case will
be O(nn′m), or if n = n′ then O(n2m).

Our algorithm was described to determine the equivalence of two complete DFA's. If
we have to determine the equivalence of two NFA's, �rst we transform them into complete
DFA's and after this we can apply the above algorithm.

Example 2.11 Determine if the two DFA's in Fig. 2.6 are equivalent or not. The algorithm gives the
table

a b
(q0, p0) (q2, p3) (q1, p1)
(q2, p3) (q1, p2) (q2, p3)
(q1, p1) (q2, p3) (q0, p0)
(q1, p2) (q2, p3) (q0, p0)

The two DFA's are equivalent because all possible pairs of states are considered and in every pair both
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Figure 2.6. Equivalent DFA's (Example 2.11.).
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states are �nal or both are not �nal.

Example 2.12 The table of the two DFA's in Fig. 2.7 is:

a b
(q0, p0) (q1, p3) (q2, p1)
(q1, p3) (q2, p2) (q0, p3)
(q2, p1)
(q2, p2)

These two DFA's are not equivalent, because in the last column of the second row in the pair (q0, p3)
the �rst state is �nal and the second not.

2.2.3. Equivalence of finite automata and regular languages
We have seen that NFA's accept the same class of languages as DFA's. The following theo-
rem states that this class is that of regular languages.

Theorem 2.11 If L is a language accepted by a DFA, then one may construct a regular
grammar which generates language L.

Proof. Let A = (Q,Σ, E, {q0}, F) be the DFA accepting language L, that is L = L(A). De�ne
the regular grammar G = (Q,Σ, P, q0) with the productions:
• If (p, a, q) ∈ E for p, q ∈ Q and a ∈ Σ, then put production p→ aq in P.
• If (p, a, q) ∈ E and q ∈ F, then put also production p→ a in P.
Prove that L(G) = L(A) \ {ε}.
Let u = a1a2 . . . an ∈ L(A) and u , ε. Thus, since A accepts word u, there is a walk

q0
a1−→ q1

a2−→ q2
a3−→ · · · an−1−→ qn−1

an−→ qn, qn ∈ F.

Then there are in P the productions

q0 → a1q1, q1 → a2q2, . . . , qn−2 → an−1qn−1, qn−1 → an
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Figure 2.7. Non equivalent DFA's (Example 2.12.).
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Figure 2.8. DFA of the Example 2.13..

(in the right-hand side of the last production qn does not occur, because qn ∈ F), so there is
the derivation

q0 =⇒ a1q1 =⇒ a1a2q2 =⇒ . . . =⇒ a1a2 . . . an−1qn−1 =⇒ a1a2 . . . an.

Therefore, u ∈ L(G).
Conversely, let u = a1a2 . . . an ∈ L(G) and u , ε. Then there exists a derivation

q0 =⇒ a1q1 =⇒ a1a2q2 =⇒ . . . =⇒ a1a2 . . . an−1qn−1 =⇒ a1a2 . . . an,

in which productions

q0 → a1q1, q1 → a2q2, . . . , qn−2 → an−1qn−1, qn−1 → an

were used, which by de�nition means that in DFA A there is a walk

q0
a1−→ q1

a2−→ q2
a3−→ · · · an−1−→ qn−1

an−→ qn,

and since qn is a �nal state, u ∈ L(A) \ {ε} .
If the DFA accepts also the empty word ε, then in the above grammar we introduce

a new start symbol q′0 instead of q0, consider the new production q′0 → ε and for each
production q0 → α introduce also q′0 → α.

Example 2.13 Let A = ({q0, q1, q2}, {a, b}, E, {q0}, {q2}) be a DFA, where E =
{(q0, a, q0),

(q0, b, q1), (q1, b, q2), (q2, a, q2)}. The corresponding transition table is

δ a b
q0 {q0} {q1}
q1 ∅ {q2}
q2 {q2} ∅

The transition graph of A is in Fig. 2.8. By Theorem 2.11 we de�ne regular grammar G =

({q0, q1, q2}, {a, b}, P, q0) with the productions in P
q0 → aq0 | bq1, q1 → bq2 | b, q2 → aq2 | a.

One may prove that L(A) = {ambban | m ≥ 0, n ≥ 0}.

The method described in the proof of Theorem 2.11 easily can be given as an al-
gorithm. The productions of regular grammar G = (Q,Σ, P, q0) obtained from the DFA
A = (Q,Σ, E, {q0}, F) can be determined by the following algorithm.
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R---(A,G)
1 P← ∅
2 for all p ∈ Q
3 do for all a ∈ Σ

4 do for all q ∈ Q
5 do if (p, a, q) ∈ E
6 then P← P ∪ {p→ aq}
7 if q ∈ F
8 then P← P ∪ {p→ a}
9 if q0 ∈ F

10 then P← P ∪ {q0 → ε}

It is easy to see that the running time of the algorithm is Θ(n2m), if the number of states
is n and the number of letter in alphabet is m. In lines 2�4 we can consider only one loop, if
we use the elements of E. Then the worst case running time is Θ(p), where p is the number
of transitions of DFA. This is also O(n2m), since all transitions are possible. This algorithm
is:

R---'(A,G)
1 P← ∅
2 for all (p, a, q) ∈ E
3 do P← P ∪ {p→ aq}
4 if q ∈ F
5 then P← P ∪ {p→ a}
6 if q0 ∈ F
7 then P← P ∪ {q0 → ε}

Theorem 2.12 If L = L(G) is a regular language, then one may construct an NFA that
accepts language L.

Proof. Let G = (N,T, P, S ) be the grammar which generates language L. De�ne NFA A =

(Q,T, E, {S }, F):
• Q = N ∪ {Z}, where Z < N ∪ T (i.e. Z is a new symbol),
• For every production A→ aB, de�ne transition (A, a, B) in E.
• For every production A→ a, de�ne transition (A, a,Z) in E.
• F =

{ {Z} if production S → ε does not occur in G,
{Z, S } if production S → ε occurs in G.

Prove that L(G) = L(A).
Let u = a1a2 . . . an ∈ L(G), u , ε. Then there is in G a derivation of word u:

S =⇒ a1A1 =⇒ a1a2A2 =⇒ . . . =⇒ a1a2 . . . an−1An−1 =⇒ a1a2 . . . an.

This derivation is based on productions
S → a1A1, A1 → a2A2, . . . , An−2 → an−1An−1, An−1 → an.

Then, by the de�nition of the transitions of NFA A there exists a walk

S a1−→ A1
a2−→ A2

a3−→ · · · an−1−→ An−1
an−→ Z, Z ∈ F.
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Figure 2.9. NFA associated to grammar in Example 2.14..

Thus, u ∈ L(A). If ε ∈ L(G), there is production S → ε, but in this case the initial state is
also a �nal one, so ε ∈ L(A). Therefore, L(G) ⊆ L(A).

Let now u = a1a2 . . . an ∈ L(A). Then there exists a walk

S a1−→ A1
a2−→ A2

a3−→ · · · an−1−→ An−1
an−→ Z, Z ∈ F.

If u is the empty word, then instead of Z we have in the above formula S , which also is a
�nal state. In other cases only Z can be as last symbol. Thus, in G there exist the productions

S → a1A1, A1 → a2A2, . . . , An−2 → an−1An−1, An−1 → an ,

and there is the derivation

S =⇒ a1A1 =⇒ a1a2A2 =⇒ . . . =⇒ a1a2 . . . an−1An−1 =⇒ a1a2 . . . an,

thus, u ∈ L(G) and therefore L(A) ⊆ L(G).

Example 2.14 Let G = ({S , A, B}, {a, b}, {S → aS , S → bA, A → bB, A → b, B → aB, B →
a}, S ) be a regular grammar. The NFA associated is A = ({S , A, B,Z}, {a, b}, E, S , {Z}), where E ={(S , a, S ), (S , b, A), (A, b, B), (A, b,Z), (B, a, B), (B, a,Z)}. The corresponding transition table is

δ a b
S {S } {A}
A ∅ {B,Z}
B {B,Z} ∅
E ∅ ∅

The transition graph is in Fig. 2.9. This NFA can be simpli�ed, states B and Z can be contracted in
one �nal state.

Using the above theorem we de�ne an algorithm which associate an NFA A = (Q,T, E,
{S }, F) to a regular grammar G = (N,T, P, S )
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N---(G,A)
1 E ← ∅
2 Q← N ∪ {Z}
3 for all A ∈ N
4 do for all a ∈ T
5 do if (A→ a) ∈ P
6 then E ← E ∪ {(A, a,Z)}
7 for all B ∈ N
8 do if (A→ aB) ∈ P
9 then E ← E ∪ {(A, a, B)}

10 if (S → ε) < P
11 then F ← {Z}
12 else F ← {Z, S }

As in the case of algorithm R---, the running time is Θ(n2m),
where n is number of nonterminals and m the number of terminals. Loops in lines 3, 4 and 7
can be replaced by only one, which uses productions. The running time in this case is better
and is equal to Θ(p), if p is the number of productions. This algorithm is:

N---'(G,A)
1 E ← ∅
2 Q← N ∪ {Z}
3 for all (A→ u) ∈ P
4 do if u = a
5 then E ← E ∪ {(A, a,Z)}
6 if u = aB
7 then E ← E ∪ {(A, a, B)}
8 if (S → ε) < P
9 then F ← {Z}

10 else F ← {Z, S }

From theorems 2.10, 2.11 and 2.12 results that the class of regular languages coincides
with the class of languages accepted by NFA's and also with class of languages accepted by
DFA's. The result of these three theorems is illustrated in Fig. 2.10 and can be summarised
also in the following theorem.

Theorem 2.13 The following three class of languages are the same:
• the class of regular languages,
• the class of languages accepted by DFA's,
• the class of languages accepted by NFA's.

Operation on regular languages
It is known (see Theorem 2.8) that the set L3 of regular languages is closed under the regular
operations, that is if L1, L2 are regular languages, then languages L1 ∪ L2, L1L2 and L∗1 are
also regular. For regular languages are true also the following statements.

The complement of a regular language is also regular. This is easy to prove using au-
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Figure 2.10. Relations between regular grammars and �nite automata. To any regular grammar one may construct
an NFA which accepts the language generated by that grammar. Any NFA can be transformed in an equivalent
DFA. To any DFA one may construct a regular grammar which generates the language accepted by that DFA.
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Figure 2.11. Finite automata ε-moves.

tomata. Let L be a regular language and let A = (Q,Σ, E, {q0}, F) be a DFA which accepts
language L. It is easy to see that the DFA A = (Q,Σ, E, {q0},Q \ F) accepts language L. So,
L is also regular.

The intersection of two regular languages is also regular. Since L1 ∩ L2 = L1 ∪ L2, the
intersection is also regular.

The difference of two regular languages is also regular. Since L1 \ L2 = L1 ∩ L2, the
difference is also regular.

2.2.4. Finite automata with ε-moves
A �nite automaton with ε-moves (FA with ε-moves) extends NFA in such way that it may
have transitions on the empty input ε, i.e. it may change a state without reading any input
symbol. In the case of a FA with ε-moves A = (Q,Σ, E, I, F) for the set of transitions it is
true that E ⊆ Q × (

Σ ∪ {ε}) × Q.
The transition function of a FA with ε-moves is:

δ : Q × (
Σ ∪ {ε})→ P(Q), δ(p, a) = {q ∈ Q | (p, a, q) ∈ E} .

The FA with ε-moves in Fig. 2.11 accepts words of form uvw, where u ∈ {1}∗, v ∈ {0}∗
and w ∈ {1}∗.

Theorem 2.14 To any FA with ε-moves one may construct an equivalent NFA (without
ε-moves).

Let A = (Q,Σ, E, I, F) be an FA with ε-moves and we construct an equivalent NFA A =

(Q,Σ, E, I, F). The following algorithm determines sets F and E.
For a state q denote by Λ(q) the set of states (including even q) in which one may go
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from q using ε-moves only. This may be extended also to sets

Λ(S ) =
⋃

q∈S
Λ(q), ∀S ⊆ Q .

Clearly, for all q ∈ Q and S ⊆ Q both Λ(q) and Λ(S ) may be computed. Suppose in the
sequel that these are given.

The following algorithm determine the transitions using the transition function δ, which
is de�ned in line 5.

If |Q| = n and |Σ| = m,, then lines 2�6 show that the running time in worst case is
O(n2m).

E--(A,A)
1 F ← F ∪ {q ∈ I | Λ(q) ∩ F , ∅}
2 for all q ∈ Q
3 do for all a ∈ Σ

4 do ∆←
⋃

p∈Λ(q)
δ(p, a)

5 δ(q, a)← ∆ ∪

⋃

p∈∆
Λ(p)


6 E ← {(p, a, q), | p, q ∈ Q, a ∈ Σ, q ∈ δ(p, a)}

Example 2.15 Consider the FA with ε-moves in Fig. 2.11. The corresponding transition table is:

δ 0 1 ε

q0 ∅ {q0} {q1}
q1 {q1} ∅ {q2}
q2 ∅ {q2} ∅

Apply algorithm E--.
Λ(q0) = {q0, q1, q2}, Λ(q1) = {q1, q2}, Λ(q2) = {q2}
Λ(I) = Λ(q0), and its intersection with F is not empty, thus F = F ∪ {q0} = {q0, q2}.
(q0, 0) :

∆ = δ(q0, 0) ∪ δ(q1, 0) ∪ δ(q2, 0) = {q1}, {q1} ∪ Λ(q1) = {q1, q2}
δ(q0, 0) = {q1, q2}.

(q0, 1) :
∆ = δ(q0, 1) ∪ δ(q1, 1) ∪ δ(q2, 1) = {q0, q2}, {q0, q2} ∪ (Λ(q0) ∪ Λ(q2)) = {q0, q1, q2}
δ(q0, 1) = {q0, q1, q2}

(q1, 0) :
∆ = δ(q1, 0) ∪ δ(q2, 0) = {q1}, {q1} ∪ Λ(q1) = {q1, q2}
δ(q1, 0) = {q1, q2}

(q1, 1) :
∆ = δ(q1, 1) ∪ δ(q2, 1) = {q2}, {q2} ∪ Λ(q2) = {q2}
δ(q1, 1) = {q2}

(q1, 1) : ∆ = δ(q2, 0) = ∅
δ(q2, 0) = ∅
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Figure 2.12. NFA equivalent to FA with ε-moves given in Fig. 2.11.
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Figure 2.13. (a) Representation of an NFA. Initial states are represented by a circle with an arrow, �nal states by a
double circle. (b) Union of two NFA's.

(q2, 1) :
∆ = δ(q2, 1) = {q2}, {q2} ∪ Λ(q2) = {q2}
δ(q2, 1) = {q2}.

The transition table of NFA A is:

δ 0 1
q0 {q1, q2} {q0, q1, q2}
q1 {q1, q2} {q2}
q2 ∅ {q2}

and the transition graph is in Fig. 2.12.

De�ne regular operations on NFA: union, product and iteration. The result will be an
FA with ε-moves.

Operation will be given also by diagrams. An NFA is given as in Fig. 2.13(a). Initial
states are represented by a circle with an arrow, �nal states by a double circle.

Let A1 = (Q1,Σ1, E1, I1, F1) and A2 = (Q2,Σ2, E2, I2, F2) be NFA. The result of any
operation is a FA with ε-moves A = (Q,Σ, E, I, F). Suppose that Q1 ∩ Q2 = ∅ always. If
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Figure 2.14. (a) Product of two FA. (b) Iteration of an FA.

not, we can rename the elements of any set of states.
Union. A = A1 ∪ A2, where

Q = Q1 ∪ Q2 ∪ {q0},
Σ = Σ1 ∪ Σ2,
I = {q0},
F = F1 ∪ F2,
E = E1 ∪ E2 ∪

⋃

q∈I1∪I2

{(q0, ε, q)}.

For the result of the union see Fig. 2.13(b). The result is the same if instead of a single
initial state we choose as set of initial states the union I1∪I2. In this case the result automaton
will be without ε-moves. By the de�nition it is easy to see that L(A1 ∪ A2) = L(A1)∪ L(A2).

Product. A = A1 · A2, where
Q = Q1 ∪ Q2,
Σ = Σ1 ∪ Σ2,
F = F2,
I = I1,
E = E1 ∪ E2 ∪

⋃

p ∈ F1
q ∈ I2

{(p, ε, q)}

For the result automaton see Fig. 2.14(a). Here also L(A1 · A2) = L(A1)L(A2).

Iteration. A = A1
∗, where

Q = Q1 ∪ {q0},
Σ = Σ1,
F = F1 ∪ {q0},
I = {q0}
E = E1 ∪

⋃

p∈I1

{(q0, ε, p)} ∪
⋃

q ∈ F1
p ∈ I1

{(q, ε, p)} .

The iteration of an FA can be seen in Fig. 2.14(b). For this operation it is also true that
L(A∗1) =

(L(A1))∗.
The de�nition of these tree operations proves again that regular languages are closed

under the regular operations.
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Figure 2.15. Minimization of DFA.

2.2.5. Minimization of finite automata
A DFA A = (Q,Σ, E, {q0}, F) is called minimum state automaton if for any equivalent
complete DFA A′ = (Q′,Σ, E′, {q′0}, F′) it is true that |Q| ≤ |Q′|. We give an algorithm
which builds for any complete DFA an equivalent minimum state automaton.

States p and q of an DFA A = (Q,Σ, E, {q0}, F) are equivalent if for arbitrary word u
we reach from both either �nal or non�nal states, that is

p ≡ q if for any word u ∈ Σ∗


p u−→ r, r ∈ F and q u−→ s, s ∈ F or
p u−→ r, r < F and q u−→ s, s < F .

If two states are not equivalent, then they are distinguishable. In the following algorithm
the distinguishable states will be marked by a star, and equivalent states will be merged.
The algorithm will associate list of pair of states with some pair of states expecting a later
marking by a star, that is if we mark a pair of states by a star, then all pairs on the associated
list will be also marked by a star. The algorithm is given for DFA without inaccessible states.
The used DFA is complete, so δ(p, a) contains exact one element, function elem de�ned on
page 81, which gives the unique element of the set, will be also used here.
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Figure 2.16. Minimum automaton equivalent with DFA in Fig. 2.15.

A-(A)
1 mark with a star all pairs of states {p, q} for which

p ∈ F and q < F or p < F and q ∈ F,
2 associate an empty list with each unmarked pair {p, q},
3 for all unmarked pair of states {p, q} and for all symbol a ∈ Σ

examine pairs of states {elem(
δ(p, a)), elem(

δ(q, a))},
if any of these pairs is marked,
then mark also pair {p, q} with all the elements on the list before

associated with pair {p, q},
else, if all the above pairs are unmarked,

then put pair {p, q} on each list associated with pairs{elem(
δ(p, a)), elem(

δ(q, a))}, unless δ(p, a) = δ(q, a),
4 merge all unmarked (equivalent) pairs.

After �nishing the algorithm, if a cell of the table does not contain a star, then the states
corresponding to its row and column index, are equivalent and may be merged. Merging
states is continued until it is possible. We can say that the equivalence relation decomposes
the set of states in equivalence classes, and the states in such a class may be all merged.

Remark. The above algorithm can be used also in the case of an DFA which is not
complete, that is there are states for which does not exist transition. Then a pair {∅, {q}} may
occur, and if q is a �nal state, consider this pair marked.

Example 2.16 Let be the DFA in Fig. 2.15. We will use a table for marking pairs with a star. Marking
pair {p, q} means putting a star in the cell corresponding to row p and column q (or row q and column
p).

First we mark pairs {q2, q0}, {q2, q1}, {q2, q3}, {q2, q4} and {q2, q5} (because q2 is the single �nal
state). Then consider all unmarked pairs and examine them as the algorithm requires. Let us begin with
pair {q0, q1}. Associate with it pairs {elem(

δ(q0, 0)), elem(
δ(q1, 0))}, {elem(

δ(q0, 1)), elem(
δ(q1, 1))},
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that is {q1, q4}, {q4, q2}. Because pair {q4, q2} is already marked, mark also pair {q0, q1}.
In the case of pair {q0, q3} the new pairs are {q1, q5} and {q4, q4}. With pair {q1, q5} associate pair

{q0, q3} on a list, that is
{q1, q5} −→ {q0, q3} .

Now continuing with {q1, q5} one obtain pairs {q4, q4} and {q2, q2}, with which nothing are associated
by algorithm.

Continue with pair {q0, q4}. The associated pairs are {q1, q4} and {q4, q3}. None of them are mar-
ked, so associate with them on a list pair {q0, q4}, that is

{q1, q4} −→ {q0, q4}, {q4, q3} −→ {q0, q4} .
Now continuing with {q1, q4} we get the pairs {q4, q4} and {q2, q3}, and because this latter is marked
we mark pair {q1, q4} and also pair {q0, q4} associated to it on a list. Continuing we will get the table in
Fig. 2.15, that is we get that q0 ≡ q3 and q1 ≡ q5. After merging them we get an equivalent minimum
state automaton (see Fig. 2.16).

2.2.6. Pumping lemma for regular languages
The following theorem, called pumping lemma for historical reasons, may be efficiently used
to prove that a language is not regular. It is a sufficient condition for a regular language.
Theorem 2.15 (pumping lemma). For any regular language L there exists a natural num-
ber n ≥ 1 (depending only on L), such that any word u of L with length at least n may be
written as u = xyz such that

(1) |xy| ≤ n,
(2) |y| ≥ 1,
(3) xyiz ∈ L for all i = 0, 1, 2, . . ..

Proof. If L is a regular language, then there is such an DFA which accepts L (by theorems
2.12 and 2.10). Let A = (Q,Σ, E, {q0}, F) be this DFA, so L = L(A). Let n be the number of
its states, that is |Q| = n. Let u = a1a2 . . . am ∈ L and m ≥ n. Then, because the automaton
accepts word u, there are states q0, q1, . . . , qm and walk

q0
a1−→ q1

a2−→ q2
a3−→ · · · am−1−→ qm−1

am−→ qm, qm ∈ F.
Because the number of states is n and m ≥ n, by the pigeonhole principle3 states

q0, q1, . . . , qm can not all be distinct (see Fig. 2.17), there are at least two of them which
are equal. Let q j = qk, where j < k and k is the least such index. Then j < k ≤ n. Decom-
pose word u as:

x = a1a2 . . . a j
y = a j+1a j+2 . . . ak
z = ak+1ak+2 . . . am.

This decomposition immediately yields to |xy| ≤ n and |y| ≥ 1. We will prove that xyiz ∈ L
for any i.
Because u = xyz ∈ L, there exists an walk

q0
x−→ q j

y−→ qk
z−→ qm, qm ∈ F,

3Pigeonhole principle: If we have to put more than k objects into k boxes, then at least two boxes will contain at
least two objects.
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Figure 2.17. Sketch of DFA used in the proof of the pumping lemma.

and because of q j = qk, this may be written also as

q0
x−→ q j

y−→ q j
z−→ qm, qm ∈ F .

From this walk q j
y−→ q j can be omitted or can be inserted many times. So, there are the

following walks:
q0

x−→ q j
z−→ qm, qm ∈ F ,

q0
x−→ q j

y−→ q j
y−→ . . .

y−→ q j
z−→ qm, qm ∈ F .

Therefore xyiz ∈ L for all i, and this proves the theorem.

Example 2.17 We use the pumping lemma to show that L1 = {akbk | k ≥ 1} is not regular. Assume that
L1 is regular, and let n be the corresponding natural number given by the pumping lemma. Because
the length of the word u = anbn is 2n, this word can be written as in the lemma. We prove that this
leads to a contradiction. Let u = xyz be the decomposition as in the lemma. Then |xy| ≤ n, so x and y
can contain no other letters than a, and because we must have |y| ≥ 1, word y contains at least one a.
Then xyiz for i , 1 will contain a different number of a's and b's, therefore xyiz < L1 for any i , 1.
This is a contradiction with the third assertion of the lemma, this is why that assumption that L1 is
regular, is false. Therefore L1 < L3.

Because the context-free grammar G1 = ({S }, {a, b}, {S → ab, S → aS b}, S ) generates language
L1, we have L1 ∈ L2. From these two follow that L3 ⊂ L2.

Example 2.18 We show that L2 =
{u ∈ {0, 1}∗ | n0(u) = n1(u)} is not regular. (n0(u) is the number of

0's in u, while n1(u) the number of 1's).
We proceed as in the previous example using here word u = 0n1n, where n is the natural number

associated by lemma to language L2.

Example 2.19 We prove, using the pumping lemma, that L3 =
{uu | u ∈ {a, b}∗} is not a regular

language. Let w = anbanb = xyz be, where n here is also the natural number associated to L3 by the
pumping lemma. From |xy| ≤ n we have that y contains no other letters than a, but it contains at least
one. By lemma we have xz ∈ L3, that is not possible. Therefore L3 is not regular.
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Pumping lemma has several interesting consequences.

Corollary 2.16 Regular language L is not empty if and only if there exists a word u ∈ L,
|u| < n, where n is the natural number associated to L by the pumping lemma.

Proof. The assertion in a direction is obvious: if there exists a word shorter than n in L, then
L , ∅. Conversely, let L , ∅ and let u be the shortest word in L. We show that |u| < n. If
|u| ≥ n, then we apply the pumping lemma, and give the decomposition u = xyz, |y| > 1 and
xz ∈ L. This is a contradiction, because |xz| < |u| and u is the shortest word in L. Therefore
|u| < n.

Corollary 2.17 There exists an algorithm that can decide if a regular language is or not
empty.

Proof. Assume that L = L(A), where A = (Q,Σ, E, {q0}, F) is a DFA. By consequence 2.16
and theorem 2.15 language L is not empty if and only if it contains a word shorter than n,
where n is the number of states of automaton A. By this it is enough to decide that there
is a word shorter than n which is accepted by automaton A. Because the number of words
shorter than n is �nite, the problem can be decided.

When we had given an algorithm for inaccessible states of a DFA, we remarked that the
procedure can be used also to decide if the language accepted by that automaton is or not
empty. Because �nite automata accept regular languages, we can consider to have already
two procedures to decide if a regular languages is or not empty. Moreover, we have a third
procedure, if we take into account that the algorithm for �nding productive states also can
be used to decide on a regular language when it is empty.

Corollary 2.18 A regular language L is in�nite if and only if there exists a word u ∈ L
such that n ≤ |u| < 2n, where n is the natural number associated to language L, given by
the pumping lemma.

Proof. If L is in�nite, then it contains words longer than 2n, and let u be the shortest word
longer than 2n in L. Because L is regular we can use the pumping lemma, so u = xyz, where
|xy| ≤ n, thus |y| ≤ n is also true. By the lemma u′ = xz ∈ L. But because |u′| < |u| and the
shortest word in L longer than 2n is u, we get |u′| < 2n. From |y| ≤ n we get also |u′| ≥ n.

Conversely, if there exists a word u ∈ L such that n ≤ |u| < 2n, then using the pumping
lemma, we obtain that u = xyz, |y| ≥ 1 and xyiz ∈ L for any i, therefore L is in�nite.

Now, the question is: how can we apply the pumping lemma for a �nite regular lan-
guage, since by pumping words we get an in�nite number of words? The number of states
of a DFA accepting language L is greater than the length of the longest word in L. So, in
L there is no word with length at least n, when n is the natural number associated to L by
the pumping lemma. Therefore, no word in L can be decomposed in the form xyz, where
|xyz| ≥ n, |xy| ≤ n, |y| ≥ 1, and this is why we can not obtain an in�nite number of words in
L.

2.2.7. Regular expressions
In this subsection we introduce for any alphabet Σ the notion of regular expressions over Σ

and the corresponding representing languages. A regular expression is a formula, and the
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x + y ≡ y + x
(x + y) + z ≡ x + (y + z)

(xy)z ≡ x(yz)
(x + y)z ≡ xz + yz
x(y + z) ≡ xy + xz

(x + y)∗ ≡ (x∗ + y)∗ ≡ (x + y∗)∗ ≡ (x∗ + y∗)∗

(x + y)∗ ≡ (xy∗)∗ ≡ (x∗y)∗ ≡ (x∗y∗)∗

(x∗)∗ ≡ x∗

x∗x ≡ xx∗

xx∗ + ε ≡ x∗

2.1. Table. Properties of regular expressions.

corresponding language is a language over Σ. For example, if Σ = {a, b}, then a∗, b∗, a∗ + b∗
are regular expressions over Σ which represent respectively languages {a}∗, {b}∗, {a}∗ ∪ {b}∗.
The exact de�nition is the following.

