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Preface

“Number theory is a building of
rare beauty and harmony.”

— D. Hilbert

The development of modern science and technology always strongly de-
pended on the development of adequate methods for representing integers
and doing integer arithmetic. The history of number representation is a fas-
cinating story, since it parallels the development of civilization itself. See
D. E. Knuth [60] for further details.

In this work number expansions in lattices are analyzed. Chapter one con-
tains the concept of number systems, dynamic properties of expansions and
estimates for the length of expansions. Chapter two deals with classification
of expansions. An effective algorithm is presented. Chapter three contains
methods for constructing number systems of several types. The connection
between number expansion in lattices and number expansion in the ring of
integers of a given algebraic number field is discussed, canonical, polygonal
and simultaneous radix systems are analyzed. Generalized binary number
systems are also treated. For general radix systems a sufficient condition is
proved to be able to construct number systems. In chapter four the number,
location and structural properties of periodic elements are described for radix
systems of imaginary quadratic fields using canonical digit sets. Chapter five
deals with the geometry of expansions. Some properties of the set of numbers
with zero integer part are analyzed and the notion of self-affine lattice tilings
are discussed. These tilings arise in image processing, computer vision and
many other topics of mathematics and physics [107]. The boundary of the
tiles often have non-integral Hausdorff dimension. Methods for estimating,
or in some cases computing this dimension are presented, an example is also



given. In chapter six after a short summary some open problems and further
directions are mentioned.
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Chapter 1

Expansion in lattices

“There are two kinds of generalizations. One is cheap and the
other is valuable. It is easy to generalize by diluting a little
idea with a big terminology. It is much more difficult to prepare
a refined and condensed extract from several good ingredients.”

— Gy. Polya

A lattice in R” is the set of all integer combinations of k linearly indepen-
dent vectors. Let A be a lattice, which can be viewed either geometrically
as a set of points in a Euclidean space, or algebraically, a Z-module or as
a finitely generated free Abelian group. Let M : A — A be a group endo-
morphism and let D be a finite subset of A containing 0. Clearly, M can be
taken as an arbitrary square non-singular matrix. Moreover, if the basis of
M is chosen in A then M is an integer matrix.

1.1 Concept of number systems

The triple (A, M, D) is called a number system (or having the unique repre-
sentation property) if every element n of A has a unique finite representation
of the form

n=uao+ May, + M*ays+ ...+ Ma, = (aai—1 . . . ayao)nr, (1.1)

where a; € D. The endomorphism M is called the base or radiz, D is the
digit set. The length of expansion of n in (1.1) is [ 4 1.
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One of the main problems concerning radix representation is to give con-
ditions under which (A, M, D) is a number system. For a lattice A, both A
and MA are Abelian groups under addition. The order of the factor group
A/MAist =|det(M) |. Let A;, (j =1...t) denote the cosets of this group.
If 21,22 € Aj, Le. they are in the same residue class then we will say that
they are congruent modulo M and we will denote this by z; = z3 (mod M).

The following result was known and used by [. Katai and co-workers as
well as by W. Gilbert in algebraic number fields (see section 3.2.1). Moreover,
it can be found implicitly in A. Vince’s paper [106]. Recall that a linear map
is called expansive if all eigenvalues have modulus greater than one.

Assertion 1. (Necessary conditions for the number system property)

If (A, M, D) is a number system then

(a) D must be a complete set of residues modulo M,

(b) M must be expansive and

(c) det(I — M) # +1.

PROOF: Concerning (a) if z € A is represented by (dmam—1 ...a1a0)p then
z = ap (mod M). Hence the digit set D must contain a complete residue
system modulo M. Now suppose that two digits ¢ and d are congruent modulo
M. Then ¢ — d = Me for some e € A. Represent e by (aja;—1 . ..a1a0)n s0
that

(c)y=c=Me+d= (qar-...araod).

Hence ¢ € A has two different representations, which is a contradiction.
Statement (b) was proved in [106]. Concerning (¢) first observe that (1 —M™)
is nonsingular for any positive integer n. Otherwise 1 would be an eigenvalue
of M"™, hence M would have an eigenvalue of modulus one. Second, it is also
clear that if (A, M, D) is a number system then there is not any 7 € A and
[ € N for which 7 = ag + Ma; + ... + M'~'a;_y + M'n, where a; € D.
In other words (I — M")"Y(ag + May + ... + M'"ta;_;) € A can never be
happen. But if det(/ — M) = +1 then (I — M)A = (I — M)™*A = A, which
is a contradiction. O
COROLLARY. Suppose that an arbitrary z € A has a finite expansion of form
(1.1). Then the uniqueness of the representation follows from the assumption
that any two elements of D are incongruent modulo M.

If for a given triple (A, M, D) the conditions (a) and (b) in Assertion 1
hold then we say that it is a radiz system. Assertion 1(c) explains why it is
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impossible to find appropriate digit sets for the matrices (1 1), (7"

the matrix 21 + 5, where S is strictly upper (or lower) triangular.

) or for

Assertion 2. (Sufficient condition for the number system property)

If for a given radiz system (A, M, D) (a) there is a basis for the lattice A
for which all the basis vectors have some finite representation and (b) all the
elements of the set D £ D have some expansion of form ag + M’a; (ag,a; €
D, j € N) then (A, M, D) is a number system.

PROOF: By the corollary of Assertion 1 it is enough to show that every lattice
point z has a finite representation. Let us denote the basis vectors — which
have all finite representations — by by, b,... ,b;. Then z = > a;b; for some
a; € Z. The proof is by induction of the number of summands n. The case
n =1 is obvious. By induction, assume that the sum of first n — 1 terms has
the form @ = (aja;—1 . .. ap). It is clear that if we add a lattice point d € +D
to x then # +d € A and the length of expansion of = + d is less then or equal
to [+ s 4+ 1 where s is the length of the longest expansion in D 4+ D. In the
same way, if we add an arbitrary basis vector b; to x then — adding digit by
digit — = + b; must have a bounded length of expansion, therefore a finite
representation. O

The theorem is a simple generalization of A. Vince’s theorem [106]. Unfor-
tunately, in order to decide the number system property for a given triple
(A, M, D) this theorem can be applied in very few cases. Fortunately, as we
will see in section 3.4, there is a sufficient condition for the base M, in which
case the unique representation property holds for some digit set D. Moreover,
the digit set can easily be constructed.

Assertion 3. (Equivalence of number systems)
Let the matrices My and My are similar via the matriz (). Then the number
system property for (A, My, D) and for (QA, Mz, QD) holds at exactly the
same time.
PROOF: D is a full residue system modulo M; in A iff QD is a full residue
system modulo M, in QA. Moreover, z = Ei’:o Mia; iff Qz = Ei’:o QMia; =
Yico M(Qas) (as € D). 0
This equivalence is essentially a change of basis for the matrix My, there-
fore there exist similar matrices — bases — in several forms. Moreover, if we
change the basis in A, a similar integer matrix M, : Z* — Z* is obtained.
Hence the number system property can be examined without loss of gener-
ality on the cubic lattice Z*. This has a computational advantage, since M,
and its characteristic polynomial have integer coefficients (see also [106]).
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1.2 Dynamic of expansions

Further we analyze the expansions in the radix system (A, M, D). The system
(A, M, D) can be used to represent all the lattice points in A even if it is not a
number system. Clearly, for each v € A there exist a unique a; € D such that
M | v—aj. Let vy = M~'(y—a;) and let us define the function ® : A — A by
®(v) = 71. Let ®' denote the I-fold iterate of ®, ®°(y) = 0. The sequence of
integer vectors ®/(zp) = z; ( = 0,1,2,...) is called the path of the dynamical
system generated by ®. It is also called the orbit of zy generated by ®.! Since
the spectral radius p(M~") < 1 therefore there exists a norm on R* such that
for the corresponding operator norm

M7 = sup M~ | (1.2)

llzf|<1

the inequality ||[M || < 1 holds [43]. Throughout this work || .|| denotes this
vector and the appropriate operator norm. Let furthermore
Kr

1 —r

K = max]||b||, r:=|M7", L:= (1.3)
beD

In virtue of (1.3) and the definition of ® we get that
[@(=)]| = 1M~ e — M7V0|| < rf|z]| + K.

Hence we obtain the following

Lemma 1. (a) if ||z|| < L then ||®(2)|| < r(L+ K)= L, (b) if||z|| > L then
[ < rllzl] + L1 =) <[lzl[(r + 1 =r) = ||z]].

Since the inequality ||z|| < L holds only for finitely many lattice points x
therefore the path z, ®(z), ®*(z),... is ultimately periodic for all z € A. The
vector p € A is called periodic if there exist a j € N such that ®/(p) = p.
The smallest such j is the length of period of p generated by ®. Let P denote
the set of all periodic elements. Let p € P be of period length [. The set of
periodic elements {®(p),... ,® (p)} is called the cycle generated by p and is
denoted by C(p). Suppose that p € P. Then the domain of attraction of p or
basin of attraction of p consists of all z € A for which there exists a j € N such

Historical remark: the function ® was introduced by D. W. Matula [86] for rational
integers in order to examine number systems. Somewhat later, independently, I. Kétai and
W. Gilbert used it for constructing number systems in algebraic extensions [54, 33].
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that ®/(z) = p and is denoted by B(p). Let X C P. In a similar way, B(X)
denotes all the z € A for which there exists a 7 € N and ¢ € X such that
®I(z) = q. The function ® defines a discrete dynamic on A in the following
way: let G(P) be the directed graph defined on the set P by drawing an edge
from p € P to ®(p). Then G(P) is a disjoint union of directed cycles, where
loops are allowed. We shall also call G(P) the attractor set of A generated by
o.
The graph G(P) has the following properties [64]:

o P is finite;

e if p € P then ®(p) € P;

e if p € P then ||p|| < L;

e p € P if and only if there is an [ > 0 such that

p:ao—l—Mal—l—...—l—Ml_lal_l—l—Mlp, a; € D; (1.4)

e if p;,pa € P then either C(p;) = C(p2) or C(p1) NC(p2) = 0;

o if p1,ps € P, p1 # p2 and C(p1) = C(p2) then their length of period are
equal;

o B(P)=A;
o if p1,py € P then B(py) = B(ps) if and only if C(p1) = C(p2);
b ifplvp? S ,Pv C(pl) 7£ C(pQ) then B(pl) N B(pQ) = @

For a given radix system (A, M, D) the computation of the graph G(P) de-
termines a classification of radix expansions. Two lattice points x,y € A are
in the same class iff ®1(z) = ®%(y) for some non-negative integers [y, ly, or
in other words, iff there is a p € P for which x,y € B(p). In chapter 2 we
show an effective way to perform the classification.

We end this section by giving a necessary and sufficient condition for the
unique representation property.
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Assertion 4. (Necessary and sufficient condition for the number system
property) The triple (A, M, D) is a number system if and only if for each
z € A there is an n € Ny such that ®"(z) = 0.

PROOF: The condition ®(z) = 0 is equivalent with z = ao for some ag € D.
By induction, ®"(z) = 0 if and only if z can be written in the form

z=ag+ May+ ...+ M ta,

with some ag,ay,... ,a,_1 € D. O
Assertion 4 has a very important corollary.

Lemma 2. The triple (A, M, D) is a number system if and only if P = {0},

in which case

ﬁ M'A = {0}.

1.3 Length of expansions

Let z € A be an arbitrary vector. If zy := 2z € P then there is a unique [ € N
and ag,ay,...,a;_1 € D such that

Z]‘:Cl]‘—l-MZ]‘_H (jZO,...,l—l), Z[EP

and none of zg, z1,... ,2;_1 do belong to P. Let the expansion of z be denoted

by

(ag, a1y .. yai—1 | p), (p=21). (1.5)

If such an expansion is given then z can be computed by
Z:ao—l—Mal—l—...—l—Ml_lal_l—l—Mlp. (1.6)

If z € P then its expansion in (A, M, D) will be denoted by (* | z). We
shall say that (1.5) is the standard expansion of the vector z given by (1.6)
and [ is the length of the standard expansion. For an arbitrary sequence of
vectors ag,dy,...,a;—1 € D and p € P the expression (ag,ay,... ,a1_1 | p)
means the vector z given by z = El_o M’a; + M'p. This expansion is the

j:
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standard expansion of the vector z if and only if ®'~1(2) = a;_; + Mp & P.
Observe that if p € P then all z € B(p) \ C(p) have a standard expansion
(ag,a1,... ,a; | p) for some a; € D (1 =0,...,1), [ € Nand p € C(p).

Now we give an estimate for the length of expansions in the radix system

(A, M, D).
Let us denote in R¥ a vector norm and the corresponding operator norm
by || - || for which r = ||M~Y| < 1, let K = max{||d||,d € D} and L =

Kr/(1 —r) as before. Let z € A\ {0} be fixed. Let us define the path of
z=zoin Abyzj=a;j+ Mzj41 (j=0,...,). Let T =1[(z) be the smallest
non-negative integer for which ||zz|| < L. The existence of such a T follows
from Lemma 1.

Assertion 5. There is a constant ¢ for which

gl )

&)< e/

PROOF: It is enough to examine the case ||z]| > L, z € A. Since z; =
a; + Mz, therefore z;,y = M~'z; — M~'a;, hence ||z;11]| < r(||z]| + K).
Let t = t(z0) be the smallest non-negative integer for which ||z|| < 2K L.
Since the ball ||w|| < 2K L contains finitely many lattice points therefore the
inequality

I(2) <t(z)+ ¢ (1.8)

holds for an appropriate constant ¢;. On the other hand 2K L < ||z;4] <
r(lzizell + K) < r?(||zis]| + K) + 7K < ... < 7' |z|| + K L. It means that
KL <r'7Y 2], hence

log KL < (t—1)logr + log ||zo]|,
from which we can deduce that

(t—1)log1/r <log ||z —log K'L,

le.,
log ||zl
t< —
~log(1/r) "
for an appropriate ¢z. Using the inequality (1.8) the assertion follows imme-
diately. O

Assertion 5 extends the results of E. H. Grossman [37], [. Kdtai, [. Kérnyei
[54] and B. Kovacs, A. Pethé [79].
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Chapter 2

Classification of expansions

“There are problems that one poses,
and there are problems that pose themselves.”
— H. Poincaré

In the previous chapter it was pointed out that the function ® defines a
classification of the system (A, M, D). The aim of this chapter is to give an
effective algorithm to construct all these classes. Via the construction of the
attractor set we also have a fast method to decide whether the radix system
(A, M, D) has the unique representation property.

Consider the set of “fractions” in the system (A, M, D):

H:=F(M,D) = {Z M™"a, :a, € D} C R*. (2.1)
n=1

This set is called the fundamental domain or the set of fractions of the system
(A, M, D). In chapter 5 we shall show that the set H is compact in the metric
space R¥. Let E be an arbitrary compact set in R* and let us denote the set
of lattice points in £ by I(FE), i.e., [(F):= ENA.

Lemma 3. For each z € A there is an mg € Ny such that for each m > mg :
o™ (z) e [(—H).

PROOF: Since H is a compact subset of R¥, there exists an ¢ > 0 such that
there is no element of A in the set

Ne(—H)\ —H,
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where N.(—H) denotes the open e-neighborhood of —H. Let us choose an
arbitrary z € A. Then we get that

2 =0"(2) = Mz — (M tay + M a4+ ...+ M~ ™a,,)

for the corresponding sequence ay, as, ... ,a, € D. If m is large enough, say
m > mg, then the norm of the first term of the right hand side is less than
e. Hence, z,, € AN (—=H) for all m > my. O

COROLLARY. (a) For each z € A the orbit of z must run into the set [(—H)
and can never leave it. (b) If for each z € I(—H) there is an m € Ny such
that ®"(z) = 0 then (A, M, D) is a number system.

The corollary suggests that in order to determine the attractors of the system
(A, M, D) it would be enough to find the lattice points in —H, or, which is
computational equivalent, in H. Then one has only to apply the function ®
for these vectors and watching the “cycles” to be formed.

The straightforward way to compute the set [(H) could be the following.
It is obvious (see section 5.1) that

H=|]) M (a+H).

a€D

If we could find a set Ty, H C Tp, for which the lattice points of the set
M=1Ty can be computed easily then we would be ready, because in this case
HCT :=,c.p M~ (a+ Tp) and only the convex hull of the lattice points
in T} has to be computed. Unfortunately, to find the “smallest possible” such
set Ty is not easy, since the shape of the set H is in almost every case rather
complicated.

Our next aim is to determine a set 7', H C T', for which the set of lattice
points belonging to T' can be computed simply and which contains possibly
a small number of them. We consider two approaches. One of them uses
covering of the set H while the other one is given by effectively computing
the operator norm defined in (1.2).

2.1 Covering construction

T ¢ R* and |]|sc = maxi<i<k |:]. Let us denote

Let # = (x1,22,...,2%)
by || - |lc the corresponding operator norm. If M is an invertible expansive

linear operator of R* mapping A into A then there exists a smallest ¢y € N
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such that for every ¢ > ¢o, ¢ € N the inequality |M~¢||.c < 1 holds. Let
(' > ¢y, C € N be fixed. Then

M=l < 1,

therefore (1 — 2\4_0)_1 exists and

1

v = e 2 10 = M) . (2.2)
L= [[M=|

Here I denotes the k-dimensional identity matrix. Using the notations intro-
duced in the previous chapter let

| (a)
M a = : ,
(7)
cy’(a)
and let

() .— () =
£ rglezgdcm (a)], (m=1,... k),

where 1 < 7 < C. Furthermore, define the sets [; (1 < j < (') as follows:
Zq

Li=Ra=| | |eal <€ 1<m<k

Tk

Obviously, M~7a € I; for each a € D. Let

Y1 C
Wi=qy=| i |yl <D P 1<m<ky. (2.3)
Yk 7=l
It is clear that
c
ZM_jajEW

j=1
for an arbitrary sequence of vectors a; € D. Hence,

HCWA+M W+ M WH.... (2.4)
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Let us define the points of the k-dimensional rectangle T” by

131
\ —amgtmgam,am:[’yZéf;)L 1 <m<Ek. (2.5)
i i=1

Then by (2.2), (2.3) and (2.4) we get that H C T” and the lattice points in
the k-dimensional rectangle 7" can be computed efficiently.

