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es and an e�e
tive algo-rithm will be presented in order to 
lassify number expansions for agiven radix and digit set.Keywords: Digital expansion, Number systemThe author is grateful to Prof. I. K�atai for his remarks and suggestionsregarding Assertion 4.1 Introdu
tionLet � be any rational integer greater than one. It is well-known that everynon-negative integer n has a unique representation of the formn = a0 + a1� + : : :+ al�l = (alal�1 : : : a1a0)�; (1)where the integers aj are sele
ted from the set D = f0; 1; : : : ; � � 1g. Thede
imal (� = 10) and binary (� = 2) systems are the most familiar. Here, Dis 
alled the digit set and � is 
alled the base or radix. In fa
t, for any � � �2every rational integer, in
luding the negatives, has a base � representationwith digit set D = f0; 1; : : : ; j�j � 1g. Conditions under whi
h ea
h rationalinteger has a unique radix representation have been investigated by D. W.1The resear
h was supported partly by OTKA-T031877 and Eri
sson-ELTE CNL.1



Matula [1℄, A. M. Odlyzko [2℄ and by B. Kov�a
s, A. Peth}o [3℄. A straight-forward way to extend radix systems is 
hoosing the radix to an algebrai
integer. The systemati
 resear
h of positional number systems in algebrai
extensions was initiated by I. K�atai and J. Szab�o [4℄. There is a more generalframework for radix expansions in
luding number representations in algebrai
number �elds. Re
all that a latti
e in Rk is the set of all integer 
ombinationsof k linearly independent ve
tors. Let � be a latti
e, whi
h 
an be viewedeither geometri
ally as a set of points in a Eu
lidean spa
e, or algebrai
ally,a Z-module or as a �nitely generated free Abelian group. Let M : � ! �be a group endomorphism, and let D be a �nite subset of � 
ontaining 0.Clearly, M 
an be taken as a square non-singular matrix. Moreover, if thebasis of M is 
hosen in �, then M is an integer matrix.De�nition: The triple (�;M;D) is 
alled a number system (or having theunique representation property) if every element n of � has a unique �niterepresentation of the formn = a0 +Ma1 +M2a2 + : : :+M lal = (alal�1 : : : a1a0)M ; (2)where ai 2 D. Now, the endomorphism M is 
alled the base or radix, D isthe digit set. Observe that if � is a ring andM represents the endomorphismx 7! �x for every x 2 � then (2) redu
es to (1).We say that M is Jordan-diagonalizable if it is similar to the 
ompanionmatrix (or Frobenius matrix) of an irredu
ible moni
 polynomial overZ. It isknown that the problems regarding number expansions in algebrai
 number�elds are spe
ial 
ases of problems inZk. To be more pre
ise, for every radixexpansion in an algebrai
 number �eld there is a uniquely de�ned radixexpansion in the system (Zk;M;D) for some Jordan-diagonalizable M andfor some digit set D.2 Some problems2.1 Problem #1One main problem 
on
erning radix representation is to give 
onditions underwhi
h (�;M;D) is a number system. For a latti
e �, both � and M� areAbelian groups under addition. The order of the fa
tor group �=M� isj detM j. Let Aj denote the 
osets of this group. If z1; z2 2 Aj, so they are2



