
Sets of complex numbers generated from a

polynomial functional equation

Attila Kovács
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Abstract

Non-linear mappings of complex numbers has gained widespread atten-
tion in recent years playing a very important role in the present-day math-
ematics and physics. The purpose of the present paper is to study those
possible sets of periodic points generated by a special kind of quadratic
iteration, which have symmetric features. To be more precise, these sets
Γ must have the following properties:

Γ ⊂ C \R, Γ = −Γ, Γ = Γ, Γ = R(Γ), γi 6= γj , ∀i 6= j, γi, γj ∈ Γ

where R(x) = Ax2 + Ax + E, A, E ∈ R, A 6= 0.
Periodic points of quadratic maps was investigated from a general al-

gebraic and number theoretic point of view for periodic points of order
3 by Morton ([2]). In this note a functional equation approach was cho-
sen to investigate the elements of Γ, i.e. they can be generated by the
roots of a polynomial functional equation. It appears to be very difficult
to determine in algebraic way all the appropriate Γ’s, therefore the au-
thor presents an algorithmic method to verify his conjecture in case of
card(Γ) ≤ 100.

Let K be a field. Denote K[x] the ring of polynomials over K. Let Z denote
the ring of integers, R and C the fields of real and complex numbers, respectively.

The original question was to determine all non-trivial Q ∈ K[x] and all
S ∈ K[x] with deg(S) = 2 for which

Q(S(x)) = c Q(x)Q(x + γ) (1)

holds with a suitable γ ∈ K and c ∈ K. Kátai and Daróczy proved (see [1]), that
the general problem can be reduced to the case of γ = 1, S(x) = Ax2 +B which
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is equivalent to the following assertion: the polynomial Q(x) =
∏N

j=1(x− βj) is
a solution of (1) if and only if the relations

A := {β1, β2, . . . , βN} = {1− β1, 1− β2, . . . , 1− βN} =

= {S(β1), S(β2), . . . , S(βN )} (2)

hold.
The above mentioned authors could determine the complete solution of (1)

if K = R and Q has a real root, i.e. it has been given all the primitive solution
sets A, which contain at least one real element. We shall say that the set A is
primitive if there exists no proper subset B ⊂ A for which (2) holds.

Further questions and problems arise naturally.

1. Let K = R. Give all the possible primitive sets Γ in the complex plane,
i.e., if Q has no real root.

2. What are the possible solutions in case of K = C ?

3. What can we assert in the most general case, when K is an arbitrary field?

In this paper we shall restrict our attention to the problem Nr 1. Substituting
βj = γj + 1/2 in (2) and taking into account that

Γ ⊂ C \ R (3)

we get the following relations:

Γ = {γ1, γ2, . . . , γN} = {−γ1,−γ2, . . . ,−γN} = −Γ (4)

Γ = {S(β1), S(β2), . . . , S(βN )} = {R(γ1), R(γ2), . . . , R(γN )} = R(Γ) (5)

Γ = Γ (6)

where R(γ) = Aγ2 + Aγ + E, A 6= 0.
The aim of this note is to examine the possible primitive sets Γ according

to (3) - (6). First, we make some simple remarks.

1. We may assume that the leading coefficient of the polynomial Q(x) in (1) is
one, i.e. Q is monic.
2. The case E = 0 was examined in [1, p.307], therefore throughout this article
we assume that E 6= 0.
3. It follows from (4) and (6) that the points of Γ have a symmetry to the real
and the imaginary axis in the complex plain, so because of (3) Γ contains even
number of points.
4. Let γ ∈ Γ an arbitrary element. Suppose that γ and γ fall into the
same orbit with order k. Then k is even and it follows from the equation
R(γ) = R(γ) that this orbit has a symmetry, namely for the point γ it is
γ,R(γ), R2(γ), · · · , Rk/2(γ), γ, R(γ), R2(γ), · · · , Rk(γ) = γ, · · ·.
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Lemma 1 If Γ is a proper primitive set satisfying (3) - (6) then |A | ≤ 1.

