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Prefa
e \Number theory is a building ofrare beauty and harmony."| D. HilbertThe development of modern s
ien
e and te
hnology always strongly de-pended on the development of adequate methods for representing integersand doing integer arithmeti
. The history of number representation is a fas-
inating story, sin
e it parallels the development of 
ivilization itself. SeeD. E. Knuth [60℄ for further details.In this work number expansions in latti
es are analyzed. Chapter one 
on-tains the 
on
ept of number systems, dynami
 properties of expansions andestimates for the length of expansions. Chapter two deals with 
lassi�
ationof expansions. An e�e
tive algorithm is presented. Chapter three 
ontainsmethods for 
onstru
ting number systems of several types. The 
onne
tionbetween number expansion in latti
es and number expansion in the ring ofintegers of a given algebrai
 number �eld is dis
ussed, 
anoni
al, polygonaland simultaneous radix systems are analyzed. Generalized binary numbersystems are also treated. For general radix systems a suÆ
ient 
ondition isproved to be able to 
onstru
t number systems. In 
hapter four the number,lo
ation and stru
tural properties of periodi
 elements are des
ribed for radixsystems of imaginary quadrati
 �elds using 
anoni
al digit sets. Chapter �vedeals with the geometry of expansions. Some properties of the set of numberswith zero integer part are analyzed and the notion of self-aÆne latti
e tilingsare dis
ussed. These tilings arise in image pro
essing, 
omputer vision andmany other topi
s of mathemati
s and physi
s [107℄. The boundary of thetiles often have non-integral Hausdor� dimension. Methods for estimating,or in some 
ases 
omputing this dimension are presented, an example is also



given. In 
hapter six after a short summary some open problems and furtherdire
tions are mentioned.A
knowledgments `What does your Master tea
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Chapter 1Expansion in latti
es\There are two kinds of generalizations. One is 
heap and theother is valuable. It is easy to generalize by diluting a littleidea with a big terminology. It is mu
h more diÆ
ult to preparea re�ned and 
ondensed extra
t from several good ingredients."| Gy. P�olyaA latti
e in Rk is the set of all integer 
ombinations of k linearly indepen-dent ve
tors. Let � be a latti
e, whi
h 
an be viewed either geometri
allyas a set of points in a Eu
lidean spa
e, or algebrai
ally, a Z-module or asa �nitely generated free Abelian group. Let M : � ! � be a group endo-morphism and let D be a �nite subset of � 
ontaining 0. Clearly, M 
an betaken as an arbitrary square non-singular matrix. Moreover, if the basis ofM is 
hosen in � then M is an integer matrix.1.1 Con
ept of number systemsThe triple (�;M;D) is 
alled a number system (or having the unique repre-sentation property) if every element n of � has a unique �nite representationof the formn = a0 +Ma1 +M2a2 + : : :+M lal = (alal�1 : : : a1a0)M ; (1.1)where ai 2 D. The endomorphism M is 
alled the base or radix, D is thedigit set. The length of expansion of n in (1.1) is l + 1.



2 Expansion in latti
esOne of the main problems 
on
erning radix representation is to give 
on-ditions under whi
h (�;M;D) is a number system. For a latti
e �, both �and M� are Abelian groups under addition. The order of the fa
tor group�=M� is t = jdet(M) j. Let Aj; (j = 1 : : : t) denote the 
osets of this group.If z1; z2 2 Aj, i.e. they are in the same residue 
lass then we will say thatthey are 
ongruent modulo M and we will denote this by z1 � z2 (mod M).The following result was known and used by I. K�atai and 
o-workers aswell as by W. Gilbert in algebrai
 number �elds (see se
tion 3.2.1). Moreover,it 
an be found impli
itly in A. Vin
e's paper [106℄. Re
all that a linear mapis 
alled expansive if all eigenvalues have modulus greater than one.Assertion 1. (Ne
essary 
onditions for the number system property)If (�;M;D) is a number system then(a) D must be a 
omplete set of residues modulo M ,(b) M must be expansive and(
) det(I �M) 6= �1.Proof: Con
erning (a) if z 2 � is represented by (amam�1 : : : a1a0)M thenz � a0 (mod M). Hen
e the digit set D must 
ontain a 
omplete residuesystemmoduloM . Now suppose that two digits 
 and d are 
ongruent moduloM . Then 
 � d = Me for some e 2 �. Represent e by (alal�1 : : : a1a0)M sothat (
)M = 
 = Me+ d = (alal�1 : : : a1a0d)M :Hen
e 
 2 � has two di�erent representations, whi
h is a 
ontradi
tion.Statement (b) was proved in [106℄. Con
erning (
) �rst observe that (I�Mn)is nonsingular for any positive integer n. Otherwise 1 would be an eigenvalueof Mn, hen
e M would have an eigenvalue of modulus one. Se
ond, it is also
lear that if (�;M;D) is a number system then there is not any � 2 � andl 2 N for whi
h � = a0 + Ma1 + : : : + M l�1al�1 + M l�, where ai 2 D.In other words (I �M l)�1(a0 + Ma1 + : : : +M l�1al�1) 2 � 
an never behappen. But if det(I �M) = �1 then (I �M)� = (I �M)�1� = �, whi
his a 
ontradi
tion. �Corollary. Suppose that an arbitrary z 2 � has a �nite expansion of form(1.1). Then the uniqueness of the representation follows from the assumptionthat any two elements of D are in
ongruent modulo M .If for a given triple (�;M;D) the 
onditions (a) and (b) in Assertion 1hold then we say that it is a radix system. Assertion 1(
) explains why it is



1.1 Con
ept of number systems 3impossible to �nd appropriate digit sets for the matri
es ( 1 11 m ), ( 0 �m1 m ) or forthe matrix 2I + S, where S is stri
tly upper (or lower) triangular.Assertion 2. (SuÆ
ient 
ondition for the number system property)If for a given radix system (�;M;D) (a) there is a basis for the latti
e �for whi
h all the basis ve
tors have some �nite representation and (b) all theelements of the set D �D have some expansion of form a0 +M jaj (a0; aj 2D; j 2 N) then (�;M;D) is a number system.Proof: By the 
orollary of Assertion 1 it is enough to show that every latti
epoint z has a �nite representation. Let us denote the basis ve
tors | whi
hhave all �nite representations | by b1; b2; : : : ; bk. Then z =P�ibi for some�i 2 Z. The proof is by indu
tion of the number of summands n. The 
asen = 1 is obvious. By indu
tion, assume that the sum of �rst n� 1 terms hasthe form x = (alal�1 : : : a0). It is 
lear that if we add a latti
e point d 2 �Dto x then x+ d 2 � and the length of expansion of x+ d is less then or equalto l+ s+ 1 where s is the length of the longest expansion in D �D. In thesame way, if we add an arbitrary basis ve
tor bi to x then | adding digit bydigit | x + bi must have a bounded length of expansion, therefore a �niterepresentation. �The theorem is a simple generalization of A. Vin
e's theorem [106℄. Unfor-tunately, in order to de
ide the number system property for a given triple(�;M;D) this theorem 
an be applied in very few 
ases. Fortunately, as wewill see in se
tion 3.4, there is a suÆ
ient 
ondition for the base M , in whi
h
ase the unique representation property holds for some digit setD. Moreover,the digit set 
an easily be 
onstru
ted.Assertion 3. (Equivalen
e of number systems)Let the matri
es M1 and M2 are similar via the matrix Q. Then the numbersystem property for (�;M1;D) and for (Q�;M2; QD) holds at exa
tly thesame time.Proof: D is a full residue system modulo M1 in � i� QD is a full residuesystemmoduloM2 in Q�. Moreover, z =Pli=0M i1ai i� Qz =Pli=0QM i1ai =Pli=0M i2(Qai) (ai 2 D). �This equivalen
e is essentially a 
hange of basis for the matrixM1, there-fore there exist similar matri
es | bases | in several forms. Moreover, if we
hange the basis in �, a similar integer matrix M2 : Zk ! Zk is obtained.Hen
e the number system property 
an be examined without loss of gener-ality on the 
ubi
 latti
e Zk. This has a 
omputational advantage, sin
e M2and its 
hara
teristi
 polynomial have integer 
oeÆ
ients (see also [106℄).



4 Expansion in latti
es1.2 Dynami
 of expansionsFurther we analyze the expansions in the radix system (�;M;D). The system(�;M;D) 
an be used to represent all the latti
e points in � even if it is not anumber system. Clearly, for ea
h 
 2 � there exist a unique aj 2 D su
h thatM j 
�aj. Let 
1 =M�1(
�aj) and let us de�ne the fun
tion � : �! � by�(
) = 
1. Let �l denote the l-fold iterate of �, �0(
) = 
0. The sequen
e ofinteger ve
tors �j(z0) = zj (j = 0; 1; 2; : : : ) is 
alled the path of the dynami
alsystem generated by �. It is also 
alled the orbit of z0 generated by �.1 Sin
ethe spe
tral radius �(M�1) < 1 therefore there exists a norm on Rk su
h thatfor the 
orresponding operator normkM�1k = supkxk�1 kM�1xk (1.2)the inequality kM�1k < 1 holds [43℄. Throughout this work k : k denotes thisve
tor and the appropriate operator norm. Let furthermoreK := maxb2D kbk; r := kM�1k; L := Kr1 � r : (1.3)In virtue of (1.3) and the de�nition of � we get thatk�(z)k = kM�1z �M�1bk � rkzk+Kr:Hen
e we obtain the followingLemma 1. (a) if kzk � L then k�(z)k � r(L+K) = L, (b) if kzk > L thenk�(z)k � rkzk+ L(1� r) < kzk(r + 1 � r) = kzk.Sin
e the inequality kxk � L holds only for �nitely many latti
e points xtherefore the path z;�(z);�2(z); : : : is ultimately periodi
 for all z 2 �. Theve
tor p 2 � is 
alled periodi
 if there exist a j 2 N su
h that �j(p) = p.The smallest su
h j is the length of period of p generated by �. Let P denotethe set of all periodi
 elements. Let p 2 P be of period length l. The set ofperiodi
 elements f�(p); : : : ;�l(p)g is 
alled the 
y
le generated by p and isdenoted by C(p). Suppose that p 2 P. Then the domain of attra
tion of p orbasin of attra
tion of p 
onsists of all z 2 � for whi
h there exists a j 2 N su
h1Histori
al remark: the fun
tion � was introdu
ed by D. W. Matula [86℄ for rationalintegers in order to examine number systems. Somewhat later, independently, I. K�atai andW. Gilbert used it for 
onstru
ting number systems in algebrai
 extensions [54, 33℄.



1.2 Dynami
 of expansions 5that �j(z) = p and is denoted by B(p). Let X � P. In a similar way, B(X)denotes all the z 2 � for whi
h there exists a j 2 N and q 2 X su
h that�j(z) = q. The fun
tion � de�nes a dis
rete dynami
 on � in the followingway: let G(P) be the dire
ted graph de�ned on the set P by drawing an edgefrom p 2 P to �(p). Then G(P) is a disjoint union of dire
ted 
y
les, whereloops are allowed. We shall also 
all G(P) the attra
tor set of � generated by�. The graph G(P) has the following properties [64℄:� P is �nite;� if p 2 P then �(p) 2 P;� if p 2 P then kpk � L;� p 2 P if and only if there is an l > 0 su
h thatp = a0 +Ma1 + : : :+M l�1al�1 +M lp; aj 2 D; (1.4)� if p1; p2 2 P then either C(p1) = C(p2) or C(p1) \ C(p2) = ;;� if p1; p2 2 P; p1 6= p2 and C(p1) = C(p2) then their length of period areequal;� B(P) = �;� if p1; p2 2 P then B(p1) = B(p2) if and only if C(p1) = C(p2);� if p1; p2 2 P; C(p1) 6= C(p2) then B(p1) \ B(p2) = ;.For a given radix system (�;M;D) the 
omputation of the graph G(P) de-termines a 
lassi�
ation of radix expansions. Two latti
e points x; y 2 � arein the same 
lass i� �l1(x) = �l2(y) for some non-negative integers l1; l2, orin other words, i� there is a p 2 P for whi
h x; y 2 B(p). In 
hapter 2 weshow an e�e
tive way to perform the 
lassi�
ation.We end this se
tion by giving a ne
essary and suÆ
ient 
ondition for theunique representation property.



6 Expansion in latti
esAssertion 4. (Ne
essary and suÆ
ient 
ondition for the number systemproperty) The triple (�;M;D) is a number system if and only if for ea
hz 2 � there is an n 2 N0 su
h that �n(z) = 0.Proof: The 
ondition �(z) = 0 is equivalent with z � a0 for some a0 2 D.By indu
tion, �n(z) = 0 if and only if z 
an be written in the formz = a0 +Ma1 + : : :+Mn�1an�1with some a0; a1; : : : ; an�1 2 D. �Assertion 4 has a very important 
orollary.Lemma 2. The triple (�;M;D) is a number system if and only if P = f0g,in whi
h 
ase1\i=1M i� = f0g:1.3 Length of expansionsLet z 2 � be an arbitrary ve
tor. If z0 := z 62 P then there is a unique l 2 Nand a0; a1; : : : ; al�1 2 D su
h thatzj = aj +Mzj+1 (j = 0; : : : ; l � 1); zl 2 Pand none of z0; z1; : : : ; zl�1 do belong to P. Let the expansion of z be denotedby (a0; a1; : : : ; al�1 j p); (p = zl): (1.5)If su
h an expansion is given then z 
an be 
omputed byz = a0 +Ma1 + : : :+M l�1al�1 +M lp: (1.6)If z 2 P then its expansion in (�;M;D) will be denoted by (� j z). Weshall say that (1.5) is the standard expansion of the ve
tor z given by (1.6)and l is the length of the standard expansion. For an arbitrary sequen
e ofve
tors a0; a1; : : : ; al�1 2 D and p 2 P the expression (a0; a1; : : : ; al�1 j p)means the ve
tor z given by z = Pl�1j=0M jaj +M lp. This expansion is the



1.3 Length of expansions 7standard expansion of the ve
tor z if and only if �l�1(z) = al�1 +Mp 62 P.Observe that if p 2 P then all z 2 B(p) n C(p) have a standard expansion(a0; a1; : : : ; al j p̂) for some ai 2 D (i = 0; : : : ; l); l 2 N and p̂ 2 C(p).Now we give an estimate for the length of expansions in the radix system(�;M;D).Let us denote in Rk a ve
tor norm and the 
orresponding operator normby k � k for whi
h r = kM�1k < 1, let K = maxfkdk; d 2 Dg and L =Kr=(1 � r) as before. Let z 2 � n f0g be �xed. Let us de�ne the path ofz = z0 in � by zj = aj +Mzj+1 (j = 0; : : : ; ). Let T = l(z) be the smallestnon-negative integer for whi
h kzTk � L. The existen
e of su
h a T followsfrom Lemma 1.Assertion 5. There is a 
onstant 
 for whi
hl(z) � log kzklog (1=kM�1k) + 
: (1.7)Proof: It is enough to examine the 
ase kzk > L; z 2 �. Sin
e zj =aj +Mzj+1 therefore zj+1 = M�1zj �M�1aj, hen
e kzj+1k � r(kzjk +K).Let t = t(z0) be the smallest non-negative integer for whi
h kztk � 2KL.Sin
e the ball k!k � 2KL 
ontains �nitely many latti
e points therefore theinequalityl(z) � t(z) + 
1 (1.8)holds for an appropriate 
onstant 
1. On the other hand 2KL < kzt�1k �r(kzt�2k+K) � r2(kzt�3k+K) + rK � : : : � rt�1kz0k+KL. It means thatKL � rt�1kz0k, hen
elogKL � (t� 1) log r + log kz0k;from whi
h we 
an dedu
e that(t� 1) log 1=r � log kz0k � logKL;i.e., t � log kz0klog (1=r) + 
2for an appropriate 
2. Using the inequality (1.8) the assertion follows imme-diately. �Assertion 5 extends the results of E. H. Grossman [37℄, I. K�atai, I. K�ornyei[54℄ and B. Kov�a
s, A. Peth}o [79℄.



8 Expansion in latti
es



Chapter 2Classi�
ation of expansions\There are problems that one poses,and there are problems that pose themselves."| H. Poin
ar�eIn the previous 
hapter it was pointed out that the fun
tion � de�nes a
lassi�
ation of the system (�;M;D). The aim of this 
hapter is to give ane�e
tive algorithm to 
onstru
t all these 
lasses. Via the 
onstru
tion of theattra
tor set we also have a fast method to de
ide whether the radix system(�;M;D) has the unique representation property.Consider the set of \fra
tions" in the system (�;M;D):H := F(M;D) = ( 1Xn=1 M�nan : an 2 D) � Rk: (2.1)This set is 
alled the fundamental domain or the set of fra
tions of the system(�;M;D). In 
hapter 5 we shall show that the set H is 
ompa
t in the metri
spa
e Rk. Let E be an arbitrary 
ompa
t set in Rk and let us denote the setof latti
e points in E by I(E), i.e., I(E) := E \ �.Lemma 3. For ea
h z 2 � there is an m0 2 N0 su
h that for ea
h m � m0 :�m(z) 2 I(�H).Proof: Sin
e H is a 
ompa
t subset of Rk, there exists an " > 0 su
h thatthere is no element of � in the setN"(�H) n �H;



10 Classi�
ation of expansionswhere N"(�H) denotes the open "-neighborhood of �H. Let us 
hoose anarbitrary z 2 �. Then we get thatzm = �m(z) = M�mz � (M�1a1 +M�2a2 + : : :+M�mam)for the 
orresponding sequen
e a1; a2; : : : ; am 2 D. If m is large enough, saym � m0, then the norm of the �rst term of the right hand side is less than". Hen
e, zm 2 � \ (�H) for all m � m0. �Corollary. (a) For ea
h z 2 � the orbit of z must run into the set I(�H)and 
an never leave it. (b) If for ea
h z 2 I(�H) there is an m 2 N0 su
hthat �m(z) = 0 then (�;M;D) is a number system.The 
orollary suggests that in order to determine the attra
tors of the system(�;M;D) it would be enough to �nd the latti
e points in �H, or, whi
h is
omputational equivalent, in H. Then one has only to apply the fun
tion �for these ve
tors and wat
hing the \
y
les" to be formed.The straightforward way to 
ompute the set I(H) 
ould be the following.It is obvious (see se
tion 5.1) thatH = [a2DM�1(a+H):If we 
ould �nd a set T0, H � T0, for whi
h the latti
e points of the setM�1T0 
an be 
omputed easily then we would be ready, be
ause in this 
aseH � T1 := Sa2DM�1(a+ T0) and only the 
onvex hull of the latti
e pointsin T1 has to be 
omputed. Unfortunately, to �nd the \smallest possible" su
hset T0 is not easy, sin
e the shape of the set H is in almost every 
ase rather
ompli
ated.Our next aim is to determine a set T , H � T , for whi
h the set of latti
epoints belonging to T 
an be 
omputed simply and whi
h 
ontains possiblya small number of them. We 
onsider two approa
hes. One of them uses
overing of the set H while the other one is given by e�e
tively 
omputingthe operator norm de�ned in (1.2).2.1 Covering 
onstru
tionLet x = (x1; x2; : : : ; xk)T 2 Rk and kxk1 = max1�i�k jxij. Let us denoteby k � k1 the 
orresponding operator norm. If M is an invertible expansivelinear operator of Rk mapping � into � then there exists a smallest 
0 2 N



2.1 Covering 
onstru
tion 11su
h that for every 
 � 
0; 
 2 N the inequality kM�
k1 < 1 holds. LetC � 
0; C 2 N be �xed. ThenkM�Ck1 < 1;therefore (I �M�C )�1 exists and
 := 11� kM�Ck1 � k(I �M�C)�1k1: (2.2)Here I denotes the k-dimensional identity matrix. Using the notations intro-du
ed in the previous 
hapter letM�ja = 264 
(j)1 (a)...
(j)k (a) 375 ;and let�(j)m := maxa2D j
(j)m (a)j; (m = 1; : : : ; k);where 1 � j � C. Furthermore, de�ne the sets Ij (1 � j � C) as follows:Ij :=8><>:x = 264 x1...xk 375 ; jxmj � �(j)m ; 1 � m � k9>=>; :Obviously, M�ja 2 Ij for ea
h a 2 D. LetW :=8><>:y = 264 y1...yk 375 ; jymj � CXj=1 �(j)m ; 1 � m � k9>=>; : (2.3)It is 
lear thatCXj=1 M�jaj 2 Wfor an arbitrary sequen
e of ve
tors aj 2 D. Hen
e,H �W +M�CW +M�2CW + : : : : (2.4)