Remarks. (1) The “good choice” for the constant C' in (2.2) strongly de-
pends on the matrix M. A simple method could be to start with C' < ¢ and
increase C' while || M~Y]|., is less than or equal to a fixed constant. Another
approach may require much more arithmetical operations: start with C' < ¢
and increment C' until the volume of 7" changes less than a pre-defined con-
stant & > 0.

(2) Even if M~"v — 0 (n — oo) for any v € R* one should be careful
with raising to powers the matrix M~!. In computer implementations using
traditional programming languages on certain cases arithmetical overflow
can occur. Let an example be k = 5, M = tridiag(0, —2, —2'°%) (diag() and
tridiag() denote the diagonal and tridiagonal matrices, respectively). Then
Ml_g = 150323855360 > 22, In these cases (among others) computer algebra
softwares can be used (about computer algebra see [69]).

(3) Suppose that A = Z*. This can be achieved by a simple basis trans-
formation. Then, we are interested in the integers in 7”. It means that in
equation (2.5) the floor function can also be applied. Clearly, the integers in
T’ still cover the integers in H.

2.2 Operator norm construction

Let @ € H be an arbitrary vector of R¥. Then
ol = 1Y M~ay] (2.6)
7=1

for any well-defined vector norm in R*, where a; € D (j = 1,2,...). Let
M be an invertible expansive linear operator of R*. We shall construct a
vector norm — throughout this subsection denoted by || - ||« —, such that
for the corresponding operator norm the inequality [|[M~!|[. < 1 holds. This
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operator norm can be given using a basis transformation with the aid of an
appropriate regular matrix S and the maximum norm in the form

M7= ISM™ES 7Y
This follows from the fact that
M~ ]l = |SM ™ e lloo < ISMTHSTH ]S 2|

so the operator norm induced by the vector norm ||S|c-
Let J = TM~'T~! = diag(A;) be the Jordan canonical form of the matrix
M~ Let us choose S :=T'. Hence,

1M i= oo = max A ] oo-

If J is simple (i.e. J consists of k Jordan blocks) then
[]lo0 = p(M~) < 1.

Suppose now that the eigenvalues of the matrix M are not all distinct. Let
A; = tridiag(0, A;, 1) € C™*™ be a non-trivial Jordan block (m < k). In this
case

[Ajlloe > 1,

therefore we use the similarity transformation D; := diaglgsm(/,c;”_i) to
obtain DjAjD;1 = tridiag(0, Aj, it;), where g; > 0 and it can be chosen in
such a way that u; 4+ |A;| < 1. Hence

I1D;A; D7 | < 1.

Putting all together, in case of trivial Jordan blocks let D; := 1, moreover,

S := diag(D;)T. Then
M7= |SMTHS T o = DA D7 oo < 1.

Further, let us denote || - || := || - ||« as we used it earlier. Then (I — M~*)~!
exists, it has the geometric series expansion ([— M‘l)_l =JI4+MT+M 2+
oo+ M4+ ... and

1

(7 =M= <
L —[[M~1]

(2.7)
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By using (1.3), (2.6) and (2.7) we get that

= . Kr
ISl = lall = 130 Mal < 2 = 1 2.9
7=1

Now we are looking for those x € A for which (2.8) is satisfied. If |||l <
L/||S]|e then (2.8) is clearly true. Let y := Sx. Then S~y = x, hence

12llee < 1S o llyllee = 1187 ool [S2[loc < LIS oo

Let T" be the k-dimensional hypercube centered at 0 with vertex coordinates

+5; (i=1,...,k), where
5= TEIS o). 2.9

It follows from the construction that H C T".

Remarks. (1) By virtue of the construction for a given ¢ > 0 there is an
operator matrix norm for which ||[M~!|| < p(M ™)+ ¢. This is a well-known
result.

(2) To determine the vertices of 7" one needs

e a Jordan block computation of M and
e a matrix inverse computation of S.

Clearly, the matrix S is not unique. The constants y; can be chosen arbitrary
according to their definition but in computer implementations the floating
point overflows (e.g. pj-s are too small) must be avoided. The best solution
would be to optimize y;-s obtaining the smallest value for ||.S™!|| but it could
have high computational time. Nevertheless, in some cases it is worth the
trouble.

(3) By similar arguments as we did earlier, if A = Z* then in (2.9) the
floor function can also be applied. Obviously, the integers in T cover the
integers in H.

Let A = Z*. This can be assumed without loss of generality. Forming the
intersection of T and T” we proved the following theorem:
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Theorem 1. Let the set of integer points 1(T) be defined as follows:

I(T):= { c | € ZF, —ky <ty < Ky, where

o = minf |y €], LIS o) ) 1< m < K.

J=1

Then I(H) C I(T) and I(—=H) C I(T).

Computer experiments show that in many cases the covering construction is
preferable to the operator norm construction. Clearly, applying Theorem 1
one can construct a k-dimensional rectangle T'. Unfortunately, the number of
lattice points in T can be much higher than the number of periodic elements.
This construction can be a first step towards a better approach.

2.3 Applying an iterated function system

A finite set of contractions {f;} mapping from R* to R* is called an iterated
function system (IFS). On the space S of compact subsets of R*, with respect
to the Hausdorff metric §(A, B) = inf{r : A C N,(B)and B C N,(A)},
where N,(A) is the open r-neighborhood of A, define f: S — S by f(X) =
Ui’:1 fi(X), for any compact set X. Clearly, f is a contraction on S and
hence, by Hutchinson’s theorem [39], f has a unique fixed point or attractor
T satisfying

and given by

T = lim f"(X,),

n—0oo

where (") denotes the nth iterate of f, X is an arbitrary compact subset of
R*, and the limit is with respect to the Hausdorfl metric.
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For each digit d € D we define the function f; : R* — R* by fu(z) =
M~ (z + d). These are linear contraction maps. If = € H then fy(z) € H.
Clearly, fy is a right-shift map and furthermore H = J,cp fa(H) so H is
the unique invariant set determined by Hutchinson’s theorem applied to the
functions f;. The set H is self-affine with respect to these functions.

It was already mentioned that we are interested in the lattice points in

the set —H. L.et 1 € —H. Then

—r— (MY 4.+ M Ay = MG+ MY,
(2.10)

for the appropriate sequence d; € D. Fortunately, for the right hand side of
(2.10) a good estimate can be given. Let A = Z*. The following algorithm
provides the set W, for which the integers in W cover the integers in H.

NUMBER EXPANSION CLASSIFICATION ALGORITHM in Z* for a given ex-
pansive matrix M and digit set D. Let M € ZF* be similar to M via the
matrix () and let () be an optional argument of the algorithm. If it is not
given then let () be the identity matrix. Let D= QD. Further, B and C are
constants depending on the given computer hardware (word size, memory
capacity) and on the matrix M. B is an integer and ' < 1 a real number.

1. ¢ ;== min{j € N, HM_jHog <1}
2.s:=min{j €N, (r:=[|[M7|.) < C}
3.5 = (fis - )T ERY, fr = 1/(1 = r) Ti, max,ep [ch)(B)], 1 <m <k,
where (c(ll)(b), . ,cg)(b))T = M~b;
4. minvol:=infinity; Chose an appropriate B, ¢ < B < s;
5. for j from ¢ to B do {
if (|7 ]loo < 1) { | |
Compute the vector vl) = (vy), . ,U]g]))T € R¥,
o) = Y ML 1< m <
if ((w:= Hle vl(j)) < minvol) { minvol:=w; J := j;}}}
LU ={=L M~bbe D}
.S = UueU(u + P), where P denotes the k-dimensional rectangle
P={(pr,..pe)" € R, |pi| <o), 1 <i <k}
W= {w=(wy,..., )" € Z*, Quwe S}
. Apply the function ® determined by the system (Zk, M, D) for the points
of W and the arising cycles mean the required classification.

-~ O

© o
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The lines 1-3 provide the k-dimensional rectangle G = {(g1,--. ,91)" € RY,
lgi| < fi, 1 <@ < k}. Let us analyze the second assignment in line 4. If
we increase B, the time complexity of the algorithm grows exponentially in
t = |det(M) |. Unfortunately, in some cases ¢ can be rather big, which means
that the convergence of M=% (7 — oc) is slow. In these cases this algorithm
can be ineffective, even if keeping the running time moderate one choose B
close to ¢. The reason is that the set (3 can also be rather big. Let an example
be the Frobenius matrix (companion matrix) of the irreducible polynomial
24 3+ 42 +42° + 42 + 32° + 225 4+ 27 with the canonical! (binary) digit
set, @ = I, C = 0.01. Then s = 188, = 53 and the number of integers in
G is 15319297125. Using other kinds of matrices, during the computation of
s problems can arise with the matrix elements (see section 2.1, Remark 2).
Line 5 tries to keep the index J small. The lines 6-8 are the application of
Hutchinson’s theorem in (2.10). Concerning line 8 one can observe that the
number of elements of the set W depends also on | det(Q) |. Concerning line
9, a fast algorithm for computing the function ® is the subject of the next
section. The termination of the algorithm is clear.

It must be emphasized that the running time of the algorithm depends
strongly on the matrices M and @), i.e., on the basis of the lattice determined
by the matrix M. In other words one has to choose the matrix ) in a way
that the convergence of M~ = (QMQ=1)~" (i — oo) is fast, |det(Q) | is
big and the volume of (i is as small as possible. It seems to be rather hard.
Sometimes the simple idea of choosing the matrix () in a way that M=MT
can help. Fortunately, for a large class of matrices the algorithm is quite ef-
fective even if we choose () for the identity matrix. The author implemented
the CLASSIFICATION ALGORITHM in C language. In order to perform com-
putations in the lattice effectively the elements of Z* were transformed to Z
using mixed radix representation. During the computation of elements of the
set S a hashing table was used.

2.4 Computation of the function ¢

Let a radix system (Zk, M, D) be given. For calculation of the function ® one
needs a fast procedure to determine for an arbitrary z € Z* the corresponding
congruent element d € D modulo M. Our first method is a straightforward
generalization of the method used for the case of Gaussian integers in [62].

Tor the definition see section 3.1.
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2.4.1 Adjoint method

Applying the notations already adopted let z be an arbitrary element of Z
and let D = {ag,ay,... ,a;-1} be a complete residue system modulo M. If
z = a; modulo M then M*z = M*a; modulo det(M)I, where M* denotes
the adjoint of M and [ the identity matrix. Here by “adjoint of the operator
M” we mean the integer matrix, for which the elements are the adjoints of
the appropriate sub-determinants. Let ¢ = | det(M)| as before. Let

D1 = M*D (mod t]) = {bo,bl, Ce 7bt—1}7 (211)
where
b(lj)
bj=Ma; (mod tI)= | : | e€Z 0<bV <t, (i=1,... k).
bg)
(2.12)

Due to the complete residue system property of D for every z € ZF there
exists a unique b; € Dy such that b; = M*z (mod ¢I). Then from (2.11) and
(2.12) it follows that z = a; modulo M.

In order to obtain for an arbitrary z € Z* the congruent element in D
modulo M one has to perform a multiplication by the matrix M* (mod t1),
which requires k? integer multiplication over Z; = Z/tZ. Can the number of
operations be reduced? Fortunately, in many cases the answer is yes. Suppose
that there exists an ¢ € N, 1 < ¢ < k for which bgj)(j =0,1,...,t—=1) in
(2.12) are all different. Then the inner product of an arbitrary z € ZF by
the i-th row of M* modulo ¢ uniquely determines the index j for which
z = a; modulo M. This requires only £ integer multiplications over Z,.
The question, in which cases such an 7 exists will be answered in chapter
3. But what can be made when such an 7 does not exists? Then one has to
investigate further the set Dy and to figure out a strategy to minimize the
number of multiplications to obtain for an arbitrary z € Z* the appropriate
b; € Dy for which b; = M*z modulo ¢I. Beside the optimization the strategy
requires greatest common divisor computations, which suggests the existence
of another (a simpler) approach. Indeed, essentially the same can be reached
via another way, which is based on the Smith canonical form of M (see [45]).
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2.4.2 Smith normal form method

Let M be an invertible linear operator mapping Z* into Z*. Then there are
linear transformations U and V mapping Z* onto itself such that UMV =
GG has diagonal form in the standard basis with positive integer elements
Ji,---, gk in the diagonal such that ¢; | ¢ixq for ¢ = 1,2,... )k — 1 and
Hle ¢; = | det(M)|. The Smith normal form can be obtained by doing ele-
mentary row and column operations of M. We remark that U and V have
determinants +1 and they are also invertible having integer components.

Lemma 4. For an invertible M with the notations above let for zy, zo € ZF
the numbers uy,usg, ... ,ur and Uy, Us, ... U denote the coordinates of Uz,
and U zy respectively. Then zy = zo modulo M if and only if u; = 4; modulo g;
forallt=1,2,... k.

PROOF: z; = z; modulo M if and only if M~ (21—23) € ZF. This is equivalent
with the condition VM~ (z; — 25) € ZF. But V-'M~' = G~'U, hence the

equations u; = @; modulo ¢; must be satisfied for all e = 1,2,... , k. g

From a computational point of view, at the first sight there is no gain. In
the first step one has to multiply z € Z* by the integer matrix U (mod G)
instead of M* (mod tI). But if there exists a positive integer s for which
g=1,1=1,...,88 <k then u; =0 (mod g¢;) for all : = 1,...,s and for
all z € ZF, hence enough to perform only k integer multiplications modulo
g;, foreach j =s+4+1,... k. Let

Dy :=UD (mod G) ={cp,c1,... -1}, (2.13)
where
)
¢; =Ua; (mod G) = : VAR 0§c£j)<gi, (t=1,....k)
)
(2.14)

We get that for every z € Z* there exists a unique ¢; € Dy such that ¢; = Uz
(mod (). From (2.13) and (2.14) we have that z = a; modulo M.

2.4.3 Computer implementation

In computer implementations once the computation M*z modulo ¢/ or Uz
modulo G was performed for the vector z € ZF the result must be looked up
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in the table T'(Dy) or in T'(D3), respectively, obtaining the index j for which
a; = z modulo M, a; € D. This can be done using searching strategies or
hashing. Let us see an example for such a hash function in the case of Smith
normal form. The idea comes from the mixed radix representation.

Lemma 5. Using the notations above let us define the function h by

k i-1
h(z) = Z (u; mod g;) H gj-
1=s+1 7=s+1
Then h is an integer valued function with values 0,... .t — 1, and h(z) =

h(z2) if and only if zy = z2 modulo M.

PROOF: It is easy to see that h has the given range. If z; = z, then u; =
t; mod g; for all ¢ = 1,2,...  k, hence h(z1) = h(z2). In the other direction,
if h(z1) = h(z2), then taking the remainder of both side with respect to ¢
we get that uy = 4y (mod ¢g1). Subtracting this common term and dividing
with ¢g; one can continue with ¢, etc. O

Remark. The set D; can be generated only from D but the set Dy can be
produced also directly from GG. A complete residue system (mod M) can be
generated from Dy (D) by multiplying the elements with U~! (M), respect-
ively.

We summarize our results for the computation of the function ®:

e For a given vector z € Z* computing M*z (mod ¢1) needs k? integer
multiplications over Z;, computing Uz (mod (&) requires k integer mul-
tiplications over Z,, for each j = s+1,... ,k, where s depends on the
matrix M.

e Looking up the congruent element a; in the table T'(D) either a search-
ing has to be performed in T'(Dy) or in T'(Dz) to obtain the index j or
a hashing has to be done.

e To perform the function ®, after a vector subtraction a matrix multi-
plication must be applied either with M™* over Z and then dividing by
t or with M~! over R.



Chapter 3

Number system constructions

“Number theory is an inexhaustible
storehouse of interesting truth.”

— C. F. Gauss

This chapter contains number system constructions of several types. First
a necessary and sufficient condition is given establishing canonical digit sets.
Then, we deal with polynomial constructions including the complete list of
generalized binary number systems up to degree 8. Polygonal and simulta-
neous constructions are also mentioned. We end this chapter by proving a
sufficient condition for the general case.

3.1 Canonical digit sets

Let A = Z" and let M : ZF — 7ZF be a matrix satisfying Assertion 1(b)-(c).
Further, we examine special kinds of digit sets. A set of vectors DE\Q c 7k
is called j-canonical with respect to the matrix M (1 < 7 < k) if all the
elements have the form re;, where e; denotes the j-th unit vector, v =

0,...,|det(M)| — 1. If the set DE\Q forms a complete residue system modulo
M — CRS for brevity — then we call it a j-canonical digit set and denote
it by DWW, If there exists a j for which (Z*, M, DU)) is a number system
then it is called j-canonical number system. Furthermore, 1-canonical digit
sets are called simply canonical. In the following we analyze the existence of
j-canonical complete residue systems.
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Theorem 2. Let M be an invertible expansive linear operator of R* mapping
ZF into itself and let ¢ = [¢1, ¢4, . .. ,cp]T € ZF be the j-th column of the matriz
M~ (adjoint of M ). Let é; := ged(e,t) (I =1,... k), where t = | det(M)].

Let furthermore 7, :=t/6;. Then the following statements are equivalent:

1 There exists j-canonical CRS modulo M.

2 The set

vep mod t
D(j):{l/gmodt: : ,V:O,l,...,t—l}

vep mod t
has exactly t elements.
3 lem(ry, ... ,75) =t

(Here ged and lem means the greatest common divisor and least common
multiply of the integer elements, resp.)

PROOF: (1) < (2). The proof immediately follows from the construction of
Dy in (2.11). (1) < (3). Due to the CRS property of the set DU all their
elements are incongruent modulo M and the set DU) has ¢ elements. This
means that the equation he; = Mmn has no solution for any b € N, 0 <

h < tand any n = [n1,72,. .. )T € ZF. Hence it is enough to examine the
solvability of the system of equations
hCl = t771,
: (3.1)
hck = t?]k.

