
Technical Debt of Standardized Test Software
Kristóf Szabados

Eötvös Loránd University, Budapest, Hungary
Kristof.Szabados@ericsson.com

Attila Kovács
Eötvös Loránd University, Budapest, Hungary

Attila.Kovacs@inf.elte.hu

Abstract—Recently, technical debt investigations became more
and more important in the software development industry. In
this paper we show that the same challenges are valid for the
automated test systems. We present an internal quality analysis
of standardized test software developed by ETSI and 3GPP, per-
formed on the systems publicly available at www.ttcn-3.org.

I. INTRODUCTION

As the size and complexity of software systems grow, so
do their test systems. It is known that test architectures in
the telecom area are comparable to the tested systems in both
size and complexity [1]. Yet, these test systems received less
attention in the past.

In a previous study [2] standardized test suites – available
at www.ttcn-3.org – were analyzed. We found significant
syntactic and semantic problems. We also found a large
number of possible internal quality problems. In this article we
provide estimations on the cost of fixing the internal quality
issues found in the previously examined test software.

This paper is organized as follows. In Section II we present
earlier works related to this subject. Section III-A presents
our method for collecting estimates and the collected data.
Section III-B shows our technical debt values for the measured
projects. Section III-C deals with the validity of our results.
Finally, Section IV summarizes our findings and Section V
offers ideas for further research.

II. DEFINITIONS AND PREVIOUS WORK

Technical Debt: The term technical debt was first used
by Cunningham [3] to describe rushing to meet a deadline:
“like going into debt. A little debt speeds development so long
as it is paid back promptly with a rewrite...”.

Recently, technical debt became a major concern. Griffith
et al. conducted a study [4] showing that different forms of
technical debt can have significant to strong correlation with
reusability, understandability, effectiveness and functionality.
Holvitie et al. found [5] that in the industry almost 9 out
of 10 technical debt instances reside in the implementation
and that agile practices close to the implementation are felt
by practitioners to reduce or manage technical debt by their
respondents. Ho et al. proposed an approach [6] which could
help product managers to decide the release date of a product.

Ramasubbu et al. investigated [7] the 10 year long life-
cycle of a software package, which had 69 variants created
by customers in parallel. In their empirical investigation they
showed that avoiding technical debt results in poor customer
satisfaction in the short term, but pays off on the long

term with significantly higher software quality and customer
satisfaction.

The study of technical debt related articles of Li at el.
[8] shows that although the term “technical debt” became
widespread, different people use it in different ways, leading
to ambiguous interpretations. They also pointed out the need
for more empirical studies on technical debt and how to apply
specific approaches in industrial settings.

Code Smells: In this article we use code smells to
measure the technical debt of software systems. Code smells
were introduced by Fowler [9] as issues in the source code that
might indicate architectural problems or misunderstandings,
issues which are very hard to detect any other way.

Empirical work on code smells showed [10][11] that smelly
codes in software systems were changed more frequently than
other classes.

Moser at al. found [12] that in the context of small teams
working in volatile domains (e.g. mobile development) cor-
recting smelly code increased software quality and measurably
increased productivity.

Code Smell Debates: Yamashita et al. [13] found in their
survey that 32% of the respondents did not know about code
smells nor did they care. Respondents at least somewhat con-
cerned about code smells indicated difficulties with obtaining
organizational support and tooling. They also observed [14]
that code smells covered only some of the maintainability
aspects considered important by developers. Developers did
not take any conscious action to correct bad smells that were
found in the code.

Quality Debt of Test Systems: It was shown in [1] that
the size of automated test systems written in TTCN-31 may
increase yielding large and complex systems. In [15] it was
exposed how ISO/IEC 9126 and ISO/IEC 25010 software
quality models can be applied to software systems that are
used for testing. 86 code smells were defined, analyzed and
categorized according to the quality models. 35 selected code
smells were implemented and measured on 16 projects in order
to understand the quality of such systems. Some of them were
company internal, while others were created by standardization
bodies.

In [2] the software quality of test suites available at
www.ttcn-3.org were analyzed. It was shown that even
the public testsuites created by ETSI2 – the same organization

1Testing and Test Control Notation Version 3
2European Telecommunication Standardization Institute

978-1-4673-7378-4/15 c© 2015 IEEE MTD 2015, Bremen, Germany

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

52

57



behind the TTCN-3 language – contain a large number of code
smell instances.

III. TECHNICAL DEBT ANALYSIS

A. Estimation

After exploring the test system quality issues in [2] our
target is to estimate the effort needed to correct them.

1) The Estimation Method: Using the Delphi method [16]
first the estimates were collected on how long a single instance
of a given code smell type correction would take.

