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Abstract. Let p be a prime and let E(Fp) be an elliptic curve defined over the finite field
Fp of p elements. For a point G ∈ E(Fp) the elliptic curve congruential generator (with
respect to the first coordinate) is a sequence (xn) defined by the relation xn = x(Wn) =
x(Wn−1 ⊕ G) = x(nG ⊕W0), n = 1, 2, . . . , where ⊕ denotes the group operation in E(Fp)
and W0 is an initial point. In this paper, we show that if some consecutive elements of the
sequence (xn) are given as integers, then one can recover the whole sequence, even if the
prime and the elliptic curve are private.

1. Introduction

For a prime p, denote by Fp the field of p elements and always assume that it is represented
by the first p-many non-negative integers {0, 1, . . . , p− 1}.

Let E be an elliptic curve defined over Fp given by an affine Weierstrass equation, which
for gcd(p, 6) = 1 takes the form

(1) y2 = x3 +Ax+B,

for some A,B ∈ Fp with non-zero discriminant 4A3 + 27B2 6= 0.
The Fp-rational points E(Fp) of E form an Abelian group (with respect to the usual addition

denoted by ⊕) with the point at infinity O as the neutral element. For a point P ∈ E(Fp),
P 6= O we denote by x(P ) and y(P ) its affine components, P = (x(P ), y(P )).

For a given point G ∈ E(Fp) and initial point W0 ∈ E(Fp) the elliptic curve congruential
generator is the sequence (Wn) of points of E(Fp) satisfying the recurrence relation

(2) Wn = G⊕Wn−1 = nG⊕W0, n = 1, 2, . . .

We also define the elliptic curve congruential generator with respect to the first coordinate as
the sequence (xn) in Fp as

(3) xn = x(Wn) = x(nG⊕W0), n = 1, 2, . . .

The elliptic curve congruential generator has been wildly studied, many positive results have
been proven about its randomness, see [1–6,8,9,11–15,17] and see also the survey paper [16].
In particular, El Mahassni and Shparlinski [5] showed that (Wn), and so the sequence (xn), is
well-distributed. Hess and Shparlinski [8], and Topuzoğlu and Winterhof [17] provided lower
bounds to the linear complexity profile of the sequence (xn).

However, it is clear, that when the curve E are given, the sequence (Wn) is predictable from
two consecutive points Wn, Wn+1. In [7], Gutierrez and Ibeas showed, that when the prime
p and G are known, then the sequence (Wn) is predictable even if just an approximation of
Wn, Wn+1 are revealed (even if the curve E is private). These show that the security of the
point sequence (Wn) is not well-established. However these attacks use the assumption that
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the prime and the curve (resp. the point G) is given which assumption is quite optimistic (in
the viewpoint of the attacker).

In our cryptographic settings, all the parameters, as the initial point W0 = (x0, y0), the
generator G = (x, y), the parameters of the curve A,B and the prime p are assumed to be
secret and just the output of the generator x1, x2, . . . represented as non-negative integers
are used. The main contribution of this paper is that all the secret parameters, and thus the
whole sequence (xn), can be computed in polynomial time (polynomial in log p) if not too
many consecutive elements are revealed.

The result suggest that for cryptographic application the elliptic curve congruential gener-
ator should be use with great care.

In Section 2 we summarize some basic fact about elliptic curves. In Section 3 we present
the algorithm, and in Section 4 we discuss results of numerical tests.
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2. Background

In this section we summarize some basic facts about elliptic curves. First we recall the
definition of the group operation ⊕ of E(k) with arbitrary field k. Then we extend the notion
of elliptic curve when it is defined over a ring.

2.1. The group law on the curve. Let k be a field of characteristic different from 2, 3.
Let E be an elliptic curve defined over k given by an affine Weierstrass equation (1) with
A,B ∈ k, 4A3 + 27B2 6= 0. The group operation ⊕ in E(k) is defined in the following way.