Case 1. There exists a ¢; (1 <1 < k) such that ged(e,¢) = 1. In this case
from the equation he; = tn; it follows that ¢ | k. Therefore the system of
equations (3.1) has no integer solution.

Case 2. Suppose that ged(e,t) =6 > 1forall [ =1,2,... k. Let ¢f = ¢1/41.
Then hef = 7y (I = 1,... ,k). Since ged(¢r, 7)) = 1, therefore 7 | h for
all [ =1,...,k. It means that lem(7y,7,... ,7) | h. Hence the system of
equations (3.1) has no solution if and only if lem(7y, 72,...,7%) > ¢t. On
the other hand lem(7y,...,7) | t. Therefore lem(m,... ,7) =¢. (If 7 = ¢
for some [ then ged(¢;,t) = 1.) We have that there exists j-canonical CRS
modulo M if and only if lem(ry,... ,7) = t. O
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Remarks. (1) If there exists a ¢; € Z \ 0 in the j-th column of the
matrix M* for which ged(e;,t) = 1 modulo ¢t then there is a j-canonical
complete residue system modulo M. Theorem 2 shows that the converse of
this statement is not always true.

(2) If t is prime then always exists j-canonical CRS for all 1 < j <k.

Lemma 6. Using the notations above suppose that for a given M there exists
a j-canonical CRS. Then there is ani € N, 1 <i <k for which ged(¢;,t) =1
modulo t if and only if the set {ve; modulo t, v = 0,1,... ,t — 1} forms a
CRS modulo t.

The proof is obvious.

COROLLARY. [If for a given M there exist j-canonical CRS and ¢; according
to Lemma 6 then it ts enough to perform only k multiplications modulo t to
determine for an arbitrary = € ZF the element b = (M~*z modulo tI) € Dy
(see section 2.4.1).

The converse of this statement is not true. Let a counter-example be the
matrix M = (24). Then t = 18 and M* = (> *,). Using the Smith normal
form for every z € Z" there is enough to perform & = 2 multiplications to
obtain the appropriate b € D; but there is no 1- or 2-canonical CRS and
ged(¢;, 1) > 1 modulo ¢ for all ¢;.

3.2 Polynomial construction
Consider the polynomial
flz) = wr® teop " e = (x—01)...(x—0), e =1 (3.2)

over Z[z]. Let us denote the quotient ring Z[x]/(f) by A;. Let 5 = + (f)
denote the image of # in Ay. Then Ay has the structure of a free Abelian
group with basis {1,3,3%, ... ,3"'}. Hence, A; is a lattice, addition and
multiplication of lattice points is just addition and multiplication in the ring
Zlx]/(f). To be more precise consider the polynomial f(x) in (3.2) and as-
sume that [0;] > 1 (¢ = 1,...,k). Observe that A; is the set of elements
of form wug 4+ w13 + ... + up_1 31 (u; € Z). For the addition it is isomor-
phic with the additive group Z*. Clearly, I3 = {30 : ¢ € A;} is an ideal in
Ay, the number of residue classes in the factor ring Ay/lz is t = |01... 6]
Choosing an element from each residue class the digit set can be defined
as Dg = {ap = 0,a1,...,a:-1} C Ay. Let o € Aj. Then there exists a
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unique ¢ € Dg and a unique oy € Ay for which o = @ 4+ Sa;. The function
O : Ay — Ay is defined as ®(a) = ;. Observe that the map o — Sa can be
formulated as a linear transformation, which has a simple form in the basis
{1,8,8% ..., 3% '}, namely the Frobenius matrix

0 ... —Cp
10 ... :

My=1o - . (3.3)
0 ... 1 —Cr_1

Hence, all the problems regarding number expansions can be formulated in
Z* instead of making it in A;. The digit set for M; must have |co| elements.
Clearly, |¢o| must be greater than or equal to 2.

3.2.1 Radix representation of algebraic integers

In the special case, when f(x) is irreducible over Z[x] then Ay = Z[x]/(f) is
isomorphic with Z[f], where 8 is any root of f(x) in an appropriate extension
field of the rationals. Hence, we may replace 8 to # in the previous reasoning.
The next lemma provides a sufficient condition for Z[xz]/( f) being isomorphic

with Z[6].

Lemma 7. Consider the polynomial f(x) in (3.2) and assume that |6;] > 1,
(1 <o <k). If f(0) = ¢y is prime then f(x) is irreducible.

PROOF: Suppose indirectly that f(z) = u(x)v(x), u,v € Zlz], deg(u) >
1,deg(v) > 1 and both w and v are monic. Since ¢ = f(0) = u(0)v(0) is
prime therefore either u(0) is +1 or v(0) is +1. Assume that «(0) is +1. Since
the constant term of u(x) is the product of some roots of f in module, this
is impossible. O

In the following we shortly summarize the results obtained by represent-
ing algebraic integers in some extension field of the rationals. Let § be any
rational integer greater than one. It is well-known that every non-negative
integer n has a unique representation of the form n = ap + @10 + ... + akﬁk,
where the integers a; are selected from the set {0,1,... ,6 —1}. The decimal
(0 = 10) and binary (6 = 2) systems are the most familiar. Both positive and
negative integers can be uniquely represented without a sign prefix in any
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negative base § < —1 using the digits from {0, 1,... ,]8| —1}. Conditions un-
der which each rational integer has a unique radix representation have been
investigated by D. W. Matula [86], A. M. Odlyzko [91] and by B. Kovécs, A.
Pethé [77].

A straightforward way to extend radix systems is choosing the radix to
an algebraic integer. The first non-real base radix system was introduced by
D. E. Knuth [60], who suggested that # = 2i can be used as base for the
complex numbers with the digit set D = {0, 1,2,3}, i.e. all complex number
~ has an expansion of form v = Ei.:_oo d;0° for some [ € Ny (d; € D).
However, in order to represent all the Gaussian integers, it is necessary to
use one negative radix place; for example 1 +5i = 3(2¢)' +1(24)°+2(2¢)~'. W.
Penney in 1965 noticed [94], that every complex number can be represented
in binary form using the base —1 4 ¢, moreover, all the Gaussian integers can

be written in the form Y77 a;(—1 4 )/, where a; = 0 or 1.

The systematic research of positional number systems in algebraic exten-
sions was initiated by I. Katai and J. Szabé [55]. They proved that if 0 is a
Gaussian integer of norm N > 2 and the digit set is D = {0,1,... ,N — 1}
then every Gaussian integer v can be uniquely represented as v = ag + a0 +
ceit a0, a; € D, a, # 0 if and only if § = —n £ 1 for some positive
integer n.

If the digit set D is restricted to be a set of non-negative numbers, we get
a straightforward generalization of the traditional number systems in Z. The
set D ={0,1,... ,N — 1} is called canonical digit set. If the radix system
(Z[6],0, D) satisfies the unique representation property with some canonical
digit set D then it is called a canonical number system. In this case all those
integers # in quadratic number fields can be given, for which (Z[§],0, D) are
number systems [27, 52, 53]: if 6 is a quadratic integer with minimal polynom-
ial 2?2 + Ex + F and D = {0,1,... ,|F|— 1} then (Z[f],0, D) is a number
system if and only if F¥>2 and —1 < EF < F.

Using canonical digit sets S. Kérmendi [80] determined all the integers
0 € Q(v/2) for which (Z[f],0, D) is a number system. B. Kovéacs [72] gave
a necessary and sufficient condition for the existence of canonical number
systems in Z[f], i.e., in the ring of integers Q[f] of a k" degree extension of
Q (k > 3) there exists canonical number system iff there exists an o € Q[f]
such that {1,a,... ,a* 1} is an integer basis in Q[f]. B. Kovécs and A. Pethd
[78] characterized all those integral domains that have canonical number
systems.
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3.2.2 Cns-polynomials

The concept of canonical number systems was extended to arbitrary square-
free polynomials f(x) € Z[x] with leading coefficient one by A. Pethd [95]
and to arbitrary monic polynomials f(x) € Z[z] by S. Akiyama and A. Pethé
[1]. Concerning (3.3) it is easy to see that Mj[k, 1] = (=1)*" therefore by
Theorem 2 canonical digit set always exist. Here M* means the adjoint of
M.

Let a canonical radix system (As, My, D) be given. Computing the Smith
normal form of M; by UM;V = (i it is easy to see that

0 1 0

U= : -
0 0 1
—sgn(e) 0 ... 0

and GG = diag(1,...,1,|co|). Hence, by Lemma 4 the function ® can be given
as

(I)(&) = (I)([l’l, Ce ,wk]T) -
c c Clk— i

P YO = P 34
Co Cp Co o

where ©* = x1 — d,0 < d < |¢o| and ¢y | «*. Using the notation y = |21/co]
in (3.4) the function ® can also be written as

(I)(g) = [_cly + To, —CY + T3, ..., —Ch—1Y + T, _y]T (35)

If the system (Af, My, D) is a canonical number system then we call the
polynomial f(x) as a ¢ns-polynomial, or we say that the polynomial f(z) has
the ens-property. Recall that in this case for every z € ZF there is a j € Ny
for which ®/(z) = 0.

3.2.3 Necessary conditions for the cns-property

In order to construct canonical number systems via cns-polynomials we give
some necessary conditions. These conditions are quite obvious, many of them
were used in different research papers by W. J. Gilbert, I. Katai and A. Petho.

We prove them for the sake of completeness.
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Lemma 8. If (Ay, My, D) is a canonical number system defined by the cns-
polynomial (3.2) then

(a) co > 2;

(b) if =1 <r eR then f(r) >0, if =1 < z € Z then f(z) > 1;

(e) F(1) > o

(d) if k is even then f(—co) > 1, if k is odd then f(—cy) < —1;

(e) S e > (o + 1)2).

PROOF: (a) It is clear that each real root of f(x) (if exists) must be less than
—1. Hence, co = (—=1)*0;...0; > 1. Concerning (b) the previous idea can
also be applied. (¢) It is known that the only periodic element in the number
system (A, My, D) is the null vector. Now we analyze how can we avoid the
loops ®(x) = x different from 0 — 0. Suppose that there is a loop. Using
(3.5) the following system of equations can be set up: {x1 = x2 — 1y, 22 =
T3—CoY,... ,Th_1 = Tp — Cp_1Y, T = —y}. From these equations it is easy to
deduce that xx(1 4+ cx—1 + ...+ o) =d € D. If 2 = 0 then 2 = 0 which is a
known case. If x; # 0 then applying (a) the number of loops is | (¢o—1)/f(1)].
Hence, if ¢g < f(1) then there does not exist any loop. Concerning (d) if
0; € C\ R for all 0 <i < k then the assertion is obvious. On the other hand
observe that there does not exist any real 8; for which §; < —¢q, otherwise
there would be a §; for which |0;] < 1. Hence —¢y < 6; < —1 for all real
roots of f(x). It means that if & is even then f(—co) > 1, if k£ is odd then
f(=co) < —1. (e) is immediately follows from (a) and (b) by z = —1. O

Let ¢g > 2 and k be fixed. Since all roots of the polynomial f(x) has mod-
uli greater then one — we also say that the polynomial satisfies the root-
condition —, therefore the number of cns-polynomials is finite. Next, we pro-
vide upper bounds for the absolute value of the coefficients ¢;,1 <1 <k —1

in (3.2).

Lemma 9. Let f(x) be the ens-polynomial defined by (3.2) and let 2 < k <9.
Then the coefficients of f(x) can be bounded as

k
le;| < s(1—eo) —|—c0<,> -1,

J
o < sten = 101 = /i) + o) =1

here s = | (S) k03| v <5< ey

J

o
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PROOF: We use the relationship between roots and coefficients of polynomials
and the inequalities

11 1
a+p<1l+af and E+B<1+@ (3.6)
where a, 8 > 1. For brevity let z; =| 0; |. To have a better view into the for-
mulas let us consider the special case k = 7,7 = 2. Then 3, ; _; 72,2, <
2122 ZaZ5 ZeZr+ 2123 2275 ZaZr+ 2124 Za%6 Z3Zr+ 2125 2224 2376+ 21276 2223 Z52r+
2127 23724 2576 + 2227 2325 2476 + 27 < Teo + 14. In the given range 2 < k£ <9
such a sort is always possible. Hence,

| chej |= Z Zi ..oz < sco+s(|k/j] —1) and

1<) << <k

lme Y e <als sk - 1),

.
1< <<t <k 'y

from which the lemma follows. O

Remarks. (1) These estimates are good enough for searching canonical
number systems algorithmically.

(2) By using these formulas we got the following estimates (¢ = 1):
k=2 || < coy
k=3, |a| < 2c,|ea] <o+ 1
k=4, ]e1| < 3eo,|ez| < 3eo+ 2, |es| <o+ 2
k=05, || < 4eo,|ea] < Heog 44, |es| < Heg + 4, |ea| < o+ 3;
k=6,|c1| < 5eo,|ez] < 10¢o 4+ 4, |es] < 10¢o + 9, |ea] < Beo + 9, |es| < o + 4;
k=T, |c1| < 6co,|ca] < 1deg + 6, |ca| < 18¢o + 16, |cs| < 18¢o + 16, |e5] <
Teo + 13, |es] < o + 55
k=8, |c1| < Teo,|ea] < 2leg 4 6, |ea| < 28¢o + 27, |ea| < 35¢o + 34, |es] <
28¢o 4 27, |cg| < Teg + 20, |er] < ¢o + 6
k=9, |c1| < 8co,|ca] < 27co + 8, |ea| < 56¢o + 27, |es| < 63¢o + 62, |c5] <
63co + 62, |cs| < 28co + 55, |er] < 9eo + 26, |cs| < o + 7.

3.2.4 Some results

It was observed that a wide class of polynomials can serve for constructing
canonical number systems. B. Kovacs [72] proved that if f(z) € Z[z] is
irreducible, its zeroes have moduli greater than one and if ¢z < ¢y < ... <
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¢o > 2 then f(x) is a cns-polynomial. His proof can be applied for reducible
polynomials as well. Moreover, if ¢q is “big enough” then S. Akiyama and A.
Petho gave a method determining the cns-property of arbitrary polynomials
[1]. They also proved that if ¢a,... ,cx1, S0 ¢ > 0 and ¢ > 230 e
then f(x) is a cns-polynomial and the last inequality can be replaced by
co > 2%, |ei| when all ¢; # 0.

Recently, H. Brunotte provided an algorithm [10], which attempt to prove
the cns-property for a given irreducible monic polynomial f(x) € Z[x] satisfy-
ing the root-condition. His algorithm works for arbitrary monic polynomials
in Z[x] as well. His method differs essentially from the method of S. Akiyama
and A. Petho. Instead of using power basis he chose a different one. In H.
Brunotte’s basis the function ® : Z* — Z* has the form

k-1
Dic GT Tk

|CO|

O([x1,...,25]") = [~ sign(co) {

T
J,$1,... ,wk_l]

His algorithm based on the following theorem. Suppose that the set £ C Z
has the recursive definition () [0,...,0]%,[—1,0,...,0]%,[0,....,0,—1]T €
E, (i1) for every [z1,... 23] € Eand d € D = {0,1,...,|co] — 1} the
element ®([x1,... 251, % + d]T) belongs to K. If for every ¢ € E there
exists a j. € Ny such that ®“(e) = 0 then the polynomial f(z) has the
cns-property.

Let us see some examples. Let & = 2. Then by Lemma 8 and Lemma 9
we get that —1 < ¢; < ¢g. It is easy to see that in these cases the roots of
f(z) are outside the complex unit disc. Using the previous algorithm of H.
Brunotte it is also not hard to see that £ C {[$1,$2]T7$1,$2 e {-1,0, 1}}
and applying the function ® we have that the cns-property always holds.
In fact, we got a kind of generalization of the result of I. Katai, B. Kovacs
[52, 53] and of W. Gilbert [27].

If £ = 3 then we are only able to write a set of inequalities between the
coefficients of f(x) (see also [1, 10]). Nevertheless, the following assertion

holds.

Assertion 6. The following polynomials are cns-polynomials in Z[x]:

(i) ¥ + crx +co for every k >3 iff —1 < ey <ep—2,¢0 > 2;

(ii) % + px* L 4+ paf=2 4 pr+p forall2 <peN;

(ii1) eF a2 e dp forall2<peN;

(iv) ¥ 4+ pa*=t 4 p2aeh=2 4 4 pFle 4+ pF for all2 < p e N.

PROOF: The case (i) was proved in [10]. In order to check that the roots
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of the polynomials (ii) and (iii) are outside the complex unit disc one can
use the method of Lehmer-Schur [84]. The proof is easy, we leave it to the
reader. It is also obvious that the moduli of the roots of polynomial (iv) are
equal and greater than one. Since the coefficients of the polynomials (ii)-(iv)

are positive and monotonically increasing, the theorem of B. Kovéacs can be
applied. The proof is finished. O

Remarks. (1) We proved that there are infinitely many cns-polynomials
(therefore canonical number systems) for each dimension k even if the con-
stant term of the polynomial is “small”.

(2) The polynomials (iv) and (i) for ¢; = 0 show that for every e > 1
there is a base M such that (A, M, D) is a canonical number system and the
moduli of each eigenvalues of M are smaller than or equal to e. This shows
that the second necessary condition in Assertion 1 for satisfying the unique
representation property is sharp.

(3) Consider the Frobenius matrix M of the polynomial (iv). Note that
all eigenvalues of M have the same moduli. The importance of these systems
appears in chapter 5, in examining the Hausdorff dimension of the boundary
of their fundamental domain.

3.2.5 Searching for cns-polynomials

Now we provide an algorithm for searching canonical number systems. To
decide whether the polynomial f(x) has a root inside the complex unit disc
the method of Lehmer-Schur can be used. To analyze the possible roots in
the unit circle we have the following well-known lemma.

