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Abstract

In this paper, some problems regarding number systems will be
analyzed in finite dimensional Euclidean spaces and an effective algo-
rithm will be presented in order to classify number expansions for a
given radix and digit set.

Keywords: Digital expansion, Number system

The author is grateful to Prof. I. Katai for his remarks and suggestions
regarding Assertion 4.

1 Introduction

Let 6 be any rational integer greater than one. It is well-known that every
non-negative integer n has a unique representation of the form

n=uay+af+..+ab = (araj—1 .. .aao)g, (1)

where the integers a; are selected from the set D = {0,1,...,0 — 1}. The
decimal (# = 10) and binary (6 = 2) systems are the most familiar. Here, D
is called the digit set and 6 is called the base or radiz. In fact, for any § < —2
every rational integer, including the negatives, has a base # representation
with digit set D ={0,1,...,]8] —1}. Conditions under which each rational
integer has a unique radix representation have been investigated by D. W.
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Matula [1], A. M. Odlyzko [2] and by B. Kovacs, A. Pethé [3]. A straight-
forward way to extend radix systems is choosing the radix to an algebraic
integer. The systematic research of positional number systems in algebraic
extensions was initiated by I. Katai and J. Szabé [4]. There is a more general
framework for radix expansions including number representations in algebraic
number fields. Recall that a lattice in R” is the set of all integer combinations
of k linearly independent vectors. Let A be a lattice, which can be viewed
either geometrically as a set of points in a Euclidean space, or algebraically,
a Z-module or as a finitely generated free Abelian group. Let M : A — A
be a group endomorphism, and let D be a finite subset of A containing 0.
Clearly, M can be taken as a square non-singular matrix. Moreover, if the
basis of M is chosen in A, then M is an integer matrix.

Definition: The triple (A, M, D) is called a number system (or having the
unique representation property) if every element n of A has a unique finite
representation of the form

n=ay+ Ma, + M*ay+ ...+ Ma, = (araj-1 .. .arao)n, (2)

where a; € D. Now, the endomorphism M is called the base or radiz, D is
the digit set. Observe that if A is a ring and M represents the endomorphism
x +— Pa for every @ € A then (2) reduces to (1).

We say that M is Jordan-diagonalizable if it is similar to the companion
matrix (or Frobenius matrix) of an irreducible monic polynomial over Z. It is
known that the problems regarding number expansions in algebraic number
fields are special cases of problems in Z*. To be more precise, for every radix
expansion in an algebraic number field there is a uniquely defined radix
expansion in the system (Zk, M, D) for some Jordan-diagonalizable M and
for some digit set D.

2 Some problems

2.1 Problem #1

One main problem concerning radix representation is to give conditions under
which (A, M, D) is a number system. For a lattice A, both A and MA are
Abelian groups under addition. The order of the factor group A/MA is
| det M |. Let A; denote the cosets of this group. If z1, 22 € Aj, so they are



in the same residue class then we will say that they are congruent modulo
M and we will denote this by z; = z5 (mod M).

The following result was known and used by I. Katai and co-workers (see
e.g. [5]) as well as by W. Gilbert [6] in algebraic number fields. Moreover, it
can be found implicitly in A. Vince’s paper [7]. Recall that a linear map is
called expansive if all eigenvalues have modulus greater than one.

Assertion 1. (Necessary conditions for the number system property)

If (A, M, D) is a number system then

(a) D must be a complete set of residues modulo M,

(b) M must be expansive and

(c) det(l — M) # +1.

PROOF: Considering (a) if z € A is represented by (amapm—1 ... arao)py then
z = ap (mod M). Hence the digit set D must contain a complete residue
system modulo M. Now suppose that two digits ¢ and d are congruent mod-
ulo M. Then ¢ —d = Me for some e € A. Represent e by (aja;—1 ... a1a0)m
so that (¢)y = ¢ = Me+ d = (@ai-1...a1a0d)p. Hence ¢ € A has two
different representations, which is a contradiction. Statement (b) was proved
in [7]. Concerning (c) first observe that (I — M") is nonsingular for any
positive integer n. Otherwise 1 would be an eigenvalue of M™, hence M
would have an eigenvalue of modulus one. Second, it is also clear that if
(A, M, D) is a number system then there is not any 7 € A and [ € N for
which @ = ag + May + ...+ M'"'a;_; + M'n, where a; € D. In other words
(I — M)~ aop + Ma, + ...+ M'""Ya;_;) € A can never be happen. But if
det(/—M) = +1 then (I — M)A = (I—M)~'A = A, which is a contradiction.
O

COROLLARY. Suppose that an arbitrary z € A has a finite expansion of form
(2). Then, the uniqueness of the representation follows from the assumption
that any two elements of D are incongruent modulo M.