De�nition 2.19 De�ne recursively a regular expression over Σ and the language it repre-
sent.
• ∅ is a regular expression representing the empty language.
• ε is a regular expression representing language {ε}.
• If a ∈ Σ, then a is a regular expression representing language {a}.
• If x, y are regular expressions representing languages X and Y respectively, then (x +

y), (xy), (x∗) are regular expressions representing languages X∪Y, XY and X∗ respectively.
Regular expression over Σ can be obtained only by using the above rules a �nite number

of times.

Some brackets can be omitted in the regular expressions if taking into account the priority
of operations (iteration, product, union) the corresponding languages are not affected. For
example instead of ((x∗)(x + y)) we can consider x∗(x + y).

Two regular expressions are equivalent if they represent the same language, that is
x ≡ y if X = Y , where X and Y are the languages represented by regular expressions x and
y respectively. Table 2.1 shows some equivalent expressions.

We show that to any �nite language L can be associated a regular expression x which
represent language L. If L = ∅, then x = ∅. If L = {w1,w2, . . . ,wn}, then x = x1 +x2 + . . .+xn,
where for any i = 1, 2, . . . , n expression xi is a regular expression representing language {wi}.
This latter can be done by the following rule. If wi = ε, then xi = ε, else if wi = a1a2 . . . am,
where m ≥ 1 depends on i, then xi = a1a2 . . . am, where the brackets are omitted.

We prove the theorem of Kleene which refers to the relationship between regular lan-
guages and regular expression.

Theorem 2.20 (Kleene's theorem). Language L ⊆ Σ∗ is regular if and only if there exists
a regular expression over Σ representing language L.
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Figure 2.18. DFA from Example 2.20., to which regular expression is associated by Method 1.

Proof. First we prove that if x is a regular expression, then language L which represents x
is also regular. The proof will be done by induction on the construction of expression.

If x = ∅, x = ε, x = a,∀a ∈ Σ, then L = ∅, L = {ε}, L = {a} respectively. Since L is
�nite in all three cases, it is also regular.

If x = (x1 + x2), then L = L1 ∪ L2, where L1 and L2 are the languages which represent
the regular expressions x1 and x2 respectively. By the induction hypothesis languages L1
and L2 are regular, so L is also regular because regular languages are closed on union. Cases
x = (x1x2) and x = (x∗1) can be proved by similar way.

Conversely, we prove that if L is a regular language, then a regular expression x can be
associated to it, which represent exactly the language L. If L is regular, then there exists a
DFA A = (Q,Σ, E, {q0}, F) for which L = L(A). Let q0, q1, . . . , qn the states of the automaton
A. De�ne languages Rk

i j for all −1 ≤ k ≤ n and 0 ≤ i, j ≤ n. Rk
i j is the set of words, for which

automaton A goes from state qi to state q j without using any state with index greater than
k. Using transition graph we can say: a word is in Rk

i j, if from state qi we arrive to state q j
following the edges of the graph, and concatenating the corresponding labels on edges we
get exactly that word, not using any state qk+1, . . . qn. Sets Rk

i j can be done also formally:
R−1

i j = {a ∈ Σ | (qi, a, q j) ∈ E}, if i , j,
R−1

ii = {a ∈ Σ | (qi, a, qi) ∈ E} ∪ {ε},
Rk

i j = Rk−1
i j ∪ Rk−1

ik

(
Rk−1

kk

)∗
Rk−1

k j for all i, j, k ∈ {0, 1, . . . , n}.
We can prove by induction that sets Rk

i j can be described by regular expressions. Indeed,
if k = −1, then for all i and j languages Rk

i j are �nite, so they can be expressed by regular
expressions representing exactly these languages. Moreover, if for all i and j language Rk−1

i j
can be expressed by regular expression, then language Rk

i j can be expressed also by regular
expression, which can be corresponding constructed from regular expressions representing
languages Rk−1

i j , Rk−1
ik , Rk−1

kk and Rk−1
k j respectively, using the above formula for Rk

i j.
Finally, if F = {qi1 , qi2 , . . . , qip } is the set of �nal states of the DFA A, then L = L(A) =

Rn
0i1 ∪ Rn

0i2 ∪ . . . ∪ Rn
0ip

can be expressed by a regular expression obtained from expressions
representing languages Rn

0i1 ,R
n
0i2 , . . . ,R

n
0ip

using operation +.
Further on we give some procedures which associate DFA to regular expressions and

conversely regular expression to DFA.

Associating regular expressions to �nite automata
We present here three methods, each of which associate to a DFA the corresponding regular
expression.

Method 1. Using the result of the theorem of Kleene, we will construct the sets Rk
i j, and

write a regular expression which represent the language L = Rn
0i1 ∪ Rn

0i2 ∪ . . . ∪ Rn
0ip

, where



2.2. Finite automata and regular languages 99

q0 q1 q2 q3- - - -
?R

µ
1 0 1

1

0 0

Figure 2.19. DFA in example 2.21. to which a regular expression is associated by Method 1. The computation are
in the Table 2.2.

F = {qi1 , qi2 , . . . , qip } is the set of �nal states of the automaton.

Example 2.20 Consider the DFA in Fig. 2.18.
L(A) = R1

00 = R0
00 ∪ R0

01

(
R0

11

)∗
R0

10
R0

00 : 1∗ + ε ≡ 1∗
R0

01 : 1∗0
R0

11 : 11∗0 + ε + 0 ≡ (11∗ + ε)0 + ε ≡ 1∗0 + ε

R0
10 : 11∗

Then the regular expression corresponding to L(A) is 1∗ + 1∗0(1∗0 + ε)∗11∗ ≡ 1∗ + 1∗0(1∗0)∗11∗.

Example 2.21 Find a regular expression associated to DFA in Fig. 2.19. The computations are in
Table 2.2. The regular expression corresponding to R3

03 is 11 + (0 + 10)0∗1.

Method 2. Now we generalize the notion of �nite automaton, considering words instead
of letters as labels of edges. In such an automaton each walk determine a regular expression,
which determine a regular language. The regular language accepted by a generalized �nite
automaton is the union of regular languages determined by the productive walks. It is easy
to see that the generalized �nite automata accept regular languages.

The advantage of generalized �nite automata is that the number of its edges can be
diminuted by equivalent transformations, which do not change the accepted language, and
leads to a graph with only one edge which label is exactly the accepted language.

The possible equivalent transformations can be seen in Fig. 2.20. If some of the vertices
1, 2, 4, 5 on the �gure coincide, in the result they are merged, and a loop will arrive.

First, the automaton is transformed by corresponding ε-moves to have only one initial
and one �nal state. Then, applying the equivalent transformations until the graph will have
only one edge, we will obtain as the label of this edge the regular expression associated to
the automaton.

Example 2.22 In the case of Fig. 2.18 the result is obtained by steps illustrated in Fig. 2.21. This result
is (1 + 00∗1)∗, which represents the same language as obtained by Method 1 (See example 2.20.).

Example 2.23 In the case of Fig. 2.19 is not necessary to introduce new initial and �nal state. The
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k = −1 k = 0 k = 1 k = 2 k = 3

Rk
00 ε ε ε ε

Rk
01 1 1 1 1

Rk
02 0 0 0 + 10 (0 + 10)0∗

Rk
03 ∅ ∅ 11 11 + (0 + 10)0∗1 11 + (0 + 10)0∗1

Rk
11 ε ε ε ε

Rk
12 0 0 0 00∗

Rk
13 1 1 1 1 + 00∗1

Rk
22 0 + ε 0 + ε 0 + ε 0∗

Rk
23 1 1 1 0∗1

Rk
33 ε ε ε ε

2.2. Table. Determining a regular expression associated to DFA in Fig. 2.19 using sets Rk
i j.

steps of transformations can be seen in Fig. 2.22. The resulted regular expression can be written also
as (0 + 10)0∗1 + 11, which is the same as obtained by the previous method.

Method 3. The third method for writing regular expressions associated to �nite automata
uses formal equations. A variable X is associated to each state of the automaton (to different
states different variables). Associate to each state an equation which left side contains X,
its right side contains sum of terms of form Ya or ε, where Y is a variable associated to
a state, and a is its corresponding input symbol. If there is no incoming edge in the state
corresponding to X then the right side of the equation with left side X contains ε, otherwise
is the sum of all terms of the form Ya for which there is a transition labelled with letter a
from state corresponding to Y to the state corresponding to X. If the state corresponding to
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Figure 2.20. Possible equivalent transformations for �nding regular expression associated to an automaton.
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?
(1 + 00∗1)∗

Figure 2.21. Transformation of the �nite automaton in Fig. 2.18.

X is also an initial and a �nal state, then on right side of the equation with the left side X will
be also a term equal to ε. For example in the case of Fig. 2.19 let these variable X,Y,Z,U
corresponding to the states q0, q1, q2, q3. The corresponding equation are

X = ε
Y = X1
Z = X0 + Y0 + Z0
U = Y1 + Z1.
If an equation is of the form X = Xα + β, where α, β are arbitrary words not containing

X, then it is easy to see by a simple substitution that X = βα∗ is a solution of the equation.
Because these equations are linear, all of them can be written in the form X = Xα + β

or X = Xα, where α do not contain any variable. Substituting this in the other equations
the number of remaining equations will be diminuted by one. In such a way the system of
equation can be solved for each variable.
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q0 q3- 00∗1 + 100∗1 + 11 -

Figure 2.22. Steps of example 2.23..

The solution will be given by variables corresponding to �nal states summing the cor-
responding regular expressions.

In our example from the �rst equation we get Y = 1. From here Z = 0 + 10 +

Z0, or Z = Z0 + (0 + 10), and solving this we get Z = (0 + 10)0∗. Variable U can be
obtained immediately and we obtain U = 11 + (0 + 10)0∗1.

Using this method in the case of Fig. 2.18, the following equations will be obtained
X = ε + X1 + Y1
Y = X0 + Y0

Therefore
X = ε + (X + Y)1
Y = (X + Y)0.

Adding the two equations we will obtain
X + Y = ε+ (X + Y)(0 + 1), from where (considering ε as β and (0 + 1) as α) we get the

result
X + Y = (0 + 1)∗.

From here the value of X after the substitution is
X = ε + (0 + 1)∗1,

which is equivalent to the expression obtained using the other methods.

Associating �nite automata to regular expressions
Associate to the regular expression r a generalized �nite automaton:
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Figure 2.23. Possible transformations to obtain �nite automaton associated to a regular expression.

-- r

After this, use the transformations in Fig. 2.23 step by step, until an automaton with labels
equal to letters from Σ or ε will be obtained.

Example 2.24 Get started from regular expression ε+(0+1)∗1. The steps of transformations are in Fig.
2.24(a)-(e). The last �nite automaton (see Fig. 2.24(e)) can be done in a simpler form as can be seen
in Fig. 2.24(f). After eliminating the ε-moves and transforming in a deterministic �nite automaton the
DFA in Fig. 2.25 will be obtained, which is equivalent to DFA in Fig. 2.18.

Exercises
2.2-1 Give a DFA which accepts natural numbers divisible by 9.
2.2-2 Give a DFA which accepts the language containing all words formed by

a. an even number of 0's and an even number of 1's,
b. an even number of 0's and an odd number of 1's,
c. an odd number of 0's and an even number of 1's,
d. an odd number of 0's and an odd number of 1's.

2.2-3 Give a DFA to accept respectively the following languages:
L1 = {anbm | n ≥ 1,m ≥ 0}, L2 = {anbm | n ≥ 1,m ≥ 1},
L3 = {anbm | n ≥ 0,m ≥ 0}, L4 = {anbm | n ≥ 0,m ≥ 1}.

2.2-4 Give an NFA which accepts words containing at least two 0's and any number of 1's.
Give an equivalent DFA.
2.2-5 Minimize the DFA's in Fig. 2.26.
2.2-6 Show that the DFA in 2.27.(a) is a minimum state automaton.
2.2-7 Transform NFA in Fig. 2.27.(b) in a DFA, and after this minimize it.
2.2-8 De�ne �nite automaton A1 which accepts all words of the form 0(10)n (n ≥ 0), and
�nite automaton A2 which accepts all words of the form 1(01)n (n ≥ 0). De�ne the union
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Figure 2.24. Associating �nite automaton to regular expression ε + (0 + 1)∗1.

- - -

6 6

ª R

1

0

10

0 1

Figure 2.25. Finite automaton associated to regular expression ε + (0 + 1)∗1.



2.2. Finite automata and regular languages 105

-

+

6

j

Y

p q

r s

¾
a

a

b a b a

b

b

- -

+

6

1 2

3 4

¾
a

a

b a b a

b b-
U

K K

U ¾
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Figure 2.27. Finite automata for exercises 2.2-6. and 2.2-7..

automaton A1 ∪ A2, and then eliminate the ε-moves.
2.2-9 Associate to DFA in Fig. 2.28 a regular expression.
2.2-10 Associate to regular expression ab∗ba∗ + b + ba∗a a DFA.
2.2-11 Prove, using the pumping lemma, that none of the following languages are regular:

L1 =
{ancbn | n ≥ 0}, L2 =

{anbnan | n ≥ 0}, L3 =
{ap | p prím}

.
2.2-12 Prove that if L is a regular language, then {u−1 | u ∈ L} is also regular.
2.2-13 Prove that if L ⊆ Σ∗ is a regular language, then the following languages are also
regular.

pre(L) = {w ∈ Σ∗ | ∃u ∈ Σ∗,wu ∈ L}, suf(L) = {w ∈ Σ∗ | ∃u ∈ Σ∗, uw ∈ L}.
2.2-14 Show that the following languages are all regular.

- - - -
? ?

0,1

1 0 1

0,1

q0 q1 q2 q3

Figure 2.28. DFA for exercise 2.2-9..
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Figure 2.29. Pushdown automaton.

L1 = {abncdm | n > 0,m > 0},
L2 = {(ab)n | n ≥ 0},
L3 = {akn | n ≥ 0, k constant}.

2.3. Pushdown automata and context-free languages
In this section we deal with the pushdown automata and the class of languages � the
context-free languages � accepted by them.

As we have been seen in the section 2.1, a context-free grammar G = (N,T, P, S ) is one
with the productions of the form A → β, A ∈ N, β ∈ (N ∪ T )+. The production S → ε
is also permitted if S does not appear in right hand side of any productions. Language
L(G) = {u ∈ T | S ∗

=⇒
G

u} is the context-free language generated by grammar G.

2.3.1. Pushdown automata
We have been seen that �nite automata accept the class of regular languages. Now we get to
know a new kind of automata, the so-called pushdown automata, which accept context-free
languages. The pushdown automata differ from �nite automata mainly in that to have the
possibility to change states without reading any input symbol (i.e. to read the empty symbol)
and possess a stack memory, which uses the so-called stack symbols (See Fig. 2.29).

The pushdown automaton get a word as input, start to function from an initial state
having in the stack a special symbol, the initial stack symbol. While working, the pushdown
automaton change its state based on current state, next input symbol (or empty word) and
stack top symbol and replace the top symbol in the stack with a (possibly empty) word.

There are two type of acceptances. The pushdown automaton accepts a word by �nal
state when after reading it the automaton enter a �nal state. The pushdown automaton ac-
cepts a word by empty stack when after reading it the automaton empties its stack. We show
that these two acceptances are equivalent.

De�nition 2.21 A nondeterministic pushdown automaton is a system
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V = (Q,Σ,W, E, q0, z0, F),
where
• Q is the �nite, non-empty set of states
• Σ is the input alphabet,
• W is the stack alphabet,
• E ⊆ Q × (

Σ ∪ {ε}) ×W ×W∗ × Q is the set of transitions or edges,
• q0 ∈ Q is the initial state,
• z0 ∈ W is the start symbol of stack,
• F ⊆ Q is the set of �nal states.

A transition (p, a, z,w, q) means that if pushdown automaton V is in state p, reads from
the input tape letter a (instead of input letter we can also consider the empty word ε), and
the top symbol in the stack is z, then the pushdown automaton enters state q and replaces
in the stack z by word w. Writing word w in the stack is made by natural order (letters of
word w will be put in the stack letter by letter from left to right). Instead of writing transition
(p, a, z,w, q) we will use a more suggestive notation (p, (a, z/w), q).

Here, as in the case of �nite automata, we can de�ne a transition function

δ : Q × (Σ ∪ {ε}) ×W → P(W∗ × Q) ,

which associate to current state, input letter and top letter in stack pairs of the form (w, q),
where w ∈ W∗ is the word written in stack and q ∈ Q the new state.

Because the pushdown automaton is nondeterministic, we will have for the transition
function

δ(q, a, z) = {(w1, p1), . . . , (wk, pk)} (if the pushdown automaton reads an input letter and
moves to right), or

δ(q, ε, z) = {(w1, p1), . . . , (wk, pk)} (without move on the input tape).
A pushdown automaton is deterministic, if for any q ∈ Q and z ∈ W we have
• |δ(q, a, z)| ≤ 1, ∀a ∈ Σ ∪ {ε} and
• if δ(q, ε, z) , ∅, then δ(q, a, z) = ∅, ∀a ∈ Σ.
We can associate to any pushdown automaton a transition table, exactly as in the case

of �nite automata. The rows of this table are indexed by elements of Q, the columns by
elements from Σ ∪ {ε} and W (to each a ∈ Σ ∪ {ε} and z ∈ W will correspond a column). At
intersection of row corresponding to state q ∈ Q and column corresponding to a ∈ Σ ∪ {ε}
and z ∈ W we will have pairs (w1, p1), . . . , (wk, pk) if δ(q, a, z) = {(w1, p1), . . . , (wk, pk)}.

The transition graph, in which the label of edge (p, q) will be (a, z/w) corresponding to
transition (p, (a, z/w), q), can be also de�ned.

Example 2.25 V1 = ({q0, q1, q2}, {a, b}, {z0, z1}, E, q0, z0, {q0}). Elements of E are:
(q0, (a, z0/z0z1), q1

)
(q1, (a, z1/z1z1), q1

) (q1, (b, z1/ε), q2
)

(q2, (b, z1/ε), q2
) (q2, (ε, z0/ε), q0

)
.

The transition function:

δ(q0, a, z0) = {(z0z1, q1)}
δ(q1, a, z1) = {(z1z1, q1)} δ(q1, b, z1) = {(ε, q2)}
δ(q2, b, z1) = {(ε, q2)} δ(q2, ε, z0) = {(ε, q0)} .



108 2. Automata and Formal Languages

-

:

¾

¾

q0

q1

q2

Y

?

(a, z0/z0z1)

(ε, z0/ε)

(b, z1/ε)

(b, z1/ε)

(a, z1/z1z1)

Figure 2.30. Example of pushdown automaton.

The transition table:

Σ ∪ {ε} a b ε

W z0 z1 z1 z0

q0 (z0z1, q1)

q1 (z1z1, q1) (ε, q2)

q2 (ε, q2) (ε, q0)

Because for the transition function every set which is not empty contains only one element (e.g.
δ(q0, a, z0) = {(z0z1, q1)}), in the above table each cell contains only one element, And the set notation
is not used. Generally, if a set has more than one element, then its elements are written one under
other. The transition graph of this pushdown automaton is in Fig. 2.30.

The current state, the unread part of the input word and the content of stack constitutes
a con�guration of the pushdown automaton, i.e. for each q ∈ Q, u ∈ Σ∗ and v ∈ W∗ the
triplet (q, u, v) can be a con�guration.

If u = a1a2 . . . ak and v = x1x2 . . . xm, then the pushdown automaton can change its
con�guration in two ways:
• (q, a1a2 . . . ak, x1x2 . . . xm−1xm) =⇒ (p, a2a3 . . . ak, x1, x2 . . . xm−1w),

if (q, (a1, xm/w), p) ∈ E
• (q, a1a2 . . . ak, x1x2 . . . xm) =⇒ (p, a1a2 . . . ak, x1, x2 . . . xm−1w),

if (q, (ε, xm/w), p) ∈ E.
The re�exive and transitive closure of the relation =⇒ will be denoted by ∗

=⇒. Instead
of using =⇒, sometimes ` is considered.

How does work such a pushdown automaton? Getting started with the initial con�gura-
tion (q0, a1a2 . . . an, z0) we will consider all possible next con�gurations, and after this the
next con�gurations to these next con�gurations, and so on, until it is possible.
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De�nition 2.22 Pushdown automaton V accepts (recognizes) word u by �nal state if there
exist a sequence of con�gurations of V for which the following are true:
• the �rst element of the sequence is (q0, u, z0),
• there is a going from each element of the sequence to the next element, excepting the

case when the sequence has only one element,
• the last element of the sequence is (p, ε,w), where p ∈ F and w ∈ W∗.

Therefore pushdown automaton V accepts word u by �nal state, if and only if
(q0, u, z0) ∗

=⇒ (p, ε,w) for some w ∈ W∗ and p ∈ F. The set of words accepted by �-
nal state by pushdown automaton V will be called the language accepted by V by �nal state
and will be denoted by L(V).

De�nition 2.23 Pushdown automaton V accepts (recognizes) word u by empty stack if
there exist a sequence of con�gurations of V for which the following are true:
• the �rst element of the sequence is (q0, u, z0),
• there is a going from each element of the sequence to the next element,
• the last element of the sequence is (p, ε, ε) and p is an arbitrary state.

Therefore pushdown automaton V accepts a word u by empty stack if (q0, u, z0) ∗
=⇒

(p, ε, ε) for some p ∈ Q. The set of words accepted by empty stack by pushdown automaton
V will be called the language accepted by empty stack by V and will be denoted by Lε(V).

Example 2.26 Pushdown automaton V1 of Example 2.25. accepts the language {anbn | n ≥ 0} by �nal
state. Consider the derivation for words aaabbb and abab.

Word a3b3 is accepted by the considered pushdown automaton because
(q0, aaabbb, z0) =⇒ (q1, aabbb, z0z1) =⇒ (q1, abbb, z0z1z1) =⇒ (q1, bbb, z0z1z1z1)
=⇒ (q2, bb, z0z1z1) =⇒ (q2, b, z0z1) =⇒ (q2, ε, z0) =⇒ (q0, ε, ε) and because q0 is a �nal state the

pushdown automaton accepts this word. But the stack being empty, it accepts this word also by empty
stack.

Because the initial state is also a �nal state, the empty word is accepted by �nal state, but not by
empty stack.

To show that word abab is not accepted, we need to study all possibilities. It is easy to see that in
our case there is only a single possibility:

(q0, abab, z0) =⇒ (q1, bab, z0z1) =⇒ (q2, ab, z0) =⇒ (q0, ab, ε), but there is no further going, so
word abab is not accepted.

Example 2.27 The transition table of the pushdown automaton V2 =

({q0, q1}, {0, 1}, {z0, z1, z2}, E, q0, z0, ∅) is:

Σ ∪ {ε} 0 1 ε

W z0 z1 z2 z0 z1 z2 z0

q0 (z0z1, q0) (z1z1, q0) (z2z1, q0) (z0z2, q0) (z1z2, q0) (z2z2, q0) (ε, q1)
(ε, q1) (ε, q1)

q1 (ε, q1) (ε, q1) (ε, q1)
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- q0 q1

(0, z1/ε)
(1, z2/ε)
(ε, z0/ε)

(0, z1/ε)(0, z0/z0z1)
(0, z1/z1z1)
(0, z2/z2z1)

(1, z0/z0z2)
(1, z1/z1z2)
(1, z2/z2z2)

(1, z2/ε)
(ε, z0/ε)

-

Figure 2.31. Transition graph of the Example 2.27..

The corresponding transition graph can be seen in Fig. 2.31. Pushdown automaton V2 accepts the
language {uu−1 | u ∈ {0, 1}∗}. Because V2 is nemdeterministic, all the con�gurations obtained from the
initial con�guration (q0, u, z0) can be illustrated by a computation tree. For example the computation
tree associated to the initial con�guration (q0, 1001, z0) can be seen in Fig. 2.32. From this computation
tree we can observe that, because (q1, ε, ε) is a leaf of the tree, pushdown automaton V2 accepts word
1001 by empty stack. The computation tree in Fig. 2.33 shows that pushdown automaton V2 does not
accept word 101, because the con�gurations in leaves can not be continued and none of them has the
form (q, ε, ε).

Theorem 2.24 A language L is accepted by a nondeterministic pushdown automaton V1
by empty stack if and only if it can be accepted by a nondeterministic pushdown automaton
V2 by �nal state.

Proof. a) Let V1 = (Q,Σ,W, E, q0, z0, ∅) be the pushdown automaton which accepts
by empty stack language L. De�ne pushdown automaton V2 = (Q ∪ {p0, p},Σ,W ∪
{x}, E′, p0, x, {p}), where p, p0 < Q, , x < W and

E′ = E ∪
{(p0, (ε, x/xz0), q0

)} ∪
{(q, (ε, x/ε), p)

∣∣∣ q ∈ Q
}

Working of V2: Pushdown automaton V2 with an ε-move �rst goes in the initial state of V1,
writing z0 (the initial stack symbol of V1) in the stack (beside x). After this it is working as
V1. If V1 for a given word empties its stack, then V2 still has x in the stack, which can be
deleted by V2 using an ε-move, while a �nal state will be reached. V2 can reach a �nal state
only if V1 has emptied the stack.

b) Let V2 = (Q,Σ,W, E, q0, z0, F) be a pushdown automaton, which accepts language L
by �nal state. De�ne pushdown automaton V1 = (Q∪{p0, p},Σ,W ∪{x}, E′, p0, x, ∅), where
p0, p < Q, x < W and

E′ = E ∪
{(p0, (ε, x/xz0), q0

)} ∪
{(q, (ε, z/ε), p)

∣∣∣ q ∈ F, p ∈ Q, z ∈ W
}

∪
{(p, (ε, z/ε), p)

∣∣∣ p ∈ Q, z ∈ W ∪ {x}
}

Working V1: Pushdown automaton V1 with an ε-move writes in the stack beside x the initial
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(q0, 1001, z0)

(q0, 001, z0z2) (q1, 1001, ε)

(q0, 01, z0z2z1)

(q0, 1, z0z2z1z1) (q1, 1, z0z2)

(q0, ε, z0z2, z1z1z2) (q1, ε, z0)

(q1, ε, ε)

Figure 2.32. Computation tree to show acceptance of the word 1001 (see Example 2.27.).

(q0, 101, z0)

(q0, 01, z0z2) (q1, 101, ε)

(q0, 1, z0z2z1) (q1, 01, z0)

(q0, ε, z0z2z1z2)

Figure 2.33. Computation tree to show that the pushdown automaton in Example 2.27. does not accept word 101.

stack symbol z0 of V2, then works as V2, i.e reaches a �nal state for each accepted word.
After this V1 empties the stack by an ε-move. V1 can empty the stack only if V2 goes in a
�nal state.

The next two theorems prove that the class of languages accepted by nondeterministic
pushdown automata is just the set of context-free languages.
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Theorem 2.25 If G is a context-free grammar, then there exists such a nondeterministic
pushdown automaton V which accepts L(G) by empty stack, i.e. Lε(V) = L(G).

We outline the proof only. Let G = (N,T, P, S ) be a context-free grammar. De�ne pushdown
automaton V = ({q},T,N ∪ T, E, q, S , ∅), where q < N ∪ T, and the set E of transitions is:
• If there is in the set of productions of G a production of type A→ α, then let put in E

the transition (q, (ε, A/α−1), q),
• For any letter a ∈ T let put in E the transition (q, (a, a/ε), q).
If there is a production S → α in G, the pushdown automaton put in the stack the mirror

of α with an ε-move. If the input letter coincides with that in the top of the stack, then the
automaton deletes it from the stack. If in the top of the stack there is a nonterminal A, then
the mirror of right-hand side of a production which has A in its left-hand side will be put
in the stack. If after reading all letters of the input word, the stack will be empty, then the
pushdown automaton recognized the input word.