Lemma 10. Let Q(x) = qo + qiz + ... + qrz® € Z[z],Q(v:) = 0,|v| > 1.
Then |v;| > 1 if and only if ged(Q(x), z*Q(1/x)) is a constant polynomial.

ALGORITHM: CNS-SIEVE. Searching for all candidates of cns-polynomials
in case of given inputs constant term ¢g and degree k of the monic polynomial
f(z) € Zz].
1. Let S be the finite set of polynomials determined by Lemma 9;
2.if S # () then p :=get-a-new-candidate(S); S := 5\ {p};
else goto step 5;
3. if Lemma 8 (e), (b) with z = —1, (¢) and (d) hold for the polynomial p
then goto step 4; else goto step 2;
4. Apply Lehmer-Schur and Lemma 10 for the polynomial p;
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if all roots of p have moduli greater than one then print(p);
goto step 2;
5. STOP;

The algorithm terminates since S is a finite set. Observe that the CNS-
SIEVE algorithm contains computationally easy-to-check methods. Moreover,
if Lemma 8 fails for the polynomial p then possibly more than one polynomi-
als can be deleted from the set S, depending on which part of Lemma 8 does
not hold. Clearly, the CNS-SIEVE algorithm can also be applied for £ > 9
but in this case bounds for the coefficients of f(x) must be determined.

3.2.6 Cns-polynomials with constant term ¢y, = 2

Now we turn our attention to generalized binary number expansions, i.e.
co = 2. The case k& = 1 is well-known, and the case k& = 2 was analyzed in
section 3.2.4. Let k& > 3. Suppose that the polynomial f(x) is obtained by the
CNS-SIEVE ALGORITHM for some k. Then, a periodic element 0 # 7 € P
would be a test proving that f(x) is not a cns-polynomial. If one does not find
such a 7 by searching a small finite portion of the space systematically or ran-
domly then one can use the CLASSIFICATION ALGORITHM or H. Brunotte’s
algorithm [10] to prove that f(x) is really a cns-polynomial. If f() is not a
cns-polynomial then these algorithms serve also the test.

The author implemented the CNS-SIEVE ALGORITHM in C language.
The following table shows the results up to degree 8.

Output of
Degree (k) | CNS-SIEVE ALGORITHM Number of
(number of polynomials) | cns-polynomials

3 5 4

4 22 12

5 18 7

6 73 25

7 62 12

8 215 20
Table 1

Further, we enumerate the computed cns-polynomials.
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k=3,2—z42%242%24+ 2+ 22+ 232+ 22 4 222 + 22,

k=4,2—z4+2*24+242-2?2 4242+ 22 +24, 24222 4242+ 2+ 2%+
x4,2—|—x—|—x2—|—x3—|—x4,2—|—2x—|—$2—|—x3—|—$4,2—|—x—|—2x2—|—$3—|—x4,2—|—2x—|—2x2—|—
963—|—x4,2—|—2x—|—2x2—|—2x3—|—x4,2—|—3x—|—3x2—|—2x3—|—x4.

k=25, 2—x—|—$5,2—|—x5,2—96—|—$2—|—x5,2—|—x2—|—x3—|—x5,2—|—x—|—x4—|—x5,2—|—
x—l—wQ—|—x3—|—x4—|—x5,2—|—2x—|—2$2—|—2x3—|—2x4—|—x5.

k=6,2—24+25%2—224252—234+2% 2425 2423425, 24223425, 2422 -
x3—|—$4—|—x6,2—|—x2—|—$4—|—x6,2—|—x2—|—x3—|—$4—|—x6,2—|—2$2—|—2x4—|—x6,2—|—x—x2—$3—|—
x5—|—$6,2—|—x—x3—|—x5—|—x6,2—|—x—|—$5—|—x6,2—|—$—|—962—|—x3—|—$4—|—x5—|—x6,2—|—2x—|—x2—|—
$3+x4—|—x5—|—$6,2—|—2x—|—2x2—|—x3—|—$4—|—x5—|—x6,2—|—x—|—$2—|—2$3—|—x4—|—x5—|—x6,2—|—
296—|—2962—|—2963—|—$4—|—x5—|—x6,2—|—$—|—2$2—|—x3—|—2x4—|—x5—|—x6,2—|—2x—|—2x2—|—2x3—|—2x4—|—
365—|—966,2—|—2x—|—3x2—|—2x3—|—2x4—|—$5—|—x6,2—|—2x—|—2x2—|—2$3—|—2x4—|—2x5—|—$6,2—|—3x—|—
3962—|—3963—|—3964—|—2x5—|—x6,2—|—3$—|—4$2—|—4$3—|—3$4—|—2$5—|—x6,2—|—x—|—$2—|—x4—|—x5—|—x6.

k=1, 2—96—|—967,2—296—|—2x2—x3—|—x5—966—|—967,2—96—|—962—|—x4—|—x7,2—|—x3—|—
x4—|—x7,2—|—x2—|—x5—|—x7,2—|—x—|—x6—|—x7,2—|—x+x2—|—x3—|—x4—|—x5—|—x6—|—x7,2—|—
296—|—2362—|—x3—|—x4—|—x5—|—x6—|—x7,2—|—2x—|—2x2—|—2x3—|—2$4—|—x5—|—x6—|—$7,2—|—
296—|—2x2—|—2363—|—2964—|—2x5—|—2x6—|—x7,2—|—3x—|—4x2—|—4x3—|—4$4—|—3x5—|—2x6—|—x7.

k=8, 2—36—|—$8, Q—xQ—I—xS, 2—x4+x8, 2—|—3687 2—|—av4—|—9687 2—|—23€4—|—3687 Q434+ a5+
368,2—|—x2—|—x6—|—x8,2—|—x2—|—x4—|—x6—|—x8,2—|—2x2—|—x4—|—x6—|—x8,2—|—x2—|—2x4—|—x6—|—x8,2—|—
2962—|—2x4—|—966—|—x8,2—|—2$2—|—x3—|—x4—|—$5—|—x6—|—x8,2—|—2x2—|—2$4—|—2x6—|—$8,2—|—3x2—|—
3964—|—2$6—|—x8,2—|—x—|—x7—|—x8,2—|—$—|—x2—|—x4—|—$6—|—x7—|—x8,2—|—$—|—x2—|—x3—|—$5—|—x6—|—x7—|—
xS,2—|—x—|—x2—|—$3—|—x4—|—x5—|—x6—|—x7—|—x8,2—|—2x—|—x2—|—$3—|—x4—|—x5—|—x6—|—x7—|—x8,2—|—2x—|—
2362—|—2$3—|—x4—|—x5—|—$6—|—x7—|—x8,2—|—2x—|—2$2—|—2$3—|—2x4—|—x5—|—x6—|—x7—|—$8,2—|—2x—|—
2962—|—2x3—|—2x4—|—2$5—|—2x6—|—x7—|—$8,2—|—2x—|—2x2—|—2$3—|—2x4—|—2x5—|—2x6—|—2$7—|—x8,2—|—
x—l—x2+x3+2x4+x5+w6+x7+$8,2—|—x—|—2x2—|—2$3—|—x4—|—2x5—|—x6—|—x7—|—x8,2—|—$—|—2x2—|—
x3—|—2x4—|—$5—|—2x6—|—x7—|—x8,2—|—x—|—3x2—|—2$3—|—3x4—|—2x5—|—2$6—|—x7—|—x8,2—|—2x—|—3x2—|—
3363—|—3x4—|—2x5—|—2x6—|—x7—|—$8,2—|—3x—|—3x2—|—3x3—|—3x4—|—3x5—|—3x6—|—2x7—|—x8,2—|—3x—|—
4962—|—5x3—|—5x4—|—4x5—|—3$6—|—2x7—|—$8,2—|—4x—|—5x2—|—5x3—|—5x4—|—4$5—|—3x6—|—2x7—|—x8.

The output of the CNS-SIEVE ALGORITHM shows that the estimates in
Lemma 8 and Lemma 9 may be complemented and improved. It is also
clear that the time complexity of the algorithm is exponential in k. More-
over, in higher dimensions proving that a given polynomial obtained by the
CNS-SIEVE ALGORITHM is really a cns-polynomial is hard. The following
conjecture would help, but the author was unable to prove this.

Conjecture. Suppose that the lattice A is generated with the power basis and
the polynomial f(x) is obtained by the CNS-SIEVE ALGORITHM. If there
does not exist any periodic element m for which ||r||l = 1 then f(x) is a
ens-polynomial.
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Obviously, if such a 7 exist then the polynomial is not a cns-polynomial. We
used this idea to test the output of the CNS-SIEVE ALGORITHM.

Remarks. (1) The case k =3 in Table 1 was known to A. Jarai (unpub-
lished).

(2) Suppose that the polynomial f(x) is obtained by the CNS-SIEVE
ALGORITHM and it is not a cns-polynomial. Then, the CLASSIFICATION AL-
GORITHM provides more than one periods. The following questions are quite
interesting: how many such periods exist and what are the length of them?
The general characterization seems to be hard. The following table shows
some computational results.

the polynomial TeP the length of

flz) |7 ]|oo = 1 period of 7
2+ x4 2% + 2t [—1,1,0,0]" 11
24 x4+ 222+ 222 + 2t 4+ 2P [—1,—1,—1,0,0]T 21
24+ 2>+ 2t 4+ 2% + 28 [—1,—1,—1,0,0,0]T 33
242 +22° + 22 + 25+ 27 | [-1,-1,1,—-1,0,1,0]F 47
2420+ 22+ 2%+ 227 + 2% | [-1,-1,0,0,0,0,0,0]F 64

Table 2

(3) In order to decide the cns-property of a given polynomial the algo-
rithm of H. Brunotte is preferable. The author is grateful to J. Sziliczi who
programmed this algorithm in C++ in a very fine way. This shows among
others that for the cns-polynomial 2 4 = + 22% + 2% + 22% 4+ 2% 4 225 + 27 + 28
the algorithm uses 344 iteration steps, the number of integer vectors in the
set I/ is 143123, while for the cns-polynomial 2 4 3z +32% + 322 4 3z* +32° +
328 + 227 + 2% the algorithm uses 253 iteration steps and number of integer
vectors in the set K is 241719.

3.2.7 Polygonal construction

Let f(z) = 2F + 251+ ..+ 1 and let Ay = Z[z]/(f) be the corresponding
k-dimensional lattice as earlier. Let w = x 4 (f) denote the image of @ in Ay
and let # = n —w,n € Z. Note that w**' = 1. Clearly, the corresponding
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matrix
n 0 0 0 1
—1 0 0 1
0 -1 n 0 1
MpOl = . . . . .
0 0 0 ... n 1
0 0 0 ... =1 n+1

acts on the cubic lattice Z* with respect to the basis {1,w,...,w" 1} The
determinant of M,y is (n**! — 1)/(n — 1). A. Vince [106] considered the
interesting case n = 2. In this case det(M,,;) = 2"*1 — 1. Let

D= {eo—l—qw—l—...—l—ekwk :¢; € {0,1}, not all ¢; is 1}.

It can be seen that D is a full residue system modulo M,,. For k = 1 we
have that A = Z, M,,; = (3), D = {—1,0,1}, which is the balanced ternary

representation of the integers. For k = 2 the matrix M,,; = ( 2 3) and
D =10,1,w,... ,w" : wis a primitive 6th root of unity}.

A. Vince called these systems as the generalized balanced ternary (GBT).
In these systems, addition and multiplication can be carried out by simple
and fast bit string routines, since each digit can be represented by the bi-
nary string epey ... €. Moreover, using the two-dimensional GBT, a planar
database management system was developed (see [105, 106] and the refer-
ences there). We call the reader’s attention to an interesting fact regarding
generalized balanced ternary, which was observed by A. Vince. The eigenval-
ues of M, for the GBT are {2 — w : w is an (n 4 1)th root of unity, w # 1}.
Therefore the minimum modulus of an eigenvalue tends to 1 as £ — oo. Since
GBT systems are number systems for all k, we got again that Assertion 1(b)
is sharp.

Radix systems, where the digit set has the form {0,1,¢,¢%,... (%1},
( = exp(2mi/k) is the primitive k-th root of unity, are very important in
computer science, since they enables fast addition and on-line multiplication.
We refer the interested reader to [98, 100].

3.3 Simultaneous construction

The following radix system was introduced by K-H. Indlekofer, 1. Katai
and P. Racské [41]. Let Ny, Na, ..., Np be mutual co-prime integers, none
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of them is 0,+1. Let M, = diag(Ny, Na,... ,Ng) and D = {de}, where
e=1[1,...,1]5,8 = 0,1,...,t —1,t =| Ny... Ny |. Clearly, the set D is a
full residue system modulo M. The proper work of the function ® is based
on the Chinese remainder theorem. In dimension two let 2 < N; < N,. The
above mentioned authors proved that the system (Zk, M, D) is a number
system if and only if Ny = Ny + 1.

3.4 General construction

A further question concerning radix expansions is the following: for a given
M satisfying criterion (b) and (c¢) in Assertion 1 is there any digit set D for
which (A, M, D) is a number system? How many such digit sets exist and
how to construct them? In imaginary quadratic fields due to G. Steidl [102]
and . Kétai [48] we know that to be able to construct number systems the
conditions in Assertion 1 are also sufficient. Remarkable results are obtained
by G. Farkas in real quadratic fields [20, 21, 23]. Moreover, if M is similar
to the Frobenius matrix of an irreducible monic polynomial over Z then
some results are also available [50]. The above mentioned authors gave the
constructions as well. For the general case, A. Vince proved [106] that if all
the singular values of M are greater than 3v/k then the digit set D can be
constructed. In dimension 2 this value can be made sharper to 2. Now we
prove the following.

Assertion 7. (Sufficient condition for the number system property)
Suppose that the conditions for M, D in Assertion 1 hold. Let us denote in
R* a vector norm and the corresponding operator norm by || - || for which
r = |[M7Y < 1. Let K = max{||d||,d € D} and L = Kr/(1 —r). Let
furthermore R be a positive real number for which z € A, ||z|| < R implies z €
D. Ifr < R/(R+ K) then (A, M, D) is a number system.
PROOF: It follows from Lemma 1 that if 7 is a periodic element then ||7|| < L.
Hence, if we could prove that L. < R then we would be ready, since in this case
the only periodic element is the null vector. But if r = ||M~!|| < R/(R+ K)
then Kr < R(1 —r), by which L = Kr/(1 —r) <R. O

The construction of the digit set is as follows: enumerate all integers in a
‘big enough’ ball around the origin, order them using the appropriate norm
and select a full residue system keeping the norm of the elements as small as
possible.

Assertion 7 has an important corollary. Recall that a basis transform-
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ation does not change the number system property, i.e. if M; and M, are
similar via the matrix @) then the number system property of (A, My, D) and
(QA, M2, QD) holds at exactly the same time. Let U = [—3, %)k denote the
k-dimensional half-open unit cube centered at the origin. Recall that the k-
dimensional parallelotop V' = MU has volume | det(M) | and the appropriate
integers in V' constitute a full residue system modulo M. Suppose that the
norm in R¥ is the Euclidean norm. Then, performing a basis transformation,

the full residue system V' can be transformed to the half-open unit cube U,
K
R

Assertion 8. For a given expansive M suppose that | M|, < 1/(1 + k).
Then there exists a digit set D for which (A, M, D) is a number system.
Our result is stronger than that one of A. Vince except in dimension
2. Applying Assertions 1 and 8 in dimension 1 shows that if 2 < § € Z
then every rational integer has a unique base 6 radix representation with
D =A{-1(9] - 1)/2],...,[]0]/2]}, which is well-known. Consider the ring
of Gaussian integers Z[i] = {a + bi : a,b € Z} and let § = A 4+ Bi € Z[i].
In this case My = (g _f> and ||[M; ||, = 1/v/ A2 + B2, which is, apart from
a few cases, always smaller than 1/(1 + v/2). Keeping in mind Assertion 1,

in which case & is equal to vk. Hence, we proved the following:

Assertion 7 and [55] these cases are easy to handle. We got the following: for
any Gaussian integer § of modulus larger than one, except 2 and 1 ¢, there
exists a full residue system D so that (Z*, My, D) is a number system. Hence,
as a special case of Assertion 8 we have the result of G. Steidl'. If we consider
the Fisenstein integers Z[w]| = {a+bw : a,b € Z}, where w is the complex cube
root of unity, and we perform the above mentioned computations, we obtain
the same conclusion. Nevertheless, it is not any surprise: I. Kédtai solved the
problem in all imaginary quadratic fields. If we consider the real quadratic
fields — without going into the details — it is possible to reprove the result of
G. Farkas [20]. The interesting is that the above mentioned authors gave the
digit sets explicitly which is different from our construction. This suggests
that the unique representation property depends mainly on the radix, and if
any, than several different digit sets can be constructed.

IHistorical remark: for the first proof of this result there is a research report by M.
Davio, J.P. Deschamps and C. Gossart [14] dated back to 1978.



Chapter 4
Analyzing expansions in Q[iv/F]

“The tmaginary number is a fine and
wonderful recourse of the divine spirit,
almost an amphibian between being and not being.”

— G. W. Letbniz

In this chapter we analyze the attractor set of special radix systems. Using
the notations already adopted the following questions arise: (a) What can be
stated about the attractor set of an arbitrary radix system (A, M, D)? (b)
How the structure of the periodic elements looks like? (c¢) It is known that
if m € P then the maximum of the period length of 7 can be estimated with
the number of lattice points covered by the disk with radius L centered at
the origin. Is there a better estimation? (d) Is there a good upper estimation
for the number of the different sets C(7)? The purpose of this chapter is to
answer these questions using bases as integers in imaginary quadratic fields
and canonical digit sets. It must be noted that the results of this section for
the case of Gaussian integers was proved in the author’s paper [65] using a
different technique. We remark that there are also some results in the real
quadratic field Q(y/2) using a different kind of digit set [22, 23].

