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AN ALGORITHM
CHECKING A NECESSARY CONDITION
OF NUMBER SYSTEM CONSTRUCTIONS

P. Burcsi and A. Kovács (Budapest, Hungary)

Abstract. In this paper we investigate from an algorithmic point of view

one of the three necessary conditions - the expansivity of the base - of the

number system property.

1. Introduction

Let Λ be a lattice in Rn, M : Λ → Λ be an operator such that det(M) 6= 0
and let D be a finite subset of Λ containing 0.

Definition. The triple (Λ,M,D) is called a number system (or having
the unique representation property) if every element x of Λ has a unique, finite

representation of the form x =
l∑

i=0

M idi, where di ∈ D and l ∈ N. The operator

M is called the base or radix, D is the digit set.

Clearly, both Λ and MΛ are abelian groups under addition. The order of
the factor group Λ/MΛ is t = | detM |. Let Aj (j = 1, . . . , t) denote the cosets
of this group. If two elements are in the same residue class then we say that
they are congruent modulo M . The following theorem was proved in [6].

Theorem 1. If (Λ,M,D) is a number system then
1. D must be a full residue system modulo M ,
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2. M must be expansive,
3. det(I −M) 6= ±1.

For a given operator M and digit set D the complete residue system
property of D modulo M was analysed in [4]. In order to check the expansivity
of M the method of Lehmer-Schur [7] was suggested and used in [5]. In case
of expansive operators we now present an alternative method.

2. Stability of linear systems

Consider the systems described by sets of linear differential equations, or
linear difference equations of the form

.
x(t) = Ax(t), t ≥ 0,

and
x(k + 1) = B x(k), k = 0, 1, 2, . . . ,

respectively, where x(t) and x(k) denote the n-dimensional state vector. These
representations arise in control theory, where the fundamental question is the
stability of the systems.

The origin of linear control systems emerged at the end of the XIX.
century in connection of centrifugal regulator, theoretically treated by Maxwell,
Hermite and Liapunov. They observed that the stability nature of equilibrium
points depends upon the sign of the real parts of the eigenvalues of A. A
continuous-time linear control system is said to be asymptotically stable if all the
eigenvalues λ1, . . . , λn of A have negative real parts. In the discrete-time case
it is equivalent with |µk| < 1, k = 1, . . . , n, where µ1, . . . , µn are the eigenvalues
of B. The correspondence between the continuous-time and discrete-time cases
is obtained by substituting

Re(λi) < 0 ⇔ |µi| < 1

and this is achieved by the standard bilinear mapping

(1) λ =
µ + 1
µ− 1

, µ =
λ + 1
λ− 1

.

It is equivalent to taking

(2) A = (B + I)(B − I)−1, B = (A− I)−1(A + I).
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The asymptotic stability criterion means now that all the eigenvalues of B must
lie inside the unit disc |µ| < 1 in the complex plane. Obviously, in this case
Bk → 0 as k →∞ (convergence).

A direct method of testing a given system for asymptotic stability is to
apply one of the standard numerical algorithms for determining the eigenvalues.
But we are interested in checking the stability condition (1) without finding
the eigenvalues exactly, (2) we are looking for a method in which the operator
may contain symbolic coefficients. We consider the stability problem in terms
of the characteristic polynomial of A or B.

Definition. The polynomial

(3) p(z) = p0 + p1z + p2z
2 + . . . + pnzn ∈ R[z]

is said to be stable if all its roots lie in the open left half of the complex plane.
In the complementary case the polynomial is said to be unstable.

Fortunately, the theory of polynomial stability is well-researched. Many
people were involved in this area, including Routh, Stodola, Hurwitz etc., see
[2, 3, 8]. Now, we describe a method which decides the stability of a given
polynomial.

There is a simple necessary condition for a polynomial to be stable.

Theorem 2. [Stodola condition] The polynomial p(z) in (3) can only be
stable if all its coefficients are of the same sign.

Further we give a necessary and sufficient condition for stability. It is
known that some real functions can be written in an m-terminating continued
fraction of form

(4)
b1

1 +
b2z

1 +
b3z

. . .
1 + bmz

,

where bk (k = 1, 2, . . . ,m) are appropriate real numbers. If we consider the
rational function

r(z) =
c0 + c1z + · · ·+ csz

s

d0 + d1z + · · · dtzt
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having an m-terminating continued fraction form, then it can be proved ([3])
that the numbers bk in (4) satisfy the following recursion:

c(−1)
n := dn,

c(0)
n := cn,

bk+1 :=
c
(k)
0

c
(k−1)
0

,

ck+1
n := bk+1c

(k−1)
n+1 − c

(k)
n+1,

where k = 0, 1, . . ., n = 0, 1, . . . and cn = 0 if n > s, dn = 0 if n > t. The proof
of the next theorem can be found in [3].