The following algorithm builds for a context-free grammar G = (N,T, P, S ) the push-
down automaton V = ({q},T,N ∪ T, E, q, S , ∅), which accepts by empty stack the language
generated by G.

F----(G,V)
1 for all production A→ α
2 do put in E the transition (q, (ε, A/α−1), q)
3 for all terminal a ∈ T
4 do put in E the transition (q, (a, a/ε), q)

If G has n productions and m terminals, then the number of step of the algorithm is
Θ(n + m).

Example 2.28 Let G = ({S , A}, {a, b}, {S → ε, S → ab, S → aAb, A → aAb, A → ab}, S ). Then
V = ({q}, {a, b}, {a, b, A, S }, E, q, S , ∅), with the following transition table.

Σ ∪ {ε} a b ε

W a b S A

(ε, q) (ε, q) (ε, q) (bAa, q)
q (ba, q) (ba, q)

(bAa, q)

Let us see how pushdown automaton V accepts word aabb, which in grammar G can be derived
in the following way:

S =⇒ aAb =⇒ aabb,
where productions S → aAb and A→ ab were used. Word is accepted by empty stack (see Fig. 2.34).

Theorem 2.26 For a nondeterministic pushdown automaton V there exists always a
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(q, aabb, S )

(q, aabb, ε) (q, aabb, bAa) (q, aabb, ba)

(q, abb, b)(q, abb, bA)

(q, abb, bbAa) (q, abb, bba)

(q, bb, bb)

(q, b, b)

(q, ε, ε)

(q, bb, bbA)

(q, bb, bbbAa) (q, bb, bbba)

Figure 2.34. Recognising a word by empty stack (see Example 2.28.).

context-free grammar G such that V accepts language L(G) by empty stack, i.e. Lε(V) =

L(G).

Instead of a proof we will give a method to obtain grammar G. Let V = (Q,Σ,W, E, q0, z0, ∅)
be the nondeterministic pushdown automaton in question.

Then G = (N,T, P, S ), where
N = {S } ∪ {S p,z,q | p, q ∈ Q, z ∈ W} and T = Σ.
Productions in P will be obtained as follows.
• For all state q put in P production S → S q0,z0,q.
• If (q, (a, z/zk . . . z2z1), p) ∈ E, where q ∈ Q, z, z1, z2, . . . zk ∈ W (k ≥ 1) and a ∈

Σ ∪ {ε}, put in P for all possible states p1, p2, . . . , pk productions
S q,z,pk → aS p,z1,p1 S p1,z2,p2 . . . S pk−1,zk ,pk .
• If (q, (a, z/ε), p) ∈ E, where p, q ∈ Q, z ∈ W, and a ∈ Σ ∪ {ε}, put in P production
S q,z,p → a.
The context-free grammar de�ned by this is an extended one, to which an equivalent

context-free language can be associated. The proof of the theorem is based on the fact that
to every sequence of con�gurations, by which the pushdown automaton V accepts a word,
we can associate a derivation in grammar G. This derivation generates just the word in
question, because of productions of the form S q,z,pk → aS p,z1,p1 S p1,z2,p2 . . . S pk−1,zk ,pk , which
were de�ned for all possible states p1, p2, . . . , pk. In Example 2.27. we show how can be
associated a derivation to a sequence of con�gurations. The pushdown automaton de�ned
in the example recognizes word 00 by the sequence of con�gurations

(q0, 00, z0) =⇒ (q0, 0, z0z1) =⇒ (q1, ε, z0) =⇒ (q1, ε, ε),
which sequence is based on the transitions(q0, (0, z0/z0z1), q0

),(q0, (0, z1/ε), q1
),
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(q1, (ε, z1/ε), q1
).

To these transitions, by the de�nition of grammar G, the following productions can be asso-
ciated

(1) S q0,z0,p2 −→ 0S q0,z1,p1 S p1,z0,p2 for all states p1, p2 ∈ Q,
(2) S q0,z1,q1 −→ 0,
(3) S q1,z0,q1 −→ ε.

Furthermore, for each state q productions S −→ S q0,z0,q were de�ned.
By the existence of production S −→ S q0,z0,q there exists the derivation S =⇒ S q0,z0,q,

where q can be chosen arbitrarily. Let choose in above production (1) state q to be equal to
p2. Then there exists also the derivation

S =⇒ S q0,z0,q =⇒ 0S q0,z1,p1 S p1,z0,q,
where p1 ∈ Q can be chosen arbitrarily. If p1 = q1, then the derivation

S =⇒ S q0,z0,q =⇒ 0S q0,z1,q1 S q1,z0,q =⇒ 00S q1,z0,q
will result. Now let q equal to q1, then

S =⇒ S q0,z0,q1 =⇒ 0S q0,z1,q1 S q1,z0,q1 =⇒ 00S q1,z0,q1 =⇒ 00,
which proves that word 00 can be derived used the above grammar.

The next algorithm builds for a pushdown automaton V = (Q,Σ,W, E, q0, z0, ∅) a
context-free grammar G = (N,T, P, S ), which generates the language accepted by push-
down automaton V by empty stack.

F-----(V,G)
1 for all q ∈ Q
2 do put in P production S → S q0,z0,q
3 for all (q, (a, z/zk . . . z2z1), p) ∈ E ¤ q ∈ Q, z, z1, z2, . . . zk ∈ W (k ≥ 1), a ∈ Σ ∪ {ε}
4 do for all states p1, p2, . . . , pk
5 do put in P productions S q,z,pk → aS p,z1,p1 S p1,z2,p2 . . . S pk−1,zk ,pk

6 for All (q(a, z/ε), p) ∈ E ¤ p, q ∈ Q, z ∈ W, a ∈ Σ ∪ {ε}
7 do put in P production S q,z,p → a

If the automaton has n states and m productions, then the above algorithm executes at
most n + mn + m steps, so in worst case the number of steps is O(nm).

Finally, without proof, we mention that the class of languages accepted by deterministic
pushdown automata is a proper subset of the class of languages accepted by nondeterminis-
tic pushdown automata. This points to the fact that pushdown automata behave differently
as �nite automata.

Example 2.29 As an example, consider pushdown automaton V from the Example 2.28.: V =

({q}, {a, b}, {a, b, A, S }, E, q, S , ∅). Grammar G is:
G = ({S , S a, S b, S S , S A, }, {a, b}, P, S ) ,

where for all z ∈ {a, b, S , A} instead of S q,z,q we shortly used S z. The transitions:
(q, (a, a/ε), q), (q, (b, b/ε), q) ,(q, (ε, S/ε), q), (q, (ε, S/ba), q), (q, (ε, S/bAa), q) ,(q, (ε, A/ba), q), (q, (ε, A/bAa), q) .

Based on these, the following productions are de�ned:
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S

a A

a A

a A b

a b

Figure 2.35. Derivation (or syntax) tree of word aaaabb.

S → S S
S a → a
S b → b
S S → ε | S aS b | S aS AS b
S A → S aS AS b | S aS b.

It is easy to see that S S can be eliminated, and the productions will be:
S → ε | S aS b | S aS AS b,

S A → S aS AS b | S aS b,

S a → a, S b → b,
and these productions can be replaced:

S → ε | ab | aAb,
A→ aAb | ab.

2.3.2. Context-free languages
Consider context-free grammar G = (N,T, P, S ). A derivation tree of G is a �nite, ordered,
labelled tree, which root is labelled by the the start symbol S , every interior vertex is labelled
by a nonterminal and every leaf by a terminal. If an interior vertex labelled by a nonterminal
A has k descendents, then in P there exists a production A → a1a2 . . . ak such that the
descendents are labelled by letters a1, a2, . . . ak. The result of a derivation tree is a word over
T , which can be obtained by reading the labels of the leaves from left to right. Derivation
tree is also called syntax tree.

Consider the context-free grammar G = ({S , A}, {a, b}, {S → aA, S → a, S → ε, A→
aA, A → aAb, A → ab, A → b}, S ). It generates language L(G) = {anbm | n ≥ m ≥ 0}.
Derivation of word a4b2 ∈ L(G) is:

S =⇒ aA =⇒ aaA =⇒ aaaAb =⇒ aaaabb.
In Fig. 2.35 this derivation can be seen, which result is aaaabb.

To every derivation we can associate a syntax tree. Conversely, to any syntax tree more
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than one derivation can be associated. For example to syntax tree in Fig. 2.35 the derivation
S =⇒ aA =⇒ aaAb =⇒ aaaAb =⇒ aaaabb

also can be associated.

De�nition 2.27 Derivation α0 =⇒ α1 =⇒ . . . =⇒ αn is a leftmost
derivation, if for all i = 1, 2, . . . , n − 1 there exist words ui ∈ T ∗,
βi ∈ (N ∪ T )∗ and productions (Ai → γi) ∈ P, for which we have

αi = uiAiβi and αi+1 = uiγiβi.

Consider grammar:
G = ({S , A}, {a, b, c}, {S → bA, S → bAS , S → a, A→ cS , A→ a}, S ).

In this grammar word bcbaa has two different leftmost derivations:
S =⇒ bA =⇒ bcS =⇒ bcbAS =⇒ bcbaS =⇒ bcbaa,
S =⇒ bAS =⇒ bcS S =⇒ bcbAS =⇒ bcbaS =⇒ bcbaa.

De�nition 2.28 A context-free grammar G is ambiguous if in L(G) there exists a word
with more than one leftmost derivation. Otherwise G is unambiguous.

The above grammar G is ambiguous, because word bcbaa has two different leftmost
derivations. A language can be generated by more than one grammar, and between them can
exist ambiguous and unambiguous too. A context-free language is inherently ambiguous,
if there is no unambiguous grammar which generates it.

Example 2.30 Examine the following two grammars.
Grammar G1 = ({S }, {a,+, ∗}, {S → S + S , S → S ∗ S , S → a}, S ) is ambiguous because

S =⇒ S + S =⇒ a + S =⇒ a + S ∗ S =⇒ a + a ∗ S =⇒ a + a ∗ S + S =⇒ a + a ∗ a + S
=⇒ a + a ∗ a + a and
S =⇒ S ∗ S =⇒ S + S ∗ S =⇒ a + S ∗ S =⇒ a + a ∗ S =⇒ a + a ∗ S + S =⇒ a + a ∗ a + S
=⇒ a + a ∗ a + a.

Grammar G2 = ({S , A}, {a, ∗,+}, {S → A + S | A, A→ A ∗ A | a}, S ) is unambiguous.
Can be proved that L(G1) = L(G2).

2.3.3. Pumping lemma for context-free languages
Like for regular languages there exists a pumping lemma also for context-free languages.

Theorem 2.29 (pumping lemma). For any context-free language L there exists a natural
number n (which depends only on L), such that every word z of the language longer than n
can be written in the form uvwxy and the following are true:

(1) |w| ≥ 1,
(2) |vx| ≥ 1,
(3) |vwx| ≤ n,
(4) uviwxiy is also in L for all i ≥ 0.

Proof. Let G = (N,T, P, S ) be a grammar without unit productions, which generates langu-
age L. Let m = |N| be the number of nonterminals, and let ` be the maximum of lengths of
right-hand sides of productions, i.e. ` = max {|α| | ∃A ∈ N : (A→ α) ∈ P}. Let n = `m+1 and
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S

A

A

T

T ′′

T ′

u v w x y

Figure 2.36. Decomposition of tree in the proof of pumping lemma.

z ∈ L(G), such that |z| > n. Then there exists a derivation tree T with the result z. Let h be
the height of T (the maximum of path lengths from root to leaves). Because in T all interior
vertices have at most ` descendents, T has at most `h leaves, i.e. |z| ≤ `h. On the other hand,
because of |z| > `m+1, we get that h > m + 1. From this follows that in derivation tree T there
is a path from root to a leave in which there are more than (m + 1) vertices. Consider such a
path. Because in G the number of nonterminals is m and on this path vertices different from
the leaf are labelled with nonterminals, by the pigeonhole principle, it must be a nonterminal
on this path which occurs at least twice.

Let us denote by A the nonterminal being the �rst on this path from root to the leaf
which �rstly repeat. Denote by T ′ the subtree, which root is this occurrence of A. Similarly,
denote by T ′′ the subtree, which root is the second occurrence of A on this path. Let w
be the result of the tree T ′. Then the result of T ′′ is in form vwx, while of T in uvwxy.
Derivation tree T with this decomposition of z can be seen in Fig. 2.36. We show that this
decomposition of z satis�es conditions (1)�(4) of lemma.

Because in P there are no ε-productions (except maybe the case S → ε), we have
|w| ≥ 1. Furthermore, because each interior vertex of the derivation tree has at least two
descendents (namely there are no unit productions), also the root of T ′′ has, hence |vx| ≥ 1.
Because A is the �rst repeated nonterminal on this path, the height of T ′′ is at most m + 1,
and from this |vwx| ≤ `m+1 = n results.

After eliminating from T all vertices of T ′′ excepting the root, the result of obtained
tree is uAy, i.e. S

∗
=⇒

G
uAy.

Similarly, after eliminating T ′ we get A
∗

=⇒
G

vAx, and �nally because of the de�nition

of T ′ we get A
∗

=⇒
G

w. Then S
∗

=⇒
G

uAy, A
∗

=⇒
G

vAx and A
∗

=⇒
G

w. Therefore

S
∗

=⇒
G

uAy
∗

=⇒
G

uwy and S
∗

=⇒
G

uAy
∗

=⇒
G

uvAxy
∗

=⇒
G

. . .
∗

=⇒
G

uviAxiy
∗

=⇒
G

uviwxiy for all



118 2. Automata and Formal Languages

i ≥ 1. Therefore, for all i ≥ 0 we have S
∗

=⇒ uviwxiy, i.e. for all i ≥ 0 uviwxiy ∈ L(G) .
Now we present two consequences of the lemma.

Corollary 2.30 L2 ⊂ L1.

Proof. This consequence states that there exists a context-sensitive language which is not
context-free. To prove this it is sufficient to �nd a context-sensitive language for which the
lemma is not true. Let this language be L = {ambmcm | m ≥ 1}.

To show that this language is context-sensitive it is enough to give a convenient gram-
mar. In Example 2.2. both grammars are extended context-sensitive, and we know that to
each extended grammar of type i an equivalent grammar of the same type can be associated.

Let n be the natural number associated to L by lemma, and consider the word z = anbncn.
Because of |z| = 3n > n, if L is context-free z can be decomposed in z = uvwxy such that
conditions (1)�(4) are true. We show that this leads us to a contradiction.

Firstly, we will show that word v and x can contain only one type of letters. Indeed if
either v or x contain more than one type of letters, then in word uvvwxxy the order of the
letters will be not the order a, b, c, so uvvwxxy < L(G), which contradicts condition (4) of
lemma.

If both v and x contain at most one type of letters, then in word uwy the number of
different letters will be not the same, so uwy < L(G). This also contradicts condition (4) in
lemma. Therefore L is not context-free.

Corollary 2.31 The class of context-free languages is not closed under the intersection.

Proof. We give two context-free languages which intersection is not context-free. Let N =

{S , A, B}, T = {a, b, c} and
G1 = (N,T, P1, S ) where P1 :

S → AB,
A→ aAb | ab,
B→ cB | c,

and G2 = (N,T, P2, S ), where P2 :
S → AB,
A→ Aa | a,
B→ bBc | bc.

Languages L(G1) = {anbncm | n ≥ 1,m ≥ 1} and L(G2) = {anbmcm | n ≥ 1,m ≥ 1} are
context-free. But

L(G1) ∩ L(G2) = {anbncn | n ≥ 1}
is not context-free (see the proof of the Consequence 2.30).

2.3.4. Normal forms of the context-free languages
In the case of arbitrary grammars the normal form was de�ned (see page 68) as grammars
with no terminals in the left-hand side of productions. The normal form in the case of the
context-free languages will contains some restrictions on the right-hand sides of producti-
ons. Two normal forms (Chomsky and Greibach) will be discussed.
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Chomsky normal form

De�nition 2.32 A context-free grammar G = (N,T, P, S ) is in Chomsky normal form, if all
productions have form A→ a or A→ BC , where A, B,C ∈ N, a ∈ T.

Example 2.31 Grammar G = ({S , A, B,C}, {a, b}, {S → AB, S → CB, C → AS , A→ a, B→ b}, S )
is in Chomsky normal form and L(G) = {anbn | n ≥ 1}.

To each ε-free context-free language can be associated an equivalent grammar is
Chomsky normal form. The next algorithm transforms an ε-free context-free grammar
G = (N,T, P, S ) in grammar G′ = (N′,T, P′, S ) which is in Chomsky normal form.

C--(G,G')
1 N′ ← N

2 eliminate unit productions, and let P′ the new set of productions
(see algorithm E-- on page 67)

3 in P′ replace in each production with at least two letters in right-hand side
all terminals a by a new nonterminal A, and add this nonterminal to N′
and add production A→ a to P′

4 replace all productions B→ A1A2 . . . Ak, where k ≥ 3 and A1, A2, . . . , Ak ∈ N,
by the following:

B → A1C1,
C1 → A2C2,
. . .
Ck−3 → Ak−2Ck−2,
Ck−2 → Ak−1Ak,

where C1,C2, . . . ,Ck−2 are new nonterminals, and add them to N′.

Example 2.32 Let G = ({S ,D}, {a, b, c}, {S → aS c, S → D, D → bD, D → b}, S ). It is easy to
see that L(G) = {anbmcn | n ≥ 0,m ≥ 1}. Steps of transformation to Chomsky normal form are the
following:
Step 1: N′ = {S ,D}
Step 2: After eliminating the unit production S → D the productions are:

S → aS c | bD | b,
D→ bD | b.

Step 3: We introduce three new nonterminals because of the three terminals in productions. Let these
be A, B,C. Then the production are:

S → AS C | BD | b,
D→ BD | b,
A→ a,
B→ b,
C → c.

Step 4: Only one new nonterminal (let this E) must be introduced because of a single production with
three letters in the right-hand side. Therefore N′ = {S , A, B,C,D, E}, and the productions in P′ are:

S → AE | BD | b,
D→ BD | b,
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A→ a,
B→ b,
C → c,
E → S C.

All these productions are in required form.

Greibach normal form

De�nition 2.33 A context-free grammar G = (N,T, P, S ) is in Greibach normal form if
all production are in the form A→ aw, where A ∈ N, a ∈ T, w ∈ N∗.

Example 2.33 Grammar G = ({S , B}, {a, b}, {S → aB, S → aS B, B → b}, S ) is in Greibach normal
form and L(G) = {anbn | n ≥ 1}.

To each ε-free context-free grammar an equivalent grammar in Greibach normal form can
be given. We give and algorithm which transforms a context-free grammar G = (N,T, P, S )
in Chomsky normal form in a grammar G′ = (N′,T, P′, S ) in Greibach normal form.

First, we give an order of the nonterminals: A1, A2, . . . , An, where A1 is the start symbol.
The algorithm will use the notations x ∈ N′+, α ∈ T N′∗ ∪ N′+.

G--(G,G')
1 N′ ← N
2 P′ ← P
3 for i← 2 to n ¤ Case Ai → A jx, j < i
4 do for j← 1 to i − 1
5 do for all productions Ai → A jx and A j → α (where α has no A j as �rst letter)

in P′ productions Ai → αx,
delete from P′ productions Ai → A jx

6 if there is a production Ai → Aix ¤ Case Ai → Aix
7 then put in N′ the new nonterminal Bi,

for all productions Ai → Aix put in P′ productions Bi → xBi and Bi → x,
delete from P′ production Ai → Aix,
for all production Ai → α (where Ai is not the �rst letter of α)
put in P′ production Ai → αBi

8 for i← n − 1 downto 1 ¤ Case Ai → A jx, j > i
9 do for j← i + 1 to n

10 do for all productions Ai → A jx and A j → α
put in P′ production Ai → αx and
delete from P′ productions Ai → A jx,

11 for i← 1 to n ¤ Case Bi → A jx
12 do for j← 1 to n
13 do for all productions Bi → A jx and A j → α

put in P′ production Bi → αx and
delete from P′ productions Bi → A jx
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The algorithm �rst transform productions of the form Ai → A jx, j < i such that
Ai → A jx, j ≥ i or Ai → α, where this latter is in Greibach normal form. After this,
introducing a new nonterminal, eliminate productions Ai → Aix, and using substitutions all
production of the form Ai → A jx, j > i and Bi → A jx will be transformed in Greibach
normal form.

Example 2.34 Transform productions in Chomsky normal form
A1 → A2A3 | A2A4
A2 → A2A3 | a
A3 → A2A4 | b
A4 → c

in Greibach normal form.
Steps of the algorithm:
3�5: Production A3 → A2A4 must be transformed. For this production A2 → a is appropriate. Put

A3 → aA4 in the set of productions and eliminate A3 → A2A4.
The productions will be:

A1 → A2A3 | A2A4
A2 → A2A3 | a
A3 → aA4 | b
A4 → c

6-7: Elimination of production A2 → A2A3 will be made using productions:
B2 → A3B2
B2 → A3
A2 → aB2

Then, after steps 6�7. the productions will be:
A1 → A2A3 | A2A4
A2 → aB2 | a
A3 → aA4 | b
A4 → c
B2 → A3B2 | A3

8�10: We make substitutions in productions with A1 in left-hand side. The results is:
A1 → aA3 | aB2A3 | aA4 | aB2A4

11�13: Similarly with productions with B2 in left-hand side:
B2 → aA4B2 | aA3A4B2 | aA4 | aA3A4

After the elimination in steps 8�13 of productions in which substitutions were made, the follo-
wing productions, which are now in Greibach normal form, result:

A1 → aA3 | aB2A3 | aA4 | aB2A4
A2 → aB2 | a
A3 → aA4 | b
A4 → c
B2 → aA4B2 | aA3A4B2 | aA4 | aA3A4

Example 2.35 Language
L =

{anbkcn+k | n ≥ 0, k ≥ 0, n + k > 0}

can be generated by grammar
G =

{{S ,R}, {a, b, c}, {S → aS c, S → ac, S → R,R→ bRc, R→ bc}, S }

First, will eliminate the single unit production, and after this we will give an equivalent grammar
in Chomsky normal form, which will be transformed in Greibach normal form.
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Productions after the elimination of production S → R:
S → aS c | ac | bRc | bc
R→ bRc | bc.

We introduce productions A → a, B → b,C → c, and replace terminals by the corresponding nonter-
minals:

S → AS C | AC | BRC | BC,
R→ BRC | BC,
A→ a, B→ b, C → c.

After introducing two new nonterminals (D, E):
S → AD | AC | BE | BC,
D→ S C,
E → RC,
R→ BE | BC,
A→ a, B→ b, C → c.

This is now in Chomsky normal form. Replace the nonterminals to be letters Ai as in the algorithm.
Then, after applying the replacements

S replaced by A1, A replaced by A2, B replaced by A3, C replaced by A4, D replaced by A5,
E replaced by A6, R replaced by A7,

our grammar will have the productions:
A1 → A2A5 | A2A4 | A3A6 | A3A4,

A2 → a, A3 → b, A4 → c,
A5 → A1A4,

A6 → A7A4,

A7 → A3A6 | A3A4.

In steps 3�5 of the algorithm the new productions will occur:
A5 → A2A5A4 | A2A4A4 | A3A6A4 | A3A4A4 then
A5 → aA5A4 | aA4A4 | bA6A4 | bA4A4
A7 → A3A6 | A3A4, then
A7 → bA6 | bA4.

Therefore
A1 → A2A5 | A2A4 | A3A6 | A3A4,

A2 → a, A3 → b, A4 → c,
A5 → aA5A4 | aA4A4 | bA6A4 | bA4A4
A6 → A7A4,

A7 → bA6 | bA4.

Steps 6�7 will be skipped, because we have no left-recursive productions. In steps 8�10 after the
appropriate substitutions we have:

A1 → aA5 | aA4 | bA6 | bA4,

A2 → a,
A3 → b,
A4 → c,
A5 → aA5A4 | aA4A4 | bA6A4 | bA4A4
A6 → bA6A4 | bA4A4,

A7 → bA6 | bA4.

Exercises
2.3-1 Give pushdown automata to accept the following languages:

L1 =
{ancbn | n ≥ 0},

L2 =
{anb2n | n ≥ 1},
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L3 =
{a2nbn | n ≥ 0} ∪ {anb2n | n ≥ 0},

2.3-2 Give a context-free grammar to generate language L = {anbncm | n ≥ 0,m ≥ 0}, and
transform it in Chomsky and Greibach normal forms. Give a pushdown automaton which
accepts L.
2.3-3 What languages are generated by the following context-free grammars?

G1 =
({S }, {a, b}, {S → S S a, → b}, S )

, G2 =
({S }, {a, b}, {S → S aS , → b}, S )

2.3-4 Give a context-free grammar to generate words with an equal number of letters a and
b.
2.3-5 Prove, using the pumping lemma, that a language which words contains an equal
number of letters a, b and c can not be context-free.
2.3-6 Let the grammar G = (V,T, P, S ), where

V = {S },
T = {if, then, else, a, c},
P = {S → if a then S, S → if a then S else S, S → c},

Show that word if a then if a then c else c has two different leftmost derivations.
2.3-7 Prove that if L is context-free, then L−1 = {u−1 | u ∈ L} is also context-free.

Problems

2-1. Linear grammars
A grammar G = (N,T, P, S ) which has productions only in the form A → u1Bu2 or A → u,
where A, B ∈ N, u, u1, u2 ∈ T ∗, is called a linear grammar. If in a linear grammar all
production are of the form A → Bu or A → v, then it is called a left-linear grammar. Prove
that the language generated by a left-linear grammar is regular.
2-2. Operator grammars

An ε-free context-free grammar is called operator grammar if in the right-hand side of
productions there are no two successive nonterminals. Show that, for all ε-free context-free
grammar an equivalent operator grammar can be built.
2-3. Complement of context-free languages

Prove that the class of context-free languages is not closed on complement.

Chapter notes
In the de�nition of �nite automata instead of transition function we have used the transition
graph, which in many cases help us to give simpler proofs.

There exist a lot of classical books on automata and formal languages. We mention from
these the following: two books of Aho and Ullman [1, 2] in 1972 and 1973, book of Gécseg
and Peák [17] in 1972, two books of Salomaa [53, 54] in 1969 and 1973, a book of Hopcroft
and Ullman [26] in 1979, a book of Harrison [24] in 1978, a book of Manna [41], which
in 1981 was published also in Hungarian. We notice also a book of Sipser [60] in 1997
and a monograph of Rozenberg and Salomaa [52]. In a book of Lothaire (common name
of French authors) [38] on combinatorics of words we can read on other types of automata.
Paper of Giammarresi and Montalbano [21] generalise the notion of �nite automata. A new
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monograph is of Hopcroft, Motwani and Ullman [25]. In German we recommend the student
book of Asteroth and Baier [5]. The concise description of the transformation in Greibach
normal form is based on this book.

Other books in English: : [7, 9, 12, 28, 31, 34, 37, 42, 44, 58, 59, 65, 66].
At the end of the chapter on compilers another books on the subject are mentioned.
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5. Recurrences

The recursive de�nition of the Fibonacci numbers is well-known: if Fn is the nth Fibonacci
number, then

F0 = 0, F1 = 1 ,

Fn+2 = Fn+1 + Fn, if n ≥ 0 .

We are interested in an explicit form of the numbers Fn for all n natural numbers. Actually,
the problem is to solve an equation where the unknown is given recursively, in which case
the equation is called a recurrence equation. The solution can be considered as a function
over natural numbers, because Fn is de�ned for all n. Such recurrence equations are also
known as difference equations, but could be named as discrete differential equations for
their similarities to differential equations.

De�nition 5.1 A kthth order recurrence equation, (k ≥ 1) is an equation of the form

f (xn, xn+1, . . . , , xn+k) = 0, n ≥ 0, (5.1)

where xn must be given in an explicit form.

For a unique determination of xn, k initial values must be given. Usually these values are
x0, x1, . . . , xk−1. These can be considered as initial conditions. In the case of the equation
for Fibonacci-numbers, which is of second order, two initial values must be given.