in the same residue 
lass then we will say that they are 
ongruent moduloM and we will denote this by z1 � z2 (mod M).The following result was known and used by I. K�atai and 
o-workers (seee.g. [5℄) as well as by W. Gilbert [6℄ in algebrai
 number �elds. Moreover, it
an be found impli
itly in A. Vin
e's paper [7℄. Re
all that a linear map is
alled expansive if all eigenvalues have modulus greater than one.Assertion 1. (Ne
essary 
onditions for the number system property)If (�;M;D) is a number system then(a) D must be a 
omplete set of residues modulo M ,(b) M must be expansive and(
) det(I �M) 6= �1.Proof: Considering (a) if z 2 � is represented by (amam�1 : : : a1a0)M thenz � a0 (mod M). Hen
e the digit set D must 
ontain a 
omplete residuesystem moduloM . Now suppose that two digits 
 and d are 
ongruent mod-ulo M . Then 
� d = Me for some e 2 �. Represent e by (alal�1 : : : a1a0)Mso that (
)M = 
 = Me + d = (alal�1 : : : a1a0d)M . Hen
e 
 2 � has twodi�erent representations, whi
h is a 
ontradi
tion. Statement (b) was provedin [7℄. Con
erning (
) �rst observe that (I � Mn) is nonsingular for anypositive integer n. Otherwise 1 would be an eigenvalue of Mn, hen
e Mwould have an eigenvalue of modulus one. Se
ond, it is also 
lear that if(�;M;D) is a number system then there is not any � 2 � and l 2 N forwhi
h � = a0 +Ma1 + : : :+M l�1al�1 +M l�, where ai 2 D. In other words(I �M l)�1(a0 +Ma1 + : : : +M l�1al�1) 2 � 
an never be happen. But ifdet(I�M) = �1 then (I�M)� = (I�M)�1� = �, whi
h is a 
ontradi
tion.2Corollary. Suppose that an arbitrary z 2 � has a �nite expansion of form(2). Then, the uniqueness of the representation follows from the assumptionthat any two elements of D are in
ongruent modulo M .If for a given triple (�;M;D) the 
onditions (a) and (b) in Assertion 1 holdthen we say that it is a radix system. Assertion 1(b) answers the question ofT. Safer [8℄. Assertion 1(
) explains why it is impossible to �nd appropriatedigit sets for the 
ompanion matrix of the polynomial x2+mx�m; m 2Z,or for the matrix 2I + T , where T is stri
tly upper (or lower) triangular.3



2.2 Problem #2The se
ond question 
on
erning number systems is the following: for a givenM satisfying 
riterion (b) and (
) in Assertion 1 is there any digit set D forwhi
h (�;M;D) is a number system? How many su
h digit sets exist andhow to 
onstru
t them? In imaginary quadrati
 �elds due to G. Steidl [9℄and I. K�atai [10℄ we know that to be able to 
onstru
t number systems the
onditions in Assertion 1 are also suÆ
ient. Remarkable results are obtainedby G. Farkas in real quadrati
 �elds [11, 12, 13℄. The above mentionedauthors gave the 
onstru
tions as well. The general problem seems to be hard.Nevertheless, if M is Jordan-diagonalizable then some results are available[14℄. Now, we prove the following.Assertion 2. (SuÆ
ient 
ondition for the number system property)Suppose that the 
onditions for M;D in Assertion 1 hold. Let us denotein Rk a ve
tor norm and the 
orresponding operator norm by k:k for whi
hr = kM�1k < 1. Let K = maxfkdk; d 2 Dg and L = Kr=(1 � r). Letfurthermore R be a positive real number for whi
h z 2 �; kzk � R implies z 2D. If r � R=(R +K) then (�;M;D) is a number system.Proof: It is known [15℄ that if � is a periodi
 element then k�k � L. Hen
e,if we 
ould prove that L � R then we would be ready, sin
e in this 
ase theonly periodi
 element is the null ve
tor. But if r = kM�1k � R=(R +K)then Kr � R(1 � r), by whi
h L = Kr=(1 � r) � R. 2The 
onstru
tion of the digit set is as follows: enumerate all latti
e pointsin a `big enough' ball around the origin, order them using the appropriatenorm and sele
t a full residue system keeping the norm of the elements assmall as possible.Assertion 2 has an important 
orollary. First, observe that a basis trans-formation does not 
hange the number system property. To be more pre
ise,if M1 and M2 are similar via the matrix Q then the number system prop-erty of (�;M1;D) and (Q�;M2; QD) holds at exa
tly the same time. LetU = [�12; 12)k denote the k-dimensional half-open unit 
ube 
entered at theorigin. Re
all that the k-dimensional parallelotop V = MU has volumej det(M) j and the appropriate latti
e points in V 
onstitute a full residuesystem modulo M . Suppose that the norm in Rk is the Eu
lidean norm.Then, performing a basis transformation, the full residue system V 
an betransformed to the half-open unit 
ube U , in whi
h 
ase K=R is equal to pk.Hen
e, we proved the following:Assertion 3. For a given expansive M suppose that kM�1k2 � 1=(1 +pk).4



