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Prefae \Number theory is a building ofrare beauty and harmony."| D. HilbertThe development of modern siene and tehnology always strongly de-pended on the development of adequate methods for representing integersand doing integer arithmeti. The history of number representation is a fas-inating story, sine it parallels the development of ivilization itself. SeeD. E. Knuth [60℄ for further details.In this work number expansions in latties are analyzed. Chapter one on-tains the onept of number systems, dynami properties of expansions andestimates for the length of expansions. Chapter two deals with lassi�ationof expansions. An e�etive algorithm is presented. Chapter three ontainsmethods for onstruting number systems of several types. The onnetionbetween number expansion in latties and number expansion in the ring ofintegers of a given algebrai number �eld is disussed, anonial, polygonaland simultaneous radix systems are analyzed. Generalized binary numbersystems are also treated. For general radix systems a suÆient ondition isproved to be able to onstrut number systems. In hapter four the number,loation and strutural properties of periodi elements are desribed for radixsystems of imaginary quadrati �elds using anonial digit sets. Chapter �vedeals with the geometry of expansions. Some properties of the set of numberswith zero integer part are analyzed and the notion of self-aÆne lattie tilingsare disussed. These tilings arise in image proessing, omputer vision andmany other topis of mathematis and physis [107℄. The boundary of thetiles often have non-integral Hausdor� dimension. Methods for estimating,or in some ases omputing this dimension are presented, an example is also



given. In hapter six after a short summary some open problems and furtherdiretions are mentioned.Aknowledgments `What does your Master teah?'asked a visitor.`Nothing,' said the disiple.`Then why does he give disourses?'He only points the way | he teahes nothing.'| Antony de Mello, One Minute WisdomI would like to aknowledge the assistane of several people.I wish to express my speial thanks to my supervisor Prof. Imre K�atai.He answered all my questions and he has always disposed to explain themysteries and beauty of number theory.I would like to thank all my olleagues and students. I aknowledge withgreat appreiation Prof. Antal J�arai for his useful remarks and suggestions.Finally, my heartfelt thanks go also to my wife for her patient.



Chapter 1Expansion in latties\There are two kinds of generalizations. One is heap and theother is valuable. It is easy to generalize by diluting a littleidea with a big terminology. It is muh more diÆult to preparea re�ned and ondensed extrat from several good ingredients."| Gy. P�olyaA lattie in Rk is the set of all integer ombinations of k linearly indepen-dent vetors. Let � be a lattie, whih an be viewed either geometriallyas a set of points in a Eulidean spae, or algebraially, a Z-module or asa �nitely generated free Abelian group. Let M : � ! � be a group endo-morphism and let D be a �nite subset of � ontaining 0. Clearly, M an betaken as an arbitrary square non-singular matrix. Moreover, if the basis ofM is hosen in � then M is an integer matrix.1.1 Conept of number systemsThe triple (�;M;D) is alled a number system (or having the unique repre-sentation property) if every element n of � has a unique �nite representationof the formn = a0 +Ma1 +M2a2 + : : :+M lal = (alal�1 : : : a1a0)M ; (1.1)where ai 2 D. The endomorphism M is alled the base or radix, D is thedigit set. The length of expansion of n in (1.1) is l + 1.



2 Expansion in lattiesOne of the main problems onerning radix representation is to give on-ditions under whih (�;M;D) is a number system. For a lattie �, both �and M� are Abelian groups under addition. The order of the fator group�=M� is t = jdet(M) j. Let Aj; (j = 1 : : : t) denote the osets of this group.If z1; z2 2 Aj, i.e. they are in the same residue lass then we will say thatthey are ongruent modulo M and we will denote this by z1 � z2 (mod M).The following result was known and used by I. K�atai and o-workers aswell as by W. Gilbert in algebrai number �elds (see setion 3.2.1). Moreover,it an be found impliitly in A. Vine's paper [106℄. Reall that a linear mapis alled expansive if all eigenvalues have modulus greater than one.Assertion 1. (Neessary onditions for the number system property)If (�;M;D) is a number system then(a) D must be a omplete set of residues modulo M ,(b) M must be expansive and() det(I �M) 6= �1.Proof: Conerning (a) if z 2 � is represented by (amam�1 : : : a1a0)M thenz � a0 (mod M). Hene the digit set D must ontain a omplete residuesystemmoduloM . Now suppose that two digits  and d are ongruent moduloM . Then  � d = Me for some e 2 �. Represent e by (alal�1 : : : a1a0)M sothat ()M =  = Me+ d = (alal�1 : : : a1a0d)M :Hene  2 � has two di�erent representations, whih is a ontradition.Statement (b) was proved in [106℄. Conerning () �rst observe that (I�Mn)is nonsingular for any positive integer n. Otherwise 1 would be an eigenvalueof Mn, hene M would have an eigenvalue of modulus one. Seond, it is alsolear that if (�;M;D) is a number system then there is not any � 2 � andl 2 N for whih � = a0 + Ma1 + : : : + M l�1al�1 + M l�, where ai 2 D.In other words (I �M l)�1(a0 + Ma1 + : : : +M l�1al�1) 2 � an never behappen. But if det(I �M) = �1 then (I �M)� = (I �M)�1� = �, whihis a ontradition. �Corollary. Suppose that an arbitrary z 2 � has a �nite expansion of form(1.1). Then the uniqueness of the representation follows from the assumptionthat any two elements of D are inongruent modulo M .If for a given triple (�;M;D) the onditions (a) and (b) in Assertion 1hold then we say that it is a radix system. Assertion 1() explains why it is



1.1 Conept of number systems 3impossible to �nd appropriate digit sets for the matries ( 1 11 m ), ( 0 �m1 m ) or forthe matrix 2I + S, where S is stritly upper (or lower) triangular.Assertion 2. (SuÆient ondition for the number system property)If for a given radix system (�;M;D) (a) there is a basis for the lattie �for whih all the basis vetors have some �nite representation and (b) all theelements of the set D �D have some expansion of form a0 +M jaj (a0; aj 2D; j 2 N) then (�;M;D) is a number system.Proof: By the orollary of Assertion 1 it is enough to show that every lattiepoint z has a �nite representation. Let us denote the basis vetors | whihhave all �nite representations | by b1; b2; : : : ; bk. Then z =P�ibi for some�i 2 Z. The proof is by indution of the number of summands n. The asen = 1 is obvious. By indution, assume that the sum of �rst n� 1 terms hasthe form x = (alal�1 : : : a0). It is lear that if we add a lattie point d 2 �Dto x then x+ d 2 � and the length of expansion of x+ d is less then or equalto l+ s+ 1 where s is the length of the longest expansion in D �D. In thesame way, if we add an arbitrary basis vetor bi to x then | adding digit bydigit | x + bi must have a bounded length of expansion, therefore a �niterepresentation. �The theorem is a simple generalization of A. Vine's theorem [106℄. Unfor-tunately, in order to deide the number system property for a given triple(�;M;D) this theorem an be applied in very few ases. Fortunately, as wewill see in setion 3.4, there is a suÆient ondition for the base M , in whihase the unique representation property holds for some digit setD. Moreover,the digit set an easily be onstruted.Assertion 3. (Equivalene of number systems)Let the matries M1 and M2 are similar via the matrix Q. Then the numbersystem property for (�;M1;D) and for (Q�;M2; QD) holds at exatly thesame time.Proof: D is a full residue system modulo M1 in � i� QD is a full residuesystemmoduloM2 in Q�. Moreover, z =Pli=0M i1ai i� Qz =Pli=0QM i1ai =Pli=0M i2(Qai) (ai 2 D). �This equivalene is essentially a hange of basis for the matrixM1, there-fore there exist similar matries | bases | in several forms. Moreover, if wehange the basis in �, a similar integer matrix M2 : Zk ! Zk is obtained.Hene the number system property an be examined without loss of gener-ality on the ubi lattie Zk. This has a omputational advantage, sine M2and its harateristi polynomial have integer oeÆients (see also [106℄).



4 Expansion in latties1.2 Dynami of expansionsFurther we analyze the expansions in the radix system (�;M;D). The system(�;M;D) an be used to represent all the lattie points in � even if it is not anumber system. Clearly, for eah  2 � there exist a unique aj 2 D suh thatM j �aj. Let 1 =M�1(�aj) and let us de�ne the funtion � : �! � by�() = 1. Let �l denote the l-fold iterate of �, �0() = 0. The sequene ofinteger vetors �j(z0) = zj (j = 0; 1; 2; : : : ) is alled the path of the dynamialsystem generated by �. It is also alled the orbit of z0 generated by �.1 Sinethe spetral radius �(M�1) < 1 therefore there exists a norm on Rk suh thatfor the orresponding operator normkM�1k = supkxk�1 kM�1xk (1.2)the inequality kM�1k < 1 holds [43℄. Throughout this work k : k denotes thisvetor and the appropriate operator norm. Let furthermoreK := maxb2D kbk; r := kM�1k; L := Kr1 � r : (1.3)In virtue of (1.3) and the de�nition of � we get thatk�(z)k = kM�1z �M�1bk � rkzk+Kr:Hene we obtain the followingLemma 1. (a) if kzk � L then k�(z)k � r(L+K) = L, (b) if kzk > L thenk�(z)k � rkzk+ L(1� r) < kzk(r + 1 � r) = kzk.Sine the inequality kxk � L holds only for �nitely many lattie points xtherefore the path z;�(z);�2(z); : : : is ultimately periodi for all z 2 �. Thevetor p 2 � is alled periodi if there exist a j 2 N suh that �j(p) = p.The smallest suh j is the length of period of p generated by �. Let P denotethe set of all periodi elements. Let p 2 P be of period length l. The set ofperiodi elements f�(p); : : : ;�l(p)g is alled the yle generated by p and isdenoted by C(p). Suppose that p 2 P. Then the domain of attration of p orbasin of attration of p onsists of all z 2 � for whih there exists a j 2 N suh1Historial remark: the funtion � was introdued by D. W. Matula [86℄ for rationalintegers in order to examine number systems. Somewhat later, independently, I. K�atai andW. Gilbert used it for onstruting number systems in algebrai extensions [54, 33℄.



1.2 Dynami of expansions 5that �j(z) = p and is denoted by B(p). Let X � P. In a similar way, B(X)denotes all the z 2 � for whih there exists a j 2 N and q 2 X suh that�j(z) = q. The funtion � de�nes a disrete dynami on � in the followingway: let G(P) be the direted graph de�ned on the set P by drawing an edgefrom p 2 P to �(p). Then G(P) is a disjoint union of direted yles, whereloops are allowed. We shall also all G(P) the attrator set of � generated by�. The graph G(P) has the following properties [64℄:� P is �nite;� if p 2 P then �(p) 2 P;� if p 2 P then kpk � L;� p 2 P if and only if there is an l > 0 suh thatp = a0 +Ma1 + : : :+M l�1al�1 +M lp; aj 2 D; (1.4)� if p1; p2 2 P then either C(p1) = C(p2) or C(p1) \ C(p2) = ;;� if p1; p2 2 P; p1 6= p2 and C(p1) = C(p2) then their length of period areequal;� B(P) = �;� if p1; p2 2 P then B(p1) = B(p2) if and only if C(p1) = C(p2);� if p1; p2 2 P; C(p1) 6= C(p2) then B(p1) \ B(p2) = ;.For a given radix system (�;M;D) the omputation of the graph G(P) de-termines a lassi�ation of radix expansions. Two lattie points x; y 2 � arein the same lass i� �l1(x) = �l2(y) for some non-negative integers l1; l2, orin other words, i� there is a p 2 P for whih x; y 2 B(p). In hapter 2 weshow an e�etive way to perform the lassi�ation.We end this setion by giving a neessary and suÆient ondition for theunique representation property.



6 Expansion in lattiesAssertion 4. (Neessary and suÆient ondition for the number systemproperty) The triple (�;M;D) is a number system if and only if for eahz 2 � there is an n 2 N0 suh that �n(z) = 0.Proof: The ondition �(z) = 0 is equivalent with z � a0 for some a0 2 D.By indution, �n(z) = 0 if and only if z an be written in the formz = a0 +Ma1 + : : :+Mn�1an�1with some a0; a1; : : : ; an�1 2 D. �Assertion 4 has a very important orollary.Lemma 2. The triple (�;M;D) is a number system if and only if P = f0g,in whih ase1\i=1M i� = f0g:1.3 Length of expansionsLet z 2 � be an arbitrary vetor. If z0 := z 62 P then there is a unique l 2 Nand a0; a1; : : : ; al�1 2 D suh thatzj = aj +Mzj+1 (j = 0; : : : ; l � 1); zl 2 Pand none of z0; z1; : : : ; zl�1 do belong to P. Let the expansion of z be denotedby (a0; a1; : : : ; al�1 j p); (p = zl): (1.5)If suh an expansion is given then z an be omputed byz = a0 +Ma1 + : : :+M l�1al�1 +M lp: (1.6)If z 2 P then its expansion in (�;M;D) will be denoted by (� j z). Weshall say that (1.5) is the standard expansion of the vetor z given by (1.6)and l is the length of the standard expansion. For an arbitrary sequene ofvetors a0; a1; : : : ; al�1 2 D and p 2 P the expression (a0; a1; : : : ; al�1 j p)means the vetor z given by z = Pl�1j=0M jaj +M lp. This expansion is the



1.3 Length of expansions 7standard expansion of the vetor z if and only if �l�1(z) = al�1 +Mp 62 P.Observe that if p 2 P then all z 2 B(p) n C(p) have a standard expansion(a0; a1; : : : ; al j p̂) for some ai 2 D (i = 0; : : : ; l); l 2 N and p̂ 2 C(p).Now we give an estimate for the length of expansions in the radix system(�;M;D).Let us denote in Rk a vetor norm and the orresponding operator normby k � k for whih r = kM�1k < 1, let K = maxfkdk; d 2 Dg and L =Kr=(1 � r) as before. Let z 2 � n f0g be �xed. Let us de�ne the path ofz = z0 in � by zj = aj +Mzj+1 (j = 0; : : : ; ). Let T = l(z) be the smallestnon-negative integer for whih kzTk � L. The existene of suh a T followsfrom Lemma 1.Assertion 5. There is a onstant  for whihl(z) � log kzklog (1=kM�1k) + : (1.7)Proof: It is enough to examine the ase kzk > L; z 2 �. Sine zj =aj +Mzj+1 therefore zj+1 = M�1zj �M�1aj, hene kzj+1k � r(kzjk +K).Let t = t(z0) be the smallest non-negative integer for whih kztk � 2KL.Sine the ball k!k � 2KL ontains �nitely many lattie points therefore theinequalityl(z) � t(z) + 1 (1.8)holds for an appropriate onstant 1. On the other hand 2KL < kzt�1k �r(kzt�2k+K) � r2(kzt�3k+K) + rK � : : : � rt�1kz0k+KL. It means thatKL � rt�1kz0k, henelogKL � (t� 1) log r + log kz0k;from whih we an dedue that(t� 1) log 1=r � log kz0k � logKL;i.e., t � log kz0klog (1=r) + 2for an appropriate 2. Using the inequality (1.8) the assertion follows imme-diately. �Assertion 5 extends the results of E. H. Grossman [37℄, I. K�atai, I. K�ornyei[54℄ and B. Kov�as, A. Peth}o [79℄.



8 Expansion in latties



Chapter 2Classi�ation of expansions\There are problems that one poses,and there are problems that pose themselves."| H. Poinar�eIn the previous hapter it was pointed out that the funtion � de�nes alassi�ation of the system (�;M;D). The aim of this hapter is to give ane�etive algorithm to onstrut all these lasses. Via the onstrution of theattrator set we also have a fast method to deide whether the radix system(�;M;D) has the unique representation property.Consider the set of \frations" in the system (�;M;D):H := F(M;D) = ( 1Xn=1 M�nan : an 2 D) � Rk: (2.1)This set is alled the fundamental domain or the set of frations of the system(�;M;D). In hapter 5 we shall show that the set H is ompat in the metrispae Rk. Let E be an arbitrary ompat set in Rk and let us denote the setof lattie points in E by I(E), i.e., I(E) := E \ �.Lemma 3. For eah z 2 � there is an m0 2 N0 suh that for eah m � m0 :�m(z) 2 I(�H).Proof: Sine H is a ompat subset of Rk, there exists an " > 0 suh thatthere is no element of � in the setN"(�H) n �H;



10 Classi�ation of expansionswhere N"(�H) denotes the open "-neighborhood of �H. Let us hoose anarbitrary z 2 �. Then we get thatzm = �m(z) = M�mz � (M�1a1 +M�2a2 + : : :+M�mam)for the orresponding sequene a1; a2; : : : ; am 2 D. If m is large enough, saym � m0, then the norm of the �rst term of the right hand side is less than". Hene, zm 2 � \ (�H) for all m � m0. �Corollary. (a) For eah z 2 � the orbit of z must run into the set I(�H)and an never leave it. (b) If for eah z 2 I(�H) there is an m 2 N0 suhthat �m(z) = 0 then (�;M;D) is a number system.The orollary suggests that in order to determine the attrators of the system(�;M;D) it would be enough to �nd the lattie points in �H, or, whih isomputational equivalent, in H. Then one has only to apply the funtion �for these vetors and wathing the \yles" to be formed.The straightforward way to ompute the set I(H) ould be the following.It is obvious (see setion 5.1) thatH = [a2DM�1(a+H):If we ould �nd a set T0, H � T0, for whih the lattie points of the setM�1T0 an be omputed easily then we would be ready, beause in this aseH � T1 := Sa2DM�1(a+ T0) and only the onvex hull of the lattie pointsin T1 has to be omputed. Unfortunately, to �nd the \smallest possible" suhset T0 is not easy, sine the shape of the set H is in almost every ase ratherompliated.Our next aim is to determine a set T , H � T , for whih the set of lattiepoints belonging to T an be omputed simply and whih ontains possiblya small number of them. We onsider two approahes. One of them usesovering of the set H while the other one is given by e�etively omputingthe operator norm de�ned in (1.2).2.1 Covering onstrutionLet x = (x1; x2; : : : ; xk)T 2 Rk and kxk1 = max1�i�k jxij. Let us denoteby k � k1 the orresponding operator norm. If M is an invertible expansivelinear operator of Rk mapping � into � then there exists a smallest 0 2 N



2.1 Covering onstrution 11suh that for every  � 0;  2 N the inequality kM�k1 < 1 holds. LetC � 0; C 2 N be �xed. ThenkM�Ck1 < 1;therefore (I �M�C )�1 exists and := 11� kM�Ck1 � k(I �M�C)�1k1: (2.2)Here I denotes the k-dimensional identity matrix. Using the notations intro-dued in the previous hapter letM�ja = 264 (j)1 (a)...(j)k (a) 375 ;and let�(j)m := maxa2D j(j)m (a)j; (m = 1; : : : ; k);where 1 � j � C. Furthermore, de�ne the sets Ij (1 � j � C) as follows:Ij :=8><>:x = 264 x1...xk 375 ; jxmj � �(j)m ; 1 � m � k9>=>; :Obviously, M�ja 2 Ij for eah a 2 D. LetW :=8><>:y = 264 y1...yk 375 ; jymj � CXj=1 �(j)m ; 1 � m � k9>=>; : (2.3)It is lear thatCXj=1 M�jaj 2 Wfor an arbitrary sequene of vetors aj 2 D. Hene,H �W +M�CW +M�2CW + : : : : (2.4)