Let I/ =1 or I' > 2 be a square-free integer. Let Q(iv/F7) be an imaginary
quadratic extension of Q, I be the set of integers in Q(@\/F) It is known,
that if £ # 3 (mod 4) then {1,d}, while for F' = 3 (mod 4) {l,w} is an
integer basis in I, where § = iv/F, w = (1 + iv/F)/2. The lattice generated
by the basis {1,} will be called the d-lattice and denoted by Aj, while the
lattice generated by the basis {1,w} is the w-lattice A,,.
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Let a; = a+b6 and ay = a+bw, a,b € Z, b;é() E = (F—I—l)/4 In these
cases the corresponding linear operators in Z* are My = (b ) and M, =
(Z gfg) Clearly, det(M;) = a’ + Fb? and det(M,) = a’ 4+ ab—l— Eb%; the first
column of the adjoint of the matrices M; and M, are [a, —b]T and [a—l—b, —b)T,
accordingly. Suppose that ged(a,b) > 1. It follows from Theorem 2 that in
these cases the sets {0,1,... ,a*+ Fb*—1} and {0,1,... ,a*+ab+ Eb*—1}
can not be complete residue systems modulo M; and M, accordingly. Hence
the following lemma holds.

Lemma 11. For a given a € Q[@\/F] (0 = a+bd or a = a+ bw) the set
D = {0,1,... ,Norm(a) — 1} is a complete residue system if and only if
ged(a,b) = 1.

Throughout this chapter we shall always assume that ged(a,b) = 1. For the
sake of brevity we use the notation (z,y) for ged(x, y).

4.1 Periodic elements of period length one

Consider the d-lattice and let o = a + b6, a,b# 0, (a,b) = 1.

Lemma 12.1. In the system (A5, o, D) the periodic elements of period length
one are m; = 1(1 “:’Z()g], 7=0,...,k, where k = L(l —a,b)(1+ QW)J
PROOF: It follows from (1.4) that = € P is a periodic element of period length
one if and only if 7 = d + ar for some d € D. It means that (1 — a)7 =

d € D, hence 7 = % =@ d(; _ﬁz2F + 9 = a)db_|_sz Since m € [ therefore
(1—a)*+b*F | d(1—a,b). On the other hand 0<d<a?+b*F —1 by which
the proof is completed. O

Consider now the w-lattice. Let @ = a + bw, b # 0, (a,b) = 1, N =
Norm(a) = a* 4+ ab+ V*E, E = (F+1)/4. I E =1,a = 0,b = £1 or
FE =1,a = =b = +1 then |a] = 1, so in the following we always exclude
these cases. Using the same idea as before the next lemma can be easily
proved. We leave it to the reader.

Lemma 12.2. In (Aw,oz D) the periodic elements of period length one are

T = l(laab‘l';%“;], 7=0,...,k, where k = L(l—a—b, b)(1+ (1—a)22—a(—ib—_(12)b+b2E)J'

Remarks. (1) Let b > 0 be fixed. From these lemmas we can calculate the
maximal number of loops. In the §-lattice this can be achieved by b | a — 1,
a > 1,in which case it isb4+ 1 if F' > 2 and b+ 2 if F' = 1. In the w-lattice
we have two cases depending on the value of E. If £ > 2 then the maximal
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number of loops is b+ 1 by b |a—1,2a +b> 2. If £ =1 then this value is
b+2,bya=1lorbyb>1,a=0+1.

(2) If a is positive then the element 1 —a+bd € P of period length one. In
the w-lattice, if 2a4b > 2 then the element 1 —a —b+bw € P of period length
one. Moreover, if £ = 1,#P =b+2 then (1 —a—b)(b+1)/b+(b+1)w P
of period length one.

4.2 Location of periodic elements

Before we continue our analysis, we have some useful observations.
(1) Let y eI, y=0mod a,y1 =y+a, 2=7v+y, ¥,y € D. Then

(I)(’Yl) = (I)(’Yz)- (4-1)

(2) Let o € I,m € P, that is, 7 = a0+ ara+ ...+ a0+ wad, a; € D.
Then

T=ay+aa+...+a_ @ +7a, a; €D. (4.2)

It means that if 7 € P in (A,o, D) then 7™ € P in (A,a,D). f « = a + b6
then @ = a— b6, if « = a+bw then @ = a+b—bw, so it is enough to examine
the cases b > 1.

(3) It follows from Lemma 3 that if 7 € P then

d “|d] _(N—-1) 1 la] + 1 1
—r— < L < = =14+ —.
‘ o ; |aff o[> 1—1/]af |af |af
Hence,
dia 1
= <14 —. 4.3
RS AR (+3)
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Lemma 13. Let a € [ (a = a+ b6 or o = a + bw), (a,b) =1, e € Z. If
a | e then N =aa | e.

PROOF: If a+b) = o | e then (¢ +b5)(c+dd) = ac—bdF + (ad+bc)é = e for
some ¢, d € Z. Since (a,b) = 1 therefore ¢ = ap and d = —bp for some p € Z.
Hence a?p + b?Fp = e, which means that «® + b*F | e. If a + bw = « | € then
(a +bw)(c+ dw) = ac — bdE + (ad 4 be + bd)w = e for some ¢,d € Z. Again,
since (a,b) = 1 therefore ¢ = (a + b)p and d = —bp for some p € Z. It means
that a(a + b)p + Eb*p = e, by which the proof is finished. O

4.2.1 Casea=a+ibVF
Let 1 =U4+ V4§ € P and let () = Uy + V14. By the definition of & we have

the following equations:

U = d+all, —bFV,; (4.4)
V = bU1—|-CL‘/1, (45)

for some d € D. On the other hand using (4.3) we have that

dla dlb 1
—U - == - )5 <14 —. :
‘( U N)—I—( V—I—N>5‘_1—I—|a| (4.6)

Theorem 3.1. Let a =a+ b5, f=—a, b>1, S;={U+V§ —a+1<
U<0,0< V<, Sa={U+V5 0< U< [, 0<V <b—1}. Let
r=U4+VéeP. Ifa>1land (F>2or I'=1,a #b4 1) then 7 € 5y, if
a>1l,F=1,a=b+1then 7€ S;U{—a+ai},if —a > 1 then 7 € 5.
PROOF: Let |a| > 2. Suppose that |U| > |a| + 2. Then using (4.6) we get
that

3 |d1a|

N -1
+2<|U| < =+
o < |_2 N

N

< S+ ~al,
which is a contradiction. Therefore |U| < |a| 4+ 1. Now suppose that ' > 4
and |[V| > |b] + 1. Then

3 |dyfb 3  N-—1
b+1<|V|< —+ < + b,
sWisgg+* N So7t w

which is a contradiction again. Hence, if F' > 4 then |V| < b. In the same
way, if F'=1 or F' = 2 then it is easy to see that |[V| < b+ 1. On the other
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hand it follows from (4.6) that

dla 3

- <z

-0-%|55
therefore if @ > 0 then U < 1, if ¢ < 0 then U > —1. It is obvious as well
that

dyb 3
hence if ¥ > 2 then V> 0,if F=1or F =2 then V > —1.
Case a > 1. If a = 1,b =2, F = 1 then it is easy to check that G(P) =
{0 = 0,7 = ¢,2t — 2i}, so the theorem holds. In the following we exclude
this case. Let F' = 1 or F' = 2. Consider equation (4.5) and suppose that
Vi = b+ 1. Then we have that V = b(a + Uy) + a < b+ 1, therefore either
Uy =0,a=1o0r Uy <—a.ln the first case, if « = 1 then b > 1 and by (4.4)
we get that U < —bF(b+ 1)+ N -1 = —-bF < =2 = —(a+ 1) which is a
contradiction. It means that (b4 1)d can not be periodic. On the other hand,
ifU; = —a—1thenU < —a?—a—bF(b+1)+ N—1= —a—bF—1 < —(a+1)
which is a contradiction again. Let U; = —aand F' = 2. Then V =a < b+1,
therefore if @ > 3 then U < —a®* —bF(b+ 1)+ N -1 = —bF —1 <
(—a+1)F -1 = —-2a+1 < —(a 4+ 1) which is not possible. If « = 2
then a« = b+ 1, therefore b = 1 and it is easy to check that in this case
GP)=4{-140—->—-14+6,0—=0} Ifa=1,0>2then U< -2b—1< -5
which is a contradiction again. Let U; = —a and FF'=1. Then V =a < b+1
and U < —b —1 < —a hence in both cases equality must be satisfied, i.e.
a=0+1. But now U = U; = —a,V =V} = b+ 1 and this is the only
periodic element with V' = b+ 1. Hence if U 4+ V§ € P then V < b except the
case F'=1,a = b+ 1, in which case U 4+ V§ = —a + ai. Suppose now that
F=1or FF=2and V; = —1. Then by (4.5) we get that —1 <V = blU; —«q,
therefore U; > 0. If Uy = 1 or Uy = 0,6F > 2 then U > aU; + bF > 2
which is a contradiction. If U; = 0,b = F = 1 then by (4.5) we have that
—1 <V = —a, hence a = 1 which is a contradiction again. Let F' > 1 and
suppose that U; = 1. Then by (4.5) we have that V = b+ aV; < b. Hence
V1 = 0, but obviously 1 can not be periodic. Suppose that /; = —a—1. Then
(4.5) shows that V' < —b which is impossible. If U; = —a then we have that
Vi > b. It follows from Lemma 13, (4.1) and from the remark of Lemma 12.2
that if v € D then —z — 1 + a € B(1 — @). Lastly, since 2a + 1 < a* 4+ b*F,
therefore —a + b0 can be periodic iff I'=1,a = b+ 1.
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Case —a = f > 1. Suppose that (F =1 or FF=2)and V; =b+ 1. Then
—1 <V =0bU;—f(b+1) =0bU; — f)— [, therefore f — 1 < b(U; — f), so
Uy =f=1orU; > f+1. In the first case it follows from (4.4) that U < —1—
bF(b+1)+N—1= —bF—1 < —1 which is a contradiction. In the second case,
ifU; = f+1thenU < —f?— f—bF(b+1)+ N—1= —f—bF—1 < —1 which
is not possible as well. Hence if U + V' € P then V < b. Now suppose that
(F=1or FF=2)and V; = —1. Then by (4.5) we get that V = bU; + f < b,
therefore U; < 0 and if U1 = 0 then f <, if Uy = —1 then f <2b. If F' =2
then using (4.4) we have that f4+1 > U > — fU;+bF > 2f and equality holds
ifft f =b =1 which is a contradiction. If F'=1then f4+1>U > —fU; + 0.
Clearly, if U; = —1 then b = f = 1, which is impossible. If U; = 0 then
f+1>b>f, and since (f,b) = 1 therefore b= f+1 (b= f =1 is not
valid). Hence U = f+ 1,V = f. But if Uy = f+ 1,V; = f,b = f 4+ 1 then
V=0bf+1)—f*=2f+1< f+1, which is a contradiction again. It is
known [55] that if f =2,b6=1,F =1 then G(P) = {0 — 0}. Excluding this
case it is also clear that a + x 4+ b6 € B(0) (z € D) and 2f 4+ 2 < f? + b*F,
therefore by (4.1) we have that Vi <b—1.If U; = =1 then 0 <V = —b— fV,
therefore V; < 0, which is a contradiction. Suppose that U; = f + 1. Then
using (4.5) we get that V =0b(f + 1) — fV4 <b— 1, therefore V; > b, which
is a contradiction as well.

If |a| < 2 then keeping in mind [52, 53] we have to check only the following
cases. If a =b=1,F =1 or F' =2 then it is easy to see that G(P) = {J —
3,0 = 0}. The proof is complete. O

Lemma 14.1. If a > 1 then #P < b+ 1, if —a > 1 then #P < b.

PROOF: We have seen that if ¢« > 1 and # = U + b6 € P then 7 =1 — @.
It is obvious that d € B(0) for each d € D. Now we shall examine the
expansion of —1. Clearly, —1 = —1 + N — c¢a and —a = —2a + a. Since
a > 1 therefore —2a 4+ o = —2a+ N — aa+ a. Moreover, 0 < N —2a < N —1
and 1 — @ € P therefore —1 € B(1 — @). Hence the only rational integer
periodic element is 0. Considering Theorem 3.1 observe that there does not
exist any p € S; U Sy, (p # 0) for which p = 0 («). In virtue of (4.1) it is
easy to see that if U + V§ € P then there is not any Z,(Z # U) for which
Z +Vé € P. The proof is finished. O
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4.2.2 Case a=a+ bw
Let 1 = U + Vw € P and let ®(7) = U; + Viw. By the definition of ¢ we

have the equations

U = d+al —bEV, (4.7)
Vo= bl + Vi) +aVi, (4.8)

for some d € D. On the other hand using (4.3) we have that

(=) ()

Theorem 3.2. Let o =a+bw, f=—a, b>1, ) ={U+Vw, —a—b+1<
U<L0,0<V<b—1}, h={U4+Vw,0 <UL f=b 0V <b—1}. Let
T=U+VweP.

IfE=1a=1thenme Ty U{l —a,—b— 14 (b+ 1w},
fE=1a=b+1thenmeThU{l—a,—a—b—1+(b+ 1w},
ifE>20rE=1,a>1anda#b+1 then® € Ty U{l —a},

if1< f<band2a+4+b>2 then e Ty U{l —a},

if 1 < f<band2a+b<?2 thenm ey,

if f>bthenmelly.

PROOF: Let |a] > 3. Suppose that |U] > |a 4 b| + 2. Then using (4.9) we get
that

1
<14 — (4.9)

o’

4 |dy(a+b)| 4 N-—1
bl +2 < < g4 P e
la + b| + _|U|_3+ N _3+ ~

| + 0],

which is a contradiction. Therefore |U| < |a + b] + 1. Suppose that £ > 2
and |[V]| > |b] + 1. Then

4 )b 4 N-1

+ b
3|w] N ~3VE N

b+1< V| <

Y

which is a contradiction again. Hence, if £ > 2 then |V| < b. In the same
way, if £/ = 1 then it is easy to see that |V| < b+ 1. On the other hand it
follows from (4.9) that
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therefore if a + b6 > 0 then U <1, if a + b < 0 then U > —1. It is obvious as
well that

‘ dyb

4
N VTl
+N

< -
hence if £ > 2 then V >0, if £ =1 then V > —1.

Case a > 1. Let F = 1. Consider equation (4.8) and suppose that V] =
b+ 1. Then we have that V = b(U; +a+ b+ 1) + a < b+ 1. Hence either
a=1Ui=-b—-1lorlUy=—-a—-b-1,1<a<b+1.lfa=1U0;=-b—-1
then by Lemma 12.2 we have that —b— 1+ (b + 1)w € P of period length
one. If Uy = —a — b — 1 then by (4.7),(4.8) we get that 1| <V =a <b+1
and U = —a—b—1. Now, suppose that U; = —a—b—1,V; = a. In virtue of
(4.8) we have that —1 <V = —b* — b+ a®. It means that b(b+ 1) < a? + 1,
therefore « = b+ 1. Hence, if a = 1 then —b— 14+ (b+ l)w € P, if a > 2
and @« = b+ 1 then —a —b— 1+ (b+ 1)w € P of period length one and
does not exist any other periodic element X + Yw with Y = b+ 1. Let
E =1and Vi = —1. Then by (4.8) we have that —1 <V =b(U; — 1) — q,
therefore U; = 1,a = 1. Using (4.7) we get that U > b+ 1 > 2 which
is a contradiction. Let furthermore £ > 1. Since 2a 4+ b > 2 always holds,
therefore by the remark of Lemma 12.2 the element 1 —a — b+ bw € P of
period length one. Clearly, a*+ab-+b*E > 2a+b+1 therefore there is not any
other element X 4+ Yw € P with Y = b. Suppose that U; = 1 Then by (4.8)
we have that 0 <V = Vi(a+0b)+b < b—1 which is a contradiction. Suppose
that Uy = —a—b—¢,(c=—1,0,1) and 0 <V} < b—1. Then by (4.8) we get
that V=b(—a—b—c+Vi)+aVy <b(—a—1—-¢)+ab—a=—-a—b—bc<0
which is a contradiction again.

Case —a = f > 1. Let £ = 1. Suppose that Vi = b+ 1. Then by (4.8)
we have that —1 <V = bU; +b— f+ 1) — f < b+ 1, therefore either
f=1LU==-b< -4,V =—1or U > f—0>. In the first case using (4.7) we
get that U < b—b(b+1)+N—1 = —b. Suppose that U; = =b,V; = —1, f = 1.
It follows from (4.8) that V' = —b*—b+1 < —1 which is a contradiction. In the
second case, by (4.7) we get that U < —fU; —b(b+ 1)+ N—1 < —-b—1< —=b
which is a contradiction as well. Hence if U 4+ Vw € P then V < b. Suppose
that V4 = —1. Then using (4.8) we have that —1 <V =b(U; — 1)+ f < b
therefore U1y < 1. Since U > — fU; +b therefore U; > 0. If U1 = 0 then b—1 <
f <2band by (4.8) we get that V = f —b. Suppose that U; > bV} = f —b.
Then by (4.8) we have that V =b(U; 4+ f —b) — f(f —b) = 2fb— f*+bc < b

(¢ > 0). It means that ¢ = 0 or 1. Moreover, in both cases the only solution
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is 2b = f, which contradicts either to (f,b) = 1 or to |&| > 3. Suppose that
Uy =1,V = —1. It follows from (4.7), (4.8) that U > b— fand V = f <b.
This can happen iff b = f + 1. Now, suppose that U; = 1,V; = b— 1. Then
using (4.8) we get that V = b* — f(b — 1) = b+ f, which is not possible. It
means that if U+ Vw € P then 0 <V <b. Let furthermore £ > 1. Suppose
that Vi = 0. Clearly, it is enough to consider the expansion of —1. Since
—1=—-14 N —aa, —a = a — 2a — b therefore if 2a + b < 0 then —1 € B(0),
if 2a +6 > 0 then —a = a —2a — b+ N — aa. Obviously 2a + b0 < N — 1
and 1 —a = a — 2a — b+ 1 therefore we can conclude that if 2¢ + 6 > 2
then —1 € B(1 — @) else —1 € B(0). Suppose that V; = b. It follows from
(4.8) that V = b(U; + b— f) < b. Clearly, it is enough to consider the case
Uy = f—b41. The previous deduction shows that U;+Viw € P iff 2a+b > 2.
We can also notice that there is not other periodic element with V; = b.