Then, there exists a digit set D for whi
h (�;M;D) is a number system.Our result is sharper than that one of A. Vin
e [7℄ ex
ept in dimension2. Applying Assertions 1 and 3 in dimension 1 shows that if 2 < � 2 Zthen every rational integer has a unique base � radix representation withD = f�b(j � j �1)=2
; : : : ; bj � j =2
g, whi
h is well-known. Consider thering of Gaussian integersZ[i℄ = fa+ bi : a; b 2Zg and let � = A+Bi 2Z[i℄.In this 
ase M� = � A �BB A � and kM�1� k2 = 1=pA2 +B2, whi
h is, apart froma few 
ases, always smaller than 1=(1 +p2). Keeping in mind Assertion 1,Assertion 2 and [4℄ these 
ases are easy to handle. We got the following:for any Gaussian integer � of modulus larger than one, ex
ept 2 and 1 � i,there exists a full residue system D so that (Z2;M�;D) is a number system.Hen
e, as a spe
ial 
ase of Assertion 3 we have the result of G. Steidl1.If we 
onsider the Eisenstein integers Z[!℄ = fa + b! : a; b 2 Zg, where! is the 
omplex 
ube root of unity, and we perform the above mentioned
omputations, we obtain the same 
on
lusion. Nevertheless, it is not anysurprise: I. K�atai solved the problem in all imaginary quadrati
 �elds. Ifwe 
onsider the real quadrati
 �elds | without going into the details | itis possible to reprove the result of G. Farkas [11℄. The interesting is thatthe above mentioned authors gave the digit sets expli
itly whi
h is di�erentfrom our 
onstru
tion. This suggests that the unique representation propertydepends mainly on the radix, and if any, than several di�erent digit sets 
anbe 
onstru
ted.2.3 Problem #3The third problem regarding number expansions is to give an estimate forthe length of expansions in the radix system (�;M;D).Let us denote in Rk a ve
tor norm and the 
orresponding operator normby k:k for whi
h r = kM�1k < 1, let K = maxfkdk; d 2 Dg and L =Kr=(1 � r) as before. Let z 2 � n f0g be �xed. Let us de�ne the path ofz = z0 in � by zj = aj +Mzj+1 (j = 0; : : : ; ). Let T = l(z) be the smallestnon-negative integer for whi
h kzTk � L. The existen
e of su
h a T wasproved in [15℄.1Histori
al remark: for the �rst proof of this result there is a resear
h report by M.Davio, J. P. Des
hamps and C. Gossart [16℄ dated ba
k to 1978.5



Assertion 4. There is a 
onstant 
 for whi
hl(z) � log kzklog (1=kM�1k) + 
: (3)Proof: It is enough to examine the 
ase kzk > L; z 2 �. Sin
e zj =aj +Mzj+1 therefore zj+1 = M�1zj �M�1aj, hen
e kzj+1k � r(kzjk +K).Let t = t(z0) be the smallest non-negative integer for whi
h kztk � 2KL.Sin
e the ball k!k � 2KL 
ontains �nitely many latti
e points therefore theinequalityl(z) � t(z) + 
1 (4)holds for an appropriate 
onstant 
1. On the other hand 2KL < kzt�1k �r(kzt�2k+K) � r2(kzt�3k+K) + rK � : : : � rt�1kz0k+KL. It means thatKL � rt�1kz0k, hen
elogKL � (t� 1) log r + log kz0k;from whi
h we 
an dedu
e that(t� 1) log 1=r � log kz0k � logKL;i.e., t � log kz0klog (1=r) + 
2for an appropriate 
2. Using the inequality (4) the assertion follows immedi-ately. 2Assertion 4 extends the results of E. H. Grossman [17℄, I. K�atai, I. K�ornyei[5℄ and B. Kov�a
s, A. Peth}o [18℄.2.4 Problem #4The fourth problem 
on
erning radix systems is to give an eÆ
ient algorithmto de
ide whether (�;M;D) is a number system. Su
h an algorithmwas givenin [15℄. The main idea is the following. First observe that if we 
hange thebasis in �, a similar integer matrix M2 : Zk ! Zk 
an be obtained. Hen
ethe number system property 
an be examined without loss of generality on6