12 Classi�ation of expansionsLet us de�ne the points of the k-dimensional retangle T 0 by264 t1...tk 375 ; ��m � tm � �m; �m = d CXj=1 �(j)m e; 1 � m � k: (2.5)Then by (2.2), (2.3) and (2.4) we get that H � T 0 and the lattie points inthe k-dimensional retangle T 0 an be omputed eÆiently.Remarks. (1) The \good hoie" for the onstant C in (2.2) strongly de-pends on the matrix M . A simple method ould be to start with C   andinrease C while kM�Ck1 is less than or equal to a �xed onstant. Anotherapproah may require muh more arithmetial operations: start with C  and inrement C until the volume of T 0 hanges less than a pre-de�ned on-stant Æ > 0.(2) Even if M�nv ! 0 (n ! 1) for any v 2 Rk one should be arefulwith raising to powers the matrix M�1. In omputer implementations usingtraditional programming languages on ertain ases arithmetial overowan our. Let an example be k = 5, M = tridiag(0;�2;�210) (diag() andtridiag() denote the diagonal and tridiagonal matries, respetively). ThenM�41;5 = 150323855360 > 232. In these ases (among others) omputer algebrasoftwares an be used (about omputer algebra see [69℄).(3) Suppose that � =Zk. This an be ahieved by a simple basis trans-formation. Then, we are interested in the integers in T 0. It means that inequation (2.5) the oor funtion an also be applied. Clearly, the integers inT 0 still over the integers in H.2.2 Operator norm onstrutionLet x 2 H be an arbitrary vetor of Rk. Thenkxk = k 1Xj=1 M�jajk (2.6)for any well-de�ned vetor norm in Rk, where aj 2 D (j = 1; 2; : : : ). LetM be an invertible expansive linear operator of Rk. We shall onstrut avetor norm | throughout this subsetion denoted by k � k� |, suh thatfor the orresponding operator norm the inequality kM�1k� < 1 holds. This



2.2 Operator norm onstrution 13operator norm an be given using a basis transformation with the aid of anappropriate regular matrix S and the maximum norm in the formkM�1k� := kSM�1S�1k1:This follows from the fat thatkM�1xk� = kSM�1xk1 � kSM�1S�1k1kSxk1;so the operator norm indued by the vetor norm kSxk1.Let J = TM�1T�1 = diag(�j) be the Jordan anonial form of the matrixM�1. Let us hoose S := T . Hene,kM�1k� := kJk1 = maxj k�jk1:If J is simple (i.e. J onsists of k Jordan bloks) thenkJk1 = �(M�1) < 1:Suppose now that the eigenvalues of the matrix M are not all distint. Let�j = tridiag(0; �j ; 1) 2 C m�m be a non-trivial Jordan blok (m < k). In thisase k�jk1 > 1;therefore we use the similarity transformation Dj := diag1�i�m(�m�ij ) toobtain Dj�jD�1j = tridiag(0; �j ; �j), where �j > 0 and it an be hosen insuh a way that �j + j�j j < 1. HenekDj�jD�1j k1 < 1:Putting all together, in ase of trivial Jordan bloks let Dj := 1, moreover,S := diag(Dj)T . ThenkM�1k� = kSM�1S�1k1 = kDj�jD�1j k1 < 1:Further, let us denote k � k := k � k� as we used it earlier. Then (I �M�1)�1exists, it has the geometri series expansion (I�M�1)�1 = I+M�1+M�2+: : :+M�n + : : : , andk(I �M�1)�1k � 11� kM�1k : (2.7)



14 Classi�ation of expansionsBy using (1.3), (2.6) and (2.7) we get thatkSxk1 = kxk = k 1Xj=1 M�jajk � Kr1� r = L: (2.8)Now we are looking for those x 2 � for whih (2.8) is satis�ed. If kxk1 �L=kSk1 then (2.8) is learly true. Let y := Sx. Then S�1y = x, henekxk1 � kS�1k1kyk1 = kS�1k1kSxk1 � LkS�1k1:Let T 00 be the k-dimensional hyperube entered at 0 with vertex oordinates��i (i = 1; : : : ; k), where�i := dLkS�1k1e: (2.9)It follows from the onstrution that H � T 00.Remarks. (1) By virtue of the onstrution for a given " > 0 there is anoperator matrix norm for whih kM�1k � �(M�1) + ". This is a well-knownresult.(2) To determine the verties of T 00 one needs� a Jordan blok omputation of M and� a matrix inverse omputation of S.Clearly, the matrix S is not unique. The onstants �j an be hosen arbitraryaording to their de�nition but in omputer implementations the oatingpoint overows (e.g. �j-s are too small) must be avoided. The best solutionwould be to optimize �j -s obtaining the smallest value for kS�1k but it ouldhave high omputational time. Nevertheless, in some ases it is worth thetrouble.(3) By similar arguments as we did earlier, if � = Zk then in (2.9) theoor funtion an also be applied. Obviously, the integers in T 00 over theintegers in H.Let � = Zk. This an be assumed without loss of generality. Forming theintersetion of T 0 and T 00 we proved the following theorem:



2.3 Applying an iterated funtion system 15Theorem 1. Let the set of integer points I(T ) be de�ned as follows:I(T ) := �264 t1...tk 375 2Zk; ��m � tm � �m; where�m = min( b CXj=1 �(j)m ; bLkS�1k1 ); 1 � m � k�:Then I(H) � I(T ) and I(�H) � I(T ).Computer experiments show that in many ases the overing onstrution ispreferable to the operator norm onstrution. Clearly, applying Theorem 1one an onstrut a k-dimensional retangle T . Unfortunately, the number oflattie points in T an be muh higher than the number of periodi elements.This onstrution an be a �rst step towards a better approah.2.3 Applying an iterated funtion systemA �nite set of ontrations ffig mapping from Rk to Rk is alled an iteratedfuntion system (IFS). On the spae S of ompat subsets of Rk, with respetto the Hausdor� metri Æ(A;B) = inffr : A � Nr(B) and B � Nr(A)g,where Nr(A) is the open r-neighborhood of A, de�ne f : S ! S by f(X) =Sli=1 fi(X), for any ompat set X. Clearly, f is a ontration on S andhene, by Huthinson's theorem [39℄, f has a unique �xed point or attratorT satisfyingT = l[i=1 fi(T )and given byT = limn!1 f (n)(X0);where f (n) denotes the nth iterate of f , X0 is an arbitrary ompat subset ofRk, and the limit is with respet to the Hausdor� metri.



16 Classi�ation of expansionsFor eah digit d 2 D we de�ne the funtion fd : Rk ! Rk by fd(z) =M�1(z + d). These are linear ontration maps. If z 2 H then fd(z) 2 H.Clearly, fd is a right-shift map and furthermore H = Sd2D fd(H) so H isthe unique invariant set determined by Huthinson's theorem applied to thefuntions fd. The set H is self-aÆne with respet to these funtions.It was already mentioned that we are interested in the lattie points inthe set �H. Let � 2 �H. Then�� � (M�1d1 + : : :+M�JdJ) = M�(J+1)dJ+1 +M�(J+2)dJ+2 + : : : ;(2.10)for the appropriate sequene di 2 D. Fortunately, for the right hand side of(2.10) a good estimate an be given. Let � = Zk. The following algorithmprovides the set W , for whih the integers in W over the integers in H.Number Expansion Classifiation Algorithm in Zk for a given ex-pansive matrix M and digit set D. Let M̂ 2 Zk�k be similar to M via thematrix Q and let Q be an optional argument of the algorithm. If it is notgiven then let Q be the identity matrix. Let D̂ = QD. Further, B and C areonstants depending on the given omputer hardware (word size, memoryapaity) and on the matrix M̂ . B is an integer and C < 1 a real number.1. q := minfj 2 N; kM̂�jk1 < 1g;2. s := minfj 2 N; (r := kM̂�jk1) < Cg;3. f := (f1; : : : ; fk)T 2 Rk; fm = 1=(1 � r)Psl=1maxb2D̂ j(l)m (b)j; 1 � m � k;where ((l)1 (b); : : : ; (l)k (b))T = M̂�lb;4. minvol:=in�nity; Chose an appropriate B, q � B � s;5. for j from q to B do fif (kM̂�jk1 < 1) fCompute the vetor v(j) = (v(j)1 ; : : : ; v(j)k )T 2 Rk,v(j)m =Pkl=1 jM̂�jm;lflj; 1 � m � k;if ((! :=Qkl=1 v(j)l ) < minvol) f minvol:= !; J := j;ggg6. U := f�PJi=1 M̂�ib; b 2 D̂g;7. S := Su2U (u+ P ), where P denotes the k-dimensional retangleP = f(p1; : : : ; pk)T 2 Rk; jpij � v(J)i ; 1 � i � kg;8. W := fw = (w1; : : : ; wk)T 2Zk; Qw 2 Sg;9. Apply the funtion � determined by the system (Zk;M;D) for the pointsof W and the arising yles mean the required lassi�ation.



2.4 Computation of the funtion � 17The lines 1-3 provide the k-dimensional retangle Ĝ = f(g1; : : : ; gk)T 2 Rk,jgij � fi; 1 � i � kg. Let us analyze the seond assignment in line 4. Ifwe inrease B, the time omplexity of the algorithm grows exponentially int = jdet(M) j. Unfortunately, in some ases q an be rather big, whih meansthat the onvergene of M�i (i ! 1) is slow. In these ases this algorithman be ine�etive, even if keeping the running time moderate one hoose Blose to q. The reason is that the set Ĝ an also be rather big. Let an examplebe the Frobenius matrix (ompanion matrix) of the irreduible polynomial2 + 3x+ 4x2 +4x3 + 4x4 + 3x5 +2x6 + x7 with the anonial1 (binary) digitset, Q = I; C = 0:01. Then s = 188; q = 53 and the number of integers inĜ is 15319297125. Using other kinds of matries, during the omputation ofs problems an arise with the matrix elements (see setion 2.1, Remark 2).Line 5 tries to keep the index J small. The lines 6-8 are the appliation ofHuthinson's theorem in (2.10). Conerning line 8 one an observe that thenumber of elements of the set W depends also on jdet(Q) j. Conerning line9, a fast algorithm for omputing the funtion � is the subjet of the nextsetion. The termination of the algorithm is lear.It must be emphasized that the running time of the algorithm dependsstrongly on the matriesM and Q, i.e., on the basis of the lattie determinedby the matrix M . In other words one has to hoose the matrix Q in a waythat the onvergene of M̂�i = (QMQ�1)�i (i ! 1) is fast, jdet(Q) j isbig and the volume of Ĝ is as small as possible. It seems to be rather hard.Sometimes the simple idea of hoosing the matrix Q in a way that M̂ = MTan help. Fortunately, for a large lass of matries the algorithm is quite ef-fetive even if we hoose Q for the identity matrix. The author implementedthe Classifiation Algorithm in C language. In order to perform om-putations in the lattie e�etively the elements of Zk were transformed to Zusing mixed radix representation. During the omputation of elements of theset S a hashing table was used.2.4 Computation of the funtion �Let a radix system (Zk;M;D) be given. For alulation of the funtion � oneneeds a fast proedure to determine for an arbitrary z 2Zk the orrespondingongruent element d 2 D modulo M . Our �rst method is a straightforwardgeneralization of the method used for the ase of Gaussian integers in [62℄.1For the de�nition see setion 3.1.



18 Classi�ation of expansions2.4.1 Adjoint methodApplying the notations already adopted let z be an arbitrary element of Zkand let D = fa0; a1; : : : ; at�1g be a omplete residue system modulo M . Ifz � aj modulo M then M�z � M�aj modulo det(M)I, where M� denotesthe adjoint of M and I the identity matrix. Here by \adjoint of the operatorM" we mean the integer matrix, for whih the elements are the adjoints ofthe appropriate sub-determinants. Let t = jdet(M)j as before. LetD1 := M�D (mod tI) = fb0; b1; : : : ; bt�1g; (2.11)wherebj = M�aj (mod tI) = 264 b(j)1...b(j)k 375 2Zk; 0 � b(j)i < t; (i = 1; : : : ; k):(2.12)Due to the omplete residue system property of D for every z 2 Zk thereexists a unique bj 2 D1 suh that bj = M�z (mod tI). Then from (2.11) and(2.12) it follows that z � aj modulo M .In order to obtain for an arbitrary z 2 Zk the ongruent element in Dmodulo M one has to perform a multipliation by the matrix M� (mod tI),whih requires k2 integer multipliation over Zt =Z=tZ. Can the number ofoperations be redued? Fortunately, in many ases the answer is yes. Supposethat there exists an i 2 N; 1 � i � k for whih b(j)i (j = 0; 1; : : : ; t � 1) in(2.12) are all di�erent. Then the inner produt of an arbitrary z 2 Zk bythe i-th row of M� modulo t uniquely determines the index j for whihz � aj modulo M . This requires only k integer multipliations over Zt.The question, in whih ases suh an i exists will be answered in hapter3. But what an be made when suh an i does not exists? Then one has toinvestigate further the set D1 and to �gure out a strategy to minimize thenumber of multipliations to obtain for an arbitrary z 2 Zk the appropriatebj 2 D1 for whih bj = M�z modulo tI. Beside the optimization the strategyrequires greatest ommon divisor omputations, whih suggests the existeneof another (a simpler) approah. Indeed, essentially the same an be reahedvia another way, whih is based on the Smith anonial form of M (see [45℄).



2.4 Computation of the funtion � 192.4.2 Smith normal form methodLet M be an invertible linear operator mapping Zk into Zk. Then there arelinear transformations U and V mapping Zk onto itself suh that UMV =G has diagonal form in the standard basis with positive integer elementsg1; : : : ; gk in the diagonal suh that gi j gi+1 for i = 1; 2; : : : ; k � 1 andQki=1 gi = jdet(M)j. The Smith normal form an be obtained by doing ele-mentary row and olumn operations of M . We remark that U and V havedeterminants �1 and they are also invertible having integer omponents.Lemma 4. For an invertible M with the notations above let for z1; z2 2 Zkthe numbers u1; u2; : : : ; uk and û1; û2; : : : ; ûk denote the oordinates of Uz1and Uz2 respetively. Then z1 � z2 modulo M if and only if ui � ûi modulo gifor all i = 1; 2; : : : ; k.Proof: z1 � z2 moduloM if and only ifM�1(z1�z2) 2Zk. This is equivalentwith the ondition V �1M�1(z1� z2) 2Zk. But V �1M�1 = G�1U , hene theequations ui � ûi modulo gi must be satis�ed for all i = 1; 2; : : : ; k. �From a omputational point of view, at the �rst sight there is no gain. Inthe �rst step one has to multiply z 2 Zk by the integer matrix U (mod G)instead of M� (mod tI). But if there exists a positive integer s for whihgi = 1, i = 1; : : : ; s; s < k then ui � 0 (mod gi) for all i = 1; : : : ; s and forall z 2 Zk, hene enough to perform only k integer multipliations modulogj, for eah j = s+ 1; : : : ; k. LetD2 := UD (mod G) = f0; 1; : : : ; t�1g; (2.13)wherej = Uaj (mod G) = 264 (j)1...(j)k 375 2Zk; 0 � (j)i < gi; (i = 1; : : : ; k):(2.14)We get that for every z 2Zk there exists a unique j 2 D2 suh that j = Uz(mod G). From (2.13) and (2.14) we have that z � aj modulo M .2.4.3 Computer implementationIn omputer implementations one the omputation M�z modulo tI or Uzmodulo G was performed for the vetor z 2Zk the result must be looked up



20 Classi�ation of expansionsin the table T (D1) or in T (D2), respetively, obtaining the index j for whihaj � z modulo M , aj 2 D. This an be done using searhing strategies orhashing. Let us see an example for suh a hash funtion in the ase of Smithnormal form. The idea omes from the mixed radix representation.Lemma 5. Using the notations above let us de�ne the funtion h byh(z) = kXi=s+1(ui mod gi) i�1Yj=s+1 gj :Then h is an integer valued funtion with values 0; : : : ; t � 1, and h(z1) =h(z2) if and only if z1 � z2 modulo M .Proof: It is easy to see that h has the given range. If z1 � z2 then ui �ûi mod gi for all i = 1; 2; : : : ; k, hene h(z1) = h(z2). In the other diretion,if h(z1) = h(z2), then taking the remainder of both side with respet to g1we get that u1 � û1 (mod g1). Subtrating this ommon term and dividingwith g1 one an ontinue with g2, et. �Remark. The set D1 an be generated only from D but the set D2 an beprodued also diretly from G. A omplete residue system (mod M) an begenerated from D2 (D1) by multiplying the elements with U�1 (M), respet-ively.We summarize our results for the omputation of the funtion �:� For a given vetor z 2 Zk omputing M�z (mod tI) needs k2 integermultipliations overZt, omputing Uz (mod G) requires k integer mul-tipliations over Zgj for eah j = s+ 1; : : : ; k, where s depends on thematrix M .� Looking up the ongruent element aj in the table T (D) either a searh-ing has to be performed in T (D1) or in T (D2) to obtain the index j ora hashing has to be done.� To perform the funtion �, after a vetor subtration a matrix multi-pliation must be applied either with M� over Zand then dividing byt or with M�1 over R.



Chapter 3Number system onstrutions\Number theory is an inexhaustiblestorehouse of interesting truth."| C. F. GaussThis hapter ontains number system onstrutions of several types. Firsta neessary and suÆient ondition is given establishing anonial digit sets.Then, we deal with polynomial onstrutions inluding the omplete list ofgeneralized binary number systems up to degree 8. Polygonal and simulta-neous onstrutions are also mentioned. We end this hapter by proving asuÆient ondition for the general ase.3.1 Canonial digit setsLet � = Zk and let M : Zk ! Zk be a matrix satisfying Assertion 1(b)-().Further, we examine speial kinds of digit sets. A set of vetors D(j)M � Zkis alled j-anonial with respet to the matrix M (1 � j � k) if all theelements have the form �ej, where ej denotes the j-th unit vetor, � =0; : : : ; jdet(M)j � 1. If the set D(j)M forms a omplete residue system moduloM | CRS for brevity | then we all it a j-anonial digit set and denoteit by D(j). If there exists a j for whih (Zk;M;D(j)) is a number systemthen it is alled j-anonial number system. Furthermore, 1-anonial digitsets are alled simply anonial. In the following we analyze the existene ofj-anonial omplete residue systems.