12 Classi�
ation of expansionsLet us de�ne the points of the k-dimensional re
tangle T 0 by264 t1...tk 375 ; ��m � tm � �m; �m = d
 CXj=1 �(j)m e; 1 � m � k: (2.5)Then by (2.2), (2.3) and (2.4) we get that H � T 0 and the latti
e points inthe k-dimensional re
tangle T 0 
an be 
omputed eÆ
iently.Remarks. (1) The \good 
hoi
e" for the 
onstant C in (2.2) strongly de-pends on the matrix M . A simple method 
ould be to start with C  
 andin
rease C while kM�Ck1 is less than or equal to a �xed 
onstant. Anotherapproa
h may require mu
h more arithmeti
al operations: start with C  
and in
rement C until the volume of T 0 
hanges less than a pre-de�ned 
on-stant Æ > 0.(2) Even if M�nv ! 0 (n ! 1) for any v 2 Rk one should be 
arefulwith raising to powers the matrix M�1. In 
omputer implementations usingtraditional programming languages on 
ertain 
ases arithmeti
al over
ow
an o

ur. Let an example be k = 5, M = tridiag(0;�2;�210) (diag() andtridiag() denote the diagonal and tridiagonal matri
es, respe
tively). ThenM�41;5 = 150323855360 > 232. In these 
ases (among others) 
omputer algebrasoftwares 
an be used (about 
omputer algebra see [69℄).(3) Suppose that � =Zk. This 
an be a
hieved by a simple basis trans-formation. Then, we are interested in the integers in T 0. It means that inequation (2.5) the 
oor fun
tion 
an also be applied. Clearly, the integers inT 0 still 
over the integers in H.2.2 Operator norm 
onstru
tionLet x 2 H be an arbitrary ve
tor of Rk. Thenkxk = k 1Xj=1 M�jajk (2.6)for any well-de�ned ve
tor norm in Rk, where aj 2 D (j = 1; 2; : : : ). LetM be an invertible expansive linear operator of Rk. We shall 
onstru
t ave
tor norm | throughout this subse
tion denoted by k � k� |, su
h thatfor the 
orresponding operator norm the inequality kM�1k� < 1 holds. This



2.2 Operator norm 
onstru
tion 13operator norm 
an be given using a basis transformation with the aid of anappropriate regular matrix S and the maximum norm in the formkM�1k� := kSM�1S�1k1:This follows from the fa
t thatkM�1xk� = kSM�1xk1 � kSM�1S�1k1kSxk1;so the operator norm indu
ed by the ve
tor norm kSxk1.Let J = TM�1T�1 = diag(�j) be the Jordan 
anoni
al form of the matrixM�1. Let us 
hoose S := T . Hen
e,kM�1k� := kJk1 = maxj k�jk1:If J is simple (i.e. J 
onsists of k Jordan blo
ks) thenkJk1 = �(M�1) < 1:Suppose now that the eigenvalues of the matrix M are not all distin
t. Let�j = tridiag(0; �j ; 1) 2 C m�m be a non-trivial Jordan blo
k (m < k). In this
ase k�jk1 > 1;therefore we use the similarity transformation Dj := diag1�i�m(�m�ij ) toobtain Dj�jD�1j = tridiag(0; �j ; �j), where �j > 0 and it 
an be 
hosen insu
h a way that �j + j�j j < 1. Hen
ekDj�jD�1j k1 < 1:Putting all together, in 
ase of trivial Jordan blo
ks let Dj := 1, moreover,S := diag(Dj)T . ThenkM�1k� = kSM�1S�1k1 = kDj�jD�1j k1 < 1:Further, let us denote k � k := k � k� as we used it earlier. Then (I �M�1)�1exists, it has the geometri
 series expansion (I�M�1)�1 = I+M�1+M�2+: : :+M�n + : : : , andk(I �M�1)�1k � 11� kM�1k : (2.7)



14 Classi�
ation of expansionsBy using (1.3), (2.6) and (2.7) we get thatkSxk1 = kxk = k 1Xj=1 M�jajk � Kr1� r = L: (2.8)Now we are looking for those x 2 � for whi
h (2.8) is satis�ed. If kxk1 �L=kSk1 then (2.8) is 
learly true. Let y := Sx. Then S�1y = x, hen
ekxk1 � kS�1k1kyk1 = kS�1k1kSxk1 � LkS�1k1:Let T 00 be the k-dimensional hyper
ube 
entered at 0 with vertex 
oordinates��i (i = 1; : : : ; k), where�i := dLkS�1k1e: (2.9)It follows from the 
onstru
tion that H � T 00.Remarks. (1) By virtue of the 
onstru
tion for a given " > 0 there is anoperator matrix norm for whi
h kM�1k � �(M�1) + ". This is a well-knownresult.(2) To determine the verti
es of T 00 one needs� a Jordan blo
k 
omputation of M and� a matrix inverse 
omputation of S.Clearly, the matrix S is not unique. The 
onstants �j 
an be 
hosen arbitrarya

ording to their de�nition but in 
omputer implementations the 
oatingpoint over
ows (e.g. �j-s are too small) must be avoided. The best solutionwould be to optimize �j -s obtaining the smallest value for kS�1k but it 
ouldhave high 
omputational time. Nevertheless, in some 
ases it is worth thetrouble.(3) By similar arguments as we did earlier, if � = Zk then in (2.9) the
oor fun
tion 
an also be applied. Obviously, the integers in T 00 
over theintegers in H.Let � = Zk. This 
an be assumed without loss of generality. Forming theinterse
tion of T 0 and T 00 we proved the following theorem:



2.3 Applying an iterated fun
tion system 15Theorem 1. Let the set of integer points I(T ) be de�ned as follows:I(T ) := �264 t1...tk 375 2Zk; ��m � tm � �m; where�m = min( b
 CXj=1 �(j)m 
; bLkS�1k1
 ); 1 � m � k�:Then I(H) � I(T ) and I(�H) � I(T ).Computer experiments show that in many 
ases the 
overing 
onstru
tion ispreferable to the operator norm 
onstru
tion. Clearly, applying Theorem 1one 
an 
onstru
t a k-dimensional re
tangle T . Unfortunately, the number oflatti
e points in T 
an be mu
h higher than the number of periodi
 elements.This 
onstru
tion 
an be a �rst step towards a better approa
h.2.3 Applying an iterated fun
tion systemA �nite set of 
ontra
tions ffig mapping from Rk to Rk is 
alled an iteratedfun
tion system (IFS). On the spa
e S of 
ompa
t subsets of Rk, with respe
tto the Hausdor� metri
 Æ(A;B) = inffr : A � Nr(B) and B � Nr(A)g,where Nr(A) is the open r-neighborhood of A, de�ne f : S ! S by f(X) =Sli=1 fi(X), for any 
ompa
t set X. Clearly, f is a 
ontra
tion on S andhen
e, by Hut
hinson's theorem [39℄, f has a unique �xed point or attra
torT satisfyingT = l[i=1 fi(T )and given byT = limn!1 f (n)(X0);where f (n) denotes the nth iterate of f , X0 is an arbitrary 
ompa
t subset ofRk, and the limit is with respe
t to the Hausdor� metri
.



16 Classi�
ation of expansionsFor ea
h digit d 2 D we de�ne the fun
tion fd : Rk ! Rk by fd(z) =M�1(z + d). These are linear 
ontra
tion maps. If z 2 H then fd(z) 2 H.Clearly, fd is a right-shift map and furthermore H = Sd2D fd(H) so H isthe unique invariant set determined by Hut
hinson's theorem applied to thefun
tions fd. The set H is self-aÆne with respe
t to these fun
tions.It was already mentioned that we are interested in the latti
e points inthe set �H. Let � 2 �H. Then�� � (M�1d1 + : : :+M�JdJ) = M�(J+1)dJ+1 +M�(J+2)dJ+2 + : : : ;(2.10)for the appropriate sequen
e di 2 D. Fortunately, for the right hand side of(2.10) a good estimate 
an be given. Let � = Zk. The following algorithmprovides the set W , for whi
h the integers in W 
over the integers in H.Number Expansion Classifi
ation Algorithm in Zk for a given ex-pansive matrix M and digit set D. Let M̂ 2 Zk�k be similar to M via thematrix Q and let Q be an optional argument of the algorithm. If it is notgiven then let Q be the identity matrix. Let D̂ = QD. Further, B and C are
onstants depending on the given 
omputer hardware (word size, memory
apa
ity) and on the matrix M̂ . B is an integer and C < 1 a real number.1. q := minfj 2 N; kM̂�jk1 < 1g;2. s := minfj 2 N; (r := kM̂�jk1) < Cg;3. f := (f1; : : : ; fk)T 2 Rk; fm = 1=(1 � r)Psl=1maxb2D̂ j
(l)m (b)j; 1 � m � k;where (
(l)1 (b); : : : ; 
(l)k (b))T = M̂�lb;4. minvol:=in�nity; Chose an appropriate B, q � B � s;5. for j from q to B do fif (kM̂�jk1 < 1) fCompute the ve
tor v(j) = (v(j)1 ; : : : ; v(j)k )T 2 Rk,v(j)m =Pkl=1 jM̂�jm;lflj; 1 � m � k;if ((! :=Qkl=1 v(j)l ) < minvol) f minvol:= !; J := j;ggg6. U := f�PJi=1 M̂�ib; b 2 D̂g;7. S := Su2U (u+ P ), where P denotes the k-dimensional re
tangleP = f(p1; : : : ; pk)T 2 Rk; jpij � v(J)i ; 1 � i � kg;8. W := fw = (w1; : : : ; wk)T 2Zk; Qw 2 Sg;9. Apply the fun
tion � determined by the system (Zk;M;D) for the pointsof W and the arising 
y
les mean the required 
lassi�
ation.



2.4 Computation of the fun
tion � 17The lines 1-3 provide the k-dimensional re
tangle Ĝ = f(g1; : : : ; gk)T 2 Rk,jgij � fi; 1 � i � kg. Let us analyze the se
ond assignment in line 4. Ifwe in
rease B, the time 
omplexity of the algorithm grows exponentially int = jdet(M) j. Unfortunately, in some 
ases q 
an be rather big, whi
h meansthat the 
onvergen
e of M�i (i ! 1) is slow. In these 
ases this algorithm
an be ine�e
tive, even if keeping the running time moderate one 
hoose B
lose to q. The reason is that the set Ĝ 
an also be rather big. Let an examplebe the Frobenius matrix (
ompanion matrix) of the irredu
ible polynomial2 + 3x+ 4x2 +4x3 + 4x4 + 3x5 +2x6 + x7 with the 
anoni
al1 (binary) digitset, Q = I; C = 0:01. Then s = 188; q = 53 and the number of integers inĜ is 15319297125. Using other kinds of matri
es, during the 
omputation ofs problems 
an arise with the matrix elements (see se
tion 2.1, Remark 2).Line 5 tries to keep the index J small. The lines 6-8 are the appli
ation ofHut
hinson's theorem in (2.10). Con
erning line 8 one 
an observe that thenumber of elements of the set W depends also on jdet(Q) j. Con
erning line9, a fast algorithm for 
omputing the fun
tion � is the subje
t of the nextse
tion. The termination of the algorithm is 
lear.It must be emphasized that the running time of the algorithm dependsstrongly on the matri
esM and Q, i.e., on the basis of the latti
e determinedby the matrix M . In other words one has to 
hoose the matrix Q in a waythat the 
onvergen
e of M̂�i = (QMQ�1)�i (i ! 1) is fast, jdet(Q) j isbig and the volume of Ĝ is as small as possible. It seems to be rather hard.Sometimes the simple idea of 
hoosing the matrix Q in a way that M̂ = MT
an help. Fortunately, for a large 
lass of matri
es the algorithm is quite ef-fe
tive even if we 
hoose Q for the identity matrix. The author implementedthe Classifi
ation Algorithm in C language. In order to perform 
om-putations in the latti
e e�e
tively the elements of Zk were transformed to Zusing mixed radix representation. During the 
omputation of elements of theset S a hashing table was used.2.4 Computation of the fun
tion �Let a radix system (Zk;M;D) be given. For 
al
ulation of the fun
tion � oneneeds a fast pro
edure to determine for an arbitrary z 2Zk the 
orresponding
ongruent element d 2 D modulo M . Our �rst method is a straightforwardgeneralization of the method used for the 
ase of Gaussian integers in [62℄.1For the de�nition see se
tion 3.1.



18 Classi�
ation of expansions2.4.1 Adjoint methodApplying the notations already adopted let z be an arbitrary element of Zkand let D = fa0; a1; : : : ; at�1g be a 
omplete residue system modulo M . Ifz � aj modulo M then M�z � M�aj modulo det(M)I, where M� denotesthe adjoint of M and I the identity matrix. Here by \adjoint of the operatorM" we mean the integer matrix, for whi
h the elements are the adjoints ofthe appropriate sub-determinants. Let t = jdet(M)j as before. LetD1 := M�D (mod tI) = fb0; b1; : : : ; bt�1g; (2.11)wherebj = M�aj (mod tI) = 264 b(j)1...b(j)k 375 2Zk; 0 � b(j)i < t; (i = 1; : : : ; k):(2.12)Due to the 
omplete residue system property of D for every z 2 Zk thereexists a unique bj 2 D1 su
h that bj = M�z (mod tI). Then from (2.11) and(2.12) it follows that z � aj modulo M .In order to obtain for an arbitrary z 2 Zk the 
ongruent element in Dmodulo M one has to perform a multipli
ation by the matrix M� (mod tI),whi
h requires k2 integer multipli
ation over Zt =Z=tZ. Can the number ofoperations be redu
ed? Fortunately, in many 
ases the answer is yes. Supposethat there exists an i 2 N; 1 � i � k for whi
h b(j)i (j = 0; 1; : : : ; t � 1) in(2.12) are all di�erent. Then the inner produ
t of an arbitrary z 2 Zk bythe i-th row of M� modulo t uniquely determines the index j for whi
hz � aj modulo M . This requires only k integer multipli
ations over Zt.The question, in whi
h 
ases su
h an i exists will be answered in 
hapter3. But what 
an be made when su
h an i does not exists? Then one has toinvestigate further the set D1 and to �gure out a strategy to minimize thenumber of multipli
ations to obtain for an arbitrary z 2 Zk the appropriatebj 2 D1 for whi
h bj = M�z modulo tI. Beside the optimization the strategyrequires greatest 
ommon divisor 
omputations, whi
h suggests the existen
eof another (a simpler) approa
h. Indeed, essentially the same 
an be rea
hedvia another way, whi
h is based on the Smith 
anoni
al form of M (see [45℄).



2.4 Computation of the fun
tion � 192.4.2 Smith normal form methodLet M be an invertible linear operator mapping Zk into Zk. Then there arelinear transformations U and V mapping Zk onto itself su
h that UMV =G has diagonal form in the standard basis with positive integer elementsg1; : : : ; gk in the diagonal su
h that gi j gi+1 for i = 1; 2; : : : ; k � 1 andQki=1 gi = jdet(M)j. The Smith normal form 
an be obtained by doing ele-mentary row and 
olumn operations of M . We remark that U and V havedeterminants �1 and they are also invertible having integer 
omponents.Lemma 4. For an invertible M with the notations above let for z1; z2 2 Zkthe numbers u1; u2; : : : ; uk and û1; û2; : : : ; ûk denote the 
oordinates of Uz1and Uz2 respe
tively. Then z1 � z2 modulo M if and only if ui � ûi modulo gifor all i = 1; 2; : : : ; k.Proof: z1 � z2 moduloM if and only ifM�1(z1�z2) 2Zk. This is equivalentwith the 
ondition V �1M�1(z1� z2) 2Zk. But V �1M�1 = G�1U , hen
e theequations ui � ûi modulo gi must be satis�ed for all i = 1; 2; : : : ; k. �From a 
omputational point of view, at the �rst sight there is no gain. Inthe �rst step one has to multiply z 2 Zk by the integer matrix U (mod G)instead of M� (mod tI). But if there exists a positive integer s for whi
hgi = 1, i = 1; : : : ; s; s < k then ui � 0 (mod gi) for all i = 1; : : : ; s and forall z 2 Zk, hen
e enough to perform only k integer multipli
ations modulogj, for ea
h j = s+ 1; : : : ; k. LetD2 := UD (mod G) = f
0; 
1; : : : ; 
t�1g; (2.13)where
j = Uaj (mod G) = 264 
(j)1...
(j)k 375 2Zk; 0 � 
(j)i < gi; (i = 1; : : : ; k):(2.14)We get that for every z 2Zk there exists a unique 
j 2 D2 su
h that 
j = Uz(mod G). From (2.13) and (2.14) we have that z � aj modulo M .2.4.3 Computer implementationIn 
omputer implementations on
e the 
omputation M�z modulo tI or Uzmodulo G was performed for the ve
tor z 2Zk the result must be looked up



20 Classi�
ation of expansionsin the table T (D1) or in T (D2), respe
tively, obtaining the index j for whi
haj � z modulo M , aj 2 D. This 
an be done using sear
hing strategies orhashing. Let us see an example for su
h a hash fun
tion in the 
ase of Smithnormal form. The idea 
omes from the mixed radix representation.Lemma 5. Using the notations above let us de�ne the fun
tion h byh(z) = kXi=s+1(ui mod gi) i�1Yj=s+1 gj :Then h is an integer valued fun
tion with values 0; : : : ; t � 1, and h(z1) =h(z2) if and only if z1 � z2 modulo M .Proof: It is easy to see that h has the given range. If z1 � z2 then ui �ûi mod gi for all i = 1; 2; : : : ; k, hen
e h(z1) = h(z2). In the other dire
tion,if h(z1) = h(z2), then taking the remainder of both side with respe
t to g1we get that u1 � û1 (mod g1). Subtra
ting this 
ommon term and dividingwith g1 one 
an 
ontinue with g2, et
. �Remark. The set D1 
an be generated only from D but the set D2 
an beprodu
ed also dire
tly from G. A 
omplete residue system (mod M) 
an begenerated from D2 (D1) by multiplying the elements with U�1 (M), respe
t-ively.We summarize our results for the 
omputation of the fun
tion �:� For a given ve
tor z 2 Zk 
omputing M�z (mod tI) needs k2 integermultipli
ations overZt, 
omputing Uz (mod G) requires k integer mul-tipli
ations over Zgj for ea
h j = s+ 1; : : : ; k, where s depends on thematrix M .� Looking up the 
ongruent element aj in the table T (D) either a sear
h-ing has to be performed in T (D1) or in T (D2) to obtain the index j ora hashing has to be done.� To perform the fun
tion �, after a ve
tor subtra
tion a matrix multi-pli
ation must be applied either with M� over Zand then dividing byt or with M�1 over R.



Chapter 3Number system 
onstru
tions\Number theory is an inexhaustiblestorehouse of interesting truth."| C. F. GaussThis 
hapter 
ontains number system 
onstru
tions of several types. Firsta ne
essary and suÆ
ient 
ondition is given establishing 
anoni
al digit sets.Then, we deal with polynomial 
onstru
tions in
luding the 
omplete list ofgeneralized binary number systems up to degree 8. Polygonal and simulta-neous 
onstru
tions are also mentioned. We end this 
hapter by proving asuÆ
ient 
ondition for the general 
ase.3.1 Canoni
al digit setsLet � = Zk and let M : Zk ! Zk be a matrix satisfying Assertion 1(b)-(
).Further, we examine spe
ial kinds of digit sets. A set of ve
tors D(j)M � Zkis 
alled j-
anoni
al with respe
t to the matrix M (1 � j � k) if all theelements have the form �ej, where ej denotes the j-th unit ve
tor, � =0; : : : ; jdet(M)j � 1. If the set D(j)M forms a 
omplete residue system moduloM | CRS for brevity | then we 
all it a j-
anoni
al digit set and denoteit by D(j). If there exists a j for whi
h (Zk;M;D(j)) is a number systemthen it is 
alled j-
anoni
al number system. Furthermore, 1-
anoni
al digitsets are 
alled simply 
anoni
al. In the following we analyze the existen
e ofj-
anoni
al 
omplete residue systems.