The sequence xn = g(n) satisfying equation (5.1) and the corresponding initial con-
ditions is called a particular solution. If all particular solutions of equation (5.1) can be
obtained from the sequence xn = h(n,C1,C2, . . . ,Ck), by adequately choosing of the cons-
tants C1,C2, . . . ,Ck, then this sequence x is a general solution.

Solving recurrence equations is not an easy task. In the chapter we will discuss methods
which can be used in special cases. For simplicity of writing we will use the notation xn
instead of x(n) as it appears in several books (sequences can be considered as functions over
natural numbers).

The chapter is divided into three sections. In section 5.1 we deal with solving linear
recurrence equations, in section 5.2 with generating functions and their use in solving re-
currence equations and in section 5.3 we focus our attention on numerical solution of recur-
rence equations.
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5.1. Linear recurrence equations
If the recurrence equation is of the form

f0(n)xn + f1(n)xn+1 + · · · + fk(n)xn+k = f (n), n ≥ 0,

where f , f0, f1, . . . , fk are functions de�ned over natural numbers, f0, fk , 0, and xn must
be given explicitly, then the recurrence equation is linear. If f is the zero function, then the
equation is homogeneous, otherwise nonhomogeneous. If all the functions f0, f1, . . . , fk are
constant, the equation is called a linear recurrence equation with constant coefficients.

5.1.1. Linear homogeneous equations with constant coefficients
Let the equation be

a0xn + a1xn+1 + · · · + ak xn+k = 0, n ≥ k , (5.2)

where a0, a1, . . . , ak are real constants, a0, ak , 0, k ≥ 1. If k initial conditions are given
(usually x0, x1, . . . , xk−1), then the general solution of this equation can be uniquely given.

To solve the equation let us consider its characteristic equation

a0 + a1r + · · · + ak−1rk−1 + akrk = 0 , (5.3)

a polynomial equation with real coefficients. This equation has k roots in the �eld of comp-
lex numbers. It can easily be seen after a simple substitution that if r0 is a real solution of
the characteristic equation, then C0rn

0 is a solution of (5.2), for arbitrary C0.
The general solution of equation (5.2) is

xn = C1x(1)
n + C2x(2)

n + · · · + Ck x(k)
n ,

where x(i)
n (i = 1, 2, . . . , k) are the linearly independent solutions of equation (5.2). The

constants C1,C2, . . . ,Ck can be determined from the initial conditions by solving a system
of k equations.

The linearly independent solutions are supplied by the roots of the characteristic equa-
tion by the following way. A fundamental solution of equation (5.2) can be associated with
each root of the characteristic equation. Let us consider the following cases.

Distinct real roots
Let r1, r2, . . . , rp be distinct real roots of the characteristic equation. Then

rn
1, rn

2, . . . , rn
p

are solutions of equation (5.2), and

C1rn
1 + C2rn

2 + · · · + Cprn
p (5.4)

is also a solution, for arbitrary constants C1, C2, . . . , Cp. If p = k, then (5.4) is the general
solution of the recurrence equation.
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Example 5.1 Solve the recurrence equation

xn+2 = xn+1 + xn, x0 = 0, x1 = 1.

The corresponding characteristic equation is

r2 − r − 1 = 0 ,

with the solutions
r1 =

1 +
√

5
2 , r2 =

1 − √5
2 .

These are distinct real solutions, so the general solution of the equation is

xn = C1

1 +
√

5
2


n

+ C2

1 − √5
2


n

.

The constants C1 and C2 can be determined using the initial conditions. From x0 = 0, x1 = 1 the
following system of equations can be obtained.

C1 + C2 = 0 ,

C1
1 +
√

5
2 + C2

1 − √5
2 = 1 .

The solution of this system of equations is C1 = 1/
√

5, C2 = −1/
√

5 . Therefore the general solution
is

xn =
1√
5

1 +
√

5
2


n

− 1√
5

1 − √5
2


n

,

which is the nth Fibonacci number Fn.

Multiple real roots
Let r be a real root of the characteristic equation with multiplicity p. Then

rn, nrn, n2rn, . . . , np−1rn

are solutions of equation (5.2) (fundamental solutions corresponding to r), and
(C0 + C1n + C2n2 + · · · + Cp−1np−1)rn (5.5)

is also a solution, for any constants C0, C1, . . . , Cp−1. If the characteristic equation has no
other solutions, then (5.5) is a general solution of the recurrence equation.

Example 5.2 Solve the recurrence equation

xn+2 = 4xn+1 − 4xn, x0 = 1, x1 = 3.

The characteristic equation is
r2 − 4r + 4 = 0 ,

with r = 2 a solution with multiplicity 2. Then

xn = (C0 + C1n)2n

is a general solution of the recurrence equation.
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From the initial conditions we have

C0 = 1 ,
2C0 + 2C1 = 3 .

From this system of equations C0 = 1, C1 = 1/2, so the general solution is

xn =

(
1 +

1
2 n

)
2n or xn = (n + 2)2n−1 .

Distinct complex roots
If the complex number a(cos b + i sin b), written in trigonometric form, is a root of the cha-
racteristic equation, then its conjugate a(cos b−i sin b) is also a root, because the coefficients
of the characteristic equation are real numbers. Then

an cos bn and an sin bn

are solutions of equation (5.2) and

C1an cos bn + C2an sin bn (5.6)

is also a solution, for any constants C1 and C2. If these are the only solutions of the charac-
teristic equation, then (5.6) is a general solution.

Example 5.3 Solve the recurrence equation

xn+2 = 2xn+1 − 2xn, x0 = 0, x1 = 1.

The corresponding characteristic equation is

r2 − 2r + 2 = 0 ,

with roots 1 + i and 1− i. These can be written in trigonometric form as
√

2(cos(π/4) + i sin(π/4)) and√
2(cos(π/4) − i sin(π/4)). Therefore

xn = C1(
√

2)n cos nπ
4 + C2(

√
2)n sin nπ

4

is a general solution of the recurrence equation. From the initial conditions

C1 = 0 ,
C1
√

2 cos π4 + C2
√

2 sin π4 = 1.

Therefore C1 = 0, C2 = 1. Hence the general solution is

xn =
(√2)n sin nπ

4 .
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Multiple complex roots
If the complex number written in trigonometric form as a(cos b + i sin b) is a root of the
characteristic equation with multiplicity p, then its conjugate a(cos b − i sin b) is also a root
with multiplicity p.

Then
an cos bn, nan cos bn, . . . , np−1an cos bn

and
an sin bn, nan sin bn, . . . , np−1an sin bn

are solutions of the recurrence equation (5.2). Then

(C0 + C1n + · · · + Cp−1np−1)an cos bn + (D0 + D1n + · · · + Dp−1np−1)an sin bn

is also a solution, where C0,C1, . . . ,Cp−1,D0,D1, . . . ,Dp−1 are arbitrary constants, which
can be determined from the initial conditions. This solution is general if the characteristic
equation has no other roots.

Example 5.4 Solve the recurrence equation

xn+4 + 2xn+2 + xn = 0, x0 = 0, x1 = 1, x2 = 2, x3 = 3.

The characteristic equation is
r4 + 2r2 + 1 = 0 ,

which can be written as (r2 + 1)2 = 0. The complex numbers i and −i are double roots. The trigono-
metric form of these are

i = cos π2 + i sin π2 , and − i = cos π2 − i sin π2
respectively. Therefore the general solution is

xn = (C0 + C1n) cos nπ
2 + (D0 + D1n) sin nπ

2 .

From the initial conditions we obtain

C0 = 0 ,
(C0 + C1) cos π2 + (D0 + D1) sin π2 = 1 ,

(C0 + 2C1) cos π + (D0 + 2D1) sin π = 2 ,

(C0 + 3C1) cos 3π
2 + (D0 + 3D1) sin 3π

2 = 3 ,

that is

C0 = 0 ,
D0 + D1 = 1 ,
−2C1 = 2 ,

−D0 − 3D1 = 3 .

Solving this system of equations C0 = 0, C1 = −1, D0 = 3 and D1 = −2. Thus the general solution is

xn = (3 − 2n) sin nπ
2 − n cos nπ

2 .
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Using these four cases all linear homogeneous equations with constant coefficients can
be solved, if we can solve their characteristic equations.

Example 5.5 Solve the recurrence equation

xn+3 = 4xn+2 − 6xn+1 + 4xn, x0 = 0, x1 = 1, x2 = 1.

The characteristic equation is
r3 − 4r2 + 6r − 4 = 0 ,

with roots 2, 1 + i and 1 − i. Therefore the general solution is

xn = C12n + C2
(√2)n cos nπ

4 + C3
(√2)n sin nπ

4 .

After determining the constants we obtain

xn = −2n−1 +

(√2)n

2

(
cos nπ

4 + 3 sin nπ
4

)
.

The general solution
The characteristic equation of the kth order linear homogeneous equation (5.2) has k roots
in th �eld of complex numbers, which are not necessarily distinct. Let these roots be the
following:

r1 real, with multiplicity p1 (p1 ≥ 1) ,
r2 real, with multiplicity p2 (p2 ≥ 1) ,
. . .
rt real, with multiplicity pt (pt ≥ 1) ,
s1 = a1(cos b1 + i sin b1) complex, with multiplicity q1 (q1 ≥ 1) ,
s2 = a2(cos b2 + i sin b2) complex, with multiplicity q2 (q2 ≥ 1) ,
. . .
sm = am(cos bm + i sin bm) complex, with multiplicity qm (qm ≥ 1) .

Since the equation has k roots, p1 + p2 + · · · + pt + 2(q1 + q2 + · · · + qm) = k.
In this case the general solution of equation (5.2) is

xn =

t∑

j=1

(
C( j)

0 + C( j)
1 n + · · · + C( j)

p j−1np j−1
)
rn

j

+

m∑

j=1

(
D( j)

0 + D( j)
1 n + · · · + D( j)

q j−1nq j−1
)
an

j cos b jn

+

m∑

j=1

(
E( j)

0 + E( j)
1 n + · · · + E( j)

q j−1nq j−1
)
an

j sin b jn , (5.7)

where
C( j)

0 , C( j)
1 , . . . , C( j)

p j−1, j = 1, 2, . . . , t ,
D(l)

0 , E(l)
0 , D(l)

1 , E(l)
1 , . . . , D(l)

pl−1, E(l)
pl−1, l = 1, 2, . . . ,m are constants, which can be

determined from the initial conditions.
The above statements can be summarised in the following theorem.
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Theorem 5.1 Let k ≥ 1 be an integer and a0, a1, . . . , ak real numbers with a0, ak , 0.
The general solution of the linear recurrence equation (5.2) can be obtained as a linear
combination of the terms n jrn

i , where ri are the roots of the characteristic equation (5.3)
with multiplicity pi (0 ≤ j < pi) and the coefficients of the linear combination depend on
the initial conditions.

The proof of the theorem is left to the reader (see exercise 5.1-5.).
The algorithm for the general solution is the following.

L-

1 determine the characteristic equation of the recurrence equation
2 �nd all roots of the characteristic equation with their multiplicities
3 �nd the general solution (5.7) based on the roots
4 determine the constants of (5.7) using the initial conditions, if these exists.

5.1.2. Linear nonhomogeneous recurrence equations with constant coeffici-
ents

Consider the linear nonhomogeneous recurrence equation with constant coefficients

a0xn + a1xn+1 + · · · + ak xn+k = f (n) , (5.8)

where a0, a1, . . . , ak are real constants, a0, ak , 0, k ≥ 1, and f is not the zero function.
The corresponding linear homogeneous equation (5.2) can be solved using Theorem

5.1. If a particular solution of equation (5.8) is known, then equation (5.8) can be solved.

Theorem 5.2 Let k ≥ 1 be an integer, a0, a1, . . . , ak real numbers, a0, ak , 0. If x(1)
n

is a particular solution of the linear nonhomogeneous equation (5.8) and x(0)
n is a general

solution of the linear homogeneous equation (5.2), then

xn = x(0)
n + x(1)

n

is a general solution of the equation (5.8).

The proof of the theorem is left to the reader (see exercise 5.1-6.).

Example 5.6 Solve the recurrence equation

xn+2 + xn+1 − 2xn = 2n, x0 = 0, x1 = 1.

First we solve the homogeneous equation

xn+2 + xn+1 − 2xn = 0,

and obtain the general solution
x(0)

n = C1(−2)n + C2 ,

since the roots of the characteristic equation are −2 and 1 . It is easy to see that

xn = C1(−2)n + C2 + 2n−2
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f (n) x(1)
n

npan (C0 + C1n + · · · + Cpnp)an

annp sin bn (C0 + C1n + · · · + Cpnp)an sin bn + (D0 + D1n + · · · + Dpnp)an cos bn

annp cos bn (C0 + C1n + · · · + Cpnp)an sin bn + (D0 + D1n + · · · + Dpnp)an cos bn

Figure 5.1. The form of particular solutions.

is a solution of the nonhomogeneous equation. Therefore the general solution is

xn = −1
4 (−2)n + 2n−2 or xn =

2n − (−2)n

4 ,

The constants C1 and C2 can be determined using the initial conditions. Thus, that is

xn =

{
0, if n is even ,
2n−1, if n is odd .

A particular solution can be obtained using the method of variation of constants. Ho-
wever, there are cases when there is an easier way of �nding a particular solution. In �gure
5.1 we can see types of functions f (n), for which a particular solution x(1)

n can be obtained
in the given form in the table. The constants can be obtained by substitutions.

In the previous example f (n) = 2n, so the �rst case can be used with a = 2 and p = 0.
Therefore we try to �nd a particular solution of the form C02n. After substitution we obtain
C0 = 1/4, thus the particular solution is

x(1)
n = 2n−2 .

Exercises
5.1-1 Solve the recurrence equation

Hn = 2Hn−1 + 1, ha n ≥ 1, és H0 = 0 .

(Here Hn is the optimal number of moves in the problem of Towers of Hanoi.)

5.1-2 Analyse the problem of Towers of Hanoi if n discs have to be moved from stick A to
stick C in such a way that no disc can be moved directly from A to C and vice versa.

Hint. Show that if the optimal number of moves is denoted by Mn, and n ≥ 1, then
Mn = 3Mn−1 + 2.
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5.1-3 Solve the recurrence equation

(n + 1)Rn = 2(2n − 1)Rn−1, ha n ≥ 1, és R0 = 1.

5.1-4 Solve the linear nonhomogeneous recurrence equation

xn = 2n − 2 + 2xn−1, ha n ≥ 2, és x1 = 0.

Hint. Try to �nd a particular solution of the form C1n2n + C2.

5.1-5? Prove Theorem 5.1.
5.1-6 Prove Theorem 5.2.

5.2. Generating functions and recurrence equations
Generating functions can be used, among others, to solve recurrence equations, count ob-
jects (e.g. binary trees), prove identities and solve partition problems. Counting the number
of objects can be done by stating and solving recurrence equations. These equations are
usually not linear, and generating functions can help us in solving them.

5.2.1. Definition and operations
Associate a series with the in�nite sequence (an)n≥0 = 〈a0, a1, a2, . . . , an, . . .〉 the following
way

A(z) = a0 + a1z + a2z2 + · · · + anzn + · · · =
∑

n≥0
anzn .

This is called the generating function of the sequence (an)n≥0.
For example, in the case of the Fibonacci numbers this generating function is

F(z) =
∑

n≥0
Fnzn = z + z2 + 2z3 + 3z4 + 5z5 + 8z6 + 13z7 + · · · .

Multiplying both sides of the equation by z, then by z2, we obtain

F(z) = F0 + F1z + F2z2 + F3z3 + · · · + Fnzn + · · · ,
zF(z) = F0z + F1z2 + F2z3 + · · · + Fn−1zn + · · · ,

z2F(z) = F0z2 + F1z3 + · · · + Fn−2zn + · · · .

If we subtract the second and the third equation from the �rst one term by term, then use the
de�ning formula of the Fibonacci numbers, we get

F(z)(1 − z − z2) = z ,

that is
F(z) =

z
1 − z − z2 . (5.9)
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The correctness of these operations can be proved mathematically, but here we do not want
to go into details. The formulae obtained using generating functions can usually also be
proved using other methods.

Let us consider the following generating functions

A(z) =
∑

n≥0
anzn and B(z) =

∑

n≥0
bnzn.

The generating functions A(z) and B(z) are equal, if and only if an = bn for all n natural
numbers.

Now we de�ne the following operations with the generating functions: addition, mul-
tiplication by real number, shift, multiplication, derivation and integration.

Addition and multiplication by real number

αA(z) + βB(z) =
∑

n≥0
(αan + βbn)zn .

Shift
The generating function

zkA(z) =
∑

n≥0
anzn+k =

∑

n≥k
an−kzn

represents the sequence < 0, 0, . . . , 0︸      ︷︷      ︸
k

, a0, a1, . . . > , while the generating function

1
zk (A(z) − a0 − a1z − a2z2 − · · · − ak−1zk−1) =

∑

n≥k
anzn−k =

∑

n≥0
ak+nzn

represents the sequence < ak, ak+1, ak+2, . . . > .

Example 5.7 Let A(z) = 1 + z + z2 + · · · . Then
1
z
(
A(z) − 1

)
= A(z) and A(z) =

1
1 − z .

Multiplication
If A(z) and B(z) are generating functions, then

A(z)B(z) = (a0 + a1z + · · · + anzn + · · · )(b0 + b1z + · · · + bnzn + · · · )
= a0b0 + (a0b1 + a1b0)z + (a0b2 + a1b1 + a2b0)z2 + · · ·
=

∑

n≥0
snzn,

where sn =

n∑

k=0
akbn−k.

Special case. If bn = 1 for all natural numbers n, then

A(z) 1
1 − z =

∑

n≥0


n∑

k=0
ak

 zn . (5.10)
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If, in addition, an = 1 for all n, then

1
(1 − z)2 =

∑

n≥0
(n + 1)zn . (5.11)

Derivation

A′(z) = a1 + 2a2z + 3a3z2 + · · · =
∑

n≥0
(n + 1)an+1zn .

Example 5.8 After differentiating the both sides of the generating function

A(z) =
∑

n≥0
zn =

1
1 − z ,

we obtain
A′(z) =

∑

n≥1
nzn−1 =

1
(1 − z)2 .

Integration
∫ z

0
A(t)dt = a0z +

1
2a1z2 +

1
3a2z3 + · · · =

∑

n≥1

1
nan−1zn .

Example 5.9 Let
1

1 − z = 1 + z + z2 + z3 + · · ·
After integrating both sides we get

ln 1
1 − z = z +

1
2 z2 +

1
3 z3 + · · · =

∑

n≥1

1
n zn .

Multiplying the above generating functions we obtain

1
1 − z ln 1

1 − z =
∑

n≥1
Hnzn ,

where Hn = 1 +
1
2 +

1
3 + · · · + 1

n (H0 = 0, H1 = 1) are the so-called harmonic numbers.

Changing the arguments
Let A(z) =

∑
n≥0 anzn represent the sequence < a0, a1, a2, . . . >, then A(cz) =

∑
n≥0 cnanzn

represents the sequence < a0, ca1, c2a2, . . . cnan, . . . >. The following statements holds

1
2
(
A(z) + A(−z)

)
= a0 + a2z2 + · · · + a2nz2n + · · · ,

1
2
(
A(z) − A(−z)

)
= a1z + a3z3 + · · · + a2n−1z2n−1 + · · · .
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Example 5.10 Let A(z) = 1 + z + z2 + z3 + · · · = 1
1 − z . Then

1 + z2 + z4 + · · · = 1
2
(A(z) + A(−z)) =

1
2

(
1

1 − z +
1

1 + z

)
=

1
1 − z2 ,

which can also be obtained by substituting z with z2 in A(z). We can obtain the sum of the odd power
terms the same way,

z + z3 + z5 + · · · = 1
2
(A(z) − A(−z)) =

1
2

(
1

1 − z −
1

1 + z

)
=

z
1 − z2 .

Using generating functions we can obtain interesting formulae. For example, let A(z) =

1/(1 − z) = 1 + z + z2 + z3 + · · · . Then zA(z(1 + z)) = F(z), which is the generating function
of the Fibonacci numbers. From this

zA(z(1 + z)) = z + z2(1 + z) + z3(1 + z)2 + z4(1 + z)3 + · · · .
The coefficient of zn+1 on the left-hand side is Fn+1, that is the (n + 1)th Fibonacci number,
while the coefficient of zn+1 on the right-hand side is

∑

k≥0

(
n − k

k

)
,

after using the binomial formula in each term. Hence

Fn+1 =
∑

k≥0

(
n − k

k

)
=

b n+1
2 c∑

k=0

(
n − k

k

)
. (5.12)

Remember that the binomial formula can be generalised for all real r, namely

(1 + z)r =
∑

n≥0

(
r
n

)
zn ,

which is the generating function of the binomial coefficients. Here
(
r
n

)
is a generalisation of

the combinations for any real number r, that is

(
r
n

)
=



r(r − 1)(r − 2) . . . (r − n + 1)
n(n − 1) . . . 1 , if n > 0 ,

1, � n = 0 ,
0, if n < 0 .

We can obtain useful formulae using this generalisation for negative r. Let

1
(1 − z)m = (1 − z)−m =

∑

k≥0

(−m
k

)
(−z)k .

Since, by a simple computation, we get
(−m

k

)
= (−1)k

(
m + k − 1

k

)
,
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the following formula can be obtained

1
(1 − z)m+1 =

∑

k≥0

(
m + k

k

)
zk .

Then
zm

(1 − z)m+1 =
∑

k≥0

(
m + k

k

)
zm+k =

∑

k≥0

(
m + k

m

)
zm+k =

∑

k≥0

(
k
m

)
zk ,

and ∑

k≥0

(
k
m

)
zk =

zm

(1 − z)m+1 , (5.13)

where m is a natural number.

5.2.2. Solving recurrence equations with generating functions
If the generating function of the general solution of a recurrence equation to be solved can
be expanded in such a way that the coefficients are in closed form, then this method is
successful.

Let the recurrence equation be

F(xn, xn−1, . . . , xn−k) = 0 . (5.14)

To solve it, let us consider the generating function

X(z) =
∑

n≥0
xnzn.

If (5.14) can be written as G(X(z)) = 0 and can be solved for X(z), then X(z) can be expanded
into series in such a way that xn can be written in closed form, equation (5.14) can be solved.

Now we give a general method for solving linear nonhomogeneous recurrence equati-
ons. After this we give three examples for the nonlinear case. In the �rst two examples the
number of elements in some sets of binary trees, while in the third example the number of
leaves of binary trees is computed. The corresponding recurrence equations (5.15), (5.17)
and (5.18) will be solved using generating functions.

Linear nonhomogeneous recurrence equations with constant coefficients
Multiply both sides of equation (5.8) by zn. Then

a0xnzn + a1xn+1zn + · · · + ak xn+kzn = f (n)zn .

Summing up both sides of the equation term by term we get

a0
∑

n≥0
xnzn + a1

∑

n≥0
xn+1zn + · · · + ak

∑

n≥0
xn+kzn =

∑

n≥0
f (n)zn .

Then
a0

∑

n≥0
xnzn +

a1
z

∑

n≥0
xn+1zn+1 + · · · + ak

zk

∑

n≥0
xn+kzn+k =

∑

n≥0
f (n)zn .
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Let
X(z) =

∑

n≥0
xnzn and F(z) =

∑

n≥0
f (n)zn .

The equation can be written as

a0X(z) +
a1
z

(
X(z) − x0

)
+ · · · + ak

zk

(
X(z) − x0 − x1z − · · · − xk−1zk−1

)
= F(z) .

This can be solved for X(z). If X(z) is a rational fraction, then it can be decomposed into
partial (elementary) fractions which, after expanding them into series, will give us the ge-
neral solution xn of the original recurrence equation. We can also try to use the expansion
into series in the case when the function is not a rational fraction.

Example 5.11 Solve the following equation using the above method

xn+1 − 2xn = 2n+1 − 2, ha n ≥ 0 és x0 = 0 .

After multiplying and summing we have
1
z
∑

n≥0
xn+1zn+1 − 2

∑

n≥0
xnzn = 2

∑

n≥0
2nzn − 2

∑

n≥0
zn ,

and 1
z
(
X(z) − x0

)
− 2X(z) =

2
1 − 2z −

2
1 − z .

Since x0 = 0, after decomposing the right-hand side into partial fractions1), the solution of the equation
is

X(z) =
2z

(1 − 2z)2 +
2

1 − z −
2

1 − 2z .

After differentiating the generating function
1

1 − 2z =
∑

n≥0
2nzn

term by term we get
2

(1 − 2z)2 =
∑

n≥1
n2nzn−1 .

Thus
X(z) =

∑

n≥0
n2nzn + 2

∑

n≥0
zn − 2

∑

n≥0
2nzn =

∑

n≥0

(
(n − 2)2n + 2

)
zn ,

therefore
xn = (n − 2)2n + 2 .

The number of binary trees
Let us denote by bn the number of binary trees with n vertices. Then b1 = 1, b2 = 2, b3 = 5
(see �gure 5.2). Let b0 = 1. (We will see later that this is a good choice.)

In a binary tree with n vertices, with the exception of the root, there are altogether
n − 1 vertices in the left and right subtrees. If the left subtree has k vertices and the right
subtree has n − 1 − k vertices, then there exists bkbn−1−k such binary trees. Summing over

1For decomposing the fraction into partial fractions we can use the Undetermined Coefficients Method.
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n = 2 n = 3

Figure 5.2. Binary trees with two and three vertices.

k = 0, 1, . . . , n − 1, we obtain exactly the number of binary trees, bn. Thus for any natural
number n ≥ 1 the recurrence equation in bn is

bn = b0bn−1 + b1bn−2 + · · · + bn−1b0 . (5.15)

This can also be written as

bn =

n−1∑

k=0
bkbn−1−k .

Multiplying both sides by zn, then summing over all n, we obtain

∑

n≥1
bnzn =

∑

n≥1


n−1∑

k=0
bkbn−1−k

 zn . (5.16)

Let B(z) =
∑

n≥0
bnzn be the generating function of the numbers bn. The left-hand side of

(5.16) is exactly B(z) − 1 (because b0 = 1). The right-hand side looks like a product of two
generating functions. To see which functions are in consideration, let us use the notation

A(z) = zB(z) =
∑

n≥0
bnzn+1 =

∑

n≥1
bn−1zn .

Then the right-hand side of (5.16) is exactly A(z)B(z), which is zB2(z). Therefore

B(z) − 1 = zB2(z), B(0) = 1 .

Solving this equation for B(z) gives

B(z) =
1 ± √1 − 4z

2z .
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We have to choose the negative sign because B(0) = 1. Thus

B(z) =
1
2z

(
1 − √1 − 4z

)
=

1
2z

(
1 − (1 − 4z)1/2

)

=
1
2z

1 −
∑

n≥0

(
1/2
n

)
(−4z)n

 =
1
2z

1 −
∑

n≥0

(
1/2
n

)
(−1)n22nzn



=
1
2z −

(
1/2
0

)
20z0

2z +

(
1/2
1

)
22z
2z − · · · −

(
1/2
n

)
(−1)n 22nzn

2z + · · ·

=

(
1/2
1

)
2 −

(
1/2
2

)
23z + · · · −

(
1/2
n

)
(−1)n22n−1zn−1 + · · ·

=
∑

n≥0

(
1/2

n + 1

)
(−1)n22n+1zn =

∑

n≥0

1
n + 1

(
2n
n

)
zn .

Therefore bn =
1

n + 1

(
2n
n

)
. The numbers bn are also called the Catalan numbers.

Remark. In the previous computation we used the following formula that can be proved
easily (

1/2
n + 1

)
=

(−1)n

22n+1(n + 1)

(
2n
n

)
.

The number of leaves of all binary trees of n vertices
Let us count the number of leaves (vertices with degree 1) in the set of all binary trees of n
vertices. Denote this number by fn. We remark that the root is not considered leaf even if it
is of degree 1. It is easy to see that f2 = 2, f3 = 6. Let f0 = 0 and f1 = 1, conventionally.
Later we will see that these values are good.