22 Number system onstrutionsTheorem 2. Let M be an invertible expansive linear operator of Rk mappingZk into itself and let  = [1; 2; : : : ; k℄T 2Zk be the j-th olumn of the matrixM� (adjoint of M). Let Æl := gd(l; t) (l = 1; : : : ; k), where t = jdet(M)j.Let furthermore �l := t=Æl. Then the following statements are equivalent:1 There exists j-anonial CRS modulo M .2 The setD(j) = �� mod t = 264 �1 mod t...�k mod t 375 ; � = 0; 1; : : : ; t� 1�has exatly t elements.3 lm(�1; : : : ; �k) = t.(Here gd and lm means the greatest ommon divisor and least ommonmultiply of the integer elements, resp.)Proof: (1) , (2). The proof immediately follows from the onstrution ofD1 in (2.11). (1) , (3). Due to the CRS property of the set D(j) all theirelements are inongruent modulo M and the set D(j) has t elements. Thismeans that the equation hej = M� has no solution for any h 2 N; 0 <h < t and any � = [�1; �2; : : : ; �k℄T 2 Zk. Hene it is enough to examine thesolvability of the system of equationsh1 = t�1;... (3.1)hk = t�k:Case 1. There exists a l (1 � l � k) suh that gd(l; t) = 1. In this asefrom the equation hl = t�l it follows that t j h. Therefore the system ofequations (3.1) has no integer solution.Case 2. Suppose that gd(l; t) = Æl > 1 for all l = 1; 2; : : : ; k. Let �l = l=Æl.Then h�l = �l�l (l = 1; : : : ; k). Sine gd(�l ; �l) = 1, therefore �l j h forall l = 1; : : : ; k. It means that lm(�1; �2; : : : ; �k) j h. Hene the system ofequations (3.1) has no solution if and only if lm(�1; �2; : : : ; �k) � t. Onthe other hand lm(�1; : : : ; �k) j t. Therefore lm(�1; : : : ; �k) = t. (If �l = tfor some l then gd(l; t) = 1.) We have that there exists j-anonial CRSmodulo M if and only if lm(�1; : : : ; �k) = t. �



3.2 Polynomial onstrution 23Remarks. (1) If there exists a i 2 Zn 0 in the j-th olumn of thematrix M� for whih gd(i; t) = 1 modulo t then there is a j-anonialomplete residue system modulo M . Theorem 2 shows that the onverse ofthis statement is not always true.(2) If t is prime then always exists j-anonial CRS for all 1 � j � k.Lemma 6. Using the notations above suppose that for a given M there existsa j-anonial CRS. Then there is an i 2 N; 1 � i � k for whih gd(i; t) = 1modulo t if and only if the set f�i modulo t, � = 0; 1; : : : ; t � 1g forms aCRS modulo t.The proof is obvious.Corollary. If for a given M there exist j-anonial CRS and i aordingto Lemma 6 then it is enough to perform only k multipliations modulo t todetermine for an arbitrary z 2 Zk the element b = (M�z modulo tI) 2 D1(see setion 2.4.1).The onverse of this statement is not true. Let a ounter-example be thematrixM = ( 2 46 3 ). Then t = 18 and M� = ��3 46 �2 �. Using the Smith normalform for every z 2 Zk there is enough to perform k = 2 multipliations toobtain the appropriate b 2 D1 but there is no 1- or 2-anonial CRS andgd(i; t) > 1 modulo t for all i.3.2 Polynomial onstrutionConsider the polynomialf(x) = kxk + k�1xk�1 + : : :+ 0 = (x� �1) : : : (x� �k); k = 1 (3.2)over Z[x℄. Let us denote the quotient ring Z[x℄=(f) by �f . Let � = x + (f)denote the image of x in �f . Then �f has the struture of a free Abeliangroup with basis f1; �; �2; : : : ; �k�1g. Hene, �f is a lattie, addition andmultipliation of lattie points is just addition and multipliation in the ringZ[x℄=(f). To be more preise onsider the polynomial f(x) in (3.2) and as-sume that j�ij > 1 (i = 1; : : : ; k). Observe that �f is the set of elementsof form u0 + u1� + : : : + uk�1�k�1 (uj 2 Z). For the addition it is isomor-phi with the additive group Zk. Clearly, I� = f�� : � 2 �fg is an ideal in�f , the number of residue lasses in the fator ring �f=I� is t = j�1 : : : �kj.Choosing an element from eah residue lass the digit set an be de�nedas D� = fa0 = 0; a1; : : : ; at�1g � �f . Let � 2 �f . Then there exists a



24 Number system onstrutionsunique a 2 D� and a unique �1 2 �f for whih � = a+ ��1. The funtion� : �f ! �f is de�ned as �(�) = �1. Observe that the map �! �� an beformulated as a linear transformation, whih has a simple form in the basisf1; �; �2; : : : ; �k�1g, namely the Frobenius matrixMf = 0BBBBBB�0 : : : �01 0 : : : ...0 . . ....0 : : : 1 �k�11CCCCCCA : (3.3)Hene, all the problems regarding number expansions an be formulated inZk instead of making it in �f . The digit set for Mf must have j0j elements.Clearly, j0j must be greater than or equal to 2.3.2.1 Radix representation of algebrai integersIn the speial ase, when f(x) is irreduible over Z[x℄ then �f =Z[x℄=(f) isisomorphi withZ[�℄, where � is any root of f(x) in an appropriate extension�eld of the rationals. Hene, we may replae � to � in the previous reasoning.The next lemma provides a suÆient ondition forZ[x℄=(f) being isomorphiwith Z[�℄.Lemma 7. Consider the polynomial f(x) in (3.2) and assume that j�ij > 1,(1 � i � k). If f(0) = 0 is prime then f(x) is irreduible.Proof: Suppose indiretly that f(x) = u(x)v(x); u; v 2 Z[x℄; deg(u) �1;deg(v) � 1 and both u and v are moni. Sine 0 = f(0) = u(0)v(0) isprime therefore either u(0) is �1 or v(0) is �1. Assume that u(0) is �1. Sinethe onstant term of u(x) is the produt of some roots of f in module, thisis impossible. �In the following we shortly summarize the results obtained by represent-ing algebrai integers in some extension �eld of the rationals. Let � be anyrational integer greater than one. It is well-known that every non-negativeinteger n has a unique representation of the form n = a0 + a1� + : : :+ ak�k,where the integers aj are seleted from the set f0; 1; : : : ; �� 1g. The deimal(� = 10) and binary (� = 2) systems are the most familiar. Both positive andnegative integers an be uniquely represented without a sign pre�x in any



3.2 Polynomial onstrution 25negative base � < �1 using the digits from f0; 1; : : : ; j�j�1g. Conditions un-der whih eah rational integer has a unique radix representation have beeninvestigated by D. W. Matula [86℄, A. M. Odlyzko [91℄ and by B. Kov�as, A.Peth}o [77℄.A straightforward way to extend radix systems is hoosing the radix toan algebrai integer. The �rst non-real base radix system was introdued byD. E. Knuth [60℄, who suggested that � = 2i an be used as base for theomplex numbers with the digit set D = f0; 1; 2; 3g, i.e. all omplex number has an expansion of form  = Pli=�1 di�i for some l 2 N0 (di 2 D).However, in order to represent all the Gaussian integers, it is neessary touse one negative radix plae; for example 1+5i = 3(2i)1+1(2i)0+2(2i)�1. W.Penney in 1965 notied [94℄, that every omplex number an be representedin binary form using the base �1+ i, moreover, all the Gaussian integers anbe written in the formPnj=0 aj(�1 + i)j, where aj = 0 or 1.The systemati researh of positional number systems in algebrai exten-sions was initiated by I. K�atai and J. Szab�o [55℄. They proved that if � is aGaussian integer of norm N � 2 and the digit set is D = f0; 1; : : : ; N � 1gthen every Gaussian integer  an be uniquely represented as  = a0+ a1�+: : : + am�m; aj 2 D; am 6= 0 if and only if � = �n � i for some positiveinteger n.If the digit set D is restrited to be a set of non-negative numbers, we geta straightforward generalization of the traditional number systems inZ. Theset D = f0; 1; : : : ; N � 1g is alled anonial digit set. If the radix system(Z[�℄; �;D) satis�es the unique representation property with some anonialdigit set D then it is alled a anonial number system. In this ase all thoseintegers � in quadrati number �elds an be given, for whih (Z[�℄; �;D) arenumber systems [27, 52, 53℄: if � is a quadrati integer with minimal polynom-ial x2 + Ex + F and D = f0; 1; : : : ; jF j � 1g then (Z[�℄; �;D) is a numbersystem if and only if F � 2 and �1 � E � F .Using anonial digit sets S. K�ormendi [80℄ determined all the integers� 2 Q( 3p2) for whih (Z[�℄; �;D) is a number system. B. Kov�as [72℄ gavea neessary and suÆient ondition for the existene of anonial numbersystems in Z[�℄, i.e., in the ring of integers Q[�℄ of a kth degree extension ofQ (k � 3) there exists anonial number system i� there exists an � 2 Q[�℄suh that f1; �; : : : ; �k�1g is an integer basis in Q[�℄. B. Kov�as and A. Peth}o[78℄ haraterized all those integral domains that have anonial numbersystems.



26 Number system onstrutions3.2.2 Cns-polynomialsThe onept of anonial number systems was extended to arbitrary square-free polynomials f(x) 2 Z[x℄ with leading oeÆient one by A. Peth}o [95℄and to arbitrary moni polynomials f(x) 2Z[x℄ by S. Akiyama and A. Peth}o[1℄. Conerning (3.3) it is easy to see that M�f [k; 1℄ = (�1)k+1 therefore byTheorem 2 anonial digit set always exist. Here M� means the adjoint ofM . Let a anonial radix system (�f ;Mf ;D) be given. Computing the Smithnormal form of Mf by UMfV = G it is easy to see thatU = 0BBB� 0 1 0... . . .0 0 1� sgn(0) 0 : : : 01CCCAand G = diag(1; : : : ; 1; j0j). Hene, by Lemma 4 the funtion � an be givenas �(x) = �([x1; : : : ; xk℄T ) == [�10x� + x2;�20x� + x3; : : : ;�k�10 x� + xk;�x�0 ℄T (3.4)where x� = x1 � d; 0 � d < j0j and 0 j x�. Using the notation y = bx1=0in (3.4) the funtion � an also be written as�(x) = [�1y + x2;�2y + x3; : : : ;�k�1y + xk;�y℄T : (3.5)If the system (�f ;Mf ;D) is a anonial number system then we all thepolynomial f(x) as a ns-polynomial, or we say that the polynomial f(x) hasthe ns-property. Reall that in this ase for every x 2 Zk there is a j 2 N0for whih �j(x) = 0.3.2.3 Neessary onditions for the ns-propertyIn order to onstrut anonial number systems via ns-polynomials we givesome neessary onditions. These onditions are quite obvious, many of themwere used in di�erent researh papers byW. J. Gilbert, I. K�atai and A. Peth}o.We prove them for the sake of ompleteness.



3.2 Polynomial onstrution 27Lemma 8. If (�f ;Mf ;D) is a anonial number system de�ned by the ns-polynomial (3.2) then(a) 0 � 2;(b) if �1 � r 2 R then f(r) > 0, if �1 � z 2Zthen f(z) � 1;() f(1) � 0;(d) if k is even then f(�0) � 1, if k is odd then f(�0) � �1;(e) Pbk=2i=0 2i � b(0 + 1)=2.Proof: (a) It is lear that eah real root of f(x) (if exists) must be less than�1. Hene, 0 = (�1)k�1 : : : �k > 1. Conerning (b) the previous idea analso be applied. () It is known that the only periodi element in the numbersystem (�f ;Mf ;D) is the null vetor. Now we analyze how an we avoid theloops �(x) = x di�erent from 0 ! 0. Suppose that there is a loop. Using(3.5) the following system of equations an be set up: fx1 = x2 � 1y; x2 =x3� 2y; : : : ; xk�1 = xk� k�1y; xk = �yg. From these equations it is easy todedue that xk(1 + k�1 + : : :+ 0) = d 2 D. If xk = 0 then x = 0 whih is aknown ase. If xk 6= 0 then applying (a) the number of loops is b(0�1)=f(1).Hene, if 0 � f(1) then there does not exist any loop. Conerning (d) if�i 2 C nR for all 0 � i � k then the assertion is obvious. On the other handobserve that there does not exist any real �i for whih �i � �0, otherwisethere would be a �j for whih j�jj < 1. Hene �0 < �i < �1 for all realroots of f(x). It means that if k is even then f(�0) � 1, if k is odd thenf(�0) � �1. (e) is immediately follows from (a) and (b) by z = �1. �Let 0 � 2 and k be �xed. Sine all roots of the polynomial f(x) has mod-uli greater then one | we also say that the polynomial satis�es the root-ondition |, therefore the number of ns-polynomials is �nite. Next, we pro-vide upper bounds for the absolute value of the oeÆients i; 1 � i � k � 1in (3.2).Lemma 9. Let f(x) be the ns-polynomial de�ned by (3.2) and let 2 � k � 9.Then the oeÆients of f(x) an be bounded asjjj � s(1� 0) + 0�kj�� 1;jk�jj � s(0 � 1)(1 � bk=j) + 0�kj�� 1;where s = ��kj�=bk=j�; 1 � j � bk=2:



28 Number system onstrutionsProof: We use the relationship between roots and oeÆients of polynomialsand the inequalities� + � < 1 + �� and 1� + 1� < 1 + 1�� (3.6)where �; � > 1. For brevity let zi =j �i j. To have a better view into the for-mulas let us onsider the speial ase k = 7; j = 2. Then P1�i1<i2�7 zi1zi2 <z1z2 z4z5 z6z7+z1z3 z2z5 z4z7+z1z4 z2z6 z3z7+z1z5 z2z4 z3z6+z1z6 z2z3 z5z7+z1z7 z3z4 z5z6+ z2z7 z3z5 z4z6+2 � 7 < 70+14. In the given range 2 � k � 9suh a sort is always possible. Hene,j k�j j= X1�i1<:::<ij�k zi1 : : : zij < s0 + s(bk=j � 1) andj j j= 0 X1�i1<:::<ij�k 1zi1 : : : 1zij < 0( s0 + s(bk=j � 1));from whih the lemma follows. �Remarks. (1) These estimates are good enough for searhing anonialnumber systems algorithmially.(2) By using these formulas we got the following estimates (k = 1):k = 2; j1j � 0;k = 3; j1j � 20; j2j � 0 + 1;k = 4; j1j � 30; j2j � 30 + 2; j3j � 0 + 2;k = 5; j1j � 40; j2j � 50 + 4; j3j � 50 + 4; j4j � 0 + 3;k = 6; j1j � 50; j2j � 100 + 4; j3j � 100 + 9; j4j � 50 + 9; j5j � 0 + 4;k = 7; j1j � 60; j2j � 140 + 6; j3j � 180 + 16; j4j � 180 + 16; j5j �70 + 13; j6j � 0 + 5;k = 8; j1j � 70; j2j � 210 + 6; j3j � 280 + 27; j4j � 350 + 34; j5j �280 + 27; j6j � 70 + 20; j7j � 0 + 6;k = 9; j1j � 80; j2j � 270 + 8; j3j � 560 + 27; j4j � 630 + 62; j5j �630 + 62; j6j � 280 + 55; j7j � 90 + 26; j8j � 0 + 7.3.2.4 Some resultsIt was observed that a wide lass of polynomials an serve for onstrutinganonial number systems. B. Kov�as [72℄ proved that if f(x) 2 Z[x℄ isirreduible, its zeroes have moduli greater than one and if k � k�1 � : : : �



3.2 Polynomial onstrution 290 � 2 then f(x) is a ns-polynomial. His proof an be applied for reduiblepolynomials as well. Moreover, if 0 is \big enough" then S. Akiyama and A.Peth}o gave a method determining the ns-property of arbitrary polynomials[1℄. They also proved that if 2; : : : ; k�1;Pki=1 i � 0 and 0 > 2Pki=1 jijthen f(x) is a ns-polynomial and the last inequality an be replaed by0 � 2Pki=1 jij when all i 6= 0.Reently, H. Brunotte provided an algorithm [10℄, whih attempt to provethe ns-property for a given irreduible moni polynomial f(x) 2Z[x℄ satisfy-ing the root-ondition. His algorithm works for arbitrary moni polynomialsinZ[x℄ as well. His method di�ers essentially from the method of S. Akiyamaand A. Peth}o. Instead of using power basis he hose a di�erent one. In H.Brunotte's basis the funtion � :Zk !Zk has the form�([x1; : : : ; xk℄T ) = [� sign(0)�Pk�1j=1 jxj + xkj0j �; x1; : : : ; xk�1℄THis algorithm based on the following theorem. Suppose that the set E �Zkhas the reursive de�nition (i) [0; : : : ; 0℄T ; [�1; 0; : : : ; 0℄T ; [0; : : : ; 0;�1℄T 2E, (ii) for every [x1; : : : ; xk℄T 2 E and d 2 D = f0; 1; : : : ; j0j � 1g theelement �([x1; : : : ; xk�1; xk + d℄T ) belongs to E. If for every e 2 E thereexists a je 2 N0 suh that �je(e) = 0 then the polynomial f(x) has thens-property.Let us see some examples. Let k = 2. Then by Lemma 8 and Lemma 9we get that �1 � 1 � 0. It is easy to see that in these ases the roots off(x) are outside the omplex unit dis. Using the previous algorithm of H.Brunotte it is also not hard to see that E � �[x1; x2℄T ; x1; x2 2 f�1; 0; 1g	and applying the funtion � we have that the ns-property always holds.In fat, we got a kind of generalization of the result of I. K�atai, B. Kov�as[52, 53℄ and of W. Gilbert [27℄.If k = 3 then we are only able to write a set of inequalities between theoeÆients of f(x) (see also [1, 10℄). Nevertheless, the following assertionholds.Assertion 6. The following polynomials are ns-polynomials in Z[x℄:(i) xk + 1x+ 0 for every k � 3 i� �1 � 1 � 0 � 2; 0 � 2;(ii) xk + pxk�1 + pxk�2 + : : :+ px+ p for all 2 � p 2 N;(iii) xk + xk�1 + xk�2 + : : :+ x+ p for all 2 � p 2 N;(iv) xk + pxk�1 + p2xk�2 + : : :+ pk�1x+ pk for all 2 � p 2 N.Proof: The ase (i) was proved in [10℄. In order to hek that the roots