Definition 1. The operation ⊕ is defined over E(k) as follows. If P = (xP , yP ) and Q =
(xQ, yQ) are in E(k), then

P ⊕Q = R = (xR, yR),

where

(i.) if xP 6= xQ, then

xR = s2 − xP − xQ, yR = s(xP − xR)− yP , where s =
yQ − yP
xQ − xP

;

(ii.) if xP = xQ but yP 6= yQ, then P ⊕Q = O;
(iii.) if P = Q and yP 6= 0, then

xR = s2 − 2xP , yR = s(xP − xR)− yP , where s =
3x2

P +A

2yP
;

(iv.) if P = Q and yP = 0, then P ⊕Q = O.
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2.2. Elliptic curves over Zm. If m is an odd composite integer, elliptic curve E can be also
defined over Zm via the projective Weierstrass equation

(4) y2z = x3 +Axz2 +Bz3

with A,B ∈ Zm, gcd(4A3+27B2,m) = 1. The Zm-rational points E(Zm) of E with projective
coordinates can be represented as a triple (x : y : z) such that gcd(m,x, y, z) = 1 (but not
necessarily z = 0 or 1).

As in the field case, group operation can be defined on E(Zm) (see, [10,18]) whose formulas
correspond to Definition 1 if the divisor in (i.) or (ii.) is co-prime to m.

We remark that for odd integers m1,m2, gcd(m1,m2) = 1 we have

E(Zm1m2) ∼= E(Zm1)⊗E(Zm2)

as groups. Moreover, if E is an elliptic curve over Q defined by (1) with integers A,B, then
for odd m with gcd(4A3 + 27B2,m) = 1, the map

E(Q) → E(Zm)
(x : y : z) 7→ (x mod m : y mod m : z mod m)

is a group homomorphism (where the representation (x : y : z) is chosen as x, y, z ∈ Z and
gcd(x, y, z) = 1).

Finally, for arbitrary odd integers m1,m2 (not necessarily co-primes), the the map

E(Zm1m2) → E(Zm1)
(x : y : z) 7→ (x mod m2 : y mod m2 : z mod m2)

is a group homomorphism.

3. Predicting the congruential generator on elliptic curve over Zm

Suppose we are given x1, . . . , xs an initial segment of a sequence (xn) generated by an
elliptic curve generator as non-negative integers. We would like to predict the remainder part
of this sequence and specially, to compute the parameters of the generator, namely, the prime
p, the parameters of the curve A, B and the points G, W0.

If for two different generators with primes p and q, the revealed initial segments coincide,
then the same initial segment is generated by an elliptic curve generator over Zp·q. Clearly, in
this case only the generator over the ring Zp·q is computable (without assuming the easiness
of the integer factorization problem) and to recover the private parameters further revealed
elements are needed.

On the other hand, if the curve E is defined over Q with non-negative integers A,B and
G,W0 ∈ E(Q) are points such that x(iG⊕W0) are all integers for i = 1, . . . , s, then there are
infinitely many possible primes p (and generators) exist, namely all large enough primes are
suitable.

Thus our aim is to determine the most general elliptic curve generator (possibly over a ring
Zm or over Q) which generates the same initial segment.

The following theorem shows that if at least seven initial values are revealed, then it can
be computed a curve E over Q or over Zm with p | m and points G, W0 such that these
revealed values are the initial segment of a sequence generated by an elliptic curve generator
with E, G and W0. If more values are revealed, then better approximation can be given to
the generator (i.e. to the prime p).
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Theorem 1. Let p > 3 be a prime number, E = EA,B be an elliptic curve over Fp given
by the Weierstrass equation (1), W0, G ∈ E(Fp) such that Wn 6= ±G for n = 1, . . . , 6.
If the sequence (xn) is defined by (3) and xi 6= xj (1 < i < j ≤ 7), then there exists a
polynomial time algorithm (polynomial in log p) which, when given x1, . . . , x7 as integers,
returns a curve E

Ã,B̃
over Q or over Zm with p | m and a sequence x̃8, x̃9 . . . such that the

sequence x1, . . . , x7, x̃8, x̃9, . . . is generated by the elliptic curve congruential generator with
E

Ã,B̃
and x̃n ≡ xn mod p if Wn 6= O.

Remark 2. If we increase the number of revealed elements, then the algorithm of Theorem 1
can be extended which provides a better approximation m to p and hence a better approx-
imation to (xn), see Section 4. In practice, 8 elements contain enough information to learn
the exact value of p.

Proof of Theorem 1. Let us assume, that the integers x1, . . . , x7 generated by an elliptic curve
congruential generator (3) are given.