Theorem 3. The polynomial (3) of degree n is stable if and only if the
rational function

h(z) =
p1 + p3z + p5z

2 + · · ·
p0 + p2z + p4z2 + · · · =

b(n−1)/2c∑
k=0

p2k+1z
k

bn/2c∑
k=0

p2kzk

(the Hurwitz alternant of p) can be represented by an n-terminating continued
fraction, in which every number bk (k = 1, 2, . . . , n) is positive.

3. The algorithm

Back to our original problem let the operator M : Λ → Λ be given. Observe
that a basis transformation in Λ does not change the number system property,
hence number expansions can be examined without loss of generality on the
lattice Zn. Therefore let

b∗(µ) = b0 + b1µ + · · ·+ bnµn ∈ Z[µ]

be the characteristic polynomial of M . Since det(M) 6= 0, the inverse of M
exists and the characteristic polynomial of M−1 is

(5) b(µ) = bn + bn−1µ + · · ·+ b0µ
n ∈ Z[µ], b0 > 0.



An algorithm checking number system constructions 147

Applying the linear transformation (1) we got the polynomial

a(λ) = an + an−1λ + · · ·+ a0λ
n ∈ Z[λ].

Now, using Theorem 2 and 3 the stability of a(λ) can easily be decided.
Summarizing our results, the operator M is expansive if and only if a(λ)

is stable.
Instead of giving a pseudocode we present a code written in Maple 1

language. The input is a list of coefficients of the characteristic polynomial
of M . If the input is numeric then the output is true or false, depending on
the the expansivity of M , if the input contains symbolic coefficients then the
output is a set of inequalities, in which the expansivity holds.

Is expansive:=proc(L::list)

local l,cfnu,cfde,deg,b,m,temp,i,symb,s;

deg := nops(L)-1;

l := [seq(coeff(collect(sum(L[i+1]*(x+1)(̂deg-i)*(x-1)î,

i=0..deg),x),x,j),j=0..deg)];

if signum(op(1,l)) = 0 #minus 1 is a root

then RETURN(false); fi;

symb := not type(L,list(numeric));

if not symb then

s := signum(op(1,l));

if s < 0 then l:=-l; s:=-s; fi;

for i from 2 to nops(l) do

if signum(op(i,l)) <> s then RETURN(false); fi;

#Stodola criteria violated

od;

if type(deg,even) then l := [op(l),0] fi;

m := 1;

cfde := [seq(l[2*i-1],i=1..(deg+2)/2)];

cfnu := [seq(l[2*i],i=1..(deg+2)/2)];

while ((cfnu[1] > 0 or symb) and m < deg+1) do

b[m] := cfnu[1]/cfde[1];

if cfnu[nops(cfnu)] = 0 and

cfnu[nops(cfnu)] = cfde[nops(cfde)] then

cfnu := [seq(cfnu[i],i=1..nops(cfnu)-1)];

1 Maple is a trademark of Waterloo Maple Inc.
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cfde := [seq(cfde[i],i=1..nops(cfde)-1)]; fi;

temp := cfnu;

for i to nops(cfnu)-1 do

cfnu[i] := b[m]*cfde[i+1]-cfnu[i+1] od;

cfnu[nops(cfnu)] := 0;

cfde := temp;

m := m+1;

od;

if m < deg+1

then RETURN(false);

elif not symb then RETURN(true);

else print(‘true, if the following expressions are

all positive: ‘);

print(seq(op(1,op(i,entries(factor(simplify(b))))),

i=1..m-1)); fi;

end:

We remark that in the symbolic case the set of inequalities is not simplified
automatically.

Let us see some examples.

(1) Let the characteristic polynomial of the operator M be

(6) a(x) = −18 + 9x− 8x2 + 4x3 ∈ Z[x].

Now, Is expansive([−18, 9,−8, 4]) works as follows. After the linear trans-
formation the program computes the list l = [−39,−43,−49,−13]. Then,
since the first element of l is negative, the program produces the list l =
= [39, 43, 49, 13]. Observing that all the element of l have the same sign, the
Stodola criteria are not violated. Then, the program computes the continued
fraction coefficients bi, which are b1 = 43/39, b2 = 1600/1677, and b3 = 13/43.
Since all bi-s are positive, the program returns with true, so the operator M is
expansive.

(2) Let the characteristic polynomial of M be

a(x) = a0 + a1x + a2x
2 + x3 ∈ Z[x].