30 Number system onstrutionsof the polynomials (ii) and (iii) are outside the omplex unit dis one anuse the method of Lehmer-Shur [84℄. The proof is easy, we leave it to thereader. It is also obvious that the moduli of the roots of polynomial (iv) areequal and greater than one. Sine the oeÆients of the polynomials (ii)-(iv)are positive and monotonially inreasing, the theorem of B. Kov�as an beapplied. The proof is �nished. �Remarks. (1) We proved that there are in�nitely many ns-polynomials(therefore anonial number systems) for eah dimension k even if the on-stant term of the polynomial is \small".(2) The polynomials (iv) and (i) for 1 = 0 show that for every e > 1there is a base M suh that (�;M;D) is a anonial number system and themoduli of eah eigenvalues of M are smaller than or equal to e. This showsthat the seond neessary ondition in Assertion 1 for satisfying the uniquerepresentation property is sharp.(3) Consider the Frobenius matrix M of the polynomial (iv). Note thatall eigenvalues of M have the same moduli. The importane of these systemsappears in hapter 5, in examining the Hausdor� dimension of the boundaryof their fundamental domain.3.2.5 Searhing for ns-polynomialsNow we provide an algorithm for searhing anonial number systems. Todeide whether the polynomial f(x) has a root inside the omplex unit disthe method of Lehmer-Shur an be used. To analyze the possible roots inthe unit irle we have the following well-known lemma.Lemma 10. Let Q(x) = q0 + q1x + : : : + qkxk 2 Z[x℄; Q(i) = 0; jij � 1.Then jij > 1 if and only if gd(Q(x); xkQ(1=x)) is a onstant polynomial.Algorithm: CNS-Sieve. Searhing for all andidates of ns-polynomialsin ase of given inputs onstant term 0 and degree k of the moni polynomialf(x) 2Z[x℄.1. Let S be the �nite set of polynomials determined by Lemma 9;2. if S 6= ; then p :=get-a-new-andidate(S); S := S n fpg;else goto step 5;3. if Lemma 8 (e), (b) with z = �1, () and (d) hold for the polynomial pthen goto step 4; else goto step 2;4. Apply Lehmer-Shur and Lemma 10 for the polynomial p;



3.2 Polynomial onstrution 31if all roots of p have moduli greater than one then print(p);goto step 2;5. Stop;The algorithm terminates sine S is a �nite set. Observe that the CNS-Sieve algorithm ontains omputationally easy-to-hek methods. Moreover,if Lemma 8 fails for the polynomial p then possibly more than one polynomi-als an be deleted from the set S, depending on whih part of Lemma 8 doesnot hold. Clearly, the CNS-Sieve algorithm an also be applied for k > 9but in this ase bounds for the oeÆients of f(x) must be determined.3.2.6 Cns-polynomials with onstant term 0 = 2Now we turn our attention to generalized binary number expansions, i.e.0 = 2. The ase k = 1 is well-known, and the ase k = 2 was analyzed insetion 3.2.4. Let k � 3. Suppose that the polynomial f(x) is obtained by theCNS-Sieve Algorithm for some k. Then, a periodi element 0 6= � 2 Pwould be a test proving that f(x) is not a ns-polynomial. If one does not �ndsuh a � by searhing a small �nite portion of the spae systematially or ran-domly then one an use the Classifiation Algorithm or H. Brunotte'salgorithm [10℄ to prove that f(x) is really a ns-polynomial. If f(x) is not ans-polynomial then these algorithms serve also the test.The author implemented the CNS-Sieve Algorithm in C language.The following table shows the results up to degree 8.Output ofDegree (k) CNS-Sieve Algorithm Number of(number of polynomials) ns-polynomials3 5 44 22 125 18 76 73 257 62 128 215 20Table 1Further, we enumerate the omputed ns-polynomials.



32 Number system onstrutionsk = 3, 2� x+ x3; 2 + x3; 2 + x+ x2 + x3; 2 + 2x+ 2x2 + x3.k = 4, 2 � x + x4; 2 + x4; 2� x2 + x4; 2 + x2 + x4; 2 + 2x2 + x4; 2 + x + x3 +x4; 2+ x+ x2+ x3+ x4; 2+ 2x+ x2+ x3+ x4; 2+ x+2x2+ x3+ x4; 2+ 2x+2x2+x3 + x4; 2 + 2x+ 2x2 + 2x3 + x4; 2 + 3x+ 3x2 + 2x3 + x4.k = 5, 2� x+ x5; 2+ x5; 2� x+ x2 + x5; 2+ x2 + x3 + x5; 2+ x+ x4 + x5; 2+x+ x2 + x3 + x4 + x5; 2 + 2x+ 2x2 + 2x3 + 2x4 + x5.k = 6, 2�x+x6; 2�x2+x6; 2�x3+x6; 2+x6; 2+x3+x6; 2+2x3+x6; 2+x2�x3+x4+x6; 2+x2+x4+x6; 2+x2+x3+x4+x6; 2+2x2+2x4+x6; 2+x�x2�x3+x5+x6; 2+x�x3+x5+x6; 2+x+x5+x6; 2+x+x2+x3+x4+x5+x6; 2+2x+x2+x3+x4+x5+x6; 2+2x+2x2+x3+x4+x5+x6; 2+x+x2+2x3+x4+x5+x6; 2+2x+2x2+2x3+x4+x5+x6; 2+x+2x2+x3+2x4+x5+x6; 2+2x+2x2+2x3+2x4+x5+x6; 2+2x+3x2+2x3+2x4+x5+x6; 2+2x+2x2+2x3+2x4+2x5+x6; 2+3x+3x2+3x3+3x4+2x5+x6; 2+3x+4x2+4x3+3x4+2x5+x6; 2+x+x2+x4+x5+x6.k = 7, 2�x+x7; 2� 2x+2x2�x3+x5�x6+x7; 2�x+x2+x4+x7; 2+x3+x4 + x7; 2+ x2 + x5 + x7; 2+ x+ x6 + x7; 2 + x+ x2 + x3 + x4 + x5 + x6 + x7; 2+2x + 2x2 + x3 + x4 + x5 + x6 + x7; 2 + 2x + 2x2 + 2x3 + 2x4 + x5 + x6 + x7; 2 +2x+ 2x2+ 2x3+ 2x4 + 2x5+ 2x6 + x7; 2+ 3x+ 4x2 + 4x3+ 4x4 + 3x5+ 2x6 + x7.k = 8, 2�x+x8; 2�x2+x8; 2�x4+x8; 2+x8; 2+x4+x8; 2+2x4+x8; 2+x3+x5+x8; 2+x2+x6+x8; 2+x2+x4+x6+x8; 2+2x2+x4+x6+x8; 2+x2+2x4+x6+x8; 2+2x2+2x4+x6+x8; 2+2x2+x3+x4+x5+x6+x8; 2+2x2+2x4+2x6+x8; 2+3x2+3x4+2x6+x8; 2+x+x7+x8; 2+x+x2+x4+x6+x7+x8; 2+x+x2+x3+x5+x6+x7+x8; 2+x+x2+x3+x4+x5+x6+x7+x8; 2+2x+x2+x3+x4+x5+x6+x7+x8; 2+2x+2x2+2x3+x4+x5+x6+x7+x8; 2+2x+2x2+2x3+2x4+x5+x6+x7+x8; 2+2x+2x2+2x3+2x4+2x5+2x6+x7+x8; 2+2x+2x2+2x3+2x4+2x5+2x6+2x7+x8,2+x+x2+x3+2x4+x5+x6+x7+x8; 2+x+2x2+2x3+x4+2x5+x6+x7+x8; 2+x+2x2+x3+2x4+x5+2x6+x7+x8; 2+x+3x2+2x3+3x4+2x5+2x6+x7+x8; 2+2x+3x2+3x3+3x4+2x5+2x6+x7+x8; 2+3x+3x2+3x3+3x4+3x5+3x6+2x7+x8; 2+3x+4x2+5x3+5x4+4x5+3x6+2x7+x8; 2+4x+5x2+5x3+5x4+4x5+3x6+2x7+x8.The output of the CNS-Sieve Algorithm shows that the estimates inLemma 8 and Lemma 9 may be omplemented and improved. It is alsolear that the time omplexity of the algorithm is exponential in k. More-over, in higher dimensions proving that a given polynomial obtained by theCNS-Sieve Algorithm is really a ns-polynomial is hard. The followingonjeture would help, but the author was unable to prove this.Conjeture. Suppose that the lattie � is generated with the power basis andthe polynomial f(x) is obtained by the CNS-Sieve Algorithm. If theredoes not exist any periodi element � for whih k�k1 = 1 then f(x) is ans-polynomial.



3.2 Polynomial onstrution 33Obviously, if suh a � exist then the polynomial is not a ns-polynomial. Weused this idea to test the output of the CNS-Sieve Algorithm.Remarks. (1) The ase k = 3 in Table 1 was known to A. J�arai (unpub-lished).(2) Suppose that the polynomial f(x) is obtained by the CNS-SieveAlgorithm and it is not a ns-polynomial. Then, the Classifiation Al-gorithm provides more than one periods. The following questions are quiteinteresting: how many suh periods exist and what are the length of them?The general haraterization seems to be hard. The following table showssome omputational results.the polynomial � 2 P the length off(x) k�k1 = 1 period of �2 + x+ x2 + x4 [�1; 1; 0; 0℄T 112 + x+ 2x2 + 2x3 + x4 + x5 [�1;�1;�1; 0; 0℄T 212 + x+ x3 + x4 + x5 + x6 [�1;�1;�1; 0; 0; 0℄T 332 + x+ 2x3 + 2x4 + x6 + x7 [�1;�1; 1;�1; 0; 1; 0℄T 472 + 2x+ x2 + x6 + 2x7 + x8 [�1;�1; 0; 0; 0; 0; 0; 0℄T 64Table 2(3) In order to deide the ns-property of a given polynomial the algo-rithm of H. Brunotte is preferable. The author is grateful to J. Szilizi whoprogrammed this algorithm in C++ in a very �ne way. This shows amongothers that for the ns-polynomial 2+x+2x2+x3+2x4+x5+2x6+x7+x8the algorithm uses 344 iteration steps, the number of integer vetors in theset E is 143123, while for the ns-polynomial 2+3x+3x2+3x3+3x4+3x5+3x6 + 2x7 + x8 the algorithm uses 253 iteration steps and number of integervetors in the set E is 241719.3.2.7 Polygonal onstrutionLet f(x) = xk + xk�1 + : : :+ 1 and let �f = Z[x℄=(f) be the orrespondingk-dimensional lattie as earlier. Let ! = x+ (f) denote the image of x in �fand let � = n � !; n 2 Z. Note that !k+1 = 1. Clearly, the orresponding



34 Number system onstrutionsmatrixMpol = 0BBBBBBB� n 0 0 : : : 0 1�1 n 0 : : : 0 10 �1 n : : : 0 1... ... ... � � � ... ...0 0 0 : : : n 10 0 0 : : : �1 n+ 11CCCCCCCAats on the ubi lattie Zk with respet to the basis f1; !; : : : ; !k�1g. Thedeterminant of Mpol is (nk+1 � 1)=(n � 1). A. Vine [106℄ onsidered theinteresting ase n = 2. In this ase det(Mpol) = 2k+1 � 1. LetD = f�0 + �1! + : : :+ �k!k : �i 2 f0; 1g; not all �i is 1g:It an be seen that D is a full residue system modulo Mpol. For k = 1 wehave that � = Z;Mpol = (3);D = f�1; 0; 1g, whih is the balaned ternaryrepresentation of the integers. For k = 2 the matrix Mpol = ( 2 1�1 3 ) andD = f0; 1; !; : : : ; !5 : ! is a primitive 6th root of unityg:A. Vine alled these systems as the generalized balaned ternary (GBT).In these systems, addition and multipliation an be arried out by simpleand fast bit string routines, sine eah digit an be represented by the bi-nary string �0�1 : : : �k. Moreover, using the two-dimensional GBT, a planardatabase management system was developed (see [105, 106℄ and the refer-enes there). We all the reader's attention to an interesting fat regardinggeneralized balaned ternary, whih was observed by A. Vine. The eigenval-ues of Mpol for the GBT are f2� ! : ! is an (n+1)th root of unity, ! 6= 1g.Therefore the minimummodulus of an eigenvalue tends to 1 as k!1. SineGBT systems are number systems for all k, we got again that Assertion 1(b)is sharp.Radix systems, where the digit set has the form f0; 1; �; �2; : : : ; �k�1g,� = exp(2�i=k) is the primitive k-th root of unity, are very important inomputer siene, sine they enables fast addition and on-line multipliation.We refer the interested reader to [98, 100℄.3.3 Simultaneous onstrutionThe following radix system was introdued by K-H. Indlekofer, I. K�ataiand P. Rask�o [41℄. Let N1; N2; : : : ; Nk be mutual o-prime integers, none



3.4 General onstrution 35of them is 0;�1. Let Ms = diag(N1; N2; : : : ; Nk) and D = fÆeg, wheree = [1; : : : ; 1℄T ; Æ = 0; 1; : : : ; t � 1; t =j N1 : : : Nk j. Clearly, the set D is afull residue system modulo Ms. The proper work of the funtion � is basedon the Chinese remainder theorem. In dimension two let 2 � N1 < N2. Theabove mentioned authors proved that the system (Zk;Ms;D) is a numbersystem if and only if N2 = N1 + 1.3.4 General onstrutionA further question onerning radix expansions is the following: for a givenM satisfying riterion (b) and () in Assertion 1 is there any digit set D forwhih (�;M;D) is a number system? How many suh digit sets exist andhow to onstrut them? In imaginary quadrati �elds due to G. Steidl [102℄and I. K�atai [48℄ we know that to be able to onstrut number systems theonditions in Assertion 1 are also suÆient. Remarkable results are obtainedby G. Farkas in real quadrati �elds [20, 21, 23℄. Moreover, if M is similarto the Frobenius matrix of an irreduible moni polynomial over Z thensome results are also available [50℄. The above mentioned authors gave theonstrutions as well. For the general ase, A. Vine proved [106℄ that if allthe singular values of M are greater than 3pk then the digit set D an beonstruted. In dimension 2 this value an be made sharper to 2. Now weprove the following.Assertion 7. (SuÆient ondition for the number system property)Suppose that the onditions for M;D in Assertion 1 hold. Let us denote inRk a vetor norm and the orresponding operator norm by k � k for whihr = kM�1k < 1. Let K = maxfkdk; d 2 Dg and L = Kr=(1 � r). Letfurthermore R be a positive real number for whih z 2 �; kzk � R implies z 2D. If r � R=(R +K) then (�;M;D) is a number system.Proof: It follows from Lemma 1 that if � is a periodi element then k�k � L.Hene, if we ould prove that L � R then we would be ready, sine in this asethe only periodi element is the null vetor. But if r = kM�1k � R=(R+K)then Kr � R(1 � r), by whih L = Kr=(1 � r) � R. �The onstrution of the digit set is as follows: enumerate all integers in a`big enough' ball around the origin, order them using the appropriate normand selet a full residue system keeping the norm of the elements as small aspossible.Assertion 7 has an important orollary. Reall that a basis transform-



36 Number system onstrutionsation does not hange the number system property, i.e. if M1 and M2 aresimilar via the matrix Q then the number system property of (�;M1;D) and(Q�;M2; QD) holds at exatly the same time. Let U = [�12; 12)k denote thek-dimensional half-open unit ube entered at the origin. Reall that the k-dimensional parallelotop V = MU has volume j det(M) j and the appropriateintegers in V onstitute a full residue system modulo M . Suppose that thenorm in Rk is the Eulidean norm. Then, performing a basis transformation,the full residue system V an be transformed to the half-open unit ube U ,in whih ase KR is equal to pk. Hene, we proved the following:Assertion 8. For a given expansive M suppose that kM�1k2 � 1=(1 +pk).Then there exists a digit set D for whih (�;M;D) is a number system.Our result is stronger than that one of A. Vine exept in dimension2. Applying Assertions 1 and 8 in dimension 1 shows that if 2 < � 2 Zthen every rational integer has a unique base � radix representation withD = f�b(j�j � 1)=2; : : : ; bj�j=2g, whih is well-known. Consider the ringof Gaussian integers Z[i℄ = fa + bi : a; b 2 Zg and let � = A + Bi 2 Z[i℄.In this ase M� = � A �BB A � and kM�1� k2 = 1=pA2 +B2, whih is, apart froma few ases, always smaller than 1=(1 + p2). Keeping in mind Assertion 1,Assertion 7 and [55℄ these ases are easy to handle. We got the following: forany Gaussian integer � of modulus larger than one, exept 2 and 1� i, thereexists a full residue systemD so that (Z2;M�;D) is a number system. Hene,as a speial ase of Assertion 8 we have the result of G. Steidl1. If we onsiderthe Eisenstein integersZ[!℄ = fa+b! : a; b 2Zg, where ! is the omplex uberoot of unity, and we perform the above mentioned omputations, we obtainthe same onlusion. Nevertheless, it is not any surprise: I. K�atai solved theproblem in all imaginary quadrati �elds. If we onsider the real quadrati�elds | without going into the details | it is possible to reprove the result ofG. Farkas [20℄. The interesting is that the above mentioned authors gave thedigit sets expliitly whih is di�erent from our onstrution. This suggeststhat the unique representation property depends mainly on the radix, and ifany, than several di�erent digit sets an be onstruted.1Historial remark: for the �rst proof of this result there is a researh report by M.Davio, J.P. Deshamps and C. Gossart [14℄ dated bak to 1978.



Chapter 4Analyzing expansions in Q[ipF ℄\The imaginary number is a �ne andwonderful reourse of the divine spirit,almost an amphibian between being and not being."| G. W. LeibnizIn this hapter we analyze the attrator set of speial radix systems. Usingthe notations already adopted the following questions arise: (a) What an bestated about the attrator set of an arbitrary radix system (�;M;D)? (b)How the struture of the periodi elements looks like? () It is known thatif � 2 P then the maximum of the period length of � an be estimated withthe number of lattie points overed by the disk with radius L entered atthe origin. Is there a better estimation? (d) Is there a good upper estimationfor the number of the di�erent sets C(�)? The purpose of this hapter is toanswer these questions using bases as integers in imaginary quadrati �eldsand anonial digit sets. It must be noted that the results of this setion forthe ase of Gaussian integers was proved in the author's paper [65℄ using adi�erent tehnique. We remark that there are also some results in the realquadrati �eld Q(p2) using a di�erent kind of digit set [22, 23℄.Let F = 1 or F � 2 be a square-free integer. Let Q(ipF ) be an imaginaryquadrati extension of Q, I be the set of integers in Q(ipF ). It is known,that if F 6� 3 (mod 4) then f1; Æg, while for F � 3 (mod 4) f1; !g is aninteger basis in I, where Æ = ipF; ! = (1 + ipF )=2. The lattie generatedby the basis f1; Æg will be alled the Æ-lattie and denoted by �Æ, while thelattie generated by the basis f1; !g is the !-lattie �!.