By (3), we can write

xi−1 = x(Wi ⊕ (−G)), xi = x(Wi), xi+1 = x(Wi ⊕G), i = 2, . . . , 6,

where −G is the (additive) inverse of G: −G = (x,−y). By the addition law, by the assump-
tion that Wi 6= ±G (i = 1, . . . , 6) and by (1) we have

xi−1 + xi+1 =

(
yi + y

xi − x

)2

− xi − x+

(
yi − y
xi − x

)2

− xi − x(5)

= 2
y2
i + y2

(xi − x)2
− 2(xi + x)(6)

= 2
x3
i +Axi +B + y2

(xi − x)2
− 2(xi + x), i = 2, . . . , 6

in Fp. Thus

(xi − x)2(xi−1 + xi+1) ≡ 2(x3
i +Axi +B + y2)− 2(xi + x)(xi − x)2 mod p, i = 2, . . . , 6

i.e.,

(7) (2x2
i + 2xi(xi−1 + xi+1))x+ (2xi − (xi−1 + xi+1))x2 + 2xiA+ 2B + 2y2 − 2x3

≡ (xi−1 + xi+1)x2
i mod p, i = 2, . . . , 6.

Put

C =


2x2

2 + 2x2(x1 + x3) 2x2 − (x1 + x3) 2x2 2 2 −2
2x2

3 + 2x3(x2 + x4) 2x3 − (x2 + x4) 2x3 2 2 −2
2x2

4 + 2x4(x3 + x5) 2x4 − (x3 + x5) 2x4 2 2 −2
2x2

5 + 2x5(x4 + x6) 2x5 − (x4 + x6) 2x5 2 2 −2
2x2

6 + 2x6(x5 + x7) 2x6 − (x5 + x7) 2x6 2 2 −2

 ∈ Q5×6

and

u =


(x1 + x3)x2

2

(x2 + x4)x2
3

(x3 + x5)x2
4

(x4 + x6)x2
5

(x5 + x7)x2
6

 ∈ Q5.

Write C = (c1, . . . , c6) with c1, . . . , c6 ∈ Z5. Then we have
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Lemma 1. Having the same assumption as in Theorem 1, the columns c1, c2, c3, c4 are
linearly independent over Fp.

Assuming Lemma 1 the matrix C has rank 4 over Fp, and by (7) the congruence

(8) C · e ≡ u mod p

has the solution e = (x, x2, A,B, y2, x3)T .
In the next step we look for the maximal integer m such that the congruence (8) has a

solution e = (e1, . . . , e6)T modulo m with the additional restriction e2
1 ≡ e2 mod m. Clearly,

we will have p | m.
During the algorithm, if m takes a finite value, then we can suppose that it is odd, since

p > 3.
Since the congruence (8) has solutions, det(c1, c2, c3, c4,u) ≡ 0 mod p. First assume,

that det(c1, c2, c3, c4,u) 6= 0 and put m = det(c1, c2, c3, c4,u). If c1, c2, c3, c4 are linearly
dependent modulo m, say, λ1c1 + λ2c2 + λ3c3 + λ4c4 ≡ 0 mod m with (λ1, λ2, λ3, λ4) 6=
(0, 0, 0, 0), then we have p | gcd(λ1, λ2, λ3, λ4). Replacing m to gcd(m,λ1, λ2, λ4, λ5) we get
that c1, c2, c3, c4 are linearly independent modulo m. By the vanishing of the determinant,
c1, c2, c3, c4,u are linearly dependent mod m: λ1c1 + λ2c2 + λ3c3 + λ4c4 ≡ µu mod m.
By the independence of c1, c2, c3, c4, µ 6≡ 0 mod m and if µ is minimal and positive, the
coefficients λ1, λ2, λ3, λ4, µ are unique. If gcd(m,µ) > 1, replacing m to m/ gcd(m,µ) we

obtain λ̃1c1 + λ̃2c2 + λ̃3c3 + λ̃4c4 ≡ u mod m with unique λ̃1, λ̃2, λ̃3, λ̃4. Finally, all solutions
of the congruence

(9) C · e ≡ u mod m

can be expressed as

(10) e1 = λ̃1, e2 = λ̃2, e3 = λ̃3, e4 + e5 − e6 = λ̃4.