Sub-case f < b. Suppose that U; = 1. Then by (4.8) we have that V =
Vi(b— f) + b < b, therefore Vi = 0 which is a known case. Suppose that
Uy=f—b—c(c=0,1). Now 0 <V =Vi(b— f)+b(f —b—c) <D, therefore
Vi = b,c¢ = 0 which is known as well. It means that if f <band U+ Vw € P
then f —b4+1<U <0.

Sub-case b < f. Suppose that U; = —1. Then using (4.8) we have that
0 <V =Vi(b—f)—0b< btherefore V; < 0 which is a contradiction. Suppose
that Uy = f—b+1. Then 0 <V =Vi(b—f)+b(f —b+1) < b, hence V; = b
which is a known case.

If o] < 3 then by Lemma 11 and by [52, 53] the following cases remain. If
a=2,b=1,F =1 then —4 4 2w, -2+ w,0 € P of period length one, if « =
2,b=1,F =2 then —2+4w,0 € P of period length one, ifa =1,6=1,F =1
then —2+2w, —1+w,0 € P of period length one,ifa =1,b=1,F =2,... .6
then —1 + w,0 € P of period length one, if « = 1,b = 2, = 1 then
-3 4 3w,—2 4+ 2w, —1 + w,0 € P of period length one, if « = —1,b =
2,F = 1,2 then w,0 € P of period length one, if « = —1,0 = 3, F =1
then G(P) = {w —» =1 4+ 2w — w,0 — 0}, if a = =2,b = 3, F = 1 then
2w,w,0 € P of period length one, if a = =3, 0 =2, K =1 then 1 + w,0 € P
of period length one. The proof is completed. O
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Lemma 14.2. If E = l,a=1orif E = 1,a = b+ 1 then #P < b+ 2,
ifE>2o0rE=1a>1l,a#b+1o0rl1l < f <band2a+b> 2 then
HP <b+1, else #P <b.

PROOF: Since there does not exist any p € T} (resp. Ty), (p # 0) for which
p = 0 («) therefore by (4.1) and by Theorem 3.2 we have that if U+ Vw € P
then there is not any Z,(Z # U) for which Z + Vw € P. O

4.3 Structure of periodic elements

Let b > 2, 8 =dorwand L, = {P+ QB € I, (b,Q) = u}. Obviously,
I =, L4 Now, we shall examine the case g < b. In virtue of (4.5) and
(4.8) it is easy to see that if (V,b) = p then (Vi,b) = u. Hence the function
¢ maps L, to L, for each p | b. Let b, = b/p.

Theorem 4. There is a finite decomposilion of L, into L, = U;‘;_OI,CL]) for
which if m € L‘Lj) then ®(m) € L‘Lj) for every m € P. The length of period of
m € P is p(b,)/l,, where ¢ denotes the Fuler totient function.
PROOF: Let X = V/u, X1 = Vi/u. Then from (4.5) we have that X = b,U; +
aX; and from (4.8) we get that X = b,(U; +V1)+aX;. Clearly, in both cases
X =aX; (mod b,), (X,b,) = (X1,b,) = 1. Let us denote by Z; the set of
reduced residue classes modulo b,, ie., Z; = {m (mod b,), (m,b,) = 1}.
Let T, denotes the cyclic subgroup < a > in Z, and let ¢, = ord(a). By
Lagrange theorem, ¢(b,) = [,t,, hence the order of the factor group Z; /T,
is [,,. So we have a decomposition ZZM = HoUHU.. .UH;,_y, where Hy = T,.
Let ,CL]) ={y=P+4+Q8, ve L, Q/p (modb,) € H;}. Finally, we have
the decomposition by £, = ,CLO) U ,CLI) U...u ,CL’“‘”. The proof is completed.
0

Remark. Consider the graph G(P). Theorem 4 states that for a fixed
a and b (b > 2) there are 7(b) different sets £,, in each there exist {, =
@(b,)/ ordy, a cycles with period length ¢, = ord,,. If b, is prime then there
is only one cycle in £, with period length b, — 1. If « = 1 (mod b,) then
there are only loops in £, and the number of them is ¢(b,,).
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4.4 Number of periodic elements

We have seen in the previous section that for each p | b and for each j =
0,1,...,{, — 1 there exist at least one period-cycle in ,CLj). The length of a
period in L’Lj) is a multiple of ¢, so it is at least £,. This means that #P >
Do Lul- Since 0, = (b,) therefore #P >3- (b/p) = b. Keeping in
mind the theorems and lemmas proved in this chapter we have the following
result.

Theorem 5. Letb> 1. Let a =a+bd. [fa>1 and (F>2 or F =1,a #
b+ 1) then #P =b+ 1, ifa > 1,F =1,a =b+ 1 then #P = b+ 2 and if
—a>1then#P=b. Leta=a+bw. [fE=1,a=1o0orif E=1,a=b+1
then #P = b+ 2, if E > 2 or E =1,a > l,a# b+ 1 or1 < f < b and
20+ b>2 then #P =b+ 1, else #P =b. I[f b < —1 then apply (4.2).

4.5 Expansions in the Gaussian ring

In the following we analyse expansions in the ring of Gaussian integers. Let
§ = a + bi. Recall that the elements of the ring Z[f] have the form {m +nf :
m,n € Z}. Then Z[0] = {u+vbi : w0 € Z}={B € Z[:] : b| Im(p)}.

Theorem 6. Let  =a+bi, a=—f, f>0, (f,b)=1. Then Z[0] = B(0).
PROOF: Let N = 00. First let 3 be an arbitrary Gaussian integer such that
p € B(0). It means that 8 = by + b10 4 ...+ b0 for some | € N and b; € D.
Clearly, b | Im(67). Since D C Ny therefore b | Im(/3). By the previous remark
we have that § € Z[f], hence B(0) C Z[f]. Suppose now that 3 € Z[f]. Then

B =m + nb. (4.10)
On the other hand the expansion of —1 is
—1=N—-14+600=N—1+42f0+ 0> (4.11)

Since 1, N—1,2f € D therefore —1 has the finite expansion (4.11). Equations
(4.10) and (4.11) mean that 8 has also an expansion of the form

6 = Ug + u1(9 + UQQQ + U3(93, (412)

where u; > 0 (j =0,1,2,3). The idea of the following lemma is originated
to 1. Katai and J. Szabé [55].
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Lemma 15. (Clearing Lemma) Suppose that 8 has the following expansion:
B=ug+uf+...+u,0", (4.13)

where u; >0 (5 =0,...,m). Let T = E;n:o uj. Then for every s > 0 there
exists an expansion 3 = vg+vif+...4v,0°+.. A v,0" such that E;:o v; =T
and 0 <v; <N (3=0,1,...,s).

PROOF: First we shall examine the expansion of N = a? + b?.

N = (=2f—=0)0=((N—=2f)—00—0)0 =
= (N =200+ (010> = (N =210+ (2f — 1)0* + 0°. (4.14)

Observe that N —2f,2f—1,1 € D and the sum of the digits of the expansion
in (4.14) is N. Clearly, if ug < N in (4.13) then the lemma holds for s = 0.
In the opposite case, if N < wug, then let ug = pN +¢q, p>1, 0 < g < N.
Let us take ug = ¢ + p(() + (N =210 + (2f —1)0* + (93> into the equation
(4.13). Then we have that 8 = u}, +u}0 + ... 4+ u/ 0™, where u}) = q, v} =
up + p(N = 2f), uy = uy + p(2f — 1), uz = uz + p, u; =u; (j > 4).
Observe that > ui = T', so the sum of the digits does not change in the new
expansion. Hence, the case s = 0 is satisfied. We can continue the process for
g=12...,s. O

Now, we can apply the Clearing Lemma for the expansion of 5 in (4.12).
Let Ty = T = ug + uy + ug + us. If ug > N then by the lemma we have
that 0 = v+ 081, 0 < vy < N, i1 =y1 +v20+ ...+ y,0", y; > 0. Let
Ty = Ty — vg. Clearly, TY = y1 + ... 4+ ym. Applying the Clearing Lemma
again and again we have a monotonically decreasing sequence Ty, Ty, 75, . ..,
and expansions 3, 31, Bz, . ... If there exists an h € N such that T}, = 0 then
the expansion of 3 is finite having the digits from the set D, so Theorem 6
is proved. If such an i does not exist then there is a suitable large hy such
that Ty, = Thys1 = ... = r > 0. But in this case B, = 084,01 = 0?8 42 =
oo =0 Bpy4; = ..., therefore v := 3 — (v +v10 + ...+ v, 0M0) = Mo+, o,
for every t € N. Observe that 0"+ | v (¢ = 1,2,...) and this holds only if
~ = 0. This means that f has a finite expansion with digits from the set D.
The proof of Theorem 6 is complete. g



Chapter 5

Geometry of expansions

“The mathematical sciences particularly exhibit
order, symmetry and limitation; and these

are the greatest forms of the beautiful.”

— Aristoteles

In this chapter we investigate the set of fractions of radix systems and
lattice tilings with these sets.

5.1 Set of fractions H

In section 2 for a given radix system (A, M, D) the set of fractions was defined
as H = F(M,D) = {3, M~"a, : a, € D} C R". Recall that P denotes
the set of periodic elements. Let furthermore I'; be the set of lattice points of
form ap+May+---+M'a;, (a; € D). Then D =T¢ C T, C---. Let I = JI7.
Thus, I' is the set of those lattice points z which have finite expansions in
the radix system (A, M, D). Let A be the Lebesgue measure on R”.

Assertion 9. The fundamental domain H has the following properties: (i) H
is compact. (ii) H has interior points. More specifically | J cp(p+H) contains
a neighborhood of the origin. (iii) R* = J(H + A) (iv) For every x € R*
there is @ z € A and h € H such that x = z+ h. (v) N(H) > 0. (vi)
MHA+zNHA+2)=0 forall zy # z €T

PROOF: Concerning (i) most of the proofs applies Cantor’s diagonal principle.
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Now a different method will be given. Let F' C H be infinite. For each digit
a €D let

F(a):= {xEF:szM‘jdj,djED,d1 :G}-

i=1

Then we have F' = J, ., F'(a). Since F' is infinite, at least one of the sets
F(a) is also infinite. Choose a; € D so that F'(ay) is infinite. Then let

Flay,a):= {:L'G F:szM‘jdj,dj € D,dy = ay,dy :a}.

i=1

There is an az € D so that F(aq,az) is infinite. We may continue this process
to obtain a sequence (a;) € D so that F(ay,az,...,a,) is infinite for all
n. Then in the metric space R* the vector E;’;l M=Ja; is an accumulation
point of the set F'. This shows that H is compact. Concerning (ii) the proof
can be found in [107, Theorem 1] or in [83, Theorem 1.1]. The equivalent
assertions (iii) and (iv) are easy consequences of (ii). Since H is compact,
it is measurable, and A(H) = 0 would imply that A(R¥) = 0. Therefore
A(H) > 0, which was stated in (v). Concerning (vi) suppose that z,z2 € T
and z; # z3. Then

MH) [det M ['= \M'H) < | MH +2) =| det M |' A(H).

z€l_y

If there is a couple zq, 22 € I'j_1, 21 # 23 for which A(H + 21 N H + z3) > 0,
then the “less than or equal to” can be changed to “less than”, which is
impossible. O

Since H is compact, it is possible to draw it. In section 2.3 we noted that H is
self-affine with respect to the linear contraction maps f, : R¥ — R*, falz) =
M= (z+a),a € D and H is the unique attractor of the iterated function sys-
tem {f, : @ € D}. A computer can be used to generate rapidly the attractor
of an iterated function system by repeatedly applying the maps of the sys-
tem with equal probabilities and plotting the resulting points. The same can
be achieved by plotting the points of the set H; = {25:1 M™a; : a; € D}.
However, this is not the best method because of the size limitations of the
graphics device. Hereinafter we follow the method of B. Mandelbrot [85].
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ESCAPE ALGORITHM FOR PLOTTING THE SET H.

Consider the radix system (A, M, D). For each digit a € D define the function
go : R¥ = R* by g.(2) = Mz —a. Let K(H) be a bounded subset of R that
contains H and easy to decide whether an arbitrary y € R¥ is in K(H). Such
a set — a k-dimensional rectangle — was constructed in chapter 2. Given
any number z € R¥ construct the sequence of sets So, Sy, S, ... as follows.
Let the initial set Sy be {z}, if z € K(H) or empty otherwise. Let

Sj = {gai(Z) HEAS Sj—lvai € D?.gai(z) S [((H)}'

Stop the algorithm, if the set S; becomes empty or the number of sets j
reaches some predetermined limit /. If any of the sets 5; are empty, then =
does not lie in the set H. If [ is large and 5] is non-empty, then z either lies
in H, or it is very close to it. A point « in the set 5; is of the form = = ¢,, o
Jaj_, O - -Ga, (2), where each a; € D and z is approximately 25:1 M~a; € H.
If S; is the first empty set, then j is a measure of time taken by z to escape
from K(H) under iterations of maps g,.

Applying the ESCAPE ALGORITHM for all the points of a compact region
of R* (according to the graphics device) one can color these points via their
escape time j. Plenty of pictures of fundamental sets was generated by the
author in the Gaussian ring. These pictures had much more success in the
exhibition CeBIT’93 than the mathematics behind them [62]. Some of those
pictures can be seen in the home page of my project leader!. A few funda-
mental sets can be found in appendix B.

5.2 Just touching coverings and the bound-
ary of H

In the previous section we analyzed the fundamental domain H and the
translates of H to the points of I'. It is easily seen that the elements of I" are
not necessary closed for the addition. Clearly, if (A, M, D) is a number system
then I' = A, consequently A(H + z; N H + z3) = 0 holds for each z1,z; €
A, z1 # z9. This suggest the following definition: the radix system (A, M, D)
is called a just touching covering (JTC) system, if \(H + 1N H + z2) =0
holds for each zq, 29 € A, 21 # 29.

thttp://math.uni-paderborn.de/~k-heinz
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Let S denote the set of those elements 0 # z of A for which HN(H+z) # (.
I. Katai and co-workers proved [40] that the covering | J(H + A) = R* is JTC

if and only if '=I" = A, or equivalently, a covering is JTC iff for each element
z € S may be written as z = > 7 M’b; with b; € B:= D — D.

In order to examine the points of 0H (boundary of H), let us introduce
the set B(z) = (2 4+ H) N H,z € A. Clearly, S is a set of those z € A\ {0}
for which B(z) is nonempty. It is obvious that B(z) is nonempty iff z has an
expansion of the form z = Y02 M~'b;, where b; € B. Hence S C H — H,
therefore ||z]| < 2L for all z € S. In [40, 41] it was suggested to use the
transition graph G(S).

ALGORITHM FOR CONSTRUCTING THE TRANSITION GRAPH G(S).

Let K(H) be the k-dimensional rectangle centered at the origin determined
in chapter 2 and let U = 2K (H). Clearly, if z € S then z € U. For all
z € ANU, z # 0 calculate z, = Mz —b, where b € B. Let m(b) be the number
of possibilities to write b € B in the form b = a; — aj, (a;,a; € D). If z, € U
then direct m(b) edges with labels a; from z to z,. Delete z if no edge leaves it
and delete all edges that end in z. Continue this process until no appropriate
z remains. The resulting graph is G(S). The process terminates because the
number of nodes is finite.

Observe that the graph G(S) has symmetry properties: if the graph contains
an edge from z to y with label a, then there is an edge from —z to —y with
—a. It is also not hard to see, that every node in the graph G(S) has incoming
edge(s). The transition graph is a tool for computing dH without computing
the interior points.

ALGORITHM FOR COMPUTING THE BOUNDARY OF H.

Let start from an arbitrary node y € G(S), and walk on the transition graph
writing down the randomly chosen sequence of labels aq,as,.... Then, z €
B(y) iff z = E;’;l M~ a;. From computational point of view it is enough to
generate some finite steps (depending on the graphics device) of the walk.
Repeat the process.

The transition graph G(S) can also be used to decide whether the radix
system (A, M, D) is a JTC system. The property holds iff for each node =z
there is a path o in G(S) for which i(a) € B, t(«) = z. Here i(«) and t(«)

denote the initial and terminal node of the path «.
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5.3 Hausdorff dimension of 0H

First, we recall the different notions of dimensions which are used in this
chapter. The Hausdorff dimension of a Borel set F is defined as follows:
let {U;}52, be an e-cover of E, ie. B C |J:2, U; and diam(U;) < e, where
diam(U;) denotes the diameter of U;. Then the s-dimensional Hausdorff meas-
ure of I is given by

H*(E) = lim (inf { Z diam(U;)* : {U;}2, is an e-cover of E'}).

e—0

The Hausdorff dimension of £ is now defined by
dimp(E) = inf{s : H*(F) = 0} = sup{s: H*(F) = co}.

There are several difficulties in evaluating the Hausdorft dimension in a con-
crete case. The box-counting dimension simpliﬁes this problem by replacing
the terms diam(U;)® by the terms 6® in R*. A formal definition of the box di-
mension dimpg of any bounded subset E of R* proceed as follows. Let Ns(E)
be the smallest number of sets of diameter at most ¢ which cover E. Since
E is bounded we can always assume that the cover is finite. Then

. 10g Ng(E)
dims(F) = lim =775

provided that the limit exists. If it exists and is not an integer, then F is
said to have fractal dimension. It may take non-integral values, but yields
the usual dimension for the most ordinary spaces. A fractal set is one
whose Hausdorff dimension is strictly greater than its topological dimen-
sion. The term fractal was introduced by the mathematician Benoit Mandel-
brot. Examples of fractal sets are the Cantor set and the boundary of Koch’s
snowflake. Unfortunately, it is not true that the Hausdorff dimension and the
box dimension are always the same. But it is true that dimgy(£) < dimpg(F).
For further discussion of these and other kinds of dimensions we refer to
[17, 18, 19].