At our industry partner we gathered data from 10 experts in
the field of test software engineering. The team consisted of
a test system architect, test system developers and engineers
working in maintenance & support.

In order to address the issue of difficulty we did 3 estimates
for each code smell type3:

• Easy: The issue has only local effects if any, the context
tells the original intent and there is no need to change
external systems4.

• Average: A scenario that best fits the experts daily expe-
riences.

• Hard: The issue may affect other files or semantic con-
texts, the context is not helpful in solving the issue and
external system might be affected5.

We used the following estimation process:
1) Each member of the group gave an estimate.
2) The group was informed about the average and distri-

bution of the estimates.
3) Those giving estimates in the lower quartile and in the

upper quartile were asked to tell the rest of the group
why their estimates were as they were.

4) The group estimated again. That time taking the previous
results and the provided arguments for the “extreme”
estimates into account.

5) This might continue two, three, four, or more times until
the variation in the estimates was sufficiently small. In
our experiences, the variation decreased rapidly. This
gave confidence in the final estimation result.

The arithmetic mean of the numbers was calculated and
rounded to 0.5 precision.

2) Estimation Results: We summarize the results in Table
I.

3) Analysis of Estimation: We have observed that some of
the code smell types are very easy to fix. In the best case
scenario the rounding to 0.5 leads to 0 hours of effort needed.

Estimations for the average case are close to the easy case.
The average case is reaching the arithmetic mean of the easy
and hard case estimation only in a few cases, and never
exceeds that. In most of the cases the average case costs only
0.5 – 1 hour more effort to fix than the easy case.

3We consciously left out cases, where the work might disrupt other
developers work. We also did not address issues created by processes.

4For example: in a small function a local variable is not used.
5For example circular importation as a structural issue: the structure of the

code might need to change, the reason of existence might not be documented,
and the change of the code might require changes that have to be documented.

TABLE I
ESTIMATED COST OF FIXING CODE SMELL TYPES (MHR)

Smell Easy Average Hard

goto 1 5.5 26
circular importation 2 12 80
missing imported module 0 0.5 3.5
unused module importation 0 0.5 1
non-private private definitions 0 0.5 4.5
visbility in name 0 0.5 4.5
unnecessary negation 0 0.5 3.5
module name in definition 0 1 3.5
type in definition name 0 1 2
magic constants 0 0.5 3
infinite loops 0 1 3.5
uninitializaed variable 0 0.5 2
size check in loop 0 1 5
consecutive assignments 0 1 6
read-only variables 0 2 5
too many parameters 1 3 37
too complex expressions 1 2 8
empty statement blocks 0 2 5
too many statements 2 6 50
too big/small rotations 1 2 8
conditional statement without else 0.5 1 8
switch on boolean 0.5 1 2
setverdict without reason 0.5 1 2
uncommented function 0.5 1 3.5
stop in functions 0.5 2.5 50
unused function return values 0 0.5 9.5
receive accepting any value 0.5 1 6
insufficient altstep coverage 1 5 76
alt that should use alt guards 1 2 8
alt that should use templates 1 2 8
shorthand alt statements 0.5 5 50
isbound condition without else 0.5 1 8
Non-enumeration in select 0.5 3 8
Insufficient coverage of select 1 5 15
Iteration on wrong array 1 5 20
unused module level definitions 0.5 4.5 18
unused local definitions 0 0.5 1.5
unnecessary controls 0.5 1.5 5
unnecessary ’valueof’ 0.5 1 5

According to the estimations, in the daily experience of our
experts, most code smells are rather easy to fix.

B. The Cost of Fixing Standardized Test Suites

Applying the estimated correction times we were able to
calculate the technical debt of both 3GPP6 and ETSI projects
(Table II).

We found that standardized test suites have substantial
technical debt.

In the average difficulty case7, the technical debt of the
projects can be measured on 1000 Mhr base. Meaning several
man-years of technical debt.

C. Validity

This study was performed with a small group of experts
working at the same company. This study might suffer from
the usual threats to external validity. There might be limits

63rd Generation Partnership Project
7All detected code smell instances assumed to require average amount of

work to solve

58



TABLE II
ESTIMATED TECHNICAL DEBT IN TEST SUITES (MHR).