38 Analyzing expansions in Q[ipF ℄Let �1 = a+ bÆ and �2 = a+ b!, a; b 2Z, b 6= 0, E = (F + 1)=4. In theseases the orresponding linear operators in Z2 are M1 = � a �Fbb a � and M2 =� a �Ebb a+b �. Clearly, det(M1) = a2+Fb2 and det(M2) = a2+ ab+Eb2; the �rstolumn of the adjoint of the matriesM1 andM2 are [a;�b℄T and [a+b;�b℄T,aordingly. Suppose that gd(a; b) > 1. It follows from Theorem 2 that inthese ases the sets f0; 1; : : : ; a2+Fb2� 1g and f0; 1; : : : ; a2+ ab+Eb2� 1gan not be omplete residue systems modulo M1 and M2, aordingly. Henethe following lemma holds.Lemma 11. For a given � 2 Q[ipF ℄ (� = a + bÆ or � = a + b!) the setD = f0; 1; : : : ;Norm(�) � 1g is a omplete residue system if and only ifgd(a; b) = 1.Throughout this hapter we shall always assume that gd(a; b) = 1. For thesake of brevity we use the notation (x; y) for gd(x; y).4.1 Periodi elements of period length oneConsider the Æ-lattie and let � = a+ bÆ; a; b 6= 0; (a; b) = 1.Lemma 12.1. In the system (�Æ; �;D) the periodi elements of period lengthone are �j = 1�a+bÆ(1�a;b) j; j = 0; : : : ; k, where k = �(1 � a; b)(1 + 2 a�1(1�a)2+b2F )�.Proof: It follows from (1.4) that � 2 P is a periodi element of period lengthone if and only if � = d + �� for some d 2 D. It means that (1 � �)� =d 2 D, hene � = d1�� = d(1�a)(1�a)2+b2F + Æ db(1�a)2+b2F . Sine � 2 I therefore(1�a)2+ b2F j d(1�a; b). On the other hand 0 � d � a2+ b2F �1 by whihthe proof is ompleted. �Consider now the !-lattie. Let � = a + b!; b 6= 0; (a; b) = 1; N =Norm(�) = a2 + ab + b2E; E = (F + 1)=4. If E = 1, a = 0; b = �1 orE = 1; a = �b = �1 then j�j = 1, so in the following we always exludethese ases. Using the same idea as before the next lemma an be easilyproved. We leave it to the reader.Lemma 12.2. In (�!; �;D) the periodi elements of period length one are�j = 1�a�b+b!(1�a�b;b) j; j = 0; : : : ; k, where k = �(1�a�b; b)(1+ 2a+b�2(1�a)2�(1�a)b+b2E )�.Remarks. (1) Let b > 0 be �xed. From these lemmas we an alulate themaximal number of loops. In the Æ-lattie this an be ahieved by b j a� 1,a � 1, in whih ase it is b + 1 if F � 2 and b + 2 if F = 1. In the !-lattiewe have two ases depending on the value of E. If E � 2 then the maximal



4.2 Loation of periodi elements 39number of loops is b + 1 by b j a� 1; 2a + b � 2. If E = 1 then this value isb+ 2, by a = 1 or by b � 1; a = b+ 1.(2) If a is positive then the element 1�a+bÆ 2 P of period length one. Inthe !-lattie, if 2a+b � 2 then the element 1�a�b+b! 2 P of period lengthone. Moreover, if E = 1;#P = b+2 then (1� a� b)(b+1)=b+(b+1)! 2 Pof period length one.4.2 Loation of periodi elementsBefore we ontinue our analysis, we have some useful observations.(1) Let  2 I;  � 0 mod �; 1 =  + x; 2 =  + y; x; y 2 D. Then�(1) = �(2): (4.1)(2) Let � 2 I; � 2 P, that is, � = a0 + a1� + : : :+ al�1�l�1 + ��l; aj 2 D.Then � = a0 + a1� + : : :+ al�1�l�1 + ��l; aj 2 D: (4.2)It means that if � 2 P in (�; �;D) then � 2 P in (�; �;D). If � = a + bÆthen � = a�bÆ, if � = a+b! then � = a+b�b!, so it is enough to examinethe ases b � 1.(3) It follows from Lemma 3 that if � 2 P then�� = d1� + d2�2 + d3�3 + � � �for some di 2 D. It means that����� � � d1� ���� � 1Xi=2 jdijj�ji � (N � 1)j�j2 11� 1=j�j = j�j+ 1j�j = 1 + 1j�j :Hene,����� � � d1�N ���� � 1 + 1j�j : (4.3)



40 Analyzing expansions in Q[ipF ℄Lemma 13. Let � 2 I (� = a + bÆ or � = a + b!); (a; b) = 1; e 2 Z. If� j e then N = �� j e.Proof: If a+bÆ = � j e then (a+bÆ)(+dÆ) = a�bdF +(ad+b)Æ = e forsome ; d 2Z. Sine (a; b) = 1 therefore  = ap and d = �bp for some p 2 Z.Hene a2p+ b2Fp = e, whih means that a2+ b2F j e. If a+ b! = � j e then(a+ b!)(+ d!) = a� bdE + (ad+ b+ bd)! = e for some ; d 2Z. Again,sine (a; b) = 1 therefore  = (a+ b)p and d = �bp for some p 2Z. It meansthat a(a+ b)p + Eb2p = e, by whih the proof is �nished. �4.2.1 Case � = a+ ibpFLet � = U +V Æ 2 P and let �(�) = U1+V1Æ. By the de�nition of � we havethe following equations:U = d+ aU1 � bFV1 (4.4)V = bU1 + aV1; (4.5)for some d 2 D. On the other hand using (4.3) we have that������ U � d1aN �+�� V + d1bN �Æ���� � 1 + 1j�j : (4.6)Theorem 3.1. Let � = a + bÆ; f = �a; b � 1; S1 = fU + V Æ; �a+ 1 �U � 0; 0 � V � bg; S2 = fU + V Æ; 0 � U � f; 0 � V � b � 1g. Let� = U + V Æ 2 P. If a � 1 and (F � 2 or F = 1; a 6= b + 1) then � 2 S1, ifa � 1; F = 1; a = b+ 1 then � 2 S1 [ f�a+ aig, if �a � 1 then � 2 S2.Proof: Let j�j � 2. Suppose that jU j � jaj + 2. Then using (4.6) we getthat jaj+ 2 � jU j � 32 + jd1ajN � 32 + N � 1N jaj;whih is a ontradition. Therefore jU j � jaj + 1. Now suppose that F � 4and jV j � jbj+ 1. Thenb+ 1 � jV j � 32jÆj + jd1jbN � 32pF + N � 1N b;whih is a ontradition again. Hene, if F � 4 then jV j � b. In the sameway, if F = 1 or F = 2 then it is easy to see that jV j � b+ 1. On the other



4.2 Loation of periodi elements 41hand it follows from (4.6) that����� U � d1aN ���� � 32 ;therefore if a > 0 then U � 1, if a < 0 then U � �1. It is obvious as wellthat ����� V + d1bN ���� � 32jÆj ;hene if F > 2 then V � 0, if F = 1 or F = 2 then V � �1.Case a � 1. If a = 1; b = 2; F = 1 then it is easy to hek that G(P) =f0 ! 0; i ! i; 2i ! 2ig, so the theorem holds. In the following we exludethis ase. Let F = 1 or F = 2. Consider equation (4.5) and suppose thatV1 = b + 1. Then we have that V = b(a + U1) + a � b + 1, therefore eitherU1 = 0; a = 1 or U1 � �a. In the �rst ase, if a = 1 then b > 1 and by (4.4)we get that U � �bF (b+ 1) + N � 1 = �bF < �2 = �(a+ 1) whih is aontradition. It means that (b+1)Æ an not be periodi. On the other hand,if U1 = �a�1 then U � �a2�a�bF (b+1)+N�1 = �a�bF�1 < �(a+1)whih is a ontradition again. Let U1 = �a and F = 2. Then V = a � b+1,therefore if a � 3 then U � �a2 � bF (b + 1) + N � 1 = �bF � 1 �(�a + 1)F � 1 = �2a + 1 < �(a + 1) whih is not possible. If a = 2then a = b + 1, therefore b = 1 and it is easy to hek that in this aseG(P) = f�1 + Æ ! �1 + Æ; 0! 0g. If a = 1; b � 2 then U � �2b� 1 � �5whih is a ontradition again. Let U1 = �a and F = 1. Then V = a � b+1and U � �b � 1 � �a hene in both ases equality must be satis�ed, i.e.a = b + 1. But now U = U1 = �a; V = V1 = b + 1 and this is the onlyperiodi element with V = b+1. Hene if U +V Æ 2 P then V � b exept thease F = 1; a = b + 1, in whih ase U + V Æ = �a+ ai. Suppose now thatF = 1 or F = 2 and V1 = �1. Then by (4.5) we get that �1 � V = bU1� a,therefore U1 � 0. If U1 = 1 or U1 = 0; bF � 2 then U � aU1 + bF � 2whih is a ontradition. If U1 = 0; b = F = 1 then by (4.5) we have that�1 � V = �a, hene a = 1 whih is a ontradition again. Let F � 1 andsuppose that U1 = 1. Then by (4.5) we have that V = b + aV1 � b. HeneV1 = 0, but obviously 1 an not be periodi. Suppose that U1 = �a�1. Then(4.5) shows that V � �b whih is impossible. If U1 = �a then we have thatV1 � b. It follows from Lemma 13, (4.1) and from the remark of Lemma 12.2that if x 2 D then �x� 1 + � 2 B(1� �). Lastly, sine 2a+ 1 � a2 + b2F ,therefore �a+ bÆ an be periodi i� F = 1; a = b+ 1.



42 Analyzing expansions in Q[ipF ℄Case �a = f � 1. Suppose that (F = 1 or F = 2) and V1 = b+ 1. Then�1 � V = bU1 � f(b + 1) = b(U1 � f) � f , therefore f � 1 � b(U1 � f), soU1 = f = 1 or U1 � f+1. In the �rst ase it follows from (4.4) that U � �1�bF (b+1)+N�1 = �bF�1 < �1 whih is a ontradition. In the seond ase,if U1 = f+1 then U � �f2�f�bF (b+1)+N�1 = �f�bF�1 < �1 whihis not possible as well. Hene if U + V Æ 2 P then V � b. Now suppose that(F = 1 or F = 2) and V1 = �1. Then by (4.5) we get that V = bU1+ f � b,therefore U1 � 0 and if U1 = 0 then f � b, if U1 = �1 then f � 2b. If F = 2then using (4.4) we have that f+1 � U � �fU1+bF � 2f and equality holdsi� f = b = 1 whih is a ontradition. If F = 1 then f + 1 � U � �fU1 + b.Clearly, if U1 = �1 then b = f = 1, whih is impossible. If U1 = 0 thenf + 1 � b � f , and sine (f; b) = 1 therefore b = f + 1 (b = f = 1 is notvalid). Hene U = f + 1; V = f . But if U1 = f + 1; V1 = f; b = f + 1 thenV = b(f + 1) � f2 = 2f + 1 � f + 1, whih is a ontradition again. It isknown [55℄ that if f = 2; b = 1; F = 1 then G(P) = f0 ! 0g. Exluding thisase it is also lear that a+ x + bÆ 2 B(0) (x 2 D) and 2f + 2 � f2 + b2F ,therefore by (4.1) we have that V1 � b�1. If U1 = �1 then 0 � V = �b�fV1,therefore V1 < 0, whih is a ontradition. Suppose that U1 = f + 1. Thenusing (4.5) we get that V = b(f + 1)� fV1 � b� 1, therefore V1 > b, whihis a ontradition as well.If j�j < 2 then keeping in mind [52, 53℄ we have to hek only the followingases. If a = b = 1; F = 1 or F = 2 then it is easy to see that G(P) = fÆ !Æ; 0! 0g. The proof is omplete. �Lemma 14.1. If a � 1 then #P � b+ 1, if �a � 1 then #P � b.Proof: We have seen that if a � 1 and � = U + bÆ 2 P then � = 1 � �.It is obvious that d 2 B(0) for eah d 2 D. Now we shall examine theexpansion of �1. Clearly, �1 = �1 + N � �� and �� = �2a + �. Sinea � 1 therefore �2a+� = �2a+N ���+�. Moreover, 0 < N�2a < N�1and 1 � � 2 P therefore �1 2 B(1 � �). Hene the only rational integerperiodi element is 0. Considering Theorem 3.1 observe that there does notexist any � 2 S1 [ S2, (� 6= 0) for whih � � 0 (�). In virtue of (4.1) it iseasy to see that if U + V Æ 2 P then there is not any Z; (Z 6= U) for whihZ + V Æ 2 P. The proof is �nished. �



4.2 Loation of periodi elements 434.2.2 Case � = a+ b!Let � = U + V ! 2 P and let �(�) = U1 + V1!. By the de�nition of � wehave the equationsU = d+ aU1 � bEV1 (4.7)V = b(U1 + V1) + aV1; (4.8)for some d 2 D. On the other hand using (4.3) we have that������ U � d1(a+ b)N �+�� V + d1bN �!���� � 1 + 1j�j : (4.9)Theorem 3.2. Let � = a+b!; f = �a; b � 1; T1 = fU+V !; �a�b+1 �U � 0; 0 � V � b� 1g, T2 = fU + V !; 0 � U � f � b; 0 � V � b� 1g. Let� = U + V ! 2 P.If E = 1; a = 1 then � 2 T1 [ f1� �;�b� 1 + (b+ 1)!g,if E = 1; a = b+ 1 then � 2 T1 [ f1� �;�a� b� 1 + (b+ 1)!g,if E � 2 or E = 1; a > 1 and a 6= b+ 1 then � 2 T1 [ f1� �g,if 1 � f < b and 2a + b � 2 then � 2 T1 [ f1� �g,if 1 � f < b and 2a + b < 2 then � 2 T1,if f > b then � 2 T2.Proof: Let j�j � 3. Suppose that jU j � ja+ bj+2. Then using (4.9) we getthat ja+ bj+ 2 � jU j � 43 + jd1(a+ b)jN � 43 + N � 1N ja+ bj;whih is a ontradition. Therefore jU j � ja + bj + 1. Suppose that E � 2and jV j � jbj+ 1. Thenb+ 1 � jV j � 43j!j + jd1jbN � 43pE + N � 1N b;whih is a ontradition again. Hene, if E � 2 then jV j � b. In the sameway, if E = 1 then it is easy to see that jV j � b + 1. On the other hand itfollows from (4.9) that����� U � d1(a+ b)N ���� � 43 ;



44 Analyzing expansions in Q[ipF ℄therefore if a+ b > 0 then U � 1, if a+ b < 0 then U � �1. It is obvious aswell that����� V + d1bN ���� � 43j!j ;hene if E � 2 then V � 0, if E = 1 then V � �1.Case a � 1. Let E = 1. Consider equation (4.8) and suppose that V1 =b + 1. Then we have that V = b(U1 + a + b + 1) + a � b + 1. Hene eithera = 1; U1 = �b� 1 or U1 = �a� b� 1; 1 � a � b+ 1. If a = 1; U1 = �b� 1then by Lemma 12.2 we have that �b � 1 + (b + 1)! 2 P of period lengthone. If U1 = �a� b � 1 then by (4.7),(4.8) we get that 1 � V = a � b + 1and U = �a� b� 1. Now, suppose that U1 = �a� b� 1; V1 = a. In virtue of(4.8) we have that �1 � V = �b2 � b+ a2. It means that b(b+ 1) � a2 + 1,therefore a = b + 1. Hene, if a = 1 then �b � 1 + (b + 1)! 2 P, if a � 2and a = b + 1 then �a � b � 1 + (b + 1)! 2 P of period length one anddoes not exist any other periodi element X + Y ! with Y = b + 1. LetE = 1 and V1 = �1. Then by (4.8) we have that �1 � V = b(U1 � 1) � a,therefore U1 = 1; a = 1. Using (4.7) we get that U � b + 1 � 2 whihis a ontradition. Let furthermore E � 1. Sine 2a + b � 2 always holds,therefore by the remark of Lemma 12.2 the element 1 � a � b + b! 2 P ofperiod length one. Clearly, a2+ab+b2E > 2a+b+1 therefore there is not anyother element X + Y ! 2 P with Y = b. Suppose that U1 = 1 Then by (4.8)we have that 0 � V = V1(a+ b)+ b� b�1 whih is a ontradition. Supposethat U1 = �a� b� ; ( = �1; 0; 1) and 0 � V1 � b�1. Then by (4.8) we getthat V = b(�a� b� +V1)+aV1 � b(�a�1� )+ab�a = �a� b� b < 0whih is a ontradition again.Case �a = f � 1. Let E = 1. Suppose that V1 = b + 1. Then by (4.8)we have that �1 � V = b(U1 + b � f + 1) � f � b + 1, therefore eitherf = 1; U1 = �b � �4; V = �1 or U1 � f � b. In the �rst ase using (4.7) weget that U � b�b(b+1)+N�1 = �b. Suppose that U1 = �b; V1 = �1; f = 1.It follows from (4.8) that V = �b2�b+1 < �1 whih is a ontradition. In theseond ase, by (4.7) we get that U � �fU1�b(b+1)+N�1 � �b�1 < �bwhih is a ontradition as well. Hene if U + V ! 2 P then V � b. Supposethat V1 = �1. Then using (4.8) we have that �1 � V = b(U1 � 1) + f � btherefore U1 � 1. Sine U � �fU1+b therefore U1 � 0. If U1 = 0 then b�1 �f � 2b and by (4.8) we get that V = f � b. Suppose that U1 � b; V1 = f � b.Then by (4.8) we have that V = b(U1+ f � b)� f(f � b) = 2fb� f2+ b � b( � 0). It means that  = 0 or 1. Moreover, in both ases the only solution



4.2 Loation of periodi elements 45is 2b = f , whih ontradits either to (f; b) = 1 or to j�j � 3. Suppose thatU1 = 1; V1 = �1. It follows from (4.7), (4.8) that U � b� f and V = f � b.This an happen i� b = f + 1. Now, suppose that U1 = 1; V1 = b� 1. Thenusing (4.8) we get that V = b2 � f(b � 1) = b+ f , whih is not possible. Itmeans that if U + V ! 2 P then 0 � V � b. Let furthermore E � 1. Supposethat V1 = 0. Clearly, it is enough to onsider the expansion of �1. Sine�1 = �1+N ���, �� = �� 2a� b therefore if 2a+ b � 0 then �1 2 B(0),if 2a + b > 0 then �� = � � 2a � b + N � ��. Obviously 2a + b � N � 1and 1 � � = � � 2a � b + 1 therefore we an onlude that if 2a + b � 2then �1 2 B(1 � �) else �1 2 B(0). Suppose that V1 = b. It follows from(4.8) that V = b(U1 + b� f) � b. Clearly, it is enough to onsider the aseU1 = f�b+1. The previous dedution shows that U1+V1! 2 P i� 2a+b � 2.We an also notie that there is not other periodi element with V1 = b.Sub-ase f < b. Suppose that U1 = 1. Then by (4.8) we have that V =V1(b � f) + b � b, therefore V1 = 0 whih is a known ase. Suppose thatU1 = f � b�  ( = 0; 1). Now 0 � V = V1(b�f)+ b(f � b� ) � b, thereforeV1 = b;  = 0 whih is known as well. It means that if f < b and U +V ! 2 Pthen f � b+ 1 � U � 0.Sub-ase b < f . Suppose that U1 = �1. Then using (4.8) we have that0 � V = V1(b�f)� b � b therefore V1 < 0 whih is a ontradition. Supposethat U1 = f � b+1. Then 0 � V = V1(b�f)+ b(f � b+1) � b, hene V1 = bwhih is a known ase.If j�j < 3 then by Lemma 11 and by [52, 53℄ the following ases remain. Ifa = 2; b = 1; E = 1 then �4 + 2!;�2 + !; 0 2 P of period length one, if a =2; b = 1; E = 2 then �2+!; 0 2 P of period length one, if a = 1; b = 1; E = 1then �2+2!;�1+!; 0 2 P of period length one, if a = 1; b = 1; E = 2; : : : ; 6then �1 + !; 0 2 P of period length one, if a = 1; b = 2; E = 1 then�3 + 3!;�2 + 2!;�1 + !; 0 2 P of period length one, if a = �1; b =2; E = 1; 2 then !; 0 2 P of period length one, if a = �1; b = 3; E = 1then G(P) = f! ! �1 + 2! ! !; 0 ! 0g, if a = �2; b = 3; E = 1 then2!; !; 0 2 P of period length one, if a = �3; b = 2; E = 1 then 1 + !; 0 2 Pof period length one. The proof is ompleted. �



46 Analyzing expansions in Q[ipF ℄Lemma 14.2. If E = 1; a = 1 or if E = 1; a = b + 1 then #P � b + 2,if E � 2 or E = 1; a > 1; a 6= b + 1 or 1 � f < b and 2a + b � 2 then#P � b+ 1, else #P � b.Proof: Sine there does not exist any � 2 T1 (resp. T2), (� 6= 0) for whih� � 0 (�) therefore by (4.1) and by Theorem 3.2 we have that if U +V ! 2 Pthen there is not any Z; (Z 6= U) for whih Z + V ! 2 P. �4.3 Struture of periodi elementsLet b � 2, � = Æ or ! and L� = fP + Q� 2 I; (b;Q) = �g. Obviously,I = S�jbL�. Now, we shall examine the ase � < b. In virtue of (4.5) and(4.8) it is easy to see that if (V; b) = � then (V1; b) = �. Hene the funtion� maps L� to L� for eah � j b. Let b� = b=�.Theorem 4. There is a �nite deomposition of L� into L� = [l��1j=0 L(j)� forwhih if � 2 L(j)� then �(�) 2 L(j)� for every � 2 P. The length of period of� 2 P is '(b�)=l�, where ' denotes the Euler totient funtion.Proof: LetX = V=�, X1 = V1=�. Then from (4.5) we have that X = b�U1+aX1 and from (4.8) we get that X = b�(U1+V1)+aX1. Clearly, in both asesX � aX1 (mod b�); (X; b�) = (X1; b�) = 1. Let us denote by Z�b� the set ofredued residue lasses modulo b�, i.e., Z�b� = fm (mod b�); (m; b�) = 1g.Let T� denotes the yli subgroup < a > in Z�b� and let t� = ord(a). ByLagrange theorem, '(b�) = l�t�, hene the order of the fator group Z�b�=T�is l�. So we have a deompositionZ�b� = H0[H1[: : :[Hl��1, where H0 = T�.Let L(j)� = f = P + Q�;  2 L�; Q=� (mod b�) 2 Hjg. Finally, we havethe deomposition by L� = L(0)� [L(1)� [ : : :[L(l��1)� . The proof is ompleted.� Remark. Consider the graph G(P). Theorem 4 states that for a �xeda and b (b � 2) there are � (b) di�erent sets L�, in eah there exist l� ='(b�)= ordb� a yles with period length t� = ordb�. If b� is prime then thereis only one yle in L� with period length b� � 1. If a � 1 (mod b�) thenthere are only loops in L� and the number of them is '(b�).



4.4 Number of periodi elements 474.4 Number of periodi elementsWe have seen in the previous setion that for eah � j b and for eah j =0; 1; : : : ; l� � 1 there exist at least one period-yle in L(j)� . The length of aperiod in L(j)� is a multiple of t�, so it is at least t�. This means that #P �P�jb t�l�. Sine t�l� = '(b�) therefore #P � P�jb '(b=�) = b. Keeping inmind the theorems and lemmas proved in this hapter we have the followingresult.Theorem 5. Let b � 1. Let � = a+ bÆ. If a � 1 and (F � 2 or F = 1; a 6=b+ 1) then #P = b + 1, if a � 1; F = 1; a = b+ 1 then #P = b+ 2 and if�a � 1 then #P = b. Let � = a+ b!. If E = 1; a = 1 or if E = 1; a = b+ 1then #P = b + 2, if E � 2 or E = 1; a > 1; a 6= b + 1 or 1 � f < b and2a+ b � 2 then #P = b+ 1, else #P = b. If b � �1 then apply (4.2).4.5 Expansions in the Gaussian ringIn the following we analyse expansions in the ring of Gaussian integers. Let� = a+ bi. Reall that the elements of the ringZ[�℄ have the form fm+n� :m;n 2Zg. Then Z[�℄ = fu+ vbi : u; v 2Zg = f� 2Z[i℄ : b j Im(�)g.Theorem 6. Let � = a+ bi; a = �f; f > 0; (f; b) = 1. Then Z[�℄ = B(0).Proof: Let N = ��. First let � be an arbitrary Gaussian integer suh that� 2 B(0). It means that � = b0 + b1�+ : : :+ bl�l for some l 2 N and bj 2 D.Clearly, b j Im(�j). Sine D � N0 therefore b j Im(�). By the previous remarkwe have that � 2Z[�℄, hene B(0) �Z[�℄. Suppose now that � 2Z[�℄. Then� = m+ n�: (4.10)On the other hand the expansion of �1 is�1 = N � 1 + �� = N � 1 + 2f� + �2: (4.11)Sine 1; N�1; 2f 2 D therefore�1 has the �nite expansion (4.11). Equations(4.10) and (4.11) mean that � has also an expansion of the form� = u0 + u1� + u2�2 + u3�3; (4.12)where uj � 0 (j = 0; 1; 2; 3). The idea of the following lemma is originatedto I. K�atai and J. Szab�o [55℄.



48 Analyzing expansions in Q[ipF ℄Lemma 15. (Clearing Lemma) Suppose that � has the following expansion:� = u0 + u1� + : : :+ um�m; (4.13)where uj � 0 (j = 0; : : : ;m). Let T =Pmj=0 uj. Then for every s � 0 thereexists an expansion � = v0+v1�+ : : :+vs�s+ : : :+vl�l suh thatPlj=0 vj = Tand 0 � vj < N (j = 0; 1; : : : ; s).Proof: First we shall examine the expansion of N = a2 + b2.N = (�2f � �)� = �(N � 2f)� �� � ��� == (N � 2f)� + (��� 1)�2 = (N � 2f)� + (2f � 1)�2 + �3: (4.14)Observe that N�2f; 2f�1; 1 2 D and the sum of the digits of the expansionin (4.14) is N . Clearly, if u0 < N in (4.13) then the lemma holds for s = 0.In the opposite ase, if N � u0, then let u0 = pN + q; p � 1; 0 � q < N .Let us take u0 = q + p�0 + (N � 2f)� + (2f � 1)�2 + �3� into the equation(4.13). Then we have that � = u00 + u01� + : : :+ u0m�m0 ; where u00 = q; u01 =u1 + p(N � 2f); u02 = u2 + p(2f � 1); u03 = u3 + p; u0j = uj (j � 4).Observe thatPu0j = T , so the sum of the digits does not hange in the newexpansion. Hene, the ase s = 0 is satis�ed. We an ontinue the proess forj = 1; 2; : : : ; s. �Now, we an apply the Clearing Lemma for the expansion of � in (4.12).Let T0 = T = u0 + u1 + u2 + u3. If u0 � N then by the lemma we havethat � = v0 + ��1; 0 � v0 < N; �1 = y1 + y2� + : : : + ym�m; yj � 0. LetT1 = T0 � v0. Clearly, T1 = y1 + : : : + ym. Applying the Clearing Lemmaagain and again we have a monotonially dereasing sequene T0; T1; T2; : : : ,and expansions �; �1; �2; : : : . If there exists an h 2 N suh that Th = 0 thenthe expansion of � is �nite having the digits from the set D, so Theorem 6is proved. If suh an h does not exist then there is a suitable large h0 suhthat Th0 = Th0+1 = : : : = r > 0. But in this ase �h0 = ��h0+1 = �2�h0+2 =: : : = �j�h0+j = : : : , therefore  := � � (v0+ v1�+ : : :+ vh0�h0) = �h0+t�h0+tfor every t 2 N. Observe that �h0+t j  (t = 1; 2; : : : ) and this holds only if = 0. This means that � has a �nite expansion with digits from the set D.The proof of Theorem 6 is omplete. �



Chapter 5Geometry of expansions\The mathematial sienes partiularly exhibitorder, symmetry and limitation; and theseare the greatest forms of the beautiful."| AristotelesIn this hapter we investigate the set of frations of radix systems andlattie tilings with these sets.5.1 Set of frations HIn setion 2 for a given radix system (�;M;D) the set of frations was de�nedas H = F(M;D) = fP1n=1M�nan : an 2 Dg � Rk. Reall that P denotesthe set of periodi elements. Let furthermore �l be the set of lattie points ofform a0+Ma1+� � �+M lal; (ai 2 D). ThenD = �0 � �1 � � � � . Let � = S�l.Thus, � is the set of those lattie points z whih have �nite expansions inthe radix system (�;M;D). Let � be the Lebesgue measure on Rk.Assertion 9. The fundamental domain H has the following properties: (i) His ompat. (ii) H has interior points. More spei�ally Sp2P(p+H) ontainsa neighborhood of the origin. (iii) Rk = S(H + �) (iv) For every x 2 Rkthere is a z 2 � and h 2 H suh that x = z + h. (v) �(H) > 0. (vi)�(H + z1 \H + z2) = 0 for all z1 6= z2 2 �.Proof:Conerning (i) most of the proofs applies Cantor's diagonal priniple.



50 Geometry of expansionsNow a di�erent method will be given. Let F � H be in�nite. For eah digita 2 D letF (a) := (x 2 F : x = 1Xj=1 M�jdj ; dj 2 D; d1 = a) :Then we have F = Sa2D F (a). Sine F is in�nite, at least one of the setsF (a) is also in�nite. Choose a1 2 D so that F (a1) is in�nite. Then letF (a1; a) := (x 2 F : x = 1Xj=1 M�jdj ; dj 2 D; d1 = a1; d2 = a) :There is an a2 2 D so that F (a1; a2) is in�nite. We may ontinue this proessto obtain a sequene (aj) 2 D so that F (a1; a2; : : : ; an) is in�nite for alln. Then in the metri spae Rk the vetor P1j=1M�jaj is an aumulationpoint of the set F . This shows that H is ompat. Conerning (ii) the proofan be found in [107, Theorem 1℄ or in [83, Theorem 1.1℄. The equivalentassertions (iii) and (iv) are easy onsequenes of (ii). Sine H is ompat,it is measurable, and �(H) = 0 would imply that �(Rk) = 0. Therefore�(H) > 0, whih was stated in (v). Conerning (vi) suppose that z1; z2 2 �and z1 6= z2. Then�(H) j detM jl= �(M lH) � [z2�l�1 �(H + z) =j detM jl �(H):If there is a ouple z1; z2 2 �l�1; z1 6= z2 for whih �(H + z1 \H + z2) > 0,then the \less than or equal to" an be hanged to \less than", whih isimpossible. �Sine H is ompat, it is possible to draw it. In setion 2.3 we noted that H isself-aÆne with respet to the linear ontration maps fa : Rk ! Rk; fa(z) =M�1(z+a); a 2 D and H is the unique attrator of the iterated funtion sys-tem ffa : a 2 Dg. A omputer an be used to generate rapidly the attratorof an iterated funtion system by repeatedly applying the maps of the sys-tem with equal probabilities and plotting the resulting points. The same anbe ahieved by plotting the points of the set Hl = fPli=1M�iai : ai 2 Dg.However, this is not the best method beause of the size limitations of thegraphis devie. Hereinafter we follow the method of B. Mandelbrot [85℄.



5.2 Just touhing overings and the boundary of H 51Esape Algorithm for plotting the set H.Consider the radix system (�;M;D). For eah digit a 2 D de�ne the funtionga : Rk ! Rk by ga(z) = Mz� a. Let K(H) be a bounded subset of Rk thatontains H and easy to deide whether an arbitrary y 2 Rk is in K(H). Suha set | a k-dimensional retangle | was onstruted in hapter 2. Givenany number z 2 Rk onstrut the sequene of sets S0; S1; S2; : : : as follows.Let the initial set S0 be fzg, if z 2 K(H) or empty otherwise. LetSj = fgai(z) : z 2 Sj�1; ai 2 D; gai(z) 2 K(H)g:Stop the algorithm, if the set Sj beomes empty or the number of sets jreahes some predetermined limit l. If any of the sets Sj are empty, then zdoes not lie in the set H. If l is large and Sl is non-empty, then z either liesin H, or it is very lose to it. A point x in the set Sl is of the form x = gal Ægal�1 Æ : : : ga1(z), where eah ai 2 D and z is approximatelyPli=1M�iai 2 H.If Sj is the �rst empty set, then j is a measure of time taken by z to esapefrom K(H) under iterations of maps ga.Applying the Esape Algorithm for all the points of a ompat regionof Rk (aording to the graphis devie) one an olor these points via theiresape time j. Plenty of pitures of fundamental sets was generated by theauthor in the Gaussian ring. These pitures had muh more suess in theexhibition CeBIT'93 than the mathematis behind them [62℄. Some of thosepitures an be seen in the home page of my projet leader1. A few funda-mental sets an be found in appendix B.5.2 Just touhing overings and the bound-ary of HIn the previous setion we analyzed the fundamental domain H and thetranslates of H to the points of �. It is easily seen that the elements of � arenot neessary losed for the addition. Clearly, if (�;M;D) is a number systemthen � = �, onsequently �(H + z1 \ H + z2) = 0 holds for eah z1; z2 2�; z1 6= z2. This suggest the following de�nition: the radix system (�;M;D)is alled a just touhing overing (JTC) system, if �(H + z1 \ H + z2) = 0holds for eah z1; z2 2 �; z1 6= z2.1http://math.uni-paderborn.de/�k-heinz



52 Geometry of expansionsLet S denote the set of those elements 0 6= z of � for whihH\(H+z) 6= ;.I. K�atai and o-workers proved [40℄ that the overing S(H+�) = Rk is JTCif and only if ��� = �, or equivalently, a overing is JTC i� for eah elementz 2 S may be written as z =Pmj=0M jbj with bj 2 B := D �D.In order to examine the points of �H (boundary of H), let us introduethe set B(z) = (z +H) \ H; z 2 �. Clearly, S is a set of those z 2 � n f0gfor whih B(z) is nonempty. It is obvious that B(z) is nonempty i� z has anexpansion of the form z = P1i=1M�ibi, where bi 2 B. Hene S � H �H,therefore kzk � 2L for all z 2 S. In [40, 41℄ it was suggested to use thetransition graph G(S).Algorithm for onstruting the Transition Graph G(S).Let K(H) be the k-dimensional retangle entered at the origin determinedin hapter 2 and let U = 2K(H). Clearly, if z 2 S then z 2 U . For allz 2 �\U; z 6= 0 alulate zb = Mz�b, where b 2 B. Let m(b) be the numberof possibilities to write b 2 B in the form b = ai � aj; (ai; aj 2 D). If zb 2 Uthen diretm(b) edges with labels ai from z to zb. Delete z if no edge leaves itand delete all edges that end in z. Continue this proess until no appropriatez remains. The resulting graph is G(S). The proess terminates beause thenumber of nodes is �nite.Observe that the graph G(S) has symmetry properties: if the graph ontainsan edge from x to y with label a, then there is an edge from �z to �y with�a. It is also not hard to see, that every node in the graph G(S) has inomingedge(s). The transition graph is a tool for omputing �H without omputingthe interior points.Algorithm for omputing the boundary of H.Let start from an arbitrary node y 2 G(S), and walk on the transition graphwriting down the randomly hosen sequene of labels a1; a2; : : : . Then, z 2B(y) i� z =P1j=1M�jaj. From omputational point of view it is enough togenerate some �nite steps (depending on the graphis devie) of the walk.Repeat the proess.The transition graph G(S) an also be used to deide whether the radixsystem (�;M;D) is a JTC system. The property holds i� for eah node zthere is a path � in G(S) for whih i(�) 2 B; t(�) = z. Here i(�) and t(�)denote the initial and terminal node of the path �.