Second, a brief survey will be given for the concept of graph self-similarity
which was introduced by R. D. Mauldin and S. C. Williams [87, 17], and by
Falconer [18]. A directed multi-graph consists of two (finite) sets V and F, and
two functions i : K — V and t : £ — V. The elements of V' are called vertices
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or nodes; the elements of E are called edges or arrows. For an edge e, we call
i(e) the initial vertex of e, and we call t(e) the terminal vertex of e. We will
often write F,, for the set of all edges e with i(e) = v and t(e) = v. A directed
multi-graph is strongly connected iff, for each pair u, v of vertices, there is a
path from u to v. A pathin a directed multi-graph is a sequence of edges, taken
in some order. A path will often be identified with a string made up of the
labels of the edges. Let p be a metric on R¥. A mapping f : R¥ — R” is called
a contraction if p(f(z), f(y)) < ep(x,y) (z,y € R¥) holds for some constant
¢ < 1. We call the infimum of these constants ¢, for which the inequality
holds, the ratio of the contraction f. A contraction, which maps any subset
of R to a geometrically similar set is called a contracting similarity.

A directed multi-graph (V, F,,t) together with a function r : £ —
(0,00), will be called a Mauldin-Williams graph. Suppose that (V, E,i,t,r) is
a Mauldin-Williams graph. An iterated function system realizing the graph
is made up of metric spaces 5, one for each vertex v, and similarities f,, one
for each edge e € F, such that f.: 5, — 5, if e € £, and f. has ratio r(e).
An invariant list for such an iterated function system is a list of nonempty
compact sets K, C 5,, one for each node v € V', such that

K, = U Je[ K]

UEV76€EM

for all w € V. Each of the nonempty compact sets K, satisfying such equa-
tions will be said to have graph self-similarity. A Mauldin-Williams graph
(V, E i t,r) will be called strictly contracting if the conditions r(e) < 1 are
satisfied, in which case there is a unique list (K}, ),ev of nonempty compact
sets (K, C 9,) satisfying the previous equation.

A non-negative square matrix M is called primitive if M’ > 0 for some
positive integer j. A square matrix is called reducible if there exist a per-
mutation that puts into the form M, = (MO“ %;2), where My, and My,
are square matrices. Otherwise M is called irreducible. An irreducible non-
negative matrix M always has a positive eigenvalue A. The moduli of all the
other eigenvalues do not exceed A\. Moreover, there is an eigenvector associ-
ated to A with all positive entries. Let a Mauldin-Williams graph be given.
For all t > 0,u,v € V define
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and the matrix A(?) by A(¢)[u,v] = Au(t). Then, by the Perron-Frobenius
theorem, the spectral radius of A(t) takes the value 1 for a uniquely deter-
mined value of t = t3. This tg is called the graph dimension of the Maul-
din-Williams graph. Consider a strongly connected Mauldin-Williams graph
(V,E,i,t,r). When the invariant set list is found, each of the sets will be
similar to a subset of each of the others. So they will all have the same Haus-
dorff dimension. In order to determine the graph dimension, first we need to
find the proper sort of Perron numbers. If s is a positive real number, then
the s-dimensional Perron numbers for the graph are positive numbers ¢,, one
for each vertex v € V, such that

=Y g

UEV76€EM

There is exactly one positive number s such that s-dimensional Perron num-
bers exist. This unique number is equal to the graph dimension of the Maul-
din-Williams graph.

If (f.) is a realization of (V, E,i,¢,r) in R¥, then we say it satisfies the
graph open set condition iff there exist nonempty open sets U,, one for each
v eV, with f.[U,] C U, forall u,v € V and e € E,,; and f.[U,|N fu[Uy] =0
for all u,v,v" € Ve € Fy,, € € E,, with e # €.

The graph dimension can be used to calculate an upper bound of the
Hausdorff dimension of the sets of the invariant list. Let (V, E,¢,t,r) be a
strongly connected contracting Mauldin-Williams graph describing the graph
self-similarity of a list (K,),ev of nonempty compact sets in R*. Let s > 0 be
such that s-dimensional Perron numbers exist. Then dim K, < s for all v. If,
in addition, the realization satisfies the open set condition, then dim K, = s.

How can we compute the graph dimension if the graph is not strictly
connected? Let SC(V) be the set of all strictly connected components of
V. Let s be the graph dimension of V' and sy be the graph dimension of
W e SC(V). Then s = maxwesc(v)sw. Let furthermore K = J, .y K.
Then dim K < s, and, if the open set condition is satisfied then equality
holds [87].

Suppose that the all the eigenvalues of M are distinct and greater than
one in module. Let us examine the transition graph G(S) from similarity
aspects. First, let us define the sets B(z) for each node z. Clearly, the sets
B(z) are compact for all z. Suppose that the graph contains some edges from
x to y with labels d;. Let us define the maps fu, : B(y) — B(x), fu(z) =
M~(z + d;) for each label, where d; € D. We will prove that f4,(B(y)) C
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B(z). Indeed, if z € B(x), then z can be written as z = E;’;l M~a; =
x + E;’;l M=b; (a;,b; € D). Thgs, S E;’;l M= (a; — bj). Therefore
y = Mz — (a1 — by) = E;’;l M~ (aj41 — bj41) where 6 = a1 — by € B.
It means that if 2y = E;)il M~a; =y + E;)il M=7b;,, € B(y) then
fay(z1) = z € B(x). So we have that

Blx)= |J £IBWL.

yEV,BEEmy

in other words the sets B(z) form an invariant list of the iterated function
system {f.}. Since the mappings f; are contracting similarities, the graph
G(S) is a strictly contracting Mauldin-Williams graph so its graph dimension
can be determined by the previously described way.

Unfortunately, in most cases the open set condition does not hold, so the
Hausdorff dimension is hard to determine. But under certain circumstances
the Hausdorff dimension of H is equal to its box counting dimension and
the open set condition satisfies. Recall that a finite directed graph is primi-
tive, if it is strongly connected and the greatest common divisor of the length
of its closed directed walks is one [9]. In this case the accompanying matrix
of G(S) has a unique (positive real) eigenvalue of largest modulus. The fol-
lowing theorem was proved in [90]. Let (A, M, D) a JTC radix system and
assume that all eigenvalues of M have the same modulus A. Assume fur-
ther that the associated transition graph is primitive and denote by fimax
the unique eigenvalue of largest modulus of its accompanying matrix. Then

the Hausdorff dimension of 0H is equal its box dimension and is given by

log ftmax
log A

is a primitive subgraph of G(S) which has the same maximal eigenvalue as
G(S) then their graph dimension are equal and the Hausdorff dimension of
OH can be computed in the above described way.

§ = . Moreover, if the transition graph G(S) is not primitive but there

If the moduli of the eigenvalues of M are not all the same then using the
graph G(§) the box dimension of dH can be computed. In real quadratic
fields using canonical digit sets it was calculated by J. M. Thuswaldner [104].

5.4 Just touching coverings in special cases

Let D =A{as,as,...,an} C Z, where a; = ¢ (mod N) and let B = D — D.
The set of integers expressible in the form Ei’:o b;N', for some [ with b; € B,
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is denoted by Zg. Then Zg = dZ iff (a1 — an,az —an,... ,any —an) = d.
Assume that ay = 0 Then Zg = Z iff (a1, a2, ... ,ay) = 1. This theorem was
conjected by I. Katai and was proved by G. E. Michalek for N = 3 in [8§]
and for arbitrary N in [89]. Consider now the Gaussian integers Z[i].

Proposition 1. Let § = a + bi € Z[i], N = Norm(8) = a* + b* > 2,(a,b) =
1,D=A0,1,... ,N —1}. The system (Z[1],0, D) is JTC system if and only
if b = £1. In these caseslthe Hausdorff dimensions of boundaries of the
iyt
root of the polynomial (a* + 1)2° 4 (a* — 2a + 1)2* + (2a — 1)z — 1.

PRrROOF: Let D C Z be an arbitrary complete residue system modulo 4. If
a € Z[1] can be represented in the form o = E 0'd; (d; € B=D — D)
then b | Im(a), since b | Im(0") (I = 1,2,...). Hence the JTC property
implies that b = £1, i.e. 0 is of form § = a £ i. Observe that if (Z[¢], 8, D) is
JTC radix system then (Z[i],0, D) is as well and the Hausdorff dimensions
of boundaries of their fundamental domains are the same. Hence it is enough
to examine the case b = 1. But due to [55] we know that if ¢« > 1 then
(Z[i],—a — 1, D) is a number system, therefore JTC system. This implies
that (Z[i],a+1, D) is also a JTC system with the same Hausdorff dimensions
of their 9H. W. Gilbert computed the box dimensions of the boundaries of
fundamental domains of the number systems (Z[i],—a + ¢, D) (a € N) by
successive approximations [31]. S. Ito computed the Hausdorfl dimensions
of 0H for all canonical number systems in imaginary quadratic fields using
group endomorphism [44]. Moreover, if « is a non-real quadratic integer and

fundamental domains are where Amax s the largest (positive) real

D is a canonical digit set modulo « then I. Kornyei determined the Hausdorft
dimension of dH [80] using the linear recursive method of K-H. Indlekofer,
[. Kétai and P. Racské [40]. So the proposition is essentially proved. But the
aim of this section is to provide a proof using graph constructions, which is
different from the above mentioned methods.

Let a > 5. In order to compute the transition graph we follow the method
of section 2.1. The corresponding matrix belonging to § = a+iis M = (4 71).
Then

-t = | (0 e )| =

where || - ||o is the matrix norm induced by the maximum norm of R”.
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Therefore (I — M~')~! exists and

1 a’?+1
— — > [_ju_l -1 o0

where [ is the two dimensional identity matrix. Let v be the first column
vector of M~ and let p=uvd= [111(d), pa(d)]* (d € Z). In this case

3 2
<a and & = rcllqeal;(|/,¢2(d)| =

& = maxl(d)] = 5=

This means that

2 Cl2

a
= 2 d = — < 2.
néy a_1<a—|— and n&, a(a—1)<

Since we are interested in only the integers in H therefore we can conclude
that if vy € H NZ[i] then |Re(y) | < a4+ 1 and [Im(y) | < 1. Obviously, if
v € G(S) then

| Re(7)

~y 2(a+1) and (5.1)
| Im(7)

|
| < 2 (5.2)

<
<

Suppose that there is an edge in G(S) from X +Y7i to A+ Bi. Then A+ Bi =
(a +0)(X + Y1) — 0, where

§€B={-d*... a"} (5.3)
Hence, using (5.1),(5.2) we have the equations

A= aX-Y -4 |A|<2a+1)
B = aY +X, |B|<2.

4)
5)
One can immediately observe that |Y| > 3 contradicts to (5.5), therefore
Y| < 2. Let Y = 2. Using equation (5.5) we have the cases X = —2a —

2,...,—2a+ 2. Now, equations (5.3),(5.4) show that none of them are valid.
The same can be stated about ¥ = —2. Hence Y| < 1 and we can modify

(5.
(5.

equation (5.5) to

B=aY +X, |B|<1. (5.6)
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Case Y = 0. Equation (5.6) shows that in this case | X| < 1. Let X = 1.
In virtue of (5.3),(5.4),(5.6) and by the symmetry property of the G(S) we
have some candidates for the nodes of G(S):

l=n+i, =1—=—n—1i, n==2(a+1),...,2(a+1). (5.7)
Case Y = £1. In virtue of (5.6) we have the cases
Y=1,X=-a—-1,—a,—a+1, Y==1,X=a—-1,a,a+1. (5.8)

If X = —a — 1 then by equations (5.4) and (5.6) we get new candidates for
the nodes of G(S):

—a—14+i—=n—i,n==-2(a+1),...,—(a+1).

It follows from (5.7) and (5.8) that the only valid case could be —a —1+1i —
—a — 1 — 1, but it obviously can not happen. Using the symmetry of G(S) it
is easy to see that a +1 — 7 — a + 1 4+ ¢ can not happen as well. If X = +a
then by using the result of the case Y = 0 we have that

—a+1——1, a—1— 1. (5.9)
Finally, if X = —a + 1 then we have the candidates

—a+14+1—=n+1, n=—a,—a+1, (5.10)
and if X = a — 1 then

a—1l—1—=n—1, n=a,a—1. (5.11)

Using equations (5.7),(5.9),(5.10) and (5.11) we can construct the graph
Gg(S):

20 — 1

Figure 1
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The difference from G(S) is that the labels of the graph QN(S) show the m(4)
multiplicities of the edges of G(S), which can be easily get from equation
(5.4). The same graph can be constructed also for the cases a = 3,4. The
JTC property clearly holds. In case of @ = 2 the graph G(S) is a bit different
but the JTC property still true. In this case the only strongly connected
component of QN(S) having more than one node is the graph above. The
remaining nodes does not influence the graph dimension. If ¢ = 1 then the
graph QN(S) is again the same by canceling two edges labeled above with
(a — 1)~

Since the eigenvalues of My = (‘f :i) have the same moduli (a? + 1)1/2,
using the graph QN(S) we can calculate the Hausdorff dimension of 0H for
all @ > 1. Solving the system of equations x1 = (2a — 1)Azy + 2adxq, 22 =
Mg, v = (a — 1)*Aas + ((a¢ — 1)* + DAas, 24 = ((¢ — 1)* + DAz + (a —
1)?Az2, x5 = Azg, 26 = (2a — 1)Azg + 2adxs by substituting x; = 1 we have
that A is the root of the polynomial (a?+1)2°+(a* —2a+1)2*+(2a— 1)z —1.
Let us denote by Apax the largest (positive) real root of this polynomial. Then

the Hausdorff dimension of 0H is %. O

Remarks. (1) Recall that a metric space (X, d) is connected if it cannot
be expressed as the union of two disjoint nonempty closed subsets. A subset
S C X is connected if the metric space (S5,d) is connected. S is totally
disconnected provided that the only nonempty connected subsets of S are
subsets consisting of single points. Let S C X be a subset of a metric space
(X,d). Then S is arcwise connected if, for each pair of points x and y in
S, there is a continuous function f : [0,1] — S, from the metric space
([0, 1], Euclidean) into the metric space (5, d) such that f(0) =« and f(1) =
y. S is arcwise disconnected if it is not arcwise connencted. There is a brand-
new result of P. Talabér (personal communication) who presented a simple
method of proving the connectedness of fundamental domains. As a special
case, using canonical digit sets, if 1 € G(S) then F(M, D) is always connected
(see also [38]). Moreover, our construction shows that in case of Gaussian
integers using canonical digit sets the condition is also sufficient. Hence, we
have that in the Gaussian ring using canonical digit sets all fundamental
domains of JTC systems are connected. We note that in this case a stronger
result — the arcwise connectedness — is known due to S. Akiyama and J. M.

Thuswaldner [2].
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(2) Let Dy be the canonical digit set {0,1,... ,N — 1} and D, be the
symmetric digit set {[ (=N +2)/2],... ,[N/2]|}. Since B = Dy — Dy is equal
to Dy— Dy therefore the JTC property of (Z[i], 0, Dy) and (Z[¢], 8, D3) holds at
exactly the same time. Moreover, the Hausdorff dimensions of the boundaries
of their fundamental domains are the same. In contrast to the number system
property, for the Gaussian integer § = a + bi the system (Z[i],0, D) is a
number system iff b = £1 and a # 0,1,2,—2,3 (see [49]).

Consider now the radix system defined by the cns-polynomial (iv) in Asser-
tion 6 with canonical digit set. Let k be fixed. Suppose that the associated
transition graph is primitive. Then, according to the results of [90] and of
section 3.2.4 it is possible to determine the Hausdorff dimension of 0H.

5.5 Tiles and tilings

A tiling is a collection T of nonempty compact subsets of R”, called tiles,
such that (1) each tile is the closure of its interior, (2) Uo7 Ti = R* and
(3) the distinct tiles are non-overlapping. Non-overlapping means that the
interiors are disjoint. A tiling is a pertodic tiling if it is invariant under &
linearly independent translations, non-periodic otherwise. A lattice tiling is a
tiling by translates of a single tile to the points of a lattice. Note that lattice
tilings are periodic tilings. A self-replicating tiling is a tiling T by translates
of a single tile such that there is a linear expansive map A with the following
property. For each tile T € T the image of A(T') is tiled by copies of tiles
in 7. It must be noted that there are self-replicating tilings which are not
lattice tilings. Let an example be the following in R (see [5, 82, 83]). Let
T;=[t,0+1]U[i+2,i43],7 € Z and let A(T') = 47T'. Clearly, A is expansive
and A(T;) = Ty; U Tyje1 U Tyjes U Tyjpg. It is a periodic tiling with period
lattice 4Z but it is not a lattice tiling.

A self-affine tile in R is a nonempty compact set T' of positive Lebesgue
measure with A(T') = {J,.p(a+T), where A is an expanding k x k real matrix
with |det(A)| = ¢ an integer, D = {ay,... ,a;} C R¥ is a set of ¢ digits and
the union is non-overlapping. We remark that for any expanding matrix A
and finite set D in R* the previous equation determines a unique compact
set T', the set of numbers with zero integer part. However, uniqueness does
not hold in the converse direction. In fact, any self-affine tile T" arises from
infinitely many different pairs (A, D) Self-affine tiles arises in many topics,
see [5, 107, 108] and the references there. A self-similar tile is a special kind
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of self-affine tile, for which the matrix A is a similarity, i.e., A = AQ) where
A > 1 and @) is an orthogonal matrix. Self-similar tiles are somewhat easier
to analyze than general self-affine tiles. Self-similar tiles are sometimes called
rep-tiles.