If for a given triple (A, M, D) the conditions (a) and (b) in Assertion 1 hold
then we say that it is a radiz system. Assertion 1(b) answers the question of
T. Safer [8]. Assertion 1(c) explains why it is impossible to find appropriate
digit sets for the companion matrix of the polynomial 2% + mx — m, m € Z,
or for the matrix 2/ + T, where T is strictly upper (or lower) triangular.



2.2 Problem #2

The second question concerning number systems is the following: for a given
M satisfying criterion (b) and (c¢) in Assertion 1 is there any digit set D for
which (A, M, D) is a number system? How many such digit sets exist and
how to construct them? In imaginary quadratic fields due to G. Steidl [9]
and I. Kétai [10] we know that to be able to construct number systems the
conditions in Assertion 1 are also sufficient. Remarkable results are obtained
by G. Farkas in real quadratic fields [11, 12, 13]. The above mentioned
authors gave the constructions as well. The general problem seems to be hard.
Nevertheless, if M is Jordan-diagonalizable then some results are available
[14]. Now, we prove the following.

Assertion 2. (Sufficient condition for the number system property)
Suppose that the conditions for M, D in Assertion 1 hold. Let us denote
in R* @ vector norm and the corresponding operator norm by ||.|| for which
r=||M7Y < 1. Let K = max{||d||,d € D} and L = Kr/(1 —r). Let
furthermore R be a positive real number for which z € A, ||z|| < R implies z €
D. Ifr < R/(R+ K) then (A, M, D) is a number system.

PROOF: It is known [15] that if 7 is a periodic element then ||| < L. Hence,
if we could prove that L. < R then we would be ready, since in this case the
only periodic element is the null vector. But if r = |M~|| < R/(R+ K)
then Kr < R(1 —r), by which L = Kr/(1 —r) < R. 0

The construction of the digit set is as follows: enumerate all lattice points
in a ‘big enough’ ball around the origin, order them using the appropriate
norm and select a full residue system keeping the norm of the elements as
small as possible.

Assertion 2 has an important corollary. First, observe that a basis trans-
formation does not change the number system property. To be more precise,
if M; and M, are similar via the matrix ) then the number system prop-
erty of (A, My, D) and (QA, Mz, QD) holds at exactly the same time. Let
U= [—%, %)k denote the k-dimensional half-open unit cube centered at the
origin. Recall that the k-dimensional parallelotop V' = MU has volume
| det(M) | and the appropriate lattice points in V' constitute a full residue
system modulo M. Suppose that the norm in R* is the Euclidean norm.
Then, performing a basis transformation, the full residue system V' can be
transformed to the half-open unit cube U, in which case K/R is equal to Vk.
Hence, we proved the following:

Assertion 3. For a given expansive M suppose that | M|, < 1/(1 +VE).
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Then, there exists a digit set D for which (A, M, D) is a number system.

Our result is sharper than that one of A. Vince [7] except in dimension
2. Applying Assertions 1 and 3 in dimension 1 shows that if 2 < § € Z
then every rational integer has a unique base # radix representation with
D=A-1(16]-1/2],...,[] 0| /2]}, which is well-known. Consider the
ring of Gaussian integers Z[i] = {a+bi : a,b € Z} and let § = A+ Bi € Z][i].
In this case My = (g _AB> and [|[M; ]| = 1/v/A? 4+ B2, which is, apart from
a few cases, always smaller than 1/(1 4 v/2). Keeping in mind Assertion 1,
Assertion 2 and [4] these cases are easy to handle. We got the following:
for any Gaussian integer 6 of modulus larger than one, except 2 and 1 + 1,
there exists a full residue system D so that (Z*, Mg, D) is a number system.
Hence, as a special case of Assertion 3 we have the result of G. Steidl'.
If we consider the Fisenstein integers Z[w] = {a 4+ bw : a,b € Z}, where
w 18 the complex cube root of unity, and we perform the above mentioned
computations, we obtain the same conclusion. Nevertheless, it is not any
surprise: [. Katai solved the problem in all imaginary quadratic fields. If
we consider the real quadratic fields — without going into the details — it
is possible to reprove the result of G. Farkas [11]. The interesting is that
the above mentioned authors gave the digit sets explicitly which is different
from our construction. This suggests that the unique representation property
depends mainly on the radix, and if any, than several different digit sets can
be constructed.

2.3 Problem #3

The third problem regarding number expansions is to give an estimate for
the length of expansions in the radix system (A, M, D).