22 Number system 
onstru
tionsTheorem 2. Let M be an invertible expansive linear operator of Rk mappingZk into itself and let 
 = [
1; 
2; : : : ; 
k℄T 2Zk be the j-th 
olumn of the matrixM� (adjoint of M). Let Æl := g
d(
l; t) (l = 1; : : : ; k), where t = jdet(M)j.Let furthermore �l := t=Æl. Then the following statements are equivalent:1 There exists j-
anoni
al CRS modulo M .2 The setD(j) = ��
 mod t = 264 �
1 mod t...�
k mod t 375 ; � = 0; 1; : : : ; t� 1�has exa
tly t elements.3 l
m(�1; : : : ; �k) = t.(Here g
d and l
m means the greatest 
ommon divisor and least 
ommonmultiply of the integer elements, resp.)Proof: (1) , (2). The proof immediately follows from the 
onstru
tion ofD1 in (2.11). (1) , (3). Due to the CRS property of the set D(j) all theirelements are in
ongruent modulo M and the set D(j) has t elements. Thismeans that the equation hej = M� has no solution for any h 2 N; 0 <h < t and any � = [�1; �2; : : : ; �k℄T 2 Zk. Hen
e it is enough to examine thesolvability of the system of equationsh
1 = t�1;... (3.1)h
k = t�k:Case 1. There exists a 
l (1 � l � k) su
h that g
d(
l; t) = 1. In this 
asefrom the equation h
l = t�l it follows that t j h. Therefore the system ofequations (3.1) has no integer solution.Case 2. Suppose that g
d(
l; t) = Æl > 1 for all l = 1; 2; : : : ; k. Let 
�l = 
l=Æl.Then h
�l = �l�l (l = 1; : : : ; k). Sin
e g
d(
�l ; �l) = 1, therefore �l j h forall l = 1; : : : ; k. It means that l
m(�1; �2; : : : ; �k) j h. Hen
e the system ofequations (3.1) has no solution if and only if l
m(�1; �2; : : : ; �k) � t. Onthe other hand l
m(�1; : : : ; �k) j t. Therefore l
m(�1; : : : ; �k) = t. (If �l = tfor some l then g
d(
l; t) = 1.) We have that there exists j-
anoni
al CRSmodulo M if and only if l
m(�1; : : : ; �k) = t. �



3.2 Polynomial 
onstru
tion 23Remarks. (1) If there exists a 
i 2 Zn 0 in the j-th 
olumn of thematrix M� for whi
h g
d(
i; t) = 1 modulo t then there is a j-
anoni
al
omplete residue system modulo M . Theorem 2 shows that the 
onverse ofthis statement is not always true.(2) If t is prime then always exists j-
anoni
al CRS for all 1 � j � k.Lemma 6. Using the notations above suppose that for a given M there existsa j-
anoni
al CRS. Then there is an i 2 N; 1 � i � k for whi
h g
d(
i; t) = 1modulo t if and only if the set f�
i modulo t, � = 0; 1; : : : ; t � 1g forms aCRS modulo t.The proof is obvious.Corollary. If for a given M there exist j-
anoni
al CRS and 
i a

ordingto Lemma 6 then it is enough to perform only k multipli
ations modulo t todetermine for an arbitrary z 2 Zk the element b = (M�z modulo tI) 2 D1(see se
tion 2.4.1).The 
onverse of this statement is not true. Let a 
ounter-example be thematrixM = ( 2 46 3 ). Then t = 18 and M� = ��3 46 �2 �. Using the Smith normalform for every z 2 Zk there is enough to perform k = 2 multipli
ations toobtain the appropriate b 2 D1 but there is no 1- or 2-
anoni
al CRS andg
d(
i; t) > 1 modulo t for all 
i.3.2 Polynomial 
onstru
tionConsider the polynomialf(x) = 
kxk + 
k�1xk�1 + : : :+ 
0 = (x� �1) : : : (x� �k); 
k = 1 (3.2)over Z[x℄. Let us denote the quotient ring Z[x℄=(f) by �f . Let � = x + (f)denote the image of x in �f . Then �f has the stru
ture of a free Abeliangroup with basis f1; �; �2; : : : ; �k�1g. Hen
e, �f is a latti
e, addition andmultipli
ation of latti
e points is just addition and multipli
ation in the ringZ[x℄=(f). To be more pre
ise 
onsider the polynomial f(x) in (3.2) and as-sume that j�ij > 1 (i = 1; : : : ; k). Observe that �f is the set of elementsof form u0 + u1� + : : : + uk�1�k�1 (uj 2 Z). For the addition it is isomor-phi
 with the additive group Zk. Clearly, I� = f�� : � 2 �fg is an ideal in�f , the number of residue 
lasses in the fa
tor ring �f=I� is t = j�1 : : : �kj.Choosing an element from ea
h residue 
lass the digit set 
an be de�nedas D� = fa0 = 0; a1; : : : ; at�1g � �f . Let � 2 �f . Then there exists a



24 Number system 
onstru
tionsunique a 2 D� and a unique �1 2 �f for whi
h � = a+ ��1. The fun
tion� : �f ! �f is de�ned as �(�) = �1. Observe that the map �! �� 
an beformulated as a linear transformation, whi
h has a simple form in the basisf1; �; �2; : : : ; �k�1g, namely the Frobenius matrixMf = 0BBBBBB�0 : : : �
01 0 : : : ...0 . . ....0 : : : 1 �
k�11CCCCCCA : (3.3)Hen
e, all the problems regarding number expansions 
an be formulated inZk instead of making it in �f . The digit set for Mf must have j
0j elements.Clearly, j
0j must be greater than or equal to 2.3.2.1 Radix representation of algebrai
 integersIn the spe
ial 
ase, when f(x) is irredu
ible over Z[x℄ then �f =Z[x℄=(f) isisomorphi
 withZ[�℄, where � is any root of f(x) in an appropriate extension�eld of the rationals. Hen
e, we may repla
e � to � in the previous reasoning.The next lemma provides a suÆ
ient 
ondition forZ[x℄=(f) being isomorphi
with Z[�℄.Lemma 7. Consider the polynomial f(x) in (3.2) and assume that j�ij > 1,(1 � i � k). If f(0) = 
0 is prime then f(x) is irredu
ible.Proof: Suppose indire
tly that f(x) = u(x)v(x); u; v 2 Z[x℄; deg(u) �1;deg(v) � 1 and both u and v are moni
. Sin
e 
0 = f(0) = u(0)v(0) isprime therefore either u(0) is �1 or v(0) is �1. Assume that u(0) is �1. Sin
ethe 
onstant term of u(x) is the produ
t of some roots of f in module, thisis impossible. �In the following we shortly summarize the results obtained by represent-ing algebrai
 integers in some extension �eld of the rationals. Let � be anyrational integer greater than one. It is well-known that every non-negativeinteger n has a unique representation of the form n = a0 + a1� + : : :+ ak�k,where the integers aj are sele
ted from the set f0; 1; : : : ; �� 1g. The de
imal(� = 10) and binary (� = 2) systems are the most familiar. Both positive andnegative integers 
an be uniquely represented without a sign pre�x in any
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onstru
tion 25negative base � < �1 using the digits from f0; 1; : : : ; j�j�1g. Conditions un-der whi
h ea
h rational integer has a unique radix representation have beeninvestigated by D. W. Matula [86℄, A. M. Odlyzko [91℄ and by B. Kov�a
s, A.Peth}o [77℄.A straightforward way to extend radix systems is 
hoosing the radix toan algebrai
 integer. The �rst non-real base radix system was introdu
ed byD. E. Knuth [60℄, who suggested that � = 2i 
an be used as base for the
omplex numbers with the digit set D = f0; 1; 2; 3g, i.e. all 
omplex number
 has an expansion of form 
 = Pli=�1 di�i for some l 2 N0 (di 2 D).However, in order to represent all the Gaussian integers, it is ne
essary touse one negative radix pla
e; for example 1+5i = 3(2i)1+1(2i)0+2(2i)�1. W.Penney in 1965 noti
ed [94℄, that every 
omplex number 
an be representedin binary form using the base �1+ i, moreover, all the Gaussian integers 
anbe written in the formPnj=0 aj(�1 + i)j, where aj = 0 or 1.The systemati
 resear
h of positional number systems in algebrai
 exten-sions was initiated by I. K�atai and J. Szab�o [55℄. They proved that if � is aGaussian integer of norm N � 2 and the digit set is D = f0; 1; : : : ; N � 1gthen every Gaussian integer 
 
an be uniquely represented as 
 = a0+ a1�+: : : + am�m; aj 2 D; am 6= 0 if and only if � = �n � i for some positiveinteger n.If the digit set D is restri
ted to be a set of non-negative numbers, we geta straightforward generalization of the traditional number systems inZ. Theset D = f0; 1; : : : ; N � 1g is 
alled 
anoni
al digit set. If the radix system(Z[�℄; �;D) satis�es the unique representation property with some 
anoni
aldigit set D then it is 
alled a 
anoni
al number system. In this 
ase all thoseintegers � in quadrati
 number �elds 
an be given, for whi
h (Z[�℄; �;D) arenumber systems [27, 52, 53℄: if � is a quadrati
 integer with minimal polynom-ial x2 + Ex + F and D = f0; 1; : : : ; jF j � 1g then (Z[�℄; �;D) is a numbersystem if and only if F � 2 and �1 � E � F .Using 
anoni
al digit sets S. K�ormendi [80℄ determined all the integers� 2 Q( 3p2) for whi
h (Z[�℄; �;D) is a number system. B. Kov�a
s [72℄ gavea ne
essary and suÆ
ient 
ondition for the existen
e of 
anoni
al numbersystems in Z[�℄, i.e., in the ring of integers Q[�℄ of a kth degree extension ofQ (k � 3) there exists 
anoni
al number system i� there exists an � 2 Q[�℄su
h that f1; �; : : : ; �k�1g is an integer basis in Q[�℄. B. Kov�a
s and A. Peth}o[78℄ 
hara
terized all those integral domains that have 
anoni
al numbersystems.
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onstru
tions3.2.2 Cns-polynomialsThe 
on
ept of 
anoni
al number systems was extended to arbitrary square-free polynomials f(x) 2 Z[x℄ with leading 
oeÆ
ient one by A. Peth}o [95℄and to arbitrary moni
 polynomials f(x) 2Z[x℄ by S. Akiyama and A. Peth}o[1℄. Con
erning (3.3) it is easy to see that M�f [k; 1℄ = (�1)k+1 therefore byTheorem 2 
anoni
al digit set always exist. Here M� means the adjoint ofM . Let a 
anoni
al radix system (�f ;Mf ;D) be given. Computing the Smithnormal form of Mf by UMfV = G it is easy to see thatU = 0BBB� 0 1 0... . . .0 0 1� sgn(
0) 0 : : : 01CCCAand G = diag(1; : : : ; 1; j
0j). Hen
e, by Lemma 4 the fun
tion � 
an be givenas �(x) = �([x1; : : : ; xk℄T ) == [�
1
0x� + x2;�
2
0x� + x3; : : : ;�
k�1
0 x� + xk;�x�
0 ℄T (3.4)where x� = x1 � d; 0 � d < j
0j and 
0 j x�. Using the notation y = bx1=
0
in (3.4) the fun
tion � 
an also be written as�(x) = [�
1y + x2;�
2y + x3; : : : ;�
k�1y + xk;�y℄T : (3.5)If the system (�f ;Mf ;D) is a 
anoni
al number system then we 
all thepolynomial f(x) as a 
ns-polynomial, or we say that the polynomial f(x) hasthe 
ns-property. Re
all that in this 
ase for every x 2 Zk there is a j 2 N0for whi
h �j(x) = 0.3.2.3 Ne
essary 
onditions for the 
ns-propertyIn order to 
onstru
t 
anoni
al number systems via 
ns-polynomials we givesome ne
essary 
onditions. These 
onditions are quite obvious, many of themwere used in di�erent resear
h papers byW. J. Gilbert, I. K�atai and A. Peth}o.We prove them for the sake of 
ompleteness.
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onstru
tion 27Lemma 8. If (�f ;Mf ;D) is a 
anoni
al number system de�ned by the 
ns-polynomial (3.2) then(a) 
0 � 2;(b) if �1 � r 2 R then f(r) > 0, if �1 � z 2Zthen f(z) � 1;(
) f(1) � 
0;(d) if k is even then f(�
0) � 1, if k is odd then f(�
0) � �1;(e) Pbk=2
i=0 
2i � b(
0 + 1)=2
.Proof: (a) It is 
lear that ea
h real root of f(x) (if exists) must be less than�1. Hen
e, 
0 = (�1)k�1 : : : �k > 1. Con
erning (b) the previous idea 
analso be applied. (
) It is known that the only periodi
 element in the numbersystem (�f ;Mf ;D) is the null ve
tor. Now we analyze how 
an we avoid theloops �(x) = x di�erent from 0 ! 0. Suppose that there is a loop. Using(3.5) the following system of equations 
an be set up: fx1 = x2 � 
1y; x2 =x3� 
2y; : : : ; xk�1 = xk� 
k�1y; xk = �yg. From these equations it is easy todedu
e that xk(1 + 
k�1 + : : :+ 
0) = d 2 D. If xk = 0 then x = 0 whi
h is aknown 
ase. If xk 6= 0 then applying (a) the number of loops is b(
0�1)=f(1)
.Hen
e, if 
0 � f(1) then there does not exist any loop. Con
erning (d) if�i 2 C nR for all 0 � i � k then the assertion is obvious. On the other handobserve that there does not exist any real �i for whi
h �i � �
0, otherwisethere would be a �j for whi
h j�jj < 1. Hen
e �
0 < �i < �1 for all realroots of f(x). It means that if k is even then f(�
0) � 1, if k is odd thenf(�
0) � �1. (e) is immediately follows from (a) and (b) by z = �1. �Let 
0 � 2 and k be �xed. Sin
e all roots of the polynomial f(x) has mod-uli greater then one | we also say that the polynomial satis�es the root-
ondition |, therefore the number of 
ns-polynomials is �nite. Next, we pro-vide upper bounds for the absolute value of the 
oeÆ
ients 
i; 1 � i � k � 1in (3.2).Lemma 9. Let f(x) be the 
ns-polynomial de�ned by (3.2) and let 2 � k � 9.Then the 
oeÆ
ients of f(x) 
an be bounded asj
jj � s(1� 
0) + 
0�kj�� 1;j
k�jj � s(
0 � 1)(1 � bk=j
) + 
0�kj�� 1;where s = ��kj�=bk=j
�; 1 � j � bk=2
:
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onstru
tionsProof: We use the relationship between roots and 
oeÆ
ients of polynomialsand the inequalities� + � < 1 + �� and 1� + 1� < 1 + 1�� (3.6)where �; � > 1. For brevity let zi =j �i j. To have a better view into the for-mulas let us 
onsider the spe
ial 
ase k = 7; j = 2. Then P1�i1<i2�7 zi1zi2 <z1z2 z4z5 z6z7+z1z3 z2z5 z4z7+z1z4 z2z6 z3z7+z1z5 z2z4 z3z6+z1z6 z2z3 z5z7+z1z7 z3z4 z5z6+ z2z7 z3z5 z4z6+2 � 7 < 7
0+14. In the given range 2 � k � 9su
h a sort is always possible. Hen
e,j 
k�j j= X1�i1<:::<ij�k zi1 : : : zij < s
0 + s(bk=j
 � 1) andj 
j j= 
0 X1�i1<:::<ij�k 1zi1 : : : 1zij < 
0( s
0 + s(bk=j
 � 1));from whi
h the lemma follows. �Remarks. (1) These estimates are good enough for sear
hing 
anoni
alnumber systems algorithmi
ally.(2) By using these formulas we got the following estimates (
k = 1):k = 2; j
1j � 
0;k = 3; j
1j � 2
0; j
2j � 
0 + 1;k = 4; j
1j � 3
0; j
2j � 3
0 + 2; j
3j � 
0 + 2;k = 5; j
1j � 4
0; j
2j � 5
0 + 4; j
3j � 5
0 + 4; j
4j � 
0 + 3;k = 6; j
1j � 5
0; j
2j � 10
0 + 4; j
3j � 10
0 + 9; j
4j � 5
0 + 9; j
5j � 
0 + 4;k = 7; j
1j � 6
0; j
2j � 14
0 + 6; j
3j � 18
0 + 16; j
4j � 18
0 + 16; j
5j �7
0 + 13; j
6j � 
0 + 5;k = 8; j
1j � 7
0; j
2j � 21
0 + 6; j
3j � 28
0 + 27; j
4j � 35
0 + 34; j
5j �28
0 + 27; j
6j � 7
0 + 20; j
7j � 
0 + 6;k = 9; j
1j � 8
0; j
2j � 27
0 + 8; j
3j � 56
0 + 27; j
4j � 63
0 + 62; j
5j �63
0 + 62; j
6j � 28
0 + 55; j
7j � 9
0 + 26; j
8j � 
0 + 7.3.2.4 Some resultsIt was observed that a wide 
lass of polynomials 
an serve for 
onstru
ting
anoni
al number systems. B. Kov�a
s [72℄ proved that if f(x) 2 Z[x℄ isirredu
ible, its zeroes have moduli greater than one and if 
k � 
k�1 � : : : �
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0 � 2 then f(x) is a 
ns-polynomial. His proof 
an be applied for redu
iblepolynomials as well. Moreover, if 
0 is \big enough" then S. Akiyama and A.Peth}o gave a method determining the 
ns-property of arbitrary polynomials[1℄. They also proved that if 
2; : : : ; 
k�1;Pki=1 
i � 0 and 
0 > 2Pki=1 j
ijthen f(x) is a 
ns-polynomial and the last inequality 
an be repla
ed by
0 � 2Pki=1 j
ij when all 
i 6= 0.Re
ently, H. Brunotte provided an algorithm [10℄, whi
h attempt to provethe 
ns-property for a given irredu
ible moni
 polynomial f(x) 2Z[x℄ satisfy-ing the root-
ondition. His algorithm works for arbitrary moni
 polynomialsinZ[x℄ as well. His method di�ers essentially from the method of S. Akiyamaand A. Peth}o. Instead of using power basis he 
hose a di�erent one. In H.Brunotte's basis the fun
tion � :Zk !Zk has the form�([x1; : : : ; xk℄T ) = [� sign(
0)�Pk�1j=1 
jxj + xkj
0j �; x1; : : : ; xk�1℄THis algorithm based on the following theorem. Suppose that the set E �Zkhas the re
ursive de�nition (i) [0; : : : ; 0℄T ; [�1; 0; : : : ; 0℄T ; [0; : : : ; 0;�1℄T 2E, (ii) for every [x1; : : : ; xk℄T 2 E and d 2 D = f0; 1; : : : ; j
0j � 1g theelement �([x1; : : : ; xk�1; xk + d℄T ) belongs to E. If for every e 2 E thereexists a je 2 N0 su
h that �je(e) = 0 then the polynomial f(x) has the
ns-property.Let us see some examples. Let k = 2. Then by Lemma 8 and Lemma 9we get that �1 � 
1 � 
0. It is easy to see that in these 
ases the roots off(x) are outside the 
omplex unit dis
. Using the previous algorithm of H.Brunotte it is also not hard to see that E � �[x1; x2℄T ; x1; x2 2 f�1; 0; 1g	and applying the fun
tion � we have that the 
ns-property always holds.In fa
t, we got a kind of generalization of the result of I. K�atai, B. Kov�a
s[52, 53℄ and of W. Gilbert [27℄.If k = 3 then we are only able to write a set of inequalities between the
oeÆ
ients of f(x) (see also [1, 10℄). Nevertheless, the following assertionholds.Assertion 6. The following polynomials are 
ns-polynomials in Z[x℄:(i) xk + 
1x+ 
0 for every k � 3 i� �1 � 
1 � 
0 � 2; 
0 � 2;(ii) xk + pxk�1 + pxk�2 + : : :+ px+ p for all 2 � p 2 N;(iii) xk + xk�1 + xk�2 + : : :+ x+ p for all 2 � p 2 N;(iv) xk + pxk�1 + p2xk�2 + : : :+ pk�1x+ pk for all 2 � p 2 N.Proof: The 
ase (i) was proved in [10℄. In order to 
he
k that the roots
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onstru
tionsof the polynomials (ii) and (iii) are outside the 
omplex unit dis
 one 
anuse the method of Lehmer-S
hur [84℄. The proof is easy, we leave it to thereader. It is also obvious that the moduli of the roots of polynomial (iv) areequal and greater than one. Sin
e the 
oeÆ
ients of the polynomials (ii)-(iv)are positive and monotoni
ally in
reasing, the theorem of B. Kov�a
s 
an beapplied. The proof is �nished. �Remarks. (1) We proved that there are in�nitely many 
ns-polynomials(therefore 
anoni
al number systems) for ea
h dimension k even if the 
on-stant term of the polynomial is \small".(2) The polynomials (iv) and (i) for 
1 = 0 show that for every e > 1there is a base M su
h that (�;M;D) is a 
anoni
al number system and themoduli of ea
h eigenvalues of M are smaller than or equal to e. This showsthat the se
ond ne
essary 
ondition in Assertion 1 for satisfying the uniquerepresentation property is sharp.(3) Consider the Frobenius matrix M of the polynomial (iv). Note thatall eigenvalues of M have the same moduli. The importan
e of these systemsappears in 
hapter 5, in examining the Hausdor� dimension of the boundaryof their fundamental domain.3.2.5 Sear
hing for 
ns-polynomialsNow we provide an algorithm for sear
hing 
anoni
al number systems. Tode
ide whether the polynomial f(x) has a root inside the 
omplex unit dis
the method of Lehmer-S
hur 
an be used. To analyze the possible roots inthe unit 
ir
le we have the following well-known lemma.Lemma 10. Let Q(x) = q0 + q1x + : : : + qkxk 2 Z[x℄; Q(
i) = 0; j
ij � 1.Then j
ij > 1 if and only if g
d(Q(x); xkQ(1=x)) is a 
onstant polynomial.Algorithm: CNS-Sieve. Sear
hing for all 
andidates of 
ns-polynomialsin 
ase of given inputs 
onstant term 
0 and degree k of the moni
 polynomialf(x) 2Z[x℄.1. Let S be the �nite set of polynomials determined by Lemma 9;2. if S 6= ; then p :=get-a-new-
andidate(S); S := S n fpg;else goto step 5;3. if Lemma 8 (e), (b) with z = �1, (
) and (d) hold for the polynomial pthen goto step 4; else goto step 2;4. Apply Lehmer-S
hur and Lemma 10 for the polynomial p;
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onstru
tion 31if all roots of p have moduli greater than one then print(p);goto step 2;5. Stop;The algorithm terminates sin
e S is a �nite set. Observe that the CNS-Sieve algorithm 
ontains 
omputationally easy-to-
he
k methods. Moreover,if Lemma 8 fails for the polynomial p then possibly more than one polynomi-als 
an be deleted from the set S, depending on whi
h part of Lemma 8 doesnot hold. Clearly, the CNS-Sieve algorithm 
an also be applied for k > 9but in this 
ase bounds for the 
oeÆ
ients of f(x) must be determined.3.2.6 Cns-polynomials with 
onstant term 
0 = 2Now we turn our attention to generalized binary number expansions, i.e.
0 = 2. The 
ase k = 1 is well-known, and the 
ase k = 2 was analyzed inse
tion 3.2.4. Let k � 3. Suppose that the polynomial f(x) is obtained by theCNS-Sieve Algorithm for some k. Then, a periodi
 element 0 6= � 2 Pwould be a test proving that f(x) is not a 
ns-polynomial. If one does not �ndsu
h a � by sear
hing a small �nite portion of the spa
e systemati
ally or ran-domly then one 
an use the Classifi
ation Algorithm or H. Brunotte'salgorithm [10℄ to prove that f(x) is really a 
ns-polynomial. If f(x) is not a
ns-polynomial then these algorithms serve also the test.The author implemented the CNS-Sieve Algorithm in C language.The following table shows the results up to degree 8.Output ofDegree (k) CNS-Sieve Algorithm Number of(number of polynomials) 
ns-polynomials3 5 44 22 125 18 76 73 257 62 128 215 20Table 1Further, we enumerate the 
omputed 
ns-polynomials.
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onstru
tionsk = 3, 2� x+ x3; 2 + x3; 2 + x+ x2 + x3; 2 + 2x+ 2x2 + x3.k = 4, 2 � x + x4; 2 + x4; 2� x2 + x4; 2 + x2 + x4; 2 + 2x2 + x4; 2 + x + x3 +x4; 2+ x+ x2+ x3+ x4; 2+ 2x+ x2+ x3+ x4; 2+ x+2x2+ x3+ x4; 2+ 2x+2x2+x3 + x4; 2 + 2x+ 2x2 + 2x3 + x4; 2 + 3x+ 3x2 + 2x3 + x4.k = 5, 2� x+ x5; 2+ x5; 2� x+ x2 + x5; 2+ x2 + x3 + x5; 2+ x+ x4 + x5; 2+x+ x2 + x3 + x4 + x5; 2 + 2x+ 2x2 + 2x3 + 2x4 + x5.k = 6, 2�x+x6; 2�x2+x6; 2�x3+x6; 2+x6; 2+x3+x6; 2+2x3+x6; 2+x2�x3+x4+x6; 2+x2+x4+x6; 2+x2+x3+x4+x6; 2+2x2+2x4+x6; 2+x�x2�x3+x5+x6; 2+x�x3+x5+x6; 2+x+x5+x6; 2+x+x2+x3+x4+x5+x6; 2+2x+x2+x3+x4+x5+x6; 2+2x+2x2+x3+x4+x5+x6; 2+x+x2+2x3+x4+x5+x6; 2+2x+2x2+2x3+x4+x5+x6; 2+x+2x2+x3+2x4+x5+x6; 2+2x+2x2+2x3+2x4+x5+x6; 2+2x+3x2+2x3+2x4+x5+x6; 2+2x+2x2+2x3+2x4+2x5+x6; 2+3x+3x2+3x3+3x4+2x5+x6; 2+3x+4x2+4x3+3x4+2x5+x6; 2+x+x2+x4+x5+x6.k = 7, 2�x+x7; 2� 2x+2x2�x3+x5�x6+x7; 2�x+x2+x4+x7; 2+x3+x4 + x7; 2+ x2 + x5 + x7; 2+ x+ x6 + x7; 2 + x+ x2 + x3 + x4 + x5 + x6 + x7; 2+2x + 2x2 + x3 + x4 + x5 + x6 + x7; 2 + 2x + 2x2 + 2x3 + 2x4 + x5 + x6 + x7; 2 +2x+ 2x2+ 2x3+ 2x4 + 2x5+ 2x6 + x7; 2+ 3x+ 4x2 + 4x3+ 4x4 + 3x5+ 2x6 + x7.k = 8, 2�x+x8; 2�x2+x8; 2�x4+x8; 2+x8; 2+x4+x8; 2+2x4+x8; 2+x3+x5+x8; 2+x2+x6+x8; 2+x2+x4+x6+x8; 2+2x2+x4+x6+x8; 2+x2+2x4+x6+x8; 2+2x2+2x4+x6+x8; 2+2x2+x3+x4+x5+x6+x8; 2+2x2+2x4+2x6+x8; 2+3x2+3x4+2x6+x8; 2+x+x7+x8; 2+x+x2+x4+x6+x7+x8; 2+x+x2+x3+x5+x6+x7+x8; 2+x+x2+x3+x4+x5+x6+x7+x8; 2+2x+x2+x3+x4+x5+x6+x7+x8; 2+2x+2x2+2x3+x4+x5+x6+x7+x8; 2+2x+2x2+2x3+2x4+x5+x6+x7+x8; 2+2x+2x2+2x3+2x4+2x5+2x6+x7+x8; 2+2x+2x2+2x3+2x4+2x5+2x6+2x7+x8,2+x+x2+x3+2x4+x5+x6+x7+x8; 2+x+2x2+2x3+x4+2x5+x6+x7+x8; 2+x+2x2+x3+2x4+x5+2x6+x7+x8; 2+x+3x2+2x3+3x4+2x5+2x6+x7+x8; 2+2x+3x2+3x3+3x4+2x5+2x6+x7+x8; 2+3x+3x2+3x3+3x4+3x5+3x6+2x7+x8; 2+3x+4x2+5x3+5x4+4x5+3x6+2x7+x8; 2+4x+5x2+5x3+5x4+4x5+3x6+2x7+x8.The output of the CNS-Sieve Algorithm shows that the estimates inLemma 8 and Lemma 9 may be 
omplemented and improved. It is also
lear that the time 
omplexity of the algorithm is exponential in k. More-over, in higher dimensions proving that a given polynomial obtained by theCNS-Sieve Algorithm is really a 
ns-polynomial is hard. The following
onje
ture would help, but the author was unable to prove this.Conje
ture. Suppose that the latti
e � is generated with the power basis andthe polynomial f(x) is obtained by the CNS-Sieve Algorithm. If theredoes not exist any periodi
 element � for whi
h k�k1 = 1 then f(x) is a
ns-polynomial.
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onstru
tion 33Obviously, if su
h a � exist then the polynomial is not a 
ns-polynomial. Weused this idea to test the output of the CNS-Sieve Algorithm.Remarks. (1) The 
ase k = 3 in Table 1 was known to A. J�arai (unpub-lished).(2) Suppose that the polynomial f(x) is obtained by the CNS-SieveAlgorithm and it is not a 
ns-polynomial. Then, the Classifi
ation Al-gorithm provides more than one periods. The following questions are quiteinteresting: how many su
h periods exist and what are the length of them?The general 
hara
terization seems to be hard. The following table showssome 
omputational results.the polynomial � 2 P the length off(x) k�k1 = 1 period of �2 + x+ x2 + x4 [�1; 1; 0; 0℄T 112 + x+ 2x2 + 2x3 + x4 + x5 [�1;�1;�1; 0; 0℄T 212 + x+ x3 + x4 + x5 + x6 [�1;�1;�1; 0; 0; 0℄T 332 + x+ 2x3 + 2x4 + x6 + x7 [�1;�1; 1;�1; 0; 1; 0℄T 472 + 2x+ x2 + x6 + 2x7 + x8 [�1;�1; 0; 0; 0; 0; 0; 0℄T 64Table 2(3) In order to de
ide the 
ns-property of a given polynomial the algo-rithm of H. Brunotte is preferable. The author is grateful to J. Szili
zi whoprogrammed this algorithm in C++ in a very �ne way. This shows amongothers that for the 
ns-polynomial 2+x+2x2+x3+2x4+x5+2x6+x7+x8the algorithm uses 344 iteration steps, the number of integer ve
tors in theset E is 143123, while for the 
ns-polynomial 2+3x+3x2+3x3+3x4+3x5+3x6 + 2x7 + x8 the algorithm uses 253 iteration steps and number of integerve
tors in the set E is 241719.3.2.7 Polygonal 
onstru
tionLet f(x) = xk + xk�1 + : : :+ 1 and let �f = Z[x℄=(f) be the 
orrespondingk-dimensional latti
e as earlier. Let ! = x+ (f) denote the image of x in �fand let � = n � !; n 2 Z. Note that !k+1 = 1. Clearly, the 
orresponding