PROJECTS: 3GPP EUTRA(1), 3GPP IMS(2), WIMAX/HIPERMAN(3),
WIMAX/HIPERMAN 1.3.1 (4), EPASSPORT READERS(5), SESSION

INITIATION PROTOCOL(6), IP MULTIMEDIA SUBSYSTEM(7), IPV6(8),
DIGITAL PRIVATE MOBILE RADIO(9), DIGITAL MOBILE RADIO(10),

INTELLIGENT TRANSPORT SYSTEMS(11).
PROJECT IDENTIFIERS REFER TO DATA AT WWW.TTCN-3.ORG

Project

No. Identifier Min Avg Max

1 36.523-3v10.3.0 1528 20659.5 91282.5
2 34.229-3v9.7.0 / IMS34229 392 4053.5 16886

34.229-3v9.7.0 / IMS36523 580.5 6767 30392.5
3 TS 102 624-3 1699 13262 63426.5
4 TS 102 545-3 2552 14979.5 69307
5 TR 103 200 163 1928.5 8949.5
6 TS 102 027-3 1335 7126 39363
7 TS 101 580-3* 833.5 7438 33715

TS 101 606-3* 307.5 2979.5 13382.5
TS 102 790-3* 729.5 6529 28956.5
TS 102 891-2* 705.5 6237.5 28136
TS 186 001-2 844 9179 40899
TS 186 001-4* 557 5459 24966.5
TS 186 002-4 1326.5 12378 52104.5
TS 186 002-5 856 10703.5 42237.5
TS 186 005-3* 676.5 6058.5 27148.5
TS 186 007-3* 706 6211 27998
TS 186 009-3 1005.5 9722.5 42861.5
TS 186 010-3* 706.5 6330 28587
TS 186 014-3* 720 7092 32606.5
TS 186 016-3* 676.5 6058.5 27148.5
TS 186 017-3* 676.5 6058.5 27148.5
TS 186 018-3* 676.5 6058.5 27148.5
TS 186 022-3* 691 6093 27555

8 TS 102 351-3 204.5 2107 9357.5
TS 102 516 ver 1.1.1 352 3054 13542
TS 102 516 ver 1.2.1 377 3347.5 14961
TS 102 516 ver 3.1.1 640.5 5688.5 25697
TS 102 594 ver 1.1.1 497 4597.5 21407
TS 102 594 ver 1.2.1 527.5 5011.5 23092
TS 102 596 ver 1.1.1* 413.5 4334 19952.5
TS 102 596 ver 1.2.0 512.5 5212 24017.5
TS 102 751 ver 1.1.1 517.5 5106 23234.5

9 TS 102 587-4 220 2512.5 10074.5
10 TS 102 363-4 592 4836 18359
11 TS 102 859-3* 193 2082.5 9175

TS 102 868-3 ver 1.1.1* 186 1652 7615.5
TS 102 869-3 ver 1.2.1* 187 2093.5 10218
TS 102 870-3 ver 1.1.1* 137 1350.5 6158
TS 102 871-3 ver 1.1.1* 161.5 1927.5 8796.5

to generalizing our results beyond our settings (programming
language and tools used, project setups, experience of the
experts and possible industry specific effects).

Some of the projects contained syntactical and semantical
errors ([2]). In order to be able to measure technical debt we
had to correct these issues. Depending on how the official
corrections of these issues will be done the measured numbers
might differ slightly.

Projects, marked with * in Table II, import modules of non
TTCN-3 or ASN.1 kinds. These are not supported currently
by our tool or have incomplete archives. In those modules the
correct number of the founded issues could be higher.

IV. CONCLUSION

In our ongoing research activities we try to understand how
test systems can be viewed as software systems, whether there
are any differences. In previous articles we have shown that
large test systems can grow into complex structures ([1]).
We have also shown ([2]) that standardized test suites might
contain a large number of code smell instances.

In this article we set out to connect our research results
with industrial projects by showing the cost of fixing technical
issues in the investigated test systems.

Applying the Delphi method we
• estimated the cost of fixing TTCN-3 code smells,
• calculated the technical debt of several standardized test

suites.
We found that the existing standardized test suites contain

substantial technical debt. Following the results in [7], assum-
ing that test systems follow the same rules as software systems,
these numbers should be reduced to secure higher customer
satisfaction8 on the long term.

We also observed that, according to our experts, in TTCN-3
the cost of fixing a code smell instance of average difficulty
is very close to the easiest case.

V. FURTHER WORK

In this article we exposed that the technical debt in the
examined project could take years to pay back completely.
This creates a valid case for further study, on the possible
automation of the correction process.

ACKNOWLEDGEMENTS

The authors would like to thank the DUCN Software
Technology unit of Ericsson AB, Sweden for the financial
support of this research and the Test Competence Center of
Ericsson Hungary for providing access to their in-house tools.
These proved to be invaluable to our measurements.