If λ̃2
1 6≡ λ̃2 mod m, we have to replace m to gcd(m, λ̃2

1 − λ̃2).
Next, consider the case when det(c1, c2, c3, c4,u) = 0 (over Q). Now, the equation

C · e = u

has solutions over Q. By Lemma 1, c1, c2, c3, c4 are linearly independent over Fp and thus
over Q. As before

(11) λ1c1 + λ2c2 + λ3c3 + λ4c4 = µu, gcd(λ1, λ2, λ3, λ4, µ) = 1, µ > 0

with unique integers λ1, λ2, λ3, λ4, µ. Moreover all the integer solution (λ′1, λ
′
2, λ
′
3, λ
′
4, µ
′) of

(11) has the form γ · (λ1, λ2, λ3, λ4, µ) with some γ ∈ Z. Since (x, x2, A,B + y2 − x3, 1) is
a solution modulo p we have for gcd(p, µ) = 1, that (λ1/µ)2 ≡ λ2/µ mod p. Put m =
(λ2

1− λ2µ)/ gcd(λ2
1, µ) so p | m. If m 6= 0, write the solutions of (9) in the same form as (10).

In both cases, if m 6= 0 write

x̃ = λ̃1, (̃y2) = λ̃3
1 +

λ̃4 + λ̃1λ̃3

2
, Ã = λ̃3, B̃ =

λ̃4 − λ̃1λ̃3

2
over Zm.

Clearly, if G̃ = (x̃, ỹ) with a ỹ ∈ Zm[ζ]/(ζ2− (̃y2)), ỹ2 = (̃y2), then G̃ ∈ E
Ã,B̃

over Zm[ζ]/(ζ2−
(̃y2)). Moreover, the vector

e = (x̃, x̃2, Ã, B̃, (̃y2), x̃3)T ∈ Z6
m
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is a solution of (9). If ỹ1 ∈ Zm[ξ]/(ξ2 − x3
1 − Ãx1 − B̃) is an element such that W̃1 = (x1, ỹ1)

is on the curve E
Ã,B̃

, then writing W̃0 = W̃1 ⊕ (−G̃), the sequence (x̃n) generated by the

elliptic curve congruence generator (with W̃0, G̃) satisfies

(12) x̃n = 2
x̃3
n−1 + Ãx̃n−1 + B̃ + (̃y2)

(x̃n−1 − x̃)2
− 2(x̃n−1 + x̃)− x̃n−2, n = 2, 3, . . . ,

so x̃1, x̃2, . . . are in Zm and thus x̃i = xi (i = 1, 2, . . . , 7) as integers.
Finally, if m = 0, then write

x̃ =
λ1

µ
, (̃y2) =

(
λ1

µ

)3

+
λ4

2µ
+
λ1λ3

2µ2
, Ã =

λ3

µ
, B̃ =

λ4

2µ
− λ1λ3

2µ2
over Q.

Then G̃ = (x̃, ỹ) ∈ E
Ã,B̃

over Q
(√

(̃y2)

)
and the integer sequence x1 . . . , x7 is generated by

G̃. The set of possible primes p are those ones which p - µ and p > max{xi : i = 1, . . . , 7}.
�

Finally, it remains to prove Lemma 1.

Proof of Lemma 1. Clearly, it is enough to show that the vectors

v1 =


x2

2 + x2(x1 + x3)
x2

3 + x3(x2 + x4)
x2

4 + x4(x3 + x5)
x2

5 + x5(x4 + x6)
x2

6 + x6(x5 + x7)

 ,v2 =


x1 + x3

x2 + x4

x3 + x5

x4 + x6

x5 + x7

 ,v3 =


x2

x3

x4

x5

x6

 ,v4 =


1
1
1
1
1


are linearly independent over Fp.

Suppose to the contrary that there are α1, . . . , α4 ∈ Fp, (α1, . . . , α4) 6= (0, . . . , 0) such that

α1v1 + α2v2 + α3v3 + α4v4 = 0.

i.e.,

(13) α1(x2
i + xi(xi−1 + xi+1)) + α2(xi−1 + xi+1) + α3xi + α4 = 0, i = 2, . . . , 6.

Substituting (5) to (13) we have

α1

(
x2
i + 2xi

(
x3
i +Axi +B + y2

(xi − x)2
− (xi + x)

))
+ 2α2

(
x3
i +Axi +B + y2

(xi − x)2
− (xi + x)

)
+ α3xi + α4 = 0, i = 2, . . . , 6.