5.3 Hausdor� dimension of �H 535.3 Hausdor� dimension of �HFirst, we reall the di�erent notions of dimensions whih are used in thishapter. The Hausdor� dimension of a Borel set E is de�ned as follows:let fUig1i=1 be an "-over of E, i.e. E � S1i=1 Ui and diam(Ui) < ", wherediam(Ui) denotes the diameter of Ui. Then the s-dimensional Hausdor� meas-ure of E is given byHs(E) = lim"!0 � inf � 1Xi=1 diam(Ui)s : fUig1i=1 is an "-over of E	�:The Hausdor� dimension of E is now de�ned bydimH(E) = inffs : Hs(E) = 0g = supfs : Hs(E) =1g:There are several diÆulties in evaluating the Hausdor� dimension in a on-rete ase. The box-ounting dimension simpli�es this problem by replaingthe terms diam(Ui)s by the terms Æs in Rk. A formal de�nition of the box di-mension dimB of any bounded subset E of Rk proeed as follows. Let NÆ(E)be the smallest number of sets of diameter at most Æ whih over E. SineE is bounded we an always assume that the over is �nite. ThendimB(E) = limÆ!0 logNÆ(E)log 1=Æ ;provided that the limit exists. If it exists and is not an integer, then E issaid to have fratal dimension. It may take non-integral values, but yieldsthe usual dimension for the most ordinary spaes. A fratal set is onewhose Hausdor� dimension is stritly greater than its topologial dimen-sion. The term fratal was introdued by the mathematiian Benoit Mandel-brot. Examples of fratal sets are the Cantor set and the boundary of Koh'ssnowake. Unfortunately, it is not true that the Hausdor� dimension and thebox dimension are always the same. But it is true that dimH(E) � dimB(E).For further disussion of these and other kinds of dimensions we refer to[17, 18, 19℄.Seond, a brief survey will be given for the onept of graph self-similaritywhih was introdued by R. D. Mauldin and S. C. Williams [87, 17℄, and byFaloner [18℄. A direted multi-graph onsists of two (�nite) sets V and E, andtwo funtions i : E ! V and t : E ! V . The elements of V are alled verties



54 Geometry of expansionsor nodes; the elements of E are alled edges or arrows. For an edge e, we alli(e) the initial vertex of e, and we all t(e) the terminal vertex of e. We willoften write Euv for the set of all edges e with i(e) = u and t(e) = v. A diretedmulti-graph is strongly onneted i�, for eah pair u; v of verties, there is apath from u to v. A path in a direted multi-graph is a sequene of edges, takenin some order. A path will often be identi�ed with a string made up of thelabels of the edges. Let � be a metri on Rk. A mapping f : Rk ! Rk is alleda ontration if �(f(x); f(y)) � �(x; y) (x; y 2 Rk) holds for some onstant < 1. We all the in�mum of these onstants , for whih the inequalityholds, the ratio of the ontration f . A ontration, whih maps any subsetof Rk to a geometrially similar set is alled a ontrating similarity.A direted multi-graph (V;E; i; t) together with a funtion r : E !(0;1), will be alled a Mauldin-Williams graph. Suppose that (V;E; i; t; r) isa Mauldin-Williams graph. An iterated funtion system realizing the graphis made up of metri spaes Sv, one for eah vertex v, and similarities fe, onefor eah edge e 2 E, suh that fe : Sv ! Su if e 2 Euv, and fe has ratio r(e).An invariant list for suh an iterated funtion system is a list of nonemptyompat sets Kv � Sv, one for eah node v 2 V , suh thatKu = [v2V;e2Euv fe[Kv℄for all u 2 V . Eah of the nonempty ompat sets Kv satisfying suh equa-tions will be said to have graph self-similarity. A Mauldin-Williams graph(V;E; i; t; r) will be alled stritly ontrating if the onditions r(e) < 1 aresatis�ed, in whih ase there is a unique list (Kv)v2V of nonempty ompatsets (Kv � Sv) satisfying the previous equation.A non-negative square matrix M is alled primitive if M j > 0 for somepositive integer j. A square matrix is alled reduible if there exist a per-mutation that puts into the form M� = �M11 M120 M22 �, where M11 and M22are square matries. Otherwise M is alled irreduible. An irreduible non-negative matrix M always has a positive eigenvalue �. The moduli of all theother eigenvalues do not exeed �. Moreover, there is an eigenvetor assoi-ated to � with all positive entries. Let a Mauldin-Williams graph be given.For all t � 0; u; v 2 V de�neAuv(t) = Xe2Euv r(e)t



5.3 Hausdor� dimension of �H 55and the matrix A(t) by A(t)[u; v℄ = Auv(t). Then, by the Perron-Frobeniustheorem, the spetral radius of A(t) takes the value 1 for a uniquely deter-mined value of t = t0. This t0 is alled the graph dimension of the Maul-din-Williams graph. Consider a strongly onneted Mauldin-Williams graph(V;E; i; t; r). When the invariant set list is found, eah of the sets will besimilar to a subset of eah of the others. So they will all have the same Haus-dor� dimension. In order to determine the graph dimension, �rst we need to�nd the proper sort of Perron numbers. If s is a positive real number, thenthe s-dimensional Perron numbers for the graph are positive numbers qv, onefor eah vertex v 2 V , suh thatqsu = Xv2V;e2Euv r(e)s � qsv:There is exatly one positive number s suh that s-dimensional Perron num-bers exist. This unique number is equal to the graph dimension of the Maul-din-Williams graph.If (fe) is a realization of (V;E; i; t; r) in Rk, then we say it satis�es thegraph open set ondition i� there exist nonempty open sets Uv, one for eahv 2 V , with fe[Uv℄ � Uu for all u; v 2 V and e 2 Euv; and fe[Uv℄\fe0 [Uv0℄ = ;for all u; v; v0 2 V; e 2 Euv; e0 2 Euv0 with e 6= e0.The graph dimension an be used to alulate an upper bound of theHausdor� dimension of the sets of the invariant list. Let (V;E; i; t; r) be astrongly onneted ontrating Mauldin-Williams graph desribing the graphself-similarity of a list (Kv)v2V of nonempty ompat sets in Rk. Let s > 0 besuh that s-dimensional Perron numbers exist. Then dimKv � s for all v. If,in addition, the realization satis�es the open set ondition, then dimKv = s.How an we ompute the graph dimension if the graph is not stritlyonneted? Let SC(V ) be the set of all stritly onneted omponents ofV . Let s be the graph dimension of V and sW be the graph dimension ofW 2 SC(V ). Then s = maxW2SC(V ) sW . Let furthermore K = Sv2V Kv.Then dimK � s, and, if the open set ondition is satis�ed then equalityholds [87℄.Suppose that the all the eigenvalues of M are distint and greater thanone in module. Let us examine the transition graph G(S) from similarityaspets. First, let us de�ne the sets B(z) for eah node z. Clearly, the setsB(z) are ompat for all z. Suppose that the graph ontains some edges fromx to y with labels di. Let us de�ne the maps fdi : B(y) ! B(x); fdi(z) =M�1(z + di) for eah label, where di 2 D. We will prove that fdi(B(y)) �



56 Geometry of expansionsB(x). Indeed, if z 2 B(x), then z an be written as z = P1j=1M�jaj =x + P1j=1M�jbj (aj; bj 2 D). Thus, x = P1j=1M�j(aj � bj). Thereforey = Mx � (a1 � b1) = P1j=1M�j(aj+1 � bj+1) where Æ = a1 � b1 2 B.It means that if z1 = P1j=1M�jaj+1 = y +P1j=1M�jbj+1 2 B(y) thenfa1(z1) = z 2 B(x). So we have thatB(x) = [y2V;e2Exy fe[B(y)℄;in other words the sets B(z) form an invariant list of the iterated funtionsystem ffeg. Sine the mappings fdi are ontrating similarities, the graphG(S) is a stritly ontrating Mauldin-Williams graph so its graph dimensionan be determined by the previously desribed way.Unfortunately, in most ases the open set ondition does not hold, so theHausdor� dimension is hard to determine. But under ertain irumstanesthe Hausdor� dimension of �H is equal to its box ounting dimension andthe open set ondition satis�es. Reall that a �nite direted graph is primi-tive, if it is strongly onneted and the greatest ommon divisor of the lengthof its losed direted walks is one [9℄. In this ase the aompanying matrixof G(S) has a unique (positive real) eigenvalue of largest modulus. The fol-lowing theorem was proved in [90℄. Let (�;M;D) a JTC radix system andassume that all eigenvalues of M have the same modulus �. Assume fur-ther that the assoiated transition graph is primitive and denote by �maxthe unique eigenvalue of largest modulus of its aompanying matrix. Thenthe Hausdor� dimension of �H is equal its box dimension and is given bys = log�maxlog� . Moreover, if the transition graph G(S) is not primitive but thereis a primitive subgraph of G(S) whih has the same maximal eigenvalue asG(S) then their graph dimension are equal and the Hausdor� dimension of�H an be omputed in the above desribed way.If the moduli of the eigenvalues of M are not all the same then using thegraph G(S) the box dimension of �H an be omputed. In real quadrati�elds using anonial digit sets it was alulated by J. M. Thuswaldner [104℄.5.4 Just touhing overings in speial asesLet D = fa1; a2; : : : ; aNg � Z, where ai � i (mod N) and let B = D �D.The set of integers expressible in the formPli=0 biN i, for some l with bi 2 B,



5.4 Just touhing overings in speial ases 57is denoted by ZB. Then ZB = dZ i� (a1 � aN ; a2 � aN ; : : : ; aN � aN) = d.Assume that aN = 0 Then ZB =Zi� (a1; a2; : : : ; aN) = 1. This theorem wasonjeted by I. K�atai and was proved by G. E. Mihalek for N = 3 in [88℄and for arbitrary N in [89℄. Consider now the Gaussian integers Z[i℄.Proposition 1. Let � = a+ bi 2 Z[i℄; N = Norm(�) = a2 + b2 � 2; (a; b) =1;D = f0; 1; : : : ; N � 1g. The system (Z[i℄; �;D) is JTC system if and onlyif b = �1. In these ases the Hausdor� dimensions of boundaries of thefundamental domains are log(�max)log(1=(a2+1)) , where �max is the largest (positive) realroot of the polynomial (a2 + 1)z3 + (a2 � 2a+ 1)z2 + (2a� 1)z � 1.Proof: Let D � Zbe an arbitrary omplete residue system modulo �. If� 2 Z[i℄ an be represented in the form � = Pli=0 �idi (di 2 B = D � D)then b j Im(�), sine b j Im(�l) (l = 1; 2; : : : ). Hene the JTC propertyimplies that b = �1, i.e. � is of form � = a� i. Observe that if (Z[i℄; �;D) isJTC radix system then (Z[i℄; �;D) is as well and the Hausdor� dimensionsof boundaries of their fundamental domains are the same. Hene it is enoughto examine the ase b = 1. But due to [55℄ we know that if a � 1 then(Z[i℄;�a � i;D) is a number system, therefore JTC system. This impliesthat (Z[i℄; a+ i;D) is also a JTC system with the same Hausdor� dimensionsof their �H. W. Gilbert omputed the box dimensions of the boundaries offundamental domains of the number systems (Z[i℄;�a + i;D) (a 2 N) bysuessive approximations [31℄. S. Ito omputed the Hausdor� dimensionsof �H for all anonial number systems in imaginary quadrati �elds usinggroup endomorphism [44℄. Moreover, if � is a non-real quadrati integer andD is a anonial digit set modulo � then I. K�ornyei determined the Hausdor�dimension of �H [80℄ using the linear reursive method of K-H. Indlekofer,I. K�atai and P. Rask�o [40℄. So the proposition is essentially proved. But theaim of this setion is to provide a proof using graph onstrutions, whih isdi�erent from the above mentioned methods.Let a � 5. In order to ompute the transition graph we follow the methodof setion 2.1. The orresponding matrix belonging to � = a+i isM = ( a �11 a ).Then kM�1k1 = � a=(a2 + 1) 1=(a2 + 1)�1=(a2 + 1) a=(a2 + 1)�1 = a+ 1a2 + 1 < 1where k � k1 is the matrix norm indued by the maximum norm of R2.



58 Geometry of expansionsTherefore (I �M�1)�1 exists and� = 11� kM�1k1 = a2 + 1a(a� 1) � k(I �M�1)�1k1;where I is the two dimensional identity matrix. Let v be the �rst olumnvetor of M�1 and let � = vd = [�1(d); �2(d)℄T (d 2Z). In this ase�1 = maxd2D j�1(d)j = a3a2 + 1 < a and �2 = maxd2D j�2(d)j = a2a2 + 1 < 1:This means that��1 = a2a� 1 < a+ 2 and ��2 = a2a(a� 1) < 2:Sine we are interested in only the integers in H therefore we an onludethat if  2 H \Z[i℄ then jRe() j � a + 1 and j Im() j � 1. Obviously, if 2 G(S) thenjRe() j � 2(a + 1) and (5.1)j Im() j � 2: (5.2)Suppose that there is an edge in G(S) from X+Y i to A+Bi. Then A+Bi =(a+ i)(X + Y i)� Æ, whereÆ 2 B = f�a2; : : : ; a2g: (5.3)Hene, using (5.1),(5.2) we have the equationsA = aX � Y � Æ; jA j � 2(a+ 1) (5.4)B = aY +X; jB j � 2: (5.5)One an immediately observe that jY j � 3 ontradits to (5.5), thereforejY j � 2. Let Y = 2. Using equation (5.5) we have the ases X = �2a �2; : : : ;�2a+2. Now, equations (5.3),(5.4) show that none of them are valid.The same an be stated about Y = �2. Hene jY j � 1 and we an modifyequation (5.5) toB = aY +X; jB j � 1: (5.6)



5.4 Just touhing overings in speial ases 59Case Y = 0. Equation (5.6) shows that in this ase jXj � 1. Let X = 1.In virtue of (5.3),(5.4),(5.6) and by the symmetry property of the G(S) wehave some andidates for the nodes of G(S):1! � + i; �1! �� � i; � = �2(a+ 1); : : : ; 2(a+ 1): (5.7)Case Y = �1. In virtue of (5.6) we have the asesY = 1;X = �a� 1;�a;�a+ 1; Y = �1;X = a� 1; a; a+ 1: (5.8)If X = �a� 1 then by equations (5.4) and (5.6) we get new andidates forthe nodes of G(S):�a� 1 + i! � � i; � = �2(a+ 1); : : : ;�(a+ 1):It follows from (5.7) and (5.8) that the only valid ase ould be �a�1+ i!�a� 1� i, but it obviously an not happen. Using the symmetry of G(S) itis easy to see that a+ 1 � i! a+ 1 + i an not happen as well. If X = �athen by using the result of the ase Y = 0 we have that�a+ i! �1; a� i! 1: (5.9)Finally, if X = �a+ 1 then we have the andidates�a+ 1 + i! � + i; � = �a;�a+ 1; (5.10)and if X = a� 1 thena� 1� i! � � i; � = a; a� 1: (5.11)Using equations (5.7),(5.9),(5.10) and (5.11) we an onstrut the graph~G(S): a� 1 � i�� ����? a� i�� �� 1�� ���a+ i�� ���1�� �� �a+ 1 + i�� ����66 ?-� -���������3 ��������+2a� 1 2a� 1(a� 1)2 + 1 (a� 1)2 + 1(a� 1)2 (a� 1)22a 2aFigure 1



60 Geometry of expansionsThe di�erene from G(S) is that the labels of the graph ~G(S) show the m(Æ)multipliities of the edges of G(S), whih an be easily get from equation(5.4). The same graph an be onstruted also for the ases a = 3; 4. TheJTC property learly holds. In ase of a = 2 the graph G(S) is a bit di�erentbut the JTC property still true. In this ase the only strongly onnetedomponent of ~G(S) having more than one node is the graph above. Theremaining nodes does not inuene the graph dimension. If a = 1 then thegraph ~G(S) is again the same by aneling two edges labeled above with(a� 1)2.Sine the eigenvalues of M� = � a �11 �a � have the same moduli (a2 + 1)1=2,using the graph ~G(S) we an alulate the Hausdor� dimension of �H forall a � 1. Solving the system of equations x1 = (2a � 1)�x1 + 2a�x2; x2 =�x3; x3 = (a � 1)2�x5 + ((a � 1)2 + 1)�x6; x4 = ((a � 1)2 + 1)�x1 + (a �1)2�x2; x5 = �x4; x6 = (2a � 1)�x6 + 2a�x5 by substituting x1 = 1 we havethat � is the root of the polynomial (a2+1)z3+(a2�2a+1)z2+(2a�1)z�1.Let us denote by �max the largest (positive) real root of this polynomial. Thenthe Hausdor� dimension of �H is log(�max)log(1=(a2+1)) . �Remarks. (1) Reall that a metri spae (X; d) is onneted if it annotbe expressed as the union of two disjoint nonempty losed subsets. A subsetS � X is onneted if the metri spae (S; d) is onneted. S is totallydisonneted provided that the only nonempty onneted subsets of S aresubsets onsisting of single points. Let S � X be a subset of a metri spae(X; d). Then S is arwise onneted if, for eah pair of points x and y inS, there is a ontinuous funtion f : [0; 1℄ ! S, from the metri spae([0; 1℄;Eulidean) into the metri spae (S; d) suh that f(0) = x and f(1) =y. S is arwise disonneted if it is not arwise onnented. There is a brand-new result of P. Talab�er (personal ommuniation) who presented a simplemethod of proving the onnetedness of fundamental domains. As a speialase, using anonial digit sets, if 1 2 G(S) then F(M;D) is always onneted(see also [38℄). Moreover, our onstrution shows that in ase of Gaussianintegers using anonial digit sets the ondition is also suÆient. Hene, wehave that in the Gaussian ring using anonial digit sets all fundamentaldomains of JTC systems are onneted. We note that in this ase a strongerresult | the arwise onnetedness | is known due to S. Akiyama and J. M.Thuswaldner [2℄.



5.5 Tiles and tilings 61(2) Let D1 be the anonial digit set f0; 1; : : : ; N � 1g and D2 be thesymmetri digit set fb(�N + 2)=2; : : : ; bN=2g. Sine B = D1�D1 is equaltoD2�D2 therefore the JTC property of (Z[i℄; �;D1) and (Z[i℄; �;D2) holds atexatly the same time. Moreover, the Hausdor� dimensions of the boundariesof their fundamental domains are the same. In ontrast to the number systemproperty, for the Gaussian integer � = a + bi the system (Z[i℄; �;D2) is anumber system i� b = �1 and a 6= 0; 1; 2;�2; 3 (see [49℄).Consider now the radix system de�ned by the ns-polynomial (iv) in Asser-tion 6 with anonial digit set. Let k be �xed. Suppose that the assoiatedtransition graph is primitive. Then, aording to the results of [90℄ and ofsetion 3.2.4 it is possible to determine the Hausdor� dimension of �H.5.5 Tiles and tilingsA tiling is a olletion T of nonempty ompat subsets of Rk, alled tiles,suh that (1) eah tile is the losure of its interior, (2) STi2T Ti = Rk and(3) the distint tiles are non-overlapping. Non-overlapping means that theinteriors are disjoint. A tiling is a periodi tiling if it is invariant under klinearly independent translations, non-periodi otherwise. A lattie tiling is atiling by translates of a single tile to the points of a lattie. Note that lattietilings are periodi tilings. A self-repliating tiling is a tiling T by translatesof a single tile suh that there is a linear expansive map A with the followingproperty. For eah tile T 2 T the image of A(T ) is tiled by opies of tilesin T . It must be noted that there are self-repliating tilings whih are notlattie tilings. Let an example be the following in R (see [5, 82, 83℄). LetTi = [i; i+1℄[ [i+2; i+3℄; i 2Zand let A(T ) = 4T . Clearly, A is expansiveand A(Tj) = T4j [ T4j+1 [ T4j+8 [ T4j+9. It is a periodi tiling with periodlattie 4Zbut it is not a lattie tiling.A self-aÆne tile in Rk is a nonempty ompat set T of positive Lebesguemeasure with A(T ) = Sa2D(a+T ), where A is an expanding k�k real matrixwith jdet(A)j = t an integer, D = fa1; : : : ; atg � Rk is a set of t digits andthe union is non-overlapping. We remark that for any expanding matrix Aand �nite set D in Rk the previous equation determines a unique ompatset T , the set of numbers with zero integer part. However, uniqueness doesnot hold in the onverse diretion. In fat, any self-aÆne tile T arises fromin�nitely many di�erent pairs ( ~A; ~D). Self-aÆne tiles arises in many topis,see [5, 107, 108℄ and the referenes there. A self-similar tile is a speial kind



62 Geometry of expansionsof self-aÆne tile, for whih the matrix A is a similarity, i.e., A = �Q where� > 1 and Q is an orthogonal matrix. Self-similar tiles are somewhat easierto analyze than general self-aÆne tiles. Self-similar tiles are sometimes alledrep-tiles.There is a nie onnetions between self-repliating tilings and self-aÆnetiles. R. Kenyon proved [58℄ that all the tiles in any self-repliating tiling areneessarily self-aÆne tiles H = F(M;D) for some digit set D. Conversely,every self-aÆne tile H serves as a prototile for some self-repliating tiling[82℄. The following result is the Tiling theorem of self-aÆne tiles [83℄. IfH = F(M;D) is a self-aÆne tile ontaining an open set then there exists aset L � � � � suh that L +H tiles Rk. Note, that no lattie is mentionedin the theorem. On the other hand, if L = � = ��� then (�;M;D) has theJTC property.Reall that the set � is M -invariant, i.e., M(�) � �. In the same way,� � � is M -invariant as well. Let Z(M;D) denote the smallest M -invariantlattie ontaining B = D �D. A self-aÆne tile H = F(M;D) has a lattietiling with the lattie Z(M;D) if and only if �� � =Z(M;D) [83℄.It is easy to see the onnetion between JTC systems and self-aÆne lattietilings. With the notations already adopted we have the following result.Assertion 9. If (�;M;D) is a JTC system then (1) the fundamental domainH is a self-aÆne tile with 0 2 int(H), (2) the tiling is a lattie tiling and (3)� is the smallest M-invariant lattie ontaining D �D.Summarizing the results of this hapter with respet to the tiling prop-erties an algorithm was provided that determines for a given radix system(�;M;D) whether or not it is a JTC system. Reall that in hapter 3 num-ber system onstrutions, hene, onstrutions of self-aÆne lattie tilingswere disussed. More details about existene, struture and tiling propertiesof general self-aÆne tiles an be found in the paper of J. C. Lagarias and Y.Wang [83℄. We end this hapter with an interesting onjeture of A. Vine:if (�;M;D) is a radix system then there is some lattie tiling using onlytranslates of H = F(M;D).