Let us denote in R a vector norm and the corresponding operator norm
by ||.|| for which r = ||[M™]| < 1, let K = max{||d||,d € D} and L =
Kr/(1 —r) as before. Let z € A\ {0} be fixed. Let us define the path of
z=zinAbyzj=a;+ Mz (j=0,...,). Let T'=1[(z) be the smallest
non-negative integer for which ||zr|| < L. The existence of such a T" was
proved in [15].

IHistorical remark: for the first proof of this result there is a research report by M.
Davio, J. P. Deschamps and C. Gossart [16] dated back to 1978.



Assertion 4. There is a constant ¢ for which

log 1|
") < gy T ()

PROOF: It is enough to examine the case ||z]| > L, z € A. Since z; =
aj + Mzjqy therefore z;1y = M~'z; — M~'a;, hence ||z;11]| < r(||z]] + K).
Let t = t(z0) be the smallest non-negative integer for which ||z|| < 2K L.
Since the ball ||w|| < 2K L contains finitely many lattice points therefore the
inequality

(z) < 1(z) + e (1)

holds for an appropriate constant ¢;. On the other hand 2K L < ||z;—1|| <
r(|lzize]] + K) < r2(||zizs]| + K) +rK < ... <77 Y|zo|| + K L. It means that
KL <77 2|, hence

log KL < (t—1)logr + log ||z0]l,
from which we can deduce that

(t—1)log1/r <log ||z —log K'L,
ie.

log || 20|
¢ < 26 11%0ll
~ log (1/7)

for an appropriate ¢;. Using the inequality (4) the assertion follows immedi-
ately. a

Assertion 4 extends the results of E. H. Grossman [17], [. Kdtai, [. Kérnyei
[5] and B. Kovacs, A. Pethé [18].

2.4 Problem #4

The fourth problem concerning radix systems is to give an efficient algorithm
to decide whether (A, M, D) is a number system. Such an algorithm was given
in [15]. The main idea is the following. First observe that if we change the
basis in A, a similar integer matrix M, : Z*¥ — Z* can be obtained. Hence
the number system property can be examined without loss of generality on
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the cubic lattice Z*. This has a computational advantage, since M, and its
characteristic polynomial have integer coefficients.

Suppose that for a given radix system (Zk, M, D) the conditions in As-
sertion 1 hold. It is not hard to see that for an arbitrary z € Z* the path
z,®(2),®*(2),... is ultimately periodic, where

®:7F - ZF &(2) =M (2 —d),d€ D,z =dmod M. (5)

The path must form a cycle inside the set Z* N (—H), where H denotes the
set of fractions, i1.e.

H= {ZM‘”dn td, € D} C R,
n=1
Since H is compact, the number of cycles is finite, their length is bounded.
These cycles define a classification of Z*, i.e. two integers x,y € Z* are in
the same class iff ®1(x) = ®2(y) for some non-negative integers /;,l,. But
how to calculate the integers in the set —H (or, which is computational
equivalent, in the set H)? Clearly, it is enough to determine a set GG, H C G,
for which the set of integers in G can be computed simply. Then, applying ®
for these vectors one can obtain all the cycles. If the only periodic element
is 0 € ZF then (Z*, M, D) is a number system. In [15] the set G, as a k-
dimensional rectangle was constructed. In the next section we show how
to construct in an effective way the set W, H C W C G, by which we can
(in higher dimensions even drastically) reduce the number of integer vectors,
which still cover the integers in /. We remark that in general there is not
known any fast method to resolve the fourth problem different from the above
mentioned classification. There is not known any procedure of polynomial
complexity to calculate the shortest cycle different from 0 — 0.

2.5 Problem #5

The fifth problem concerning radix representation is closely related to the
fourth: characterize the number, location and structural properties of the
periodic elements, when the system (Zk, M, D) is not a number system. It
seems to be a hard problem. In case of imaginary quadratic fields using
canonical digit sets, i.e. D = {0,1,...|det(M)| — 1}, it was completely an-
swered [19, 20]. There are also some results in the real quadratic field Q(v/2)
[21]. Recently, J. Thuswaldner [22] described the systems (Z*, M, D), where
the digit sets are the canonical digit sets and M have the special form <:|:A1 B )
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3 Classification of number expansions

A finite set of contractions {f;} mapping from R* to R¥ is called an iterated
function system (IFS). On the space S of nonempty compact subsets of R”,
with respect to the Hausdorff metric 6(A, B) = inf{r : A C N,.(B) and B C
N,.(A)}, where N,.(A) is the open r-neighborhood of A, define f : S — S by
f(X) = Ui’:1 fi(X), for any compact set X. Clearly, f is a contraction on
S and hence, by Hutchinson’s theorem [23], f has a unique fixed point or
attractor T satistying

and given by
T = lim f™(X,),

n— 0o
where (" denotes the nth iterate of f, Xy is an arbitrary compact subset
of R*, and the limit is with respect to the Hausdorfl metric.