34 Number system 
onstru
tionsmatrixMpol = 0BBBBBBB� n 0 0 : : : 0 1�1 n 0 : : : 0 10 �1 n : : : 0 1... ... ... � � � ... ...0 0 0 : : : n 10 0 0 : : : �1 n+ 11CCCCCCCAa
ts on the 
ubi
 latti
e Zk with respe
t to the basis f1; !; : : : ; !k�1g. Thedeterminant of Mpol is (nk+1 � 1)=(n � 1). A. Vin
e [106℄ 
onsidered theinteresting 
ase n = 2. In this 
ase det(Mpol) = 2k+1 � 1. LetD = f�0 + �1! + : : :+ �k!k : �i 2 f0; 1g; not all �i is 1g:It 
an be seen that D is a full residue system modulo Mpol. For k = 1 wehave that � = Z;Mpol = (3);D = f�1; 0; 1g, whi
h is the balan
ed ternaryrepresentation of the integers. For k = 2 the matrix Mpol = ( 2 1�1 3 ) andD = f0; 1; !; : : : ; !5 : ! is a primitive 6th root of unityg:A. Vin
e 
alled these systems as the generalized balan
ed ternary (GBT).In these systems, addition and multipli
ation 
an be 
arried out by simpleand fast bit string routines, sin
e ea
h digit 
an be represented by the bi-nary string �0�1 : : : �k. Moreover, using the two-dimensional GBT, a planardatabase management system was developed (see [105, 106℄ and the refer-en
es there). We 
all the reader's attention to an interesting fa
t regardinggeneralized balan
ed ternary, whi
h was observed by A. Vin
e. The eigenval-ues of Mpol for the GBT are f2� ! : ! is an (n+1)th root of unity, ! 6= 1g.Therefore the minimummodulus of an eigenvalue tends to 1 as k!1. Sin
eGBT systems are number systems for all k, we got again that Assertion 1(b)is sharp.Radix systems, where the digit set has the form f0; 1; �; �2; : : : ; �k�1g,� = exp(2�i=k) is the primitive k-th root of unity, are very important in
omputer s
ien
e, sin
e they enables fast addition and on-line multipli
ation.We refer the interested reader to [98, 100℄.3.3 Simultaneous 
onstru
tionThe following radix system was introdu
ed by K-H. Indlekofer, I. K�ataiand P. Ra
sk�o [41℄. Let N1; N2; : : : ; Nk be mutual 
o-prime integers, none



3.4 General 
onstru
tion 35of them is 0;�1. Let Ms = diag(N1; N2; : : : ; Nk) and D = fÆeg, wheree = [1; : : : ; 1℄T ; Æ = 0; 1; : : : ; t � 1; t =j N1 : : : Nk j. Clearly, the set D is afull residue system modulo Ms. The proper work of the fun
tion � is basedon the Chinese remainder theorem. In dimension two let 2 � N1 < N2. Theabove mentioned authors proved that the system (Zk;Ms;D) is a numbersystem if and only if N2 = N1 + 1.3.4 General 
onstru
tionA further question 
on
erning radix expansions is the following: for a givenM satisfying 
riterion (b) and (
) in Assertion 1 is there any digit set D forwhi
h (�;M;D) is a number system? How many su
h digit sets exist andhow to 
onstru
t them? In imaginary quadrati
 �elds due to G. Steidl [102℄and I. K�atai [48℄ we know that to be able to 
onstru
t number systems the
onditions in Assertion 1 are also suÆ
ient. Remarkable results are obtainedby G. Farkas in real quadrati
 �elds [20, 21, 23℄. Moreover, if M is similarto the Frobenius matrix of an irredu
ible moni
 polynomial over Z thensome results are also available [50℄. The above mentioned authors gave the
onstru
tions as well. For the general 
ase, A. Vin
e proved [106℄ that if allthe singular values of M are greater than 3pk then the digit set D 
an be
onstru
ted. In dimension 2 this value 
an be made sharper to 2. Now weprove the following.Assertion 7. (SuÆ
ient 
ondition for the number system property)Suppose that the 
onditions for M;D in Assertion 1 hold. Let us denote inRk a ve
tor norm and the 
orresponding operator norm by k � k for whi
hr = kM�1k < 1. Let K = maxfkdk; d 2 Dg and L = Kr=(1 � r). Letfurthermore R be a positive real number for whi
h z 2 �; kzk � R implies z 2D. If r � R=(R +K) then (�;M;D) is a number system.Proof: It follows from Lemma 1 that if � is a periodi
 element then k�k � L.Hen
e, if we 
ould prove that L � R then we would be ready, sin
e in this 
asethe only periodi
 element is the null ve
tor. But if r = kM�1k � R=(R+K)then Kr � R(1 � r), by whi
h L = Kr=(1 � r) � R. �The 
onstru
tion of the digit set is as follows: enumerate all integers in a`big enough' ball around the origin, order them using the appropriate normand sele
t a full residue system keeping the norm of the elements as small aspossible.Assertion 7 has an important 
orollary. Re
all that a basis transform-



36 Number system 
onstru
tionsation does not 
hange the number system property, i.e. if M1 and M2 aresimilar via the matrix Q then the number system property of (�;M1;D) and(Q�;M2; QD) holds at exa
tly the same time. Let U = [�12; 12)k denote thek-dimensional half-open unit 
ube 
entered at the origin. Re
all that the k-dimensional parallelotop V = MU has volume j det(M) j and the appropriateintegers in V 
onstitute a full residue system modulo M . Suppose that thenorm in Rk is the Eu
lidean norm. Then, performing a basis transformation,the full residue system V 
an be transformed to the half-open unit 
ube U ,in whi
h 
ase KR is equal to pk. Hen
e, we proved the following:Assertion 8. For a given expansive M suppose that kM�1k2 � 1=(1 +pk).Then there exists a digit set D for whi
h (�;M;D) is a number system.Our result is stronger than that one of A. Vin
e ex
ept in dimension2. Applying Assertions 1 and 8 in dimension 1 shows that if 2 < � 2 Zthen every rational integer has a unique base � radix representation withD = f�b(j�j � 1)=2
; : : : ; bj�j=2
g, whi
h is well-known. Consider the ringof Gaussian integers Z[i℄ = fa + bi : a; b 2 Zg and let � = A + Bi 2 Z[i℄.In this 
ase M� = � A �BB A � and kM�1� k2 = 1=pA2 +B2, whi
h is, apart froma few 
ases, always smaller than 1=(1 + p2). Keeping in mind Assertion 1,Assertion 7 and [55℄ these 
ases are easy to handle. We got the following: forany Gaussian integer � of modulus larger than one, ex
ept 2 and 1� i, thereexists a full residue systemD so that (Z2;M�;D) is a number system. Hen
e,as a spe
ial 
ase of Assertion 8 we have the result of G. Steidl1. If we 
onsiderthe Eisenstein integersZ[!℄ = fa+b! : a; b 2Zg, where ! is the 
omplex 
uberoot of unity, and we perform the above mentioned 
omputations, we obtainthe same 
on
lusion. Nevertheless, it is not any surprise: I. K�atai solved theproblem in all imaginary quadrati
 �elds. If we 
onsider the real quadrati
�elds | without going into the details | it is possible to reprove the result ofG. Farkas [20℄. The interesting is that the above mentioned authors gave thedigit sets expli
itly whi
h is di�erent from our 
onstru
tion. This suggeststhat the unique representation property depends mainly on the radix, and ifany, than several di�erent digit sets 
an be 
onstru
ted.1Histori
al remark: for the �rst proof of this result there is a resear
h report by M.Davio, J.P. Des
hamps and C. Gossart [14℄ dated ba
k to 1978.



Chapter 4Analyzing expansions in Q[ipF ℄\The imaginary number is a �ne andwonderful re
ourse of the divine spirit,almost an amphibian between being and not being."| G. W. LeibnizIn this 
hapter we analyze the attra
tor set of spe
ial radix systems. Usingthe notations already adopted the following questions arise: (a) What 
an bestated about the attra
tor set of an arbitrary radix system (�;M;D)? (b)How the stru
ture of the periodi
 elements looks like? (
) It is known thatif � 2 P then the maximum of the period length of � 
an be estimated withthe number of latti
e points 
overed by the disk with radius L 
entered atthe origin. Is there a better estimation? (d) Is there a good upper estimationfor the number of the di�erent sets C(�)? The purpose of this 
hapter is toanswer these questions using bases as integers in imaginary quadrati
 �eldsand 
anoni
al digit sets. It must be noted that the results of this se
tion forthe 
ase of Gaussian integers was proved in the author's paper [65℄ using adi�erent te
hnique. We remark that there are also some results in the realquadrati
 �eld Q(p2) using a di�erent kind of digit set [22, 23℄.Let F = 1 or F � 2 be a square-free integer. Let Q(ipF ) be an imaginaryquadrati
 extension of Q, I be the set of integers in Q(ipF ). It is known,that if F 6� 3 (mod 4) then f1; Æg, while for F � 3 (mod 4) f1; !g is aninteger basis in I, where Æ = ipF; ! = (1 + ipF )=2. The latti
e generatedby the basis f1; Æg will be 
alled the Æ-latti
e and denoted by �Æ, while thelatti
e generated by the basis f1; !g is the !-latti
e �!.