As in the case of numbering the binary trees, consider the binary trees of n vertices
having k vertices in the left subtree and n − k − 1 vertices in the right subtree. There are bk
such left subtrees and bn−1−k right subtrees. If we consider such a left subtree and all such
right subtrees, then together there are fn−1−k leaves in the right subtrees. So for a given k
there are bn−1−k fk + bk fn−1−k leaves. After summing we have

fn =

n−1∑

k=0
( fkbn−1−k + bk fn−1−k) .

By an easy computation we get

fn = 2( f0bn−1 + f1bn−2 + · · · + fn−1b0), n ≥ 2 . (5.17)

This is a recurrence equation, the solution of which is fn. Let

F(z) =
∑

n≥0
fnzn and B(z) =

∑

n≥0
bnzn .

Multiplying both sides of (5.17) by zn and summing gives

∑

n≥2
fnzn = 2

∑

n≥2


n−1∑

k=0
fkbn−1−k

 zn .
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Since f0 = 0 and f1 = 1,
F(z) − z = 2zF(z)B(z) .

Thus
F(z) =

z
1 − 2zB(z) ,

and since
B(z) =

1
2z

(
1 − √1 − 4z

)
,

we have
F(z) =

z√
1 − 4z

= z(1 − 4z)−1/2 = z
∑

n≥0

(−1/2
n

)
(−4z)n .

After the computations

F(z) =
∑

n≥0

(
2n
n

)
zn+1 =

∑

n≥1

(
2n − 2
n − 1

)
zn ,

and
fn =

(
2n − 2
n − 1

)
or fn+1 =

(
2n
n

)
= (n + 1)bn .

The number of binary trees with n vertices and k leaves
A bit harder problem: how many binary trees are there with n vertices and k leaves? Let us
denote this number by b(k)

n . It is easy to see that b(k)
n = 0, if k > b(n + 1)/2c. By a simple

reasoning the case k = 1 can be solved. The result is b(1)
n = 2n−1 for any natural number

n ≥ 1. Let b(0)
0 = 1, conventionally. We will see later that this is a good choice. Let us

consider, as in the case of previous problems, the left and right subtrees. If the left subtree
has i vertices and j leaves, then the right subtree has n − i − 1 vertices and k − j leaves. The
number of these trees is b( j)

i b(k− j)
n−i−1. Summing over k and j gives

b(k)
n = 2b(k)

n−1 +

n−2∑

i=1

k−1∑

j=1
b( j)

i b(k− j)
n−i−1 . (5.18)

For solving this recurrence equation the generating function

B(k)(z) =
∑

n≥0
b(k)

n zn, where k ≥ 1

will be used. Multiplying both sides of equation (5.18) by zn and summing over n = 0, 1,
2, . . ., we get

∑

n≥1
b(k)

n zn = 2
∑

n≥1
b(k)

n−1zn +
∑

n≥1


n−2∑

i=1

k−1∑

j=1
b( j)

i b(k− j)
n−i−1

 zn .

Changing the order of summation gives

∑

n≥1
b(k)

n zn = 2
∑

n≥1
b(k)

n−1zn +

k−1∑

j=1

∑

n≥1


n−2∑

i=1
b( j)

i b(k− j)
n−i−1

zn .
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Thus

B(k)(z) = 2zB(k)(z) + z


k−1∑

j=1
B( j)(z)B(k− j)(z)



or

B(k)(z) =
z

1 − 2z


k−1∑

j=1
B( j)(z)B(k− j)(z)

 . (5.19)

Step by step, we can write the following:

B(2)(z) =
z

1 − 2z
(
B(1)(z)

)2
,

B(3)(z) =
2z2

(1 − 2z)2

(
B(1)(z)

)3
,

B(4)(z) =
5z3

(1 − 2z)3

(
B(1)(z)

)4
.

Let us try to �nd the solution in the form

B(k)(z) =
ckzk−1

(1 − 2z)k−1

(
B(1)(z)

)k
,

where c2 = 1, c3 = 2, c4 = 5. Substituting in (5.19) gives a recursion for the numbers ck

ck =

k−1∑

i=1
cick−i .

We solve this equation using the generating function method. If k = 2, then c2 = c1c1, and
so c1 = 1. Let c0 = 1. If C(z) =

∑
n≥0 cnzn is the generating function of the numbers cn, then,

using the formula of multiplication of the generating functions we obtain

C(z) − 1 − z = (C(z) − 1)2 or C2(z) − 3C(z) + z + 2 = 0 ,

thus
C(z) =

3 − √1 − 4z
2 .

Since C(0) = 1, only the negative sign can be chosen. After expanding the generating
function we get

C(z) =
3
2 −

1
2(1 − 4z)1/2 =

3
2 −

1
2

∑

n≥0

−1
2n − 1

(
2n
n

)
zn

=
3
2 +

∑

n≥0

1
2(2n − 1)

(
2n
n

)
zn = 1 +

∑

n≥1

1
2(2n − 1)

(
2n
n

)
zn .

From this
cn =

1
2(2n − 1)

(
2n
n

)
, n ≥ 1 .
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Since b(1)
n = 2n−1 for n ≥ 1, it can be proved easily that B(1) = z/(1 − 2z). Thus

B(k)(z) =
1

2(2k − 1)

(
2k
k

)
z2k−1

(1 − 2z)2k−1 .

Using the formula
1

(1 − z)m =
∑

n≥0

(
n + m − 1

n

)
zn ,

therefore

B(k)(z) =
1

2(2k − 1)

(
2k
k

)∑

n≥0

(
2k + n − 2

n

)
2nz2k+n−1

=
1

2(2k − 1)

(
2k
k

) ∑

n≥2k−1

(
n − 1

n − 2k + 1

)
2n−2k+1zn .

Thus
b(k)

n =
1

2k − 1

(
2k
k

)(
n − 1
2k − 2

)
2n−2k

or
b(k)

n =
1
n

(
2k
k

)(
n

2k − 1

)
2n−2k .

5.2.3. The Z-transform method
When solving linear nonhomogeneous equations using generating functions, the solution is
usually done by the expansion of a rational fraction. The Z-transform method can help us in
expanding such a function. Let P(z)/Q(z) be a rational fraction, where the degree of P(z) is
less than the degree of Q(z). If the roots of the denominator are known, the rational fraction
can be expanded into partial fractions using the Undetermined Coefficient Method.

Let us �rst consider the case when the denominator has distinct roots α1, α2, . . . , αk.
Then P(z)

Q(z) =
A1

z − α1
+ · · · + Ai

z − αi
+ · · · + Ak

z − αk
.

It is easy to see that

Ai = lim
z→αi

(z − αi)
P(z)
Q(z) , i = 1, 2, . . . , k .

But Ai
z − αi

=
Ai

−αi

(
1 − 1

αi
z
) =

−Aiβi
1 − βiz

,

where βi = 1/αi. Now, by expanding this partial fraction, we get
−Aiβi
1 − βiz

= −Aiβi
(1 + βiz + · · · + βn

i zn + · · · ) .

Denote the coefficient of zn by Ci(n), then Ci(n) = −Aiβ
n+1
i , so

Ci(n) = −Aiβ
n+1
i = −βn+1

i lim
z→αi

(z − αi)
P(z)
Q(z) ,
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or
Ci(n) = −βn+1

i lim
z→αi

(z − αi)P(z)
Q(z) .

After the transformation z→ 1/z and using βi = 1/αi we obtain

Ci(n) = lim
z→βi

(
(z − βi)zn−1 p(z)

q(z)

)
,

where p(z)
q(z) =

P(1/z)
Q(1/z) .

Thus in the expansion of X(z) =
P(z)
Q(z) the coefficient of zn is

C1(n) + C2(n) + · · · + Ck(n) .

If α is a root of the polynomial Q(z), then β = 1/α is a root of q(z). E.g. if

P(z)
Q(z) =

2zz

(1 − z)(1 − 2z) , then p(z)
q(z) =

2
(z − 1)(z − 2) .

If the root is multiple, e.g. if βi has multiplicity p, then its corresponding in the solution is

Ci(n) =
1

(p − 1)! lim
z→βi

dp−1

dzp−1

(
(z − βi)pzn−1 p(z)

q(z)

)
.

Here dp

dzp f (z) is the derivative of order p of the function f (z).
All these can be summarised in the following algorithm. Let us consider that the co-

efficients of the equation are in array A, and the constants of the solution are in array C.

L-(A, k, f )
1 let a0xn + a1xn+1 + · · · + ak xn+k = f (n) be the equation, where f (n) is a rational fraction;

multiply both sides by zn, and sum over all n
2 transform the equation into the form X(z) = P(z)/Q(z), where X(z) =

∑
n≥0 xnzn,

P(z) and Q(z) are polynomials
3 use the transformation z→ 1/z, and let the result be

p(z)/q(z), where p(z) are q(z) are polynomials
4 denote the roots of q(z) by

β1, with multiplicity p1, p1 ≥ 1,
β2, with multiplicity p2, p2 ≥ 1,
. . .
βk, with multiplicity pk, pk ≥ 1;

then the general solution of the original equation is
xn = C1(n) + C2(n) + · · · + Ck(n), where
Ci(n) = 1/((pi − 1)!) limz→βi

dpi−1

dzpi−1

(
(z − βi)pi zn−1(p(z)/q(z))

)
, i = 1, 2, . . . , k.

5 return C



5.2. Generating functions and recurrence equations 147

If we substitute z by 1/z in the generating function, the result is the so-called Z-
transform, for which similar operations can be de�ned as for the generating functions. The
residue theorem for the Z-transform gives the same result. The name of the method is deri-
ved from this observation.

Example 5.12 Solve the recurrence equation

xn+1 − 2xn = 2n+1 − 2, ha n ≥ 0, x0 = 0.

Multiplying both sides by zn and summing we obtain
∑

n≥0
xn+1zn − 2

∑

n≥0
xnzn =

∑

n≥0
2n+1zn −

∑

n≥0
2zn ,

or 1
z X(z) − 2X(z) =

2
1 − 2z −

2
1 − z , where X(z) =

∑

n≥0
xnzn .

Thus
X(z) =

2z2

(1 − z)(1 − 2z)2 .

After the transformation z→ 1/z we get
p(z)
q(z) =

2z
(z − 1)(z − 2)2 ,

where the roots of the denominator are 1 with multiplicity 1 and 2 with multiplicity 2. Thus

C1 = lim
z→1

2zn

(z − 2)2 = 2 and

C2 = lim
z→2

d
dz

(
2zn

z − 1

)
= 2 lim

z→2

nzn−1(z − 1) − zn

(z − 1)2 = 2n(n − 2) .

Therefore the general solution is

xn = 2n(n − 2) + 2, n ≥ 0 .

Example 5.13 Solve the recurrence equation

xn+2 = 2xn+1 − 2xn, if n ≥ 0, x0 = 0, x1 = 1.

Multiplying by zn and summing gives
1
z2

∑

n≥0
xn+2zn+2 =

2
z
∑

n≥0
xn+1zn+1 − 2

∑

n≥0
xnzn ,

so 1
z2

(
F(z) − z

)
=

2
z F(z) − 2F(z) ,

that is
F(z)

(
1
z2 −

2
z + 2

)
= −1

z .

Then
F(1/z) =

−z
z2 − 2z + 2 .
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The roots of the denominator are 1 + i and 1 − i. Let us compute C1(n) and C2(n):

C1(n) = lim
z→1+i

−zn+1

z − (1 − i) =
i(1 + i)n

2 and

C2(n) = lim
z→1−i

−zn+1

z − (1 + i) =
−i(1 − i)n

2 .

Since
1 + i =

√
2
(
cos π4 + i sin π4

)
, 1 − i =

√
2
(
cos π4 − i sin π4

)
,

raising to the nth power gives

(1 + i)n =
(√2)n

(
cos nπ

4 + i sin nπ
4

)
, (1 − i)n =

(√2)n
(
cos nπ

4 − i sin nπ
4

)
,

xn = C1(n) + C2(n) =
(√

2
)n

sin nπ
4 .

Exercises
5.2-1 How many binary trees are there with n vertices and no empty left and right subtrees?

5.2-2 How many binary trees are there with n vertices, in which each vertex which is not a
leaf, has exactly two descendants?

5.2-3 Solve the following recurrent equation using generating functions.

Hn = 2Hn−1 + 1, H0 = 0 .

(Hn is the number of moves in the problem of the Towers of Hanoi.)

5.2-4 Solve the following recurrent equation using the Z-transform method.

Fn+2 = Fn+1 + Fn + 1, ha n ≥ 0, és F0 = 0, F1 = 1 .

5.2-5 Solve the following system of recurrence equations:

un = vn−1 + un−2 ,

vn = un + un−1 ,

where u0 = 1, u1 = 2, v0 = 1.

5.3. Numerical solution
Using the following function we can solve the linear recurrent equations numerically. The
equation is given in the form

a0xn + a1xn+1 + · · · + ak xn+k = f (n) ,
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where a0, ak , 0, k ≥ 1. The coefficients a0, a1, . . . , ak are kept in array A, the initial values
x0, x1, . . . , xk−1 in array X. To �nd xn we will compute step by step the values xk, xk+1, . . . , xn,
keeping in the previous k values of the sequence in the �rst k positions of X (i.e. in the
positions with indices 0, 1, . . . , k − 1).

R(A, X, k, n, f )
1 for j← k to n
2 do v← A[0] · X[0]
3 for i← 1 to k − 1
4 do v← v + A[i] · X[i]
5 v← ( f ( j − k) − v)/A[k]
6 if j , n
7 then for i← 0 to k − 2
8 do X[i]← X[i + 1]
9 X[k − 1]← v

10 return v

Lines 2�5 compute the values x j ( j = k, k + 1, . . . , n) (using the previous k values),
denoted by v in the algorithm. In lines 7�9, if n is not yet reached, we copy the last k values
in the �rst k positions of X. In line 10 xn is obtained. It is easy to see that the computation
time is Θ(kn), if we do not count the time to compute the value of the function.

Exercises
5.3-1 How many additions, subtractions, multiplications and divisions are required using
the algorithm R, while it computes x1000 using the data given in Example 5.4?

Problems

5-1. Existence of a solution of homogeneous equation using generating function
Prove that a linear homogeneous equation cannot be solved using generating functions (be-
cause X(z) = 0 is obtained) if and only if xn = 0 for all n.
5-2. Complex roots in the case of Z-transform

What happens if the roots of the denominator are complex when applying the Z-transform
method? The solution of the recurrence equation must be real. Does the method ensure this?

Chapter notes
The recurrence equations are discussed in detail by Elaydi [13], Flajolet and Sedgewick
[55], Greene and Knuth [23], Mickens [43].

Knuth [30] and Graham, Knuth and Patashnik [22] deal with generating functions. In
the book of Vilenkin [68] there are a lot of simple and interesting problems about recurren-
ces and generating functions.
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In [39] Lovász also presents problems on generating function.
Counting the binary trees is from Knuth [30], counting the leaves in the set of all binary

trees and counting the binary trees with n vertices and k leaves are from Z. Kása [32].
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Any planned computation will be subject to different kinds of unpredictable in�uences du-
ring execution. Here are some examples:
1. Loss or change of stored data during execution.
2. Random, physical errors in the computer.
3. Unexpected interactions between different parts of the system working simultaneously,

or loss of connections in a network.
4. Bugs in the program.
5. Malicious attacks.

Up to now, it does not seem that the problem of bugs can be solved just with the help
of appropriate algorithms. The discipline of software engineering addresses this problem by
studying and improving the structure of programs and the process of their creation.

Malicious attacks are addressed by the discipline of computer security. A large part of
the recommended solutions involves cryptography.

Problems of kind (3) are very important and a whole discipline, distributed computing
has been created to deal with them.

The problem of storage errors is similar to the problems of reliable communication,
studied in information theory: it can be viewed as communication from the present to the
future. In both cases, we can protect against noise with the help of error-correcting codes
(you will see some examples below).

In this chapter, we will discuss some sample problems, mainly from category (2). In
this category, distinction should also be made between permanent and transient errors. An
error is permanent when a part of the computing device is damaged physically and remains
faulty for a long time, until some outside intervention by repairmen to it. It is transient if it
happens only in a single step: the part of the device in which it happened is not damaged,
in the next step it operates correctly again. For example, if a position in memory turns from
0 to 1 by accident, but a subsequent write operation can write a 0 again then a transient
error happened. If the bit turned to 1 and the computer cannot change it to 0 again, this is a
permanent error.

Some of these problems, especially the ones for transient errors, are as old as compu-
ting. The details of any physical errors depend on the kind of computer it is implemented
on (and, of course, on the kind of computation we want to carry out). But after abstracting
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away from a lot of distracting details, we are left with some clean but challenging theoretical
formulations, and some rather pleasing solutions. There are also interesting connections to
other disciplines, like statistical physics and biology.

The computer industry has been amazingly successful over the last �ve decades in ma-
king the computer components smaller, faster, and at the same time more reliable. Among
the daily computer horror stories seen in the press, the one conspicuously missing is where
the processor wrote a 1 in place of a 0, just out of caprice. (It indisputably happens, but too
rarely to become the identi�able source of some visible malfunction.) On the other hand,
the generality of some of the results on the correction of transient errors makes them appli-
cable in several settings. Though individual physical processors are very reliable (error rate
is maybe once in every 1020 executions), when considering a whole network as performing a
computation, the problems caused by unreliable network connections or possibly malicious
network participants is not unlike the problems caused by unreliable processors.

The key idea for making a computation reliable is redundancy, which might be formu-
lated as the following two procedures:
1. Store information in such a form that losing any small part of it is not fatal: it can be

restored using the rest of the data. For example, store it in multiple copies.
2. Perform the needed computations repeatedly, to make sure that the faulty results can be

outvoted.
Our chapter will only use these methods, but there are other remarkable ideas which we
cannot follow up here. For example, method (2) seems especially costly; it is desirable to
avoid a lot of repeated computation. The following ideas target this dilemma.
1. Perform the computation directly on the information in its redundant form: then maybe

recomputations can be avoided.
2. Arrange the computation into �segments� such a way that those partial results that are

to be used later, can be cheaply checked at each �milestone� between segments. If the
checking �nds error, repeat the last segment.

6.1. Probability theory
The present chapter does not require great sophistication in probability theory but there are
some facts coming up repeatedly which I will review here. If you need additional informa-
tion, you will �nd it in any graduate probability theory text.

6.1.1. Terminology
A probability space is a triple (Ω,A,P) where Ω is the set of elementary events, A is a set
of subsets of Ω called the set of events and P : A → [0, 1] is a function. For E ∈ A, the
value P(E) is called the probability of event E. It is required that Ω ∈ A and that E ∈ A

implies Ω r E ∈ A. Further, if a (possibly in�nite) sequence of sets is in A then so is their
union. Also, it is assumed that P(Ω) = 1 and that if E1, E2, . . . ∈ A are disjoint then

P
(⋃

i
Ei

)
=

∑

i
P(Ei).
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For P(F) > 0, the conditional probability of E given F is de�ned as

P(E | F) = P(E ∩ F)/P(F).

Events E1, . . . , En are independent if for any sequence 1 ≤ i1 < · · · < ik ≤ n we have

P(Ei1 ∩ · · · ∩ Eik ) = P(Ei1 ) · · ·P(Eik ).

Example 6.1 Let Ω = {1, . . . , n} where A is the set of all subsets of Ω and P(E) = |E|/n. This is an
example of a discrete probability space: one that has a countable number of elements.

More generally, a discrete probability space is given by a countable set Ω = {ω1, ω2, . . . }, and a
sequence p1, p2, . . . with pi ≥ 0, ∑i pi = 1. The set A of events is the set of all subsets of Ω, and for
an event E ⊂ Ω we de�ne P(E) =

∑
ωi∈E pi.

A random variable over a probability space Ω is a function f from Ω to the real num-
bers, with the property that every set of the form {ω : f (ω) < c } is an event: it is in A.
Frequently, random variables are denoted by capital letters X,Y,Z, possibly with indices,
and the argument ω is omitted from X(ω). The event {ω : X(ω) < c } is then also written as
[ X < c ]. This notation is freely and informally extended to more complicated events. The
distribution of a random variable X is the function F(c) = P[ X < c ]. We will frequently
only specify the distribution of our variables, and not mention the underlying probability
space, when it is clear from the context that it can be speci�ed in one way or another. We
can speak about the joint distribution of two or more random variables, but only if it is
assumed that they can be de�ned as functions on a common probability space. Random va-
riables X1, . . . , Xn with a joint distribution are independent if every n-tuple of events of the
form [ X1 < c1 ], . . . , [ Xn < cn ] is independent.

The expected value of a random variable X taking values x1, x2, . . . with probabilities
p1, p2, . . . is de�ned as

EX = p1x1 + p2x2 + · · · .
It is easy to see that the expected value is a linear function of the random variable:

E(αX + βY) = αEX + βEY,

even if X,Y are not independent. On the other hand, if variables X,Y are independent then
the expected values can also be multiplied:

EXY = EX · EY. (6.1)

There is an important simple inequality called the Markov inequality, which says that for
an arbitrary nonnegative random variable X and any value λ > 0 we have

P[ X ≥ λ ] ≤ EX/λ. (6.2)

6.1.2. Combinatorial estimates
Stirling's formula gives an asymptotic expression of n!. It is frequently used in probability
theory since combinatorial formulas often contain n!. Rather than using Stirling's formula
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directly, let us develop two simple inequalities which should always suffice for us.
Unless stated otherwise, log x will denote logarithm base 2 of x, and ln x will denote the

natural logarithm. Notice that the function ln x is an increasing function. Therefore on the
interval [n, n + 1], the constant ln n is a lower bound to it, and ln(n + 1) is an upper bound.
It follows that

ln(n!) =

n∑

i=1
ln i <

∫ n+1

1
ln x dx <

n∑

i=1
ln(i + 1) = ln((n + 1)!).

Hence, ∫ n

1
ln x dx < ln(n!) = ln n + ln(n − 1)! < ln n +

∫ n

1
ln x dx.

Now,
∫

ln x dx = x(ln x − 1). Hence,

n(ln n − 1) + 1 < ln(n!) < n(ln n − 1) + 1 + ln n. (6.3)

In exponential form:
e
(n

e

)n
< n! < en

(n
e

)n
.

6.1.3. The law of large numbers (with �large deviations�)
In what follows the bounds

x
1 + x ≤ ln(1 + x) ≤ x for x > −1 (6.4)

will be useful. Of these, the well-known upper bound ln(1 + x) ≤ x holds since the graph of
the function ln(1 + x) is below its tangent line drawn at the point x = 0. The lower bound is
obtained from the identity 1

1+x = 1 − x
1+x and

− ln(1 + x) = ln 1
1 + x = ln

(
1 − x

1 + x

)
≤ − x

1 + x .

Consider n independent random variables X1, . . . , Xn that are identically distributed, with

P[ Xi = 1 ] = p, P[ Xi = 0 ] = 1 − p.

Let
S n = X1 + · · · + Xn.

We want to estimate the probability P[ S n ≥ f n ] for any constant 0 < f < 1. The �law of
large numbers� says that if f > p then this probability converges fast to 0 as n → ∞ while
if f < p then it converges fast to 1. Let

D( f , p) = f ln f
p + (1 − f ) ln 1 − f

1 − p (6.5)

> f ln f
p − f = f ln f

ep , (6.6)

where the inequality (useful for small f and ep < f ) comes via 1 > 1 − p > 1 − f and
ln(1 − f ) ≥ − f

1− f from (6.4). Using the concavity of logarithm, it can be shown that D( f , p)
is always nonnegative, and is 0 only if f = p (see Exercise 6.1-1.).
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Theorem 6.1 (Large deviations for coin-toss). If f > p then

P[ S n ≥ f n ] ≤ e−nD( f ,p).

This theorem shows that if f > p then P[ S n > f n ] converges to 0 exponentially fast.
Inequality (6.6) will allow the following simpli�cation:

P[ S n ≥ f n ] ≤ e−n f ln f
ep =

(
ep
f

)n f
, (6.7)

useful for small f and ep < f .
Proof. For a certain real number α > 1 (to be chosen later), let Yn be the random variable
that is α if Xn = 1 and 1 if Xn = 0, and let Pn = Y1 · · · Yn = αS n : then

P[ S n ≥ f n ] = P[ Pn ≥ α f n ].

Applying the Markov inequality (6.2) and (6.1), we get

P[ Pn ≥ α f n ] ≤ EPn/α
f n = (EY1/α

f )n,

where EY1 = pα + (1 − p). Let us choose α =
f (1−p)
p(1− f ) , this is > 1 if p < f . Then we get

EY1 =
1−p
1− f , and hence

EY1/α
f =

p f (1 − p)1− f

f f (1 − f )1− f = e−D( f ,p).

This theorem also yields some convenient estimates for binomial coefficients. Let

h( f ) = − f ln f − (1 − f ) ln(1 − f ).

This is sometimes called the entropy of the probability distribution ( f , 1 − f ) (measured in
logarithms over base e instead of base 2). From inequality (6.4) we obtain the estimate

− f ln f ≤ h( f ) ≤ f ln e
f (6.8)

which is useful for small f .

Corollary 6.2 We have, for f ≤ 1/2:

n∑

i≤ f n

(
n
i

)
≤ enh( f ) ≤

(
e
f

) f n
. (6.9)

In particular, taking f = k/n with k ≤ n/2 gives
(
n
k

)
=

(
n
f n

)
≤

(
e
f

) f n
=

(ne
k

)k
. (6.10)
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Proof. Theorem 6.1 says for the case f > p = 1/2:

2−n
n∑

i≥ f n

(
n
i

)
= P[ S n ≥ f n ] ≤ e−nD( f ,p) = 2−nenh( f ),

n∑

i≥ f n

(
n
i

)
≤ enh( f ).

Substituting g = 1 − f , and noting the symmetries
(n

f

)
=

(n
g

)
, h( f ) = h(g) and (6.8) gives

formula (6.9).

Remark 6.3 Inequality (6.7) also follows from the trivial estimate P[ S n ≥ f n ] ≤
( n

f n

)
p f n

combined with (6.10).

Exercises
6.1-1 Prove that the statement made in the main text that D( f , p) is always nonnegative,
and is 0 only if f = p.
6.1-2 For f = p + δ, derive from Theorem 6.1 the useful bound

P[ S n ≥ f n ] ≤ e−2δ2n.

Hint: Let F(x) = D(x, p), and use the Taylor formula: F(p + δ) = F(p) + F′(p)δ + F′′(p +

δ′)δ2/2, where 0 ≤ δ′ ≤ δ. ]
6.1-3 Prove that in Theorem 6.1, the assumption that Xi are independent and identically
distributed can be weakened: replaced by the single inequality

P[ Xi = 1 | X1, . . . , Xi−1 ] ≤ p.

6.2. Logic circuits
In a model of computation taking errors into account, the natural assumption is that errors
occur everywhere. The most familiar kind of computer, which is separated into a single pro-
cessor and memory, seems extremely vulnerable under such conditions: while the processor
is not �looking�, noise may cause irreparable damage in the memory. Let us therefore rather
consider computation models that are parallel: information is being processed everywhere
in the system, not only in some distinguished places. Then error correction can be built
into the work of every part of the system. We will concentrate on the best known parallel
computation model: Boolean circuits.

6.2.1. Boolean functions and expressions
Let us look inside a computer, (actually inside an integrated circuit, with a microscope).
Discouraged by a lot of physical detail irrelevant to abstract notions of computation, we
will decide to look at the blueprints of the circuit designer, at the stage when it shows the
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∧ ∨ ¬

Figure 6.1. AND, OR and NOT gate.

smallest elements of the circuit still according to their computational functions. We will
see a network of lines that can be in two states (of electric potential), �high� or �low�, or in
other words �true� or �false�, or, as we will write, 1 or 0. The points connected by these lines
are the familiar logic components: at the lowest level of computation, a typical computer
processes bits. Integers, �oating-point numbers, characters are all represented as strings of
bits, and the usual arithmetical operations can be composed of bit operations.