We would like to thank András Rókás, János Sváner, Attila
Kovac, Rolf Deme, László Zeke, Eduárd Czimbalmos, Jenő
Balaskó, János Kövesdi, Sándor Juhász, Gergely Nagy for
their help in creating the estimations.

We would also like to thank Gábor Jenei, Dániel Poroszkai
and Dániel Góbor for their help in implementing features that
were crucial to our investigation. Their work allowed us to
quickly process large amount of data.

REFERENCES

[1] K. Szabados, Structural Analysis of Large TTCN-3 Projects in proceed-
ing of: Testing of Software and Communication Systems, 21st IFIP WG
6.1 International Conference, TESTCOM 2009 and 9th International
Workshop, FATES 2009, Eindhoven, The Netherlands, November 2-4,
2009.
ISBN: 978-3-642-05030-5 DOI: 10.1007/978-3-642-05031-2 19

[2] A. Kovács and K. Szabados, Advanced TTCN-3 Test Suite validation
with Titan, 2014, In Proceedings of the 9th International Conference on
Applied Informatics, Vol. 2, pages 273-281.

8Customers of test systems can be the organizations themselves using the
systems verifying their products. Issues with the technical quality of tests can
result in ambiguous or misleading test results and might set limitations on
what can be tested.

59



DOI: 10.14794/ICAI.9.2014.2.273
[3] W. Cunningham, The wycash portfolio management system, in Proceed-

ings of OOPSLA ’92 Addendum to the proceedings on Object-oriented
programming systems, languages, and applications (Addendum), ACM,
1992, pages 29-30.
DOI: 10.1145/157710.157715

[4] I. Griffith, D. Reimanis, C. Izurieta, Z. Codabux, A. Deo, B. Williams,
The Correspondence between Software Quality Models and Technical
Debt Estimation Approaches, in 6th International Workshop on Manag-
ing Technical Debt (MTD), pages 19-26.
DOI: 10.1109/MTD.2014.13

[5] J. Holvitie, V. Leppanen, S. Hyrynsalmi, Technical Debt and the Effect
of Agile Software Development Practices on It An Industry Practitioner
Survey, in 6th International Workshop on Managing Technical Debt
(MTD), pages 35-42.
DOI: 10.1109/MTD.2014.8

[6] J. Ho, G. Ruhe, When-to-release decisions in consideration of technical
debt, in 6th International Workshop on Managing Technical Debt
(MTD), pages 31-35.
DOI: 10.1109/MTD.2014.10

[7] N. Ramasubbu, C.F. Kemerer, Managing Technical Debt in Enterprise
Software Packages, 2014, IEEE Transactions on Software Engineering,
Volume 40, Issue 8, pages 758-772.
ISSN: 0098-5589 DOI: 10.1109/TSE.2014.2327027

[8] Z. Li, P. Avgeroiu, P. Liang, A systematic mapping study on technical
debt and its management, 12/2014, Journal of Systems and Software,
Volume 101, pages 193-220.
DOI:10.1016/j.jss.2014.12.027

[9] M. Fowler, Refactoring: Improving the Design of Existing Code,
Addison-Wesley, 1999.

[10] F. Khomh, M.D. Penta, Y.G. Guhneuc, An Exploratory Study of the
Impact of Code Smells on Software Change-proneness, 2009, WCRE
(75-84). IEEE Computer Society.

[11] S. Olbrich, D. Cruzes, V.R. Basili, N. Zazworka, The evolution and
impact of code smells: A case study of two open source systems, 2009,
ESEM 2009, pages 390-400.

[12] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, D. Succi A Case
Study on the Impact of Refactoring on Quality and Productivity in
an Agile Team, 2008, Balancing Agility and Formalism in Software
Engineering, pages 252-266.
ISBN: 978-3-540-85278-0 DOI: 10.1007/978-3-540-85279-7 20

[13] A. Yamashita and L. Moonen, Do developers care about code smells? An
exploratory survey, 20th Working Conference on Reverse Engineering
(WCRE), 2013, pages 242-251.
DOI: 10.1109/WCRE.2013.6671299

[14] A. Yamashita and L. Moonen, Do code smells reflect important main-
tainability aspects?, 28th IEEE International Conference on Software
Maintenance (ICSM), 2012, pages 306-315.
ISSN: 1063-6773 DOI: 10.1109/ICSM.2012.6405287

[15] A. Kovács and K. Szabados, Test software quality issues and connections
to international standards in Acta Universitatis Sapientiae, Informatica,
5/2013. pages 77-102.
ISSN 1844-6086 DOI: 10.2478/ausi-2014-0006

[16] L. Helmer, Analysis of the future: The Delphi method, March 1967,
RAND Corporation http://www.rand.org/pubs/papers/P3558.html

60