The algorithm Is expansive([a0, a1, a2, 1]) gives the following:

true, if the following expressions are all positive :
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3a0 − a1 − a2 + 3
a0 − a1 + a2 − 1

,
8(a2

0 − a0a2 + a1 − 1)
(a0 − a1 + a2 − 1)(3a0 − a1 − a2 + 3)

,
a0 + a1 + a2 + 1
3a0 − a1 − a2 + 3

.

(3) Let the characteristic polynomial of M be

a(x) = −4− 2x + ex2 + x3 + x4 ∈ Z[x].

The algorithm Is expansive([−4,−2, e, 1, 1]) gives that M is expansive if and
only if the numbers

(7)
14

2− e
,

(100 + 27e)
7(2− e)

,
16(69 + 25e)
7(100 + 27e)

,
7(4− e)

100 + 27e

are all positive. Simplifying (7) we have that −3 < b−69/25c < e < 2.

4. Bilinear transformation

In this section we give a method for applying the (1) bilinear transforma-
tion to the (5) polynomial, which uses only n(n + 1) additions and n binary
shifts.

Clearly,

(8) b(µ) = b

(
λ + 1
λ− 1

)
=

1
(λ− 1)n

(a0λ
n + . . . + an) =

1
(λ− 1)n

a(λ)

for an appropriate a(λ) polynomial. The polynomial a(λ) has the same
distribution of roots relative to the imaginary axis as does b(µ) relative to
the unit circle. Our task is to obtain the coefficients ai of a(λ) in terms of the
coefficients bi of b(µ). Since

(
2

λ− 1
+ 1

)
=

λ + 1
λ− 1

,

therefore if we let µ = 1 + σ then

(9) b(1 + σ) = b0(1 + σ)n + · · ·+ bn = c0σ
n + · · ·+ cn = c(σ)
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for appropriate ci-s. The coefficients ci in (9) can be obtained using a sequence
of Horner’s scheme. Then let σ = 2/(λ− 1), so we have that

(10) b

(
λ + 1
λ− 1

)
= c(σ) =

1
(λ− 1)n

(2nc0 + 2n−1c1(λ− 1) + . . . + cn(λ− 1)n).

Comparing (8) with (10) the required ai-s can be obtained by a second
application of Horner’s rule to the coefficients cn, 2cn−1, 22cn−2, . . . , 2nc0. All
together we performed n(n + 1) additions plus n binary shifts.

5. Summary

Deciding the expansivity of an operator M ∈ Zn×n by our algorithm
requires Θ(n2) arithmetic operations in Q. To see what this theoretical
speed means in practice we performed computer tests. In our experiment
100000 polynomials of degree n were generated with random integer coefficients
between −100 and 100. This was repeated 8 times, changing the fixed degree
of the polynomials from 3 up to 10.

For each random polynomial we checked if it defines an expansive operator,
both by the Lehmer-Schur method and by our method (they gave the same
results). We counted the number of arithmetic operations (additions and
multiplications) needed to decide the expansivity. The figures show the
cumulated number of all operations performed when expansive operators were
found. We present the number of additions, multiplications and all operations
as functions of the degree, showed on a logarithmic scale.

Fig. 1. The number of additions performed by the two algorithms
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Fig. 2. The number of multiplications performed by the two algorithms

Fig. 3. The number of all arithmetic operations performed by the two algorithms

The number of expansive cases decreases as the degree increases. The
decreasing number of operations is due to this fact. From the concave shape of
the curves we can read that this decrease is even faster than exponential. What
is more interesting is the approximately constant vertical difference between
curves in all three figures. The tests show that our method needs about twice
as much additions as the Lehmer-Schur method. On the other hand it only
needs one third of the number of multiplications of the latter. The number
of all operations is almost the same, slightly in favour of our algorithm. If
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addition is faster than multiplication it is worth choosing our test based on
stability checking rather than the Lehmer-Schur method.

We conclude that in the case of expansive operators our method is a good
alternative of the Lehmer-Schur method. We should choose it if we know in
advance that the operator is likely to be expansive. This can happen if we
know that another operator “close” to it is expansive. We use this method for
an extensive search of all expansive operators in a parameter space where, in
a certain sense, expansive operators are close to each other.

References

[1] Cormen T.H., Leiserson Ch.E., Rivest R.L. and Stein C., Intro-
duction to algorithms,, MIT Press, 2003.

[2] Henrici P., Applied and computational complex analysis I., Wiley, 1974.
[3] Henrici P., Applied and computational complex analysis II., Wiley, 1977.
[4] Kovács A., On computation of attractors for invertible expanding linear

operators in Zk, Publ. Math. Debrecen, 56 (1-2) (2000), 97-120.
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