the 
ubi
 latti
e Zk. This has a 
omputational advantage, sin
e M2 and its
hara
teristi
 polynomial have integer 
oeÆ
ients.Suppose that for a given radix system (Zk;M;D) the 
onditions in As-sertion 1 hold. It is not hard to see that for an arbitrary z 2 Zk the pathz;�(z);�2(z); : : : is ultimately periodi
, where� :Zk !Zk;�(z) =M�1(z � d); d 2 D; z � d modM: (5)The path must form a 
y
le inside the set Zk \ (�H), where H denotes theset of fra
tions, i.e.H = ( 1Xn=1M�ndn : dn 2 D) � Rk:Sin
e H is 
ompa
t, the number of 
y
les is �nite, their length is bounded.These 
y
les de�ne a 
lassi�
ation of Zk, i.e. two integers x; y 2 Zk are inthe same 
lass i� �l1(x) = �l2(y) for some non-negative integers l1; l2. Buthow to 
al
ulate the integers in the set �H (or, whi
h is 
omputationalequivalent, in the set H)? Clearly, it is enough to determine a set G;H � G,for whi
h the set of integers in G 
an be 
omputed simply. Then, applying �for these ve
tors one 
an obtain all the 
y
les. If the only periodi
 elementis 0 2 Zk then (Zk;M;D) is a number system. In [15℄ the set G, as a k-dimensional re
tangle was 
onstru
ted. In the next se
tion we show howto 
onstru
t in an e�e
tive way the set W;H � W � G, by whi
h we 
an(in higher dimensions even drasti
ally) redu
e the number of integer ve
tors,whi
h still 
over the integers in H. We remark that in general there is notknown any fast method to resolve the fourth problem di�erent from the abovementioned 
lassi�
ation. There is not known any pro
edure of polynomial
omplexity to 
al
ulate the shortest 
y
le di�erent from 0! 0.2.5 Problem #5The �fth problem 
on
erning radix representation is 
losely related to thefourth: 
hara
terize the number, lo
ation and stru
tural properties of theperiodi
 elements, when the system (Zk;M;D) is not a number system. Itseems to be a hard problem. In 
ase of imaginary quadrati
 �elds using
anoni
al digit sets, i.e. D = f0; 1; : : : jdet(M)j � 1g, it was 
ompletely an-swered [19, 20℄. There are also some results in the real quadrati
 �eld Q(p2)[21℄. Re
ently, J. Thuswaldner [22℄ des
ribed the systems (Z2;M;D), wherethe digit sets are the 
anoni
al digit sets andM have the spe
ial form � A B�1 C �.7



3 Classi�
ation of number expansionsA �nite set of 
ontra
tions ffig mapping from Rk to Rk is 
alled an iteratedfun
tion system (IFS). On the spa
e S of nonempty 
ompa
t subsets of Rk,with respe
t to the Hausdor� metri
 Æ(A;B) = inffr : A � Nr(B) and B �Nr(A)g, where Nr(A) is the open r-neighborhood of A, de�ne f : S ! S byf(X) = Sli=1 fi(X), for any 
ompa
t set X. Clearly, f is a 
ontra
tion onS and hen
e, by Hut
hinson's theorem [23℄, f has a unique �xed point orattra
tor T satisfyingT = l[i=1 fi(T )and given byT = limn!1 f (n)(X0);where f (n) denotes the nth iterate of f , X0 is an arbitrary 
ompa
t subsetof Rk, and the limit is with respe
t to the Hausdor� metri
.For ea
h digit d 2 D we de�ne the fun
tion fd : Rk ! Rk by fd(z) =M�1(z + d). These are linear 
ontra
tion maps. If z 2 H then fd(z) 2 H.Clearly, fd is a right-shift map and furthermore H = Sd2D fd(H) so H isthe unique invariant set determined by Hut
hinson's theorem applied to thefun
tions fd. The set H is self-aÆne with respe
t to these fun
tions.It was mentioned in the previous se
tion that we are interested in theintegers in the set �H. Let � 2 �H. Then�� � (M�1d1 + : : :+M�JdJ ) =M�(J+1)dJ+1 +M�(J+2)dJ+2 + : : : ;(6)for the appropriate sequen
e di 2 D. Fortunately, for the right hand side of(6) a good estimate 
an be given. The following algorithm provides the setW , for whi
h the integers in W 
over the integers in H.Number Expansion Classifi
ation Algorithm in Zk for a given ex-pansive matrix M and digit set D. Let M̂ 2 Zk�k be similar to M via thematrix Q and let Q be an optional argument of the algorithm. If it is notgiven then let Q be the identity matrix. Let D̂ = QD. Further, B and C are
onstants depending on the given 
omputer hardware (word size, memory
apa
ity) and on the matrix M̂ . B is an integer and C < 1 a real number.8