38 Analyzing expansions in Q[ipF ℄Let �1 = a+ bÆ and �2 = a+ b!, a; b 2Z, b 6= 0, E = (F + 1)=4. In these
ases the 
orresponding linear operators in Z2 are M1 = � a �Fbb a � and M2 =� a �Ebb a+b �. Clearly, det(M1) = a2+Fb2 and det(M2) = a2+ ab+Eb2; the �rst
olumn of the adjoint of the matri
esM1 andM2 are [a;�b℄T and [a+b;�b℄T,a

ordingly. Suppose that g
d(a; b) > 1. It follows from Theorem 2 that inthese 
ases the sets f0; 1; : : : ; a2+Fb2� 1g and f0; 1; : : : ; a2+ ab+Eb2� 1g
an not be 
omplete residue systems modulo M1 and M2, a

ordingly. Hen
ethe following lemma holds.Lemma 11. For a given � 2 Q[ipF ℄ (� = a + bÆ or � = a + b!) the setD = f0; 1; : : : ;Norm(�) � 1g is a 
omplete residue system if and only ifg
d(a; b) = 1.Throughout this 
hapter we shall always assume that g
d(a; b) = 1. For thesake of brevity we use the notation (x; y) for g
d(x; y).4.1 Periodi
 elements of period length oneConsider the Æ-latti
e and let � = a+ bÆ; a; b 6= 0; (a; b) = 1.Lemma 12.1. In the system (�Æ; �;D) the periodi
 elements of period lengthone are �j = 1�a+bÆ(1�a;b) j; j = 0; : : : ; k, where k = �(1 � a; b)(1 + 2 a�1(1�a)2+b2F )�.Proof: It follows from (1.4) that � 2 P is a periodi
 element of period lengthone if and only if � = d + �� for some d 2 D. It means that (1 � �)� =d 2 D, hen
e � = d1�� = d(1�a)(1�a)2+b2F + Æ db(1�a)2+b2F . Sin
e � 2 I therefore(1�a)2+ b2F j d(1�a; b). On the other hand 0 � d � a2+ b2F �1 by whi
hthe proof is 
ompleted. �Consider now the !-latti
e. Let � = a + b!; b 6= 0; (a; b) = 1; N =Norm(�) = a2 + ab + b2E; E = (F + 1)=4. If E = 1, a = 0; b = �1 orE = 1; a = �b = �1 then j�j = 1, so in the following we always ex
ludethese 
ases. Using the same idea as before the next lemma 
an be easilyproved. We leave it to the reader.Lemma 12.2. In (�!; �;D) the periodi
 elements of period length one are�j = 1�a�b+b!(1�a�b;b) j; j = 0; : : : ; k, where k = �(1�a�b; b)(1+ 2a+b�2(1�a)2�(1�a)b+b2E )�.Remarks. (1) Let b > 0 be �xed. From these lemmas we 
an 
al
ulate themaximal number of loops. In the Æ-latti
e this 
an be a
hieved by b j a� 1,a � 1, in whi
h 
ase it is b + 1 if F � 2 and b + 2 if F = 1. In the !-latti
ewe have two 
ases depending on the value of E. If E � 2 then the maximal



4.2 Lo
ation of periodi
 elements 39number of loops is b + 1 by b j a� 1; 2a + b � 2. If E = 1 then this value isb+ 2, by a = 1 or by b � 1; a = b+ 1.(2) If a is positive then the element 1�a+bÆ 2 P of period length one. Inthe !-latti
e, if 2a+b � 2 then the element 1�a�b+b! 2 P of period lengthone. Moreover, if E = 1;#P = b+2 then (1� a� b)(b+1)=b+(b+1)! 2 Pof period length one.4.2 Lo
ation of periodi
 elementsBefore we 
ontinue our analysis, we have some useful observations.(1) Let 
 2 I; 
 � 0 mod �; 
1 = 
 + x; 
2 = 
 + y; x; y 2 D. Then�(
1) = �(
2): (4.1)(2) Let � 2 I; � 2 P, that is, � = a0 + a1� + : : :+ al�1�l�1 + ��l; aj 2 D.Then � = a0 + a1� + : : :+ al�1�l�1 + ��l; aj 2 D: (4.2)It means that if � 2 P in (�; �;D) then � 2 P in (�; �;D). If � = a + bÆthen � = a�bÆ, if � = a+b! then � = a+b�b!, so it is enough to examinethe 
ases b � 1.(3) It follows from Lemma 3 that if � 2 P then�� = d1� + d2�2 + d3�3 + � � �for some di 2 D. It means that����� � � d1� ���� � 1Xi=2 jdijj�ji � (N � 1)j�j2 11� 1=j�j = j�j+ 1j�j = 1 + 1j�j :Hen
e,����� � � d1�N ���� � 1 + 1j�j : (4.3)



40 Analyzing expansions in Q[ipF ℄Lemma 13. Let � 2 I (� = a + bÆ or � = a + b!); (a; b) = 1; e 2 Z. If� j e then N = �� j e.Proof: If a+bÆ = � j e then (a+bÆ)(
+dÆ) = a
�bdF +(ad+b
)Æ = e forsome 
; d 2Z. Sin
e (a; b) = 1 therefore 
 = ap and d = �bp for some p 2 Z.Hen
e a2p+ b2Fp = e, whi
h means that a2+ b2F j e. If a+ b! = � j e then(a+ b!)(
+ d!) = a
� bdE + (ad+ b
+ bd)! = e for some 
; d 2Z. Again,sin
e (a; b) = 1 therefore 
 = (a+ b)p and d = �bp for some p 2Z. It meansthat a(a+ b)p + Eb2p = e, by whi
h the proof is �nished. �4.2.1 Case � = a+ ibpFLet � = U +V Æ 2 P and let �(�) = U1+V1Æ. By the de�nition of � we havethe following equations:U = d+ aU1 � bFV1 (4.4)V = bU1 + aV1; (4.5)for some d 2 D. On the other hand using (4.3) we have that������ U � d1aN �+�� V + d1bN �Æ���� � 1 + 1j�j : (4.6)Theorem 3.1. Let � = a + bÆ; f = �a; b � 1; S1 = fU + V Æ; �a+ 1 �U � 0; 0 � V � bg; S2 = fU + V Æ; 0 � U � f; 0 � V � b � 1g. Let� = U + V Æ 2 P. If a � 1 and (F � 2 or F = 1; a 6= b + 1) then � 2 S1, ifa � 1; F = 1; a = b+ 1 then � 2 S1 [ f�a+ aig, if �a � 1 then � 2 S2.Proof: Let j�j � 2. Suppose that jU j � jaj + 2. Then using (4.6) we getthat jaj+ 2 � jU j � 32 + jd1ajN � 32 + N � 1N jaj;whi
h is a 
ontradi
tion. Therefore jU j � jaj + 1. Now suppose that F � 4and jV j � jbj+ 1. Thenb+ 1 � jV j � 32jÆj + jd1jbN � 32pF + N � 1N b;whi
h is a 
ontradi
tion again. Hen
e, if F � 4 then jV j � b. In the sameway, if F = 1 or F = 2 then it is easy to see that jV j � b+ 1. On the other



4.2 Lo
ation of periodi
 elements 41hand it follows from (4.6) that����� U � d1aN ���� � 32 ;therefore if a > 0 then U � 1, if a < 0 then U � �1. It is obvious as wellthat ����� V + d1bN ���� � 32jÆj ;hen
e if F > 2 then V � 0, if F = 1 or F = 2 then V � �1.Case a � 1. If a = 1; b = 2; F = 1 then it is easy to 
he
k that G(P) =f0 ! 0; i ! i; 2i ! 2ig, so the theorem holds. In the following we ex
ludethis 
ase. Let F = 1 or F = 2. Consider equation (4.5) and suppose thatV1 = b + 1. Then we have that V = b(a + U1) + a � b + 1, therefore eitherU1 = 0; a = 1 or U1 � �a. In the �rst 
ase, if a = 1 then b > 1 and by (4.4)we get that U � �bF (b+ 1) + N � 1 = �bF < �2 = �(a+ 1) whi
h is a
ontradi
tion. It means that (b+1)Æ 
an not be periodi
. On the other hand,if U1 = �a�1 then U � �a2�a�bF (b+1)+N�1 = �a�bF�1 < �(a+1)whi
h is a 
ontradi
tion again. Let U1 = �a and F = 2. Then V = a � b+1,therefore if a � 3 then U � �a2 � bF (b + 1) + N � 1 = �bF � 1 �(�a + 1)F � 1 = �2a + 1 < �(a + 1) whi
h is not possible. If a = 2then a = b + 1, therefore b = 1 and it is easy to 
he
k that in this 
aseG(P) = f�1 + Æ ! �1 + Æ; 0! 0g. If a = 1; b � 2 then U � �2b� 1 � �5whi
h is a 
ontradi
tion again. Let U1 = �a and F = 1. Then V = a � b+1and U � �b � 1 � �a hen
e in both 
ases equality must be satis�ed, i.e.a = b + 1. But now U = U1 = �a; V = V1 = b + 1 and this is the onlyperiodi
 element with V = b+1. Hen
e if U +V Æ 2 P then V � b ex
ept the
ase F = 1; a = b + 1, in whi
h 
ase U + V Æ = �a+ ai. Suppose now thatF = 1 or F = 2 and V1 = �1. Then by (4.5) we get that �1 � V = bU1� a,therefore U1 � 0. If U1 = 1 or U1 = 0; bF � 2 then U � aU1 + bF � 2whi
h is a 
ontradi
tion. If U1 = 0; b = F = 1 then by (4.5) we have that�1 � V = �a, hen
e a = 1 whi
h is a 
ontradi
tion again. Let F � 1 andsuppose that U1 = 1. Then by (4.5) we have that V = b + aV1 � b. Hen
eV1 = 0, but obviously 1 
an not be periodi
. Suppose that U1 = �a�1. Then(4.5) shows that V � �b whi
h is impossible. If U1 = �a then we have thatV1 � b. It follows from Lemma 13, (4.1) and from the remark of Lemma 12.2that if x 2 D then �x� 1 + � 2 B(1� �). Lastly, sin
e 2a+ 1 � a2 + b2F ,therefore �a+ bÆ 
an be periodi
 i� F = 1; a = b+ 1.



42 Analyzing expansions in Q[ipF ℄Case �a = f � 1. Suppose that (F = 1 or F = 2) and V1 = b+ 1. Then�1 � V = bU1 � f(b + 1) = b(U1 � f) � f , therefore f � 1 � b(U1 � f), soU1 = f = 1 or U1 � f+1. In the �rst 
ase it follows from (4.4) that U � �1�bF (b+1)+N�1 = �bF�1 < �1 whi
h is a 
ontradi
tion. In the se
ond 
ase,if U1 = f+1 then U � �f2�f�bF (b+1)+N�1 = �f�bF�1 < �1 whi
his not possible as well. Hen
e if U + V Æ 2 P then V � b. Now suppose that(F = 1 or F = 2) and V1 = �1. Then by (4.5) we get that V = bU1+ f � b,therefore U1 � 0 and if U1 = 0 then f � b, if U1 = �1 then f � 2b. If F = 2then using (4.4) we have that f+1 � U � �fU1+bF � 2f and equality holdsi� f = b = 1 whi
h is a 
ontradi
tion. If F = 1 then f + 1 � U � �fU1 + b.Clearly, if U1 = �1 then b = f = 1, whi
h is impossible. If U1 = 0 thenf + 1 � b � f , and sin
e (f; b) = 1 therefore b = f + 1 (b = f = 1 is notvalid). Hen
e U = f + 1; V = f . But if U1 = f + 1; V1 = f; b = f + 1 thenV = b(f + 1) � f2 = 2f + 1 � f + 1, whi
h is a 
ontradi
tion again. It isknown [55℄ that if f = 2; b = 1; F = 1 then G(P) = f0 ! 0g. Ex
luding this
ase it is also 
lear that a+ x + bÆ 2 B(0) (x 2 D) and 2f + 2 � f2 + b2F ,therefore by (4.1) we have that V1 � b�1. If U1 = �1 then 0 � V = �b�fV1,therefore V1 < 0, whi
h is a 
ontradi
tion. Suppose that U1 = f + 1. Thenusing (4.5) we get that V = b(f + 1)� fV1 � b� 1, therefore V1 > b, whi
his a 
ontradi
tion as well.If j�j < 2 then keeping in mind [52, 53℄ we have to 
he
k only the following
ases. If a = b = 1; F = 1 or F = 2 then it is easy to see that G(P) = fÆ !Æ; 0! 0g. The proof is 
omplete. �Lemma 14.1. If a � 1 then #P � b+ 1, if �a � 1 then #P � b.Proof: We have seen that if a � 1 and � = U + bÆ 2 P then � = 1 � �.It is obvious that d 2 B(0) for ea
h d 2 D. Now we shall examine theexpansion of �1. Clearly, �1 = �1 + N � �� and �� = �2a + �. Sin
ea � 1 therefore �2a+� = �2a+N ���+�. Moreover, 0 < N�2a < N�1and 1 � � 2 P therefore �1 2 B(1 � �). Hen
e the only rational integerperiodi
 element is 0. Considering Theorem 3.1 observe that there does notexist any � 2 S1 [ S2, (� 6= 0) for whi
h � � 0 (�). In virtue of (4.1) it iseasy to see that if U + V Æ 2 P then there is not any Z; (Z 6= U) for whi
hZ + V Æ 2 P. The proof is �nished. �



4.2 Lo
ation of periodi
 elements 434.2.2 Case � = a+ b!Let � = U + V ! 2 P and let �(�) = U1 + V1!. By the de�nition of � wehave the equationsU = d+ aU1 � bEV1 (4.7)V = b(U1 + V1) + aV1; (4.8)for some d 2 D. On the other hand using (4.3) we have that������ U � d1(a+ b)N �+�� V + d1bN �!���� � 1 + 1j�j : (4.9)Theorem 3.2. Let � = a+b!; f = �a; b � 1; T1 = fU+V !; �a�b+1 �U � 0; 0 � V � b� 1g, T2 = fU + V !; 0 � U � f � b; 0 � V � b� 1g. Let� = U + V ! 2 P.If E = 1; a = 1 then � 2 T1 [ f1� �;�b� 1 + (b+ 1)!g,if E = 1; a = b+ 1 then � 2 T1 [ f1� �;�a� b� 1 + (b+ 1)!g,if E � 2 or E = 1; a > 1 and a 6= b+ 1 then � 2 T1 [ f1� �g,if 1 � f < b and 2a + b � 2 then � 2 T1 [ f1� �g,if 1 � f < b and 2a + b < 2 then � 2 T1,if f > b then � 2 T2.Proof: Let j�j � 3. Suppose that jU j � ja+ bj+2. Then using (4.9) we getthat ja+ bj+ 2 � jU j � 43 + jd1(a+ b)jN � 43 + N � 1N ja+ bj;whi
h is a 
ontradi
tion. Therefore jU j � ja + bj + 1. Suppose that E � 2and jV j � jbj+ 1. Thenb+ 1 � jV j � 43j!j + jd1jbN � 43pE + N � 1N b;whi
h is a 
ontradi
tion again. Hen
e, if E � 2 then jV j � b. In the sameway, if E = 1 then it is easy to see that jV j � b + 1. On the other hand itfollows from (4.9) that����� U � d1(a+ b)N ���� � 43 ;



44 Analyzing expansions in Q[ipF ℄therefore if a+ b > 0 then U � 1, if a+ b < 0 then U � �1. It is obvious aswell that����� V + d1bN ���� � 43j!j ;hen
e if E � 2 then V � 0, if E = 1 then V � �1.Case a � 1. Let E = 1. Consider equation (4.8) and suppose that V1 =b + 1. Then we have that V = b(U1 + a + b + 1) + a � b + 1. Hen
e eithera = 1; U1 = �b� 1 or U1 = �a� b� 1; 1 � a � b+ 1. If a = 1; U1 = �b� 1then by Lemma 12.2 we have that �b � 1 + (b + 1)! 2 P of period lengthone. If U1 = �a� b � 1 then by (4.7),(4.8) we get that 1 � V = a � b + 1and U = �a� b� 1. Now, suppose that U1 = �a� b� 1; V1 = a. In virtue of(4.8) we have that �1 � V = �b2 � b+ a2. It means that b(b+ 1) � a2 + 1,therefore a = b + 1. Hen
e, if a = 1 then �b � 1 + (b + 1)! 2 P, if a � 2and a = b + 1 then �a � b � 1 + (b + 1)! 2 P of period length one anddoes not exist any other periodi
 element X + Y ! with Y = b + 1. LetE = 1 and V1 = �1. Then by (4.8) we have that �1 � V = b(U1 � 1) � a,therefore U1 = 1; a = 1. Using (4.7) we get that U � b + 1 � 2 whi
his a 
ontradi
tion. Let furthermore E � 1. Sin
e 2a + b � 2 always holds,therefore by the remark of Lemma 12.2 the element 1 � a � b + b! 2 P ofperiod length one. Clearly, a2+ab+b2E > 2a+b+1 therefore there is not anyother element X + Y ! 2 P with Y = b. Suppose that U1 = 1 Then by (4.8)we have that 0 � V = V1(a+ b)+ b� b�1 whi
h is a 
ontradi
tion. Supposethat U1 = �a� b� 
; (
 = �1; 0; 1) and 0 � V1 � b�1. Then by (4.8) we getthat V = b(�a� b� 
+V1)+aV1 � b(�a�1� 
)+ab�a = �a� b� b
 < 0whi
h is a 
ontradi
tion again.Case �a = f � 1. Let E = 1. Suppose that V1 = b + 1. Then by (4.8)we have that �1 � V = b(U1 + b � f + 1) � f � b + 1, therefore eitherf = 1; U1 = �b � �4; V = �1 or U1 � f � b. In the �rst 
ase using (4.7) weget that U � b�b(b+1)+N�1 = �b. Suppose that U1 = �b; V1 = �1; f = 1.It follows from (4.8) that V = �b2�b+1 < �1 whi
h is a 
ontradi
tion. In these
ond 
ase, by (4.7) we get that U � �fU1�b(b+1)+N�1 � �b�1 < �bwhi
h is a 
ontradi
tion as well. Hen
e if U + V ! 2 P then V � b. Supposethat V1 = �1. Then using (4.8) we have that �1 � V = b(U1 � 1) + f � btherefore U1 � 1. Sin
e U � �fU1+b therefore U1 � 0. If U1 = 0 then b�1 �f � 2b and by (4.8) we get that V = f � b. Suppose that U1 � b; V1 = f � b.Then by (4.8) we have that V = b(U1+ f � b)� f(f � b) = 2fb� f2+ b
 � b(
 � 0). It means that 
 = 0 or 1. Moreover, in both 
ases the only solution



4.2 Lo
ation of periodi
 elements 45is 2b = f , whi
h 
ontradi
ts either to (f; b) = 1 or to j�j � 3. Suppose thatU1 = 1; V1 = �1. It follows from (4.7), (4.8) that U � b� f and V = f � b.This 
an happen i� b = f + 1. Now, suppose that U1 = 1; V1 = b� 1. Thenusing (4.8) we get that V = b2 � f(b � 1) = b+ f , whi
h is not possible. Itmeans that if U + V ! 2 P then 0 � V � b. Let furthermore E � 1. Supposethat V1 = 0. Clearly, it is enough to 
onsider the expansion of �1. Sin
e�1 = �1+N ���, �� = �� 2a� b therefore if 2a+ b � 0 then �1 2 B(0),if 2a + b > 0 then �� = � � 2a � b + N � ��. Obviously 2a + b � N � 1and 1 � � = � � 2a � b + 1 therefore we 
an 
on
lude that if 2a + b � 2then �1 2 B(1 � �) else �1 2 B(0). Suppose that V1 = b. It follows from(4.8) that V = b(U1 + b� f) � b. Clearly, it is enough to 
onsider the 
aseU1 = f�b+1. The previous dedu
tion shows that U1+V1! 2 P i� 2a+b � 2.We 
an also noti
e that there is not other periodi
 element with V1 = b.Sub-
ase f < b. Suppose that U1 = 1. Then by (4.8) we have that V =V1(b � f) + b � b, therefore V1 = 0 whi
h is a known 
ase. Suppose thatU1 = f � b� 
 (
 = 0; 1). Now 0 � V = V1(b�f)+ b(f � b� 
) � b, thereforeV1 = b; 
 = 0 whi
h is known as well. It means that if f < b and U +V ! 2 Pthen f � b+ 1 � U � 0.Sub-
ase b < f . Suppose that U1 = �1. Then using (4.8) we have that0 � V = V1(b�f)� b � b therefore V1 < 0 whi
h is a 
ontradi
tion. Supposethat U1 = f � b+1. Then 0 � V = V1(b�f)+ b(f � b+1) � b, hen
e V1 = bwhi
h is a known 
ase.If j�j < 3 then by Lemma 11 and by [52, 53℄ the following 
ases remain. Ifa = 2; b = 1; E = 1 then �4 + 2!;�2 + !; 0 2 P of period length one, if a =2; b = 1; E = 2 then �2+!; 0 2 P of period length one, if a = 1; b = 1; E = 1then �2+2!;�1+!; 0 2 P of period length one, if a = 1; b = 1; E = 2; : : : ; 6then �1 + !; 0 2 P of period length one, if a = 1; b = 2; E = 1 then�3 + 3!;�2 + 2!;�1 + !; 0 2 P of period length one, if a = �1; b =2; E = 1; 2 then !; 0 2 P of period length one, if a = �1; b = 3; E = 1then G(P) = f! ! �1 + 2! ! !; 0 ! 0g, if a = �2; b = 3; E = 1 then2!; !; 0 2 P of period length one, if a = �3; b = 2; E = 1 then 1 + !; 0 2 Pof period length one. The proof is 
ompleted. �



46 Analyzing expansions in Q[ipF ℄Lemma 14.2. If E = 1; a = 1 or if E = 1; a = b + 1 then #P � b + 2,if E � 2 or E = 1; a > 1; a 6= b + 1 or 1 � f < b and 2a + b � 2 then#P � b+ 1, else #P � b.Proof: Sin
e there does not exist any � 2 T1 (resp. T2), (� 6= 0) for whi
h� � 0 (�) therefore by (4.1) and by Theorem 3.2 we have that if U +V ! 2 Pthen there is not any Z; (Z 6= U) for whi
h Z + V ! 2 P. �4.3 Stru
ture of periodi
 elementsLet b � 2, � = Æ or ! and L� = fP + Q� 2 I; (b;Q) = �g. Obviously,I = S�jbL�. Now, we shall examine the 
ase � < b. In virtue of (4.5) and(4.8) it is easy to see that if (V; b) = � then (V1; b) = �. Hen
e the fun
tion� maps L� to L� for ea
h � j b. Let b� = b=�.Theorem 4. There is a �nite de
omposition of L� into L� = [l��1j=0 L(j)� forwhi
h if � 2 L(j)� then �(�) 2 L(j)� for every � 2 P. The length of period of� 2 P is '(b�)=l�, where ' denotes the Euler totient fun
tion.Proof: LetX = V=�, X1 = V1=�. Then from (4.5) we have that X = b�U1+aX1 and from (4.8) we get that X = b�(U1+V1)+aX1. Clearly, in both 
asesX � aX1 (mod b�); (X; b�) = (X1; b�) = 1. Let us denote by Z�b� the set ofredu
ed residue 
lasses modulo b�, i.e., Z�b� = fm (mod b�); (m; b�) = 1g.Let T� denotes the 
y
li
 subgroup < a > in Z�b� and let t� = ord(a). ByLagrange theorem, '(b�) = l�t�, hen
e the order of the fa
tor group Z�b�=T�is l�. So we have a de
ompositionZ�b� = H0[H1[: : :[Hl��1, where H0 = T�.Let L(j)� = f
 = P + Q�; 
 2 L�; Q=� (mod b�) 2 Hjg. Finally, we havethe de
omposition by L� = L(0)� [L(1)� [ : : :[L(l��1)� . The proof is 
ompleted.� Remark. Consider the graph G(P). Theorem 4 states that for a �xeda and b (b � 2) there are � (b) di�erent sets L�, in ea
h there exist l� ='(b�)= ordb� a 
y
les with period length t� = ordb�. If b� is prime then thereis only one 
y
le in L� with period length b� � 1. If a � 1 (mod b�) thenthere are only loops in L� and the number of them is '(b�).



4.4 Number of periodi
 elements 474.4 Number of periodi
 elementsWe have seen in the previous se
tion that for ea
h � j b and for ea
h j =0; 1; : : : ; l� � 1 there exist at least one period-
y
le in L(j)� . The length of aperiod in L(j)� is a multiple of t�, so it is at least t�. This means that #P �P�jb t�l�. Sin
e t�l� = '(b�) therefore #P � P�jb '(b=�) = b. Keeping inmind the theorems and lemmas proved in this 
hapter we have the followingresult.Theorem 5. Let b � 1. Let � = a+ bÆ. If a � 1 and (F � 2 or F = 1; a 6=b+ 1) then #P = b + 1, if a � 1; F = 1; a = b+ 1 then #P = b+ 2 and if�a � 1 then #P = b. Let � = a+ b!. If E = 1; a = 1 or if E = 1; a = b+ 1then #P = b + 2, if E � 2 or E = 1; a > 1; a 6= b + 1 or 1 � f < b and2a+ b � 2 then #P = b+ 1, else #P = b. If b � �1 then apply (4.2).4.5 Expansions in the Gaussian ringIn the following we analyse expansions in the ring of Gaussian integers. Let� = a+ bi. Re
all that the elements of the ringZ[�℄ have the form fm+n� :m;n 2Zg. Then Z[�℄ = fu+ vbi : u; v 2Zg = f� 2Z[i℄ : b j Im(�)g.Theorem 6. Let � = a+ bi; a = �f; f > 0; (f; b) = 1. Then Z[�℄ = B(0).Proof: Let N = ��. First let � be an arbitrary Gaussian integer su
h that� 2 B(0). It means that � = b0 + b1�+ : : :+ bl�l for some l 2 N and bj 2 D.Clearly, b j Im(�j). Sin
e D � N0 therefore b j Im(�). By the previous remarkwe have that � 2Z[�℄, hen
e B(0) �Z[�℄. Suppose now that � 2Z[�℄. Then� = m+ n�: (4.10)On the other hand the expansion of �1 is�1 = N � 1 + �� = N � 1 + 2f� + �2: (4.11)Sin
e 1; N�1; 2f 2 D therefore�1 has the �nite expansion (4.11). Equations(4.10) and (4.11) mean that � has also an expansion of the form� = u0 + u1� + u2�2 + u3�3; (4.12)where uj � 0 (j = 0; 1; 2; 3). The idea of the following lemma is originatedto I. K�atai and J. Szab�o [55℄.



48 Analyzing expansions in Q[ipF ℄Lemma 15. (Clearing Lemma) Suppose that � has the following expansion:� = u0 + u1� + : : :+ um�m; (4.13)where uj � 0 (j = 0; : : : ;m). Let T =Pmj=0 uj. Then for every s � 0 thereexists an expansion � = v0+v1�+ : : :+vs�s+ : : :+vl�l su
h thatPlj=0 vj = Tand 0 � vj < N (j = 0; 1; : : : ; s).Proof: First we shall examine the expansion of N = a2 + b2.N = (�2f � �)� = �(N � 2f)� �� � ��� == (N � 2f)� + (��� 1)�2 = (N � 2f)� + (2f � 1)�2 + �3: (4.14)Observe that N�2f; 2f�1; 1 2 D and the sum of the digits of the expansionin (4.14) is N . Clearly, if u0 < N in (4.13) then the lemma holds for s = 0.In the opposite 
ase, if N � u0, then let u0 = pN + q; p � 1; 0 � q < N .Let us take u0 = q + p�0 + (N � 2f)� + (2f � 1)�2 + �3� into the equation(4.13). Then we have that � = u00 + u01� + : : :+ u0m�m0 ; where u00 = q; u01 =u1 + p(N � 2f); u02 = u2 + p(2f � 1); u03 = u3 + p; u0j = uj (j � 4).Observe thatPu0j = T , so the sum of the digits does not 
hange in the newexpansion. Hen
e, the 
ase s = 0 is satis�ed. We 
an 
ontinue the pro
ess forj = 1; 2; : : : ; s. �Now, we 
an apply the Clearing Lemma for the expansion of � in (4.12).Let T0 = T = u0 + u1 + u2 + u3. If u0 � N then by the lemma we havethat � = v0 + ��1; 0 � v0 < N; �1 = y1 + y2� + : : : + ym�m; yj � 0. LetT1 = T0 � v0. Clearly, T1 = y1 + : : : + ym. Applying the Clearing Lemmaagain and again we have a monotoni
ally de
reasing sequen
e T0; T1; T2; : : : ,and expansions �; �1; �2; : : : . If there exists an h 2 N su
h that Th = 0 thenthe expansion of � is �nite having the digits from the set D, so Theorem 6is proved. If su
h an h does not exist then there is a suitable large h0 su
hthat Th0 = Th0+1 = : : : = r > 0. But in this 
ase �h0 = ��h0+1 = �2�h0+2 =: : : = �j�h0+j = : : : , therefore 
 := � � (v0+ v1�+ : : :+ vh0�h0) = �h0+t�h0+tfor every t 2 N. Observe that �h0+t j 
 (t = 1; 2; : : : ) and this holds only if
 = 0. This means that � has a �nite expansion with digits from the set D.The proof of Theorem 6 is 
omplete. �



Chapter 5Geometry of expansions\The mathemati
al s
ien
es parti
ularly exhibitorder, symmetry and limitation; and theseare the greatest forms of the beautiful."| AristotelesIn this 
hapter we investigate the set of fra
tions of radix systems andlatti
e tilings with these sets.5.1 Set of fra
tions HIn se
tion 2 for a given radix system (�;M;D) the set of fra
tions was de�nedas H = F(M;D) = fP1n=1M�nan : an 2 Dg � Rk. Re
all that P denotesthe set of periodi
 elements. Let furthermore �l be the set of latti
e points ofform a0+Ma1+� � �+M lal; (ai 2 D). ThenD = �0 � �1 � � � � . Let � = S�l.Thus, � is the set of those latti
e points z whi
h have �nite expansions inthe radix system (�;M;D). Let � be the Lebesgue measure on Rk.Assertion 9. The fundamental domain H has the following properties: (i) His 
ompa
t. (ii) H has interior points. More spe
i�
ally Sp2P(p+H) 
ontainsa neighborhood of the origin. (iii) Rk = S(H + �) (iv) For every x 2 Rkthere is a z 2 � and h 2 H su
h that x = z + h. (v) �(H) > 0. (vi)�(H + z1 \H + z2) = 0 for all z1 6= z2 2 �.Proof:Con
erning (i) most of the proofs applies Cantor's diagonal prin
iple.



50 Geometry of expansionsNow a di�erent method will be given. Let F � H be in�nite. For ea
h digita 2 D letF (a) := (x 2 F : x = 1Xj=1 M�jdj ; dj 2 D; d1 = a) :Then we have F = Sa2D F (a). Sin
e F is in�nite, at least one of the setsF (a) is also in�nite. Choose a1 2 D so that F (a1) is in�nite. Then letF (a1; a) := (x 2 F : x = 1Xj=1 M�jdj ; dj 2 D; d1 = a1; d2 = a) :There is an a2 2 D so that F (a1; a2) is in�nite. We may 
ontinue this pro
essto obtain a sequen
e (aj) 2 D so that F (a1; a2; : : : ; an) is in�nite for alln. Then in the metri
 spa
e Rk the ve
tor P1j=1M�jaj is an a

umulationpoint of the set F . This shows that H is 
ompa
t. Con
erning (ii) the proof
an be found in [107, Theorem 1℄ or in [83, Theorem 1.1℄. The equivalentassertions (iii) and (iv) are easy 
onsequen
es of (ii). Sin
e H is 
ompa
t,it is measurable, and �(H) = 0 would imply that �(Rk) = 0. Therefore�(H) > 0, whi
h was stated in (v). Con
erning (vi) suppose that z1; z2 2 �and z1 6= z2. Then�(H) j detM jl= �(M lH) � [z2�l�1 �(H + z) =j detM jl �(H):If there is a 
ouple z1; z2 2 �l�1; z1 6= z2 for whi
h �(H + z1 \H + z2) > 0,then the \less than or equal to" 
an be 
hanged to \less than", whi
h isimpossible. �Sin
e H is 
ompa
t, it is possible to draw it. In se
tion 2.3 we noted that H isself-aÆne with respe
t to the linear 
ontra
tion maps fa : Rk ! Rk; fa(z) =M�1(z+a); a 2 D and H is the unique attra
tor of the iterated fun
tion sys-tem ffa : a 2 Dg. A 
omputer 
an be used to generate rapidly the attra
torof an iterated fun
tion system by repeatedly applying the maps of the sys-tem with equal probabilities and plotting the resulting points. The same 
anbe a
hieved by plotting the points of the set Hl = fPli=1M�iai : ai 2 Dg.However, this is not the best method be
ause of the size limitations of thegraphi
s devi
e. Hereinafter we follow the method of B. Mandelbrot [85℄.



5.2 Just tou
hing 
overings and the boundary of H 51Es
ape Algorithm for plotting the set H.Consider the radix system (�;M;D). For ea
h digit a 2 D de�ne the fun
tionga : Rk ! Rk by ga(z) = Mz� a. Let K(H) be a bounded subset of Rk that
ontains H and easy to de
ide whether an arbitrary y 2 Rk is in K(H). Su
ha set | a k-dimensional re
tangle | was 
onstru
ted in 
hapter 2. Givenany number z 2 Rk 
onstru
t the sequen
e of sets S0; S1; S2; : : : as follows.Let the initial set S0 be fzg, if z 2 K(H) or empty otherwise. LetSj = fgai(z) : z 2 Sj�1; ai 2 D; gai(z) 2 K(H)g:Stop the algorithm, if the set Sj be
omes empty or the number of sets jrea
hes some predetermined limit l. If any of the sets Sj are empty, then zdoes not lie in the set H. If l is large and Sl is non-empty, then z either liesin H, or it is very 
lose to it. A point x in the set Sl is of the form x = gal Ægal�1 Æ : : : ga1(z), where ea
h ai 2 D and z is approximatelyPli=1M�iai 2 H.If Sj is the �rst empty set, then j is a measure of time taken by z to es
apefrom K(H) under iterations of maps ga.Applying the Es
ape Algorithm for all the points of a 
ompa
t regionof Rk (a

ording to the graphi
s devi
e) one 
an 
olor these points via theires
ape time j. Plenty of pi
tures of fundamental sets was generated by theauthor in the Gaussian ring. These pi
tures had mu
h more su

ess in theexhibition CeBIT'93 than the mathemati
s behind them [62℄. Some of thosepi
tures 
an be seen in the home page of my proje
t leader1. A few funda-mental sets 
an be found in appendix B.5.2 Just tou
hing 
overings and the bound-ary of HIn the previous se
tion we analyzed the fundamental domain H and thetranslates of H to the points of �. It is easily seen that the elements of � arenot ne
essary 
losed for the addition. Clearly, if (�;M;D) is a number systemthen � = �, 
onsequently �(H + z1 \ H + z2) = 0 holds for ea
h z1; z2 2�; z1 6= z2. This suggest the following de�nition: the radix system (�;M;D)is 
alled a just tou
hing 
overing (JTC) system, if �(H + z1 \ H + z2) = 0holds for ea
h z1; z2 2 �; z1 6= z2.1http://math.uni-paderborn.de/�k-heinz



52 Geometry of expansionsLet S denote the set of those elements 0 6= z of � for whi
hH\(H+z) 6= ;.I. K�atai and 
o-workers proved [40℄ that the 
overing S(H+�) = Rk is JTCif and only if ��� = �, or equivalently, a 
overing is JTC i� for ea
h elementz 2 S may be written as z =Pmj=0M jbj with bj 2 B := D �D.In order to examine the points of �H (boundary of H), let us introdu
ethe set B(z) = (z +H) \ H; z 2 �. Clearly, S is a set of those z 2 � n f0gfor whi
h B(z) is nonempty. It is obvious that B(z) is nonempty i� z has anexpansion of the form z = P1i=1M�ibi, where bi 2 B. Hen
e S � H �H,therefore kzk � 2L for all z 2 S. In [40, 41℄ it was suggested to use thetransition graph G(S).Algorithm for 
onstru
ting the Transition Graph G(S).Let K(H) be the k-dimensional re
tangle 
entered at the origin determinedin 
hapter 2 and let U = 2K(H). Clearly, if z 2 S then z 2 U . For allz 2 �\U; z 6= 0 
al
ulate zb = Mz�b, where b 2 B. Let m(b) be the numberof possibilities to write b 2 B in the form b = ai � aj; (ai; aj 2 D). If zb 2 Uthen dire
tm(b) edges with labels ai from z to zb. Delete z if no edge leaves itand delete all edges that end in z. Continue this pro
ess until no appropriatez remains. The resulting graph is G(S). The pro
ess terminates be
ause thenumber of nodes is �nite.Observe that the graph G(S) has symmetry properties: if the graph 
ontainsan edge from x to y with label a, then there is an edge from �z to �y with�a. It is also not hard to see, that every node in the graph G(S) has in
omingedge(s). The transition graph is a tool for 
omputing �H without 
omputingthe interior points.Algorithm for 
omputing the boundary of H.Let start from an arbitrary node y 2 G(S), and walk on the transition graphwriting down the randomly 
hosen sequen
e of labels a1; a2; : : : . Then, z 2B(y) i� z =P1j=1M�jaj. From 
omputational point of view it is enough togenerate some �nite steps (depending on the graphi
s devi
e) of the walk.Repeat the pro
ess.The transition graph G(S) 
an also be used to de
ide whether the radixsystem (�;M;D) is a JTC system. The property holds i� for ea
h node zthere is a path � in G(S) for whi
h i(�) 2 B; t(�) = z. Here i(�) and t(�)denote the initial and terminal node of the path �.



5.3 Hausdor� dimension of �H 535.3 Hausdor� dimension of �HFirst, we re
all the di�erent notions of dimensions whi
h are used in this
hapter. The Hausdor� dimension of a Borel set E is de�ned as follows:let fUig1i=1 be an "-
over of E, i.e. E � S1i=1 Ui and diam(Ui) < ", wherediam(Ui) denotes the diameter of Ui. Then the s-dimensional Hausdor� meas-ure of E is given byHs(E) = lim"!0 � inf � 1Xi=1 diam(Ui)s : fUig1i=1 is an "-
over of E	�:The Hausdor� dimension of E is now de�ned bydimH(E) = inffs : Hs(E) = 0g = supfs : Hs(E) =1g:There are several diÆ
ulties in evaluating the Hausdor� dimension in a 
on-
rete 
ase. The box-
ounting dimension simpli�es this problem by repla
ingthe terms diam(Ui)s by the terms Æs in Rk. A formal de�nition of the box di-mension dimB of any bounded subset E of Rk pro
eed as follows. Let NÆ(E)be the smallest number of sets of diameter at most Æ whi
h 
over E. Sin
eE is bounded we 
an always assume that the 
over is �nite. ThendimB(E) = limÆ!0 logNÆ(E)log 1=Æ ;provided that the limit exists. If it exists and is not an integer, then E issaid to have fra
tal dimension. It may take non-integral values, but yieldsthe usual dimension for the most ordinary spa
es. A fra
tal set is onewhose Hausdor� dimension is stri
tly greater than its topologi
al dimen-sion. The term fra
tal was introdu
ed by the mathemati
ian Benoit Mandel-brot. Examples of fra
tal sets are the Cantor set and the boundary of Ko
h'ssnow
ake. Unfortunately, it is not true that the Hausdor� dimension and thebox dimension are always the same. But it is true that dimH(E) � dimB(E).For further dis
ussion of these and other kinds of dimensions we refer to[17, 18, 19℄.Se
ond, a brief survey will be given for the 
on
ept of graph self-similaritywhi
h was introdu
ed by R. D. Mauldin and S. C. Williams [87, 17℄, and byFal
oner [18℄. A dire
ted multi-graph 
onsists of two (�nite) sets V and E, andtwo fun
tions i : E ! V and t : E ! V . The elements of V are 
alled verti
es