Clearing the denominator we get

α1

(
x2
i (xi − x)2 + 2xi

(
x3
i +Axi +B + y2 − (xi + x)(xi − x)2

))
+ 2α2

(
x3
i +Axi +B + y2 − (xi + x)(xi − x)2

)
+ α3xi(xi − x)2 + α4(xi − x)2 = 0,

i = 2, . . . , 6,
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which means that the polynomial F (X) ∈ Fp[X]

F (X) = α1

(
X2(X − x)2 + 2X

(
X3 +AX +B + y2 − (X + x)(X − x)2

))
+ 2α2

(
X3 +AX +B + y2(X + x)(X − x)2

)
+ α3X(X − x)2 + α4(X − x)2

has at least five zeros: xi, i = 2, . . . 6 (where x = x(G) and y = y(G) are fixed).
Write F (X) into the following form

(14) F (X) = α1

(
X4 + f4(X)

)
+ α3

(
X3 + f3(X)

)
+ (2α2x+ α4)X2

+ (α2(2x2 + 2A)− 2α4x)X + α2(−2x3 + 2B + 2y2) + α4x
2,

where f3, f4 ∈ Fp[X] with deg f3 < 3 and deg f4 < 4.
Since degF ≤ 4, we must have that F (X) is the zero polynomial. In this case we have

(15) α1 = 0, α3 = 0, 2α2x+ α4 = 0.

Then the coefficients of X and 1 in (14) are

α2(3x2 +A) = 0, α2(2x3 −B − y2) = 0.

By (15) and (α1, . . . , α4) 6= (0, . . . , 0) we also have α2, α4 6= 0, thus

3x2 +A = 0, 2x3 −B − y2 = 0,

whence using (1) we get

2y2 = x(3x2 +A)− (x3 +Ax+B − y2)− (2x3 −B − y2) = 0,

thus

y = 0, 3x2 +A = 0.

Since G = (x, y) ∈ E(Fp), we get that x is a multiple root of the right hand side of (1), which
contradict that the discriminant of the curve is non-zero. �

4. Numerical tests

I have implemented the algorithm of Theorem 1 in SAGE. The algorithm have been tested
for 1000 random examples of generators with 500-bit primes p. For seven revealed sequence
elements, the algorithm computed the exact values of the parameters (p, A, B, G, W0) in
95,2% of the cases. In the remainder cases, the algorithm provided a composite integer m

and parameters Ã, B̃, G̃, W̃0 such that p | m and Ã ≡ A, B̃ ≡ B, G̃ ≡ G, W̃0 ≡W0 mod p.
If the number of revealed sequence elements increases, then the algorithm can be modified

to become more effective. Namely, if there are eight revealed sequence elements, then applying
the algorithm for the first and the last seven elements, two approximation (m1, A1, B1, G1)
and (m2, A2, B2, G2) are provided. Putting m = gcd(m1,m2, A1−A2, B1−B2, x(G1)−x(G2)),
m is a better approximation of p. Modifying the SAGE program in this way, the algorithm
was successful in 100% of the cases.
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5. Final remarks, open questions

In this paper we showed that the sequence xn = x(nG ⊕ W0) (n = 1, 2, . . . ) is highly
predictable. In the literature, the distribution and the linear complexity profile of the general
sequence f(nG ⊕W0) with f ∈ Fp(E) have been also studied (where Fp(E) is the function
field of E(Fp)), see [1–6, 8, 9, 11–15]. The predictability of these sequence could be handle
for individual functions f , but it is not clear whether there is a universal algorithm for all
function f (or at least all function f with small degree).

An other possible question connected to the result is how much information about x(nG⊕
W0) we really need to recover all the private parameters. More precisely, if the curve is
defined over a finite field Fps with degree s > 1, then one can define an integer sequence
as (x1(nG ⊕W0), . . . , xr(nG ⊕W0)) n = 1, 2, . . . where r ≤ s and x1(P ), . . . , xs(P ) are the
coordinates of x(P ) with respect to a fixed basis of Fps over Fp. Is it possible to recover the
whole sequence from an initial segment, at least when the degree s is fixed? Clearly, the most
interesting case when p = 2 and the generator builds a binary sequence.
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