Chapter 6Summary and furtherdiretions\The art of asking the right questions in mathematisis more important than the art of solving them."| G. CantorIn this hapter we summarize the results of this work, enumerate someopen problems and provide further diretions related to number expansionsin latties.The results are as follows:A. Conerning the examination of number expansions:1 In ase of a given endomorphismM : �! � and digit set D � �; 0 2D a neessary and a suÆient ondition were given for satisfying theunique representation property (Assertions 1 and 2).2 It was stated that a basis transformation in � does not hange thenumber system property (Assertion 3).3 Generating the digits of an expansion the funtion � was onsidered.It was observed that the path z;�(z);�2(z) : : : is ultimately periodifor all z 2 �. The set of periodi elements were denoted by P. Withthe aid of the funtion � the attrator set G(P) of � was de�ned. Itwas proved that the radix system (�;M;D) is a number system if andonly if G(P) = f0! 0g (Assertion 4).



64 Summary and further diretions4 It was shown that for any radix system (�;M;D) the lattie points arelassi�ed by the attrator set G(P), i.e. two lattie points x; y 2 � arein the same lass if and only if �l1(x) = �l2(y) for some non-negativeintegers l1; l2. In order to obtain the lassi�ation it was proved thatall the periodi elements are inside a ompat set �H where H is theset of frations (or fundamental domain) in Rk. Determining the lattiepoints inside the fundamental domain two approahes (a overing on-strution and an operator norm onstrution) were used (Theorem 1).Then, applying an iterated funtion system, an e�etive algorithm waspresented in order to perform the lassi�ation (Classifiation Al-gorithm).5 Methods were developed for the fast omputation of the funtion �(setion 2.4).6 For the length of expansion of an arbitrary z 2 � an estimate wasproved (Assertion 5).B. Conerning number system onstrutions:1 It was introdued the notion of j-anonial number systems and equiv-alent statements were proved for the existene of j-anonial ompleteresidue systems (Theorem 2).2 It was stated that number expansions in algebrai number �elds are spe-ial ases of number expansions in Zk. In these ases, the linear trans-formation M has a simple form in the appropriate power basis, namelythe Frobenius matrix of a moni irreduible polynomial over Z[x℄. Itwas shown how to extend this onept to arbitrary moni polynomi-als over Z[x℄ obtaining anonial radix onstrutions. We alled thesepolynomials as ns-polynomials (or having the ns-property). Nees-sary onditions for the ns-property were disussed (Lemmas 8 and 9).A large family of polynomials inZ[x℄ was proved to be ns-polynomials(Assertion 6). Indeed, it was shown that there are in�nitely many ns-polynomials (therefore anonial number systems) in eah dimensioneven if the onstant term of the polynomial is \small".3 Searhing for all ns-polynomials in ase of a given degree and onstantterm an algorithm was presented (CNS-Sieve Algorithm).



Summary and further diretions 654 There were given all ns-polynomials up to the degree 8 with onstantterm 0 = 2.5 In general, for a given radix M a suÆient ondition was given, inwhih ase there is a digit set D for whih (�;M;D) is a numbersystem (Assertions 7 and 8). The digit set an be onstruted. Thistheorem, whih is sharper than the earlier results, shows that a widelass of matries an serve as bases for some number systems.C. Conerning anonial expansions in imaginary quadrati �elds:1 In ase of imaginary quadrati �elds using anonial digit sets the at-trator set G(P) was ompletely desribed, i.e, the number, loationand struture of periodi elements was fully determined (Theorems3.1, 3.2, 4, and 5).2 In the Gaussian ring for ertain bases a speial property was proved(Theorem 6).D. Conerning the geometry of expansions:1 An algorithm was presented for plotting the points of the fundamentaldomain H (Esape Algorithm). This set is the unique invariant (orattrator) set of an iterated funtion system determined by the radixsystem (�;M;D).2 It was analyzed the just touhing overing property of radix systemsand with the aid of the transition graph an algorithm was given todeide this property (Transition Graph Constrution Algo-rithm). It was also given an algorithm for omputing the boundary ofthe set H without omputing the interior points.3 Via the onstrution of the transition graph it was determined all justtouhing overing systems in the Gaussian ring using anonial digitsets, inluded the exat values of the Hausdor� dimension of the bound-ary of their fundamental domain (Proposition 1).4 Finally, some remarks were made on just touhing overing propertiesof radix systems.The author's main results are: A1 (Assertion 2), A4 (ClassifiationAlgorithm), A5, A6, B1, B2 (Assertion 6), B3, B4, B5, C1, C2.



66 Summary and further diretionsNow onsider some open problems and further diretions.1. Let a radix system (�;M;D) be given. The following questions arisenaturally (see also page 37 and [64℄). It is known that if p 2 P then themaximum of the period length of p an be estimated with the number oflattie points in the k-dimensional ball entered at 0 with radius L. Is therea better estimation? Is there a good upper estimation for the number ofdi�erent sets C(p)? Give all the bases M mapping � to � for whih thereexist a omplete residue systemD moduloM suh that (�;M;D) is a numbersystem. How an be haraterized the geometri,{algebrai struture of thesets B(p); p 2 P (e.g. symmetry)?What an be stated about the attrator setin ase of speial operators, e.g. matries generated by the ring of integers ofa given algebrai number �eld? The problem of haraterizing the j-anonialnumber systems seems to be interesting. It is known that if z 2 B(0) for allkzk � L then the unique representation property holds. Instead of L is therea better estimation? This is a ritial problem for examining number systemsalgorithmially, sine L an be very large.2. Let a number system (�;M;D) be given. Desing and implement thebasi operations (addition, subtration, multipliation, division) in this sys-tem. For speial digit sets | where the digits are the k-th root of unity |some important results are available [100℄. What about the anonial digitsets? The real problem is the division. For the ring of Gaussian integers itwas analyzed by W. Gilbert [32℄ and by I. K�atai [47℄ independently, usingdi�erent methods. It seems that the method of I. K�atai an be generalized.3. Topologial questions are also very interesting. Let a radix systembe given. Is the fundamental domain H (arwise) onneted,{disonneted?When the projetions of H to lines are intervals? What about the geometri,{algebrai,{measure theoreti properties of a non-empty intersetion ofH witha hyperplane of Rk? The question of haraterizing JTC systems in di�erentdomains using various digit sets seems to be very hard.4. Let the standard expansion of z 2Zk bePj�1i=0 M iai+M j�; ai 2 D;� 2P. I. K�atai introdued the set of (M;D)-additive and (M;D)-multipliativefuntions by E(M;D) = ff : Zk ! R; f(M r�) = 0 for every � 2 P; r 2 N0and for every z 2 Zk f(z) = Pj�1i=0 f(M iai)g and by M(M;D) = fg : Zk !C ; g(M r�) = 0 for every � 2 P; r 2 N0 and for every z 2 Zk g(z) =Qj�1i=0 g(M iai)g. There are lots of interesting questions whih an be stated,we refer the reader to [51℄.



Summary and further diretions 675. Canonial number systems an be one of the links between numbertheory and theoretial omputer siene via automati sequenes. A sequeneis alled (M;D)-automati if | roughly speaking | its n-th term an begenerated by a �nite state automaton from the digits of the radix expansion ofn. This onept was studied by many authors, see [3℄ and the referenes there.The positional (or radix) systems are speial ases of numeration systemsgenerated by a stritly inreasing sequene G = �Gn�n�0 of positive integerswith G0 = 1. Suh a sequene is alled G-sale. Using the greedy algorithm(see e.g. A. S. Fraenkel [24℄) every natural number an be expanded in theform n = "0(n)G0 + : : :+ "l(n)Gl; (6.1)where the digits "j(n) 2 N0 satisfy 0 � "j(n) < Gj+1=Gj . The so-alled G-expansion in (6.1) is unique provided that "0(n)G0 + : : :+ "j(n)Gj < Gj+1for all j (0 � j � l). In this way the natural numbers an be identi�ed toa sequene of non-negative integers by n ! m01 = e0e1 : : : el01; (el 6= 0).The set L(G) of words m is alled the soure language of G. If L(G) isregular (i.e. reognizable by an automaton) then G must be a linear reurrentsequene with integer oeÆients (see J. Shallit [101℄). Another diretion ofthe investigations is the sum-of-digit funtion of the G-expansions. It hasbeen extensively studied beause of its nie strutural properties ([35, 36℄).6. In this work we onsidered only number expansions in latties. Clearly,number expansions an be de�ned in many di�erent ways. The most om-mon is the following. The �-expansion of x 2 [0; 1℄ is a sequene of integers off0; 1; : : : ; b�g with dn = b�fn�1� (x); n � 1, where f�(x) = �x�b�x = �xmod 1. These expansions were studied by many authors, see e.g. [8, 56, 92℄.The onept was generalized to interval �lling sequenes and to univoquesequenes by Z. Dar�ozy and I. K�atai [11, 12, 13℄. Reently, there is a PhDthesis on univoque numbers [46℄. There are many other kinds of number ex-pansions (e.g. Balkema-Oppenheim expansions [61℄, et.) whih are ratherdi�erent from our onstrution. Finally, a brand new theory opens in ex-amining number expansions if one leaves the lattie for some non-Eulideanspae.



68 Summary and further diretions



A Appliations\A man who loves pratie without theory is like the sailorwho boards ship without a rubber and ompassand never knows where he may ast."| Leonardo da ViniIn this setion we points out some possible appliations, mainly referringto some papers.Generalized number systems an be very interesting in omputer algeb-ra, sine they enables us error-free omputations. Reall that the problemsregarding number expansions in algebrai number �elds are speial ases ofproblems inZk. Computing eÆiently in an algebrai number �eld one mighthoose an appropriate number system representation in order to performfast alulations either sequentially or parallel. Obviously, one has to hoosesystems | if it is possible at all |, for whih the basi operations an bemade eÆiently (see also setion 6 Problem 2).A. Peth}o proposed a publi key ryptosystem based on anonial num-ber systems in Zk [95℄. His ryptosystem is related to the Merkle-Hellmanknapsak sheme.It is not yet lear in whih ases and how generalized anonial numbersystems an be applied for data ompression or in teleommuniation inorder to redue the number of transmitted pakets. Nevertheless, this researhdiretion ould be very interesting. (See also Example 1 in setion B.)A. Vine in his nie introdutory exposition [107℄ enumerates many top-is, where reently self-repliating tilings ome under investigation. Withoutgiving the exat referenes | whih an be found in his paper | we mentiona few of them.� Wavelet bases onstrution;



70 A Appliations� Multi-resolution analysis;� Crystallographi;� Finite state mahines and Markov partitions in dynamial systems;� Ergodi theory and statistial mehanis;� Image proessing and omputer vision.



B Examples \In Riemann, Hilbert or in Banah spaeLet supersripts and subsripts go their ways.Our asymptotes no longer out of phase,We shall enounter, ounting, fae to fae."| Stanislaw Lem, CyberiadThis hapter ontains some examples regarding number expansions inlatties.Example 1. Let a 13 deimal digit number n = 1003462401565 be given.Let us denote the Frobenius matrix of the ns-polynomial 2� x+ x4 by M1.Using the orrespondenes 0 = [0; 0; 0; 0℄T and 1 = [1; 0; 0; 0℄T we have that(n)10 = (1110100110100011000001010001111000011101)2 == ([29; 0; 0; 0℄T )M1and 29 is only a 2 deimal digit number.In the same way, let n = 2022058413721135191887880684697056875537be a 40 deimal and 131 binary digit number. Again, if we onsider theFrobenius matrixM2 of the ns-polynomial 2 +4x+5x2+5x3+5x4+4x5+3x6 + 2x7 + x8 and the appropriate abbreviations as above, we get that theexpansion of n is(n)10 = ([29; 0; 0; 0; 0; 0; 0; 0℄T )M2and 29 has only 5 binary digits, (29)10 = (11101)2. It would be interesting toharaterize all the rational integers whih have shorter expansions in some



72 B Examplesgeneralized binary number system than in the traditional (one-dimensional)binary ase.Example 2. Let � = R;M = (3);D = f�2; 0; 2g.Clearly, G(P) = f�1 ! �1; 0 ! 0; 1 ! 1g;B(1) = fpositive odd numbersg,B(�1) = fnegative odd numbersg;B(0) = feven numbersg. The fundamen-tal setH is the interval [�1; 1℄. The system (�;M;D) is not a number system,not a just touhing overing system, but 0 2 int(H) and it is a self-aÆne lat-tie tiling with the lattie 2Z.Example 3. Let � =Z2;M = ( 0 �31 0 ) ;D = f( 00 ); ( 10 ); (�11 )g.Now, G(P) = f(�10 )! (�10 ); ( 00 ) ! ( 00 )g. Hene it is not a number system.On the other hand, omputations show that it is a JTC system and the graphG(S) has two strongly onneted omponents. Let us denote the domain ofattration B((�10 )) by blak and B(( 00 )) by white. Figure 2 shows the 400�400region of Z2 entered at the origin.Example 4. Let � =Z[i℄ be the ring of Gaussian integers.(a) LetM = ( 2 �11 2 ) and D be the anonial digit set. Then the eigenvaluesof M are 2� i, r = kM�1k = p5=5. The attrator set G(P) is f0! 0;�1 +i!�1+ i;�2+2i! �2+2ig. Let us denote the domain of attration B(0)by blak, B(�1 + i) by white and B(�2 + 2i) by gray. Figure 3 shows the400 � 400 region of Z[i℄ entered at the origin. The fundamental domain Hin the region f(x; y); x 2 [�0:5; 2:5℄; y 2 [�2:5; 0:5℄g an be seen in Figure 4.The set H is arwise onneted, its boundary has the Hausdor� dimensionapproximately 1.6087. The system is a JTC system.(b) LetM = ( 3 00 3 ), D1 = f0;�1;�i;�1�i;�1�ig and D2 = f0; 1; 2; i; 2i;1+ 2i; 2+ i;�1+2i;�2+ ig. The fundamental domain F(M;D1) is just theunit square entered at the origin. The set F(M;D2) in the region f(x; y); x 2[�1; 1℄; y 2 [0; 1℄g an be seen in Figure 5. It is proved to be onneted. Thesystem (�;M;D2) is not a number system but it is a JTC system. The radixrepresentations in these systems essentially separate a omplex number intoits real and imaginary parts.() Let M1 = ( 2 �11 2 ), M2 = ��2 �11 �2 � and let D � fa+ bi; a; b 2 Z;�3 �a; b � 3g be a full residue system that ontains 0. Then (�;M1;D) is anumber system in 127 di�erent ases while (�;M2;D) is a number sys-tem in 2488 di�erent ases. The boundary of the fundamental domain H =F(M1; f0;�1;�ig) an be seen in Figure 6. Its Hausdor� dimension is ap-proximately 1:3652. The set H is the same as the set onstruted by B. Man-delbrot from a generalized Koh urve [85℄.



B Examples 73Example 5. Let � =Z2, M = ( 1 �21 1 ) and D = f( 00 ); ( 10 ); (�10 )g.Then (�;M;D) is a number system, its fundamental domain an be seen inFigure 7. About this polygonal radix system see [100℄ for further referenes.Example 6. Let us onsider the ring of Gaussian integers with base � =A+ Bi and a anonial digit set. Let A = 5 and B = 12. We shall use thenotations of setion 4.3.If � = 1 then '(B1) = 4, ordB1 A = 2. Therefore there are two yleswith period lenght 2. The periodi elements are i ! �2 + 5i ! i and�2 + 7i!�4 + 11i !�2 + 7i.If � = 2 then '(B2) = 2, ordB2 A = 2. Therefore there is one yle withperiod length 2, namely 2i!�4 + 10i! 2i.If � = 3 then '(B3) = 2, ordB3 A = 1. Therefore there are two yleswith period length 1, namely �1 + 3i! �1 + 3i and �3 + 9i! �3 + 9i.If � = 4 then '(B4) = 2, ordB4 A = 2. Therefore there is one yle withperiod length 2, namely �1 + 4i! �3 + 8i!�1 + 4i.If � = 6 then '(B6) = 1, ordB6 A = 1. Therefore there is one yle withperiod length 1, namely �2 + 6i! �2 + 6i.If � = 12 then there are two yles with period length 1, namely 0 ! 0and �4 + 12i! �4 + 12i.Example 7. Let � = Z[i℄ be the ring of Gaussian integers. Let � = �3 + iand onsider the anonial digit set D = f0; 1; : : : ; 9g. The system (�; �;D)is a number system, its fundamental domain an be seen in Figure 8. It isarwise onneted, its boundary has the Hausdor� dimension approximately1:5495. Observe that the system is a staightforward generalization of thetraditional deimal number system.Example 8. Let � =Z[i℄ be the ring of Gaussian integers again.(a) Let M = ( 2 �11 2 ) and D = �( 00 ); ( 10 ); ( 01 ); ( 0�1 )(�6�5 )	. Then (�;M;D)is a number system, its fundamental domain H an be seen in Figure 9. Theset H is disonneted, but learly it is a lattie tiling.(b) Let M = ( 2 �11 2 ) and D = �( 00 ); ( 10 ); ( 01 ); ( 0�1 )(�2�3 )	. Then (�;M;D)is a number system, its fundamental domain H an be seen in Figure 10.The set H is disonneted. It is a lattie tiling. The approximation of thefundamental domain by the Esape Algorithm an be seen in Figure 11.
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