54 Geometry of expansionsor nodes; the elements of E are 
alled edges or arrows. For an edge e, we 
alli(e) the initial vertex of e, and we 
all t(e) the terminal vertex of e. We willoften write Euv for the set of all edges e with i(e) = u and t(e) = v. A dire
tedmulti-graph is strongly 
onne
ted i�, for ea
h pair u; v of verti
es, there is apath from u to v. A path in a dire
ted multi-graph is a sequen
e of edges, takenin some order. A path will often be identi�ed with a string made up of thelabels of the edges. Let � be a metri
 on Rk. A mapping f : Rk ! Rk is 
alleda 
ontra
tion if �(f(x); f(y)) � 
�(x; y) (x; y 2 Rk) holds for some 
onstant
 < 1. We 
all the in�mum of these 
onstants 
, for whi
h the inequalityholds, the ratio of the 
ontra
tion f . A 
ontra
tion, whi
h maps any subsetof Rk to a geometri
ally similar set is 
alled a 
ontra
ting similarity.A dire
ted multi-graph (V;E; i; t) together with a fun
tion r : E !(0;1), will be 
alled a Mauldin-Williams graph. Suppose that (V;E; i; t; r) isa Mauldin-Williams graph. An iterated fun
tion system realizing the graphis made up of metri
 spa
es Sv, one for ea
h vertex v, and similarities fe, onefor ea
h edge e 2 E, su
h that fe : Sv ! Su if e 2 Euv, and fe has ratio r(e).An invariant list for su
h an iterated fun
tion system is a list of nonempty
ompa
t sets Kv � Sv, one for ea
h node v 2 V , su
h thatKu = [v2V;e2Euv fe[Kv℄for all u 2 V . Ea
h of the nonempty 
ompa
t sets Kv satisfying su
h equa-tions will be said to have graph self-similarity. A Mauldin-Williams graph(V;E; i; t; r) will be 
alled stri
tly 
ontra
ting if the 
onditions r(e) < 1 aresatis�ed, in whi
h 
ase there is a unique list (Kv)v2V of nonempty 
ompa
tsets (Kv � Sv) satisfying the previous equation.A non-negative square matrix M is 
alled primitive if M j > 0 for somepositive integer j. A square matrix is 
alled redu
ible if there exist a per-mutation that puts into the form M� = �M11 M120 M22 �, where M11 and M22are square matri
es. Otherwise M is 
alled irredu
ible. An irredu
ible non-negative matrix M always has a positive eigenvalue �. The moduli of all theother eigenvalues do not ex
eed �. Moreover, there is an eigenve
tor asso
i-ated to � with all positive entries. Let a Mauldin-Williams graph be given.For all t � 0; u; v 2 V de�neAuv(t) = Xe2Euv r(e)t



5.3 Hausdor� dimension of �H 55and the matrix A(t) by A(t)[u; v℄ = Auv(t). Then, by the Perron-Frobeniustheorem, the spe
tral radius of A(t) takes the value 1 for a uniquely deter-mined value of t = t0. This t0 is 
alled the graph dimension of the Maul-din-Williams graph. Consider a strongly 
onne
ted Mauldin-Williams graph(V;E; i; t; r). When the invariant set list is found, ea
h of the sets will besimilar to a subset of ea
h of the others. So they will all have the same Haus-dor� dimension. In order to determine the graph dimension, �rst we need to�nd the proper sort of Perron numbers. If s is a positive real number, thenthe s-dimensional Perron numbers for the graph are positive numbers qv, onefor ea
h vertex v 2 V , su
h thatqsu = Xv2V;e2Euv r(e)s � qsv:There is exa
tly one positive number s su
h that s-dimensional Perron num-bers exist. This unique number is equal to the graph dimension of the Maul-din-Williams graph.If (fe) is a realization of (V;E; i; t; r) in Rk, then we say it satis�es thegraph open set 
ondition i� there exist nonempty open sets Uv, one for ea
hv 2 V , with fe[Uv℄ � Uu for all u; v 2 V and e 2 Euv; and fe[Uv℄\fe0 [Uv0℄ = ;for all u; v; v0 2 V; e 2 Euv; e0 2 Euv0 with e 6= e0.The graph dimension 
an be used to 
al
ulate an upper bound of theHausdor� dimension of the sets of the invariant list. Let (V;E; i; t; r) be astrongly 
onne
ted 
ontra
ting Mauldin-Williams graph des
ribing the graphself-similarity of a list (Kv)v2V of nonempty 
ompa
t sets in Rk. Let s > 0 besu
h that s-dimensional Perron numbers exist. Then dimKv � s for all v. If,in addition, the realization satis�es the open set 
ondition, then dimKv = s.How 
an we 
ompute the graph dimension if the graph is not stri
tly
onne
ted? Let SC(V ) be the set of all stri
tly 
onne
ted 
omponents ofV . Let s be the graph dimension of V and sW be the graph dimension ofW 2 SC(V ). Then s = maxW2SC(V ) sW . Let furthermore K = Sv2V Kv.Then dimK � s, and, if the open set 
ondition is satis�ed then equalityholds [87℄.Suppose that the all the eigenvalues of M are distin
t and greater thanone in module. Let us examine the transition graph G(S) from similarityaspe
ts. First, let us de�ne the sets B(z) for ea
h node z. Clearly, the setsB(z) are 
ompa
t for all z. Suppose that the graph 
ontains some edges fromx to y with labels di. Let us de�ne the maps fdi : B(y) ! B(x); fdi(z) =M�1(z + di) for ea
h label, where di 2 D. We will prove that fdi(B(y)) �



56 Geometry of expansionsB(x). Indeed, if z 2 B(x), then z 
an be written as z = P1j=1M�jaj =x + P1j=1M�jbj (aj; bj 2 D). Thus, x = P1j=1M�j(aj � bj). Thereforey = Mx � (a1 � b1) = P1j=1M�j(aj+1 � bj+1) where Æ = a1 � b1 2 B.It means that if z1 = P1j=1M�jaj+1 = y +P1j=1M�jbj+1 2 B(y) thenfa1(z1) = z 2 B(x). So we have thatB(x) = [y2V;e2Exy fe[B(y)℄;in other words the sets B(z) form an invariant list of the iterated fun
tionsystem ffeg. Sin
e the mappings fdi are 
ontra
ting similarities, the graphG(S) is a stri
tly 
ontra
ting Mauldin-Williams graph so its graph dimension
an be determined by the previously des
ribed way.Unfortunately, in most 
ases the open set 
ondition does not hold, so theHausdor� dimension is hard to determine. But under 
ertain 
ir
umstan
esthe Hausdor� dimension of �H is equal to its box 
ounting dimension andthe open set 
ondition satis�es. Re
all that a �nite dire
ted graph is primi-tive, if it is strongly 
onne
ted and the greatest 
ommon divisor of the lengthof its 
losed dire
ted walks is one [9℄. In this 
ase the a

ompanying matrixof G(S) has a unique (positive real) eigenvalue of largest modulus. The fol-lowing theorem was proved in [90℄. Let (�;M;D) a JTC radix system andassume that all eigenvalues of M have the same modulus �. Assume fur-ther that the asso
iated transition graph is primitive and denote by �maxthe unique eigenvalue of largest modulus of its a

ompanying matrix. Thenthe Hausdor� dimension of �H is equal its box dimension and is given bys = log�maxlog� . Moreover, if the transition graph G(S) is not primitive but thereis a primitive subgraph of G(S) whi
h has the same maximal eigenvalue asG(S) then their graph dimension are equal and the Hausdor� dimension of�H 
an be 
omputed in the above des
ribed way.If the moduli of the eigenvalues of M are not all the same then using thegraph G(S) the box dimension of �H 
an be 
omputed. In real quadrati
�elds using 
anoni
al digit sets it was 
al
ulated by J. M. Thuswaldner [104℄.5.4 Just tou
hing 
overings in spe
ial 
asesLet D = fa1; a2; : : : ; aNg � Z, where ai � i (mod N) and let B = D �D.The set of integers expressible in the formPli=0 biN i, for some l with bi 2 B,



5.4 Just tou
hing 
overings in spe
ial 
ases 57is denoted by ZB. Then ZB = dZ i� (a1 � aN ; a2 � aN ; : : : ; aN � aN) = d.Assume that aN = 0 Then ZB =Zi� (a1; a2; : : : ; aN) = 1. This theorem was
onje
ted by I. K�atai and was proved by G. E. Mi
halek for N = 3 in [88℄and for arbitrary N in [89℄. Consider now the Gaussian integers Z[i℄.Proposition 1. Let � = a+ bi 2 Z[i℄; N = Norm(�) = a2 + b2 � 2; (a; b) =1;D = f0; 1; : : : ; N � 1g. The system (Z[i℄; �;D) is JTC system if and onlyif b = �1. In these 
ases the Hausdor� dimensions of boundaries of thefundamental domains are log(�max)log(1=(a2+1)) , where �max is the largest (positive) realroot of the polynomial (a2 + 1)z3 + (a2 � 2a+ 1)z2 + (2a� 1)z � 1.Proof: Let D � Zbe an arbitrary 
omplete residue system modulo �. If� 2 Z[i℄ 
an be represented in the form � = Pli=0 �idi (di 2 B = D � D)then b j Im(�), sin
e b j Im(�l) (l = 1; 2; : : : ). Hen
e the JTC propertyimplies that b = �1, i.e. � is of form � = a� i. Observe that if (Z[i℄; �;D) isJTC radix system then (Z[i℄; �;D) is as well and the Hausdor� dimensionsof boundaries of their fundamental domains are the same. Hen
e it is enoughto examine the 
ase b = 1. But due to [55℄ we know that if a � 1 then(Z[i℄;�a � i;D) is a number system, therefore JTC system. This impliesthat (Z[i℄; a+ i;D) is also a JTC system with the same Hausdor� dimensionsof their �H. W. Gilbert 
omputed the box dimensions of the boundaries offundamental domains of the number systems (Z[i℄;�a + i;D) (a 2 N) bysu

essive approximations [31℄. S. Ito 
omputed the Hausdor� dimensionsof �H for all 
anoni
al number systems in imaginary quadrati
 �elds usinggroup endomorphism [44℄. Moreover, if � is a non-real quadrati
 integer andD is a 
anoni
al digit set modulo � then I. K�ornyei determined the Hausdor�dimension of �H [80℄ using the linear re
ursive method of K-H. Indlekofer,I. K�atai and P. Ra
sk�o [40℄. So the proposition is essentially proved. But theaim of this se
tion is to provide a proof using graph 
onstru
tions, whi
h isdi�erent from the above mentioned methods.Let a � 5. In order to 
ompute the transition graph we follow the methodof se
tion 2.1. The 
orresponding matrix belonging to � = a+i isM = ( a �11 a ).Then kM�1k1 = 



� a=(a2 + 1) 1=(a2 + 1)�1=(a2 + 1) a=(a2 + 1)�



1 = a+ 1a2 + 1 < 1where k � k1 is the matrix norm indu
ed by the maximum norm of R2.



58 Geometry of expansionsTherefore (I �M�1)�1 exists and� = 11� kM�1k1 = a2 + 1a(a� 1) � k(I �M�1)�1k1;where I is the two dimensional identity matrix. Let v be the �rst 
olumnve
tor of M�1 and let � = vd = [�1(d); �2(d)℄T (d 2Z). In this 
ase�1 = maxd2D j�1(d)j = a3a2 + 1 < a and �2 = maxd2D j�2(d)j = a2a2 + 1 < 1:This means that��1 = a2a� 1 < a+ 2 and ��2 = a2a(a� 1) < 2:Sin
e we are interested in only the integers in H therefore we 
an 
on
ludethat if 
 2 H \Z[i℄ then jRe(
) j � a + 1 and j Im(
) j � 1. Obviously, if
 2 G(S) thenjRe(
) j � 2(a + 1) and (5.1)j Im(
) j � 2: (5.2)Suppose that there is an edge in G(S) from X+Y i to A+Bi. Then A+Bi =(a+ i)(X + Y i)� Æ, whereÆ 2 B = f�a2; : : : ; a2g: (5.3)Hen
e, using (5.1),(5.2) we have the equationsA = aX � Y � Æ; jA j � 2(a+ 1) (5.4)B = aY +X; jB j � 2: (5.5)One 
an immediately observe that jY j � 3 
ontradi
ts to (5.5), thereforejY j � 2. Let Y = 2. Using equation (5.5) we have the 
ases X = �2a �2; : : : ;�2a+2. Now, equations (5.3),(5.4) show that none of them are valid.The same 
an be stated about Y = �2. Hen
e jY j � 1 and we 
an modifyequation (5.5) toB = aY +X; jB j � 1: (5.6)



5.4 Just tou
hing 
overings in spe
ial 
ases 59Case Y = 0. Equation (5.6) shows that in this 
ase jXj � 1. Let X = 1.In virtue of (5.3),(5.4),(5.6) and by the symmetry property of the G(S) wehave some 
andidates for the nodes of G(S):1! � + i; �1! �� � i; � = �2(a+ 1); : : : ; 2(a+ 1): (5.7)Case Y = �1. In virtue of (5.6) we have the 
asesY = 1;X = �a� 1;�a;�a+ 1; Y = �1;X = a� 1; a; a+ 1: (5.8)If X = �a� 1 then by equations (5.4) and (5.6) we get new 
andidates forthe nodes of G(S):�a� 1 + i! � � i; � = �2(a+ 1); : : : ;�(a+ 1):It follows from (5.7) and (5.8) that the only valid 
ase 
ould be �a�1+ i!�a� 1� i, but it obviously 
an not happen. Using the symmetry of G(S) itis easy to see that a+ 1 � i! a+ 1 + i 
an not happen as well. If X = �athen by using the result of the 
ase Y = 0 we have that�a+ i! �1; a� i! 1: (5.9)Finally, if X = �a+ 1 then we have the 
andidates�a+ 1 + i! � + i; � = �a;�a+ 1; (5.10)and if X = a� 1 thena� 1� i! � � i; � = a; a� 1: (5.11)Using equations (5.7),(5.9),(5.10) and (5.11) we 
an 
onstru
t the graph~G(S): a� 1 � i�� ����? a� i�� �� 1�� ���a+ i�� ���1�� �� �a+ 1 + i�� ����66 ?-� -���������3 ��������+2a� 1 2a� 1(a� 1)2 + 1 (a� 1)2 + 1(a� 1)2 (a� 1)22a 2aFigure 1



60 Geometry of expansionsThe di�eren
e from G(S) is that the labels of the graph ~G(S) show the m(Æ)multipli
ities of the edges of G(S), whi
h 
an be easily get from equation(5.4). The same graph 
an be 
onstru
ted also for the 
ases a = 3; 4. TheJTC property 
learly holds. In 
ase of a = 2 the graph G(S) is a bit di�erentbut the JTC property still true. In this 
ase the only strongly 
onne
ted
omponent of ~G(S) having more than one node is the graph above. Theremaining nodes does not in
uen
e the graph dimension. If a = 1 then thegraph ~G(S) is again the same by 
an
eling two edges labeled above with(a� 1)2.Sin
e the eigenvalues of M� = � a �11 �a � have the same moduli (a2 + 1)1=2,using the graph ~G(S) we 
an 
al
ulate the Hausdor� dimension of �H forall a � 1. Solving the system of equations x1 = (2a � 1)�x1 + 2a�x2; x2 =�x3; x3 = (a � 1)2�x5 + ((a � 1)2 + 1)�x6; x4 = ((a � 1)2 + 1)�x1 + (a �1)2�x2; x5 = �x4; x6 = (2a � 1)�x6 + 2a�x5 by substituting x1 = 1 we havethat � is the root of the polynomial (a2+1)z3+(a2�2a+1)z2+(2a�1)z�1.Let us denote by �max the largest (positive) real root of this polynomial. Thenthe Hausdor� dimension of �H is log(�max)log(1=(a2+1)) . �Remarks. (1) Re
all that a metri
 spa
e (X; d) is 
onne
ted if it 
annotbe expressed as the union of two disjoint nonempty 
losed subsets. A subsetS � X is 
onne
ted if the metri
 spa
e (S; d) is 
onne
ted. S is totallydis
onne
ted provided that the only nonempty 
onne
ted subsets of S aresubsets 
onsisting of single points. Let S � X be a subset of a metri
 spa
e(X; d). Then S is ar
wise 
onne
ted if, for ea
h pair of points x and y inS, there is a 
ontinuous fun
tion f : [0; 1℄ ! S, from the metri
 spa
e([0; 1℄;Eu
lidean) into the metri
 spa
e (S; d) su
h that f(0) = x and f(1) =y. S is ar
wise dis
onne
ted if it is not ar
wise 
onnen
ted. There is a brand-new result of P. Talab�er (personal 
ommuni
ation) who presented a simplemethod of proving the 
onne
tedness of fundamental domains. As a spe
ial
ase, using 
anoni
al digit sets, if 1 2 G(S) then F(M;D) is always 
onne
ted(see also [38℄). Moreover, our 
onstru
tion shows that in 
ase of Gaussianintegers using 
anoni
al digit sets the 
ondition is also suÆ
ient. Hen
e, wehave that in the Gaussian ring using 
anoni
al digit sets all fundamentaldomains of JTC systems are 
onne
ted. We note that in this 
ase a strongerresult | the ar
wise 
onne
tedness | is known due to S. Akiyama and J. M.Thuswaldner [2℄.



5.5 Tiles and tilings 61(2) Let D1 be the 
anoni
al digit set f0; 1; : : : ; N � 1g and D2 be thesymmetri
 digit set fb(�N + 2)=2
; : : : ; bN=2
g. Sin
e B = D1�D1 is equaltoD2�D2 therefore the JTC property of (Z[i℄; �;D1) and (Z[i℄; �;D2) holds atexa
tly the same time. Moreover, the Hausdor� dimensions of the boundariesof their fundamental domains are the same. In 
ontrast to the number systemproperty, for the Gaussian integer � = a + bi the system (Z[i℄; �;D2) is anumber system i� b = �1 and a 6= 0; 1; 2;�2; 3 (see [49℄).Consider now the radix system de�ned by the 
ns-polynomial (iv) in Asser-tion 6 with 
anoni
al digit set. Let k be �xed. Suppose that the asso
iatedtransition graph is primitive. Then, a

ording to the results of [90℄ and ofse
tion 3.2.4 it is possible to determine the Hausdor� dimension of �H.5.5 Tiles and tilingsA tiling is a 
olle
tion T of nonempty 
ompa
t subsets of Rk, 
alled tiles,su
h that (1) ea
h tile is the 
losure of its interior, (2) STi2T Ti = Rk and(3) the distin
t tiles are non-overlapping. Non-overlapping means that theinteriors are disjoint. A tiling is a periodi
 tiling if it is invariant under klinearly independent translations, non-periodi
 otherwise. A latti
e tiling is atiling by translates of a single tile to the points of a latti
e. Note that latti
etilings are periodi
 tilings. A self-repli
ating tiling is a tiling T by translatesof a single tile su
h that there is a linear expansive map A with the followingproperty. For ea
h tile T 2 T the image of A(T ) is tiled by 
opies of tilesin T . It must be noted that there are self-repli
ating tilings whi
h are notlatti
e tilings. Let an example be the following in R (see [5, 82, 83℄). LetTi = [i; i+1℄[ [i+2; i+3℄; i 2Zand let A(T ) = 4T . Clearly, A is expansiveand A(Tj) = T4j [ T4j+1 [ T4j+8 [ T4j+9. It is a periodi
 tiling with periodlatti
e 4Zbut it is not a latti
e tiling.A self-aÆne tile in Rk is a nonempty 
ompa
t set T of positive Lebesguemeasure with A(T ) = Sa2D(a+T ), where A is an expanding k�k real matrixwith jdet(A)j = t an integer, D = fa1; : : : ; atg � Rk is a set of t digits andthe union is non-overlapping. We remark that for any expanding matrix Aand �nite set D in Rk the previous equation determines a unique 
ompa
tset T , the set of numbers with zero integer part. However, uniqueness doesnot hold in the 
onverse dire
tion. In fa
t, any self-aÆne tile T arises fromin�nitely many di�erent pairs ( ~A; ~D). Self-aÆne tiles arises in many topi
s,see [5, 107, 108℄ and the referen
es there. A self-similar tile is a spe
ial kind



62 Geometry of expansionsof self-aÆne tile, for whi
h the matrix A is a similarity, i.e., A = �Q where� > 1 and Q is an orthogonal matrix. Self-similar tiles are somewhat easierto analyze than general self-aÆne tiles. Self-similar tiles are sometimes 
alledrep-tiles.There is a ni
e 
onne
tions between self-repli
ating tilings and self-aÆnetiles. R. Kenyon proved [58℄ that all the tiles in any self-repli
ating tiling arene
essarily self-aÆne tiles H = F(M;D) for some digit set D. Conversely,every self-aÆne tile H serves as a prototile for some self-repli
ating tiling[82℄. The following result is the Tiling theorem of self-aÆne tiles [83℄. IfH = F(M;D) is a self-aÆne tile 
ontaining an open set then there exists aset L � � � � su
h that L +H tiles Rk. Note, that no latti
e is mentionedin the theorem. On the other hand, if L = � = ��� then (�;M;D) has theJTC property.Re
all that the set � is M -invariant, i.e., M(�) � �. In the same way,� � � is M -invariant as well. Let Z(M;D) denote the smallest M -invariantlatti
e 
ontaining B = D �D. A self-aÆne tile H = F(M;D) has a latti
etiling with the latti
e Z(M;D) if and only if �� � =Z(M;D) [83℄.It is easy to see the 
onne
tion between JTC systems and self-aÆne latti
etilings. With the notations already adopted we have the following result.Assertion 9. If (�;M;D) is a JTC system then (1) the fundamental domainH is a self-aÆne tile with 0 2 int(H), (2) the tiling is a latti
e tiling and (3)� is the smallest M-invariant latti
e 
ontaining D �D.Summarizing the results of this 
hapter with respe
t to the tiling prop-erties an algorithm was provided that determines for a given radix system(�;M;D) whether or not it is a JTC system. Re
all that in 
hapter 3 num-ber system 
onstru
tions, hen
e, 
onstru
tions of self-aÆne latti
e tilingswere dis
ussed. More details about existen
e, stru
ture and tiling propertiesof general self-aÆne tiles 
an be found in the paper of J. C. Lagarias and Y.Wang [83℄. We end this 
hapter with an interesting 
onje
ture of A. Vin
e:if (�;M;D) is a radix system then there is some latti
e tiling using onlytranslates of H = F(M;D).