For each digit d € D we define the function f; : R* — R* by fu(z) =
M~(z + d). These are linear contraction maps. If = € H then f;(z) € H.
Clearly, fq is a right-shift map and furthermore H = |J,.p, fa(H) so H is
the unique invariant set determined by Hutchinson’s theorem applied to the
functions f;. The set H is self-affine with respect to these functions.

It was mentioned in the previous section that we are interested in the
integers in the set —H. Let m € —H. Then

= (MY 4.+ M Tdy) = MU+ MY, 4
(6)

for the appropriate sequence d; € D. Fortunately, for the right hand side of
(6) a good estimate can be given. The following algorithm provides the set
W, for which the integers in W cover the integers in H.

NUMBER EXPANSION CLASSIFICATION ALGORITHM in Z* for a given ex-
pansive matrix M and digit set D. Let M € Z"* be similar to M via the
matrix ) and let ¢} be an optional argument of the algorithm. If it is not
given then let () be the identity matrix. Let D= QD. Further, B and C are
constants depending on the given computer hardware (word size, memory
capacity) and on the matrix M. Bis an integer and ' < 1 a real number.
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1. g:=min{j e N, |M7|.. <1};
2. s:=min{j € N, r:—HM ]HOO<C}
3. = (fro o f)T R, f = 15 0 maxyep | ()], 1 <m <k,

where (c(ll)(b), . ,cg)(b))T = M~'b;
4. minvol:=infinity; Chose an appropriate B, ¢ < B < s;
5. for j from ¢ to B do {
if (|[M7][ee < 1) { | |
Compute the Vector ol) = (vy), . ,U]g]))T € R¥,
Um—zl1| lfl|71§m§k§
if ((w:= Hl L Ul ) < minvol) { minvol:=w; J := j;}}}
{— EZ L M~ibb € D}
UueU(u + P), where P denotes the k-dimensional rectangle
P={(ps,... ;)" € R", |p2|<v , 1< <k}
8. W= {w=(w,... ,w)T € ZF, QwES},
9. Apply the function ® determined by the system (Zk, M, D) for the points
of W and the arising cycles mean the required classification.

6. U:
7.5

The lines 1-3 provide the k-dimensional rectangle G = {(g1,--- )" € RY,
| gi |< fi, 1 <@ <k} as was suggested in [15]. Let us analyze the second
assignment in line 4. If we increase B, the time complexity of the algorithm
grows exponentially in ¢ =| det(M) |. Unfortunately, in some cases ¢ can
be “rather big”, which means that the convergence of M~ (i — 00) is slow.
In these cases this algorithm can be ineffective, even keeping the running
time moderate one choose B close to q. The reason is that the set G can
also be rather big. Let an example be the Frobenius matrix of the irreducible
polynomial 243z +42? + 423+ 4214 32° 4225+ 27 with the canonical (binary)
digit set, () = I, € = 0.01. Then s = 188, ¢ = 53 and the number of integers
in ( is 15319297125. Using other kinds of matrices, during the computation
of s problems can arise with the matrix elements (see [15], section 3.1, remark
2). Line 5 try to keep the index .J small. The lines 6-8 are the application
of Hutchinson’s theorem in (6). Considering line 8 one can observe that the
number of elements of the set W depends also on | det(Q)) |. Line 9 was
thresh out in [15]. The termination of the algorithm is clear.

It must be emphasized that the running time of the algorithm depends
strongly on the matrices M and @), i.e., on the basis of the lattice determined
by the matrix M. In other words one has to choose the matrix () in a way

that the convergence of M™% = (QMQ™1)~" (1 — o) is fast, | det(Q) |



is big and the volume of ( is as small as possible. It seems to be rather
hard. Sometimes the simple idea of choosing the matrix ) in a way that
M = M7 can help. Fortunately, for a large class of matrices the algorithm
is quite effective even if we choose () for the identity matrix. The author
implemented the CLASSIFICATION ALGORITHM in C language. In order
to perform computations in the lattice effectively the elements of Z* were
transformed to Z using mixed radix representation. During the computation
of elements of the set S a hashing table was used.

Without giving the exact values of B and C let us see some examples. Let
) = 1. Consider example 1 in [15]. With the old method the set GG contains
25 integer elements, with the new algorithm the set W only 4, which is equal
to #P, the number of periodic elements. In example 2 these values are:
#{integers in G} = 35, #{integers in W} = 6, #P = 6. Finally, consider
the Frobenius matrix of the polynomial 2 — 2% 4+ 2% with the binary digit set.
Then #{integers in G} = 42875, #{integers in W} = 1134, #P = 1.
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