De�nition 6.4 A Boolean vector function is a mapping f : {0, 1}n → {0, 1}m. Most of the
time, we will take m = 1 and speak of a Boolean function.

The variables in f (x1, . . . , xn) are sometimes called Boolean variables, Boolean vari-
ables or bits.

Example 6.2 Given an undirected graph G with N nodes, suppose we want to study the question
whether it has a Hamiltonian cycle (a sequence (u1, . . . , un) listing all vertices of G such that (ui, ui+1)
is an edge for each i < n and also (un, u1) is an edge). This question is described by a Boolean function
f as follows. The graph can be described with

(
N
2

)
Boolean variables xi j (1 ≤ i < j ≤ N): xi j is 1 if

and only if there is an edge between nodes i and j. We de�ne f (x12, x13, . . . , xN−1,N) = 1 if there is a
Hamiltonian cycle in G and 0 otherwise.

Example 6.3 [Boolean vector function] Let n = m = 2k, let the input be two integers u, v, written as
k-bit strings: x = (u1, . . . , uk, v1, . . . , vk). The output of the function is their product y = u · v (written
in binary): if u = 5 = (101)2, v = 6 = (110)2 then y = u · v = 30 = (11110)2.

There are only four one-variable Boolean functions: the identically 0, identically 1, the
identity and the negation: x → ¬x = 1 − x. We mention only the following two-variable
Boolean functions: the operation of conjunction (logical AND):

x ∧ y =


1 if x = y = 1 ,
0 otherwise ,

this is the same as multiplication. The operation of disjunction, or logical OR:

x ∨ y =


0 if x = y = 0 ,
1 otherwise .
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It is easy to see that x ∨ y = ¬(¬x ∧ ¬y): in other words, disjunction x ∨ y can be expressed
using the functions ¬,∧ and the operation of composition. The following two-argument
Boolean functions are also frequently used:

x→ y = ¬x ∨ y (implication),
x↔ y = (x→ y) ∧ (y→ x) (equivalence),
x ⊕ y = x + y mod 2 = ¬(x↔ y) (binary addition).

A �nite number of Boolean functions is sufficient to express all others: thus, arbitrarily
complex Boolean functions can be �computed� by �elementary� operations. In some sense,
this is what happens inside computers.

De�nition 6.1 A set of Boolean functions is a complete basis if every other Boolean func-
tion can be obtained by repeated composition from its elements.

Claim 6.5 The set {∧,∨,¬} forms a complete basis; in other words, every Boolean function
can be represented by a Boolean expression using only these connectives.

The proof can be found in all elementary introductions to propositional logic. Note that
since ∨ can be expressed using {∧,¬}, this latter set is also a complete basis (and so is
{∨,¬}).

From now on, under a Boolean expression (formula), we mean an expression built
up from elements of some given complete basis. If we do not mention the basis then the
complete basis {∧,¬} will be meant.

In general, one and the same Boolean function can be expressed in many ways as a
Boolean expression. Given such an expression, it is easy to compute the value of the func-
tion. However, most Boolean functions can still be expressed only by very large Boolean
expression (see Exercise 6.2-4.).

6.2.2. Circuits
A Boolean expression is sometimes large since when writing it, there is no possibility for
reusing partial results. (For example, in the expression

((x ∨ y ∨ z) ∧ u) ∨ (¬(x ∨ y ∨ z) ∧ v),

the part x ∨ y ∨ z occurs twice.) This de�ciency is corrected by the following more general
formalism.

A Boolean circuit is essentially an acyclic directed graph, each of whose nodes com-
putes a Boolean function (from some complete basis) of the bits coming into it on its input
edges, and sends out the result on its output edges (see Figure 6.2). Let us give a formal
de�nition.

De�nition 6.6 Let Q be a complete basis of Boolean functions. For an integer N let V =

{1, . . . ,N} be a set of nodes. A Boolean circuit over Q is given by the following tuple:

N = (V, { kv : v ∈ V }, { arg j(v) : v ∈ V; j = 1, . . . , kv }, { bv : v ∈ V }). (6.11)
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Figure 6.2. The assignment (values on nodes, con�guration) gets propagated through all the gates. This is the
�computation�.

For every node v there is a natural number kv showing its number of inputs. The sources,
nodes v with kv = 0, are called input nodes: we will denote them, in increasing order, as

inpi (i = 1, . . . , n).

To each non-input node v a Boolean function

bv(y1, . . . , ykv )

from the complete basis Q is assigned: it is called the gate of node v. It has as many ar-
guments as the number of entering edges. The sinks of the graph, nodes without outgoing
edges, will be called output nodes: they can be denoted by

outi (i = 1, . . . ,m).

(Our Boolean circuits will mostly have just a single output node.) To every non-input node
v and every j = 1, . . . , kv belongs a node arg j(v) ∈ V (the node sending the value of input
variable y j of the gate of v). The circuit de�nes a graph G = (V, E) whose set of edges is

E = { (arg j(v), v) : v ∈ V, j = 1, . . . , kv }.

We require arg j(v) < v for each j, v (we identi�ed the with the natural numbers 1, . . . ,N):
this implies that the graph G is acyclic. The size |N| of the circuit N is the number of nodes.
The depth of a node v is the maximal length of directed paths leading from an input node to
v. The depth of a circuit is the maximum depth of its output nodes.

De�nition 6.7 An input assignment, or input con�guration to our circuit N is a vector
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x1 x2 x3 x4 x5 x6 x7 x8

y1,1 y1,2 y1,3 y1,4

y2,1 y2,2

y3,1

Figure 6.3. Naive parallel addition.

x = (x1, . . . , xn) with xi ∈ {0, 1} giving value xi to node inpi:

valx(v) = yv(x) = xi

for v = inpi, i = 1, . . . , n. The function yv(x) can be extended to a unique con�guration
v 7→ yv(x) on all other nodes of the circuit as follows. If gate bv has k arguments then

yv = bv(yarg1(v), . . . , yargk(v)). (6.12)

For example, if bv(x, y) = x ∧ y, and u j = arg j(v) ( j = 1, 2) are the input nodes to v then
yv = yu1 ∧ yu2 . The process of extending the con�guration by the above equation is also
called the computation of the circuit. The vector of the values youti (x) for i = 1, . . . ,m is the
result of the computation. We say that the Boolean circuit computes the vector function

x 7→ (yout1 (x), . . . , youtm (x)).

The assignment procedure can be performed in stages: in stage t, all nodes of depth t receive
their values.

We assign values to the edges as well: the value assigned to an edge is the one assigned
to its start node.

6.2.3. Fast addition by a Boolean circuit
The depth of a Boolean circuit can be viewed as the shortest time it takes to compute the
output vector from the input vector by this circuit. An example application of Boolean cir-
cuits, let us develop a circuit that computes the sum of its input bits very fast. We will need
this result later in the present chapter for error-correcting purposes.

De�nition 6.8 We will say that a Boolean circuit computes a near-majority if it outputs a
bit y with the following property: if 3/4 of all input bits is equal to b then y = b.
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The depth of our circuit is clearly Ω(lg n), since the output must have a path to the
majority of inputs. In order to compute the majority, we will also solve the task of summing
the input bits.

Theorem 6.9
1. Over the complete basis consisting of the set of all 3-argument Boolean functions, for

each n there is a Boolean circuit of input size n and depth ≤ 3 log(n + 1) whose output
vector represents the sum of the input bits as a binary number.

2. Over this same complete basis, for each n there is a Boolean circuit of input size n and
depth ≤ 2 log(n + 1) computing a near-majority.

Proof. First we prove (1). For simplicity, assume n = 2k − 1: if n is not of this form, we
may add some fake inputs. The naive approach would be proceed according to Figure 6.3:
to �rst compute y1,1 = x1 + x2, y1,2 = x3 + x4, . . . , y1,2k−1 = x2k−1 + x2k . Then, to compute
y2,1 = y1,1 + y1,2, y2,2 = y1,3 + y1,4, and so on. Then yk,1 = x1 + · · · + x2k will indeed be
computed in k stages.

It is somewhat troublesome that yi, j here is a number, not a bit, and therefore must be
represented by a bit vector, that is by group of nodes in the circuit, not just by a single node.
However, the general addition operation

yi+1, j = yi,2 j−1 + yi,2 j,

when performed in the naive way, will typically take more than a constant number of steps:
the numbers yi, j have length up to i + 1 and therefore the addition may add i to the depth,
bringing the total depth to 1 + 2 + · · · + k = Ω(k2).

The following observation helps to decrease the depth. Let a, b, c be three numbers in
binary notation: for example, a =

∑k
i=0 ai2i. There are simple parallel formulas to represent

the sum of these three numbers as the sum of two others, that is to compute a + b + c = d + e
where d, e are numbers also in binary notation:

di = ai + bi + ci mod 2,
ei+1 = b(ai + bi + ci)/2c.

(6.13)

Since both formulas are computed by a single 3-argument gate, 3 numbers can be reduced
to 2 (while preserving the sum) in a single parallel computation step. Two such steps reduce
4 numbers to 2. In 2(k − 1) steps therefore they reduce a sum of 2k terms to a sum of 2
numbers of length ≤ k. Adding these two numbers in the regular way increases the depth by
k: we found that 2k bits can be be added in 3k − 2 steps.

To prove (2), construct the circuit as in the proof of (1), but without the last addition:
the output is two k-bit numbers whose sum we are interested in. The highest-order nonzero
bit of these numbers is at some position < k. If the sum is more than 2k−1 then one these
numbers has a nonzero bit at position (k − 1) or (k − 2). We can determine this in two
applications of 3-input gates.

Exercises
6.2-1 Show that {1,⊕,∧} is a complete basis.
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∧

0 1

1

Figure 6.4. Failure at a gate.

6.2-2 Show that the function x NOR y = ¬(x ∨ y) forms a complete basis by itself.
6.2-3 Let us �x the complete basis {∧,¬}. Prove Claim 6.5 (or look up its proof in a text-
book). Use it to give an upper bound for an arbitrary Boolean function f of n variables, on:

1. the smallest size of a Boolean expression for f ;
2. the smallest size of a Boolean circuit for f ;
3. the smallest depth of a Boolean circuit for f ;

6.2-4 Show that for every n there is a Boolean function f of n variables such that every
Boolean circuit in the complete basis {∧,¬} computing f contains Ω(2n/n) nodes. Hint: for
a constant c > 0, upperbound the number of Boolean circuits with at most c2n/n nodes and
compare it with the number of Boolean functions over n variables.
6.2-5 Consider a circuit Mr

3 with 3r inputs, whose single output bit is computed from the
inputs by r levels of 3-input majority gates. Show that there is an input vector x which is 1
in only n1/ lg 3 positions but with which Mr

3 outputs 1. Thus a small minority of the inputs,
when cleverly arranged, can command the result of this circuit.

6.3. Expensive fault-tolerance in Boolean circuits
Let N be a Boolean circuit as given in De�nition 6.6. When noise is allowed then the values

yv = valx(v)

will not be determined by the formula (6.12) anymore. Instead, they will be random variab-
les Yv. The random assignment (Yv : v ∈ V) will be called a random con�guration.

De�nition 6.10 At vertex v, let

Zv = bv(Yarg1(v), . . . , Yargk(v)) ⊕ Yv. (6.14)

In other words, Zv = 1 if gate Yv is not equal to the value computed by the noise-free gate
bv from its inputs Yarg j(v). (See Figure 6.4.) The set of vertices where Zv is non-zero is the set
of faults.

Let us call the difference valx(v) ⊕ Yv the deviation at node v.
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Let us impose conditions on the kind of noise that will be allowed. Each fault should
occur only with probability at most ε, two speci�c faults should only occur with probability
at most ε2, and so on.

De�nition 6.11 For an ε > 0, let us say that the random con�guration (Yv : v ∈ V) is
ε-admissible if
1. Yinp(i) = xi for i = 1, . . . , n.
2. For every set C of non-input nodes, we have

P[ Zv = 1 for all v ∈ C ] ≤ ε |C|. (6.15)

In other words, in an ε-admissible random con�guration, the probability of having faults
at k different speci�c gates is at most εk. This is how we require that not only is the fault
probability low but also, faults do not �conspire�. The admissibility condition is satis�ed if
faults occur independently with probability ≤ ε.

Our goal is to build a circuit that will work correctly, with high probability, despite
the ever-present noise: in other words, in which errors do not accumulate. This concept is
formalized below.

De�nition 6.12 We say that the circuit N with output node w is (ε, δ)-resilient if for all
inputs x, all ε-admissible con�gurations Y, we have P[ Yw , valx(w) ] ≤ δ.

Let us explore this concept. There is no (ε, δ)-resilient circuit with δ < ε, since even
the last gate can fail with probability ε. So, let us, a little more generously, allow δ > 2ε.
Clearly, for each circuit N and for each δ > 0 we can choose ε small enough so that N is
(ε, δ)-resilient. But this is not what we are after: hopefully, one does not need more reliable
gates every time one builds a larger circuit. So, we hope to �nd a function

F(N, δ)

and an ε0 > 0 with the property that for all ε < ε0, δ ≥ 2ε, every Boolean circuit N of size
N there is some (ε, δ)-resilient circuit N′ of size F(N, δ) computing the same function as N.
If we achieve this then we can say that we prevented the accumulation of errors. Of course,
we want to make F(N, δ) relatively small, and ε0 large (allowing more noise). The function
F(N, δ)/N can be called the redundancy: the factor by which we need to increase the size
of the circuit to make it resilient. Note that the problem is nontrivial even with, say, δ = 1/3.
Unless the accumulation of errors is prevented we will lose gradually all information about
the desired output, and no δ < 1/2 could be guaranteed.

How can we correct errors? A simple idea is this: do �everything� 3 times and then
continue with the result obtained by majority vote.

De�nition 6.13 For odd natural number d, a d-input majority gate is a Boolean function
that outputs the value equal to the majority of its inputs.

Note that a d-input majority can be computed using O(d) gates of type AND and NOT.
Why should majority voting help? The following informal discussion helps understan-

ding the bene�ts and pitfalls. Suppose for a moment that the output is a single bit. If the
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probability of each of the three independently computed results failing is δ then the proba-
bility that at least 2 of them fails is bounded by 3δ2. Since the majority vote itself can fail
with some probability ε the total probability of failure is bounded by 3δ2 + ε. We decrease
the probability δ of failure, provided the condition 3δ2 + ε < δ holds.

We found that if δ is small, then repetition and majority vote can �make it� smaller. Of
course, in order to keep the error probability from accumulating, we would have to perform
this majority operation repeatedly. Suppose, for example, that our computation has t stages.
Our bound on the probability of faulty output after stage i is δi. We plan to perform the
majority operation after each stage i. Let us perform stage i three times. The probability of
failure is now bounded by

δi+1 = δi + 3δ2 + ε. (6.16)
Here, the error probabilities of the different stages accumulate, and even if 3δ2 + ε < δ
we only get a bound δt < (t − 1)δ. So, this strategy will not work for arbitrarily large
computations.

Here is a somewhat mad idea to avoid accumulation: repeat everything before the end
of stage i three times, not only stage i itself. In this case, the growing bound (6.16) would
be replaced with

δi+1 = 3(δi + δ)2 + ε.

Now if δi < δ and 12δ2 + ε < δ then also δi+1 < δ, so errors do not accumulate. But we
paid an enormous price: the fault-tolerant version of the computation reaching stage (i + 1)
is 3 times larger than the one reaching stage i. To make t stages fault-tolerant this way will
cost a factor of 3t in size. This way, the function F(N, δ) introduced above may become
exponential in N.

The theorem below formalises the above discussion.

Theorem 6.14 Let R be a �nite and complete basis for Boolean functions. If 2ε ≤ δ ≤ 0.01
then every function can be computed by an (ε, δ)-resilient circuit over R.

Proof. For simplicity, we will prove the result for a complete basis that contains the three-
argument majority function and contains not functions with more than three arguments. We
also assume that faults occur independently.

Let N be a noise-free circuit of depth t computing function f . We will prove that there
is an (ε, δ)-resilient circuit N′ of depth 2t computing f . The proof is by induction on t. The
sufficient conditions on ε and δ will emerge from the proof.

The statement is certainly true for t = 1, so suppose t > 1. Let g be the output gate of
the circuit N, then f (x) = g( f1(x), f2(x), f3(x)). The subcircuits Ni computing the functions
fi have depth ≤ t − 1. By the inductive assumption, there exist (ε, δ)-resilient circuits N′i of
depth ≤ 2t − 2 that compute fi. Let M be a new circuit containing copies of the circuits N′i
(with the corresponding input nodes merged), with a new node in which f (x) is computed
as g is applied to the outputs of N′i . Then the probability of error of M is at most 3δ+ ε < 4δ
if ε < δ since each circuit N′i can err with probability δ and the node with gate g can fail
with probability ε.

Let us now form N′ by taking three copies of M (with the inputs merged) and adding a
new node computing the majority of the outputs of these three copies. The error probability
of N′ is at most 3(4δ)2 + ε = 48δ2 + ε. Indeed, error will be due to either a fault at the
majority gate or an error in at least two of the three independent copies of M. So under
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condition
48δ2 + ε ≤ δ, (6.17)

the circuit N′ is (ε, δ)-resilient. This condition will be satis�ed by 2ε ≤ δ ≤ 0.01.
The circuit N′ constructed in the proof above is at least 3t times larger than N. So, the

redundancy is enormous. Fortunately, we will see a much more economical solution. But
there are interesting circuits with small depth, for which the 3t factor is not extravagant.

Theorem 6.15 Over the complete basis consisting of all 3-argument Boolean functions,
for all sufficiently small ε > 0, if 2ε ≤ δ ≤ 0.01 then for each n there is an (ε, δ)-resilient
Boolean circuit of input size n, depth ≤ 4 lg(n+1) and size (n+1)7 outputting a near-majority
(as given in De�nition 6.8).

Proof. Apply Theorem 6.14 to the circuit from part (1) of Theorem 6.9: it gives a new,
4 lg(n+1)-deep (ε, δ)-resilient circuit computing a near-majority. The size of any such circuit
with 3-input gates is at most 34 lg(n+1) = (n + 1)4 lg 3 < (n + 1)7.

Exercises
6.3-1 Exercise 6.2-5. suggests that the iterated majority vote Mr

3 is not safe against manipu-
lation. However, it works very well under some circumstances. Let the input to Mr

3 be a vec-
tor X = (X1, . . . , Xn) of independent Boolean random variables with P[ Xi = 1 ] = p < 1/6.
Denote the (random) output bit of the circuit by Z. Assuming that our majority gates can
fail with probability ≤ ε ≤ p/2 independently, prove

P[ Z = 1 ] ≤ max{10ε, 0.3(p/0.3)2k }.

Hint: De�ne g(p) = ε + 3p2, g0(p) = p, gi+1(p) = g(gi(p)), and prove P[ Z = 1 ] ≤ gr(p). ]
6.3-2 We say that a circuit N computes the function f (x1, . . . , xn) in an (ε, δ)-input-robust
way, if the following holds: For any input vector x = (x1, . . . , xn), for any vector X =

(X1, . . . , Xn) of independent Boolean random variables �perturbing it� in the sense P[ Xi ,
xi ] ≤ ε, for the output Y of circuit N on input X we have P[ Y = f (x) ] ≥ 1 − δ. Show that
if the function x1 ⊕ · · · ⊕ xn is computable on an (ε, 1/4)-input-robust circuit then ε ≤ 1/n.

6.4. Safeguarding intermediate results
In this section, we will see ways to introduce fault-tolerance that scale up better. Namely,
we will show:

Theorem 6.16 There are constants R0, ε0 such that for

F(n, δ) = N lg(n/δ),

for all ε < ε0, δ ≥ 3ε, for every deterministic computation of size N there is an (ε, δ)-resilient
computation of size R0F(N, δ) with the same result.

Let us introduce a concept that will simplify the error analysis of our circuits, making
it independent of the input vector x.
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Figure 6.5. An executive organ.

De�nition 6.17 In a Boolean circuit N, let us call a majority gate at a node v a correcting
majority gate if for every input vector x of N, all input wires of node v have the same value.
Consider a computation of such a circuit N. This computation will make some nodes and
wires of N tainted. We de�ne taintedness by the following rules:
1. The input nodes are untainted.
2. If a node is tainted then all of its output wires are tainted.
3. A correcting majority gate is tainted if either it fails or a majority of its inputs are

tainted.
4. Any other gate is tainted if either it fails or one of its inputs is tainted.

Clearly, if for all ε-admissible random con�gurations the output is tainted with proba-
bility ≤ δ then the circuit is (ε, δ)-resilient.

6.4.1. Cables
So far, we have only made use of redundancy idea (2) of the introduction to the present
chapter: repeating computation steps. Let us now try to use idea (1) (keeping information in
redundant form) in Boolean circuits. To protect information travelling from gate to gate, we
replace each wire of the noiseless circuit by a �cable� of k wires (where k will be chosen
appropriately). Each wire within the cable is supposed to carry the same bit of information,
and we hope that a majority will carry this bit even if some of the wires fail.

De�nition 6.18 In a Boolean circuit N′, a certain set of edges is allowed to be called a
cable if in a noise-free computation of this circuit, each edge carries the same Boolean
value. The width of the cable is its number of elements. Let us �x an appropriate constant
threshold ϑ. Consider any possible computation of the noisy version of the circuit N′, and a
cable of width k in N′. This cable will be called ϑ-safe if at most ϑk of its wires are tainted.

Let us take a Boolean circuit N that we want to make resilient. As we replace wires of
N with cables of N′ containing k wires each, we will replace each noiseless 2-argument gate
at a node v by a module called the executive organ of k gates, which for each i = 1, . . . , k,
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Figure 6.6. A restoring organ.

passes the ith wire both incoming cables into the ith node of the organ. Each of these nodes
contains a gate of one and the same type bv. The wires emerging from these nodes form the
output cable of the executive organ.

The number of tainted wires in this output cable may become too high: indeed, if there
were ϑk tainted wires in the x cable and also in the y cable then there could be as many
as 2ϑk such wires in the g(x, y) cable (not even counting the possible new taints added by
faults in the executive organ). The crucial part of the construction is to attach to the executive
organ a so-called restoring organ: a module intended to decrease the taint in a cable.

6.4.2. Compressors
How to build a restoring organ? Keeping in mind that this organ itself must also work in
noise, one solution is to build (for an appropriate δ′) a special (ε, δ′)-resilient circuit that
computes the near-majority of its k inputs in k independent copies. Theorem 6.15 provides
a circuit of size k(k + 1)7 to do this.

It turns out that, at least asymptotically, there is a better solution. We will look for a very
simple restoring organ: one whose own noise we can analyse easily. What could be simpler
than a circuit having only one level of gates? We �x an odd positive integer constant d (for
example, d = 3). Each gate of our organ will be a d-input majority gate.

De�nition 6.19 A multigraph is a graph in which between any two vertices there may be
several edges, not just 0 or 1. Let us call a bipartite multigraph with k inputs and k outputs,
d-half-regular, if each output node has degree d. Such a graph is a (d, α, γ, k)-compressor
if it has the following property: for every set E of at most ≤ αk inputs, the number of those
output points connected to at least d/2 elements of E (with multiplicity) is at most γαk.

The compressor property is interesting generally when γ < 1. For example, in an
(5, 0.1, 0.5, k)-compressor the outputs have degree 5, and the majority operation in these
nodes decreases every error set con�ned to 10% of all input to just 5% of all outputs. A
compressor with the right parameters could serve as our restoring organ: it decreases a mi-
nority to a smaller minority and may in this way restore the safety of a cable. But, are there
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compressors?

Theorem 6.20 For all γ < 1, all integers d with

1 < γ(d − 1)/2, (6.18)

there is an α such that for all integer k > 0 there is a (d, α, γ, k)-compressor.

Note that for d = 3, the theorem does not guarantee a compressor with γ < 1.
Proof. We will not give an explicit construction for the multigraph, we will just show that it
exists. We will select a d-half-regular multigraph randomly (each such multigraph with the
same probability), and show that it will be a (d, α, γ, k)-compressor with positive probability.
This proof method is called the probabilistic method. Let

s = bd/2c.
Our construction will be somewhat more general, allowing k′ , k outputs. Let us generate
a random bipartite d-half-regular multigraph with k inputs and k′ outputs in the following
way. To each output, we draw edges from d random input nodes chosen independently and
with uniform distribution over all inputs. Let A be an input set of size αk, let v be an output
node and let Ev be the event that v has s + 1 or more edges from A. Then we have

P(Ev) ≤
(

d
s + 1

)
αs+1 =

(
d
s

)
αs+1 =: p.

On the average (in expected value), the event Ev will occur for pk′ different output nodes v.
For an input set A, let FA be the event that the set of nodes v for which Ev holds has size
> γαk′. By inequality (6.7) we have

P(FA) ≤
(

ep
γα

)k′γα
.

The number M of sets A of inputs with ≤ αk elements is, using inequality (6.8),

M ≤
∑

i≤αk

(
k
i

)
≤

( e
α

)αk
.

The probability that our random graph is not a compressor is at most as large as the proba-
bility that there is at least one input set A for which event FA holds. This can be bounded
by

M · P(FA) ≤ e−αDk′

where

D = −(γs − k/k′) lnα − γ( ln (d
s) − ln γ + 1 ) − k/k′.

As we decrease α the �rst term of this expression dominates. Its coefficient is positive
according to the assumption (6.18). We will have D > 0 if

α < exp
(
−γ

( ln (d
s) − ln γ + 1 )

+ k/k′
γs − k/k′

)
.
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Example 6.4 Choosing γ = 0.4, d = 7, the value α = 10−7 will work.

We turn a (d, α, γ, k)-compressor into a restoring organ R, by placing d-input majority
gates into its outputs. If the majority elements sometimes fail then the output of R is random.
Assume that at most αk inputs of R are tainted. Then (γ + ρ)αk outputs can only be tainted
if αρk majority gates fail. Let

pR

be the probability of this event. Assuming that the gates of R fail independently with pro-
bability ≤ ε, inequality (6.7) gives

pR ≤
(

eε
αρ

)αρk
. (6.19)

Example 6.5 Choose γ = 0.4, d = 7, α = 10−7 as in Example 6.4., further ρ = 0.14 (this will satisfy
the inequality (6.20) needed later). With ε = 10−9, we get pR ≤ e−10−8k.

The attractively small degree d = 7 led to an extremely unattractive probability bound on the
failure of the whole compressor. This bound does decrease exponentially with cable width k, but only
an extremely large k would make it small.

Example 6.6 Choosing again γ = 0.4, but d = 41 (voting in each gate of the compressor over 41 wires
instead of 7), leads to somewhat more realistic results. This choice allows α = 0.15. With ρ = 0.14,
ε = 10−9 again, we get pR ≤ e−0.32k.

These numbers look less frightening, but we will still need many scores of wires in the cable to
drive down the probability of compression failure. And although in practice our computing compo-
nents fail with frequency much less than 10−9, we may want to look at the largest ε that still can be
tolerated.

6.4.3. Propagating safety
Compressors allow us to construct a reliable Boolean circuit all of whose cables are safe.

De�nition 6.21 Given a Boolean circuit N with a single bit of output (for simplicity), a
cable width k and a Boolean circuit R with k inputs and k outputs, let

N′ = Cab(N,R)

be the Boolean circuit that we obtain as follows. The input nodes of N′ are the same as
those of N. We replace each wire of N with a cable of width k, and each gate of N with an
executive organ followed by a restoring organ that is a copy of the circuit R. The new circuit
has k outputs: the outputs of the restoring organ of N′ belonging to the last gate of N.

In noise-free computations, on every input, the output of N′ is the same as the output of
N, but in k identical copies.
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Figure 6.7. An executive organ followed by a restoring organ.

Lemma 6.22 There are constants d, ε0, ϑ, ρ > 0 and for every cable width k a circuit R of
size 2k and gate size ≤ d with the following property. For every Boolean circuit N of gate
size ≤ 2 and number of nodes N, for every ε < ε0, for every ε-admissible con�guration of
N′ = Cab(N,R), the probability that not every cable of N′ is ϑ-safe is < 2N( eε

ϑρ
)ϑρk.