Proof: Let K denote the following:

K : = max{ |Im γj | , γj ∈ Γ } = |Im γ∗|.

Then
| Im γi − Im γj | ≤ 2K

for all γi, γj . On the other hand

2K ≥ | Im R(γ∗) − Im R(−γ∗) | = | 2A Im (γ∗) | = 2K |A|.

It means that |A| ≤ 1. 2

A primitive set Γ contains no points from the real axis but it may have
points from the imaginary one. It happens when the primitive set has only two
elements. What can we assert in this case about the quadratic iteration R?

Lemma 2 If Γ is a primitive set with two elements satisfying (3) - (6) then
A = ±1 and Γ = { bi,−bi } = { √E,−√E }, E < 0, b 6= 0.

Proof: It is obvious, that for this Γ (3), (4) and (6) are valid. Solving the
equalities R(γ) = γ, R(γ) = −γ our statement immediately follows. 2

Example A sample for a primitive set with 2 elements is the case b = ±1, i.e.
Γ = { i, −i}.
Theorem If A = ±1 and (3) - (6) holds then Γ = { √E,−√E }, E < 0.

Proof: Let A = 1. Let Q(x) =
∏N

j=1(x− γj) be a solution of the equation

Q(R(x)) = c Q(x)Q(x + 1),

where R(x) = x2 +x+E and the γj-s satisfy (3) - (6). For simplicity we replace
E by −F . It is obvious, that

{γ2 + γ | γ ∈ Γ} = {γ + F | γ ∈ Γ}.

Consequently
∑

γ∈Γ

(γ2 + γ)k =
∑

γ∈Γ

(γ + F )k (k = 0, 1, 2, . . .). (7)

Further on let σl denote the following power sum:

σl =
N∑

j=1

γl
j (l = 0, 1, 2 . . .). (8)
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It is easy to see that
σ0 = N (9)

and by (4)
σ2k+1 = 0 (k = 0, 1, 2 . . .). (10)

It follows from (7) - (8) that

k∑

j=0

(
k
j

)
σk+j =

k∑

j=0

(
k
j

)
F k−j σj (k = 0, 1, 2 . . .). (11)

Next we shall prove the following statement by induction:

σ2k = F k N (k = 0, 1, 2, . . .). (12)

We have seen that for k = 0 the statement (12) is true. For k = 1 from (11)
immediately follows that σ2 = F σ0. From (9) we get that σ2 = F N .
Suppose that (12) is true for t = 1, 2, . . . , k − 1.
Case 1. k is even, k = 2 K.
Then

2K∑
2t=0

(
2K
2t

)
σ2K+2t =

2K∑
2t=0

(
2K
2t

)
F 2K−2t σ2t.

Using the induction hypothesis we get

σ4K +
K−1∑
t=0

(
2K
2t

)
FK+tN = F 2KN +

K∑
t=1

(
2K
2t

)
F 2K−2tF tN.

Observe, that (
2K
2t

)
FK+tN =

(
2K
2t∗

)
F 2K−t∗N

when t + t∗ = K. Consequently

σ2k = σ4K = F 2KN = F kN

which was to be proved.
Case 2. k is odd, k = 2K + 1.
Then

K∑
t=0

(
2K + 1
2t + 1

)
σ2K+2t+2 =

K∑
t=0

(
2K + 1

2t

)
F 2K−2t+1 σ2t.

Using the induction hypothesis we get

σ4K+2 +
K∑

t=0

(
2K + 1
2t + 1

)
FK+t+1N = F 2K+1N +

K∑
t=0

(
2K + 1
2t + 1

)
F 2K−t+1N.
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By similar arguments as in Case 1. we have

σ2k = σ4K+2 = F 2K+1N = F kN.

This completes the proof of our statement (12).
Let ϕ denote the logarithmic derivative of the polynomial Q(x), i.e.

ϕ(x) =
Q′(x)
Q(x)

=
∑

γ∈Γ

1
(x− γ)

.