1. q := minfj 2 N; kM̂�jk1 < 1g;2. s := minfj 2 N; r := kM̂�jk1 < Cg;3. f := (f1; : : : ; fk)T 2 Rk; fm = 11�rPsl=1maxb2D̂ j 
(l)m (b) j; 1 � m � k;where (
(l)1 (b); : : : ; 
(l)k (b))T = M̂�lb;4. minvol:=in�nity; Chose an appropriate B, q � B � s;5. for j from q to B do fif (kM̂�jk1 < 1) fCompute the ve
tor v(j) = (v(j)1 ; : : : ; v(j)k )T 2 Rk,v(j)m =Pkl=1 j M̂�jm;lfl j; 1 � m � k;if ((! :=Qkl=1 v(j)l ) < minvol) f minvol:= !; J := j;ggg6. U := f�PJi=1 M̂�ib; b 2 D̂g;7. S := Su2U(u+ P ), where P denotes the k-dimensional re
tangleP = f(p1; : : : ; pk)T 2 Rk; j pi j� v(J)i ; 1 � i � kg;8. W := fw = (w1; : : : ; wk)T 2Zk; Qw 2 Sg;9. Apply the fun
tion � determined by the system (Zk;M;D) for the pointsof W and the arising 
y
les mean the required 
lassi�
ation.The lines 1-3 provide the k-dimensional re
tangle Ĝ = f(g1; : : : ; gk)T 2 Rk,j gi j� fi; 1 � i � kg as was suggested in [15℄. Let us analyze the se
ondassignment in line 4. If we in
rease B, the time 
omplexity of the algorithmgrows exponentially in t =j det(M) j. Unfortunately, in some 
ases q 
anbe \rather big", whi
h means that the 
onvergen
e of M�i (i!1) is slow.In these 
ases this algorithm 
an be ine�e
tive, even keeping the runningtime moderate one 
hoose B 
lose to q. The reason is that the set Ĝ 
analso be rather big. Let an example be the Frobenius matrix of the irredu
iblepolynomial 2+3x+4x2+4x3+4x4+3x5+2x6+x7 with the 
anoni
al (binary)digit set, Q = I; C = 0:01. Then s = 188; q = 53 and the number of integersin Ĝ is 15319297125. Using other kinds of matri
es, during the 
omputationof s problems 
an arise with the matrix elements (see [15℄, se
tion 3.1, remark2). Line 5 try to keep the index J small. The lines 6-8 are the appli
ationof Hut
hinson's theorem in (6). Considering line 8 one 
an observe that thenumber of elements of the set W depends also on j det(Q) j. Line 9 wasthresh out in [15℄. The termination of the algorithm is 
lear.It must be emphasized that the running time of the algorithm dependsstrongly on the matri
esM and Q, i.e., on the basis of the latti
e determinedby the matrix M . In other words one has to 
hoose the matrix Q in a waythat the 
onvergen
e of M̂�i = (QMQ�1)�i (i ! 1) is fast, j det(Q) j9



is big and the volume of Ĝ is as small as possible. It seems to be ratherhard. Sometimes the simple idea of 
hoosing the matrix Q in a way thatM̂ = MT 
an help. Fortunately, for a large 
lass of matri
es the algorithmis quite e�e
tive even if we 
hoose Q for the identity matrix. The authorimplemented the Classifi
ation Algorithm in C language. In orderto perform 
omputations in the latti
e e�e
tively the elements of Zk weretransformed toZusing mixed radix representation. During the 
omputationof elements of the set S a hashing table was used.Without giving the exa
t values of B and C let us see some examples. LetQ = I. Consider example 1 in [15℄. With the old method the set G 
ontains25 integer elements, with the new algorithm the set W only 4, whi
h is equalto #P, the number of periodi
 elements. In example 2 these values are:#fintegers in Gg = 35; #fintegers in Wg = 6; #P = 6. Finally, 
onsiderthe Frobenius matrix of the polynomial 2�x3+x6 with the binary digit set.Then #fintegers in Gg = 42875; #fintegers in Wg = 1134; #P = 1.Referen
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