Proof. We know that there are d, α and γ < 1/2 with the property that for all k a (d, α, γ, k)-
compressor exists. Let ρ be chosen to satisfy

γ(2 + ρ) + ρ ≤ 1, (6.20)

and de�ne
ϑ = α/(2 + ρ). (6.21)

Let R be a restoring organ built from a (d, α, γ, k)-compressor. Consider a gate v of circuit
N, and the corresponding executive organ and restoring organ in N′. Let us estimate the
probability of the event Ev that the input cables of this combined organ are ϑ-safe but its
output cable is not. Assume that the two incoming cables are safe: then at most 2ϑk of
the outputs of the executive organ are tainted due to the incoming cables: new taint can
still occur due to failures. Let Ev1 be the event that the executive organ taints at least ρϑk
more of these outputs. Then P(Ev1) ≤ ( eε

ρϑ
)ρϑk, using the estimate (6.19). The outputs of the

executive organ are the inputs of the restoring organ. If no more than (2 + ρ)ϑk = αk of
these are tainted then, in case the organ operates perfectly, it would decrease the number of
tainted wires to γ(2 + ρ)ϑk. Let Ev2 be the event that the restoring organ taints an additional
ρϑk of these wires. Then again, P(Ev2) ≤ ( eε

ρϑ
)ρϑk. If neither Ev1 nor Ev2 occur then at most

γ(2 + ρ)ϑk + ρϑk ≤ ϑk (see (6.20)) tainted wires emerge from the restoring organ, so the
outgoing cable is safe. Therefore Ev ⊂ Ev1 ∪ Ev2 and hence P(Ev) ≤ 2( eε

ρϑ
)ρϑk.
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Figure 6.8. Reliable circuit from a fault-free circuit.

Let V = {1, . . . ,N} be the nodes of the circuit N. Since the incoming cables of the
whole circuit N′ are safe, the event that there is some cable that is not safe is contained in
E1 ∪ E2 ∪ · · · ∪ EN ; hence the probability is bounded by 2N( eε

ρϑ
)ρϑk.

6.4.4. Endgame
Proof. of Theorem 6.16 We will prove the theorem only for the case when our computation
is a Boolean circuit with a single bit of output. The generalisation with more bits of output
is straightforward. The proof of Lemma 6.22 gives us a circuit N′ whose output cable is
safe except for an event of probability < 2N( eε

ρϑ
)ρϑk. Let us choose k in such a way that this

becomes ≤ δ/3:

k ≥ lg(6N/δ)
ρϑ log ρϑ

eε0

. (6.22)

It remains to add a little circuit to this output cable to extract from it the majority reliably.
This can be done using Theorem 6.15, adding a small extra circuit of size (k + 1)7 that can
be called the coda to N′. Let us call the resulting circuit N′′.

The probability that the output cable is unsafe is < δ/3. The probability that the output
cable is safe but the �coda� circuit fails is bounded by 2ε. So, the probability that N′′ fails
is ≤ 2ε + δ/3 ≤ δ, by the assumption δ ≥ 3ε.

Let us estimate the size of N′′. By (6.22), we can choose cable width k = O(log(N/δ)).
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We have |N′| ≤ 2kN, hence

|N′′| ≤ 2kN + (k + 1)7 = O(N lg(N/δ)).

Example 6.7 Take the constants of Example 6.6., with ϑ de�ned in equation (6.21): then ε0 = 10−9,
d = 41, γ = 0.4, ρ = 0.14, α = 0.15, ϑ = 0.07, giving

1
ρϑ ln ρϑ

eε0

≈ 6.75,

so making k as small as possible (ignoring that it must be integer), we get k ≈ 6.75 ln(N/δ). With
δ = 10−8, N = 1012 this allows k = 323. In addition to this truly unpleasant cable size, the size of the
�coda� circuit is (k + 1)7 ≈ 4 · 1017, which dominates the size of the rest of N′′ (though as N → ∞ it
becomes asymptotically negligible).

As Example 6.7. shows, the actual price in redundancy computable from the proof is
unacceptable in practice. The redundancy O(lg(N/δ)) sounds good, since it is only logarith-
mic in the size of the computation, and by choosing a rather large majority gate (41 inputs),
the factor 6.75 in the O(·) here also does not look bad; still, we do not expect the �nal price
of reliability to be this high. How much can this redundancy improved by optimisation or
other methods? Problem 6-6. shows that in a slightly more restricted error model (all faults
are independent and have the same probability), with more randomisation, better constants
can be achieved. Exercises 6.4-1., 6.4-2. and 6.4-6. are concerned with an improved const-
ruction for the �coda� circuit. Exercise 6.5-2. shows that the coda circuit can be omitted
completely. But none of these improvements bring redundancy to acceptable level. Even
aside from the discomfort caused by their random choice (this can be helped), concentrators
themselves are rather large and unwieldy. The problem is probably with using circuits as a
model for computation. There is no natural way to break up a general circuit into subunits
of non-constant size in order to deal with the reliability problem in modular style.

6.4.5. The construction of compressors
This subsection is sketchier than the preceding ones, and assumes some knowledge of linear
algebra.

We have shown that compressors exist. How expensive is it to �nd a (d, α, γ, k)-
compressor, say, with d = 41, α = 0.15, γ = 0.4, as in Example 6.6.? In a deterministic
algorithm, we could search through all the approximately dk d-half-regular bipartite graphs.
For each of these, we could check all possible input sets of size ≤ αk: as we know, their
number is ≤ (e/α)αk < 2k. The cost of checking each subset is O(k), so the total number
of operations is O(k(2d)k). Though this number is exponential in k, recall that in our error-
correcting construction, k = O(lg(N/δ)) for the size N of the noiseless circuit: therefore the
total number of operations needed to �nd a compressor is polynomial in N.

The proof of Theorem 6.20 shows that a randomly chosen d-half-regular bipartite graph
is a compressor with large probability. Therefore there is a faster, randomised algorithm for
�nding a compressor. Pick a random d-half-regular bipartite graph, check if it is a compres-
sor: if it is not, repeat. We will be done in a constant expected number of repetitions. This
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is a faster algorithm, but is still exponential in k, since each checking takes Ω(k(e/α)αk)
operations.

Is it possible to construct a compressor explicitly, avoiding any search that takes expo-
nential time in k? The answer is yes. We will show here only, however, that the compressor
property is implied by a certain property involving linear algebra, which can be checked
in polynomial time. Certain explicitly constructed graphs are known that possess this pro-
perty. These are generally sought after not so much for their compressor property as for their
expander property (see Exercise 6.4-3.).

For vectors v,w, let (v,w) denote their inner product. A d-half-regular bipartite mul-
tigraph with 2k nodes can be de�ned by an incidence matrix M = (mi j), where mi j is the
number of edges connecting input j to output i. Let e be the vector (1, 1, . . . , 1)T . Then
Me = de, so e is an eigenvector of M with eigenvalue d. Moreover, d is the largest eigen-
value of M. Indeed, denoting by |x|1 =

∑
i |xi| for any row vector x = (x1, . . . , xk), we have

|xM|1 ≤ |x|1.

Theorem 6.23 Let G be a multigraph de�ned by the matrix M. For all γ > 0, and

µ < d√γ/2, (6.23)

there is an α > 0 such that if the second largest eigenvalue of the matrix MT M is µ2 then G
is a (d, α, γ, k)-compressor.

Proof. The matrix MT M has largest eigenvalue d2. Since it is symmetric, it has a basis of
orthogonal eigenvectors e1, . . . , ek of unit length with corresponding nonnegative eigenva-
lues

λ2
1 ≥ · · · ≥ λ2

k

where λ1 = d and e1 = e/
√

k. Recall that in the orthonormal basis {ei}, any vector f can be
written as f =

∑
i( f , ei)ei. For an arbitrary vector f , we can estimate |M f |2 as follows.

|M f |2 = (M f , M f ) = ( f , MT M f ) =
∑

i
λ2

i ( f , ei)2

≤ d2( f , e1)2 + µ2
∑

i>1
( f , ei)2 ≤ d2( f , e1)2 + µ2( f , f )

= d2( f , e)2/k + µ2( f , f ).

Let now A ⊂ {1, . . . , k} be a set of size αk and f = ( f1, . . . , fk)T where f j = 1 for j ∈ A and
0 otherwise. Then, coordinate i of M f counts the number di of edges coming from the set
A to the node i. Also, ( f , e) = ( f , f ) = |A|, the number of elements of A. We get

∑

i
d2

i = |M f |2 ≤ d2( f , e)2/k + µ2( f , f ) = d2α2k + µ2αk,

k−1
∑

i
(di/d)2 ≤ α2 + (µ/d)2α.

Suppose that there are cαk nodes i with di > d/2, then this says

cα ≤ 4(µ/d)2α + 4α2.
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Since (6.23) implies 4(µ/d)2 < γ, it follows that M is a (d, α, γ, k, k)-compressor for small
enough α.

It is actually sufficient to look for graphs with large k and µ/d < c < 1 where d, c are
constants. To see this, let us de�ne the product of two bipartite multigraphs with 2k vertices
by the multigraph belonging to the product of the corresponding matrices.

Suppose that M is symmetric: then its second largest eigenvalue is µ and the ratio of the
two largest eigenvalues of Mr is (µ/d)r. Therefore using Mr for a sufficiently large r as our
matrix, the condition (6.23) can be satis�ed. Unfortunately, taking the power will increase
the degree d, taking us probably even farther away from practical realisability.

We found that there is a construction of a compressor with the desired parameters as
soon as we �nd multigraphs with arbitrarily large sizes 2k, with symmetric matrices Mk and
with a ratio of the two largest eigenvalues of Mk bounded by a constant c < 1 independent
of k. There are various constructions of such multigraphs (see the references in the historical
overview). The estimation of the desired eigenvalue quotient is never very simple.

Exercises
6.4-1 The proof of Theorem 6.16 uses a �coda� circuit of size (k + 1)7. Once we proved
this theorem we could, of course, apply it to the computation of the �nal majority itself: this
would reduce the size of the coda circuit to O(k lg k). Try out this approach on the numerical
examples considered above to see whether it results in a signi�cant improvement.
6.4-2 The proof of Theorem 6.20 provided also bipartite graphs with the compressor pro-
perty, with k inputs and k′ < 0.8k outputs. An idea to build a smaller �coda� circuit in the
proof of Theorem 6.16 is to concatenate several such compressors, decreasing the number
of cables in a geometric series. Explore this idea, keeping in mind, however, that as k dec-
reases, the �exponential� error estimate in inequality (6.19) becomes weaker.
6.4-3 Let us call a d-halfregular bipartite multigraph with a set A of k inputs and a set B
of k outputs a (d, α, λ, k)-expander if it has the following property: for every set E ⊂ A
with |E| ≤ αk, the number of those elements of B connected to E is at least λαk. Prove the
following theorem analogous to Theorem 6.20: For all λ < d, there is an α such that for
all k > 0 there is a (d, α, λ, k)-expander. [Hint: Analogously to the proof of Theorem 6.20,
show that a random d-half-regular multigraph is an expander with large probability. ]
6.4-4 In a noisy Boolean circuit, let Fv = 1 if the gate at vertex v fails and 0 otherwise.
Further, let Tv = 1 if v is tainted, and 0 otherwise. Suppose that the distribution of the ran-
dom variables Fv does not depend on the Boolean input vector. Show that then the joint
distribution of the random variables Tv is also independent of the input vector.
6.4-5 This exercise extends the result of Exercise 6.3-1. to random input vectors: it shows
that if a random input vector has only a small number of errors, then the iterated majority
vote Mr

3 of Exercise 6.2-5. may still work for it, if we rearrange the input wires randomly.
Let k = 3r, and let j = ( j1, . . . , jk) be a vector of integers ji ∈ {1, . . . , k}. We de�ne a Bo-
olean circuit C( j) as follows. This circuit takes input vector x = (x1, . . . , xk), computes the
vector y = (y1, . . . , yk) where yi = x ji (in other words, just leads a wire from input node ji
to an �intermediate node� i) and then inputs y into the circuit Mr

3.
Denote the (possibly random) output bit of C( j) by Z. For any �xed input vector x,

assuming that our majority gates can fail with probability ≤ ε ≤ α/2 independently, denote
q( j, x) := P[ Z = 1 ]. Assume that the input is a vector X = (X1, . . . , Xk) of (not necessarily
independent) Boolean random variables, with p(x) := P[ X = x ]. Denoting |X| =

∑
i Xi,
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Figure 6.9. A shift register.

assume P[ |X| > αk ] ≤ ρ < 1. Prove that there is a choice of the vector j for which
∑

x
p(x)q( j, x) ≤ ρ + max{10ε, 0.3(α/0.3)2k }.

The choice may depend on the distribution of the random vector X. [Hint: Choose the vector
j (and hence the circuit C( j)) randomly, as a random vector J = (J1, . . . , Jk) where the
variables Ji are independent and uniformly distributed over {1, . . . , k}, and denote s( j) :=
P[ J = j ]. Then prove

∑

j
s( j)

∑

x
p(x)q( j, x) ≤ ρ + max{10ε, 0.3(α/0.3)2k }.

For this, interchange the averaging over x and j. Then note that ∑
j s( j)q( j, x) is the proba-

bility of Z = 1 when the �wires� Ji are chosen randomly �on the �y� during the computation
of the circuit. ]
6.4-6 Taking the notation of Exercise 6.4-4. suppose, like there, that the random variables
Fv are independent of each other, and their distribution does not depend on the Boolean
input vector. Take the Boolean circuit Cab(N,R) introduced in De�nition 6.21, and de�ne
the random Boolean vector T = (T1, . . . , Tk) where Ti = 1 if and only if the ith output node
is tainted. Apply Exercise 6.4-5. to show that there is a circuit C( j) that can be attached to
the output nodes to play the role of the �coda� circuit in the proof of Theorem 6.16. The
size of C( j) is only linear in k, not (k + 1)7 as for the coda circuit in the proof there. But,
we assumed a little more about the fault distribution, and also the choice of the �wiring� j
depends on the circuit Cab(N,R).

6.5. The reliable storage problem
6.5.1. Clocked circuits
An obvious element of ordinary computations is missing from the above described Boolean
circuit model: repetition. If we want to repeat some computation steps, then we need to
introduce timing into the work of computing elements and to store the partial results between
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Figure 6.10. Part of a circuit which computes the sum of two binary numbers x, y. We feed the digits of x and y
beginning with the lowest-order ones, at the input nodes. The digits of the sum come out on the output edge. A
shift register holds the carry.

consecutive steps. Let us look at the drawings of the circuit designer again. We will see
components like in Figure 6.9, with one ingoing edge and no operation associated with
them; these will be called shift registers. The shift registers are controlled by one central
clock (invisible on the drawing). At each clock pulse, the assignment value on the incoming
edge jumps onto the outgoing edges and �stays in� the register. Figure 6.10 shows how shift
registers may be used inside a circuit.

De�nition 6.24 A clocked circuit over a complete basis Q is given by a tuple just like a
Boolean circuit in (6.11). Also, the circuit de�nes a graph G = (V, E) similarly. Recall that
we identi�ed nodes with the natural numbers 1, . . . ,N. To each non-input node v either a
gate bv is assigned as before, or a shift register: in this case kv = 1 (there is only one
argument). We do not require the graph to be acyclic, but we do require every directed cycle
(if there is any) to pass through at least one shift register.

The circuit works in a sequence t = 0, 1, 2, . . . of clock cycles. Let us denote the input
vector at clock cycle t by xt = (xt

1, . . . , xt
n), the shift register states by st = (st

1, . . . , st
k), and

the output vector by yt = (yt
1, . . . , yt

m). The part of the circuit going from the inputs and
the shift registers to the outputs and the shift registers de�nes two Boolean vector functions
λ : {0, 1}k × {0, 1}n → {0, 1}m and τ : {0, 1}k × {0, 1}n → {0, 1}k. The operation of the clocked
circuit is described by the following equations (see Figure 6.11, which does not show any
inputs and outputs).

yt = λ(st, xt), st+1 = τ(st, xt). (6.24)

Frequently, we have no inputs or outputs during the work of the circuit, so the equati-
ons (6.24) can be simpli�ed to

st+1 = τ(st). (6.25)
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logic circuit

clock

Figure 6.11. A �computer� consists of some memory (shift registers) and a Boolean circuit operating on it. We can
de�ne the size of computation as the size of the computer times the number of steps.

How to use a clocked circuit described by this equation for computation? We write some
initial values into the shift registers, and propagate the assignment using the gates, for the
given clock cycle. Now we send a clock pulse to the register, causing it to write new values
to their output edges (which are identical to the input edges of the circuit). After this, the
new assignment is computed, and so on.

How to compute a function f (x) with the help of such a circuit? Here is a possible
convention. We enter the input x (only in the �rst step), and then run the circuit, until it
signals at an extra output edge when desired result f (x) can be received from the other
output nodes.

Example 6.8 This example uses a convention different from the above described one: new input
bits are supplied in every step, and the output is also delivered continuously. For the binary adder of
Figure 6.10, let ut and vt be the two input bits in cycle t, let ct be the content of the carry, and wt be
the output in the same cycle. Then the equations (6.24) now have the form

wt = ut ⊕ vt ⊕ ct, ct+1 = Maj(ut, vt, ct),

where Maj is the majority operation.

6.5.2. Storage
A clocked circuit is an interesting parallel computer but let us pose now a task for it that
is trivial in the absence of failures: information storage. We would like to store a certain
amount of information in such a way that it can be recovered after some time, despite failures
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in the circuit. For this, the transition function τ introduced in (6.25) cannot be just the
identity: it will have to perform some error-correcting operations. The restoring organs
discussed earlier are natural candidates. Indeed, suppose that we use k memory cells to
store a bit of information. We can call the content of this k-tuple safe when the number of
memory cells that dissent from the correct value is under some threshold ϑk. Let the rest
of the circuit be a restoring organ built on a (d, α, γ, k)-compressor with α = 0.9ϑ. Suppose
that the input cable is safe. Then the probability that after the transition, the new output
cable (and therefore the new state) is not safe is O(e−ck) for some constant c. Suppose we
keep the circuit running for t steps. Then the probability that the state is not safe in some
of these steps is O(te−ck) which is small as long as t is signi�cantly smaller than eck. When
storing m bits of information, the probability that any of the bits loses its safety in some step
is O(mte−cm).

To make this discussion rigorous, an error model must be introduced for clocked circu-
its. Since we will only consider simple transition functions τ like the majority vote above,
with a single computation step between times t and t + 1, we will make the model also very
simple.

De�nition 6.25 Consider a clocked circuit described by equation (6.25), where at each
time instant t = 0, 1, 2, . . . , the con�guration is described by the bit vector st = (st

1, . . . , st
n).

Consider a sequence of random bit vectors Yt = (Y t
1, . . . , Y t

n) for t = 0, 1, 2, . . . . Similarly
to (6.14) we de�ne

Zi,t = τ(Yt−1) ⊕ Y t
i . (6.26)

Thus, Zi,t = 1 says that a failure occurs at the space-time point (i, t). The sequence {Yt} will
be called ε-admissible if (6.15) holds for every set C of space-time points with t > 0.

By the just described construction, it is possible to keep m bits of information for T
steps in

O(m lg(mT )) (6.27)

memory cells. More precisely, the cable YT will be safe with large probability in any admis-
sible evolution Yt (t = 0, . . . , T ).

Cannot we do better? The reliable information storage problem is related to the problem
of information transmission: given a message x, a sender wants to transmit it to a receiver
through a noisy channel. Only now sender and receiver are the same person, and the noisy
channel is just the passing of time. Below, we develop some basic concepts of reliable
information transmission, and then we will apply them to the construction of a reliable data
storage scheme that is more economical than the above seen naive, repetition-based solution.

6.5.3. Error-correcting codes
Error detection
To protect information, we can use redundancy in a way more efficient than repetition. We
might even add only a single redundant bit to our message. Let x = (x1, . . . , x6), (xi ∈ {0, 1})
be the word we want to protect. Let us create the error check bit

x7 = x1 ⊕ · · · ⊕ x6.
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For example, x = 110010, x′ = 1100101. Our codeword x′ = (x1, . . . , x7) will be subject to
noise and it turns into a new word, y. If y differs from x′ in a single changed (not deleted or
added) bit then we will detect this, since then y violates the error check relation

y1 ⊕ · · · ⊕ y7 = 0.

We will not be able to correct the error, since we do not know which bit was corrupted.

Correcting a single error
To also correct corrupted bits, we need to add more error check bits. We may try to add two
more bits:

x8 = x1 ⊕ x3 ⊕ x5,

x9 = x1 ⊕ x2 ⊕ x5 ⊕ x6.

Then an uncorrupted word y must satisfy the error check relations

y1 ⊕ · · · ⊕ y7 = 0,
y1 ⊕ y3 ⊕ y5 ⊕ y8 = 0,

y1 ⊕ y2 ⊕ y5 ⊕ y6 ⊕ y9 = 0,

or, in matrix notation Hy mod 2 = 0, where

H =


1 1 1 1 1 1 1 0 0
1 0 1 0 1 0 0 1 0
1 1 0 0 1 1 0 0 1

 = (h1, . . . , h9).

Note h1 = h5. The matrix H is called the error check matrix, or parity check matrix.
Another way to write the error check relations is

y1h1 ⊕ · · · ⊕ y5h5 ⊕ · · · ⊕ y9h9 = 0.

Now if y is corrupted, even if only in a single position, unfortunately we still cannot correct
it: since h1 = h5, the error could be in position 1 or 5 and we could not tell the difference.
If we choose our error-check matrix H in such a way that the column vectors h1, h2, . . . are
all different (of course also from 0), then we can always correct an error, provided there is
only one. Indeed, if the error was in position 3 then

Hy mod 2 = h3.

Since all vectors h1, h2, . . . are different, if we see the vector h3 we can imply that the bit
y3 is corrupted. This code is called the Hamming code. For example, the following error
check matrix de�nes the Hamming code of size 7:

H =


1 1 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

 = (h1, . . . , h7). (6.28)

In general, if we have s error check bits then our code can have size 2s−1, hence the number
of bits left to store information, the information bits is k = 2s − s − 1. So, to protect m bits
of information from a single error, the Hamming code adds ≈ log m error check bits. This is
much better than repeating every bit 3 times.
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encoding noise (channel) decoding

Figure 6.12. Transmission through a noisy channel.

Codes
Let us summarise the error-correction scenario in general terms. In order to �ght noise, the
sender encodes the message x by an encoding function φ∗ into a longer string φ∗(x) which,
for simplicity, we also assume to be binary. This codeword will be changed by noise into a
string y. The receiver gets y and applies to it a decoding function φ∗.

De�nition 6.26 The pair of functions φ∗ : {0, 1}m → {0, 1}n and φ∗ : {0, 1}n → {0, 1}m is
called a code if φ∗(φ∗(x)) = x holds for all x ∈ {0, 1}m. The strings x ∈ {0, 1}m are called
messages, words of the form y = φ∗(x) ∈ {0, 1}n are called codewords. (Sometimes the
set of all codewords by itself is also called a code.) For every message x, the set of words
Cx = { y : φ∗(y) = x } is called the decoding set of x. (Of course, different decoding sets are
disjoint.) The number

R = m/n
is called the rate of the code.

We say that our code that corrects t errors if for all possible messages x ∈ {0, 1}m, if
the received word y ∈ {0, 1}n differs from the codeword φ∗(x) in at most t positions, then
φ∗(y) = x.

If the rate is R then the n-bit codewords carry Rn bits of useful information. In terms of
decoding sets, a code corrects t errors if each decoding set Cx contains all words that differ
from φ∗(x) in at most t symbols (the set of these words is a kind of �ball� of radius t).

The Hamming code corrects a single error, and its rate is close to 1. One of the important
questions connected with error-correcting codes is how much do we have to lower the rate
in order to correct more errors.

Having a notion of codes, we can formulate the main result of this section about infor-
mation storage.

Theorem 6.27 (Network information storage). There are constants ε, c1, c2,R > 0 with
the following property. For all sufficiently large m, there is a code (φ∗, φ∗) with message
length m and codeword length n ≤ m/R, and a Boolean clocked circuit N of size O(n) with n
inputs and n outputs, such that the following holds. Suppose that at time 0, the memory cells
of the circuit contain string Y0 = φ∗(x). Suppose further that the evolution Y1,Y2, . . . ,Yt of
the circuit has ε-admissible failures. Then we have

P[ φ∗(Yt) , x ] < t(c1ε)−c2n.

This theorem shows that it is possible to store m bits information for time t, in a clocked
circuit of size

O(max(lg t,m)).
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As long as the storage time t is below the exponential bound ecm for a certain constant c, this
circuit size is only a constant times larger than the amount m of information it stores. (In
contrast, in (6.27) we needed an extra factor lg m when we used a separate restoring organ
for each bit.)

The theorem says nothing about how difficult it is to compute the codeword φ∗(x) at the
beginning and how difficult it is to carry out the decoding φ∗(Yt) at the end. Moreover, it is
desirable to perform these two operations also in a noise-tolerant fashion. We will return to
the problem of decoding later.

Linear algebra
Since we will be dealing more with bit matrices, it is convenient to introduce the algebraic
structure

F2 = ({0, 1},+, ·),
which is a two-element �eld. Addition and multiplication in F2 are de�ned modulo 2 (of
course, for multiplication this is no change). It is also convenient to vest the set {0, 1}n of
binary strings with the structure Fn

2 of an n-dimensional vector space over the �eld F2. Most
theorems and algorithms of basic linear algebra apply to arbitrary �elds: in particular, one
can de�ne the row rank of a matrix as the maximum number of linearly independent rows,
and similarly the column rank. Then it is a theorem that the row rank is equal to the column
rank. From now on, in algebraic operations over bits or bit vectors, we will write + in place
of ⊕ unless this leads to confusion. To save space, we will frequently write column vectors
horizontally: we write 

x1
...

xn

 = (x1, . . . , xn)T ,

where AT denotes the transpose of matrix A. We will write

Ir

for the identity matrix over the vector space Fr
2.

Linear codes
Let us generalise the idea of the Hamming code.

De�nition 6.28 A code (φ∗, φ∗) with message length m and codeword length n is linear
if, when viewing the message and code vectors as vectors over the �eld F2, the encoding
function can be computed according to the formula

φ∗(x) = Gx,

with an m× n matrix G called the generator matrix of the code. The number m is called the
the number of information bits in the code, the number

k = n − m

the number of error-check bits.
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Example 6.9 The matrix H in (6.28) can be written as H = (K, I3), with

K =


1 1 1 0
1 0 1 1
1 1 0 1

 .

Then the error check relation can be written as

y =

(
I4
−K

)


y1
...

y4.


.

This shows that the bits y1, . . . , y4 can be taken to be the message bits, or �information bits�, of the
code, making the Hamming code a linear code with the generator matrix (I4,−K)T . (Of course, −K =

K over the �eld F2.)

The following statement is proved using standard linear algebra, and it generalises the
relation between error check matrix and generator matrix seen in Example 6.9..

Claim 6.29 Let k,m > 0 be given with n = m + k.
1. For every n ×m matrix G of rank m over F2 there is a k × n matrix H of rank k with the

property
{Gx : x ∈ Fm

2 } = { y ∈ Fn
2 : Hy = 0 }. (6.29)

2. For every k × n matrix H of rank k over F2 there is an n × m matrix G of rank m with
property (6.29).

De�nition 6.30 For a vector x, let |x| denote the number of its nonzero elements: we will
also call it the weight of x.

In what follows it will be convenient to de�ne a code starting from an error-check matrix
H. If the matrix has rank k then the code has rate

R = 1 − k/n.

We can �x any subset S of k linearly independent columns, and call the indices i ∈ S
error check bits and the indices i < S the information bits. (In Example 6.9., we chose
S = {5, 6, 7}.) Important operations can performed over a code, however, without �xing any
separation into error-check bits and information bits.