It means that

ϕ(x) =
1
x

∑

γ∈Γ

1
(1− γ/x)

=
1
x

∑

γ∈Γ

∞∑
n=0

γn

xn
=

1
x

∞∑
n=0

1
xn

σn. (13)

By using (10) and (12) we obtain

ϕ(x) =
1
x

∞∑
m=0

FmN

x2m
=

N

x

∞∑
m=0

Fm

x2m
=

N

x

1
(1− F/x2)

=
Nx

(x2 − F )
.

Finally, taking the poles of the function ϕ(x) one can see that the only primitive
set Γ satisfying (3) - (6) is

Γ = {
√

F ,−
√

F }, F < 0.

Thus the theorem is proved in the case A = 1.
The proof in the case A = −1 is carried out analogously. Then we have the
equations

k∑

j=0

(−1)k

(
k
j

)
σk+j =

k∑

j=0

(
k
j

)
F k−j σj (k = 0, 1, 2 . . .)

and
σ2k = (−1)k F k N (k = 0, 1, 2, . . .)

whose proof we leave to the reader. In this case

ϕ(x) =
N

x

∞∑
m=0

(−1)m Fm

x2m
=

N

x

1
(1 + F/x2)

=
Nx

(x2 + F )
,

which means that the only appropriate primitive set satisfying (3) - (6) is

Γ = {
√
−F ,−

√
−F }, F > 0.

The proof of the theorem is complete. 2
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Conjecture The only primitive set satisfying (3) - (6) is

Γ = {
√

E,−
√

E }, E < 0.

Lemma 2 states the truth of the conjecture in case of card(Γ) = 2. For the
other cases it would be enough to show, that if the conditions (3) - (6) hold
then A = ±1. It is clear, that if the conjecture is true, the solutions of the
polynomial functional equation (1) can be exactly given, namely depending on
the value of A they are:

Q(x) =
L∑

j=0

(
L
j

)
EL−j x2j or

L∑

j=0

(
L
j

)
(−E)L−j x2j

where deg(Q) = 2L. (L = 1, 2, 3 . . .). The roots of the polynomial Q(x) satisfy
the conditions (3) - (6) but they form obviously only primitive set when L = 1.

The general algebraic solution of the problem seems to be hard. However,
using an idea coming from the theory of power sums expressed by elementary
symmetric polynomials (Newton–Girard formulas) we shall construct an algo-
rithm to verify the conjecture for lower degrees of the polynomial Q(x), namely
when deg(Q) ≤ 100 (or equivalently card(Γ) ≤ 100).

Let

Q(z) =
N∏

j=1

(z − γj) = p0 + p1z + . . . + pNzN (14)

be a solution of the equation Q(R(z)) = c Q(z)Q(z + 1), where R(z) = Az2 +
Az + E and γj-s satisfy (3) - (6). For simplicity we shall use the following
notations:

F := −E, ξ :=
F

A
, η :=

1
F

, κ := ξη =
1
A

.

It is clear, that
A{γ2 + γ | γ ∈ Γ} = {γ + F | γ ∈ Γ}.

Consequently, using the notations already adopted we have

k∑

j=0

(
k
j

)
σk+j = ξk

k∑

j=0

(
k
j

)
ηj σj (k = 0, 1, 2 . . .) ,

from which we get the recurrence relation

σ2k = κkσk +
k−1∑

j=0

(
k
j

)
(ξk−jκjσj − σk+j). (15)

Hence, because of (4) and (8) we have

σ2k+1 = 0 (k = 0, 1, . . .), σ0 = N. (16)
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Obviously, σ ∈ Z[ξ, κ] for a fixed N . Let us observe, that the powers of κ in
σ2k are divisible by 2. Taking the derivative of the polynomial Q(z) in (14) and
multiplying by z we get

z Q′(z) = zp1 + 2z2p2 + . . . + NpNzN . (17)

On the other hand we have seen in (13) that

Q′(z)
Q(z)

=
1
z

∞∑

k=0

σk

zk
.