There is a nice connections between self-replicating tilings and self-affine
tiles. R. Kenyon proved [58] that all the tiles in any self-replicating tiling are
necessarily self-affine tiles H = F(M, D) for some digit set D. Conversely,
every self-affine tile H serves as a prototile for some self-replicating tiling
[82]. The following result is the Tiling theorem of self-affine tiles [83]. If
H = F(M, D) is a self-affine tile containing an open set then there exists a
set L CTI' — I such that £ + H tiles R, Note, that no lattice is mentioned
in the theorem. On the other hand, if L = A = T' =T then (A, M, D) has the
JTC property.

Recall that the set I' is M-invariant, i.e., M(I') C I'. In the same way,
[' = I' is M-invariant as well. Let Z(M, D) denote the smallest M-invariant
lattice containing B = D — D. A self-affine tile H = F(M, D) has a lattice
tiling with the lattice Z(M, D) if and only if I' = I' = Z(M, D) [83].

It is easy to see the connection between JTC systems and self-affine lattice
tilings. With the notations already adopted we have the following result.

Assertion 9. If (A, M, D) is a JTC system then (1) the fundamental domain
H is a self-affine tile with 0 € int(H), (2) the tiling is a lattice tiling and (3)
A is the smallest M -invariant lattice containing D — D.

Summarizing the results of this chapter with respect to the tiling prop-
erties an algorithm was provided that determines for a given radix system
(A, M, D) whether or not it is a JTC system. Recall that in chapter 3 num-
ber system constructions, hence, constructions of self-affine lattice tilings
were discussed. More details about existence, structure and tiling properties
of general self-affine tiles can be found in the paper of J. C. Lagarias and Y.
Wang [83]. We end this chapter with an interesting conjecture of A. Vince:

if (A, M, D) is a radix system then there is some lattice tiling using only
translates of H = F(M, D).



Chapter 6

Summary and further
directions

“The art of asking the right questions in mathematics
is more important than the art of solving them.”

— (. Cantor

In this chapter we summarize the results of this work, enumerate some
open problems and provide further directions related to number expansions
in lattices.

The results are as follows:
A. Concerning the examination of number expansions:

1 In case of a given endomorphism M : A — A and digit set D C A, 0 €
D a necessary and a sufficient condition were given for satisfying the
unique representation property (Assertions 1 and 2).

2 It was stated that a basis transformation in A does not change the
number system property (Assertion 3).

3 Generating the digits of an expansion the function ® was considered.
It was observed that the path z, ®(z), ®*(z)... is ultimately periodic
for all z € A. The set of periodic elements were denoted by P. With
the aid of the function ® the attractor set G(P) of A was defined. It
was proved that the radix system (A, M, D) is a number system if and
only if G(P) = {0 — 0} (Assertion 4).
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4 Tt was shown that for any radix system (A, M, D) the lattice points are

classified by the attractor set G(P), i.e. two lattice points x,y € A are
in the same class if and only if ®'1(z) = ®"(y) for some non-negative
integers [y,l5. In order to obtain the classification it was proved that
all the periodic elements are inside a compact set —H where H is the
set of fractions (or fundamental domain) in R¥. Determining the lattice
points inside the fundamental domain two approaches (a covering con-
struction and an operator norm construction) were used (Theorem 1).
Then, applying an iterated function system, an effective algorithm was
presented in order to perform the classification (CLASSIFICATION AL-
GORITHM).

Methods were developed for the fast computation of the function &
(section 2.4).

For the length of expansion of an arbitrary z € A an estimate was
proved (Assertion 5).

B. Concerning number system constructions:

1 It was introduced the notion of j-canonical number systems and equiv-

alent statements were proved for the existence of j-canonical complete
residue systems (Theorem 2).

It was stated that number expansions in algebraic number fields are spe-
cial cases of number expansions in Z*. In these cases, the linear trans-
formation M has a simple form in the appropriate power basis, namely
the Frobenius matrix of a monic irreducible polynomial over Z[z]. It
was shown how to extend this concept to arbitrary monic polynomi-
als over Z[x] obtaining canonical radix constructions. We called these
polynomials as cns-polynomials (or having the cns-property). Neces-
sary conditions for the cns-property were discussed (Lemmas 8 and 9).
A large family of polynomials in Z[x] was proved to be cns-polynomials
(Assertion 6). Indeed, it was shown that there are infinitely many cns-
polynomials (therefore canonical number systems) in each dimension
even if the constant term of the polynomial is “small”.

Searching for all cns-polynomials in case of a given degree and constant
term an algorithm was presented (CNS-SIEVE ALGORITHM).
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There were given all cns-polynomials up to the degree 8 with constant
term ¢g = 2.

In general, for a given radix M a sufficient condition was given, in
which case there is a digit set D for which (A, M, D) is a number
system (Assertions 7 and 8). The digit set can be constructed. This
theorem, which is sharper than the earlier results, shows that a wide
class of matrices can serve as bases for some number systems.

C. Concerning canonical expansions in imaginary quadratic fields:

1

1

In case of imaginary quadratic fields using canonical digit sets the at-
tractor set G(P) was completely described, i.e, the number, location
and structure of periodic elements was fully determined (Theorems

3.1,3.2, 4, and 5).

In the Gaussian ring for certain bases a special property was proved

(Theorem 6).

Concerning the geometry of expansions:

An algorithm was presented for plotting the points of the fundamental
domain H (ESCAPE ALGORITHM). This set is the unique invariant (or
attractor) set of an iterated function system determined by the radix

system (A, M, D).

It was analyzed the just touching covering property of radix systems
and with the aid of the transition graph an algorithm was given to
decide this property (TRANSITION GRAPH CONSTRUCTION ALGO-
RITHM). It was also given an algorithm for computing the boundary of
the set H without computing the interior points.

Via the construction of the transition graph it was determined all just
touching covering systems in the Gaussian ring using canonical digit
sets, included the exact values of the Hausdorff dimension of the bound-
ary of their fundamental domain (Proposition 1).

Finally, some remarks were made on just touching covering properties
of radix systems.

The author’s main results are: Al (Assertion 2), A4 (CLASSIFICATION
ALGORITHM), A5, A6, B1, B2 (Assertion 6), B3, B4, B5, C1, C2.
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Now consider some open problems and further directions.

1. Let a radix system (A, M, D) be given. The following questions arise
naturally (see also page 37 and [64]). It is known that if p € P then the
maximum of the period length of p can be estimated with the number of
lattice points in the k-dimensional ball centered at 0 with radius L. Is there
a better estimation? Is there a good upper estimation for the number of
different sets C(p)? Give all the bases M mapping A to A for which there
exist a complete residue system D modulo M such that (A, M, D) is a number
system. How can be characterized the geometric,—algebraic structure of the
sets B(p), p € P (e.g. symmetry)? What can be stated about the attractor set
in case of special operators, e.g. matrices generated by the ring of integers of
a given algebraic number field? The problem of characterizing the j-canonical
number systems seems to be interesting. It is known that if z € B(0) for all
||z]] < L then the unique representation property holds. Instead of L is there
a better estimation? This is a critical problem for examining number systems
algorithmically, since L can be very large.

2. Let a number system (A, M, D) be given. Desing and implement the
basic operations (addition, subtraction, multiplication, division) in this sys-
tem. For special digit sets — where the digits are the k-th root of unity —
some important results are available [100]. What about the canonical digit
sets? The real problem is the division. For the ring of Gaussian integers it
was analyzed by W. Gilbert [32] and by I. Katai [47] independently, using
different methods. It seems that the method of I. Katai can be generalized.

3. Topological questions are also very interesting. Let a radix system
be given. Is the fundamental domain H (arcwise) connected,~disconnected?
When the projections of H to lines are intervals? What about the geometric,—
algebraic,—measure theoretic properties of a non-empty intersection of H with
a hyperplane of R¥? The question of characterizing JTC systems in different
domains using various digit sets seems to be very hard.

4. Let the standard expansion of z € Z* be Z;S Miai+M'rm,a; € D7 €
P. 1. Katai introduced the set of (M, D)-additive and (M, D)-multiplicative
functions by Ear,py = {[ : ZF — R, f(M'7) = 0 for every 71 € P,r € Ny
and for every z € ZF f(z) = ‘Z;S f(M'a;)} and by Mpy = {g : 7k —
C,g(M"m) = 0 for every m € P,r € Ny and for every z € ZF g(z) =
HZ;S g(M'a;)}. There are lots of interesting questions which can be stated,
we refer the reader to [51].
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5. Canonical number systems can be one of the links between number
theory and theoretical computer science via automatic sequences. A sequence
is called (M, D)-automatic if — roughly speaking — its n-th term can be
generated by a finite state automaton from the digits of the radix expansion of
n. This concept was studied by many authors, see [3] and the references there.
The positional (or radix) systems are special cases of numeration systems
generated by a strictly increasing sequence GG = <G”>n>o of positive integers
with Gy = 1. Such a sequence is called G-scale. Using the greedy algorithm
(see e.g. A. S. Fraenkel [24]) every natural number can be expanded in the
form

n=c¢co(n)Go+...+e(n)G, (6.1)

where the digits ¢;(n) € Ny satisfy 0 < ¢;(n) < G;41/G;. The so-called G-
expansion in (6.1) is unique provided that eo(n)Go + ...+ ¢;(n)G; < G
for all j (0 < j <). In this way the natural numbers can be identified to
a sequence of non-negative integers by n — m0™ = ege;...e,0%, (¢ # 0).
The set L£(G) of words m is called the source language of G. If L(G) is
regular (i.e. recognizable by an automaton) then G must be a linear recurrent
sequence with integer coefficients (see J. Shallit [101]). Another direction of
the investigations is the sum-of-digit function of the G-expansions. It has
been extensively studied because of its nice structural properties ([35, 36]).

6. In this work we considered only number expansions in lattices. Clearly,
number expansions can be defined in many different ways. The most com-
mon is the following. The S-expansion of x € [0, 1] is a sequence of integers of
{0,1,...,|B]} with d,, = Lﬁfg_l(x”,n > 1, where fz(x) = o — |Ba] = Pa
mod 1. These expansions were studied by many authors, see e.g. [8, 56, 92].
The concept was generalized to interval filling sequences and to univoque
sequences by 7. Daréczy and 1. Kdtai [11, 12, 13]. Recently, there is a PhD
thesis on univoque numbers [46]. There are many other kinds of number ex-
pansions (e.g. Balkema-Oppenheim expansions [61], etc.) which are rather
different from our construction. Finally, a brand new theory opens in ex-
amining number expansions if one leaves the lattice for some non-Euclidean
space.
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A Applications

“A man who loves practice without theory is like the sailor
who boards ship without a rubber and compass

and never knows where he may cast.”

— Leonardo da Vinei

In this section we points out some possible applications, mainly referring
to some papers.

Generalized number systems can be very interesting in computer algeb-
ra, since they enables us error-free computations. Recall that the problems
regarding number expansions in algebraic number fields are special cases of
problems in Z*. Computing efficiently in an algebraic number field one might
choose an appropriate number system representation in order to perform
fast calculations either sequentially or parallel. Obviously, one has to choose
systems — if it is possible at all —, for which the basic operations can be
made efficiently (see also section 6 Problem 2).

A. Petho proposed a public key cryptosystem based on canonical num-
ber systems in Z" [95]. His cryptosystem is related to the Merkle-Hellman
knapsack scheme.

It is not yet clear in which cases and how generalized canonical number
systems can be applied for data compression or in telecommunication in
order to reduce the number of transmitted packets. Nevertheless, this research
direction could be very interesting. (See also Example 1 in section B.)

A. Vince in his nice introductory exposition [107] enumerates many top-
ics, where recently self-replicating tilings come under investigation. Without
giving the exact references — which can be found in his paper — we mention
a few of them.

o Wavelet bases construction;
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Multi-resolution analysis;

Crystallographic;

Finite state machines and Markov partitions in dynamical systems;
Ergodic theory and statistical mechanics;

Image processing and computer vision.
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“In Riemann, Hilbert or in Banach space

Let superscripts and subscripts go their ways.
Qur asymptotes no longer out of phase,

We shall encounter, counting, face to face.”
— Stanislaw Lem, Cyberiad

This chapter contains some examples regarding number expansions in
lattices.

Example 1. Let a 13 decimal digit number n = 1003462401565 be given.
Let us denote the Frobenius matrix of the cns-polynomial 2 — z 4+ z* by M,.
Using the correspondences 0 = [0,0,0,0]" and 1 = [1,0,0,0]? we have that

(n)10 = (1110100110100011000001010001111000011101), =

= ([29,0,0,0]")ar,

and 29 is only a 2 decimal digit number.

In the same way, let n = 2022058413721135191887880684697056875537
be a 40 decimal and 131 binary digit number. Again, if we consider the
Frobenius matrix M, of the cns-polynomial 2 + 42 + 522 + 52 4 52* + 42° +
325 + 227 + 2® and the appropriate abbreviations as above, we get that the
expansion of n is

(n)10 = ([29,0,0,0,0,0,0,0]7 ),

and 29 has only 5 binary digits, (29);0 = (11101)s. It would be interesting to
characterize all the rational integers which have shorter expansions in some
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generalized binary number system than in the traditional (one-dimensional)
binary case.

Example 2. Let A =R, M = (3),D = {-2,0,2}.

Clearly, G(P)=4{-1 — —1,0 = 0,1 — 1}, B(1) = {positive odd numbers},
B(—1) = {negative odd numbers}, B(0) = {even numbers}. The fundamen-
tal set H is the interval [—1, 1]. The system (A, M, D) is not a number system,
not a just touching covering system, but 0 € int(H) and it is a self-affine lat-
tice tiling with the lattice 2Z.

Example 3. Let A=Z> M = (9),D={(9),(§),(3")}

0 1
Now, G(P) ={(3") = (1), (3) = (3)}. Hence it is not a number system.
On the other hand, computations show that it is a JTC system and the graph
G(S) has two strongly connected components. Let us denote the domain of

attraction B(( ")) by black and B((§)) by white. Figure 2 shows the 400 x400

region of Z* centered at the origin.

Example 4. Let A = Z][i] be the ring of Gaussian integers.

(a) Let M = (3 7') and D be the canonical digit set. Then the eigenvalues
of M are 2+4, r = ||[M~'|| = v/5/5. The attractor set G(P) is {0 — 0, —1 +
i = —141,—24+2i - —2+2}. Let us denote the domain of attraction B(0)
by black, B(—1 + ¢) by white and B(—2 4+ 2i) by gray. Figure 3 shows the
400 x 400 region of Z[i] centered at the origin. The fundamental domain H
in the region {(x,y),x € [-0.5,2.5],y € [-2.5,0.5]} can be seen in Figure 4.
The set H is arcwise connected, its boundary has the Hausdorff dimension
approximately 1.6087. The system is a JTC system.

(b) Let M = (39), D1 ={0,+1,+¢,£1+s, +1Fi} and Dy = {0,1,2,14, 2,
142i,2+14,—142i,—2+1}. The fundamental domain F(M, D;) is just the
unit square centered at the origin. The set F(M, D3) in the region {(z,y),z €
[—1,1],y € [0,1]} can be seen in Figure 5. It is proved to be connected. The
system (A, M, D) is not a number system but it is a JTC system. The radix
representations in these systems essentially separate a complex number into
its real and imaginary parts.

(c) Let My = (231), My =(7*Z}) and let D C {a+bi,a,b € Z,—3 <
a,b < 3} be a full residue system that contains 0. Then (A, My, D) is a
number system in 127 different cases while (A, Ms, D) is a number sys-
tem in 2488 different cases. The boundary of the fundamental domain H =
F(M;,{0,+1,4:}) can be seen in Figure 6. Its Hausdorff dimension is ap-
proximately 1.3652. The set H is the same as the set constructed by B. Man-
delbrot from a generalized Koch curve [85].
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Example 5. Let A =7Z* M = (}72)and D = {(9),(}), ()}

Then (A, M, D) is a number system, its fundamental domain can be seen in
Figure 7. About this polygonal radix system see [100] for further references.
Example 6. Let us consider the ring of Gaussian integers with base § =
A+ Bi and a canonical digit set. Let A =5 and B = 12. We shall use the
notations of section 4.3.

If p =1 then @(B;) = 4, ordg, A = 2. Therefore there are two cycles
with period lenght 2. The periodic elements are 1 — —2 + 5 — 1 and
247 — —44+11i —» =24 7.

If = 2 then ¢(B;) = 2, ordg, A = 2. Therefore there is one cycle with
period length 2, namely 2: — —4 + 101 — 21.

If p = 3 then ¢(Bs) = 2, ordg, A = 1. Therefore there are two cycles
with period length 1, namely —1 + 37 -+ —1 + 37 and —3 + 92 — —3 + 9:.

If p = 4 then ¢(By) = 2, ordg, A = 2. Therefore there is one cycle with
period length 2, namely —1 4+ 41 — —3 4+ 8 — —1 + 4a.

If = 6 then ¢(Bs) = 1, ordg, A = 1. Therefore there is one cycle with
period length 1, namely —2 4+ 61 — —2 + 61.

If 1 = 12 then there are two cycles with period length 1, namely 0 — 0

and —4 + 121 — —4 + 124.
Example 7. Let A = Z[i] be the ring of Gaussian integers. Let § = —3 +1
and consider the canonical digit set D = {0,1,...,9}. The system (A, 6, D)
is a number system, its fundamental domain can be seen in Figure 8. It is
arcwise connected, its boundary has the Hausdorff dimension approximately
1.5495. Observe that the system is a staightforward generalization of the
traditional decimal number system.

Example 8. Let A = Z[i] be the ring of Gaussian integers again.

() Let M = (25') and D = {(3), (), (2),( 5)(=2)}. Then (A, M, D)
is a number system, its fundamental domain H can be seen in Figure 9. The
set H is disconnected, but clearly it is a lattice tiling.

(b) Let M = (35') and D = {(3), (1), (2),( 5)(Z2)}. Then (A, M, D)
is a number system, its fundamental domain H can be seen in Figure 10.
The set H is disconnected. It is a lattice tiling. The approximation of the
fundamental domain by the ESCAPE ALGORITHM can be seen in Figure 11.
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