6.5.4. Refreshers
Correcting a single error was not too difficult; �nding a similar scheme to correct 2 errors
is much harder. However, in storing n bits, typically εn (much more than 2) of those bits
will be corrupted in every step. There are ingenious and quite efficient codes of positive rate
(independent of n) correcting even this many errors. When applied to information storage,
however, the error-correction mechanism itself must also work in noise, so we are looking
for a particularly simple one. It works in our favour, however, that not all errors need to be
corrected: it is sufficient to cut down their number, similarly to the restoring organ in reliable
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Boolean circuits above.
For simplicity, as gates of our circuit we will allow certain Boolean functions with a

large, but constant, number of arguments. On the other hand, our Boolean circuit will have
just depth 1, similarly to a restoring organ of Section 6.4. The output of each gate is the
input of a memory cell (shift register). For simplicity, we identify the gate and the memory
cell and call it a cell. At each clock tick, a cell reads its inputs from other cells, computes
a Boolean function on them, and stores the result (till the next clock tick). But now, instead
of majority vote among the input values cells, the Boolean function computed by each cell
will be slightly more complicated.

Our particular restoring operations will be de�ned, with the help of a certain k×n parity
check matrix H = (hi j). Let x = (x1, . . . , xn)T be a vector of bits. For some j = 1, . . . , n, let
V j (from �vertical�) be the set of those indices i with hi j = 1. For integer i = 1, . . . , k, let Hi
(from �horizontal�) be the set of those indices j with hi j = 1. Then the condition Hx = 0
can also be expressed by saying that for all i, we have ∑

j∈Hi x j ≡ 0 (mod 2). The sets Hi
are called the parity check sets belonging to the matrix H. From now on, the indices i will
be called checks, and the indices j locations.

De�nition 6.31 A linear code H is a low-density parity-check code with bounds K,N > 0
if the following conditions are satis�ed:
1. For each j we have |V j| ≤ K;
2. For each i we have |Hi| ≤ N.
In other words, the weight of each row is at most N and the weight of each column is at
most K.

In our constructions, we will keep the bounds K,N constant while the length n of co-
dewords grows. Consider a situation when x is a codeword corrupted by some errors. To
check whether bit x j is incorrect we may check all the sums

si =
∑

j∈Hi

x j

for all i ∈ V j. If all these sums are 0 then we would not suspect x j to be in error. If only one
of these is nonzero, we will know that x has some errors but we may still think that the error
is not in bit x j. But if a signi�cant number of these sums is nonzero then we may suspect
that x j is a culprit and may want to change it. This idea suggests the following de�nition.

De�nition 6.32 For a low-density parity-check code H with bounds K,N, the refreshing
operation associated with the code is the following, to be performed simultaneously for all
locations j:

Find out whether more than bK/2c of the sums si are nonzero among the
ones for i ∈ V j. If this is the case, �ip x j.

Let xH denote the vector obtained from x by this operation. For parameters 0 < ϑ, γ < 1, let
us call H a (ϑ, γ,K,N, k, n)-refresher if for each vector x of length n with weight |x| ≤ ϑn
the weight of the resulting vector decreases thus: |xH | ≤ γϑn.
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αn corrupted symbols

KN-input gate

γαn + ραn ≤ αn

clock

Figure 6.13. Using a refresher.

Notice the similarity of refreshers to compressors. The following lemma shows the use
of refreshers, and is an example of the advantages of linear codes.

Lemma 6.33 For an (ϑ, γ,K,N, k, n)-refresher H, let x be an n-vector and y a codeword
of length n with |x − y| ≤ ϑn. Then |xH − y| ≤ γϑn.

Proof. Since y is a codeword, Hy = 0, implying H(x − y) = Hx. Therefore the error
correction �ips the same bits in x − y as in x: (x − y)H − (x − y) = xH − x, giving xH − y =

(x − y)H. So, if |x − y| ≤ ϑn, then |xH − y| = |(x − y)H | ≤ γϑn.

Theorem 6.34 There is a parameter ϑ > 0 and integers K > N > 0 such that for all
sufficiently large code length n and k = Nn/K there is a (ϑ, 1/2,K,N, k, n)-refresher with at
least n − k = 1 − N/K information bits.

In particular, we can choose N = 100, K = 120, ϑ = 1.31 · 10−4.

We postpone the proof of this theorem, and apply it �rst.
Proof. of Theorem 6.27 Theorem 6.34 provides us with a device for information storage.
Indeed, we can implement the operation x→ xH using a single gate g j of at most KN inputs
for each bit j of x. Now as long as the inequality |x− y| ≤ ϑn holds for some codeword y, the
inequality |xH−y| ≤ γϑn follows with γ = 1/2. Of course, some gates will fail and introduce
new deviations resulting in some x′ rather than xH. Let eε < ϑ/2 and ρ = 1 − γ(= 1/2).
Then just as earlier, the probability that there are more than ρϑn failures is bounded by the
exponentially decreasing expression (eε/ρϑ)ρϑn. With fewer than ρϑn new deviations, we
will still have |x′ − y| < (γ + ρ)ϑn < ϑn. The probability that at any time ≤ t the number of
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failures is more than ρϑn is bounded by

t(eε/ρϑ)ρϑn < t(6ε/ϑ)(1/2)ϑn.

Example 6.10 Let ε = 10−9. Using the sample values in Theorem 6.34 we can take N = 100, K = 120,
so the information rate is 1 − N/K = 1/6. With the corresponding values of ϑ, and γ = ρ = 1/2, we
have ρϑ = 6.57 · 10−5. The probability that there are more than ρϑn failures is bounded by

(eε/ρϑ)ρϑn = (10−4e/6.57)6.57·10−5n ≈ e−6.63·10−4n.

This is exponentially decreasing with n, albeit initially very slowly: it is not really small until n = 104.
Still, for n = 106, it gives e−663 ≈ 1.16 · 10−288.

Decoding?
In order to use a refresher for information storage, �rst we need to enter the encoded in-
formation into it, and at the end, we need to decode the information from it. How can this
be done in a noisy environment? We have nothing particularly smart to say here about en-
coding besides the reference to the general reliable computation scheme discussed earlier.
On the other hand, it turns out that if ε is sufficiently small then decoding can be avoided
altogether.

Recall that in our codes, it is possible to designate certain symbols as information sym-
bols. So, in principle it is sufficient to read out these symbols. The question is only how
likely it is that any one of these symbols will be corrupted. The following theorem upper-
bounds the probability for any symbol to be corrupted, at any time.

Theorem 6.35 For parameters ϑ, γ > 0, integers K > N > 0, code length n, with k =

Nn/K, consider a (ϑ, 1/2,K,N, k, n)-refresher. Build a Boolean clocked circuit N of size
O(n) with n inputs and n outputs based on this refresher, just as in the proof of Theorem 6.27.
Suppose that at time 0, the memory cells of the circuit contain string Y0 = φ∗(x). Suppose
further that the evolution Y1,Y2, . . . ,Yt of the circuit has ε-admissible failures. Let Yt =

(Yt(1), . . . , Yt(n)) be the bits stored at time t. Then ε < (2.1KN)−10 implies

P[ Yt( j) , Y0( j) ] ≤ cε + t(6ε/ϑ)(1/2)ϑn

for some c depending on N,K.

Remark 6.36 What we are bounding is only the probability of a corrupt symbol in the
particular position j. Some of the symbols will certainly be corrupt, but any one symbol one
points to will be corrupt only with probability ≤ cε.

The upper bound on ε required in the condition of the theorem is very severe, unders-
coring the theoretical character of this result.

Proof. As usual, it is sufficient to assume Y0 = 0. Let Dt = { j : Yt( j) = 1 }, and let Et be
the set of circuit elements j which fail at time t. Let us de�ne the following sequence of
integers:

b0 = 1, bu+1 = d(4/3)bue, cu = d(1/3)bue.
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It is easy to see from here by induction

b0 + · · · + bu−1 ≤ 3bu ≤ 9cu. (6.30)

The �rst members of the sequence bu are 1,2,3,4,6,8,11,15,18,24,32, and for cu they are
1,1,1,2,2,3,4,5,6,8,11.

Claim 6.37 Suppose that Yt( j0) , 0. Then either there is a time t′ < t at which ≥ (1/2)ϑn
circuit elements failed, or there is a sequence of sets Bu ⊆ Dt−u for 0 ≤ u < v and C ⊆ Et−v
with the following properties.
1. For u > 0, every element of Bu shares some error-check with some element of Bu−1. Also

every element of C shares some error-check with some element of Bv−1.
2. We have |Et−u ∩ Bu| < |Bu|/3 for u < v, on the other hand C ⊆ Et−v.
3. We have B0 = { j0}, |Bu| = bu, for all u < v, and |C| = cv.

Proof. We will de�ne the sequence Bu recursively, and will say when to stop. If j0 ∈ Et then
we set v = 0, C = {0}, and stop. Suppose that Bu is already de�ned. Let us de�ne Bu+1 (or C
if v = u + 1). Let B′u+1 be the set of those j which share some error-check with an element of
Bu, and let B′′u+1 = B′u+1 ∩ Dt−u−1. The refresher property implies that either |B′′u+1| > ϑn or

|Bu r Et−u| ≤ (1/2)|B′′u+1|.

In the former case, there must have been some time t′ < t−u with |Et′ | > (1/2)ϑn, otherwise
Dt−u−1 could never become larger than ϑn. In the latter case, the property |Et−u ∩ Bu| <
(1/3)|Bu| implies

(2/3)|Bu| < |Bu r Et−u| ≤ (1/2)|B′′u+1|,
(4/3)bu < |B′′u+1|.

Now if |Et−u−1 ∩ B′′u+1| < (1/3)|B′′u+1| then let Bu+1 be any subset of B′′u+1 with size bu+1
(there is one), else let v = u + 1 and C ⊆ Et−u−1 ∩ B′′u+1 a set of size cv (there is one). This
construction has the required properties.

For a given Bu, the number of different choices for Bu+1 is bounded by
(|B′u+1|

bu+1

)
≤

(
KNbu
bu+1

)
≤

(
eKNbu

bu+1

)bu+1

≤ ((3/4)eKN)bu+1 ≤ (2.1KN)bu+1 ,

where we used (6.10). Similarly, the number of different choices for C is bounded by
(
KNbv−1

cv

)
≤ µcv with µ = 2.1KN.

It follows that the number of choices for the whole sequence B1, . . . , Bv−1,C is bounded by

µb1+···+bv−1+cv .

On the other hand, the probability for a �xed C to have C ⊆ Ev is ≤ εcv . This way, we can
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bound the probability that the sequence ends exactly at v by

pv ≤ εcvµb1+···+bv−1+cv ≤ εcvµ10cv ,

where we used (6.30). For small v this gives

p0 ≤ ε, p1 ≤ εµ, p2 ≤ εµ3, p3 ≤ ε2µ6, p4 ≤ ε2µ10, p5 ≤ ε3µ16.

Therefore
∞∑

v=0
pv ≤

5∑

v=0
pv +

∞∑

v=6
(µ10ε)cv ≤ ε(1 + µ + µ3) + ε2(µ6 + µ10) +

ε3µ16

1 − εµ10 ,

where we used εµ10 < 1 and the property cv+1 > cv for v ≥ 5. We can bound the last
expression by cε with an appropriate constant c.

We found that the event Yt( j) , Y0( j) happens either if there is a time t′ < t at which
≥ (1/2)ϑn circuit elements failed (this has probability bound t(2eε/ϑ)(1/2)ϑn) or an event of
probability ≤ cε occurs.

Expanders
We will construct our refreshers from bipartite multigraphs with a property similar to comp-
ressors: expanders (see Exercise 6.4-3.).

De�nition 6.38 Here, we will distinguish the two parts of the bipartite (multi) graphs not
as inputs and outputs but as left nodes and right nodes. A bipartite multigraph B is (N,K)-
regular if the points of the left set have degree N and the points in the right set have degree
K. Consider such a graph, with the left set having n nodes (then the right set has nN/K
nodes). For a subset E of the left set of B, let Nb(E) consist of the points connected by some
edge to some element of E. We say that the graph B expands E by a factor λ if we have
|Nb(E)| ≥ λ|E|. For α, λ > 0, our graph B is an (N,K, α, λ, n)-expander if B expands every
subset E of size ≤ αn of the left set by a factor λ.

De�nition 6.39 Given an (N,K)-regular bipartite multigraph B, with left set {u1, . . . , un}
and right set {v1, . . . , vk}, we assign to it a low-density parity-check code H(B) as follows:
hi j = 1 if vi is connected to u j, and 0 otherwise.

We will create our low-density parity-check code H(B) with the help of an expander
graph B. Now for every possible error set E, the set Nb(E) describes the set of parity check
that the elements of E participate in. Under some conditions, the lower bound on the size of
Nb(E) guarantees that a sufficient number of errors will be corrected.

Theorem 6.40 Let B be an (N,K, α, (7/8)N, n)-expander with integer αn. Let k = Nn/K.
Then H(B) is a ((3/4)α, 1/2,K,N, k, n)-refresher.

Proof. More generally, for any ε > 0, let B be an (N,K, α, (3/4 + ε)N, n)-expander with
integer αn. We will prove that H(B) is a (α(1 + 4ε)/2, (1 − 4ε),K,N, k, n)-refresher. For an
n-dimensional bit vector x with A = { j : x j = 1 }, a = |A| = |x|, assume

a ≤ nα(1 + 4ε)/2. (6.31)
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Figure 6.14. A regular expander.

Our goal is to show |xH | ≤ a(1− 4ε): in other words, that in the corrected vector the number
of 1's decreases at least by a factor of (1 − 4ε).

Let F be the set of bits in A that the error correction operation fails to �ip, with f = |F|,
and G the set of of bits that were 0 but the operation turns them to 1, with g = |G|. Our goal
is to bound |F ∪ G| = f + g. The key observation is that each element of G shares at least
half of its neighbours with elements of A, and similarly, each element of F shares at least
half of its neighbours with other elements of A. Therefore both F and G contribute relatively
weakly to the expansion of A∪G. Since this expansion is assumed strong, the size of |F∪G|
must be limited.

Let
δ = |Nb(A)|/(Na).

By expansion, δ ≥ 3/4 + ε.
First we show |A∪G| ≤ αn. Assume namely that, on the contrary, |A∪G| > αn, and let

G′ be a subset of G such that |A ∪G′| = αn =: p (an integer, according to the assumptions
of the theorem). By expansion,

(3/4 + ε)N p ≤ Nb(A ∪G′).

Each bit in G has at most N/2 neighbours that are not neighbours of A; so,

|Nb(A ∪G′)| ≤ δNa + N(p − a)/2.

Combining these:

δa + (p − a)/2 ≥ (3/4 + ε)p,
a ≥ p(1 + 4ε)/(4δ − 2) ≥ αn(1 + 4ε)/2,
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since δ ≤ 1. This contradiction with (6.31) shows |A ∪G| ≤ αn.
Now |A ∪ G| ≤ αn implies (recalling that each element of G contributes at most N/2

new neighbours):

(3/4 + ε)N(a + g) ≤ |Nb(A ∪G)| ≤ δNa + (N/2)g,
(3/4 + ε)(a + g) ≤ δa + g/2,

(3/4 + ε)a + (1/4 + ε)g ≤ δa. (6.32)

Each j ∈ F must share at least half of its neighbours with others in A. Therefore j contri-
butes at most N/2 neighbours on its own; the contribution of the other N/2 must be divided
by 2, so the the total contribution of j to the neighbours of A is at most (3/4)N:

δNa = Nb(A) ≤ N(a − f ) + (3/4)N f = N(a − f /4),
δa ≤ a − f /4.

Combining with (6.32):

(3/4 + ε)a + (1/4 + ε)g ≤ a − f /4,
(1 − 4ε)a ≥ f + (1 + 4ε)g ≥ f + g.

Random expanders
Are there expanders good enough for Theorem 6.40? The maximum expansion factor is the
degree N and we require a factor of (7/8)N. It turns out that random choice works here, too,
similarly to the one used in the construction of compressors.

The choice has to be done in a way that the result is an (N,K)-regular bipartite mul-
tigraph of left size n. We will start with Nn left nodes u1, . . . , uNn and Nn right nodes
v1, . . . , vNn. Now we choose a random matching, that is a set of Nn edges with the pro-
perty that every left node is connected by an edge to exactly one right node. Let us call the
resulting graph M. We obtain B now as follows: we collapse each group of N left nodes
into a single node: u1, . . . , uN into one node, uN+1, . . . , u2N into another node, and so on.
Similarly, we collapse each group of K right nodes into a single node: v1, . . . , vK into one
node, vK+1, . . . , v2K into another node, and so on. The edges between any pair of nodes in B
are inherited from the ancestors of these nodes in M. This results in a graph B with n left
nodes of degree N and nN/K right nodes of degree K. The process may give multiple edges
between nodes of B, this is why B is called a multigraph. Two nodes of M will be called
cluster neighbours if they are collapsed to the same node of B.

Theorem 6.41 Suppose
0 < α ≤ e −1

N/8−1 · (22K) −1
1−8/N .

Then the above random choice gives an (N,K, α, (7/8)N, n)-expander with positive proba-
bility.

Example 6.11 If N = 48, K = 60 then the inequality in the condition of the theorem becomes

α ≤ 1/6785.
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Proof. Let E be a set of size αn in the left set of B. We will estimate the probability that
E has too few neighbours. In the above choice of the graph B we might as well start with
assigning edges to the nodes of E, in some �xed order of the N|E| nodes of the preimage of
E in M. There are N|E| edges to assign. Let us call a node of the right set of M occupied if
it has a cluster neighbour already reached by an earlier edge. Let Xi be a random variable
that is 1 if the ith edge goes to an occupied node and 0 otherwise. There are

Nn − i + 1 ≥ Nn − Nαn = Nn(1 − α)

choices for the ith edge and at most KN |E| of these are occupied. Therefore

P[ Xi = 1 | X1, . . . , Xi−1 ] ≤ KN |E|
Nn(1 − α) =

Kα
1 − α =: p.

Using the large deviations theorem in the generalisation given in Exercise 6.1-3., we have,
for f > 0:

P[
Nαn∑

i=1
Xi ≥ f Nαn ] ≤ e−NαnD( f ,p) ≤

(
ep
f

) f Nαn
.

Now, the number of different neighbours of E is Nαn −∑
i Xi, hence

P[ N(E) ≤ Nαn(1 − f ) ] ≤
(

ep
f

) f Nαn
=

(
eKα

f (1 − α)

) f Nαn
.

Let us now multiply this with the number
∑

i≤αn

(
n
αn

)
≤ (e/α)αn

of sets E of size ≤ αn:
( e
α

)αn( eKα
f (1 − α)

) f Nαn
=

α f N−1e
(

eK
f (1 − α)

) f N
αn

≤
α f N−1e

(
eK

0.99 f

) f N
αn

,

where in the last step we assumed α ≤ 0.01. This is < 1 if

α ≤ e
−1

f N−1

(
eK

0.99 f

) −1
1−1/( f N)

.

Substituting f = 1/8 gives the formula of the theorem.
Proof. of Theorem 6.34 Theorem 6.40 shows how to get a refresher from an expander, and
Theorem 6.41 shows the existence of expanders. Example 6.11. shows that expander with
the needed sample parameters exists.

Exercises
6.5-1 Prove Proposition 6.29.
6.5-2 Apply the ideas of the proof of Theorem 6.35 to the proof of Theorem 6.16, showing
that the �coda� circuit is not needed: each wire of the output cable carries the correct value
with high probability.
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Chapter notes
The large deviation theorem (Theorem 6.1), or theorems similar to it, are sometimes attribu-
ted to Chernoff or Bernstein. One of its frequently used variants is given in Exercise 6.1-2..

The problem of reliable computation with unreliable components was addressed by
John von Neumann in [46] on the model of logic circuits. A complete proof of the result of
that paper (with a different restoring organ) appear �rst in the paper [11] of R. L. Dobrushin
and S. I. Ortyukov. Our presentation relied on parts of the paper [50] of N. Pippenger.

The lower-bound result of Dobrushin and Ortyukov in the paper [10] (corrected in [48],
[51] and [19]), shows that redundancy of log n is unavoidable for a general reliable computa-
tion whose complexity is n. However, this lower bound only shows the necessity of putting
the input into a redundantly encoded form (otherwise critical information may be lost in
the �rst step). As shown in [50], for many important function classes, linear redundancy is
achievable.

It seems natural to separate the cost of the initial encoding: it might be possible to
perform the rest of the computation with much less redundancy. An important step in this
direction has been made by D. Spielman in the paper [63] in (essentially) the clocked-
circuit model. Spielman takes a parallel computation with time t running on w elementary
components and makes it reliable using only (log w)c times more processors and running
it (log w)c times longer. The failure probability will be texp(−w1/4). This is small as long
as t is not much larger than exp(w1/4). So, the redundancy is bounded by some power of
the logarithm of the space requirement; the time requirement does not enter explicitly. In
Boolean circuits no time- and space- complexity is de�ned separately. The size of the circuit
is analogous to the quantity obtained in other models by taking the product of space and time
complexity.

Questions more complex than Problem 6-1. have been studied in [49]. The method of
Problem 6-2., for generating random d-regular multigraphs is analysed for example in [6].
It is much harder to generate simple regular graphs (not multigraphs) uniformly. See for
example [29].

The result of Exercise 6.2-4. is due to C. Shannon, see [56]. The asymptotically best
circuit size for the worst functions was found by Lupanov in [40]. Exercise 6.3-1. is based
on [11], and Exercise 6.3-2. is based on [10] (and its corrections).

Problem 6-7. is based on the starting idea of the lg n depth sorting networks in [4].
For storage in Boolean circuits we partly relied on A. V. Kuznietsov's paper [33] (the

main theorem, on the existence of refreshers is from M. Pinsker). Low density parity check
codes were introduced by R. G. Gallager in the book [15], and their use in reliable storage
was �rst suggested by M. G. Taylor in the paper [67]. New, constructive versions of these
codes were developed by M. Sipser and D. Spielman in the paper [64], with superfast coding
and decoding.

Expanders, invented by Pinsker in [47] and introduced here in Exercise 6.4-3. have
been used extensively in theoretical computer science: see for example [45] for some more
detail. This book also gives references on the construction of graphs with large eigenvalue-
gap. Exercise 6.4-5. and Problem 6-6. are based on [11].

The use of expanders in the role of refreshers was suggested by Pippenger (private
communication): our exposition follows Sipser and Spielman in [61]. Random expanders
were found for example by Pinsker. The needed expansion rate (> 3/4 times the left degree)
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is larger than what can be implied from the size of the eigenvalue gap. As shown in [47]
(see the proof in Theorem 6.41) random expanders have the needed expansion rate. Lately,
constructive expanders with nearly maximal expansion rate were announced by Capalbo,
Reingold, Vadhan and Wigderson in [8].

Reliable computation is also possible in a model of parallel computation that is much
more regular than logic circuits: in cellular automata. We cannot present those results here:
see for example the papers [20] and [18].

Problems

6-1. Critical value
Consider a circuit Mk like in Exercise 6.2-5., assuming that each gate fails with probability
≤ ε independently of all the others and of the input. Assume that the input vector is all 0, and
let pk(ε) be the probability that the circuit outputs a 1. Show that there is a value ε0 < 1/2
with the property that for all ε < ε0 we have limk→∞ pk(ε) = 0, and for ε0 < ε ≤ 1/2, we
have have limk→∞ pk(ε) = 1/2. Estimate also the speed of convergence in both cases.
6-2. Regular compressor
We de�ned a compressor as a d-halfregular bipartite multigraph. Let us call a compressor
regular if it is a d-regular multigraph (the input nodes also have degree d). Prove a theorem
similar to Theorem 6.20: for each γ < 1 there is an integer d > 1 and an α > 0 such that for
all integer k > 0 there is a regular (d, α, γ, k)-compressor. Hint: Choose a random d-regular
bipartite multigraph by the following process: (1. Replace each vertex by a group of d
vertices. 2. Choose a random complete matching between the new input and output vertices.
3. Merge each group of d vertices into one vertex again.) Prove that the probability, over
this choice, that a d-regular multigraph is a not a compressor is small. For this, express the
probability with the help of factorials and estimate the factorials using Stirling's formula.
6-3. Two-way expander
Recall the de�nition of expanders from Exercise 6.4-3.. Call a (d, α, λ, k)-expander regular
if it is a d-regular multigraph (the input nodes also have degree d). We will call this multig-
raph a two-way expander if it is an expander in both directions: from A to B and from B to
A. Prove a theorem similar to the one in Problem 6-2.: for all λ < d there is an α > 0 such
that for all integers k > 0 there is a two-way regular (d, α, λ, k)-expander.
6-4. Restoring organ from 3-way voting
The proof of Theorem 6.20 did not guarantee a (d, α, γ, k)-compressor with any γ < 1/2,
d < 7. If we only want to use 3-way majority gates, consider the following construction.
First create a 3-halfregular bipartite graph G with inputs u1, . . . , uk and outputs v1, . . . , v3k,
with a 3-input majority gate in each vi. Then create new nodes w1, . . . ,wk, with a 3-input
majority gate in each w j. The gate of w1 computes the majority of v1, v2, v3, the gate of
w2 computes the majority of v4, v5, v6, and so on. Calculate whether a random choice of the
graph G will turn the circuit with inputs (u1, . . . , uk) and outputs (w1, . . . ,wk) into a restoring
organ. Then consider three stages instead of two, where G has 9k outputs and see what is
gained.
6-5. Restoring organ from NOR gates
The majority gate is not the only gate capable of strengthening the majority. Recall the
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NOR gate introduced in Exercise 6.2-2., and form NOR2(x1, x2, x3, x4) = (x1 NOR x2) NOR
(x3 NOR x4). Show that a construction similar to Problem 6-4. can be carried out with NOR2
used in place of 3-way majority gates.
6-6. More randomness, smaller restoring organs

Taking the notation of Exercise 6.4-4., suppose like there, that the random variables Fv are
independent of each other, and their distribution does not depend on the Boolean input vec-
tor. Apply the idea of Exercise 6.4-6. to the construction of each restoring organ. Namely,
construct a different restoring organ for each position: the choice depends on the circuit
preceding this position. Show that in this case, our error estimates can be signi�cantly imp-
roved. The improvement comes, just as in Exercise 6.4-6., since now we do not have to
multiply the error probability by the number of all possible sets of size ≤ αk of tainted
wires. Since we know the distribution of this set, we can average over it.
6-7. Near-sorting with expanders

In this problem, we show that expanders can be used for �near-sorting�. Let G be a regular
two-way (d, α, λ, k)-expander, whose two parts of size k are A and B. According to a theorem
of K�onig, (the edge-set of) every d-regular bipartite multigraph is the disjoint union of (the
edge-sets of) d complete matchings M1, . . . ,Md. To such an expander, we assign a Boolean
circuit of depth d as follows. The circuit's nodes are subdivide into levels i = 0, 1, . . . , d. On
level i we have two disjoint sets Ai, Bi of size k of nodes ai j, bi j ( j = 1, . . . , k). The Boolean
value on ai j, bi j will be xi j and yi j respectively. Denote the vector of 2k values at stage i by
zi = (xi1, . . . , yik). If (p, q) is an edge in the matching Mi, then we put an ∧ gate into aip, and
a ∨ gate into biq:

xip = x(i−1)p ∧ y(i−1)q, yiq = x(i−1)p ∨ y(i−1)q.

This network is trying to �sort� the 0's to Ai and the 1's to Bi in d stages. More generally, the
values in the vectors zi could be arbitrary numbers. Then if x ∧ y still means min(x, y) and
x∨ y means max(x, y) then each vector zi is a permutation of the vector z0. Let β = (1 +λ)α.
Prove that zd is β-sorted in the sense that for all m, at least βm among the m smallest values
of zd is in its left half and at least βm among the m largest values are in its right half.
6-8. Restoring organ from near-sorters

Develop a new restoring organ using expanders, as follows. First, split each wire of the input
cable A, to get two sets A′0, B′0. Attach the β-sorter of Problem 6-7., getting outputs A′d, B′d.
Now split the wires of B′d into two sets A′′0 , B′′0 . Attach the β-sorter again, getting outputs
A′′d , B′′d . Keep only B = A′′d for the output cable. Show that the Boolean vector circuit leading
from A to B can be used as a restoring organ.
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