Rearranging this equation we have

z Q′(z) = Q(z)
∞∑

k=0

σk

zk
. (18)

Let 1 ≤ k ≤ N and compare the coefficients of zk in (17) and (18):

k pk = σ0pk + σ1pk+1 + . . . + σN−kpN

i.e.,
(k −N) pk = σ1pk+1 + . . . + σN−kpN . (19)

It means, that for a fixed N using the recurrence relations (15) - (16) we should
first compute the polynomials σ2k and then substituting k = N −1, . . . , 0 to the
(19) formula — keeping in mind that pN = 1 — it allows a ready computation
of the coefficients pN−1, . . . , p0. Observe, that in (19) p2k+1 = 0 (k = 0, 1, . . .).
In the right hand side of (18) the coefficients of the factors 1/zk(k = 0, 1, . . .)
must be equal to 0, so

p0σk + p1σk+1 + . . . + pNσk+N = 0 (k = 0, 1, 2, . . .).

Clearly,

σk+N = −(p0σk + p1σk+1 + . . . + pN−1σN+k−1) (k = 0, 1, 2, . . .).

From this recurrence formula we can explicitly determine the power sums σN ,
σN+1, σN+2, . . . Next, we shall introduce the polynomial ω ∈ Z[ξ, κ] by

ωk =
{

σk if k ≤ N
−(p0σk−N + p1σk−N+1 + . . . + pN−1σk−1) otherwise (20)

It is plausible, that ω2k+1 must be zero (k = 0, 1, 2, . . .). Let us define the
polynomial

Ψk(ξ, κ) := σk(ξ, κ) − ωk(ξ, κ) (k = 0, 1, . . .). (21)
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It is clear, that for a fixed N only those pairs (ξ, κ) can satisfy the conditions
(3) - (6), for which the polynomials

Ψk(ξ, κ) = 0 (k = 0, 1, . . .). (22)

It follows from our construction, that if k is odd or k ≤ N then (22) is an identity,
but else it is not. Therefore for a fixed N we should determine the common
solutions of the equations (22) by k = N + 2, N + 4, . . .. If the only solutions
are κ = ξη = 1/A = ±1 then the conditions of the theorem are satisfied, i.e.
the conjecture is true for the case of deg(Q) = N .

Algorithm verifying the conjecture for polynomials Q(x), n ≤ deg(Q) ≤ m.
Input n,m: positive integers divisible by 2
for i from n to m by 2 do

N := i;
compute the coefficients pN−1, pN−2, . . . p0 using the (19) formula;
poly := gcd(Ψi+2, Ψi+4);
if (solving the equation poly = 0 for κ is equal to ±1)
then the conjecture is true
else counter-example found
fi

od

The algorithm clearly terminates. The polynomials σk, ωk, Ψk can be deter-
mined in the outlined manner using the formulas (15),(16),(20) and (21) respec-
tively. In the algorithm the function gcd finds the greatest common divisor of
polynomials.

Implementing this algorithm the experiments with a simple Maple1 program
(MapleV Release 3) running on a Sun2 workstation with the UltraSPARC-I3

processor (clock frequency 143 Mhz, 64 MByte RAM) show, that the conjecture
is true when deg(Q) ≤ 100. In order to solve the polynomial equation poly = 0
for κ we used the method of resultants. In the case of N = 100 the running
time was 19,66 hours, total sum of 31290 Kbyte memory was used.

1Maple is a registered trademark of Waterloo Maple Software
2Sun is a registered trademark os Sun Microsystem Inc.
3SPARC is a registered trademark of SPARC International.
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[1] I. Kátai, Z. Daróczy On a functional equation with polynomials
Acta Math. Hung. 52. (3-4), 1988, 305-320.

[2] P. Morton Arithmetic properties of periodic points of quadratic maps
Acta Arithmetica 62. (4), 1992, 343-372.

Attila Kovács
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