Chapter 6Summary and furtherdire
tions\The art of asking the right questions in mathemati
sis more important than the art of solving them."| G. CantorIn this 
hapter we summarize the results of this work, enumerate someopen problems and provide further dire
tions related to number expansionsin latti
es.The results are as follows:A. Con
erning the examination of number expansions:1 In 
ase of a given endomorphismM : �! � and digit set D � �; 0 2D a ne
essary and a suÆ
ient 
ondition were given for satisfying theunique representation property (Assertions 1 and 2).2 It was stated that a basis transformation in � does not 
hange thenumber system property (Assertion 3).3 Generating the digits of an expansion the fun
tion � was 
onsidered.It was observed that the path z;�(z);�2(z) : : : is ultimately periodi
for all z 2 �. The set of periodi
 elements were denoted by P. Withthe aid of the fun
tion � the attra
tor set G(P) of � was de�ned. Itwas proved that the radix system (�;M;D) is a number system if andonly if G(P) = f0! 0g (Assertion 4).



64 Summary and further dire
tions4 It was shown that for any radix system (�;M;D) the latti
e points are
lassi�ed by the attra
tor set G(P), i.e. two latti
e points x; y 2 � arein the same 
lass if and only if �l1(x) = �l2(y) for some non-negativeintegers l1; l2. In order to obtain the 
lassi�
ation it was proved thatall the periodi
 elements are inside a 
ompa
t set �H where H is theset of fra
tions (or fundamental domain) in Rk. Determining the latti
epoints inside the fundamental domain two approa
hes (a 
overing 
on-stru
tion and an operator norm 
onstru
tion) were used (Theorem 1).Then, applying an iterated fun
tion system, an e�e
tive algorithm waspresented in order to perform the 
lassi�
ation (Classifi
ation Al-gorithm).5 Methods were developed for the fast 
omputation of the fun
tion �(se
tion 2.4).6 For the length of expansion of an arbitrary z 2 � an estimate wasproved (Assertion 5).B. Con
erning number system 
onstru
tions:1 It was introdu
ed the notion of j-
anoni
al number systems and equiv-alent statements were proved for the existen
e of j-
anoni
al 
ompleteresidue systems (Theorem 2).2 It was stated that number expansions in algebrai
 number �elds are spe-
ial 
ases of number expansions in Zk. In these 
ases, the linear trans-formation M has a simple form in the appropriate power basis, namelythe Frobenius matrix of a moni
 irredu
ible polynomial over Z[x℄. Itwas shown how to extend this 
on
ept to arbitrary moni
 polynomi-als over Z[x℄ obtaining 
anoni
al radix 
onstru
tions. We 
alled thesepolynomials as 
ns-polynomials (or having the 
ns-property). Ne
es-sary 
onditions for the 
ns-property were dis
ussed (Lemmas 8 and 9).A large family of polynomials inZ[x℄ was proved to be 
ns-polynomials(Assertion 6). Indeed, it was shown that there are in�nitely many 
ns-polynomials (therefore 
anoni
al number systems) in ea
h dimensioneven if the 
onstant term of the polynomial is \small".3 Sear
hing for all 
ns-polynomials in 
ase of a given degree and 
onstantterm an algorithm was presented (CNS-Sieve Algorithm).



Summary and further dire
tions 654 There were given all 
ns-polynomials up to the degree 8 with 
onstantterm 
0 = 2.5 In general, for a given radix M a suÆ
ient 
ondition was given, inwhi
h 
ase there is a digit set D for whi
h (�;M;D) is a numbersystem (Assertions 7 and 8). The digit set 
an be 
onstru
ted. Thistheorem, whi
h is sharper than the earlier results, shows that a wide
lass of matri
es 
an serve as bases for some number systems.C. Con
erning 
anoni
al expansions in imaginary quadrati
 �elds:1 In 
ase of imaginary quadrati
 �elds using 
anoni
al digit sets the at-tra
tor set G(P) was 
ompletely des
ribed, i.e, the number, lo
ationand stru
ture of periodi
 elements was fully determined (Theorems3.1, 3.2, 4, and 5).2 In the Gaussian ring for 
ertain bases a spe
ial property was proved(Theorem 6).D. Con
erning the geometry of expansions:1 An algorithm was presented for plotting the points of the fundamentaldomain H (Es
ape Algorithm). This set is the unique invariant (orattra
tor) set of an iterated fun
tion system determined by the radixsystem (�;M;D).2 It was analyzed the just tou
hing 
overing property of radix systemsand with the aid of the transition graph an algorithm was given tode
ide this property (Transition Graph Constru
tion Algo-rithm). It was also given an algorithm for 
omputing the boundary ofthe set H without 
omputing the interior points.3 Via the 
onstru
tion of the transition graph it was determined all justtou
hing 
overing systems in the Gaussian ring using 
anoni
al digitsets, in
luded the exa
t values of the Hausdor� dimension of the bound-ary of their fundamental domain (Proposition 1).4 Finally, some remarks were made on just tou
hing 
overing propertiesof radix systems.The author's main results are: A1 (Assertion 2), A4 (Classifi
ationAlgorithm), A5, A6, B1, B2 (Assertion 6), B3, B4, B5, C1, C2.



66 Summary and further dire
tionsNow 
onsider some open problems and further dire
tions.1. Let a radix system (�;M;D) be given. The following questions arisenaturally (see also page 37 and [64℄). It is known that if p 2 P then themaximum of the period length of p 
an be estimated with the number oflatti
e points in the k-dimensional ball 
entered at 0 with radius L. Is therea better estimation? Is there a good upper estimation for the number ofdi�erent sets C(p)? Give all the bases M mapping � to � for whi
h thereexist a 
omplete residue systemD moduloM su
h that (�;M;D) is a numbersystem. How 
an be 
hara
terized the geometri
,{algebrai
 stru
ture of thesets B(p); p 2 P (e.g. symmetry)?What 
an be stated about the attra
tor setin 
ase of spe
ial operators, e.g. matri
es generated by the ring of integers ofa given algebrai
 number �eld? The problem of 
hara
terizing the j-
anoni
alnumber systems seems to be interesting. It is known that if z 2 B(0) for allkzk � L then the unique representation property holds. Instead of L is therea better estimation? This is a 
riti
al problem for examining number systemsalgorithmi
ally, sin
e L 
an be very large.2. Let a number system (�;M;D) be given. Desing and implement thebasi
 operations (addition, subtra
tion, multipli
ation, division) in this sys-tem. For spe
ial digit sets | where the digits are the k-th root of unity |some important results are available [100℄. What about the 
anoni
al digitsets? The real problem is the division. For the ring of Gaussian integers itwas analyzed by W. Gilbert [32℄ and by I. K�atai [47℄ independently, usingdi�erent methods. It seems that the method of I. K�atai 
an be generalized.3. Topologi
al questions are also very interesting. Let a radix systembe given. Is the fundamental domain H (ar
wise) 
onne
ted,{dis
onne
ted?When the proje
tions of H to lines are intervals? What about the geometri
,{algebrai
,{measure theoreti
 properties of a non-empty interse
tion ofH witha hyperplane of Rk? The question of 
hara
terizing JTC systems in di�erentdomains using various digit sets seems to be very hard.4. Let the standard expansion of z 2Zk bePj�1i=0 M iai+M j�; ai 2 D;� 2P. I. K�atai introdu
ed the set of (M;D)-additive and (M;D)-multipli
ativefun
tions by E(M;D) = ff : Zk ! R; f(M r�) = 0 for every � 2 P; r 2 N0and for every z 2 Zk f(z) = Pj�1i=0 f(M iai)g and by M(M;D) = fg : Zk !C ; g(M r�) = 0 for every � 2 P; r 2 N0 and for every z 2 Zk g(z) =Qj�1i=0 g(M iai)g. There are lots of interesting questions whi
h 
an be stated,we refer the reader to [51℄.



Summary and further dire
tions 675. Canoni
al number systems 
an be one of the links between numbertheory and theoreti
al 
omputer s
ien
e via automati
 sequen
es. A sequen
eis 
alled (M;D)-automati
 if | roughly speaking | its n-th term 
an begenerated by a �nite state automaton from the digits of the radix expansion ofn. This 
on
ept was studied by many authors, see [3℄ and the referen
es there.The positional (or radix) systems are spe
ial 
ases of numeration systemsgenerated by a stri
tly in
reasing sequen
e G = �Gn�n�0 of positive integerswith G0 = 1. Su
h a sequen
e is 
alled G-s
ale. Using the greedy algorithm(see e.g. A. S. Fraenkel [24℄) every natural number 
an be expanded in theform n = "0(n)G0 + : : :+ "l(n)Gl; (6.1)where the digits "j(n) 2 N0 satisfy 0 � "j(n) < Gj+1=Gj . The so-
alled G-expansion in (6.1) is unique provided that "0(n)G0 + : : :+ "j(n)Gj < Gj+1for all j (0 � j � l). In this way the natural numbers 
an be identi�ed toa sequen
e of non-negative integers by n ! m01 = e0e1 : : : el01; (el 6= 0).The set L(G) of words m is 
alled the sour
e language of G. If L(G) isregular (i.e. re
ognizable by an automaton) then G must be a linear re
urrentsequen
e with integer 
oeÆ
ients (see J. Shallit [101℄). Another dire
tion ofthe investigations is the sum-of-digit fun
tion of the G-expansions. It hasbeen extensively studied be
ause of its ni
e stru
tural properties ([35, 36℄).6. In this work we 
onsidered only number expansions in latti
es. Clearly,number expansions 
an be de�ned in many di�erent ways. The most 
om-mon is the following. The �-expansion of x 2 [0; 1℄ is a sequen
e of integers off0; 1; : : : ; b�
g with dn = b�fn�1� (x)
; n � 1, where f�(x) = �x�b�x
 = �xmod 1. These expansions were studied by many authors, see e.g. [8, 56, 92℄.The 
on
ept was generalized to interval �lling sequen
es and to univoquesequen
es by Z. Dar�o
zy and I. K�atai [11, 12, 13℄. Re
ently, there is a PhDthesis on univoque numbers [46℄. There are many other kinds of number ex-pansions (e.g. Balkema-Oppenheim expansions [61℄, et
.) whi
h are ratherdi�erent from our 
onstru
tion. Finally, a brand new theory opens in ex-amining number expansions if one leaves the latti
e for some non-Eu
lideanspa
e.
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A Appli
ations\A man who loves pra
ti
e without theory is like the sailorwho boards ship without a rubber and 
ompassand never knows where he may 
ast."| Leonardo da Vin
iIn this se
tion we points out some possible appli
ations, mainly referringto some papers.Generalized number systems 
an be very interesting in 
omputer algeb-ra, sin
e they enables us error-free 
omputations. Re
all that the problemsregarding number expansions in algebrai
 number �elds are spe
ial 
ases ofproblems inZk. Computing eÆ
iently in an algebrai
 number �eld one might
hoose an appropriate number system representation in order to performfast 
al
ulations either sequentially or parallel. Obviously, one has to 
hoosesystems | if it is possible at all |, for whi
h the basi
 operations 
an bemade eÆ
iently (see also se
tion 6 Problem 2).A. Peth}o proposed a publi
 key 
ryptosystem based on 
anoni
al num-ber systems in Zk [95℄. His 
ryptosystem is related to the Merkle-Hellmanknapsa
k s
heme.It is not yet 
lear in whi
h 
ases and how generalized 
anoni
al numbersystems 
an be applied for data 
ompression or in tele
ommuni
ation inorder to redu
e the number of transmitted pa
kets. Nevertheless, this resear
hdire
tion 
ould be very interesting. (See also Example 1 in se
tion B.)A. Vin
e in his ni
e introdu
tory exposition [107℄ enumerates many top-i
s, where re
ently self-repli
ating tilings 
ome under investigation. Withoutgiving the exa
t referen
es | whi
h 
an be found in his paper | we mentiona few of them.� Wavelet bases 
onstru
tion;



70 A Appli
ations� Multi-resolution analysis;� Crystallographi
;� Finite state ma
hines and Markov partitions in dynami
al systems;� Ergodi
 theory and statisti
al me
hani
s;� Image pro
essing and 
omputer vision.



B Examples \In Riemann, Hilbert or in Bana
h spa
eLet supers
ripts and subs
ripts go their ways.Our asymptotes no longer out of phase,We shall en
ounter, 
ounting, fa
e to fa
e."| Stanislaw Lem, CyberiadThis 
hapter 
ontains some examples regarding number expansions inlatti
es.Example 1. Let a 13 de
imal digit number n = 1003462401565 be given.Let us denote the Frobenius matrix of the 
ns-polynomial 2� x+ x4 by M1.Using the 
orresponden
es 0 = [0; 0; 0; 0℄T and 1 = [1; 0; 0; 0℄T we have that(n)10 = (1110100110100011000001010001111000011101)2 == ([29; 0; 0; 0℄T )M1and 29 is only a 2 de
imal digit number.In the same way, let n = 2022058413721135191887880684697056875537be a 40 de
imal and 131 binary digit number. Again, if we 
onsider theFrobenius matrixM2 of the 
ns-polynomial 2 +4x+5x2+5x3+5x4+4x5+3x6 + 2x7 + x8 and the appropriate abbreviations as above, we get that theexpansion of n is(n)10 = ([29; 0; 0; 0; 0; 0; 0; 0℄T )M2and 29 has only 5 binary digits, (29)10 = (11101)2. It would be interesting to
hara
terize all the rational integers whi
h have shorter expansions in some



72 B Examplesgeneralized binary number system than in the traditional (one-dimensional)binary 
ase.Example 2. Let � = R;M = (3);D = f�2; 0; 2g.Clearly, G(P) = f�1 ! �1; 0 ! 0; 1 ! 1g;B(1) = fpositive odd numbersg,B(�1) = fnegative odd numbersg;B(0) = feven numbersg. The fundamen-tal setH is the interval [�1; 1℄. The system (�;M;D) is not a number system,not a just tou
hing 
overing system, but 0 2 int(H) and it is a self-aÆne lat-ti
e tiling with the latti
e 2Z.Example 3. Let � =Z2;M = ( 0 �31 0 ) ;D = f( 00 ); ( 10 ); (�11 )g.Now, G(P) = f(�10 )! (�10 ); ( 00 ) ! ( 00 )g. Hen
e it is not a number system.On the other hand, 
omputations show that it is a JTC system and the graphG(S) has two strongly 
onne
ted 
omponents. Let us denote the domain ofattra
tion B((�10 )) by bla
k and B(( 00 )) by white. Figure 2 shows the 400�400region of Z2 
entered at the origin.Example 4. Let � =Z[i℄ be the ring of Gaussian integers.(a) LetM = ( 2 �11 2 ) and D be the 
anoni
al digit set. Then the eigenvaluesof M are 2� i, r = kM�1k = p5=5. The attra
tor set G(P) is f0! 0;�1 +i!�1+ i;�2+2i! �2+2ig. Let us denote the domain of attra
tion B(0)by bla
k, B(�1 + i) by white and B(�2 + 2i) by gray. Figure 3 shows the400 � 400 region of Z[i℄ 
entered at the origin. The fundamental domain Hin the region f(x; y); x 2 [�0:5; 2:5℄; y 2 [�2:5; 0:5℄g 
an be seen in Figure 4.The set H is ar
wise 
onne
ted, its boundary has the Hausdor� dimensionapproximately 1.6087. The system is a JTC system.(b) LetM = ( 3 00 3 ), D1 = f0;�1;�i;�1�i;�1�ig and D2 = f0; 1; 2; i; 2i;1+ 2i; 2+ i;�1+2i;�2+ ig. The fundamental domain F(M;D1) is just theunit square 
entered at the origin. The set F(M;D2) in the region f(x; y); x 2[�1; 1℄; y 2 [0; 1℄g 
an be seen in Figure 5. It is proved to be 
onne
ted. Thesystem (�;M;D2) is not a number system but it is a JTC system. The radixrepresentations in these systems essentially separate a 
omplex number intoits real and imaginary parts.(
) Let M1 = ( 2 �11 2 ), M2 = ��2 �11 �2 � and let D � fa+ bi; a; b 2 Z;�3 �a; b � 3g be a full residue system that 
ontains 0. Then (�;M1;D) is anumber system in 127 di�erent 
ases while (�;M2;D) is a number sys-tem in 2488 di�erent 
ases. The boundary of the fundamental domain H =F(M1; f0;�1;�ig) 
an be seen in Figure 6. Its Hausdor� dimension is ap-proximately 1:3652. The set H is the same as the set 
onstru
ted by B. Man-delbrot from a generalized Ko
h 
urve [85℄.



B Examples 73Example 5. Let � =Z2, M = ( 1 �21 1 ) and D = f( 00 ); ( 10 ); (�10 )g.Then (�;M;D) is a number system, its fundamental domain 
an be seen inFigure 7. About this polygonal radix system see [100℄ for further referen
es.Example 6. Let us 
onsider the ring of Gaussian integers with base � =A+ Bi and a 
anoni
al digit set. Let A = 5 and B = 12. We shall use thenotations of se
tion 4.3.If � = 1 then '(B1) = 4, ordB1 A = 2. Therefore there are two 
y
leswith period lenght 2. The periodi
 elements are i ! �2 + 5i ! i and�2 + 7i!�4 + 11i !�2 + 7i.If � = 2 then '(B2) = 2, ordB2 A = 2. Therefore there is one 
y
le withperiod length 2, namely 2i!�4 + 10i! 2i.If � = 3 then '(B3) = 2, ordB3 A = 1. Therefore there are two 
y
leswith period length 1, namely �1 + 3i! �1 + 3i and �3 + 9i! �3 + 9i.If � = 4 then '(B4) = 2, ordB4 A = 2. Therefore there is one 
y
le withperiod length 2, namely �1 + 4i! �3 + 8i!�1 + 4i.If � = 6 then '(B6) = 1, ordB6 A = 1. Therefore there is one 
y
le withperiod length 1, namely �2 + 6i! �2 + 6i.If � = 12 then there are two 
y
les with period length 1, namely 0 ! 0and �4 + 12i! �4 + 12i.Example 7. Let � = Z[i℄ be the ring of Gaussian integers. Let � = �3 + iand 
onsider the 
anoni
al digit set D = f0; 1; : : : ; 9g. The system (�; �;D)is a number system, its fundamental domain 
an be seen in Figure 8. It isar
wise 
onne
ted, its boundary has the Hausdor� dimension approximately1:5495. Observe that the system is a staightforward generalization of thetraditional de
imal number system.Example 8. Let � =Z[i℄ be the ring of Gaussian integers again.(a) Let M = ( 2 �11 2 ) and D = �( 00 ); ( 10 ); ( 01 ); ( 0�1 )(�6�5 )	. Then (�;M;D)is a number system, its fundamental domain H 
an be seen in Figure 9. Theset H is dis
onne
ted, but 
learly it is a latti
e tiling.(b) Let M = ( 2 �11 2 ) and D = �( 00 ); ( 10 ); ( 01 ); ( 0�1 )(�2�3 )	. Then (�;M;D)is a number system, its fundamental domain H 
an be seen in Figure 10.The set H is dis
onne
ted. It is a latti
e tiling. The approximation of thefundamental domain by the Es
ape Algorithm 
an be seen in Figure 11.
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